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Abstract
Maintaining laminar flow on large swept surfaces of subsonic transport aircraft, i.e. the wings and
the stabilisers, is currently posing a considerable challenge for aerodynamic design. Improving the
efficiency of aircraft by delaying or removing the laminar-to-turbulent transition process over the wing
and tail parts can substantially reduce contaminant emissions. The dominant flow instability causing
laminar-turbulent transition of swept-wing flow is the so-called crossflow instability (CFI). Ongoing re-
search at TU Delft has shown potential to delay transition by use of passive mechanisms. As such, a
framework has been designed to numerically compute crossflow development and transition to turbu-
lence on swept wings. Through the use of experimental data acquired in wind-tunnel measurements at
TU Delft, the CFI development and transition process on swept wings has been modelled numerically
by means of Direct Numerical Simulation (DNS). Based on a DNS laminar flow field generated from the
pressure distribution along the model surface, a numerical primary CFI mode in good agreement with
the experiment was obtained through Non-linear Parabolized Stability Equations (NPSE). Following
this steady flow field analysis, the simulation was made unsteady by the implementation of numeri-
cal free-stream turbulence. This novel method resulted in unprecedented modelling of the receptivity
mechanisms of transition in three-dimensional crossflow cases, overcoming ad-hoc treatments. Both
experimental and numerical flow fields indicated a Type-I dominant secondary CFI (i.e. K-H type of re-
sponse in the laterally inclined shear layer of the stationary crossflow vortex), which consequently car-
ries the formation of near-wall hairpins and ultimately turbulence. Crossflow vortex frequency content
also agrees well in the low-frequency band (450Hz≤ 𝑓 ≤ 3000Hz), whilst the numerical high-frequency
content (3500Hz≤ 𝑓 ≤ 9000𝐻𝑧) does show a distinct delay in amplitude growth throughout the majority
of the transition region. Contradicting the promising qualitative analysis of the free-stream turbulence
methodology, this discrepancy in the frequency spectrum indicates the major shortcoming in the nu-
merical setup, which was shown to be biased towards introducing more low-frequency disturbances at
the inflow boundary.
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𝛿∗ Boundary layer displacement thickness
Δ Time constant
𝜖 Error
𝛾 Wall-normal wavenumber
𝜅 Wavenumber magnitude
Λ Sweep angle
𝜆 Wavelength
𝜇 Dynamic viscosity
𝜈 Kinematic viscosity
𝜔 Angular velocity
𝜙 Eigenfunction
𝜌 Density
𝜎 Standard deviation
𝜃 Boundary layer momentum thickness
𝜏 Wall-shear stress
𝜒 Feedback control coefficient
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𝑥𝐵 Baseflow quantity
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�̂� Shape function
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𝑥0 Quantity at the inflow boundary of the numerical domain
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𝑥∗ Complex conjugate of quantity
x Vector quantity
�̇� Time-derivative of quantity
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1
Introduction

Aerodynamics is what makes flying possible, and has always been a crucial factor in aircraft design.
Focus in the past was on generating lift but has since shifted towards efficiency, implying the need for
drag reduction. This drag reduction is preferably achieved without impacting other aircraft character-
istics, minimising the need for compromises in aircraft design. The total drag an aircraft generates is
made up of several components (i.e. pressure drag, skin-friction drag, lift-induced drag). Reducing
pressure drag would result in major structural design changes, and whereas lift-induced drag can be
minimised over non-lifting surfaces, the majority contribution from the main wings is directly coupled
to the lift needed to fly. Skin friction drag, on the other hand, depends less on the overall aircraft con-
figuration. With approximately half of the total drag attributed to skin friction drag, it is a potentially
large improvement as well (Szodruch, 1991). The contribution of skin friction drag is directly correlated
with the state of the boundary layer. Turbulent boundary layers generate more drag than their laminar
counterparts, so laminar flow is favoured over most aircraft surfaces. For fully laminar flow wings to
become reality, a better understanding of boundary layer transition is desired. On swept wings, the
most prevalent instabilities causing transition are Tollmien-Schlichting (TS) waves and crossflow insta-
bilities (CFI). Where the former is found more dominant at low sweep angles, in boundary layers with a
zero or adverse (positive) pressure gradient, CFIs are found in combination with higher sweep angles
and a favourable (negative) pressure gradient (Borodulin, Ivanov, Mischenko, et al., 2019). With in-
creased wing sweep angle leading to drag and stability benefits in transonic and supersonic aircraft, an
improved understanding of CFI-based transition can become the key to designing fully laminar wings,
or laminar flow control (LFC) devices for next-generation aircraft (Donlan & Weil, 1952). Which, once
achieved, can significantly reduce aircraft emissions.

1.1. Boundary-Layer Flow
The boundary layer is the region between the bulk fluid flow and the surface of an object, which both
move at different rates of speed. The thickness of this layer can be defined as the wall-normal distance
up to where the velocity reaches 99% of the bulk fluid flow, referred to as 𝛿99. Another definition com-
monly used is displacement thickness or 𝛿∗, based on the mass-flow deficit compared to inviscid flow.
It describes the wall-normal distance the wall would have to move in inviscid flow with slip boundary
conditions, to obtain the same mass-flow rate as the viscid flow field (Lighthill, 1958). Prandtl (1904)
was the first to describe these boundary layer concepts and introduced a set of equations to define the
boundary layer mathematically. By reducing the three-dimensional Navier-Stokes equations based on
the assumption of steady, incompressible flow with constant viscosity and density, the following set of
equations resulted,

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0, (1.1)
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𝑢𝜕𝑤𝜕𝑥 + 𝑣
𝜕𝑤
𝜕𝑦 + 𝑤

𝜕𝑤
𝜕𝑧 = −

1
𝜌
𝜕𝑝
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𝜕𝑥2 +

𝜕2𝑤
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𝜕2𝑤
𝜕𝑧2 ) , (1.4)

Referred to as the boundary layer equations, this set of partial differential equations can be simpli-
fied with several assumptions. Assuming an infinite swept wing model in incompressible flow, and
performing scale analysis, reduces the boundary layer equations to,

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 = 0, (1.5)

𝑢𝜕𝑢𝜕𝑥 + 𝑣
𝜕𝑢
𝜕𝑦 = −

1
𝜌
𝜕𝑝
𝜕𝑥 + 𝜈 (

𝜕2𝑢
𝜕𝑦2 ) . (1.6)

𝜕𝑝
𝜕𝑦 = 0, (1.7)

𝑢𝜕𝑤𝜕𝑥 + 𝑣
𝜕𝑤
𝜕𝑦 = 𝜈 (

𝜕2𝑤
𝜕𝑦2 ) , (1.8)

indicating the lack of wall-normal (𝑦𝑡) and spanwise (𝑧) pressure gradients. Based on these boundary
layer equations, Blasius (1908) developed the Blasius boundary layer equations, describing the steady
two-dimensional boundary layer over a flat plate where 𝜕𝑝/𝜕𝑥 = 0. Falkner and Skan (1931) later
extended the Blasius boundary layer to flow over wedges. These boundary layer approximations are a
computationally cheap but fairly accurate way of obtaining a laminar boundary layer and allow validation
of the DNS baseflow during this research.

This boundary layer theory also allows the calculation of the velocity profiles inside the boundary
layer, because the difference in momentum between the surface and the fluid inevitably generates a
velocity gradient that introduces shear forces in the boundary layer and at the wall. These shear forces
are what quantify the skin friction drag. A measure for the shear at the wall is given by Equation 1.9,
where 𝜏𝑤 is the shear stress at the wall, 𝜇 the dynamic viscosity of the fluid, and 𝜕𝑢/𝜕𝑦 the velocity
gradient at the wall.

𝜏𝑤 = 𝜇 (
𝜕𝑢
𝜕𝑦)𝑦=0

(1.9)

Equation 1.9 points out that skin friction drag depends almost entirely on the velocity gradient at the
wall. This gradient is in turn dependent on the boundary layer state, being either laminar or turbulent.
Under laminar conditions, fluid particles move quasi-parallel to each other with very little mixing, result-
ing in a very smooth flow and a low boundary layer thickness. In this type of flow, the velocity gradient
is relatively well distributed along the entire boundary layer height, resulting in low shear forces at the
wall. Turbulent boundary layers then contain excessive particle mixing, with fluid particles moving very
non-parallel. The chaotic-looking motion of the particles creates a thicker boundary layer, with a peak
velocity gradient close to the wall. This results in a considerably higher shear force at the wall than in a
laminar boundary layer. Therefore, to reduce overall drag, aircraft designers prefer laminar boundary
layers and want to avoid or delay transition to a turbulent state as much as possible. Both types of
boundary layers, as well as the transition region, are visualised in Figure 1.1.

Figure 1.1: Boundary layer profiles for laminar and turbulent flow states (Çengel & Cimbala, 2006).
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1.2. Hydrodynamic Stability
The behaviour of a boundary layer can be analysed by assessing its hydrodynamic stability. That is
the reaction of the baseflow to superimposed external disturbances, where baseflow refers to the fully
laminar steady-state solution to the Navier-Stokes equations. When disturbances in the baseflow are
allowed to grow indefinitely, the flow is considered unstable, while stable flows damp out these external
disturbances. The assessment of the flow stability can be performed based on two criteria. If the
Reynolds number over an aircraft wing is sufficiently below the range of 1.5𝑥105 to 1.5𝑥106, the flow
can be considered stable (Sforza, 2014). If this is not the case, then kinetic energy is used to evaluate
stability (Joseph, 1976; Schmid & Henningson, 2001). Defining a flow asymptotically stable when the
kinetic energy of the disturbance over time goes to zero,

lim
𝑥→∞

𝐸𝑣(𝑡)
𝐸𝑣(0)

→ 0. (1.10)

Or more simply, the flow can also be seen as monotonically stable when the change in kinetic energy
of the disturbance over time is smaller than zero for all time steps,

𝑑𝐸𝑣
𝑑𝑡 < 0 for all 𝑡 > 0. (1.11)

Many different types of hydrodynamic instabilities exist, though only a handful are relevant for subsonic
flow over swept wings (Borodulin, Ivanov, Kachanov, et al., 2019). The attachment line instability,
Tollmien-Schlichting waves, and crossflow instabilities (Hall et al., 1984; Ustinov, 2013). While all of
these can lead to transition, boundary layer characteristics determine which are allowed to grow (Boro-
dulin, Ivanov, Mischenko, et al., 2019). The leading edge shape and convex airfoil surface along the
pressure side, combined with the negative pressure gradient, can avoid the unsteady growth of attach-
ment line instabilities and T-S waves (Saric et al., 2011). Although TS waves do occur frequently on
wings with smaller sweep angles and adverse pressure gradients, crossflow instabilities are the domi-
nant cause of transition on highly swept wings with favourable pressure gradients, therefore becoming
a hydrodynamic instability of particular interest to the aviation industry (Borodulin, Ivanov, Mischenko,
et al., 2019). Independent of the stability of the boundary layer, the disturbance growth can be simulated
either through CFD, or analytic stability tools. Various levels of accuracy can be considered depending
on the type of flow, from the fast but limited Incompressible Linear Stability Theory (ILST) to the more
elaborate but accurate Non-linear Parabolized Stability Equations (NPSE) (Westerbeek, 2020). The
range of different stability tools utilised throughout this work are outlined in detail in chapter 3.

1.2.1. Crossflow Instability
The second half of the 20𝑡ℎ century sees the emergence of many new transonic and supersonic aircraft.
Accompanying this aviation boom is a rise in aircraft-related pollution. With climate change becoming
a point of concern in more recent years, the research efforts to reduce emissions were sped up by
the idea of laminar flow control (LFC), reducing the skin friction drag of these aircraft. To design such
devices, a better understanding of the mechanisms behind transition to turbulence is required, gener-
ating a rise in research into this field. With modern aircraft increasingly making use of swept wings,
the discoveries made by Gray (1952a, 1952b) re-gains focus. Gray (1952a, 1952b) found that when
introducing sweep to wings, the transition location moves closer to the leading edge, and an instability
referred to as crossflow appears. In crossflow-dominated boundary layers, streamlines follow three-
dimensional trajectories around swept wings. These streamlines can be considered inviscid based on
Prandtl (1904), establishing that viscosity effects are only evident near the wing surface (i.e. inside
the boundary layer). The pressure forces along the inviscid streamlines are therefore balanced by the
centrifugal forces pulling on the flow particles. This force balance along the wing chord results in a
three-dimensional streamline showing a curved pattern, as visualised in Figure 1.2.



4 1. Introduction

Figure 1.2: Inviscid streamline over a section of a swept wing (Dagenhart & Saric, 1999).

When viscid forces become relevant near the surface (i.e. inside the boundary layer), this equilib-
rium no longer holds. The momentum deficit when approaching the no-slip wall allows the forces on
the flow to generate a velocity component perpendicular to the inviscid streamline. This component
becomes more dominant with the increase in momentum deficit but reduces to zero at the wall due to
the no-slip condition. These two velocity components are visualised in Figure 1.3, where the tangential
component follows the inviscid streamline direction and the crossflow component moves perpendicular
to it. The inflection point generated by the velocity vector is a prime point for instability introduction.

Figure 1.3: Illustration of the individual crossflow velocity components (Serpieri, 2018).

Primary Crossflow Instability
Arnal et al. (1984) and Poll (1985) showed that crossflow consists of travelling and stationary crossflow
vortices, growing in amplitude in the downstream direction. Through the receptivity of steady distur-
bances, crossflow vortices are introduced into the boundary layer. These vortices create alternating
upwelling and downwelling regions in the boundary layer, generating a wave-like boundary layer span-
wise modulation. Referred to as the primary crossflow instabilities, these crossflow vortices can either
remain fixed in place or travel along the span. What ratio of stationary to travelling vortices is present
depends largely on the turbulence intensity and surface roughness encountered. High free-stream tur-
bulence combined with low surface roughness tends to favour travelling crossflow vortices, while low
free-stream turbulence environments produce stationary vortices with amplitudes depending on the
surface roughness level (Deyhle & Bippes, 1996). The latter property can be used in research to artifi-
cially impose stationary crossflow vortices with a specific amplitude and fixed fundamental wavelength
in the boundary layer, through tools such as DREs. These disturbances tend to grow when propagating
downstream, at varying speeds depending on the flow conditions. Growth continues until a saturation
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amplitude is reached and breakdown occurs. The breakdown into turbulence is not initiated by the
primary CFI but, instead, occurs due to the development of unsteady high-frequency secondary CFI
(Joslin & Streett, 1994; Kohama et al., 1991).

Secondary Crossflow Instability
Streamwise velocity distortions generated by the primary crossflow instability can locally create doubly
inflected velocity profiles. These double inflection points are seen as attachment points for secondary
crossflow instabilities which are introduced by external disturbances such as free-stream turbulence,
vibration or surface roughness, through the process of receptivity. Secondary crossflow instabilities are
high-frequency instabilities that tend to grow exponentially when introduced into the boundary layer,
often causing breakdown shortly after their first occurrence in the flow field. In general, secondary
instabilities can manifest themselves in three different ways. As type-I, type-II or type-III instabilities,
depending on their location in the boundary layer (Fischer & Dallmann, 1991; Malik et al., 1999; Serpieri
& Kotsonis, 2016; Wassermann & Kloker, 2002). Type-I-driven transition is driven by the shear forces in
spanwise direction, and the related secondary CFI grow in the upwelling region of the crossflow vortex.
Type-II instabilities can be found near the top of the crossflow vortex, and are dependent on wall-normal
shear. Type-III instabilities are then driven by the interaction of travelling and stationary CF vortices, so
their presence is largely dependent on the ratio of these two vortex types. Type-III instabilities present
themselves near the lowest part of the vortex, in the wave trough (Casacuberta, Hickel, et al., 2022).

Figure 1.4: CFI type locations with respect to the CF vortex (Friederich, 2013).

