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a b s t r a c t 

We present a distributed Nash equilibrium seeking method based on the Bregman forward-backward 

splitting, which allows us to have a mirror mapping instead of the standard projection as the backward 

operator. Our main technical contribution is to show convergence to a Nash equilibrium when the game 

has cocoercive pseudogradient mapping. Furthermore, when the feasible sets of the agents are simplices, 

a suitable choice of a Legendre function results in an exponentiated pseudogradient method, which, in 

our numerical experience, performs out the standard projected pseudogradient and dual averaging meth- 

ods. 
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. Introduction 

Game theory has been widely used in analyzing and computing 

olutions of prominent problems not only in economics but also 

n engineering domains, such as traffic flow networks [1,17] , power 

ystems [20] , and energy management systems [2,7,19,24] , since it 

eals with optimization problems of multi-agent systems, where 

he objective function of each agent is coupled through the deci- 

ion variables of other agents. In such decision-making problems, a 

ash equilibrium (NE) is a collective decision where no agent has 

n incentive to unilaterally deviate. 

A considerable effort has been given to designing distributed 

E seeking algorithms, e.g. [9,13,14,18,23,25] . Typically, these algo- 

ithms perform a Euclidean projection at each iteration to ensure 

he feasibility of decisions with respect to their local constraints, 

sually assumed to be compact and convex. In practice, a projec- 

ion step requires each agent to solve a convex programming prob- 

em. 

The main research question studied in this paper is on how 

o exploit the structure of the feasible sets in order to reduce 

he computational effort of performing the projection step. In ad- 

ressing this question, we turn our attention to the mirror de- 

cent approach for convex optimization, pioneered by Nemirovski 

nd Yudin [6,15] . In this method, the gradient step is mapped onto 
� This work was partially funded by the ERC under research project COSMOS 

802348). 
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he feasible set via a so-called mirror mapping, which is based on 

he Bregman distance of a well-behaved function. In fact, mirror 

appings are a generalization of the Euclidean projection. An ap- 

lication of this approach to convex optimization problems with 

implex feasible sets is studied in [6] , where the negative entropy 

unction is exploited to obtain a mirror map onto a simplex in a 

losed-form. 

A generalization of the mirror descent method for monotone 

nclusion problems is presented in [10] , which proposes the Breg- 

an forward-backward (B-FB) splitting. In fact, the B-FB subsumes 

he standard forward-backward (FB) splitting [5 , Section 26.5 ] and 

rovides an extra degree of freedom, that is the choice of the 

egularizer function used to define the Bregman distance, which 

losely relates to the (possibly non-Euclidean) projection step. On 

he other hand, a mirror-based approach to solve NE problems has 

lso been proposed in [15] , with a method based on the dual av- 

raging (DA) [16] , also called the lazy mirror descent (technically, 

ot a special instance of the B-FB). 

In this paper, we propose a distributed implementation of the 

-FB splitting method suitable to compute an NE of cocoercive 

ames, which include strongly monotone games as special cases 

9,18,23] . In particular, when the feasible sets of the agents are 

implices, e.g., in a Nash–Cournot market [25] , an atomic splittable 

ongestion game [1,17] , or a peer-to-peer energy market [24] , we 

an obtain an exponentiated pseudogradient algorithm, which has a 

losed-form non-Euclidean projection onto simplices. In Section 4 , 

e provide a numerical simulation study to illustrate the benefits 

f our algorithm. 
l Association. This is an open access article under the CC BY license 
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.1. Notation and definitions 

The set of real numbers is denoted by R whereas that of the 

xtended real numbers is denoted by R := R ∪ { + ∞} . The vector

f all 1 (or 0) with dimension n is denoted by 1 n ( 0 n ). We omit

he subscript when the dimension is clear from the context. The 

perator col (·) stacks the arguments column-wise. The cardinal- 

ty of a set is denoted by | · | . The interior and relative interior

f a set are denoted by int and rint , respectively. Let P � 0 be 

ymmetric. For x, y ∈ R 

n , 〈 x, y 〉 P = 〈 x, P y 〉 and ‖ x ‖ P denote the P -

eighted Euclidean inner product and norm, respectively. The op- 

rator proj A : R 

n → A is the Euclidean projection onto a closed 

onvex set A ∈ R 

n , i.e., proj A (x ) := argmin y ∈A ‖ y − x ‖ 2 . 
The graph of an operator A : R 

n ⇒ R 

n is denoted by gph (A ) .

er (A ) defines the set of zeros of operator A , i.e., zer (A ) = { x ∈
om (A ) | 0 ∈ A (x ) } . An operator A : R 

n ⇒ R 

n is ξ -strongly mono-

one if, for any (x, y ) ∈ gph (A ) and (x ′ , y ′ ) ∈ gph (A ) , 〈 y − y ′ , x −
 

′ 〉 ≥ ξ‖ x − x ′ ‖ 2 [5, Def. 22.1.e] . Moreover, an operator A : R 

n → R 

n 

s L -Lipschitz continuous if there exists a constant L > 0 , such

hat, for all x, x ′ ∈ R 

n , ‖ A (x ) − A (x ′ ) ‖ ≤ L ‖ x − x ′ ‖ [5, Def. 1.47] and

 is β-cocoercive if there exists β > 0 such that for all x, x ′ ∈
 

n , 〈 A (x ) − A (x ′ ) , x − x ′ 〉 ≥ β‖ A (x ) − A (x ′ ) ‖ 2 [5, Def. 4.10] . A con-

inuously differentiable function f : R 

n → R is ξ -strongly convex 

ith ξ > 0 , if, for all x, x ′ ∈ dom ( f ) , f (x ′ ) ≥ f (x ) + 〈∇ f (x ) , x ′ −
 〉 + 

ξ
2 ‖ x ′ − x ‖ 2 . Moreover, it also holds that 〈∇ f (x ′ ) − ∇ f (x ) , x ′ −

 〉 ≥ ξ‖ x ′ − x ‖ 2 . Additionally, f is convex if the two previous in-

qualities hold for ξ = 0 . For a nonempty convex set C, N C denotes

ts normal cone operator [5, Eq. (6.35)] . 

efinition 1 [3, Def. 3.1] . Let ϕ be a closed, convex, and 

roper function on R 

n with int dom (ϕ) � = ∅ , and differentiable on 

nt dom (ϕ) . The Bregman distance associated with ϕ, denoted by 

ist ϕ : R 

n × int dom (ϕ) → R , is defined as 

ist ϕ (x, y ) = ϕ(x ) − ϕ(y ) − 〈∇ϕ(y ) , x − y 〉 . 

efinition 2 ([From [3] ) . Let ϕ be a closed, convex, and proper 

unction on R 

n . Then, ϕ is Legendre if 

1. ϕ is essentially smooth, i.e., continuously differentiable on 

int dom (ϕ) [3, Def. 2.1] ; 

2. ϕ is essentially strictly convex, i.e., strictly convex on every con- 

vex subset of int dom (ϕ) [3, Def. 2.3] . 

