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In the theory of partial coherence, coherence singularities can occur in the spectral degree of coherence: in case 

the fields at two different points are completely uncorrelated, the phase of the spectral degree of coherence is 

undefined. For a partially coherent vortex beam, the detection of coherence singularities is linked to the 

measurement of topological charge, whose magnitude equals the number of ring dislocations in its far field 

amplitude. However, the phase distribution of coherence singularities is rarely mentioned in literature and the 

amplitude distribution can hardly reflect the sign of topological charge. In this letter, we present a phase-analysis 

method for measuring the coherence singularities by introducing a movable perturbation at a certain point in an 

illumination window of a finite size. Using the proposed method, we measure experimentally the coherence 

singularities of a partially coherent vortex beam in the focal plane. From the results, the magnitude and sign of the 

topological charge can be determined simultaneously from the phase distribution of the coherence singularities. Our 

results can find application in information transmission.

Singular optics is a branch of modern optics that has 

recently raised much interest in the scientific 

community. It deals with a wide class of effects 

occurring near points where certain parameters of the 

optical field are undefined, or “singular” 1-5. In the past 

decades, various kinds of optical singularities have 

been introduced and identified, such as phase 

singularities1, polarization singularities5 and Poynting 

vector singularities. Especially optical phase 

singularities have become a hot topic due to their 

ability to carry orbital angular momentum (OAM)6,7 

and applications in high-dimensional Hilbert space8. 

However, for a vortex beam, the phase singularity will 

disappear as the degree of coherence decreases9,10. 

Thus in 2003, Schouten introduced coherence 

singularities of a partially coherent field in his Young’s 

interference experiment11 using the spectral degree of 

coherence (SDOC) function. Since then, coherence 

singularities have attracted much attention, and 

numerous works have been proposed both in theory 

and experiment12-18. However, the measurement of 

phase distribution for coherence singularities is rarely 

mentioned in the literature.  

In order to extract phase information of a spatially 

partially coherent field, one needs to measure at least a 

two-dimensional slice of the complex-valued 

four-dimensional SDOC. In the past few years, a large 

amount of methods and techniques for measuring the 

SDOC have been introduced, such as the Hanbury 

Brown and Twiss method (HBT)19-21, interferometry 

method,22,23 diffraction method24,25, and phase-space 

tomography method26-28. However, all of them have 

certain limitations when it comes to measurement 

complexity, dimensions, or applicability of light 

source. For example, using a non-parallel double slit23, 

one can only measure a one-dimensional SDOC 

function, and the extended HBT method mentioned in 

Ref. 21 requires a light source that obeys Gaussian 

statistics. 

In the theory of partial coherence, coherence 

singularities can occur in the SDOC when pairs of 

points are completely uncorrelated, in which case the 

phase of the SDOC is undefined. Such singularities are 

usually referred to as coherence singularities and have 

been found in partially coherent vortex beams18. The 

most direct application of detecting coherence 

singularities is the measurement of topological 

charge4,30-33, which has proved to be highly significant 

in decoding and optical communication. For the 

partially coherent Laguerre-Gaussian (LG) beam29,32, 

which is a typical kind of partially coherent vortex 

beam, it was found in theory and verified in 

experiment that the magnitude of the topological 

charge can be determined by measuring the far-field 

SDOC, based on the fact that the number of its ring 

dislocations equals |l|31-33. However, researches have 

always been focused on measuring the modulus of the 

SDOC with an on-axis reference point (i.e. only 

correlations with respect to the field at the center of the 

beam are considered), or cross-correlation functions 

which often give information about only the magnitude 

of the topological charge, but not the sign. More 

information contained in the SDOC was neglected, 

while in fact the sign of the topological charge also 

plays an important role in practical applications, for 

example as an additional degree of freedom for optical 
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storage and communication33-35. Recently, a method for 

simultaneously determining the sign and magnitude of 

the topological charge of a partially coherent LG0l 

beam was proposed by measuring the modulus of the 

SDOC with respect to an on-axis reference point after 

it propagates through a couple of cylindrical lenses36. 