These secondary instabilities complete the crossflow-dominated boundary layer, which consists of
three main components,

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞B(𝑥, 𝑦) + �̇�(𝑥, 𝑦, 𝑧)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝑞DB

+𝑞′(𝑥, 𝑦, 𝑧, 𝑡) (1.12)

where 𝑞𝐵 refers to the unperturbed baseflow, �̇� represents the primary crossflow instability, and 𝑞′ the
secondary instability. The baseflow and primary crossflow combined are often labelled the distorted
baseflow, or 𝑞𝐷𝐵 (Casacuberta, Groot, et al., 2022).

1.2.2. Recent Scientific Advances
Crossflow Instability Characteristics
While computational power was still relatively limited in the 1990s, the main numerical improvements
during this decade were linked to stability theory and achieved with the help of major experiments at in-
stitutions such as DLR and ASU. These experiments set the standard for crossflow wind tunnel testing
for many years, using swept flat plates at first, to later shift to infinite swept wingmodels with enough flow
measurement equipment to set up a numerical comparison (Deyhle et al., 1993; Ng & Crouch, 1999;
Reibert et al., 1996). Several inadequacies in linear theory, and its limitations, were addressed during
this time Deyhle et al. (1993), Reed et al. (1996), and Wassermann and Kloker (2002). With CFI be-
coming common knowledge by the end of the last century, experimental work shifted to understanding
CFI interaction with irregularities such as roughness and steps. These are systematic ways to replicate
any irregularities on aircraft wings encountered during flight. An in-depth understanding of this type of
interaction could ultimately lead to better control over CFI growth. Deyhle and Bippes (1996) investi-
gated the effect of roughness, finding that rough surfaces and low turbulence intensity favour stationary
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crossflow vortices. Smooth surfaces and high turbulence then encourage travelling crossflow vortices.
This knowledge then led to the creation of Direct Roughness Elements (DRE), where small roughness
elements near the leading were used to force stationary crossflow vortices with a fixed fundamental
wavelength (Radeztsky, 1994). In later years, DREs were commonly employed to enforce specific
crossflow scenarios (Rius-Vidales & Kotsonis, 2022; Rizzetta et al., 2010; Saric et al., 2011). Forward-
and backwards-facing steps are another common technique to investigate crossflow behaviour, creat-
ing a repeatable way to replicate discontinuities such as rough or irregular surfaces. Rius-Vidales and
Kotsonis (2021) and Rius-Vidales and Kotsonis (2022) showed the impact of Forward-Facing Steps
(FFS) on the flow field behaviour, and the large dependency on the step height. Although Rius-Vidales
and Kotsonis (2022) found that step heights which cause a significant upstream shift of the transition
front show larger temporal velocity fluctuations not linked to any of the three CFI types, the lack of
spatially-resolved measurements limited the conclusions that could be drawn from this experiment to
topological mechanisms. Even with the large improvements made in measurement capabilities over
recent years, there is still a need for more experimental data. The development of techniques such
as PIV resulted in large jumps in experimental capabilities, but the current state-of-the-art could still
benefit from the addition of spatially and temporally resolved numerical data.

Laminar Flow Control
In terms of applicable laminar flow control, detailed knowledge of flow physics is still deemed inade-
quate to effectively design LFC devices. Out-of-the-box ideas were brought forward, like the SWIFT
experiment, which performed flight tests to study the impact of DREs with a swept wing section at-
tached underneath a small aircraft (Saric et al., 2015). And although 30 of the 63 tests resulted in
usable data, the inconsistency of the results ultimately led to the tests being unable to confirm the use
of DREs as a viable laminar flow control technique. Afterwards, Saric et al. (2019) pointed towards the
need for more computational research into LFC devices before they can become a reality. With com-
putational power increased, and the capability to run DNS becoming more accessible, this numerical
research becomes more and more of a reality as well. However, the questions can be asked if LFC
testing in CFD might be too artificial at this point in time. A structural approach to numerical research
is often taken, through fundamental CFD of simple surfaces and interaction with artefacts like steps
or roughness elements. Casacuberta et al. (2021) used the FFS approach to further investigate the
flow mechanism over steps numerically, in a similar fashion as Rius-Vidales and Kotsonis (2021) did
experimentally. Casacuberta et al. (2021) found that crossflow disturbances are amplified upstream of
the step. The disturbances get lifted up and a flow reversal region is created in front of the step. For
larger step cases, a second region of flow reversal is discovered downstream of the step, generating
secondary inflection points. The step also generates a secondary peak in the disturbance shape func-
tion with an amplitude depending on the step height. The step shows stabilising properties if the step
height is sufficiently large, but mainly increases the sub-harmonic disturbance content in the boundary
layer downstream of the step. The mechanisms behind the flow over steps are discovered gradually
due to structure research work of this type. However, techniques used in CFD to trigger transition and
instability growth in research like (Casacuberta, Hickel, et al., 2022) are often not fully representative
of what happens in flight and wind tunnel conditions. Forcing approaches that introduce disturbances
at the wall, such as Blowing and Suction or random forcing techniques, are not present in wind tunnels,
nor on aircraft wings (Casacuberta et al., 2021; Hader & Fasel, 2022; Högberg & Henningson, 1998).
More representative ways of triggering instabilities in CFD are slowly being created, such as acoustic
waves in compressible flows, or free-stream turbulence. The latter can be of interest in subsonic cross-
flow instability research but will need more proof to become the standard practice. So work continues
towards a better understanding of crossflow-dominated boundary layers, but it is clear a crucial piece
of the puzzle is missing.

Numerical Equivalent of Experimental Setups
More capabilities are desired to advance knowledge in this field even further. Stand-alone numerical
or experimental research can be limited in this context. Using experimental data to validate numerical
concepts and tools has been done frequently (Deyhle & Bippes, 1996; Deyhle et al., 1993; Reed
et al., 1996). The other way, using numerical data as an addition to experiments much less. Most
often, the numerical data is only used as a validation of what the experiments measured, and not as
a complementary data set (Arnal et al., 1998; Reibert et al., 1996). With the recent improvements
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in DNS capabilities, it would be useful to combine both of these approaches to increase the amount
of data available for each experimental setup. By using the experimental data to set up an exact
numerical replication, the numerical setup is validated. Then using the numerical time-dependent three-
dimensional data as an addition to the experimental data would allow for a significantly larger data set
to analyse crossflow-driven transition behaviour. Nishino and Shariff (2010) is thought of to be the
first that attempted to match an experiment exactly, using DNS. The preliminary results presented by
Nishino and Shariff (2010) set a benchmark for the closest match at that time, although the disturbance
amplitudes seen in the DNS were still orders of magnitude removed from experimental measurements.
The possible causes for this discrepancy were thought to be related to the simulation and receptivity of
the roughness elements, as well as the lack of free-stream turbulence and insufficient grid resolution.
Tempelmann et al. (2011) greatly improved this benchmark only a year later. Although a significant leap
in results compared to Nishino and Shariff (2010), the disturbance amplitude of the steady crossflow
vortices reported by Tempelmann et al. (2011) was only 40% of that seen in the series of experiments
performed at ASU (Reibert et al., 1996; Saric et al., 1998; White & Saric, 2005). Numerical matching of
crossflow experiments was still far from perfect at that point. Tempelmann et al. (2011) also attributed
the differences to the lack of free-stream turbulence in the CFD, as well as the potential difference in
roughness over the airfoil surface. Other than Nishino and Shariff (2010), Tempelmann et al. (2011) also
pointed to small discrepancies in the pressure gradient near the DRE section of the surface, which could
explain the difference further downstream of the DRE. Up until this point, to the author’s knowledge, this
is the closest match achieved through DNS. Borodulin, Ivanov, Kachanov, et al. (2019) later managed
to closely replicate the stability characteristics of unsteady crossflow modes over a real airfoil, through
the use of boundary layer theory and Parabolized Stability Equations (PSE). However, this research
focused on using stability theory to match stability characteristics and generated a large leap forward in
capabilities. Unfortunately, PSE cannot simulate flow developments close to the transition region, and
the need remains for an exact experiment replication with DNS. This way, the mechanisms of complex
flow fields near the transition region observed during experiments can be studied in more detail thanks
to the additional numerical data.

1.3. Laminar-Turbulent Transition Prediction
Laminar-to-turbulent transition describes the process of a laminar boundary layer turning turbulent.
Without a fixed path to turbulence, there are several types of transition possible, depending on the flow
field type and parameters. Figure 1.5 shows the most prevalent options, where path a indicates the
transition type of interest in this work. Through receptivity of external disturbances, primary instabilities
start to grow inside the boundary layer. Receptivity is the amount of influence an external disturbance
has on the boundary layer, and how much it affects its stability over time. External disturbances can
be presented in the form of free-stream turbulence, vibrations, roughness, particles, or sound waves.
Through this receptivity process, instabilities can grow, which in this case are the primary and secondary
CFI. The primary instability is allowed to grow until saturated, after which the secondary CFI trigger
breakdown and transition to turbulence. As the primary CFI does not directly lead to breakdown by itself,
a high-frequency secondary CFI is required to complete this step. This high-frequency disturbance
tends to grow exponentially and quickly leads to transition. Predicting where this transition will occur
is most accurate through experimental measurements, or numerically with DNS. Because this is an
expensive process in terms of cost and time, several metrics of a flow field can aid in predicting this
transition locationmore easily. Most fundamental is the spatial growth rate of the disturbance 𝛼𝑖, derived
from the complex part of the streamwise wavenumber. This disturbance growth rate can be linked to
the disturbance amplitude 𝑎 as,

1
𝑎𝑞(𝑘,𝑗)

𝑑𝑎𝑞(𝑘,𝑗)
𝑑𝑥 = −𝛼𝑞𝑖,(𝑘,𝑗), (1.13)

with subscripts 𝑘 and 𝑗 referring to temporal frequency and spanwise wavenumber disturbance modes,
respectively. 𝑞 denotes the velocity vector, with its three components 𝑢, 𝑣, and 𝑤 (Casacuberta, Groot,
et al., 2022). To the disturbance growth rate, both the amplitude 𝑎 and the amplification factor 𝑛 can
be linked as,

𝑛 = ln
𝑎
𝑎0
= ∫

𝑥

𝑥0
−𝛼𝑖𝑑𝑥, (1.14)
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where 𝑎0 and 𝑥0 refer to the first known amplitude and its respective location along the x-axis. The
𝑛-factor can be referred to in context of a location, or in a frequency domain. It is a measure used to
keep track of disturbance growth for individual frequencies and structures.

Figure 1.5: Different pathways from laminar to turbulent boundary layers, where path a indicates the transition type of interest
for this research (Meersman et al., 2018).

Even though the transition location can be estimated using linear stability tools, such as through
the 𝑒𝑁-method developed by Van Ingen (2008), it remains a highly non-linear process. As the name
suggests, it uses the amplification factor 𝑛 to calculate the amplification ratio 𝑒𝑁. When the 𝑛-factor
reaches a predetermined value, transition is expected to occur. Correctly applied, the results of this
method are remarkably similar to transition locations observed in experiments, while still being based on
linear stability theory. This implies a large number of assumptions are applied (i.e. parallel flow, small
disturbances, streamwise invariant velocity distribution). Although many extensions of the method
have been developed, it remains hard to keep up with the latest CFD developments because of the
simplifications involved. So while very computationally expensive, DNS still remains the most accurate
way of estimating transition.

1.4. Motivation
Separate experimental and numerical research has contributed significantly to the understanding of
crossflow-driven laminar-to-turbulent transition on swept wings. Despite being achieved before (see for
instance Serpieri and Kotsonis (2016)), experimental measurement capabilities of three-dimensional
volumes inside this type of boundary layer remain limited with respect to numerical simulations. In
spite of the increasing availability of measurement tools such as PIV on the boundary layer scale and
time-resolved HWA measurements, the lack of inter-dependency between measurement points often
found in experiments tends to make it difficult to extract all the desired information from the flow field.
Within numerical simulations, on the other hand, temporally and spatially correlated three-dimensional
flow fields can be extracted much more easily. However, there remains a large dependency on the
simulation setup. Wind tunnels are designed to develop certain flow environments throughout their
test sections, hence numerical models should reproduce these expected mechanisms to allow for direct
comparison with the wind tunnel data. For this to occur, boundary conditions representative of the wind
tunnel environment needs to be generated numerically. Stand-alone numerical research, therefore,
requires careful consideration of the applicability of the conclusions to different flow environments.
When a framework would now exist to build a numerical simulation representative of the experimental
CFI development and transition, it would give more insight into the driving mechanisms by combining
both numerical and experimental data sets. The experimental research would have additional three-
dimensional and time-dependent data to draw additional conclusions from their experiments, and the
numerical setup can be validated by the experimental measurements, allowing for more trustworthy
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results. Although previous attempts have not been fully successful in reaching replication (see for
instance Nishino and Shariff (2010) and Tempelmann et al. (2011)), new and upcoming simulation
techniques are extending the numerical capabilities. A prime example is the increased knowledge of the
numerical generation of free-stream turbulence (FST). Wind tunnel environments inevitably generate a
certain level of FST, depending on their design. Through receptivity mechanisms between the boundary
layer and the free-stream sections of the flow, disturbances are excited in the boundary layer. By now
numerically replicating this FST level measured in the wind tunnel, this work attempts to introduce
this receptivity mechanism in the simulation. When implemented, this would remove the need for
conventional forcing techniques such as Blowing & Suction, bringing the numerical simulation one step
closer to the experimental equivalent. To test the feasibility of implementing FST numerically, and study
its capabilities for generating a framework for future numerical setups, this work focuses on attempting
to replicate a low-speed crossflow experiment over a 45-degree swept wing performed at TU Delft. All
with the goal of establishing the capabilities of FST in this scenario, and setting up a framework for
future numerical simulation of CFI development and transition to turbulence on swept wings.

1.5. Project Scope
This research aims to answer the question: ”How to generate a numerical framework to simulate the
development of crossflow instabilities and transition to turbulence over a swept wing?”. Which in turn
can be split into several sub-questions this research will try to answer:

• Is it possible to accurately replicate experimental CFI development and transition on a swept wing
with a global free-stream method that does not a priori assume information on transition itself?

• Which components are required to generate this numerical framework?

• Does using free-stream turbulence in unsteady simulations result in a flow field that represents
experiments more closely than conventional forcing techniques (e.g. Blowing and suction)?

In an attempt to answer these questions, a numerical setup will be generated based on an experiment
over a smooth swept-wing performed at TU Delft. Replication of the experiment will be done in sev-
eral steps, aiming to first match baseflow, then the primary crossflow instability (CFI), and finally the
secondary CFI to result in an unsteady flow field. This framework will ultimately be assessed based
on its capabilities, and flexibility towards future application. With the fundamentals of boundary layer
transition to turbulence, crossflow instabilities and some historical context outlined before, the experi-
mental data set will be discussed first in the next section. After which the numerical tools available are
touched upon, before diving into the numerical methodology behind the simulation set-up. The results
section will then discuss three main pillars: the outcome of the steady flow field matching procedure,
the analysis of the unsteady flow field based on transition front, type and frequency content, and a re-
view of the impact of the free-stream turbulence method. Conclusions will be drawn from these results,
whether this framework is capable of reliable reproduction of crossflow-dominated experimental flow
fields on swept wing surfaces, and if it can be used for more complex setups in the future.





2
Reference Experimental Data

Reference data from a wind tunnel experiment performed by Rius-Vidales and Kotsonis (2022), mea-
suring crossflow-driven transition over an infinite swept wing model, is used as the basis for the numer-
ical work. The following chapter will outline the experimental setup and the data available. Important
remarks regarding the processing and use of this experimental data in the numerical setup will serve
as a conclusion to this chapter, before moving on to numerical methodology.

2.1. Experimental Layout
The subsonic experiment measures the flow over a swept wing, specifically designed to study CFI de-
velopment and transition by inhibiting the growth of T-S waves and attachment line instabilities (Serpieri
& Kotsonis, 2015). Generating a framework to replicate this experiment numerically requires knowl-
edge of the experimental layout and the flow parameters. Therefore an overview of the wind tunnel
and model is provided here.

