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A B S T R A C T

Fracture distribution plays a significant role in the behavior of subsurface environments, affecting such
activities as geothermal production, exploitation and management of groundwater resources, and long-term
storage of nuclear waste and carbon dioxide. A key challenge in these and other applications is to estimate
the fracture network properties from sparse and noisy observations. We evaluate the utility of cross-borehole
thermal experiments for this task, using both physics-based particle-tracking (PBPT) heat-transfer approach and
its deep neural network (DNN) surrogates. Synthetic data are provided by the PBPT simulations and used to
train and test the DNN surrogates over a full range of the fracture network properties. We propose regionalized
and step-by-step training techniques to reduce the computational cost of expensive PBPT forward solves over
large ranges of the (to-be-estimated) parameters. Our numerical experiments suggest the feasibility of training
a regionalized DNN surrogate over parameter ranges for which the PBPT solves are fast and extrapolating its
predictions to parameter ranges with few additional data. We analyze the balance between computational cost
and model accuracy, and provide both PBPT and DNN models for applications to others kinds of data.
1. Introduction

Geothermal energy is a significant renewable resource that can be
used for district heating and power generation (e.g., Anderson and
Rezaie, 2019; Fridleifsson, 2001; Gérard et al., 2006). Most high-
temperature resources are in the deep subsurface, which poses eco-
nomic and technical challenges for their efficient exploitation (e.g.,
DiPippo, 2012; Giardini, 2009; Song et al., 2021; Wang et al., 2012).
Heat extraction performance and thermal lifetime of a geothermal
system are typically controlled by fracture networks (e.g., Han et al.,
2020; Mahmoodpour et al., 2022; Shi et al., 2019), since they serve
as main conduits for fluid flow and heat transfer. An accurate char-
acterization of the fracture distribution provides a necessary input
for the optimal design of reservoir operation and hydraulic fracturing
during the development of geothermal reservoirs (e.g., Pollack et al.,
2021; Song et al., 2022; Xu et al., 2022). Among other applications,
characterization of fractured rocks is also required for management and
protection of groundwater resources (e.g., Carneiro, 2009; Rotter et al.,
2008; Viswanathan et al., 2022).

∗ Corresponding author.
E-mail address: tartakovsky@stanford.edu (D.M. Tartakovsky).

Information about the presence and properties of fractures are
acquired with different characterization methods such as geophysical
techniques (e.g., Kwiatek et al., 2014; Linde et al., 2006), hydraulic
experiments (e.g., Fischer et al., 2018; Zou and Cvetkovic, 2021) and
tracer tests (e.g., Cvetkovic et al., 2020; Koelbel et al., 2021; Suzuki
et al., 2015; Vogt et al., 2012). Each method provides complemen-
tary information and presents its own advantages and drawbacks. For
instance, the induced seismicity monitored in response to changes in
injection pressure can yield an estimate of spatial changes in perme-
ability and porosity (e.g., Kwiatek et al., 2014; Tarrahi and Jafarpour,
2012; Xu et al., 2022), while (cross-borehole) hydraulic experiments
relying on flow velocity and piezometric data collected in observation
wells provide information directly related to fractures intersecting the
boreholes (e.g., Fischer et al., 2018; Le Borgne et al., 2006; Paillet,
1998). At larger scales, both chemical and heat tracer tests result in
breakthrough curves (BTCs), whose shape and amplitude depend on
the properties of the fractured domains. Chemical tracer experiments
are widely used to define an equivalent representation of the systems
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at various scales and with various properties of the tracer (e.g., Liu
et al., 2019; Kuo et al., 2018; Reimus et al., 2018). In thermal-tracer
experiments, the water temperature in a borehole is modified by ei-
ther using a heating cable or injecting hot water, and the subsequent
temporal changes in temperature are monitored in the same borehole
and/or a different observation borehole (e.g., Pehme et al., 2007;
Klepikova et al., 2016). These thermal-tracer data have been shown to
contain valuable information about the presence of fractures and the
properties of either fractures or fracture-matrix configurations (e.g., de
La Bernardie et al., 2018; Klepikova et al., 2016; Pehme et al., 2013).
For example, synthetic data from cross-borehole thermal experiments
(CBTEs) provide sufficient information about the statistical properties
of fracture networks (Zhou et al., 2021). An attractive feature of
thermal experiments is the ease of their implementation in the natural
environment, without environmental constraints associated with solute
injection in boreholes.