. Cocoercive Nash equilibrium problems 

.1. Nash equilibrium problems 

Let I := { 1 , 2 , . . . , N} denote the index set of agents playing a

ame in the form: 

 i ∈ I : min 

x i ∈X i 
J i (x i , x N i ) (1) 

here x i ∈ R 

n i denotes the decision variable of agent i whereas 

 N i ∈ R 

∑ 

j∈N i n j denotes the collection of decision variables of a sub- 

et of other agents N i ⊆ I\{ i } , which is called the set of neighbors

f agent i . We also denote by x = col ({ x i } i ∈I ) ∈ R 

n the collection

f decision variables of all agents, where n = 

∑ 

i ∈I n i . Furthermore, 

he cost function of agent i is denoted by J i (·) , which not only de-

ends on x i but also x N i , whereas X i ⊂ R 

n i denotes the action space 

f agent i and X = 

∏ 

i ∈I X i denotes the overall action space. 

We aim at computing an NE of the game in (1) , which is for-

ally defined as follows. 

efinition 3. A point x � = col ({ x � 
i 
} i ∈I ) ∈ X is a Nash equilibrium if,

or each i ∈ I , 

 i (x � i , x 
� 
N i ) ≤ inf 

y ∈X i 
J i (y, x � N i ) . 
2 
Furthermore, we consider the following assumptions: 

ssumption 1. The cost function J i (·, x N i ) in (1) , for each i ∈ I and

or any x N i , is convex and continuously differentiable. 

ssumption 2. For each i ∈ I , the set X i is nonempty, compact, 

nd convex. 

ssumption 3. The pseudogradient mapping, 

 ( x ) := col ({∇ x i J i (x i , x N i ) } i ∈I ) , (2) 

s β-cocoercive, for some β > 0 . 

Under Assumptions 1 and 2 , an NE of the game in (1) , x � ,

xists [12, Cor. 2.2.5] , and it is a solution to the variational in-

quality VI (F , X ) , i.e., it holds that 〈 F ( x � ) , x − x � 〉 ≥ 0 , for all x ∈ X 

12, Prop. 1.4.2] . While cocoercivity is stronger than monotonicity, 

ssumption 3 is the weakest assumption for FB splitting methods 

10] , [5, Thm. 26.14] . 

emark 1. If F is ξ -strongly monotone and L -Lipschitz continuous, 

hen F is (ξ/L 2 ) -cocoercive [12, page 164] . Strong monotonicity of 

 in (2) is assumed in [9,23,25] . 

As a motivation of this work, we consider games with a special 

tructure of its local feasible sets X i , namely simplex sets, which 

atisfy Assumption 2 . 

ssumption 4. For each i ∈ I , the set X i is defined as 

 i := { y ∈ R 

n i 
≥0 

| 1 

� y = 1 } . (3)

In the following, let us provide some examples of cocoercive 

ames with such feasible sets. 

.2. Nash–Cournot market with production constraint 

In a Nash–Cournot market [25] , a set of producers (agents) I
upplies (divisible) commodities to a set of markets M . Let us 

uppose that agent i distributes its product to a subset M i ⊆ M 

nd the total production output, denoted by g i , is fixed. There- 

ore, the decision variable of agent i is x i := col ({ x m 

i 
} m ∈M i 

) , where

 

m 

i 
∈ [0 , 1] denotes the proportion of the total product distributed 

o market m ∈ M i , i.e., agent i sells x m 

i 
g i quantity to market m .

iven a fixed production, then it must hold that x i ∈ X i , where X i 

atisfies Assumption 4 . The cost function of each agent i is defined 

y [25, Eq. (36)] : 

 i ( x ) = c i (x i ) −
∑ 

m ∈M i 

p m 

( x ) g i x 
m 

i , 

here c i (x i ) is a strongly convex production cost with Lipschitz 

ontinuous gradient and p m 

( x ) is the unit price function of mar- 

et m which follows a linear inverse demand function, i.e., 

p m 

( x ) = p̄ m 

− d m 

∑ 

i ∈I s.t. m ∈M i 

g i x 
m 

i , ∀ m ∈ M , 

here p̄ m 

, d m 

> 0 are the price parameters. As shown in [25, Sec- 

ion 7.1] , the pseudogradient F (2) of this game is strongly mono- 

one and Lipschitz continuous. Thus, by Remark 1 , it satisfies 

ssumption 3 . 

.3. Atomic splittable congestion game 

An atomic splittable congestion game is a non-cooperative 

odel of agents routing flow in a network (e.g. communication 

etwork) [17] , [15, Ex. 2.3] . In this game, a set of agents I uses a

etwork with a common source node, a common sink node, and a 

et of parallel communication links connecting the nodes, denoted 

y L . Each agent i ∈ I transports its demand, denoted by d > 0
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rom the source to the sink by splitting it and by using a subset of

vailable links denoted by L i ⊆ L . The decision variable of agent i 

s x i = col ({ x l 
i 
} l∈L i ) , where x l 

i 
∈ [0 , 1] denotes the demand distribu-

ion for link l ∈ L i . Thus, it must hold that 
∑ 

l∈L i x i d i = d i . In other

ords, x i ∈ X i , where X i is as in Assumption 4 . 