2.1.1. Wind Tunnel
Experiments were performed in the low-turbulence wind tunnel (LTT) at the Delft University of Technol-
ogy. This closed-loop atmospheric wind tunnel with a contraction ratio of 17.9:1 keeps turbulence low
through the use of 7 anti-turbulence screens. The 2.6m long test section has a cross-sectional area of
1.80m x 1.25m (w x h). Based on free-stream hot-wire data, the measured turbulence intensity level
in the test section was 0.023% at a wind speed of 24.7 m/s and 𝑅𝑒𝑐𝑋 of 2.17 × 106 (Rius-Vidales &
Kotsonis, 2022; Serpieri, 2018). Wind speed in the test section is calculated by subtracting the static
pressure at the end of the wind tunnel contraction region from the total pressure between the turbu-
lence grids in the settling chamber. From this pressure differential, the reference dynamic pressure
(𝑝𝑞) in the test section is determined based on an empty test-section calibration curve, resulting in the
test section velocity 𝑈∞ = √2𝑝𝑞/𝜌 (Rius Vidales, 2022). A pitot tube in the test section provides a
second velocity measurement which considers the blockage effect from the swept wing. Streamwise
pressure taps at the model surface, as well as access from the back of the model to extract hotwire
measurements, allow for detailed characterisation of the flow field.

2.1.2. Model
The model used consists of a constant 𝑐𝑋 = 1.27𝑚 streamwise chord wing at 45∘ sweep, spanning
1.25𝑚 and intersecting with both wind tunnel walls. To capture the fundamental features of crossflow-
driven transition, the infinite swept wing condition is required (Saric et al., 2003; Serpieri & Kotsonis,
2015). Through a sufficiently high wing aspect ratio, therefore, a spanwise-invariant pressure distri-
bution and flow field has been generated without the need for special wall liners (Serpieri & Kotsonis,
2016). The M3J airfoil used is a variant of the NACA66018, developed by Serpieri and Kotsonis (2015)
to favour crossflow instability growth while suppressing Tollmien-Schlichting waves and Görtler insta-
bilities at low angles of attack (≈ 3 °). Compared to the NACA66018 as seen in Figure 2.1, the point of
maximum thickness is moved rearward to lengthen the region of favourable pressure gradient.
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Figure 2.1: M3J airfoil cross-section compared to the NACA66018. Reprinted from Serpieri and Kotsonis (2015).

Made out of fibreglass, the model is polished to a roughness standard deviation of 𝑅 = 0.20𝜇𝑚
(Serpieri & Kotsonis, 2016). Parallel with the wind tunnel walls, 92 static pressure taps distributed
over two rows allow for measurements along the full streamwise chord of the wing (Rius-Vidales &
Kotsonis, 2022). Figure 2.2 shows the location of both rows, which are 40% span apart to validate the
infinite swept wing assumption. Discrete Roughness Elements (DRE) are placed 8𝑚𝑚 apart near the
leading edge. The DREs condition the spanwise wavelength of the CF mode. By choosing a height
of 200𝜇𝑚, strong stationary CFI growth is encouraged and transition is ensured within the crossflow
dominant region. The coordinate system used on the model is aligned with the leading edge of the
wing (𝑥, 𝑦, 𝑧), while the wind tunnel itself uses a free-stream aligned coordinate system, indicated by
(𝑋, 𝑌, 𝑍) in Figure 2.2.

Figure 2.2: Wing model layout and positioning in the wind tunnel, indicating the position of both pressure tap rows, the area of
HWA measurements and the DREs placed near the wing leading edge. Re-adapted from Rius-Vidales and Kotsonis (2022)

2.2. Available Data
The available experimental data dictates which approaches for numerical replication are viable. For
this reason, recommendations on experimental data desired for future numerical replication are also
given at the end of this work. The data extracted from Rius-Vidales and Kotsonis (2022) only considers
the experiment without Forward Facing Step (FFS), which is referred to as the clean case. Related to
this specific experiment, three separate data sets are available: wind tunnel parameters, surface static
pressure port data, and hot-wire anemometry (HWA) planes. Ambient conditions such as temperature,
density, and ambient pressure are recorded during testing. Since the hot-wire anemometry planes were
measured over the span of multiple days, ambient conditions for each plane varied in temperature 𝑇
(+/ − 1𝐾), pressure 𝑝 (+/ − 10ℎ𝑃𝑎), density 𝜌 (+/ − 0.016𝑘𝑔/𝑚3), and velocity 𝑈∞ (+/ − 0.35𝑚/𝑠).
Test-section𝑈∞, therefore, shows some variation since the wind tunnel operates at a constant Reynolds
number. As previously mentioned in subsection 2.1.1, the test-section free-stream velocity is instead
determined indirectly based on wind tunnel calibration data (Rius Vidales, 2022). Additionally, a pitot
tube is available in the test section itself just upstream of the model, to allow for velocity corrections
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Figure 2.3: Pressure coefficient distribution in streamwise (x-coordinate) direction on the pressure side of the wing at 𝛼 = 3∘ and
𝑅𝑒𝑐𝑥 = 2.17 × 106 for the lower (red) and upper (black) pressure tap rows.

due to blockage effects. With the total pressure known from the ambient pressure measurements, the
pressure coefficient (𝑐𝑝) over the wing can be calculated using the two rows of static pressure ports
along the wing chord. The 𝑐𝑝-distribution that emanates is shown in Figure 2.3 for both pressure tap
rows. Off-surface measurements are provided by hotwire anemometry. The system consists of a mov-
able steel sting with a single hotwire aligned vertically in 𝑍-direction, measuring a Euclidean sum of
the velocity components. The resulting magnitude of this sum equals 𝑄 = √(𝑢𝑐𝑜𝑠Λ + 𝑤𝑠𝑖𝑛Λ)2 + 𝑣2,
where Λ is the wing sweep angle. The hotwire is operated using a constant temperature bridge. Mea-
suring at 51.2kHz for 2 seconds, 8 planes of 60 by 40 measurement points are extracted parallel to
the leading edge. The result is a measurement resolution of 533𝜇𝑚 in the spanwise 𝑧-direction, and
between 60𝜇𝑚 and 90𝜇𝑚 in wall-normal (𝑦) direction. Plane locations are expressed in a percentage
of the chord and spread between 𝑥/𝑐𝑥 = 0.22 and 𝑥/𝑐𝑥 = 0.28 (Rius-Vidales & Kotsonis, 2022). How
this data will be used in the numerical setup will be outlined in the methodology section, along with the
processing required to generate suitable input parameters from it. Aspects to take into account when
processing the experimental data will be touched upon in the next section.

2.3. Additional Remarks
Experimental research using this data has already been performed by Rius-Vidales and Kotsonis
(2022). Detailed flow physics analysis of the experimental data is thus out of the scope of this the-
sis. The focus instead is on the data that can be extracted and used to set up the numerical simulation.
Based on the experimental research, it is known that the transition is driven by Type-I CFI. The location
of transition is determined using an IR thermographic system, monitoring the pressure side of the wing.
Through changes in model temperature, the transition location is determined to be at 𝑥/𝑐𝑥 ≈ 0.32 from
Figure 2.4b (Rius-Vidales & Kotsonis, 2022).

(a) (b)

Figure 2.4: (a) Thermal map from camera IR-B. Marker (•) indicates the projection of the transition linear fit(dashed white line)
to the centre of the domain. Reprinted from Rius-Vidales and Kotsonis (2022). (b) Transition location at 𝑅𝑒𝑐𝑋 = 2.17 × 106 and
𝛼 = 3∘for the experimental model, re-adapted from Rius-Vidales and Kotsonis (2022).
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To allow for successful replication of this transition behaviour, all flow characteristics need to be
extracted correctly. For the experimental data, the inflow velocity is crucial. The blockage effect of the
model on the calibrated test-section velocity will thus need to be taken into account. Impacts of the
wind tunnel walls, although kept to a minimum, can also play a role in the inflow angle. The infinite span
wing assumption, while commonly accepted, does also need to be carefully checked to exclude the
possibility of large spanwise differences throughout the experimental data. The hotwire is also located
on a long metal sting, which will inevitably introduce noise into the measurement data. To extract the
turbulence intensity from this data it is, therefore, band-pass filtered between 2 and 5000𝐻𝑧 to remove
both the mechanical vibrations of the supporting arm and the high-frequency spectrum traced to the
inherent characteristics of the HWA bridge (Rius-Vidales & Kotsonis, 2022). Spectral analysis of the
boundary layer in Rius-Vidales and Kotsonis (2022) is still performed on the unfiltered measurements,
which has to be kept in mind when comparing experimental and numerical data. With this knowledge
of the potential experimental error sources and mitigation strategies, a numerical methodology can be
introduced. The different coordinate systems introduced in this section need to be kept track of, and
care needs to be taken when transferring experimental data to the numerical framework. Often different
coordinate and reference systems are used in both research fields, and data might be represented as
dimensional or non-dimensional depending on the circumstances.



3
Governing Equations

Multiple tools are used to efficiently set up the numerical flow field. These tools are all based on
fundamental fluid dynamics equations, with some accompanied by a set of assumptions to simplify
implementation. This section will outline the Navier-Stokes equations the DNS solver is based on,
as well as the different equations used by stability tools. The latter allows for a less computationally
expensive assessment of the flow field.

3.1. Navier-Stokes Equations
The Navier-Stokes equations are the basis of fluid dynamics. Describing the behaviour of fluid flows,
they consist of a set of three time-dependent partial differential equations expressing the fluid momen-
tum conservation in each of the three dimensions. To fully characterise the flow field, the continuity
equation for mass conservation is also required, along with the conservation of energy equation (An-
derson, 2016). Although no general solution has been constructed for these equations, these can be
solved in iterative ways. Because this is very computationally expensive, a simplified version of the
Navier-Stokes equations can be used for the purpose of this work. As this concerns low-speed aerody-
namics, compressibility and temperature effects can be neglected. The three momentum conservation
equations can be simplified for incompressible flow. Neglecting the conservation of energy equation
through the assumption of constant temperature turns the Navier-Stokes equations into Equation 3.1.

𝜌𝜕𝑞𝜕𝑡 = −𝜌(𝑞 ⋅ ∇)𝑞 − ∇𝑝 + 𝜇∇
2𝑞 (3.1a)

∇ ⋅ 𝑞 = 0 (3.1b)

Here 𝑞 is the velocity vector [𝑢, 𝑣, 𝑤], in 𝑥-, 𝑦-, and 𝑧-direction, respectively. 𝜇 represents the dynamic
viscosity, 𝑡 indicates the time and 𝑝 the static pressure (Pope, 2000). DNS uses these equations
to solve the crossflow solution inside the numerical domain. Because it describes the behaviour of
incompressible viscous flow precisely, it is the ideal choice for experimental replication.

3.2. Linear Stability Theory
Throughout the first stage of transition, infinitesimally small disturbances show linear behaviour. Using
incompressible local stability equations (ILST), the growth rate at this initial perturbation stage can be
estimated. Derivation of the ILST equations starts with Navier-Stokes for incompressible flows given by
Equation 3.1. The velocity vector can be split up into a steady baseflow component �̄� and a perturbation
component 𝑞′. Pressure terms can be decomposed in the same way. Then replacing the velocity
vector with the three individual momentum equations results in a set of four equations, representing
the extended Navier-Stokes equations. Subtracting the steady components from the equations, based
on the assumption that these form a stand-alone solution when the flow is time-invariant, results in the
perturbation equations. In this set, given by Equation 3.2, only the perturbation terms 𝑢′, 𝑣′, 𝑤′, and 𝑝′
are left.
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𝜕𝑢′
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(3.2d)

This set of perturbation equations is the basis for all stability tools discussed in this chapter, including
the linear and nonlinear parabolized stability equations derived later in this section. To arrive at the ILST
equations, the following Fourier-ansatz is required,

𝑞′𝐿𝑆𝑇 = �̂�(𝑦)e𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐.𝑐, (3.3)

where �̃�(𝑦) is the eigenfunction velocity vector, 𝛼 the streamwisewavenumber, 𝛽 the spanwise wavenum-
ber, and 𝜔 the angular frequency (Westerbeek, 2020). Introducing this equation into the perturbation
equations and assuming only small perturbations are present, allows for the linearisation of the equa-
tions. This entails disregarding terms with multiple disturbances multiplied, improving computational
cost and time. Removal does come with the cost of losing flow information as transition is ultimately trig-
gered by nonlinear disturbances. Other processes such as vortex breakdown are also not simulated
because of this assumption. The ILST equations can be further simplified by assuming inhomoge-
neous disturbances in only one direction. Combine this with the parallel flow assumptions, and a one-
dimensional set of equations remain, with the flow only being variable in the y-direction. In Cartesian
coordinates, ILST consists of the following four equations,

𝑖𝛽�̃� + �̃�𝑦 + 𝑖𝛼�̃� = 0 (3.4)

𝑖𝛽�̃��̄� + �̃��̄�𝑦 + 𝑖𝛼�̃��̄� − 𝑖𝜔�̃� = −𝑖𝛼�̃� +
�̃�𝑦𝑦
𝑅𝑒 −

𝛽2�̃�
𝑅𝑒 − 𝛼

2�̃�
𝑅𝑒 (3.5)

𝑖𝛽�̃��̄� + 𝑖𝛼�̃��̄� − 𝑖𝜔�̃� = −�̃�𝑦 +
�̃�𝑦𝑦
𝑅𝑒 −

𝛽2�̃�
𝑅𝑒 −

𝛼2�̃�
𝑅𝑒 (3.6)

�̃��̄�𝑦 + 𝑖𝛽�̃��̄� + 𝑖𝛼�̃��̄� − 𝑖𝜔�̃� = −𝑖𝛽�̃� +
�̃�𝑦𝑦
𝑅𝑒 −

𝛽2�̃�
𝑅𝑒 − 𝛼

2�̃�
𝑅𝑒 (3.7)

This set of eigenvalue problems needs to be solved to find the eigenvalue 𝛼, and the eigenfunc-
tions �̂�, �̂�, �̂�, and �̂�. A range of solutions is possible for these equations, and thus filtering is required
to find the required solution set. The possible solutions can be divided into two different groups, the
discrete and continuous spectra. Solutions to the discrete spectrum induce a disturbance inside the
boundary layer, which is damped exponentially outside of the boundary layer. Continuous solutions
produce oscillatory eigenfunctions in the free-stream, which get damped out quickly inside the bound-
ary layer (Jacobs & Durbin, 1998). From which spectrum the filtered solution is chosen thus depends
on the desired use case. For generating boundary conditions in the free-stream region, continuous
eigenfunctions are required. In the case of free-stream turbulence, a large number of these continu-
ous eigenfunctions are superimposed, generating a randomised oscillatory behaviour. To initialise a
boundary layer through a boundary condition, discrete eigenfunctions are required, leaving the free-
stream untouched. Similar to transition estimation, the discrete spectrum of the eigenvalue problem is
desired.



3.3. Linear Parabolized Stability Equations 17

3.2.1. Orr-Sommerfeld Equation
TheOrr-Sommerfeld equation is essentially a form of the ILST equations, written differently. Discovered
byWilliamMcFadden Orr and Arnold Sommerfeld, it also describes linear disturbance modes in parallel
flow (Eckert, 2010). Having become common knowledge in hydrodynamic stability theory, it is more
often referenced than the ILST form. No further assumptions are required to switch between the ILST
and Orr-Sommerfeld forms. The partial differential form of the Orr-Sommerfeld equation looks like,

[(𝑖𝜔 − 𝑖𝛼𝑈 − 𝑖𝛽𝑊)( 𝜕
2

𝜕𝑦2 − 𝛼
2 − 𝛽2) + 𝛼𝑖𝑑

2𝑈
𝑑𝑦2 + 𝛽𝑖

𝑑2𝑊
𝑑𝑦2 + 𝑣 (

𝜕2
𝜕𝑦2 − 𝛼

2 − 𝛽2)
2

] �̂� = 0 (3.8)

The eigenvalue problem can be solved to find the eigenfunction 𝑣 and the eigenvalue 𝛼 when 𝛽 and
the inflow velocity components 𝑈 and 𝑊 are known. In the numerical study of transition from laminar
to turbulent flow over swept wings, ILST or Orr-Sommerfeld can be used in the early stages of the
transition process. Allowing the generation of inflow boundary conditions for the fluid domain, it also
acts as an initial predictor of disturbance growth. Though flow quickly tends to become non-parallel
and more accurate techniques will be required there. Next to disturbance growth, the Orr-Sommerfeld
equation is also the bases of the 𝑒𝑁 transition prediction method. This method uses an ILST-based
approach to allow for relatively accurate prediction of the transition location (Van Ingen, 2008).