Regardless of the tracer type, identification of fracture network
characteristics from such experiments is an inverse problem (e.g., Kang
et al., 2021; Mo et al., 2020), whose solution typically requires a
large number (thousands) of solves of a forward model of heat/mass
transfer in multiple realizations of a discrete fracture network (DFN).
Although this problem can be simplified by considering equivalent
1D representations of DFNs (e.g., Ma et al., 2019; Xu et al., 2018;
Zou et al., 2023), we focus on the inversion of standard statistical
properties of these systems. To make this computation feasible, we
adopt a meshless particle-tracking (PBPT) method (Roubinet et al.,
2013; Gisladottir et al., 2016) to solve flow and transport in fractured
rock and use it to train a deep neural network (DNN) surrogate. The
PBPT simulations are referred to as ‘‘physics-based’’ because they solve
the differential equations encapsulating physical information such as
conservation of mass, momentum, and thermal energy; this in contrast
to DNNs, which map inputs onto outputs without explicitly enforcing
any conservation law. In a similar context, this strategy has been shown
to reduce the computational burden of inverse modeling by four orders
of magnitude (Zhou et al., 2021). The negligible cost of DNN surrogates
makes it possible to generate large numbers of forward-model runs—
corresponding to different realizations of the model parameters—that
are sufficient for both accurate computation of posterior probability
density functions (PDFs) and parameter estimation via such greedy
algorithms as grid search methods.

An important caveat to this strategy is that DNNs yield accurate pre-
dictions of the system’s behavior within the system-parameter ranges
used for their training (interpolation mode), but often fail outside these
ranges (extrapolation mode). The study of Zhou et al. (2021) also
identifies a related challenge posed by the high cost of data generation
for DNN training: it is not uncommon for the computational cost of
a forward model in one parameter regime to be significantly higher
than in another. Specifically, these authors found the PBPT solver
to perform well for a range of two parameters (fracture density and
fractal dimension) characterizing the DFN representation of Watanabe
and Takahashi (1995), while experiencing convergence problems in
other ranges. As a result, their DNN was trained on the PBPT output
corresponding to the ‘‘good’’ parameter subspace, limiting its ability to
estimate the DFN parameters over the whole range of the parameter
variability.

To alleviate this computational bottleneck, we present a new method
for the evaluation of the inverse PDFs of these parameters over the
full ranges of their definition. The method employs a step-by-step
regionalized technique, wherein a high-resolution DNN, first trained
over a restricted range of the model parameters, is retrained on the
simulation data generated by the PBPT solver with the parameter val-
ues covering progressively larger ranges. We demonstrate our method’s
ability to accurately estimate statistical properties of a popular DFN
representation (e.g., Bour and Davy, 1997; de Dreuzy et al., 2001; Li
and Zhang, 2010; Roubinet et al., 2018; Li et al., 2009; Demirel et al.,
2

2019).
Table 1
Parameter values used to generate the fracture networks.

Parameter Value

Domain size, 𝐿 10.0 m

Minimum fracture length, 𝑙min 1.0 m

Minimum fracture aperture, 𝑏min 0.1 mm

Maximum fracture aperture, 𝑏max 2.5 mm

Mean of the aperture log, 𝜇ln 𝑏 −6.87

Standard deviation of the aperture log, 𝜎ln 𝑏 0.2

Power-law exponent, 𝑎 [1, 3]

Percolation parameter, 𝑝 [8, 18]

Section 2 contains a description of both the DFN representation and
the PBPT method to solve fluid flow and heat transfer in fractured rock.
In Section 3, we describe the architecture and training of a DNN capable
of acting as a surrogate of the PBTP solver and detail our strategy for
extending the DNN surrogate from one parameter subspace (in which
the PBPT solver is fast to execute) to another (in which it is slow).
The expression of the considered inversion model and its accuracy for
various definitions of the (extended) surrogate models are presented in
Section 4 with the results obtained for the case of synthetic CBTE data.
A discussion and conclusions are provided in Section 5.

2. Model description

2.1. Fracture network generation

We use the following strategy to generate two-dimensional fracture
networks. The center of each fracture in a DFN is uniformly distributed
over a square simulation domain of size 𝐿. The length, 𝑙, and aperture,
𝑏, of each fracture are randomly generated from the expressions (de
Dreuzy et al., 2001; Li and Zhang, 2010; Demirel et al., 2019)

𝑙 = 𝑙min𝑋
1∕(1−𝑎), 𝑐 =

√

2 𝜎𝑐 erf−1
{

(1 −𝑋)[𝑔(𝑏max)

−𝑔(𝑏min)] + 𝑔(𝑏min)
}

+ 𝜇𝑐 , 𝑐 = ln 𝑏. (1a)

ere, 𝑙min is the fracture’s minimum length; 𝑏min and 𝑏max are its mini-
um and maximum aperture values, respectively; natural logarithm of

he aperture, 𝑏 = exp(𝑐), has mean 𝜇𝑐 and standard deviation 𝜎𝑐 ; 𝑎 is the
ower-law exponent; the random variable 𝑋 is distributed uniformly on
0, 1); erf−1(⋅) is the inverse of the error function erf(⋅); and

(𝑏) = erf
(

ln 𝑏 − 𝜇𝑐
√

2𝜎𝑐

)

. (1b)