For each agent i , the cost of using the links is defined as 

 i ( x ) = c f (x i ) + 

∑ 

l∈L i 
d i x 

l 
i c l ( x ) , 

here c f (x i ) = −a log (x i + d) , for some positive a and d, is a

trongly convex utility function, and c l ( x ) denotes the unit price 

unction of using link (edge) l ∈ L and depends on the decisions of

he other agents that use the same link. Specifically, following [1 , 

q. (1) ], for all l ∈ L , we define 

 l ( x ) = a l 

( ∑ 

i ∈I s.t. l∈L i 
d i x 

l 
i 

)
p l + b l , 

here a l , b l , p l > 0 are cost parameters for link l. Theorem 1 in

1] shows that if p l < p � , where p � = (3 N − 1) / (N − 1) , then the

erms 
∑ 

l∈L i d i x 
l 
i 
c l ( x ) in J i , for all i ∈ I , generate a strictly monotone

seudogradient. Since c f (x i ) is strongly convex, the pseudogradient 

 (2) of this game is strongly monotone and Lipschitz continuous, 

hus satisfying Assumption 3 . 

.4. Peer-to-peer energy market 

High penetration of distributed power generation units incites 

he concept of direct trading between consumers and small-scale 

roducers (a peer-to-peer energy market) [24] . In several pilot 

rojects, consumers are allowed to choose their own energy pro- 

ucers, denoted by the set P i , among a pool of producers, de- 

oted by P , i.e., P i ⊂ P . Assuming that energy production of each

roducer p ∈ P is large enough to meet their consumers, a non- 

ooperative game from the consumer side can be obtained by con- 

idering the decision of agent i as x i = col ({ x p 
i 
} p∈P i ) , where x 

p 
i 

l i is

he load proportion of agent i ( l i ) that is met by buying energy

rom producer p ∈ P i . Therefore, it must hold that x i ∈ X i , with X i 

s defined in (3) . Furthermore, the cost of electricity of each agent 

an be defined by 

 i ( x ) = 

∑ 

p∈P i 
c p (e p ) 

l i x 
p 
i 

e p 
, ∀ i ∈ I, 

here e p denotes the total energy generated by producer p, i.e., 

 p = 

∑ 

i ∈I s.t. p∈P i 
l i x 

p 
i 
, 

nd c p (e p ) denotes the cost function of generating power by pro- 

ucer p, which is typically assumed to be a quadratic function, i.e., 

 p = d p e 
2 
p , for some positive scalar d p [2] . The pseudogradient F 

2) of this game can be written as F ( x ) = Q x , for some symmetric

nd positive semi-definite matrix Q , implying that F is cocoercive 

12, Section 1.5.2] . 

emark 2. The game in (1) can also describe an economic dis- 

atch problem for microgrids that have multiple distributed gen- 

ration units with convex quadratic cost functions and sufficiently 

arge production capacity [19, pp. 83–86] . 

. Nash equilibrium seeking based on distributed Bregman 

orward-backward 

In this section, we discuss how we can compute an NE of the 

ame in (1) via a splitting method, namely the B-FB splitting, re- 

ently introduced in [10] . 
3

.1. Distributed Bregman forward-backward splitting 

The B-FB aims at solving the following inclusion problem: 

nd x s.t. 0 ∈ (A + B )( x ) , (4) 

or maximally monotone A and cocoercive B with the following it- 

ration: 

 

(k +1) = (∇ϕ + γ A ) −1 (∇ϕ( x (k ) ) − γ B ( x (k ) )) , (5) 

here ϕ is a Legendre function and γ > 0 is the step size. We note 

hat the main advantage of the B-FB compared to the standard FB 

plitting [5, Section 26.5] is the extra degree of freedom on the 

hoice of ϕ. Indeed, the standard FB is recovered when we choose 

he Legendre function ϕ : R 

n → R : x �→ 

1 
2 ‖ x ‖ 2 . 

By Definition 3 and (2) , an NE x � satisfies the following inclu- 

ion: 

 ∈ N X ( x 
� ) + F ( x � ) . (6) 

y Assumption 2 , N X is maximally monotone [5, Ex. 20.23] , 

hereas Assumption 3 states that F is β-cocoercive. Based on this 

bservation, the B-FB splitting can indeed solve the above inclusion 

roblem. 

Now, we provide a distributed implementation of (5) , which is 

ot discussed in [10] . In our problem setup, not only x is com- 

osed by the decision variable of each agent i , x i , but the operator

 is also decomposable, i.e, x �→ A ( x ) : x �→ A 1 (x 1 ) × · · · × A N (x N ) ,

here A i = N X i , for each i ∈ I . In this regard, we choose a sepa-

able Legendre function in the form 

( x ) := 

∑ 

i ∈I 
ϕ i (x i ) , (7) 

here ϕ i : R 

n i → R , for each i ∈ I , is also separable, i.e., ϕ i :=
 n i 
j=1 

ϕ 

j 
i 
(x 

j 
i 
) , with x 

j 
i 

denoting the j-th component of x i and ϕ 

j 
i 

:

 → R being Legendre ( Definition 2 ). Furthermore, instead of us- 

ng a global step-size γ as in (5) , we allow each agent i to

hoose its own step size, denoted by γi > 0 . Thus, by letting � =
iag ({ γi I n i } i ∈I ) , the distributed B-FB is compactly written as 

 

(k +1) = (∇ϕ + �A ) −1 (∇ϕ − �B )( x (k ) ) , (8) 

here ϕ is defined in (7) and � is a positive definite and diagonal 

tep-size matrix, i.e., � � 0 . Our first result is the convergence of 

he B-FB with step-size matrix �, as formally stated next. 

heorem 1. Let A be a maximally monotone separable operator, 

.e., x �→ A ( x ) : x �→ A 1 (x 1 ) × · · · × A N (x N ) , where dom (A i ) ⊆ R 

n i , for

ll i ∈ I , and B be β-cocoercive, for some β > 0 . Let ϕ be de-

ned as in (7) , with Legendre function ϕ i that is ξϕ i -strongly convex 

n int dom (ϕ i ) ∩ dom (A i ) , for each i ∈ I . Suppose that zer (A + B ) ∩
nt dom (ϕ) � = ∅ , γi ∈ (0 , 2 βξϕ i ) , for all i ∈ I , and x (0) ∈ int dom (ϕ) .