3.3. Linear Parabolized Stability Equations
Linear Parabolized Stability Equations, also called PSE or LPSE, is a more detailed version of ILST.
The major change is dropping the parallel flow assumption, implying the boundary layer shape is now
dependent on the position along the wall, next to the wall-normal y-coordinate. This x-coordinate de-
pendency is introduced through the Fourier-ansatz equation given by Equation 3.9, where the shape
function 𝑞 now becomes dependent on both x and y. 𝛼 is integrated over the streamwise distance
travelled, to provide additional information on upstream disturbance growth.

𝑞′(𝑥, 𝑦, 𝑧, 𝑡) = �̂�(𝑥, 𝑦)𝑒𝑖(∫
𝑥
𝑥0 𝛼(𝑥)𝑑𝑥+𝛽𝑧−𝜔𝑡) (3.9)

In Equation 3.9, 𝑞 is only allowed to vary slowly and is called the shape function. The exponential
term is referred to as the wave function, which is allowed to vary rapidly when required. This equation
can be introduced into the perturbation equations derived before in section 3.2 and given by Equa-
tion 3.2, therefore its derivatives need to be calculated first. The shape function can be expanded
through the chain rule for each of its components. An example expansion is given for the chordwise
component �̂�,

𝜕�̂�
𝜕𝑥 =

𝜕𝜉
𝜕𝑥
𝜕�̂�
𝜕𝜉 =

1
𝑅𝑒
𝜕�̂�
𝜕𝜉 . (3.10)

Using this expansion to obtain the first-order derivative of the Fourier-ansatz becomes,

𝜕𝑢′
𝜕𝑥 = ( 1𝑅𝑒

𝜕�̂�
𝜕𝜉 + 𝑖𝛼�̂�) 𝑒

𝑖(∫�̂��̃�0 𝛼(𝑥)𝜕𝑥+𝛽𝑧−𝜔𝑡), (3.11)

where the second-order derivative results in

𝜕2𝑢′
𝜕𝑥2 = (

1
Re2

𝜕2�̂�
𝜕𝜉2 +

𝑖2𝛼
Re

𝜕�̂�
𝜕𝜉 +

𝑖�̂�
Re
𝜕𝛼
𝜕𝜉 − 𝛼

2�̂�) 𝑒𝑖(∫
�̃�
�̃�0 𝛼(𝑥)𝜕𝑥+𝛽𝑧−𝜔𝑡). (3.12)

To make the equations parabolic, the elliptic term 1
𝑅𝑒2

𝜕2�̂�
𝜕𝜉2 in the second-order derivative is removed as

it is negligible in magnitude compared to the remaining terms. Introducing these derivatives into the
perturbation equations results in the following set of linear partial differential equations as derived by
Westerbeek (2020),

𝑖𝛼�̂� + 𝜕�̂�𝜕𝑥 +
𝜕�̂�
𝜕𝑦 + 𝑖𝛽�̂� = 0, (3.13a)
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−𝑖𝜔�̂� + 𝑈𝑖𝛼�̂� + 𝑈𝜕�̂�𝜕𝑥 + �̂�
𝜕𝑈
𝜕𝑥 + 𝑉

𝑑�̂�
𝑑𝑦+�̂�

𝜕𝑈
𝜕𝑦 + 𝑖𝛽𝑊�̂� +

𝑖𝛼
𝜌 �̂� +

1
𝜌
𝜕�̂�
𝜕𝑥

− 𝑣 [𝑖2𝛼𝜕�̂�𝜕𝑥 + 𝑖�̂�
𝜕𝛼
𝜕𝑥 +

𝜕2�̂�
𝜕𝑦2 − (𝛼

2 + 𝛽2) �̂�] = 0,
(3.13b)

−𝑖𝜔�̂� + 𝑈𝑖𝛼�̂� + 𝑈𝜕�̂�𝜕𝑥 + 𝑢
′ 𝜕𝑉
𝜕𝑥 + 𝑉

𝜕�̂�
𝜕𝑦+�̂�

𝜕𝑉
𝜕𝑦 + 𝑖𝛽𝑊�̂� +

1
𝜌
𝜕�̂�
𝜕𝑦

− 𝑣 [𝑖2𝛼𝜕�̂�𝜕𝑥 + 𝑖�̂�
𝜕𝛼
𝜕𝑥 +

𝜕2�̂�
𝜕𝑦2 − (𝛼

2 + 𝛽2) �̂�] = 0,
(3.13c)

−𝑖𝜔�̂� + 𝑈𝑖𝛼�̂� + 𝑈𝜕�̂�𝜕𝑥 + 𝑢
′ 𝜕𝑊
𝜕𝑥 + 𝑉

𝜕�̂�
𝜕𝑦 +�̂�

𝜕𝑊
𝜕𝑦 + 𝑖𝛽𝑊�̂� + 𝑖𝛽𝜌 �̂�

− 𝑣 [𝑖2𝛼𝜕�̂�𝜕𝑥 + 𝑖�̂�
𝜕𝛼
𝜕𝑥 +

𝜕2�̂�
𝜕𝑦2 − (𝛼

2 + 𝛽2) �̂�] = 0
(3.13d)

As mentioned before, the shape function 𝑞 and wavenumber 𝛼 are both allowed to vary in x. To
limit the degrees of freedom in the system, an additional equation is thus required. The most desirable
way to achieve this reduction in degrees of freedom is to make the wave function deal with most of
the streamwise disturbances because the shape function needs to remain slowly varying compared to
the wave function. This constraint on the shape function can be achieved through the normalisation
condition given by,

∫ ̂𝑞∗ 𝜕�̂�𝜕𝑥𝑑𝑦 = 0 (3.14)

where the asterisk of the shape function indicates the complex conjugate. The normalization condition
restricts q to mere shape changes and thus reduces the degrees of freedom as desired mathematically
(Haynes & Reed, 2000).

With parallel flow no longer assumed, the flow field used becomes two-dimensional. This step
improves accuracy compared to ILST, but also drastically increases computational cost. Though by
disregarding the non-linearities in the flow, total cost still remains at only a fraction of CFD methods
such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS). Aerodynamicists use this
technique to estimate disturbance growth in the linear stages of the transition process. Up to the point
where the first non-linearities appear, this technique remains an accurate representation of the real
world and can be trusted to depict correct disturbance growth. However, care has to be taken because
the laminar to turbulent transition process is dominated by non-linearities. In numerical work, PSE
can be used to estimate disturbance growth in the linear region of transition, when initial disturbances
are still small. Either to help generate boundary conditions or to estimate the start of the non-linear
disturbance region. Back-up with higher fidelity methods is desired to ensure the validity of the PSE
application, and the boundaries within which it is used. In experimental work, where the measurements
are taken discretely in space, this technique can also be used to estimate the upstream disturbance
amplitudes within the linear region.

3.4. Nonlinear Parabolized Stability Equations
Nonlinear Parabolized Stability Equations are related to the previously discussed LPSE, but include
nonlinearities in the flow field as well. Not disregarding the nonlinear terms allows for a better ap-
proximation of the disturbance growth beyond what LPSE is capable of. Although not able to simulate
transition itself, nonlinear disturbance growth up to the transition point does get predicted accurately.
Derivation of the NPSE starts again with the perturbation equations from section 3.2, given by Equa-
tion 3.2. Not neglecting the nonlinear terms, all multiplications of different perturbations are moved to
the right side. As with LPSE, the derivation is based on a Fourier-ansatz. This time a slightly different
form, written as,

𝑞′(𝑥, 𝑦, 𝑧, 𝑡) =
𝑀

∑
𝑚=−𝑀

𝑁

∑
𝑛=−𝑁

�̂�𝑚,𝑛(𝑥, 𝑦)𝑒𝑖(∫
𝑥𝑒
𝑥0 𝛼(𝑥)𝑚,𝑛𝑑𝑥+𝛽𝑚𝑧−𝜔𝑛𝑡). (3.15)

Although similar to the LPSE version, NPSE uses a double summation in the equation to account for
a range of 𝛽 wavenumbers and 𝜔 frequencies. Where ILST and PSE only introduced one disturbance



3.4. Nonlinear Parabolized Stability Equations 19

mode, multiple modes have to be introduced to obtain non-linear interaction. Because of the need
for a complex conjugate, the summation inside the Fourier-ansatz includes the negative side of the
summation as well, running from negative infinity to positive infinity for both inputs (Haynes & Reed,
2000). Practice will mandate the infinity values to be capped at a fixed but large number. The same
assumptions discussed with LPSE hold for these equations, assuming the shape function 𝑞 to vary
slowly, while the exponential term allows rapid changes when required. Expanding the shape function
and taking the derivatives of the Fourier-ansatz, similar to the derivation for LPSE, allows the introduc-
tion of these derivatives into the nonlinear set of equations. This yields the set of equations referred to
as NPSE,

𝑖𝛼�̂� + 𝜕�̂�𝜕𝑥 +
𝜕�̂�
𝜕𝑦 + 𝑖𝛽�̂� = 0, (3.16a)

−𝑖𝜔�̂� + 𝑈𝑖𝛼�̂�+𝑈𝜕�̂�𝜕𝑥 + �̂�
𝜕𝑈
𝜕𝑥 + 𝑉

𝑑�̂�
𝑑𝑦 + �̂�

𝜕𝑈
𝜕𝑦 + 𝑖𝛽𝑊�̂� +

𝑖𝛼
𝜌 �̂� +

1
𝜌
𝜕�̂�
𝜕𝑥

− 𝑣 [𝑖2𝛼𝜕�̂�𝜕𝑥 + 𝑖�̂�
𝜕𝛼
𝜕𝑥 +

𝜕2�̂�
𝜕𝑦2 − (𝛼

2 + 𝛽2) �̂�] = −𝑖𝛼�̂�2 − �̂�𝜕�̂�𝜕𝑥 − �̂�
𝜕�̂�
𝜕𝑦 − 𝑖𝛽�̂��̂�,

(3.16b)

−𝑖𝜔�̂� + 𝑈𝑖𝛼�̂�+𝑈𝜕�̂�𝜕𝑥 + 𝑢
′ 𝜕𝑉
𝜕𝑥 + 𝑉

𝜕�̂�
𝜕𝑦 + �̂�

𝜕𝑉
𝜕𝑦 + 𝑖𝛽𝑊�̂� +

1
𝜌
𝜕�̂�
𝜕𝑦

− 𝑣 [𝑖2𝛼𝜕�̂�𝜕𝑥 + 𝑖�̂�
𝜕𝛼
𝜕𝑥 +

𝜕2�̂�
𝜕𝑦2 − (𝛼

2 + 𝛽2) �̂�] = −𝑖𝛼�̂��̂� − �̂�𝜕�̂�𝜕𝑥 − �̂�
𝜕�̂�
𝜕𝑦 − 𝑖𝛽�̂��̂�,

(3.16c)

−𝑖𝜔�̂� + 𝑈𝑖𝛼�̂�+𝑈𝜕�̂�𝜕𝑥 + 𝑢
′ 𝜕𝑊
𝜕𝑥 + �̂�

𝜕𝑊
𝜕𝑦 + 𝑉𝜕�̂�𝜕𝑦 + 𝑖𝛽𝑊�̂� +

𝑖𝛽
𝜌 �̂�

− 𝑣 [𝑖2𝛼𝜕�̂�𝜕𝑥 + 𝑖�̂�
𝜕𝛼
𝜕𝑥 +

𝜕2
𝜕𝑦2 �̂� − (𝛼

2 + 𝛽2) �̂�] = −𝑖𝛼�̂��̂� − �̂�𝜕�̂�𝜕𝑥 − �̂�
𝜕�̂�
𝜕𝑦 − 𝑖𝛽�̂��̂�

2,
(3.16d)

As with PSE, too many degrees of freedom are present in these equations, and one thus needs to be
limited. By again using the normalisation equation used in Equation 3.14, the shape function growth
can be limited to purely shape changes again (Westerbeek, 2020).

In work such as Casacuberta, Hickel, et al. (2022) and Casacuberta, Groot, et al. (2022), NPSE
has been shown to accurately match DNS until close to the transition region. The accuracy of the
disturbance growth prediction, compared with the computational cost that is orders of magnitude below
DNS, indicates this is a valuable method in numerical research. Not only as a cheaper alternative to
DNS but also as a standalone tool in numerical work. Prediction of disturbance amplitudes up and
downstream of a discrete measurement point can give additional insight needed to draw conclusions.
In numerical research where experimental results are used as an input, this is certainly beneficial, as
being able to estimate upstream conditions helps set up boundary conditions. If necessary, this two-
dimensional technique can also be expanded to generate a three-dimensional flow field, based on the
Fourier-ansatz expansion of the results.





4
Methodology

To allow accurate replication of the experimental data set, the numerical setup needs to reflect the
wind tunnel conditions as much as possible. In three steps, this work will attempt to numerically match
the experimental data available. By first numerically reconstructing the baseflow, which is the steady-
state solution to the Navier-Stokes equations, a solid foundation is built. The addition of stationary
crossflow disturbances results in a steady DNS flow field, which can be directly validated with the
available experimental hotwire data. Once the steady flow field is represented accurately, secondary
disturbances are introduced to trigger laminar-to-turbulent transition. The detailed numerical setup to
perform these steps, and how this is implemented in DNS, is discussed in this chapter.

4.1. Computational Domain
The numerical domain needs to model the flow over the 45°swept wing used during the experiment of
Rius-Vidales and Kotsonis (2022). The resources to model the full wind tunnel are simply not available,
and with computational cost in mind, the domain size is kept to a strict minimum. For this purpose, a
box-shaped domain on the pressure side of the wing is used, aligned perpendicular to the airfoil leading
edge. The numerical domain shape and size are visualised in Figure 4.1. All sides of the domain are
flat, implying the airfoil surface is modelled as a flat plate. Curvature is emulated through prescribed
pressure gradients instead. Spanning from 5% chord to 45% chord, the domain captures the majority
of crossflow wave growth and the expected transition region. The domain width is limited to 8𝑚𝑚, the
exact spanwise fundamental wavelength to ensure the correct harmonics are introduced. The domain
height needs to be kept to a minimum, without influencing the boundary layer development. This results
in a domain with the dimensions of 0 ≤ 𝑥/𝛿0 ≤ 514.32 in chordwise direction, 0 ≤ 𝑦/𝛿0 ≤ 25.93 in
wall-normal direction, and −4.76 ≤ 𝑧/𝛿0 ≤ 4.76 in spanwise direction. The coordinate system used is
aligned with the airfoil leading edge, where x = [𝑥, 𝑦, 𝑧]𝑇 corresponds to the chordwise, wall-normal and
spanwise directions, respectively.