Since the length, 𝑙, and aperture, 𝑏, of each fracture are mutually
correlated, they are expressed in terms of the same random variable
𝑋. Fractures are added to the system until the percolation parameter

𝑝 =
𝑁f
∑

𝑖=1

𝑙2𝑖
𝐿2

(2)

reaches a chosen value. Here, 𝑙𝑖 is the length of the 𝑖th fracture, i.e., a
realization from Eq. (1). Table 1 collates the parameter values used in
our simulations and many other studies (e.g., Bour and Davy, 1997;
de Dreuzy et al., 2001; Li and Zhang, 2010; Roubinet et al., 2018;
Li et al., 2009; Demirel et al., 2019). The domain size, 𝐿 = 10 m, is
representative of thermal dilution experiments (e.g., Klepikova et al.,
2022). Two model parameters, 𝑎 and 𝑝, are uncertain and given in
terms of their plausible intervals of variability; values of the percolation
parameter, 𝑝 ∈ [8, 18], are chosen to ensure the system’s connectivity,
since the percolation threshold is 𝑝 ∼ 6. Examples of the corresponding
fracture networks are provided in Fig. 1.
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Fig. 1. Examples of fracture networks for different values of parameters 𝑝 and 𝑎. The color of the fractures is related to their aperture with increasing aperture from black to red.
2.2. Physics-based model of fluid flow and heat transfer

In a CBTE, water temperature in the left borehole is modified by
either injecting warm water or using a heating cable, which induces
temperature changes in the right borehole (Fig. 2). These changes
are monitored and reported in the form of breakthrough curves. A
constant hydraulic gradient is enforced between the boreholes, and
no-flow condition is assumed at the top and bottom of the domain.
The injected water is warmer than the ambient environment, and heat
transfer between the two boreholes is the result of convection in the
fractures and conduction in the matrix.

Following the standard practice, we assume the fluid flow in indi-
vidual fractures to be single-phase, steady, and laminar; and the rock
matrix to be impervious to the fluid. With these assumptions, average
flow velocity (Darcy flux) in the 𝑖th fracture segment of the DFN, 𝑢𝑖, is
given by the Poiseuille law (e.g., Renshaw, 1995; Adler et al., 2013),

𝑢𝑖 = −
𝜌𝑔𝑏2𝑖
12𝜇

𝐽𝑖, (3)

where 𝜌 and 𝜇 are the fluid density and dynamic viscosity, respectively;
𝑔 is the gravitational acceleration constant; and 𝐽𝑖 is the hydraulic head
gradient in the 𝑖th fracture segment. By defining fracture intersections
and extremities as nodes of a graph and by enforcing mass conservation
at each of these nodes, one computes the values of hydraulic head at
each node and flow velocity at each fracture segment (e.g., Roubinet
et al., 2013, and references therein).

We deploy the PBPT method of Gisladottir et al. (2016) to model
heat transfer by advection in fractures and conduction in the ambient
3

matrix. While other particle-tracking techniques have been used to
solve heat-transfer problems (e.g., Emmanuel and Berkowitz, 2007;
Geiger and Emmanuel, 2010), our method’s advantage stems from
its utilization of semi-analytical expressions (Ruiz Martinez and Tar-
takovsky, 2014). That enables one to account for the effect of the
matrix block size on heat transfer without meshing the matrix domain,
greatly reducing the computational cost in comparison with standard
numerical methods. Heat transfer between the injection and observa-
tion boreholes is simulated by injecting 𝑁par particles on the left side
of the domain and recording their arrival times, 𝜏𝑛 (𝑛 = 1,… , 𝑁par),
on the right side. These data are then used to estimate the cumulative
distribution function (CDF), 𝐹 (𝜏) = P[ ≤ 𝜏], of the particle arrival
time  , which is treated as a random variable. The CDF 𝐹 (𝜏) coincides
with the temporal change in the relative temperature,

𝑇 ∗(𝑡) =
𝑇obs(𝑡) − 𝑇in
𝑇inj − 𝑇in

, (4)

at the observation borehole. Here, 𝑇in is the initial fluid temperature
in the system; and 𝑇inj and 𝑇obs are the temperatures in the injection
and observation boreholes, respectively. The relative temperature 𝑇 ∗ =
𝑇 ∗(𝑡) is indeed a CDF because it is a non-negative non-decreasing func-
tion that varies monotonically from 0 to 1; at the beginning (𝑡 = 0) and
the end (𝑡 = 𝑡end) of the experiment, 𝑇obs(0) = 𝑇in and 𝑇obs(𝑡end) = 𝑇inj,
respectively. Fig. 3 shows examples of these CDFs for various values of
the DFN parameters 𝐦 = (𝑝, 𝑎). Larger values of the parameters 𝑝 and
𝑎 result in shorter and longer arrival times, respectively (Fig. 3). For
a given value of 𝑎, increasing 𝑝 yields more fractures (first column in
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Fig. 2. Schematic representation of a cross-borehole thermal experiment (CBTE) in
fractured rocks considering flow and heat transfer processes.