hen, the sequence ( x (k ) ) k ∈ N generated by (8) is well defined in 

nt dom (ϕ) ∩ dom (A ) and converges to a point in zer (A + B ) ∩
nt dom (ϕ) . 

roof. See Appendix A . �

.2. Exponentiated gradient method for Nash equilibrium problems 

ith simplex feasible sets 

As discussed in [12, Section 12.1] , for the game (1) that satisfies 

ssumptions 1 –3 , the projected pseudogradient method, which is 

n instance of the standard FB splitting: 

 

(k +1) 
i 

:= proj X i (x (k ) 
i 

− γi ∇ x i J i ( x 
(k ) 
i 

, x (k ) 
N i )) , ∀ i ∈ I, (9) 

ith sufficiently small step sizes γi , for all i ∈ I , generates a se- 

uence that converges to an NE. We can also immediately see this 

rom Theorem 1 . Specifically, with A = N X , B = F , and the Legendre
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unction ϕ( x ) = 

1 
2 ‖ x ‖ 2 , the B-FB iteration (8) reads as in (9) . In

iew of Theorem 1 , since ϕ( x ) = 

1 
2 ‖ x ‖ 2 is 1-strongly convex, we

ecover the sufficient condition of the step sizes γi ’s of the stan- 

ard FB [5, Thm. 26.14] , i.e., γi ∈ (0 , 2 β) , for all i ∈ I . 

However, for the particular case of X i with simplicial structure 

see Assumption 4 ), we may choose a different Legendre function. 

pecifically, inspired by the entropic descent algorithm [6] , for each 

 ∈ I , we consider the Legendre function in (7) with ϕ i (x i ) being

he negative entropy [21] , i.e., ϕ i : R 

n i 
≥0 

→ R , 

 i (x i ) = 

n i ∑ 

j=1 

x j 
i 

ln (x j 
i 
) , (10) 

here we follow the convention 0 ln (0) = 0 . This Legendre func- 

ion leads to Algorithm 1 , which is an exponentiated pseudogradi- 

nt method, as formally stated in the next proposition. 

lgorithm 1 NE seeking algorithm via exponentiated pseudogra- 

ient. 

nitialization: For i ∈ I , set x (0) 
i 

∈ rint (X i ) . 

teration until convergence 

ach agent i ∈ I : 

1. Receives x k 
j 

from j ∈ N i . 

2. Updates x (k +1) 
i 

= ((x 1 
i 
) (k +1) , . . . , (x 

n i 
i 

) (k +1) ) by 

x j 
i 
) (k +1) = 

(x j 
i 
) (k ) exp ( −γi ∇ 

x j 
i 

J i (x (k ) 
i 

, x (k ) 
N i ) ) ∑ n i 

� =1 
(x � 

i 
) (k ) exp ( −γi ∇ x � 

i 
J i (x (k ) 

i 
, x (k ) 

N i ) ) 
, (11)

for j = 1 , . . . , n i . 

nd 

roposition 1. Let Assumptions 1 , 3 , and 4 hold. Algorithm 1 is

quivalent to the B-FB iteration in (8) where A = N X , B = F , F is as

n (2) , and ϕ( x ) is as in (7) and (10) . 

roof. See Appendix B . �

emark 3. Algorithm 1 falls into the class of distributed algo- 

ithms under full information, i.e., each agent receives the updated 

ecisions of its neighbors in N i (see step 1), necessary to evaluate 

he pseudogradient ∇ x i J i (x i , x N i ) . Therefore, a local communication 

etwork is implicitly required by Algorithm 1 . 

With sufficiently small but not necessarily uniform step sizes, 

lgorithm 1 generates a sequence that converges to an NE of the 

ame in (1) as formalized next. 

orollary 1. Let Assumptions 1 , 3 , and 4 hold. Let X 

� denote the NE

et of the game in (1) . If X 

� ∩ R 

n 
> 0 

� = ∅ , then the sequence ( x (k ) ) k ∈ N 
enerated by Algorithm 1 with step sizes γi ∈ (0 , 2 β) , for all i ∈ I ,

onverges to some NE, x � ∈ X 

� . 

roof. Assumptions 1,3 , and 4 imply that X 

� = zer (N X + F ) .

roposition 1 shows that Algorithm 1 is the B-FB algorithm ap- 

lied to the monotone inclusion (6) with the Legendre function de- 

ned in (7) and (10) . Furthermore, N X is maximally monotone, F is 

-cocoercive, and zer (N X + F ) � = ∅ ( Assumptions 3 –4 ). Moreover,

 i in (10) , for each i ∈ I , is 1-strongly convex on int dom (ϕ i ) ∩
om (N X i ) = rint (X i ) , with X i satisfying Assumption 4 [21, Ex. 2.5] .

herefore, by Theorem 1 , the sequence ( x (k ) ) k ∈ N generated by 

lgorithm 1 with γi ∈ (0 , 2 β) , for all i ∈ I , converges to a point

 

� ∈ X 

� . �

The choice of the Legendre function in (7) defines the mirror 

ap of the gradient descent step onto the feasible set X . We have 

hown that the squared 2-norm results in the Euclidean projection. 
4 
eanwhile, the negative entropy function (10) leads to a map- 

ing onto a simplex with a closed-form formula (11) as shown in 

roposition 1 . 