Figure 4.1: Visualisation of the numerical domain. Reprinted from Casacuberta, Hickel, et al. (2022).
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4.1.1. Boundary Conditions
The simple geometry of the numerical domain requires a number of boundary conditions before it
resembles the experimental flow field over the airfoil surface. To facilitate suitable boundary conditions
on all sides, three layers of ghost cells are added around the domain. Emulating the curvature of the
airfoil on the flat plate is achieved through an external pressure gradient prescribed at the top boundary
of the domain. The pressure data used is acquired from the experiment performed by Rius-Vidales
and Kotsonis (2022). Imposing the pressure distribution on the top boundary instead of the flat plate
itself is allowed based on the Prandtl boundary layer equations for incompressible flow. Outlined in
section 1.1, these equations showed that 𝜕𝑝/𝜕𝑦 = 0 in this case. The top boundary of the domain
additionally damps any velocity and pressure fluctuations at that boundary through a decay function
𝑢′(𝑦) ∝ 𝑒−𝛼𝑦 applied to the ghost cells (Hickel & Adams, 2008). Prescribing the pressure gradient on
the top boundary removes the need for complex boundary conditions at the flat-plate wall, where only
the no-slip boundary condition 𝑞 = 0 is applied, with 𝑞 = [𝑢, 𝑣, 𝑤]𝑇. The spanwise boundary conditions
are periodic, to adhere to the infinite wing assumption. Periodicity also introduces harmonics of the
spanwise fundamental wavenumber into the domain. The outflow boundary must meet the constant
total pressure condition, as well as 𝜕𝑝/𝜕𝑥 = 0 and 𝜕2𝑞/𝜕𝑥2 = 0. The inflow boundary is where
the crossflow disturbances will be prescribed, which is the topic of the following sections on baseflow,
primary and secondary instabilities. These will include the free-stream velocity components and several
disturbance modes. To prescribe the experimental velocity distribution in the numerical domain, a
fourth-order polylogarithmic function is used which is curve-fitted to the experimental measurement
data. Details on this function are given in section 4.2.

4.1.2. Mesh
To study the mechanisms behind laminar-to-turbulent transition, adequate grid points throughout the
boundary layer are necessary to resolve all relevant flow structures. To obtain this, a 𝑦+ value of below
one is desired at the wall, retaining the same wall-normal grid spacing across the boundary layer. The
resulting grid consists of 340,733,952 rectangular cells, 4108 x 576 x 144 in chordwise, wall-normal,
and spanwise directions, respectively. To capture all structures in the boundary layer, half of the total
grid points in wall-normal direction are equally spaced within the initial boundary layer height. The
remaining points in this direction are hyperbolically spaced between the boundary layer and the top
domain boundary. The result is a 𝑦+ equal to 0.58, adequately below the required value of 1. An
example of this grid spacing is shown in Figure 4.2. Grid points in chordwise and spanwise directions
are all equally spaced, with a grid spacing in wall units of 𝑥+ = 5.28 and 𝑧+ = 2.79. The large refinement
in 𝑧-direction is required to capture the spanwise features that drive the transition mechanisms in the
experimental case. Similar refinement in x- and z-direction is also desired to keep the cell aspect ratios
low. Since the flow moves at an angle of only slightly larger than 45 °to the domain, flow velocity is
expected to be relatively similar in both directions throughout the domain. Very different refinements in
both directions could lead to numerical errors introduced into the flow field. Coarser grids with fewer
cells are used for testing the DNS setup. By first converging the solution to grids with respectively
1/16𝑡ℎ and 1/4𝑡ℎ the amount of cells, also allows initialisation and faster convergence of the fully
refined domain. More refined grids are obtained by splitting the cells in each direction in two.

Figure 4.2: 2D 𝑥-𝑦 slice of the numerical mesh, coarsened for clarity by plotting every 16th grid point in 𝑥- and 𝑦-direction.
Cropped in 𝑥-direction for comprehensibility, as the 𝑥-spacing remains identical.
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4.2. Baseflow
Developing baseflow boundary conditions is the first step towards replicating the experimental flow field.
An accurate match is essential at this point, to create a stable platform to add disturbances and ensure
interactions between the introduced disturbances and the baseflow happen correctly. To achieve this
match, experimental measurements are processed to serve as numerical input. The exact free-stream
velocity magnitude in the experimental test section is first determined. Usually, this is calculated by
subtracting the static pressure at the end of the wind tunnel contraction region from the total pressure
between the turbulence grids in the settling chamber. From this pressure differential, the reference
dynamic pressure (𝑝𝑞) in the test section is determined based on an empty test-section calibration
curve, resulting in the test section velocity 𝑈∞ = √2𝑝𝑞/𝜌 (Rius Vidales, 2022). However, the blockage
ratio of the wind tunnel model is 10%. With blockage ratios of 5% already known to result in meaningful
blockage effects, this ratio of 10% is expected to noticeably impact the velocity measurements (Takeda
& Kato, 1992). Therefore, a pitot tube in the test section is used to account for this effect. Deemed
far enough upstream of the model to not be impacted by its presence, it gives a more representative
reading of the test section velocity magnitude. With this information known, the local external velocity
distribution over the airfoil can be determined using the available experimental pressure tap data.

4.2.1. External Velocity Magnitude
Two rows of pressure taps are available along the chord, as indicated in Figure 2.2. These two rows are
processed individually at first, to avoid loss of information due to averaging. Additionally, processing
both rows separately allows the evaluation of the infinite wing assumption. After processing, an external
velocity profile is available for both rows, which can then be averaged before implementation in the
numerical setup. To obtain both velocity profiles, the first step is to determine the pressure coefficient
through

𝑐𝑝 =
𝑝𝑠𝑤𝑖𝑛𝑔 − 𝑝𝑠𝑝𝑖𝑡𝑜𝑡

𝑝𝑞
, (4.1)

where the static (𝑝𝑠) and dynamic (𝑝𝑞) pressure of the pitot tube in the test section is used as input.
The test section pitot data is deemed the closest representation of the actual test section conditions,
because the calibration curve shows slight deviation from the expected results, most likely due to the
blockage effects not being taken into account. Combined with the static pressure measurement on
the wing surface, the pressure coefficient curves can now be obtained. Under the assumption of both
incompressible and inviscid flow, the Bernoulli equation can then be combined with the pressure coef-
ficient to result in an equation for the external flow velocity magnitude 𝑈𝑒,

𝑈𝑒 = √1 − 𝑐𝑝 ⋅ 𝑈∞, (4.2)

where 𝑈∞ is the free-stream velocity magnitude determined earlier. The incompressible flow assump-
tion is an accurate depiction of the flow state here, as the velocity magnitude is approximately 24m/s
or Mach 0.07, well below the limit for incompressible flows of Mach 0.3. The inviscid flow assumption
allows more room for errors, as it does not take into account any viscous effects inside the boundary
layer, which might affect the wall-normal pressure gradient. However, from the Prandtl boundary layer
equations, it can be considered a valid assumption in a flow with these characteristics and the impact
is deemed to be small enough to neglect at this stage. An external velocity magnitude curve (𝑈𝑒) can
therefore be established for each of the two pressure tap rows. The curves for both rows should match
very closely based on the infinite swept wing assumption, and an average of both will be used in the
remainder of this work. Keep in mind that this 𝑈𝑒 is the external velocity magnitude, and will need to be
decomposed into leading-edge normal and tangential components before it can be used as an input to
DNS.

4.2.2. External Velocity Decomposition
Pitot tubes and pressure taps only allow the extraction of velocity magnitudes, which is inadequate as
input for three-dimensional numerical simulations. Decomposition into leading-edge normal and tan-
gential components is required and achieved based on the assumption of spanwise invariant flow, and
the assumption that the leading-edge-normal velocity at the attachment line location is zero. Spanwise
invariant flow implies negligible external pressure gradients and flow acceleration in the z-direction,
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resulting in a constant free-stream spanwise velocity over the entire wing (Bippes, 1999; Wassermann
& Kloker, 2002). This suggests the spanwise velocity only needs to be determined at one point, to
know its magnitude at all points along the chord. Assuming the leading-edge-normal velocity at the at-
tachment line location is zero means that only the spanwise velocity component is present at this point,
so 𝑤𝑒 = 𝑈𝑒. When this velocity magnitude at the attachment line can be extracted, it would therefore
allow for velocity decomposition along the entire chord. With the spanwise velocity known, therefore,
the leading-edge normal components can simply be extracted as 𝑢𝑒 = √𝑈2𝑒 −𝑤2𝑒 .

Without a pressure tap at the exact attachment line location, 𝑤𝑒 can not be directly extracted from
the measurement data. Instead, data from the pressure taps on the pressure and suction side of
the leading edge have to be used. Interpolation of the experimentally measured 𝑈𝑒 around the leading
edge is not straightforward, as swept wings have an attachment line rather than a stagnation point. This
implies 𝑈𝑒 does not go to zero at any point around the leading edge. Therefore, 𝑤𝑒 is determined in two
steps. First, the attachment line location is determined. Through spline interpolation of all available 𝑈𝑒
measurement points, the location of minimum 𝑈𝑒 is found, as indicated in Figure 4.3. Located at 𝑥/𝑐𝑥 =
0.0037, this point is noted as the location of the attachment line. However, this type of interpolation is not
deemed accurate enough to extract the velocity magnitude, since this point of minimum 𝑈𝑒 lies below
the lowest measurement point. Instead, a second interpolation procedure based on the attachment
line location is performed. To extract 𝑤𝑒 through a more accurate interpolation, the 𝑈𝑒 distribution is
adapted. 𝑈𝑒 on the suction side of the wing are multiplied by −1, to generate a curve that crosses the x-
axis. Because𝑈𝑒 is not supposed to reach zero at any point around the wing, this leads to a discontinuity
around the attachment line location, as shown by the green dash-dotted line in Figure 4.4a. When
decomposing 𝑈𝑒 into 𝑢𝑒 and 𝑤𝑒, two continuous curves should result. A constant-value 𝑤𝑒-component
and a continuous 𝑢𝑒-component crossing the x-axis at the attachment line location (𝑥/𝑐𝑥 = 0.0037).
Since both components are unknown at this stage, the initial estimate for 𝑤𝑒 obtained from Figure 4.3
is used. 𝑢𝑒 resulting from decomposition should show a continuous curve, crossing the x-axis at the
attachment line location. If this is not the case, the initial 𝑤𝑒 estimate is deemed inaccurate and a new
𝑤𝑒 estimate is obtained by subtracting or adding 0.01m/s to perform the decomposition again. This
iterative procedure is repeated until the leading-edge-normal velocity curve (black line in Figure 4.4b)
crosses zero at the attachment line location as a continuous curve.

Figure 4.3: Spline interpolation of the discrete 𝑈𝑒-values to find the attachment line location, indicated by the red dashed line.

(a) (b)

Figure 4.4: (a) Streamwise velocity magnitude 𝑈𝑒 (-.), indicating the discontinuïty around the leading edge. Red dashed vertical
line indicates the attachment line location. (b)𝑈𝑒 decomposed into spanwise velocity𝑤𝑒 (–) and chordwise velocity 𝑢𝑒 (–) around
the wing model. Black dashed vertical line indicates the numerical inflow boundary.
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With 𝑤𝑒 known, the inflow angle and 𝑢𝑒 along the chord are known as well. To improve the match
with the experiment further, the last step makes use of the HWA data planes. Far from the wall, free-
stream velocity data can be extracted from these HWA planes and compared with the velocity curves
obtained analytically earlier in this section. When the velocity distributions of both data sets do not line
up, the numerical 𝑈𝑒 is scaled until the data sets are aligned as well as possible. The inflow angle
and relative contributions of 𝑢𝑒 and 𝑤𝑒 to 𝑈𝑒 are known from previous calculations and, therefore, can
remain constant throughout this correction process.

4.2.3. Numerical Implementation
The Reynolds number, the free-stream velocity magnitude, and the free-stream velocity components
can directly be used in a numerical context. The free-stream velocity magnitude and velocity compo-
nents are now known, and the Reynolds number was measured during the experiment by Rius-Vidales
and Kotsonis (2022). However, there is one step left before DNS implementation. Experimental mea-
surement locations are expressed in a percentage of the chord, but the flow travels a longer distance
over the airfoil surface. On top of that, numerical data is non-dimensionalized with the initial boundary
layer thickness. To match the experimental data with the numerical domain, the coordinates will thus
have to be transformed and non-dimensionalized. Instead of using a percentage of the chord, the points
are transformed to the airfoil surface and expressed as a distance along the surface to this point. This
distance can directly be used in the flat plate numerical domain and allows the correct implementation
of the data into the DNS solver.

The velocity function derived in the previous section, converted to the numerical coordinate sys-
tem, is used as input for the DNS solver. Represented as a fourth-order polylogarithmic function, it is
prescribed in DNS as

𝑢𝑒/𝑢∞,0 = 0.0057 ln4(𝑥 +𝑐)+0.0661 ln3(𝑥 +𝑐)+0.2575 ln2(𝑥 +𝑐)+0.6508 ln(𝑥 +𝑐)+1.9545, (4.3)

where 𝑐 = 0.0509 and represents the shift in starting point of the boundary layer from the leading
edge to the stagnation point. This velocity distribution is also used as a basis to calculate the pressure
distribution prescribed at the top boundary of the domain. With the numerical baseflow details known,
the inflow boundary layer thickness is calculated at 𝛿0 = 8.41 × 10−4m, and 𝑅𝑒 = 750.7138

4.3. Primary Crossflow Instability
Primary crossflow instability is generated by adding steady disturbances to the converged baseflow.
Steady implies no secondary instabilities are allowed, and thus no breakdown happens at this stage
yet. These primary CFI are prescribed at the inflow boundary of the numerical domain. The primary CFI
can be composed of both travelling and stationary vortices. Due to the strong forcing of the DREs in the
experimental setup, however, the stationary CFI is found dominant in the region of interest. Therefore,
a strong stationary CFI has to be prescribed numerically as well.

4.3.1. Inflow Boundary Condition
The inflow boundary condition required to initiate the primary CFI consists of a set of eigenvalues,
normalised eigenfunctions, and an adequate amplitude for these eigenfunctions. ILST is used to gen-
erate the set of eigenvalues and eigenfunctions. As described in section 3.2, the technique solves the
eigenvalue problem to find 𝛼 and the eigenfunction vector. In eqs. (3.4) to (3.7), the baseflow velocities
and pressure are known from the baseflow DNS computation, and 𝜔 is set to zero since the primary
crossflow is time-invariant. The spanwise fundamental wavenumber can be derived from the respec-
tive wavelength, known to be 8mm, resulting in a value of 785.40𝑚−1 for 𝛽. Non-dimensionalized for
numerical use, 𝛽 becomes 0.6604. The result of the eigenvalue problems is a long list of eigenvalue
and eigenfunction sets. These are either part of the discrete or continuous eigenvalue spectrum. They
can be distinguished based on their characteristics. Eigenfunctions of the discrete spectrum show
disturbances inside the boundary layer, but get damped out exponentially in the free-stream flow. The
continuous spectrum eigenfunctions show oscillating behaviour in the free-stream flow and are damped
out rapidly inside the boundary layer. Both spectra, therefore, affect different areas of the flow field.
The eigenvalue required for primary crossflow is part of the discrete eigenvalue spectrum, as it needs to
impose a disturbance directly on the boundary layer. Choosing the correct eigenvalue and eigenfunc-
tion combination within this discrete spectrum is done through filtering. This filtering procedure is based
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on the desired exponential decay of the disturbance in the free-stream flow. Using the real component
of the eigenvalue 𝛼, the spanwise wavenumber 𝛽, and the eigenfunction, the following expression is
evaluated,

𝜙 = 𝑒−𝑖√𝛼2𝑟+𝛽2𝑦 , (4.4)

where 𝜙 is the eigenfunction, 𝛼 the real component of the eigenvalue, 𝛽 the spanwise wavenumber,
and y the wall-normal coordinate. Through exponential fitting, the combined set of eigenvalue and
eigenfunction that fits this expression the best is extracted. This set creates the boundary condition
required to introduce the primary disturbance mode. The resulting set of eigenfunctions (𝑢,𝑣,𝑤,𝑝) and
constants (𝛼,𝛽,𝜔) in 𝑦𝑡-direction can be expanded in 𝑧-direction to obtain a two-dimensional vector field
prescribed at the domain inflow. This expansion is performed mathematically using,

𝑞′ = 𝐴 ⋅ �̂� ⋅ ei(𝛼𝑥+𝛽𝑧−𝜔𝑡), (4.5)

where 𝑞′ is the disturbance velocity vector prescribed as the inflow boundary condition in DNS, 𝐴 is the
prescribed disturbance amplitude, �̂� is the eigenfunction vector, and the exponential terms include the
constants 𝛼, 𝛽, and 𝜔 determined before. The 𝜔-term is zero and can be neglected at this stage since
the primary CFI is time-invariant. Even though 𝑥 = 0 at the domain inflow boundary, the 𝛼 component
can not be neglected. Since the numerical domain makes use of ghost cells around the domain to
prescribe boundary conditions (see Hickel and Adams (2008)), the primary CFI travel through three
layers of grid cells before entering the simulation domain. Therefore, the primary CFI travel a finite
distance in 𝑥-direction where 𝛼 alters the disturbance shape before it reaches the inflow at 𝑥 = 0. The
simplified Fourier-ansatz that results only has one unknown left, which is the amplitude assigned to the
disturbances. Based on the experiment, CFI amplitudes can be extracted from the HWA data available
at eight chordwise locations. In the numerical domain, the inflow boundary where the amplitude must
be prescribed is far upstream of these planes, complicating the process. A numerical optimisation
will thus be required to find the appropriate CFI amplitude value at the inflow plane location. DNS is
far too costly to be feasible, so stability tools are utilised in the form of an NPSE-based optimisation
process. Attempting to find an initial CFI amplitude that results in matching stationary crossflow vortex
amplitudes and growth rates throughout the full domain.