Fig. 1) that create smaller matrix blocks in which the heat dissipation is
limited, thus reducing the late arrival times (Fig. 3a). For a given value
of 𝑝, smaller values of 𝑎 correspond to the addition of small fractures,
which results in fracture segments with small flow velocities (first row
in Fig. 1) and increase the particle arrival times (Fig. 3b).

3. DNN surrogates

For CDF 𝐹 (𝜏) ∶ [0, 𝑡end] → [0, 1] or, equivalently, 𝑇 ∗(𝑡) ∶ [0, 𝑡end] →
[0, 1], we define the inverse CDF (iCDF) 𝑡 = 𝑄(𝑇 ∗) ∶ [0, 1] → [0, 𝑡end].
This iCDF curve is represented by 𝑁dis = 50 discretization points,

𝑄(𝑇 ∗) ∶ {𝑄1,… , 𝑄𝑁dis}, 𝑄𝑛 = 𝑄(𝑇 ∗
𝑛 ), 𝑇 ∗

𝑛 = 𝑛
𝑁dis

, 𝑛 = 1,…𝑁dis.

(5)

Examples of iCDFs are shown in Fig. 3 for various values of the fracture
network parameters 𝐦.

We consider a DNN that takes the DFN parameters 𝐦 = (𝑝, 𝑎) as
input and returns the iCDF 𝑄(𝑇 ∗) as output. In our experiments, the
DNN returns a monotonic function 𝑄(𝑇 ∗), even though no explicit
monotonicity constraint is enforced during its training.

3.1. Fully connected neural network

Our framework allows for different DNN architectures; we demon-
strate it on a fully connected neural network (FCNN) implemented
with the Python package PyTorch (Paszke et al., 2019). Let 𝐝 =
(𝑑1,… , 𝑑𝑁dis ), where 𝑑𝑛 = 𝑄𝑛 with 𝑛 = 1,… , 𝑁dis, denote the PBPT
solution in Eq. (5); and �̂� = FCNN(𝐦;𝜣) denote its estimate obtained
via the FCNN. The weights of this FCNN, 𝜣, are obtained by minimizing
the discrepancy between 𝐝 and �̂�,

𝜣 = argmin
𝜣

𝜦(𝐝, �̂�). (6)

The loss function 𝜦 represents the discrepancy between two distri-
butions, 𝑄 and �̂�, or, more precisely, their discretized versions 𝐝 and �̂�.
4

Table 2
Parameters related to the FCCN definition with their corresponding search region being
uniformly sampled from either a discrete set of values, 𝑈{⋅, ⋅,… , ⋅}, or an interval,
𝑈 [⋅, ⋅], as described in Zhou et al. (2021).

FCCN parameter Search region

Number of layers 𝑈{3, 4, 5, 6}

Number of neurons 𝑈{22 , 23 ,… , 29}

Optimizer name 𝑈{𝚛𝚖𝚜, 𝚜𝚐𝚍, 𝚊𝚍𝚊, 𝚊𝚍𝚊𝚖}

Learning rate, 𝑙𝑟 log10(𝑙𝑟) ∼ 𝑈 [−4,−2]

Among several alternative metrics, we select the Hellinger distance (Le
Cam, 2012),

𝜦(𝐝, �̂�) = 1
√

2
‖

√

𝐝 −
√

�̂�‖2 =
[

1
2

𝑁dis
∑

𝑛=1

(

√

𝑑𝑛 −
√

𝑑𝑛
)2

]1∕2

. (7)

The parameters defining the architecture of our FCNN are collated
in Table 2. A precise description of this architecture is provided in Zhou
et al. (2021).

3.2. Strategy for surrogate-model extension

Fig. 4 shows the simulation times sim required to generate the
fracture network and solve the fluid flow and heat transfer problem
with the PBPT model for different values of the DFN parameters, 𝑎 ∈
[1.1, 3.0] and 𝑝 ∈ [8, 18]. These simulation times represent the average
values of sim over 20 realizations of the DFN for each parameter pair
(𝑝, 𝑎) (see Section 4 for details). The simulation time sim remains small
for all values of 𝑝 ∈ [8, 18] as long as 𝑎 is sufficiently small, 𝑎 ∈ [1.1, 1.8];
outside of that interval, sim increases with 𝑝. The highest simulation
times are observed for high values of 𝑎 and 𝑝, which correspond
to dense fracture networks characterized by the presence of small
fractures. Larger values of 𝑝 and 𝑎 correspond to more small fractures
with low flow velocities and smaller matrix blocks (Section 2.2). The
former feature results in longer exposure to cooler rock and therefore in
greater loss of heat; this is expressed by a higher probability of particles
entering the matrix and reaching another fracture, since the particle
transfer between fractures is more likely in small matrix blocks. The
computational time increases due to longer paths through which the
particles travel by advection and more opportunities to transfer from
one fracture to another.