. Numerical simulations 

We perform a numerical study on Algorithm 1 by using the 

eer-to-peer market model discussed in Section 2.4 . First, we 

ompare the performance of Algorithm 1 with the standard 

rojected pseudogradient (9) . To this end, in the first set of 

imulations, we vary the number of agents (consumers), i.e., 

 ∈ { 10 0 , 20 0 , 30 0 , 40 0 , 50 0 } and fix the number of producers, i.e.,

P| = 40 . Meanwhile, in the second set, we fix N = 100 , and vary

P| ∈ { 20 , 30 , 40 , 50 , 60 } . Note that the dimensions of the agents’

ecision variables grow as |P| increases. For each pair of (N, |P| ) ,
e run 100 Monte-Carlo simulations, in which l i , P i ⊆ P , for all 

 ∈ I , and the cost parameters d p , for all p ∈ P , are generated

andomly. We set the step sizes of both Algorithm 1 and (9) to 

e equal since they have the same step-size upper bounds. The 

topping criterion of these simulations is ‖ x (k +1) − x (k ) ‖ ∞ 

≤ 10 −5 . 

urthermore, we use two methods to perform the Euclidean 

rojection step of (9) : (i) the OSQP solver [22] , which is one of the

astest quadratic programming solvers available, with the absolute 

nd relative tolerance parameters being set to be 10 −10 while the 

aximum number of iterations being set to be 10 5 , and (ii) an 

fficient Euclidean projection algorithm onto a simplex proposed 

n [11, Fig. 1] . All the simulations are carried out in Matlab R2020a 

n a computer with Intel Xeon E5-2637 processor and 128 GB 

emory. Fig. 1 summarizes these simulation results and shows 

hat the average total computational time of Algorithm 1 is the 

owest due to the closed-form expression of the mirror mapping 

nto a simplex in almost all cases. For relatively small game 

nstances, i.e., those where |P| = 20 and N = 100 (see the bottom 

lot of Fig. 1 ), the algorithm in [11] , Fig. 1 is slightly more efficient

han Algorithm 1 . Nevertheless, Algorithm 1 scales better with N

nd |P| . 
We also test Algorithm 1 against the DA method devised in [15] . 

e randomly generate a case, with N = 30 , |P| = 30 , such that
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Fig. 2. Comparison between Algorithm 1 and the DA method [15] in terms of 

‖ x (k ) − x � ‖ ∞ . 
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he pseudogradient F is strongly monotone to ensure the conver- 

ence of the DA method. In this case, the cocoercivity constant of 

 (2) is β = 0 . 032 . We run Algorithm 1 with uniform step sizes

i = 0 . 063 < 2 β , for all i ∈ I , and non-uniform step sizes γi , which

re randomly taken from [0.032,0.063]. On the other hand, for the 

A method, we consider the global vanishing step-size rules γ (k ) = 

 β/k α and γ (k ) = 1 /k α for some α ∈ (0 , 1] [15, Rem. 4.1] . As shown

n Fig. 2 , Algorithm 1 converges faster than the DA method since 

ts step sizes are constant. The choices of α for the DA method in 

ig. 2 represent the step-size rules with the best rate and accuracy 

e have found. In addition, unlike Algorithm 1 , we experienced a 

umerical issue with the DA method. Specifically, if the score vari- 

bles, which are exponentiated and normalized to update x i and 

an grow due to the gradient descent update, became a too large 

egative number, a computer with a limited numerical precision 

onsiders their exponents to be zero, resulting in numerical errors 

n the iterations. 

. Conclusion 

The Bregman forward-backward splitting provides a framework 

o solve cocoercive Nash equilibrium problems with special struc- 

ure of the feasible sets, such as simplex sets, as it allows one 

o exploit this structure. Our numerical study shows that the re- 

ulting exponentiated gradient algorithm converges faster than the 

tandard projected pseudogradient methods. Finding other pairs of 

ompact convex set structures and their associated Legendre func- 

ions and dealing with partial information scenarios are open re- 

earch avenues. 
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ppendix A. Proof of Theorem 1 

Well-defined iterates: Since A is maximally monotone, �A is 

aximally monotone in the �−1 -induced norm [5, Prop. 20.24] . 

urthermore, since ϕ is a strictly convex function on int dom (ϕ) 

nd separable while � is a positive diagonal matrix, ∇ϕ is 

trictly monotone in the �−1 -induced norm. Hence, (∇ϕ + �A ) 

s also strictly monotone in the �−1 -induced norm. Now, we 

uppose that (z, ω ) and (z, ω 

′ ) belong to gph (∇ϕ + �A ) −1 .

hen z ∈ (∇ϕ + �A ) ω and z ∈ (∇ϕ + �A ) ω 

′ . Since 〈 z − z, ω −
 

′ 〉 �−1 = 0 and (∇ϕ + �A ) is strictly monotone under the �−1 -

nduced norm, it must hold that ω = ω 

′ . Thus, we conclude 

hat (∇ϕ + �A ) −1 is single-valued on ran (∇ϕ + �A ) . More-

ver, since ϕ is essentially smooth, it is continuously dif- 

erentiable on int dom (ϕ) and ran (∇ ϕ + �A ) −1 = dom (∇ ϕ) ∩ 

om (A ) = int dom (ϕ) ∩ dom (A ) . Furthermore, since B is Lipschitz, 
5 
ϕ( x (0) ) − �B ( x (0) ) is singleton. We deduce x (1) ∈ int dom (ϕ) ∩ 

om (A ) is uniquely defined. Therefore, by induction we have that 

 x (k ) ) k ∈ N ∈ int dom (ϕ) ∩ dom (A ) . 

By [5, Lem. 2.46] , we need to show that the sequence ( x (k ) ) k ∈ N 
s bounded and has a unique cluster point. 

Boundedness of iterates: By premultiplying both sides of the 

quality in (8) with (∇ϕ + �A ) and then rearranging the terms, 

e have that 

 ∈∇ϕ( x (k +1) )+�A ( x (k +1) )−∇ϕ( x (k ) )+�B ( x (k ) ) . (A.1) 

hen, we multiply by �−1 and rearrange the inclusion to obtain 

hat 

 x (k +1) ,�−1 (∇ϕ( x (k ) )−∇ϕ( x (k +1) ))−B ( x (k ) )) ∈ gph (A ) . (A.2) 

oreover, let us consider x ∈ zer (A + B ) ∩ int dom (ϕ) , which im-

lies ( x , −B ( x )) ∈ gph (A ) and recall that ( x (k ) ) k ∈ N ∈ dom (A ) . By

he monotonicity of A and considering the pair ( x , −B ( x )) and that

n (A.2) , we have that 

 ≤ 〈 A ( x ) − A ( x (k +1) ) , x − x (k +1) 〉 
= 〈∇ ϕ( x (k +1) ) −∇ ϕ( x (k ) ) , x −x (k +1) 〉 �−1 + 〈 B ( x (k ) ) 