4.3.2. Amplitude Determination
Trial-and-error using DNS, to find an upstream boundary condition that results in the required down-
stream flow field, is much too costly for the current computational capabilities. Instead, different tech-
niques are used to estimate the inflow disturbance amplitude, based on downstream experimental data.
In chapter 3, a number of stability tools were outlined, capable of doing just this. Predicting the growth
of disturbances in different parts of the transition region. Because stability tools only work marching
downstream, an iterative process is worked out to find the amplitude at the inflow plane required to
get the correct flow field downstream. NPSE is the stability tool of choice for this process. Because
of the extensive list of assumptions (i.e. incompressible flow, parallel flow, small disturbances, linear
growth), ILST is too simplified to accurately reproduce the experimental data required, and LPSE also
only works in the linear regime of the flow field. Knowing strong crossflow growth is present in the exper-
iment, it is assumed nonlinear disturbances might already be present at the first available HWA plane
location. NPSE is thus determined to be most suitable for accurate optimisation of the inflow boundary
disturbance amplitude. Based on work performed by Westerbeek (2020), an NPSE simulation is set up
on a grid with 500 equidistantly spaces streamwise points and 80 wall-normal Chebyshev collocation
points, using 11 spanwise Fourier modes throughout the simulation. The streamwise derivatives are
discretized based on a first-order backward Euler discretisation scheme, similar to the setup used by
Casacuberta, Hickel, et al. (2022).

Up to this point, all information to run NPSE is known, except for the disturbance amplitude. This is
convenient since an optimisation loop can be constructed based on only one input variable. The Matlab
𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ function is used for this purpose, based on the Nelder-Mead simplex algorithm (Lagarias
et al., 1998). This direct search method does not make use of derivatives, which means it is ideal for
nonlinear optimisation procedures and arrives at the optimal value rather fast. With the amplitude as
input, it minimises a predefined error. The correct definition of the error magnitude is thus crucial for the
functioning of the optimisation procedure. Using the disturbance amplitude or the distorted baseflow
profiles as shown by Figure 4.5 are two valid options, but to combine the largest amount of information
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into this single error metric, the use of the disturbance profiles is preferred. These are obtained by
taking the spanwise root-mean-square of the time-averaged disturbance, as given by,

⟨�̂�(𝑦)⟩𝑧 = √
1
𝑛

𝑛

∑
𝑗=1
(�̄�(𝑦, 𝑧𝑗) − �̄�𝐷𝐵(𝑦))2, (4.6)

where ⟨�̂�(𝑦)⟩𝑧 is the disturbance profile, �̄�(𝑦, 𝑧) the time-averaged velocity plane, and �̄�𝐷𝐵(𝑦) is the
disturbed baseflow profile (Rius-Vidales & Kotsonis, 2022). As the HWA probe only measures a spe-
cific sum of velocity components 𝑄 = √(𝑢𝑐𝑜𝑠Λ + 𝑤𝑠𝑖𝑛Λ)2 + 𝑣2, the numerical velocity components
have to be processed in the same way. As stated in chapter 3, the two-dimensional NPSE results can
be expanded in three dimensions using the Fourier-ansatz given by Equation 3.15, which allows for
easy extraction of the NPSE data at the location of the HWA planes. Summing the numerical velocity
components to obtain a numerical value for 𝑄, and then calculating the disturbance profile with Equa-
tion 4.6, allows for a direct comparison. The error is then calculated by integrating the area between
the overlapping sections of the curves as shown in Figure 4.5. The hotwire curves are cropped near
the wall to ensure the data used for error estimation is not affected by measurement inaccuracies near
the wall. By subtracting the overlapping sections of the curves and integrating the difference over the
y-axis, a single value that describes the error is obtained. Combining the error values for each of the
eight planes results in the quantification of the overall error, as given by Equation 4.7. This 𝜖 is the
value 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ minimises by varying the inflow amplitude. As initial amplitude, 𝐴0 = 3.5𝑥10−3𝑢∞ is
used, based on DNS research work on very similar flow fields performed by Casacuberta, Hickel, et al.
(2022).

𝜖 = ∫
𝑥
∫
𝑦

(⟨�̂�(𝑥, 𝑦)⟩𝑧,𝐻𝑊𝐴 − ⟨�̂�(𝑥, 𝑦)⟩𝑧,𝑁𝑃𝑆𝐸)
𝑄𝑒(𝑥)

𝑑𝑦𝑑𝑥 (4.7)

Figure 4.5: (a) Disturbed baseflow example profile indicating error between HWA (–) and NPSE (--) data. (b) MFD example
profile comparing HWA (–) and NPSE (--) data.

Matching the stationary crossflow growth with the experimental data is the second crucial step in this
research, and the process described so far can allow for errors to creep into the solution. Keeping in
mind several checks to perform during this optimisation procedure helps prevent errors. Before running
the optimisation code, the NPSE code used is validated through previous work. The NPSE solver used
during this project was developed in-house by Westerbeek (2020), and used throughout projects in
the past. Casacuberta, Hickel, et al. (2022) achieved a close match between NPSE and DNS with
a very similar crossflow setup, using the same in-house solver. With the DNS data of Casacuberta,
Hickel, et al. (2022) available, the correct implementation of the NPSE solver in this new research
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is validated by matching the DNS data again. Having ensured the NPSE solver works correctly, the
optimisation tool can be run, but care has to be taken to avoid local minima in the error. Running several
lower fidelity optimisations from very different initial amplitudes helps confirm the absolute minimum is
being reached. This should result in the conclusion that the initial amplitude set at 𝐴0 = 3.5 × 10−3𝑢∞
does not affect the result, but merely speeds up the optimisation process when it is close to the final
result. To also avoid the disproportional influence of a single hotwire plane on the overall results,
multiple optimisations with different sets of hotwire planes are run to ensure the result remains the
same. Testing different methods to determine the error is a secondary check to ensure the different
error determination methods available do not result in significantly different results, but merely in better
accuracy. Although the disturbance profiles are objectively the most accurate way to compare, it is thus
good to also keep track of the disturbance amplitude and the perturbed baseflow shape. A last check
could well be to directly compare the hotwire plane contours with the NPSE data, as two-dimensional
NPSE data can be made three-dimensional using the Fourier-ansatz approach.

4.4. Free-Stream Turbulence Generation
Implementation of free-stream turbulence into the flow simulation is fundamentally based on the same
principles used in the primary crossflow setup, with an added degree of randomisation. Instead of using
a single mode to initiate the disturbance, free-stream turbulence utilises a sum of randomised modes
to replicate the characteristics of isotropic turbulence. The approach is adapted from works such as
Schlatter (2000) and Brandt et al. (2004), who both used the same principles applied to different types
of flow fields. Through the selection of pseudo-random sets of wavenumbers, complementary sets of
eigenvalues and eigenfunctions will be extracted that serve as inflow conditions for the free-stream
turbulence simulation. Instead of the discrete eigenvalue spectrum, the continuous spectrum is now
used, with eigenfunctions that oscillate in the free-stream flow and are damped inside the boundary
layer. The weight of the eigenfunctions is determined through wind tunnel data, including turbulence
intensity and the turbulence integral length scale. Exactly how many inflow modes are prescribed to
form the free-stream turbulence depends on the desired randomness, though literature points towards
a number between 400 and 1200 modes in total (Balzer & Fasel, 2016; Brandt et al., 2004; Durovic,
2022). Tests using different numbers of points have been performed on a small DNS domain, con-
cluding the lower limit of 400 free-stream turbulence modes is sufficient to mimic isotropic turbulence
in this setup. The first step is selecting 400 sets of wavenumbers to use in the ILST equations. The
resulting eigenvalues and eigenfunctions are then filtered to obtain one eigenvalue and eigenfunction
for each wavenumber set. These eigenfunctions are then given an amplitude before being used as
input in DNS.

4.4.1. Wavenumber Selection
Free-stream turbulence inflow modes can be generated using wavenumbers. Each set consists of
three wavenumbers, describing the wave characteristics in streamwise direction (𝛼), wall-normal di-
rection (𝛾), and spanwise direction (𝛽). These wavenumbers can then be used either as input for the
ILST equations to obtain eigenvalues and eigenfunction or for filtering out the correct eigenfunction
from the many results provided by ILST. Based on Taylor’s Frozen Turbulence Hypothesis, 𝜔 = 𝛼𝑈,
the 𝜔 input required for ILST is also provided. 𝛽 is directly used as input to ILST, and 𝛾 dictates the
oscillation pattern of the eigenfunction during the filter process. As a first step, 400 pseudo-random
sets of wavenumbers will have to be selected, before isotropic turbulence can be replicated. Although
the principle behind the wavenumber selection is randomness, a range from which to choose each
wavenumber randomly is required. The limits to these ranges are chosen based on both limits in flow
physics and grid resolution throughout the domain. Each wavenumber can be converted to a corre-
sponding wavelength 𝜆 = 2𝜋/𝜅, where 𝜅 is the wavenumber vector. Keeping in mind the Nyquist
theorem, waves need to be sampled at a certain rate to be detectable. At least two points need to be
located on each wave before they can be characterised. In this work, more margin is left, and at least
four grid points need to be within each wavelength. This provides the upper limit of the wavenumber
ranges, while the lower limit needs to make sure the wavelengths do not exceed twice the domain size
in the respective direction. Depending on the wavenumber, additional specific restrictions are also in
place. The spanwise wavenumber is most restricted, and can only be a multiple of the fundamental
spanwise wavenumber, fixed to 8𝑚𝑚 by the experiment. Therefore, the upper limit of the spanwise
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wavenumber range is 2𝜋𝛿0/0.008𝑚, where the lower limit is based on the grid refinement and set to
four times the spanwise cell size equalling 2𝜋𝛿0/(1.11 × 10−4) or 47.5497. Limits of the streamwise
wavenumber 𝛼 are entirely based on the grid used. To ensure the grid picks up the oscillations gen-
erated, the wavelength must be larger than four grid cells, or 0.5008 × 𝛿0m. But not larger than twice
the domain length, or 1028.5 × 𝛿0m. The range of 𝛼 thus lies between 0.0061 and 12.5463. In the
wall-normal direction, the only physical limit requires 𝛾 to be larger than zero. Using the same grid
criteria as with 𝛼, 𝛾 is limited to a wavelength between four grid cells and twice the domain height. This
results in 𝛾 wavenumbers between 1 and 11.1150.

(a) (b)

Figure 4.6: (a) Distribution of points on a sphere with fixed wavenumber magnitude (Durovic, 2022). (b) 𝛽 distribution on each
sphere section, where the question marks indicate the randomly chosen angles between 0∘ and 36∘.

With the allowed ranges of wavenumbers determined, 400 sets need to be randomly chosen within
these ranges. A reliable and repeatable method to select these wavenumbers is using concentric
spheres, as also used and described by Schlatter (2000), Brandt et al. (2004) and Balzer and Fasel
(2016). This approach starts by generating a three-dimensional axis system with each axis repre-
senting one of the wavenumbers, within which a number of concentric spheres are placed on the ori-
gin, as shown by Figure 4.6a. The radius of the spheres is the total wavenumber magnitude 𝜅 =
√𝛼2 + 𝛾2 + 𝛽2. The smallest and largest spheres are limited by the minima and maxima of the allow-
able ranges of each wavenumber type. To ensure the three wavenumbers can be varied freely for each
wavenumber magnitude, the limiting spheres do not have the smallest and largest possible diameters.
The smallest sphere is limited by 𝜅 = √(2𝑚𝑖𝑛(𝛼))2 + (2𝑚𝑖𝑛(𝛾))2 + (2𝑚𝑖𝑛(𝛽))2 and the largest sphere
by 𝜅 = √𝑚𝑖𝑛(𝛼)2 +𝑚𝑎𝑥(𝛾)2 +𝑚𝑖𝑛(𝛽)2. The minimum sphere radius used is therefore 2.3968, and
the maximum is 11.1346. Equally spaced between the smallest and largest spheres, a predetermined
number of concentric spheres are added. Brandt et al. (2004) proposes 20 spheres, and this is the
same amount of spheres used in this research. More can be used, as Balzer and Fasel (2016) pro-
poses the use of 40 spheres, but 20 is deemed enough for sufficiently isotropic free-stream turbulence
in this flow field. On each of these spheres, an equal number of points is selected. To get to the 400
modes required here, 20 points per sphere are therefore selected. These points need to be randomly
chosen while being equally spaced. A commonly used technique is to use polyhedrons with an equal
amount of corners as points are required. Placing this polyhedron inside each sphere at a random
angle, and selecting the intersection points of both, indicates the points needed. Changing the angle
of the polyhedron for each sphere adds the degree of randomness required, as suggested by Schlatter
(2000). Because the spanwise wavenumber is limited to discrete multiples of the fundamental value,
this technique is not appropriate here. Instead, the choice is made to select the wavenumber sets in
two steps. First, the spanwise wavenumbers for each sphere are selected, using a circle with the same
radius as the sphere. On this circle, a number of points need to be distributed, equal to the rounded
square root of the total points on the sphere. With all wavenumbers being positive, only a quarter of the
sphere is used, and therefore the 𝛽 points are also selected on a quarter of a circle (see Figure 4.6b).
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In this case, within each quarter circle, four points have to be distributed equally but randomly. This
is done using congruent angles, splitting the 90°quarter-circle into five 18°parts. This ensures each
point is spaced at an 18°angle apart, as shown in Figure 4.6b. Enough room is left to randomly ro-
tate these points by an angle between 0°and 18°to ensure randomness between each of the spheres.
By projecting these points onto the x-axis and rounding these projected values to the nearest allowed
value, the spanwise wavenumbers are chosen. This 𝛽 distribution system is represented visually by
Figure 4.6b. These wavenumbers indicate the different allowed spanwise values which, dependent on
the total amount of points required, can return multiple times throughout the selection process.

The amount of times each spanwise wavenumber returns is based on its magnitude. Each spanwise
wavenumber essentially generates a new circle when imagining a plane perpendicular to the 𝛽-axis at
the selected 𝛽 value, intersecting with the sphere. The larger the value for 𝛽, the smaller the circle
generated by the intersection will be. Figure 4.7a gives a visual representation of these 2D circles
generated from the intersection with the 3D sphere. Four of these circles are generated in this work, for
four positive 𝛽 values. The 20 points that need to be distributed on each sphere have to be distributed
on these four circles. This is done based on each circle’s circumference, where the circumference of all
circles is summed and each circle gets assigned a fraction of the total points based on its circumference
compared to the total circumference sum. Once the amount of points for each circle is defined, the
points are distributed on the circles in the exact same way as done previously for 𝛽. Only now, the angle
is different based on the number of points, but the principle remains the same. Because both 𝛼 and 𝛾 are
selected simultaneously, no projection is necessary, and the wavenumbers can be directly extracted
from both axes. This principle is visualised in Figure 4.7b. Repeating this process for each sphere
results in 400 sets of three wavenumbers, which can be used to generate 400 inflow eigenmodes.