We define three regions in the (𝑝, 𝑎) parameter space (Fig. 5): ‘‘small
range’’ (SR) corresponds to small values of sim (mostly ∼ 1 s, with few
values as large as 10 s) and has a rectangular shape (𝑝, 𝑎) ∈ [8, 18] ×
[1.1, 1.8] (Fig. 5a); ‘‘medium range’’ (MR) corresponds to intermediate
values of sim (mostly ranging from 1 s to 10 s) and is defined by
a polynomial expression 𝑎 = 𝑎(𝑝) in Fig. 5b; and ‘‘large range’’ (LR)
corresponds to the values of sim ranging from 10 s to 100 s and is
defined by a polynomial expression 𝑎 = 𝑎(𝑝) in Fig. 5c. The SR, MR, and
LR regions occupy 36.84%, 66%, and 88.95% of the parameter space
(𝑝, 𝑎) ∈ [8, 18]×[1.1, 3.0], respectively (Table 3). We investigate how the
simulation time and model accuracy can be optimized by working with
(low-cost) regionalized models defined over a large number of data and
extended to the full range of parameters with fewer data.

4. Results

4.1. Surrogate-model assessment

Besides the Hellinger loss (7), we evaluate the accuracy of the FCNN
model over the full ranges of parameters (𝑝, 𝑎) in terms of relative error

 =

√

√

√

√

𝑁dis
∑

(𝑑𝑛 − 𝑑𝑛)2
/

√

√

√

√

𝑁dis
∑

𝑑2𝑖 , (8)

𝑛=1 𝑖=1
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Fig. 3. Examples of (a and b) cumulative distribution functions (CDFs) and (c and d) inverse cumulative distribution functions (iCDFs) for different values of (a and c) the
percolation parameter 𝑝 and (b and d) power-law exponent 𝑎. These results are obtained with the PBPT method using 1000 particles.
Table 3
Characteristics of the SR (small-range), MR (medium-range) and LR (large-range) surrogates: 𝑎max is the maximum value of the power-law
exponent parameter 𝑎; 𝛽 is the proportion of the parameter ranges that is considered when varying 𝑎 from 1.1 to 3 and 𝑝 from 8 to 18; 𝑁data
is the number of PBPT solutions; sim is the simulation time (in hours); and 𝜀red and 𝜀full are the mean training losses for the surrogates over
the reduced and full ranges of parameters, respectively.

Regionalized models Extended models

𝑎max 𝛽 𝑁data sim 𝜀red 𝜀ful 𝑁data sim 𝜀ful

SR model 1.8 36.84%

10,000

7.35 0.118 0.286 0.102

MR model 10 s 66% 21 0.101 0.471 3,000 93.6 0.101

LR model 100 s 88.95% 134.5 0.096 0.161 0.0997
where 𝐝 = (𝑑1,… 𝑑𝑁dis ) and �̂� = (𝑑1,… 𝑑𝑁dis ) are the discretized
inverse CDFs computed via the PBPT method and its FCNN surrogate,
respectively, for a pair of the DFN parameters (𝑝, 𝑎) not used in the
FCNN training. As in Zhou et al. (2021), the efficiency of the surrogate
models is evaluated by computing the conditional PDF

𝑓𝐦|𝐝(�̃�;𝐝) =
𝑓𝐝|𝐦(�̃�;𝐝)

𝑓𝐝(𝐝)
, (9)

with the likelihood function

𝑓𝐝|𝐦(�̃�;𝐝) = 1
√

exp

[

− 1
2
𝜦(𝐝, 𝑄(�̃�))

]

(10)
5

2𝜋𝜎𝑑 2𝜎𝑑
and the normalizing factor

𝑓𝐝(𝐝) = ∫ 𝑓𝐝|𝐦(�̃�;𝐝)d�̃�. (11)

Here, 𝐝 and �̃� are the deterministic outcomes of random variables 𝐝
and 𝐦, respectively; 𝜎𝑑 is the standard deviation of the PDF 𝑓𝐝|𝐦 that
is centered on the square root of the Hellinger distance 𝜦 between
the data 𝐝 and the prediction of the forward model (5), 𝑄(�̃�). In the
experiments reported below, we set 𝜎𝑑 = 0.4, which corresponds to the
measurement noise. The model predictions 𝑄(�̃�) come from the DNN
surrogate for multiple realizations of the fracture parameters �̃� = (�̃�, �̃�).
These realizations are obtained by discretizing the intervals 8 ≤ 𝑝 ≤
18 and 1.1 ≤ 𝑎 ≤ 3 with 100 equidistant points, which results in
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Fig. 4. Computational time 𝑇𝑐 determined from the linear interpolation of the times
averaged over 20 fracture network realizations and for 373 values of parameters 𝑎 and
𝑝. The color bar represents the log value of the computational time. The two black lines
represent the polynomial interpolations whose expressions are provided in Fig. 5, the
simulations being smaller than 10 and 100 seconds for the parameters located below
these lines.