−B ( x ) , x −x (k +1) 〉 . (A.3) 

Since � is a positive definite and diagonal matrix, so 

oes �−1 := diag ({ γ −1 
i 

I n i } i ∈I ) . Therefore, the function ˆ ϕ ( x ) := 

 

i ∈I γ
−1 

i 
ϕ i (x i ) is a Legendre function with dom ( ̂  ϕ ) = dom (ϕ) [3, 

hm. 5.12] , and with gradient ∇ ̂  ϕ = �−1 ∇ϕ. Thus, the first addend 

n the right-hand side of the equality in (A.3) can be written as: 

∇ϕ( x (k +1) ) − ∇ϕ( x (k ) ) , x − x (k +1) 〉 �−1 

= 〈∇ ˆ ϕ ( x (k +1) ) − ∇ ˆ ϕ ( x (k ) ) , x − x (k +1) 〉 
= dist ˆ ϕ ( x , x 

(k ) )−dist ˆ ϕ ( x , x 
(k +1) )−dist ˆ ϕ ( x 

(k +1) , x (k ) ) , 

y applying the three-point identity of Bregman distances [4, 

rop. 2.3.(ii)] . Moreover, we rewrite the second addend as 

 B ( x (k ) ) − B ( x ) , x − x (k +1) 〉 
= 〈 B ( x (k ) ) −B ( x ) , x (k ) −x (k +1) 〉 + 〈 B ( x (k ) ) −B ( x ) , x −x (k ) 〉 . 

herefore, (A.3) can be written as 

 ≤ dist ˆ ϕ ( x , x 
(k ) )−dist ˆ ϕ ( x , x 

(k +1) )−dist ˆ ϕ ( x 
(k +1) , x (k ) ) 

+ 〈 B ( x (k ) ) −B ( x ) , x (k ) −x (k +1) 〉 + 〈 B ( x (k ) ) −B ( x ) , x −x (k ) 〉 . (A.4) 

By the Cauchy-Schwarz inequality, the elementary inequality 

 a ‖‖ b‖ ≤ 1 
2 (‖ a ‖ 2 + ‖ b‖ 2 ) , and the cocoercivity of B , it holds that

 B ( x (k ) ) − B ( x ) , x (k ) − x (k +1) 〉 

≤ ‖ 

√ 

1 

2 β
x (k ) − x (k +1) ‖‖ 

√ 

2 βB ( x (k ) ) − B ( x ) ‖ 

≤ 1 

4 β
‖ x (k ) − x (k +1) ‖ 

2 + β‖ B ( x (k ) ) − B ( x ) ‖ 

2 

≤ 1 

4 β
‖ x (k ) − x (k +1) ‖ 

2 + 〈 B ( x (k ) ) − B ( x ) , x (k ) − x 〉 . 
hen, by using this upperbound in (A.4) , we have that 

 ≤ dist ˆ ϕ ( x , x 
(k ) )−dist ˆ ϕ ( x , x 

(k +1) )−dist ˆ ϕ ( x 
(k +1) , x (k ) ) 

+ 

1 
4 β

‖ x (k ) − x (k +1) ‖ 

2 

≤ dist ˆ ϕ ( x , x 
(k ) )−dist ˆ ϕ ( x , x 

(k +1) ) 

− 1 
2 
‖ x (k +1) − x (k ) ‖ 

2 

�−1 + 

1 
4 β

‖ x (k ) − x (k +1) ‖ 

2 

= dist ˆ ϕ ( x , x 
(k ) )−dist ˆ ϕ ( x , x 

(k +1) )− 1 
2 
‖ x (k +1) − x (k ) ‖ 

2 
�, (A.5) 

here � = 
�−1 − 1 
2 β

I and 
 = diag ({ ξϕ i I n i } i ∈I ) . The sec- 

nd inequality holds because ( x (k ) ) k ∈ N ∈ int dom (ϕ) ∩ dom (A ) , 
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ist ˆ ϕ ( x , x 
′ ) = 

∑ 

i ∈I γ
−1 

i 
dist ϕ i (x i , x 

′ 
i 
) [3, Prop. 3.5] , and, for each

 ∈ I , ˆ ϕ i is 1-strongly convex on int dom (ϕ i ) ∩ dom (A i ) , thus

mplying dist ˆ ϕ ( x 
(k +1) , x (k ) ) ≥ 1 

2 ‖ x (k +1) − x (k ) ‖ 2 

�−1 . 

By rearranging (A.5) and summming over k , we obtain that 

ist ˆ ϕ ( x , x 
(k +1) )+ 

1 

2 

k ∑ 

� =0 

‖ x (� +1) − x (� ) ‖ 

2 
�≤dist ˆ ϕ ( x , x 

(0) ) . (A.6) 

ue to the step size rule, i.e., γi ∈ (0 , 2 βξϕ i ) , for all i ∈ I , � =
�−1 − 1 

2 β
I � 0 , implying that the second addend on the left- 

and side is a sum of non-negative terms. Combining the fact 

hat dist ˆ ϕ ( x , x 
(k +1) ) ≥ 1 

2 ‖ x (k +1) − x ‖ 2 

�−1 and (A.6) , we infer that 

 x (k +1) − x ‖ 2 

�−1 ≤ dist ˆ ϕ ( x , x 

(0) ) < + ∞ , for all k ∈ N , implying that

he sequence ( x (k ) ) k ∈ N is bounded. 