However, the results were obtained from the amplitude 

of the SDOC not phase. 

To sum up, the present work reports a direct 

measurement of coherence singularities of a partially 

coherent vortex beam. This is done by measuring the 

phase distribution of its SDOC with a reference point 

whose position can be controlled, and from this phase 

distribution the magnitude and sign of the topological 

charge can be obtained simultaneously. Besides its 

basic simplicity in practical implementation, this 

method can be also used for robust optical 

communication, so that the need for coherent sources 

with high phase stability is eliminated. Instead, 

partially coherent sources with variable topological 

charges can exploit an additional dimension for signal 

encoding with advanced modulation formats, e.g. 

pulsed amplitude modulation, or orthogonal frequency 

division multiplexing. This would allow for using 

low-cost systems for free-space optical 

communication, for example in visible light 

communication or outdoor direct-range 

communication37. 

As is mentioned above, the coherence singularity 

occurs in the SDOC of a partially coherent vortex 

beam which is defined as: 

𝜇(𝒓1, 𝒓2, 𝜔) = 𝑊(𝒓1, 𝒓2, 𝜔)/√𝐼(𝒓1, 𝜔)𝐼(𝒓2, 𝜔).  (1) 

Here, 𝑊(𝒓1, 𝒓2, 𝜔) denotes the cross spectral density 

function (CSDF) at frequency 𝜔 . It represents the 

correlation between the fields at 𝒓1  and 𝒓2 , and 

𝐼(𝒓, 𝜔)  is the intensity distribution. Here we only 

consider monochromatic light, so we will ignore 𝜔 in 

the following theoretical derivation. Since we are now 

interested in a two-dimensional slice of the 

four-dimensional SDOC, we define a reference point at 

𝒓0. Therefore, we need to measure only 𝑊(𝒓, 𝒓0) and 

𝐼(𝒓). The intensity can be easily recorded by a camera, 

while the CSDF is a complex-valued function which is 

hard to measure directly.  

  
FIG. 1. The schematic diagram of the measurement method. 

A schematic diagram of the setup that is used to 

measure the CSDF is shown in Fig. 1. We denote the 

coordinates of reconstruction plane and recording 

plane by coordinate vectors 𝒓 and 𝝆, respectively. By 

placing a lens after the reconstruction plane, and a 

camera in the Fourier plane of this lens, we can record 

the Fourier transformation intensity distribution of the 

to be reconstructed partially coherent field in the 

reconstruction plane. Let us denote an aperture 

function that defines the region of interest in the 

reconstruction plane as 𝐴(𝒓). The recorded intensity 

distribution can be written as: 

𝐼0(𝝆) = ∬ 𝑊(𝒓1, 𝒓2)𝐴(𝒓1)𝐴∗(𝒓2) 

× exp[−𝑖2𝜋𝝆(𝒓1 − 𝒓2)]d𝒓1d𝒓2.     (2) 

Then, we introduce an additional perturbation (i.e. 

we shift the phase, modulate the amplitude, or both) at 

a point 𝒓 = 𝒓0 (blue spot) in the reconstruction plane, 

for example using a spatial light modulator (SLM), 

whose pixels are sufficiently small. The transmission 

function becomes 𝐴(𝒓) + 𝑃𝛿(𝒓 − 𝒓0), where 𝛿(𝒓) is 

a Dirac function, and 𝑃  is the complex-valued 

perturbation constant, and the perturbed intensity 

distribution can then be written as: 

𝐼(𝝆) = ∬ 𝑊(𝒓1, 𝒓2) × [𝐴(𝒓1) + 𝑃𝛿(𝒓1 − 𝒓0)]

× [𝐴(𝒓2) + 𝑃𝛿(𝒓2 − 𝒓0)]∗

× exp[−𝑖2𝜋𝝆(𝒓1 − 𝒓2)]d𝒓1d𝒓2. (3) 

Taking the inverse Fourier transformation of 𝐼(𝝆) −
𝐼0(𝝆), we obtain: 