104 combinations of 𝑝 and 𝑎, and in 104 DNN predictions 𝑄(�̃�). The
fracture-network parameters corresponding to the highest probability
density are identified as the optimal inversion results.

4.2. Regionalized surrogate models

The regionalized models described in Table 3 are trained on 10,000
realizations of the PBPT simulation for different values of parameters
𝑎 and 𝑝 that are randomly drawn from the SR, MR, and LR regions
(Fig. 5). Out of the 10,000 simulations, 8000 are used to train the
surrogate models and 2000 to test the model accuracy. The times
required to run these simulations are 7.35, 21, and 134.5 h for the
SR, MR, and LR models, respectively; the increase from the SR model
to the LR models is related to the increase in the size of the domain
of definition that results in larger computational times (Fig. 4). In the
following, these models are first applied to the range of parameters
over which they have been defined, and then over the full range of
parameters (i.e., 1.1 ≤ 𝑎 ≤ 3 and 8 ≤ 𝑝 ≤ 18).

Applying these models to the range of parameters over which they
are defined results in the (examples of) prediction curves in Fig. 6.
The comparison with the BTCs computed via the reference PBPT solver
shows that the FCNN surrogates accurately reproduce the training data,
resulting in small training errors 𝜀red (Table 3) for the SR, MR, and LR
surrogates.

These regionalized FCNN surrogates are deployed to compute the
posterior PDF 𝑓 (�̃�;𝐝) of parameters 𝑝 and 𝑎; during NN training,
these parameters are sampled over their domains of definition; Fig. 7
provides three examples of these PDFs for each model type (SR, MR
and LR), for several realizations of the DFN parameters 𝑎 and 𝑝 drawn
randomly from the domain of definition of the surrogates. The reference
values of parameters (𝑝, 𝑎) are represented by a blue point in each
plot. Fig. 7 also shows the corresponding posterior PDFs obtained from
10,000 realizations of the PBPT model. The computational cost of
a FCNN prediction is negligible, such that 107 FCNN runs—used in
our FCNN estimation of the posterior PDFs in Fig. 7—carry the same
computational cost as the 104 PBPT model runs do. Hence, the use of a
NN surrogate to compute a posterior PDF presents several advantages.
First, it improves the estimation quality of posterior PDFs, allowing one
to accurately delineate the regions of high probability (shown in deep
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red), which is essential for accurate inversion. Second, it enables one to
extend the definition range of the PDF 𝑓𝐦|𝐝 out of its initial domain of
definition with consistent values that can be used for inversion purpose.
For all examples in Fig. 7, the reference point (true value) is located
in the highest probability zone, as it should. The sole exception is
the first example of the SR model, in which the reference point is
located near the highest probability zone. In this case, although the
10,000 realizations of the reference PBPT model are located in the
smallest range of the parameters considered, the resulting function is
not sufficiently well defined to train the FCNN surrogate and more data
might be necessary.

We first attempted to train and test the surrogate models on the
data generated with 3000 model runs, for the values of 𝑎 and 𝑝
drawn randomly from their full domains of definition. The resulting
DNN surrogate was computationally expensive to build and exhibited
poor performance; this attempt motivated the development of our
regionalized approach. In all our numerical experiments, the limiting
factor is computational time rather than memory. The simulations were
performed on nodes composed of 28 cores (dual Intel Xeon E5-2680
v4 2.4 GHz Broadwell processors 2 × 14 cores/nodes) with 128G of
allocated memory.

4.3. Extrapolation to extended domains

To test the extrapolation (aka generalization) power of the regional-
ized FCNN surrogates we use them to predict iCDFs for values of (𝑝, 𝑎)
that fall outside the parameter regions on which these FCNNs have been
trained. Fig. 8 shows representative examples of iCDFs computed for
(𝑝, 𝑎) = (16.72, 1.75), (13.03, 1.31), (11.17, 2.76), and (17.20, 2.84), which
were randomly drawn from the full parameter range. The first two (𝑝, 𝑎)
pairs are from the three domains defined in Fig. 5, while the third pair
falls within the large range (LR) and the fourth pair does not belong to
any of the three ranges. All three regionalized surrogates (SR, MR, and
LR) accurately reproduce the data provided by the PBPT method for the
first two pairs of (𝑝, 𝑎), i.e., these surrogates yield accurate predictions
in the interpolation mode. For the third pair of (𝑝, 𝑎), the SR and MR
surrogates slightly deviate from the reference PBPT solution, while
the LR surrogate yields an accurate prediction. All three regionalized
surrogates do not reproduce well the data associated with the fourth
pair of reference (𝑝, 𝑎) values. These findings confirm a well established
notion that NNs do not generalize well to parameter values that are out
of the training-data range.