Cluster point is a solution: Let ˆ x be an arbitrary cluster point of 

he bounded sequence ( x (k ) ) k ∈ N . Next, we show that ˆ x is contained 

n zer (A + B ) ∩ int dom (ϕ) . We know that the sequence ( x (k ) ) k ∈ N is
ontained in int dom (ϕ) . The inequality (A.6) implies that, for any 

xed point ˆ x ∈ zer (A + B ) ∩ int ( ̂  ϕ ) , the sequence ( dist ˆ ϕ ( ̂ x , x (k ) )) k ∈ N 
s bounded. Due to this fact, essential smoothness of ˆ ϕ , and the 

act that ˆ x ∈ int dom ( ̂  ϕ ) , every cluster point belongs to int dom ( ̂  ϕ ) 

3, Thm. 3.8(ii)] . Since we assume that zer (A + B ) ∩ int dom (ϕ) � =
 , it remains to show that 0 ∈ (A + B )( ̂ x ) . From the inclusion in

A.1) , we have that 

−1 
(∇ϕ( x (k ) ) − ∇ϕ( x (k +1) ) 

)
− B ( x (k ) ) 

+ B ( x (k +1) ) ∈ (A + B )( x (k +1) ) , (A.7) 

or all k ≥ 0 . Since A and B are maximally monotone and dom (B ) =
 

n , (A + B ) is maximally monotone [5, Cor. 25.5] . Therefore,

ph (A + B ) is closed [5, Prop. 20.38] . Additionally, B is continuous

nd ∇ϕ(·) is also continuous on int dom (ϕ) . Therefore, by taking 

he limit along a subsequence of ( x (k ) ) that converges to ˆ x in (A.7) ,

he limit of the left-hand side term of the inclusion (A.7) is 0, and

ndeed 0 ∈ (A + B )( ̂ x ) . 

Uniqueness of cluster point: Finally, we need to show that the 

luster point set of ( x (k ) ) k ∈ N is a singleton. First, for any arbi- 

rary cluster point ˆ x , dist ˆ ϕ ( ̂ x , x (k ) ) converges due to the inequal- 

ty (A.5) and [5, Lem. 5.31] . Then, we take two subsequences x (k n ) 

nd x (� n ) and let their cluster points be denoted by ˆ x 1 and 

ˆ x 2 . 

herefore, the sequence (〈 ̂ x 1 − ˆ x 2 , ∇ ̂  ϕ ( x (k ) ) − ∇ ̂  ϕ ( ̂ x 2 ) 〉 ) k ∈ N , which

s equal to ( dist ˆ ϕ ( ̂ x 2 , x 
(k ) ) + dist ˆ ϕ ( ̂ x 1 , ̂  x 2 ) − dist ˆ ϕ ( ̂ x 1 , x 

(k ) )) k ∈ N by

4, Prop. 2.3.(ii)] , converges. Taking the subsequence x (� n ) and 

sing the continuity of ˆ ϕ , we obtain that η = lim � n →∞ 

〈 ̂ x 1 −
ˆ 
 2 , ∇ ̂  ϕ ( x (� n ) ) − ∇ ̂  ϕ ( ̂ x 2 ) 〉 = 〈 ̂ x 1 − ˆ x 2 , ∇ ̂  ϕ ( ̂ x 2 ) − ∇ ̂  ϕ ( ̂ x 2 ) 〉 = 0 . By the

ontinuity of ˆ ϕ and considering the subsequence x (k n ) , we also 

ave that lim k n →∞ 

〈 ̂ x 1 − ˆ x 2 , ∇ ̂  ϕ ( x (k n ) ) − ∇ ̂  ϕ ( ̂ x 2 ) 〉 = η. Since η =
 , we obtain that lim k n →∞ 

〈 ̂ x 1 − ˆ x 2 , ∇ ̂  ϕ ( x (k n ) ) − ∇ ̂  ϕ ( ̂ x 2 ) 〉 = 〈 ̂ x 1 −
ˆ 
 2 , ∇ ̂  ϕ ( ̂ x 1 ) − ∇ ̂  ϕ ( ̂ x 2 ) 〉 = 0 . However, ˆ ϕ is essentially strictly con-

ex. Hence, the preceding equality holds only if ˆ x 1 = 

ˆ x 2 , implying 

he uniqueness of the cluster point. 

ppendix B. Proof of Proposition 1 

The B-FB update in (8) applied to A = N X and B = F can be

ewritten as 

0 ∈∇ϕ( x (k +1) )+�N X ( x 
(k +1) )−(∇ϕ( x (k ) )−�(F ( x (k ) )) 

 0 ∈ ∂( ̂  ϕ +ιX )( x 
(k +1) )−∂〈 (∇ ˆ ϕ ( x (k ) )−(F ( x (k ) )) , x (k +1) 〉 , 

here ιX denotes the indicator function of X [5] , Eq. (1.41), im- 

lying that 

 

(k +1) = argmin 

y ∈ X 

(
ϕ( y ) − 〈∇ϕ( x (k ) ) , y 〉 + 〈 F ( x (k ) ) , y 〉 �

)

= argmin 

y ∈ X 

(
dist ϕ ( y , x 

(k ) ) + 〈 F ( x (k ) ) , y 〉 �
)
, (B.1) 
6

ince � is a diagonal matrix, ϕ is separable and strongly con- 

ex, F ( x ) is a stacked of ∇ x i J i (x i , x N i ) , for all i ∈ I , dist ϕ ( x 
′ , x ) =

 

i ∈I dist ϕ i (x ′ 
i 
, x i ) by [3, Prop. 3.5] , and X = 

∏ 

i ∈I X i . The minimiza-

ion in (B.1) is decomposable, i.e., for each i ∈ I , 

 

(k +1) 
i 

= argmin 

y ∈ X i 

(
dist ϕ i (y, x (k ) 

i 
) + γi 〈∇ x i J i ( x 

(k ) ) , y 〉 
)
, 

hich has a closed-form expression for ϕ i defined in (10) and X i 

efined in (3) as given by (11) [8, Ex. 4.2] . 

eferences 

[1] E. Altman, T. Basar, T. Jimenez, N. Shimkin, Competitive routing in networks 
with polynomial costs, IEEE Trans. Autom. Control 47 (1) (2002) 92–96, doi: 10. 

1109/9.981725 . 
[2] I. Atzeni, L.G. Ordóñez, G. Scutari, D.P. Palomar, J.R. Fonollosa, Demand-side 

management via distributed energy generation and storage optimization, IEEE 
Trans. Smart Grid 4 (2) (2013) 866–876 . 