    𝑃 × [𝑊(−(𝒓 − 𝒓0), 𝒓0)𝐴(−(𝒓 − 𝒓0))]
∗
 

+𝑃∗ × [𝑊(𝒓 + 𝒓0, 𝒓0)𝐴(𝒓 + 𝒓0)].   (4)  

Now, we in turn assign two different perturbation 

constants 𝑃+/− at the perturbation point, and measure 

the intensities 𝐼+/− for each value of 𝑃. In this way, 

we can obtain a linear system of equations and easily 

solve the following expression: 

𝑊(𝒓 + 𝒓0, 𝒓0) 

= ℱ−1 {
𝑃−[𝐼+(𝝆) − 𝐼0(𝝆)] − 𝑃+[𝐼−(𝝆) − 𝐼0(𝝆)]

𝑃+
∗𝑃− − 𝑃−

∗𝑃+

} . (5) 

Then, we can obtain 𝑊(𝒓, 𝒓0)  by shifting 𝑊(𝒓 +
𝒓0, 𝒓0) by −𝒓0, and calculate the SDOC using Eq. (1). 

Note that this correlation function is related to the 

location of perturbation point, which corresponds to 

the reference point. Our method allows us to move the 

perturbation point to any point in the reconstruction 

plane where the intensity is non-zero. As a result, the 

complete four-dimensional SDOC of the partially 

coherent vortex beam can be measured. Note that the 

perturbation point should not be moved beyond the 

beam range.  

Now consider the example of a LG0l beam whose 

electric field in the source plane can be expressed as 
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𝐸(𝑠, 𝜑) = (
√2𝑠

𝑤0

)

𝑙

exp (−
𝑠2

𝑤0
2) exp(𝑖𝑙𝜑),   (6) 

where 𝑠 and 𝜑 are the radial and azimuthal (angular) 

coordinates in the source plane, 𝑙 is the topological 

charge of the partially coherent LG0l beam, 𝜎0 

represents the transverse spatial coherence width, and 

𝑤0  denotes the beam width of the fundamental 

Gaussian beam. Now we introduce a more general 

expression for the LG0l beam, so that it can describe 

spatial partial coherence. The CSDF can be described 

as 𝑊(𝑠1, 𝑠2, 𝜑1, 𝜑2) =  〈𝐸∗(𝑠1, 𝜑1)𝐸(𝑠2, 𝜑2)〉,9 where 

angular brackets represent ensemble average and 

asterisk stands for complex conjugate. The intensity 

can be found from the CSDF as 𝐼(𝑠, 𝜑) =
𝑊(𝑠, 𝜑, 𝑠, 𝜑) . For a Schell-model source, 

𝑊(𝑠1, 𝑠2, 𝜑1, 𝜑2) = √𝐼(𝑠1, 𝜑1)𝐼(𝑠2, 𝜑2)𝜇(𝑠1 − 𝑠2) . 

Assuming the SDOC 𝜇(𝑠1 − 𝑠2) is Gaussian profile, 

we can obtain29,32 

𝑊(𝑠1, 𝑠2, 𝜑1, 𝜑2) 

= (
2𝑠1𝑠2

𝑤0
2 )

𝑙

exp [−
(𝑠1

2 + 𝑠2
2)

𝑤0
2 ] exp[𝑖𝑙(𝜑1 − 𝜑2)]

× exp [−
𝑠1

2 + 𝑠2
2 − 2𝑠1𝑠2 cos(𝜑1 − 𝜑2)

2𝜎0
2 ].       (7) 

In the far field or focal plane, the CSDF will evolve 

into 

𝑊(𝒓1, 𝒓2) = ∬ 𝑊(𝒔1, 𝒔2) 

× exp[−𝑖2𝜋(𝒔1 ∙ 𝒓1 − 𝒔2 ∙ 𝒓2)] d𝒔1 d𝒔2 .  (8) 

Here, for ease of calculation, the polar coordinates 

have been transformed to Cartesian coordinates. 

Substituting Eq. (7) and Eq. (8) into Eq. (1), the SDOC 

of a partially coherent LG0l beam in the focal plane can 

be obtained. 