Fig. 9 exhibits the posterior PDFs, for three realizations of parame-
ters (𝑝, 𝑎) randomly drawn from the full range of parameters. The first
(𝑝, 𝑎) pair falls within the domains corresponding to the MR and LR
models, while the second and third pairs belong to the LR region. The
comparison with the reference PBPT solution demonstrates the failure
of the SR surrogate to accurately reproduce the posterior PDFs in all
cases. This FCNN surrogate has been trained on the reduced range of
parameter 𝑎 (𝑎 < 1.8) and does not generalize well to the situation in
which the most important part of the posterior PDFs (i.e., the highest
probability region) is located out of this range. Likewise, the MR
surrogate yields inaccurate predictions for the remaining two reference
(𝑝, 𝑎) pairs, since these pairs fall outside the definition range of the
model. The MR surrogate yields better predictions for the first pair
of parameters, and the LR surrogate yields better predictions for all
three pairs, since the reference (𝑝, 𝑎) values are located within the high
probability zone. However, the trend observed in the reference PBPT
solution is not well captured over the whole domain. These results are
confirmed by both the relatively high mean training loss 𝜀ful (Table 3)
and the error maps in Fig. 10, which reveal that the error is highest in
regions of the (𝑝, 𝑎) space that are not included in the initial definition
of the surrogates.
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Fig. 5. Definition of the (a) small, (b) medium, and (c) large ranges from which 10,000 random pairs of parameters (𝑝, 𝑎) are drawn. The polynomial expressions that define the
medium and large ranges come from the simulation times sim reported in Fig. 4.
Fig. 6. Examples of iCDFs computed with the reference PBPT solver (denoted as truth) and the SR (top), MR (middle), and LR (bottom) regionalized surrogate models (denoted
as prediction) for several realizations of parameters 𝑎 and 𝑝 drawn from the definition domains of the respective models.
4.4. Extended NN surrogate

Our study demonstrates that regionalized surrogates defined in the
context of thermal experiments can be corrected with a relatively
7

small number of additional PBPT simulations (about 1/3 of the initial
number of simulations) defined over the full range of parameters.
We supplemented the original 𝑁data = 10,000 PBPT runs with 3000
PBPT simulations carried out for the (𝑝, 𝑎) values randomly drawn from



Computers and Geosciences 183 (2024) 105509G. Song et al.
Fig. 7. Examples of posterior PDFs computed with the PBPT method (first, third, and fifth rows) and the regionalized (SR, MR, and LR) FCNN surrogates (second, fourth, and
sixth rows), for realizations of DFN parameters (𝑝, 𝑎) drawn from these ranges (represented by a blue point on each figure). In each image, the horizontal and vertical axis are
spanned by the fracture-network parameters 𝑝 and 𝑎, respectively; and the color scale represents the PDF value for each pair (𝑝, 𝑎), as computed with Eqs. (9) and (10).
the full parameter range. These additional simulations took 93.6 h
(Table 3). We used 2400 of the 3000 additional simulations to retrain
the regionalized surrogates, and the remaining 600 simulations to test
the resulting extended surrogates. The mean training losses, 𝜀ful, for the
extended SR, MR, and LR surrogates are reported in Table 3. They are
similar to those of the regionalized models applied to their restricted
parameter ranges (𝜀red), and significantly better than their counterparts
for the regionalized models applied to the full range of parameters
(𝜀ful for regionalized models). This improvement translates into more
accurate predictions of iCDFs (Fig. 11). These results correspond to the
8

same parameter pairs (𝑝, 𝑎), for which the regionalized surrogates in
Fig. 8 failed to perform adequately.

This NN-training strategy also greatly improves the estimation of
posterior PDFs (Fig. 12) in comparison with the results presented in
Fig. 9. In all cases considered, the reference parameter pairs (𝑝, 𝑎) are
located in the highest probability zones and the trends observed in the
reference PBPT solutions are reproduced by the FCNN surrogates. The
map of errors between the reference PBPT solutions and the extended
FCNN surrogates for the full range of parameters (right column in
Fig. 10) shows these errors to be small and uniformly distributed
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Fig. 8. Examples of iCDFs computed with the reference PBPT solution (denoted as truth) and the SR (top), MR (middle), and LR (bottom) regionalized surrogates (denoted as
prediction) for realizations of (𝑝, 𝑎) drawn from the full range of parameters.
over the parameter space. We also observe that the extended SR, MR,
and LR surrogates are equally improved by the additional training
step. This performance is reminiscent of strategies for NN training
on multi-fidelity data, which aim to reduce the cost of training-data
generation (Song and Tartakovsky, 2021).