[3] H.H. Bauschke, J.M. Borwein, Legendre functions and the method of random 

Bregman projections, J. Convex Anal. 4 (1) (1997) 27–67 . 
[4] H.H. Bauschke, J.M. Borwein, P.L. Combettes, Bregman monotone optimization 

algorithms, SIAM J. Control Optim. 42 (2) (2003) 596–636 . 
[5] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory 

in Hilbert Spaces, Springer, 2011 . 
[6] A. Beck, M. Teboulle, Mirror descent and nonlinear projected subgradient 

methods for convex optimization, Oper. Res. Lett. 31 (3) (2003) 167–175 . 

[7] G. Belgioioso, W. Ananduta, S. Grammatico, C. Ocampo-Martinez, 
Operationally-safe peer-to-peer energy trading in distribution grids: a game- 

theoretic market-clearing mechanism, IEEE Trans. Smart Grid (2022) 1–11, 
doi: 10.1109/TSG.2022.3158442 . 

[8] E.V. Belmega, P. Mertikopoulos, R. Negrel, L. Sanguinetti, Online convex op- 
timization and no-regret learning: algorithms, guarantees and applications 

(2018). Available at https://arxiv.org/abs/1804.04529 . 

[9] M. Bianchi, S. Grammatico, Nash equilibrium seeking under partial-decision 
information over directed communication networks, in: the 59th IEEE Con- 

ference on Decision and Control (CDC), 2020, pp. 3555–3560, doi: 10.1109/ 
CDC42340.2020.9304267 . 

[10] M.N. Bùi, P.L. Combettes, Bregman forward-backward operator splitting, Set–
Valued Variational Anal. 29 (3) (2021) 583–603 . 

[11] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the 

l 1 -ball for learning in high dimensions, in: Proceedings of the 25th Interna- 
tional Conference on Machine Learning, 2008, pp. 272–279 . 

12] F. Facchinei, J.-S. Pang, Finite-dimensional Variational Inequalities and Comple- 
mentarity Problems, Springer Science & Business Media, 2007 . 

[13] A. Kannan, U.V. Shanbhag, Distributed computation of equilibria in mono- 
tone Nash games via iterative regularization techniques, SIAM J. Optim. 22 (4) 

(2012) 1177–1205 . 
[14] J. Koshal, A. Nedi ́c, U.V. Shanbhag, Distributed algorithms for aggregative 

games on graphs, Operations Research 64 (3) (2016) 680–704 . 

[15] P. Mertikopoulos, Z. Zhou, Learning in games with continuous action sets and 
unknown payoff functions, Math. Programm. 173 (2019) 465–507 . 

[16] Y. Nesterov, Primal-dual subgradient methods for convex problems, Math. Pro- 
gramm. 120 (1) (2009) 221–259 . 

[17] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser communication 
networks, IEEE/ACM Trans. Netw. 1 (5) (1993) 510–521, doi: 10.1109/90.251910 . 

[18] Y. Pang, G. Hu, Distributed Nash equilibrium seeking with limited cost func- 

tion knowledge via a consensus-based gradient-free method, IEEE Trans. Au- 
tom. Control 66 (4) (2020) 1832–1839 . 

[19] N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, G. Obando, A. Pantoja, 
E. Mojica-Nava, The role of population games and evolutionary dynamics in 

distributed control systems: the advantages of evolutionary game theory, IEEE 
Control Syst. Mag. 37 (1) (2017) 70–97 . 

20] G. Scutari, S. Barbarossa, D.P. Palomar, Potential games: a framework for vector 

power control problems with coupled constraints, in: IEEE International Con- 
ference on Acoustics Speech and Signal Processing Proceedings, 2006, pp. 241–

244, doi: 10.1109/ICASSP.2006.1660950 . 
21] S. Shalev-Shwartz, Online learning and online convex optimization, Found. 

Trends Mach. Learn. 4 (2) (2011) 107–194 . 
22] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd, OSQP: An operator split- 

ting solver for quadratic programs, Math. Programm. Comput. 12 (4) (2020) 

637–672 . 
23] T. Tatarenko, W. Shi, A. Nedi ́c, Geometric convergence of gradient play algo- 

rithms for distributed Nash equilibrium seeking, IEEE Trans. Autom. Control 
66 (11) (2021) 5342–5353, doi: 10.1109/TAC.2020.3046232 . 

24] W. Tushar, C. Yuen, H. Mohsenian-Rad, T. Saha, H.V. Poor, K.L. Wood, Trans- 
forming energy networks via peer-to-peer energy trading: the potential of 

game-theoretic approaches, IEEE Signal Process. Mag. 35 (4) (2018) 90–111 . 

25] P. Yi, L. Pavel, An operator splitting approach for distributed generalized Nash 
equilibria computation, Automatica 102 (2019) 111–121 . 

https://doi.org/10.1109/9.981725
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0002
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0003
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0004
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0005
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0006
https://doi.org/10.1109/TSG.2022.3158442
https://arxiv.org/abs/1804.04529
https://doi.org/10.1109/CDC42340.2020.9304267
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0010
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0011
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0012
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0013
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0014
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0015
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0016
https://doi.org/10.1109/90.251910
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0018
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0019
https://doi.org/10.1109/ICASSP.2006.1660950
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0021
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0022
https://doi.org/10.1109/TAC.2020.3046232
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0024
http://refhub.elsevier.com/S0947-3580(22)00079-6/sbref0025

	A distributed Bregman forward-backward algorithm for a class of Nash equilibrium problems
	1 Introduction
	1.1 Notation and definitions

	2 Cocoercive Nash equilibrium problems
	2.1 Nash equilibrium problems
	2.2 Nash-Cournot market with production constraint
	2.3 Atomic splittable congestion game
	2.4 Peer-to-peer energy market

	3 Nash equilibrium seeking based on distributed Bregman forward-backward
	3.1 Distributed Bregman forward-backward splitting
	3.2 Exponentiated gradient method for Nash equilibrium problems with simplex feasible sets

	4 Numerical simulations
	5 Conclusion
	Declaration of Competing Interest
	Appendix A Proof of Theorem 1
	Appendix B Proof of Proposition 1
	References