 
FIG. 2. Experimental setup for generating a partially coherent LG0l 

beam and measuring its spectral degree of coherence. BE is a beam 

expander; L1, L2, L3 and L4 are thin lenses; RGGD is a rotating 
ground-glass disk; GAF is a Gaussian amplitude filter; BS1 and BS2 

are beam splitters; SLM1 and SLM2 are spatial light modulators; CA 

is a circular aperture; CCD1 and CCD2 are charge-coupled detectors. 
Illustrations: (a) is the light path detail at BS2 and (b) is an example 

for the design of aperture and perturbation function (added with a 

linear phase ramp). 

Figure 2 shows the experimental setup we used to 

generate a partially coherent LG0l beam and measure 

its SDOC. A coherent laser beam emitted by a 

solid-state laser at a wavelength of 𝜆 = 532nm  is 

expanded by the beam expander, and focused by lens 

L1 onto a rotating ground glass disk, thereby producing 

a partially coherent beam with Gaussian statistics. 

After the beam is collimated by lens L2 and transmitted 

by the Gaussian amplitude filter (GAF), the output 

beam becomes a Gaussian Schell-model (GSM) beam, 

whose intensity and SDOC both satisfy the Gaussian 

distribution. The GSM beam from the GAF goes to the 

first beam splitter (BS1) and illuminates the first spatial 

light modulator (SLM1), to which we assign the fork 

pattern as designed by the method of 

computer-generated holograms. The grating patterns of 

the holograms were obtained by adding a linear phase 

ramp to a phase vortex. The first diffraction order of 

the reflected field of SLM1 is a partially coherent LG0l 

beam, and it is limited by a circular aperture. A 

singularity occurs in the SDOC of the partially 

coherent LG0l beam as we propagate it to the focal 

plane using L3. We separate the beam by BS2 into two 

paths (see Fig. 2a for details): in one path, we measure 

the focal intensity distribution using the first charge 

coupled device (CCD1) which is placed at the focal 

plane of L3, and in the other path, we determine the 

CSDF of the beam using SLM2 (corresponding to the 

reconstruction plane in Fig. 1) and CCD2 (recording 

plane in Fig. 1). The SDOC can be easily calculated 

with the CSDF and focal intensity in CCD1 according 

to Eq. (1). 

In detail, we put SLM2 in the reconstruction plane 

and then assign to it an aperture function to select areas 

of interest, and a perturbation function, which is a 

phase shift in certain point (see Fig. 2b as an example). 

In our proposed method, this perturbation point 

corresponds to the reference point that defines the 

two-dimensional slice of the four-dimensional SDOC. 

Ideally, the perturbation should be a delta function. In 

experiment, the perturbation is approximated by 

varying the phase value of pixels in a small circular 

region on SLM2. The detector CCD2, which is put in 

the Fourier plane of SLM2, measures the corresponding 

modulated intensity distributions for different values of 

the perturbation. In this experiment, only three 

intensity patterns are needed for calculating the CSDF. 

One pattern corresponds to applying no perturbation 

function to SLM2, and the other patterns correspond to 

shifting the phase of the field in the perturbation region 

by different values, e.g. exp(2𝑖𝜋/3) and exp(−2𝑖𝜋/
3). For all three patterns, SLM2 applies an aperture 

function. These three intensities captured by CCD2 and 

the intensity captured by CCD1 are used to calculate 

the final SDOC. With this method, we can freely 

control the position of the reference point of the SDOC 

by moving the perturbation point in SLM2 and 

calculate different distributions of coherence 
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singularities. 