(a) (b)

Figure 4.7: (a) 2D slices of the 3D wavenumber spheres at constant, previously determined 𝛽-values. (b) 𝛼 and 𝛾 distribution
system on each 2D slice, where the question marks indicate randomly chosen angles between 0∘ and 36∘.

4.4.2. Eigenfunction Extraction
Just as with the primary crossflow mode, ILST is used to generate an eigenvalue and eigenfunction
spectrum based on each of the wavenumber sets. Where the discrete part of the spectrum was used
for the primary crossflow disturbance, the continuous spectrum is used to generate free-stream turbu-
lence. This theoretically infinite spectrum of eigenvalues features eigenfunctions exhibiting oscillating
behaviour outside the boundary layer. Inside the boundary layer, these eigenfunctions are damped,
while outside the boundary layer, they converge towards a constant oscillation when 𝑦 → ∞. The
damped behaviour inside the boundary layer is the result of shear sheltering, referring to the inabil-
ity of the continuous Orr-Sommerfeld modes to penetrate into the boundary layer (Jacobs & Durbin,
1998). When a large number of these oscillatory modes are summed, the chaotic-looking velocity pro-
file that results resembles isotropic free-stream turbulence. An example of such an eigenfunction of
the continuous spectrum showing oscillatory motion is presented by Figure 4.8.
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Figure 4.8: Real (𝜙𝑟) and imaginary (𝜙𝑖) parts of an eigenfunction in the continuous spectrum (Grosch & Salwen, 1978).

This is only one of a large spectrum ILST outputs for a single wavenumber set. To generate free-
stream turbulence, a specific eigenfunction and eigenvalue from this continuous spectrum have to
be selected for each mode. This is done using the wall-normal wavenumber 𝛾, which dictates the
wall-normal oscillation pattern desired. If the continuous spectrum would truly be infinite, an exact
eigenfunction and eigenvalue pair could be picked. However, because of computational limits the
continuous spectrum that results from ILST is not infinite in size, but sampled based on a Chebyshev
polynomial. Therefore curve-fitting to find the closest matching result is used. From the wall-normal
wavenumber 𝛾, combined with the eigenvalue 𝛼, an oscillatory curve can be generated using,

�̃� = 𝑒𝛾𝑦 + 𝑒−𝛾𝑦 + 𝑒𝛼𝑦; 𝑦 −→ ∞ (4.8)

This curve represents the desired eigenfunction behaviour, for large y-coordinates. Through curve-
fitting the continuous mode eigenfunctions generated with ILST to this curve, the closest match is
selected. This eigenfunction and its accompanying eigenvalue are then chosen as inputs to the DNS
solver. The process is repeated for all 400 disturbance modes. With the eigenfunctions and eigen-
values for each of the 400 disturbance modes known, the only missing information before all inflow
boundary conditions can be generated are the weights. The eigenfunctions all have a unit amplitude
and therefore require adequate weights to determine their contribution to the free-stream turbulence.
The weight of each eigenfunction is assigned as a wave amplitude, calculated in the next section.

4.4.3. Amplitude Determination
With the eigenvalues and eigenfunctions for each mode known, the only unknown left is the amplitude
assigned to each eigenfunction. Determining this amplitude requires two flow characteristics to be
calculated, the turbulence integral length scale and the turbulence intensity. The latter is a known
characteristic of the wind tunnel, but can also be extracted from pitot and HWA data, given the accuracy
required for this research. Using a HWA probe placed outside of the boundary layer, an instantaneous
velocity profile is extracted. Subtracting the mean velocity from this profile and taking the root-mean-
squared value, results in the turbulence intensity. Understand that this turbulence intensity is calculated
based on velocity magnitude𝑄measured by the HWAprobe and not via the standard waywith individual
velocity components. A correction will need to be applied to take this into account, though this only
happens right before implementation into DNS. For now, this value is being used. The turbulence
integral length scale is the only unknown left. Representing the largest turbulent scales in the flow
field, this value can be extracted using the auto-correlation function on the free-stream instantaneous
velocity data. Since measurements on a single point are used, the turbulence integral time scale is
first determined. The auto-correlation function assesses velocity fluctuations over a period of time and
looks for self-similarities in the signal, to determine how long it takes for a signal to repeat itself. Several
ways of assessing the auto-correlation function exist, but most commonly the point where the function
reaches zero is taken (Trush et al., 2020). With the turbulence integral time scale known, the length
scale is obtained by multiplying the time scale by the free-stream velocity magnitude. In mathematical
form, this auto-correlation function is represented as,
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𝐿11 = ∫
∞

0

𝑢(𝑡)𝑢(𝑡 + 𝜏)
𝑢2

𝑑𝜏. (4.9)

With both the turbulence integral length scale (𝐿11) and the turbulence intensity known, the energy
in the flow field associated with each wavenumber magnitude can be determined through the following
formula,

𝐸(𝜅) = 𝑇𝑢𝐿11
1.196 (𝜅𝐿11)

4

[0.558 + (𝜅𝐿11)
2]

17
6
, (4.10)

where 𝑇𝑢 is the turbulence intensity value as a fraction of one, 𝜅 is the wave number magnitude, and
𝐿11 is the turbulence integral length scale. The result is an energy over wavenumber curve, of which an
example is shown in Figure 4.9a. With the energy assigned to each wavenumber known, the energy
per sphere is known as well. Through a simple equation, this energy of each sphere can be distributed
over the number of points on each sphere, as given by,

𝐴(𝜅) = √2𝐸(𝜅)Δ𝜅𝑁𝑝
, (4.11)

where Δ𝜅 is the spacing between two spheres, and 𝑁𝑝 is the number of points per sphere. With all
variables required for DNS implementation known, only one thing is left and that is applying the tur-
bulence intensity correction mentioned earlier. For this, the free-stream turbulence inflow plane is first
constructed using Equation 4.12, summing all 400 modes.

𝑞′ =
400

∑
𝑛=1

𝐴𝑛 ⋅ 𝑞′𝑛 ⋅ 𝑒−𝑖(𝛼𝑛𝑥+𝛽𝑛𝑧−𝜔𝑛𝑡). (4.12)

This results in a plane similar to the example given by Figure 4.9b, where isotropic velocity fluctuations
impose turbulence on the free-stream flow but get damped out rapidly inside the boundary layer. The
turbulence intensity imposed on the free-stream flow by this plane can now be calculated as measured
by the hotwire. Both the plane and the hotwire data should result in the same value. If this is not the
case, the difference needs to be determined, and every amplitude multiplied by this correction factor
before input in DNS. This ensures the turbulence intensity imposed on the DNS is exactly the same as
measured during the experiment.

(a) (b)

Figure 4.9: (a) Energy distribution over the wavenumber space (Durovic, 2022). (b) Exemplary inflow boundary conditions for
free-stream turbulence implementation (Balzer & Fasel, 2016).
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4.5. DNS Implementation
Throughout this work, the INCA solver is used to perform DNS. Developed in-house at the Delft Uni-
versity of Technology, this is an extensive multi-physics CFD solver capable of performing high-fidelity
complex LES and DNS simulations (Hickel et al., 2014). This system provides the flexibility required
for the use and implementation of the numerical techniques proposed in this work. Through an explicit
third-order Runge-Kutta method, the Navier-Stokes equations are marched forward in time to solve the
flow field. As a general convergence criteria, the 𝐿2-norm of the temporal derivatives, 𝜖𝐿2 = 10−8, is
chosen. For an efficient way of reproducing the experimental flow field, the methodology introduced in
this chapter is implemented in steps. Following the order of this chapter, baseflow is the first flow field
that needs to be matched with experimental data. Due to the spanwise invariance of the baseflow, the
flow in 𝑧-direction does not need to be resolved. This allows the removal of all but two spanwise grid
cells, saving considerable resources at this stage of the simulation. Baseflow implementation into DNS
requires several parameters to be passed to the solver, including the Reynolds number, and the free-
stream velocity components at the inflow plane. The external velocity distribution in the streamwise
direction, calculated in subsection 4.2.2, is prescribed through a logarithmic polynomial. The coeffi-
cients, as well as the offset added to take into account the attachment line location, are presented by
Equation 4.3. Once the solution based on these parameters converges, a three-dimensional baseflow
solution remains. The only experimental data that can be used for comparison is the measured pres-
sure distribution of the wing. Boundary layer theory is used as a second method to validate the DNS
baseflow results. When all three data types agree well with each other, the steady flow field simulation
can be initiated.

To simulate this steady flow field by introducing primary CFI, a flow field resolved in all three dimen-
sions is required again, achieved by multiplying the total number of grid cells by 72. After this mesh
adaptation, only adding the primary crossflow disturbance mode to the baseflow setup is required to
trigger primary crossflow instabilities. This consists of a set of velocity and pressure profiles, an eigen-
value, a spanwise wavenumber and a temporal frequency, along with an amplitude assigned to the
normalised eigenfunctions. From these inputs, the inflow disturbance plane is obtained through

𝑞′ = 𝐴 ⋅ �̂� ⋅ 𝑒−𝑖(𝛼𝑥+𝛽𝑧), (4.13)

where 𝑞 = [𝑢, 𝑣, 𝑤]𝑇, 𝐴 the disturbance amplitude, 𝛼 the eigenvalue, and 𝛽 the spanwise fundamental
wavenumber. Adding this disturbance plane to the existing inflow boundary condition risks introducing
convergence issues. To reach full convergence and enforce a stationary crossflow field, Selective
Frequency damping (SFD) is therefore applied from 𝑥/𝛿0 = 230 until the outflow boundary of the
domain. Downstream of 𝑥/𝛿0 = 230, SFD is applied across the full width and height of the domain.
In this region, the convergence criterion is calculated differently, taking the 𝐿2-norm of the difference
between the instantaneous flow solution and the low-pass filtered solution �̄�. Referred to as 𝜖𝑆𝐹𝐷, this
new convergence target is set to 𝜖𝑆𝐹𝐷 = ‖𝑞 − �̄�‖𝐿2 = 10−10. The goal of this method is to obtain a
steady-state solution 𝑞𝑠, equal to the instantaneous solution 𝑞. Because 𝑞𝑠 is not a known state, the
low-pass filtered solution is instead used in the evolution equation of 𝑞, which reads as

�̇� = 𝑓(q) − 𝜒(q− q̄), 𝜒 ∈ ℝ, (4.14)

where �̇� is time derivative of the instantaneous solution 𝑞, and 𝑓 the non-linear Navier-Stokes opera-
tor (Casacuberta et al., 2018). 𝜒 is the feedback control coefficient, set to suppress instabilities with
unstable frequencies. Because the integral definition of a low-pass time filter would be too resource in-
tensive, since the complete time history of the signal would need to be stored, an equivalent differential
form is being used,

̇�̄� = 𝑞 − �̄�
Δ , Δ ∈ ℝ>𝟘. (4.15)

Δ is referred to as the time constant, replacing the cut-off frequency of the low-pass filter as Δ = 1/𝜔𝑐
(Åkervik et al., 2006). This differential form can be time-marched less computationally costly, and
results in an easier way of implementing SFD. The efficiency of SFD, however, is strongly dependent
on the values of 𝜒 and Δ. These parameters in the INCA solver have been extensively studied by
Casacuberta et al. (2018) among others and, therefore, will not be altered during this research.

Adding free-stream turbulence onto the converged steady flow field results in the final unsteady
flow field. By summing the 400 disturbance modes calculated in section 4.4, processing them using
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Equation 4.12 and adding them to the steady flow field, all required boundary conditions are present.
Since free-stream turbulence is inherently unstable, the SFD zone used in the steady case will have
to be reduced in size. Otherwise, it will rapidly filter out the free-stream turbulence fluctuations. SFD
is still applied in the unsteady simulation, but only from 𝑥/𝑐𝑥 = 0.489 until the outflow boundary, to
ensure a stable outflow boundary condition. Through the process of receptivity, these disturbances will
introduce secondary instabilities into the boundary layer. These secondary instabilities grow rapidly
and ultimately cause transition to turbulence. Because less free-stream shear stress is expected to be
present in the numerical simulation compared to the wind tunnel, it is expected that the free-stream
turbulence will dissipate quicker in DNS. Considering the most essential part of the receptivity process
occurs far upstream of the transition region, where dissipation is in any case still low, reduces concerns
of dissipation playing a crucial role (Brandt et al., 2004). When transition occurs in the flow field, full
convergence will no longer be possible in DNS. Turbulent boundary layers are unsteady and thus ever-
changing. Instead, this simulation is run until the boundary layer characteristics and the transition front
sufficiently stabilise. After which the necessary flow characteristics can be extracted to assess the
match with experimental data. The DNS setup of a second numerical simulation without any unsteady
forcing uses the same steady flow field as the free-stream turbulence simulation. Instead of introducing
a large number of disturbance modes at the inflow, this time the flow is left to develop by itself, and only
the SFD zone imposed on the transition region gets removed. The removal of this SFD zone ensures
the flow is allowed to transition from laminar to turbulent when unsteadiness develops along the domain.
This is the ideal baseline simulation to assess the impact of the FST on both CFI development and
transition throughout the numerical domain.

To assess the transition location and mechanisms of both simulations, several statistical metrics
must be extracted from the flow field. When the unsteady simulation has run sufficiently long, and
reached a repeating pattern, the flow field is averaged to extract the shear stress in the flow. Based on
the friction coefficient 𝑐𝑓 derived from these shear stresses, the transition location is extracted as the
point of maximum 𝜕𝑐𝑓/𝜕𝑥. This metric is comparable to the IR thermography used in the experimental
data by Rius-Vidales and Kotsonis (2022), as it produces the most visible separation between the
laminar and turbulent flow states. Probe data is also sampled for each iteration, which provides point-
sampled instantaneous velocity data of the flow field. Used to assess the frequency content of the
flow field, this probe data can be directly compared to the instantaneous HWA data sampled during the
experiments. Sampling of the entire flow field every 4 iterations is also done to analyse the intensity and
distribution of the velocity fluctuation across the crossflow vortex. By taking the standard deviation (𝜎𝑄)
of the instantaneous velocity fluctuations at each point in a 𝑧-𝑦 plane, this distribution can be assessed
spatially through,

𝜎𝑄 = √
1

𝑛 − 1

𝑁

∑
𝑖=1
|𝑄 − 𝑄|2. (4.16)

As a metric to keep track of the overall instability growth 𝑎𝑄, this 𝜎𝑄 can be integrated over the entire
𝑧-𝑦 plane, given as,

𝑎𝑄 =
1
𝑄𝑒
∬
𝑆
𝜎(𝑦, 𝑧)𝑑𝑧𝑑𝑦, (4.17)

where 𝑄𝑒 is the free-stream component of the HWA-measured time-averaged 𝑄-velocity magnitude. By
applying a frequency filter to the instantaneous velocity signal used to calculate 𝜎𝑄, the instability growth
of specific frequencies can be extracted as well. To investigate which frequencies are dominating the
transition region inside the boundary layer, the signal frequency content is extracted through a Power
Spectral Density (PSD) analysis. The numerical velocity signal used spans a sampling time of 0.025
seconds, much lower than the two seconds samples extracted experimentally. However, the sampling
rate is significantly higher at 1𝑀𝐻𝑧 compared to 51.2𝑘𝐻𝑧, related to the small time step size required to
resolve the turbulent structures. This implies the Nyquist frequency is well above the frequency range
of interest between 1𝑘𝐻𝑧 and 10𝑘𝐻𝑧, determined from the experimental data presented in chapter 2.