5. Conclusions

We introduced an efficient way to train DNN surrogates on data
from simulated thermal experiments in fractured rock. Our regionalized
and sequential training techniques enable one to handle wide ranges
of fracture parameters, including those giving rise to computationally
expensive PBPT models. The surrogates were used to estimate posterior
PDFs of thermal breakthrough curves with high degree of accuracy;
such PDFs are required for Bayesian data assimilation and estimation
of statistical properties of fracture networks. Quantitative error maps
were obtained to evaluate the reliability of prediction and inversion.
Our study leads to the following major conclusions.

• DNN surrogates can be trained for parameter ranges associated
with low computational cost of data generation; their subsequent
extensions to wider ranges require relative few additional data.
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• Such regionalized DNNs, trained on narrow parameter ranges,
yield accurate predictions for parameters from those ranges, but
their extrapolation to other parameter ranges results in high
errors and inconsistent posteriors.

• DNN surrogates trained on about 60% of the parameter space
strike an optimal balance between computational cost and inver-
sion performance.

• Fracture percolation 𝑝 and power-law exponent 𝑎 determine the
variability of the arrival (breakthrough) time. Generally, larger
values of 𝑝 and smaller values of 𝑎 accelerate the thermal break-
through.

• High computational cost of thermal models with large values of 𝑝
and 𝑎 precludes the ensemble physics-based computation in these
ranges, 𝑝 ∈ [8, 18] and 𝑎 ∈ [1.1, 3]. DNN surrogates are invaluable
for this purpose.

These conclusions are drawn for the practical ranges of fracture-
network parameters (𝑝, 𝑎), while having other characteristics—minimum
(𝑏min) and maximum (𝑏max) fracture apertures, and the mean (𝜇ln 𝑏) and
standard deviation (𝜎ln 𝑏) of log-normally distributed fracture aperture
𝑏—fixed at their representative values (Table 1). One could increase the
dimensionality of the parameter space from 2 (used in this study) to 6,
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Fig. 9. Examples of posterior PDFs computed with the PBPT reference model (first row) and the SR, MR, and LR surrogate DNN models (second, third, and fourth rows) for
reference random values of parameters 𝑎 and 𝑝 drawn in the full range of parameters (represented as a blue point on each figure).
turning these parameters into the DNN input, and to draw realizations
of this input from distributions other than log-normal. Our previous
results (Zhou et al., 2021) show that keeping the aperture constant
(and log-normally distributed) for all fractures does not impact the
prediction accuracy of DNN surrogates. In field applications of our
methodology, the choice of a distribution for 𝑏 and its statistics should
be dictated by expert knowledge and/or site-specific information.

Our methodology is equally applicable to the scale of a geothermal
field. Its implementation would involve the following five steps. First,
generate three-dimensional fracture networks corresponding to field-
scale fracture-network parameters. Second, conduct multiple field-scale
flow and heat transfer simulations to generate representative training
data. Third, train a DNN surrogate on these data and use it to obtain
fast predictions of ICDF curves for different fracture-networks param-
eters. Fourth, convert the production temperature curves observed at
the site into ICDF curves through the [0, 1] normalization. Fifth, use
Eqs. (9)–(11) to compute posterior PDFs and Bayesian estimates of the
reservoir-scale fracture-network parameters. Thus parameterized DNN
10
surrogates can then be used to determine optimal injection rates for
improved reservoir performance. A key bottleneck in this procedure is
the computational cost of high-resolution three-dimensional (3D) flow
and heat transfer simulations at the reservoir scale. This cost can be
alleviated by the use of transfer learning on multi-resolution data (Song
and Tartakovsky, 2021).

In a follow-up study, we will use regionalized DNN surrogates to
invert thermal data collected at several field experiments, starting with
thermal dilution experiments at the Grimsel Test Site (Klepikova et al.,
2022). We will investigate whether the construction of new surrogates
is required, and whether it can be done via transfer learning (Song
and Tartakovsky, 2021) to significantly reduce the data generation and
DNN training costs. Extensions of our work to chemical tracer exper-
iments and 3D simulations are another area of future research, which
would rely on physics-based models for 3D fracture networks (De Si-
mone et al., 2023) to generate training data. Estimation of the minimal
number of physics-based simulations required to generate data in the
initial and extended parameter ranges has to be done to optimize the
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Fig. 10. Maps of the relative error 𝜖 defined in (8) with the regionalized (left column) and extended (right column) surrogate models applied to the full range of parameters.
computational cost; this is especially so when dealing with expensive
3D simulations.
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Fig. 11. Examples of iCDFs computed with the reference PBPT model (denoted as truth) and the extended surrogate SR (top), MR (middle), and LR (bottom) models (denoted as
prediction) for random values of parameters 𝑎 and 𝑝 that are drawn in the full range of parameters.
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Fig. 12. Examples of posterior PDFs computed with the PBPT reference model (first row) and the extended SR, MR, and LR surrogates (second, third, and fourth rows) for the
reference realizations of DFN parameters 𝑎 and 𝑝 (represented as a blue point on each figure) drawn from their full range of variability.
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