Firstly, we set the reference point of the SDOC for a 

partially coherent LG0l beam at the origin (i.e. at the 

center of the beam). The theoretical simulations and 

experimental results of the amplitude and phase 

distribution of a focused partially coherent LG0l beam 

with beam width and spatial coherence width both 

being 0.8 mm are shown in Fig. 3 for different 

topological charges 𝑙 . In this case, the coherence 

singularities show up as dark rings in the amplitude 

and circular dislocations in the phase, i.e. the phase is 

undefined on the ring. The number of dark rings of the 

amplitude of the SDOC equals |𝑙| , which is the 

magnitude of the topological charge of the partially 

coherent LG0l beam. This conclusion can also be 

obtained from the analytic expression for the focused 

CSDF as shown in Eq. (7) of Ref. [31]. From this 

equation, one can find that the number of zeros of the 

Laguerre polynomial with mode 𝑙  is equal to the 

topological charge. Moreover, the magnitude of the 

topological charge |𝑙| also can be determined from the 

phase distribution, since |𝑙|  equals the number of 

phase jumps. However, comparing the results of 𝑙 =
3 and 𝑙 = −3 in Fig. 3, one cannot identify the sign of 

topological charge without placing additional optical 

elements as described in Ref. [36]. 

 
FIG. 3. Theoretical simulations and experimental results of the 
amplitude and phase distributions of spectral degree of coherence 

with an on-axis reference point for the focused partially coherent 

LG0l beams with different topological charge. 
 

Our method also allows us to measure the SDOC 

with off-axis reference points. Fig. 4 shows the 

simulations and experimental results of the amplitude 

and phase distribution of SDOC with an off-axis 

reference point for the focused partially coherent LG0l 

beams with different topological charges. In other 

words, we move the reference points away from the 

origin of the coordinate system, while the beam waist 

and coherence width remain the same as that in Fig. 3. 

From the amplitude distribution of Fig. 4, one can see 

that the ring dislocations which are shown in Fig. 3 

disappear. Dark areas appear near the horizontal axis, 

which are in fact coherence singularities. In this case, 

the coherence singularities show up as dark dots in 

amplitude and helical phases around the dots, i.e. the 

phase is undefined in these dots. From the amplitude 

distribution, we conclude that the number of coherence 

singularities (dark areas) is equal to |𝑙|.38 But we still 

cannot distinguish the sign of the topological charge. In 

contrast, from the measured phase patterns, we can not 

only obtain |𝑙|  from the coherence singularities 

(which are defined as the points where the value of the 

SDOC equals zero, while the corresponding phase is 

undefined), but also determine the sign of the 

topological charge from the direction in which the 

phase rotates. A phase that is rotating counterclockwise 

corresponds to a positive sign, whereas a phase that is 

rotating clockwise represents a negative sign.  

The experimental figures in Fig. 3 & Fig. 4 are the 

main results of this paper, where the SDOC of the 

partially coherent LG0l beam in the focal plane has 

been measured using the experimental setup in Fig. 2. 

We have shown that coherence singularities of the 

partially coherent vortex beam can be easily found by 

moving the perturbation point. For different locations 

of the perturbation, one finds different distributions of 

coherence singularities and simultaneously extracts the 

information of topological charge. More importantly, 

the experimental results where the SDOC is 

reconstructed with respect to an off-axis reference 

point are more robust to noise, and simultaneously 

contain more intuitive and richer information. Not only 

the magnitude, but also the sign of the topological 

charge can be directly obtained from only one phase 

pattern.  

 
FIG. 4. Theoretical simulations and experimental results of the 
amplitude and phase distributions of the spectral degree of coherence 

with an off-axis reference point for the focused partially coherent 

LG0l beams with different topological charge. 
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In conclusion, we have demonstrated that the 

complex-valued SDOC of a partially coherent beam 

can be determined using two perturbations and solving 

a simple linear system of equations, which makes it 

possible to study coherence singularities through the 

measured amplitude and phase patterns in real-time. 

Most importantly, our results suggest a straightforward 

route for determining the real and imaginary part of the 

SDOC efficiently, without operating for a long time, 

without extensive modification of existing setups, and 

which can be used for all kinds of correlation structures. 

Furthermore, the method presented here does not 

depend on the wavelength, thus allowing this method 

to be applied to UV, mid-IR sources, microwaves, and 

even X-rays. The results presented here will not only 

aid the determination of SDOC, but one can also apply 

this method to other topics, such as information 

transmission and imaging using partially coherent 

vortex beams. 
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