A large amount of computational resources is needed to solve the DNS flow field and sample the
results. Several different computational clusters are used during this research, depending on the needs
during each simulation stage. Baseflow DNS, together with any optimisations through Matlab are run
in HPC12. This smaller cluster is part of the aerodynamics department at TU Delft and allows anything
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from single-core computations up to simulations with several hundred CPU cores. Although insufficient
for full unsteady DNS, this computer allows fast turn-around times for these smaller simulations. For
the steady primary crossflow and the full unsteady solution, the Delft High-Performance Computing
Centre (DHPC) is used (Delft High Performance Computing Centre (DHPC), 2022). With a speed of
2 petaFLOPS, this new computing system is ranked among the top 500 fastest supercomputers in
the world, allowing several thousands of CPU cores to be used for these computationally expensive
unsteady DNS runs. For the final stages of the unsteady simulations, and to obtain flow statistics
related to these simulations, this work used the Dutch national e-infrastructure with the support of the
SURFCooperative using grant no. EINF-5929. The 14 petaFLOPSSnellius systemmanaged by SURF
(www.surf.nl) is able to provide the large number of processors required for a large-scale DNS project
as is performed here. The EINF grant SURF provided the researcher with, included 1,000,000 CPU
hours on Snellius to conclude the final stages of the project. Something the author of this document is
very thankful for.
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Results

Following the methodology results in a three-dimensional numerical flow field, post-processed equiva-
lently to the experimental data to allow evaluation of the match between both data types. Analysis of
the baseflow, steady and unsteady flow field enables an extensive discussion on the value of this work
for future numerical and experimental research on incompressible flows on swept wings. To put the
unsteady results into perspective, the numerical baseflow and steady crossflow results are discussed
first. This serves as a starting point for unsteady flow simulations and provides an idea of the method’s
accuracy for each step of the process, indicating that numerical replication of crossflow instabilities is
feasible for each step of the process individually. When discussing the unsteady flow field towards the
end of this chapter, the results focus on the three main pillars of transition location, transition type, and
frequency content of the crossflow vortices. Showcasing the capabilities of this FST-based method
and its value for future research. The latter is backed up by the last section of this chapter, showing a
comparison between the unsteady numerical flow fields obtained with and without the addition of free-
stream turbulence. This provides a clear overview of the benefits and downsides of the methodology
related to incompressible CFI research on swept wings.

5.1. Baseflow Simulation
Based on the test section pitot tube, the wind tunnel model is found to encounter a free-stream velocity
magnitude equalling 24.47 m/s. Based on the identification of the attachment line described in sub-
section 4.2.2, the velocity magnitude is decomposed into a chordwise velocity component, 𝑈∞ = 17.58
m/s, and a spanwise velocity component, 𝑊∞ = 17.02 m/s, at the attachment line location. These
components make a 45.94°inflow angle, relative to the model’s leading edge. By use of the pressure
distribution over the airfoil, the free-stream velocity magnitude (𝑈𝑒) along the chord (𝑥/𝑐𝑥) is calculated.
Divided into two rows in 𝑋-direction, the surface pressure ports allowed the generation of two velocity
profiles, as given by Figure 5.1. The difference between both profiles is considered minor, leading to
the author’s decision to accept the spanwise invariant flow assumption. This acceptance simultane-
ously confirms the validity of the infinite swept-wing approach, therefore allowing for both profiles to be
averaged to a single 𝑈𝑒 distribution (see red dotted line in Figure 5.1). As the𝑊∞ is assumed constant
across the chord, following the infinite swept wing assumption, the spanwise velocity profile (𝑤𝑒) is now
determined as well. The averaged 𝑢𝑒 profile that results from decomposition (see dotted line in Fig-
ure 5.1) is then used as an input for the CFD solver. The raw 𝑢𝑒 profile is too variable so a fourth-order
polynomial is used to approximate this 𝑢𝑒 distribution instead (see green line in Figure 5.1). Before
implementation, the polynomial is cropped to the numerical domain length, from 𝑥/𝑐𝑥 = 0.05 to the
outflow boundary at 𝑥/𝑐𝑥 = 0.47. Both numerical boundaries are indicated by black dashed lines on
Figure 5.1. At the numerical inflow plane, the free-stream velocities are determined to be 𝑢∞ = 12.81
m/s along the chord (x-direction) and 𝑤∞ = 𝑤𝑒 = 17.02 m/s along the span (z-direction). All numerical
input values are normalised by the chordwise inflow velocity 𝑢∞, resulting in non-dimensional velocities
at the inflow plane of 1 and 1.3286, respectively. Based on this velocity data extracted from the exper-
imental flow field, the velocity distribution can be decomposed and implemented into DNS, resulting in
a baseflow tailored to match the experiment.

37
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Figure 5.1: Distribution of experimental 𝑢/𝑢∞ along 𝑥/𝑐𝑥 for both upper (△) and lower (□) pressure port rows, averaged (⋅⋅) for
numerical processing. Black dashed line indicates the numerical in- and outflow boundaries.

The resulting numerical baseflow is simulated in INCA as a three-dimensional flow field with two
cells in 𝑧-direction, because of the spanwise invariance of the parameters. This implies the spanwise
dimension of the domain is allowed to remain unresolved at this stage. However, because of the
already three-dimensional geometry, the baseflow can directly serve as input for the steady crossflow
simulation. The chordwise velocity distribution 𝑢/𝑢∞ of the baseflow can be represented as a 𝑧-𝑦𝑡 slice
(see Figure 5.2) and shows a growing boundary layer in 𝑥-direction. The overall increase of free-stream
velocity 𝑢𝑒 imposed on the domain to emulate the flow acceleration along the curved airfoil surface in
the wind tunnel experiment is also apparent in Figure 5.2, as the boundary layer is only a fraction of
the total domain size.

Figure 5.2: Numerical baseflow 𝑧-𝑦 slice indicating the two-dimensional 𝑢/𝑢∞ distribution, simulated using INCA and converged
to 𝜖𝐿2 = 1 × 10−8.

Since the HWA data of the experiment only provides details on the instantaneous flow field and
lacks isolated baseflow information, there is no possibility for a comprehensive comparison with the
experiment. Neither visually, nor based on HWA data points. Therefore, the baseflow simulation is
compared back to the experimental data through the airfoil pressure ports. The velocity distribution
obtained from the experimental pressure data through Equation 4.2 is based on incompressible and
inviscid flow assumptions. Nevertheless, the velocities considered here are small, ensuring the validity
of these assumptions at this stage of the research. Comparison between the numerical and experimen-
tal velocity distributions shows minimal differences between both data sets (see Figure 5.3). The slight
differences that can still be distinguished between the different data types are thought to be largely
attributed to the averaging of the pressure port data and expected variation in the experiment due to
unsteadiness. Considering the amount of processing required to arrive at this numerical flow field, the
differences between both curves are labelled negligible, confirming the experimental data is correctly
applied in the numerical setup.

Additionally, a theoretical boundary layer (BL) solver based on the Falkner-Skan Cooke (FSC) equa-
tions is used to verify if the numerical baseflow is generated correctly (Falkner & Skan, 1931). Rather
than a comparison with experimental data, this BL solver is used for verification purposes only. A di-
rect comparison between the numerical external velocity and the experimental velocity based on the
pressure ports already indicated the differences in 𝑢𝑒 remain negligible (see Figure 5.3), and already
partially confirms the validity of the baseflow used during the remainder of this work. To fully verify, the
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results are compared more extensively to the BL solver. This includes the wall-normal velocity 𝑣𝑒/𝑣∞,
pressure 𝑝/𝑝∞, and the boundary layer thicknesses 𝛿∗/𝛿0 and 𝛿99/𝛿0. All of the aforementioned com-
parisons are visualised in Figure 5.4, showing both solvers are in good agreement with each other,
increasing confidence in the numerical baseflow solution. Although small differences between the BL
solver and the DNS results are still noticeable, these are expected based on the assumptions the BL
solver is based on. This is mainly thought to be related, but is not limited to, the assumption that
𝜕𝑝/𝜕𝑥 = 0 in the BL solver solution.

Figure 5.3: Chordwise distribution of 𝑢/𝑢∞ for the interpolated experimental data (--), the polynomial fit to the experimental data
(-), the BL solver result (□), and the DNS results from the INCA simulation (⋄).

Figure 5.4: DNS baseflow comparison with the FSC boundary layer equations for wall-normal velocity 𝑣𝑒/𝑢∞ (a), pressure 𝑝/𝑝∞
(b), and boundary layer thicknesses 𝛿∗/𝛿0 (c) and 𝛿99/𝛿0 (d).

5.2. Primary Crossflow Instability Development
Adding primary CFI to the numerical baseflow results in the steady flow field, which is characterised by
a wave-like pattern generated by the crossflow vortices inside the boundary layer. At this stage of the
numerical process, the HWA data comes into play as a reference for setting up the steady flow field
simulation. Although the HWA data is instantaneous, time-averaging allows the recreation of the steady
flow field from unsteady measurement data. The time-averaged HWA data can therefore be directly
compared to its numerical equivalent, assessing the accuracy of the steady simulation. Until close
to the transition region, primary CFI dominates the boundary layer. Their increase in amplitude when
propagating downstream leads to the formation of secondary crossflow instabilities, which tend to grow
exponentially and lead to rapid breakdown to turbulence. As outlined in section 4.3, a trial-and-error-
based optimisation is used at this stage of the process. A single disturbance mode is generated based
on the fundamental spanwise wavelength of 8𝑚𝑚 and imposed as an inflow condition on the baseflow.
The addition of this single disturbance results in the numerical steady flow field. Through ILST, the
shape of this disturbance and the accompanying eigenvalue and wavenumbers that form the inflow
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boundary condition are determined. The shape of the disturbance consists of a velocity vector along the
y-direction for the 𝑢, 𝑣, and𝑤 components, along with the pressure. These vectors, which can be made
two-dimensional to cover the inflow plane using Equation 4.5, are given by Figure 5.5 for the readers’
information. Next to the velocity and pressure vectors, the non-dimensional spanwise fundamental
wavenumber 𝛽 = 0.6604 is part of the disturbance mode, next to the temporal angular frequency
𝜔 = 0. These wavenumbers are necessary to recreate the two-dimensional field from the previously
determined vectors. 𝜔 = 0 because the flow at this stage is steady, and no temporal fluctuations are
desired. The complex eigenvalue 𝛼 = 0.7669 − 0.0141𝑖 is also part of the primary CFI disturbance
mode, influencing the disturbance shape throughout the ghost-cells in front of the domain inflow, as
discussed on subsection 4.3.1. These inputs are part of the discrete eigenvalue spectrum of the Orr-
Sommerfeld equation, with the main characteristic that the velocity is exponentially damped outside
the boundary layer. This agrees with the desire to only introduce this steady disturbance inside the
boundary layer. At this stage, these inputs are still normalised by the chordwise velocity magnitude
at the inflow plane. With the inflow boundary condition shapes known, only the amplitude for these
normalised functions now needs to be determined, which is discussed in subsection 5.2.1.

Figure 5.5: Normalised �̃�, �̃�, �̃� and �̃� vectors in y-direction representing the primary CFI at the inflow boundary.

5.2.1. Disturbance Amplitude Determination
The velocity and pressure values at the inflow are normalised, implying the need for an adequate ampli-
tude to scale the disturbances to the levels measured by the hotwire during the experiment. Based on
the methodology outlined in subsection 5.2.1, an optimisation script is run to determine the amplitude
required to obtain the closest match with experimental data possible. To reduce cost, this optimisation
procedure uses NPSE instead of DNS. From similar research performed by Casacuberta et al. (2021),
an initial amplitude 𝐴0/𝑢∞ = 3.5×10−3 is chosen as initial estimation. To show a baseline comparison
with experiments, before optimisation, Figure 5.6 compares the NPSE results with 𝐴0/𝑢∞ = 3.5×10−3
for maximum disturbance amplitude, mean flow distortion (MFD), and disturbance profile. The differ-
ences between the numerical and experimental data at this stage are clear, as the experimental profiles
are visibly more saturated than the numerical results with 𝐴0/𝑢∞ = 3.5 × 10−3. A much closer match
is required to reproduce the conditions of the experiments, pointing out the need for an optimisation
procedure.

The iterative optimiser walks through a number of different amplitudes to localise the point of mini-
mum error between the disturbance profiles. Based on the integral of the difference between numerical
and experimental disturbance profiles, the error metric converges gradually to a minimum. The steps
taken by the optimiser while iterating towards the optimal amplitude are shown in Figure 5.7a. The
resulting amplitude for the primary CFI inflow boundary condition equals 𝐴0/𝑢∞ = 1.9401 × 10−2. The
new maximum amplitude curve in Figure 5.7b creates a much-improved match with experimental data.
Experimental data inevitably contains outliers, because of the lack of time dependence between the
different hotwire measurement points. Due to the time-intensive process of acquiring hotwire data, the
different planes used to match NPSE were measured on different days. Different data points on the
experimental curve are therefore independent of each other. Details on this variation in wind tunnel
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parameters can be found in section 2.2, of which the impact can not be underestimated. However,
by taking all eight planes into account, the optimisation is based on all the experimental data points
available. The optimisation criteria based on the disturbance profile, calculated by Equation 4.7 and
chosen in subsection 5.2.1, lead the author to believe the results in Figure 5.7b are the closest fit to the
experimental data possible with the tools available. Potential limitations in the current numerical setup
and the inflow boundary conditions used not known to the author at this point, could in the future lead to
further increased accuracy. However, given the variability of the experimental data for the steady flow
field, this work considers the matching procedure a success, limiting the error in disturbance amplitude
to well below 5%.

(a) (b) (c)

Figure 5.6: Comparison between NPSE (--) and experimental data (∘) with 𝐴0/𝑢∞ = 3.5 × 10−3 for (a) maximum disturbance
amplitude, (b) MFD and (c) disturbance profile

(a) (b)

Figure 5.7: (a) Convergence plot of 𝐴𝑞(0,0) based on the error criterion evaluation (𝜖). (b) 𝐴
𝑞
(0,0) comparison between NPSE with

𝐴0/𝑢∞ = 1.9401 × 10−2 and experimental data.

Next to disturbance amplitude, more detailed techniques to compare NPSE with experimental data
use MFD and disturbance profiles. Eight HWA planes are available to generate profiles for comparison.
Four are used here as a basis for analysis for both comparison types (see Figure 5.8a and Figure 5.8b).
To avoid misinterpretation of the difference between numerical and experimental curves, these are nor-
malised by the local free-stream velocity, to reduce the effect of individual HWA planes being gathered
under slightly different conditions. Because a difference in free-stream velocity could have an influence
on the near-wall velocity gradient, small errors are still to be expected. The MFD comparison in Fig-
ure 5.8a confirms the accurate match of the steady crossflow field, despite the small errors near the wall
starting to creep in near 𝑥/𝑐𝑥 = 0.28. Unable to pinpoint the exact reason for these discrepancies, the
optimiser is still confident this disturbance amplitude represents the best numerical setup, based on the
available reference data. However, MFD profiles are still limited in the information they provide. In an
attempt to include more information on the experimental flow field, disturbance profiles are compared
as well. Their complex profiles are harder to match, as they do not contain spatially averaged data
like the MFD. Using the root-mean-square of the time-averaged velocity data subtracted by the MFD,
they contain more information about the flow than the MFD which is averaged in z-direction, or the
amplitude profile which only takes the maximum disturbance amplitude into account. The overall dis-
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turbance profile shape matches closely between both data sets, albeit with noticeable differences near
the upper region of the boundary layer. Although the lower of the two peaks of each curve almost over-
lap, persisting differences remain around the upper peak. With inter-plane variations between profiles
near this upper peak too significant, the choice was made to find the best overall match possible overall
HWA planes. The variation between planes is thought to be a feature of variation in experimental data
and the varying wind tunnel parameters for individual HWA planes. Individual planes could have been
matched closer, but the challenge in this research concerns the matching of the full flow field. Given
that previous work from the likes of Nishino and Shariff (2010) and Tempelmann et al. (2011) reported
significant differences from 60% to orders of magnitude, the matching procedure outlined here can be
considered satisfactory.

(a) MFD profiles. (b) Disturbance profiles.

Figure 5.8: NPSE (--) MFD and disturbance profile comparison with time-averaged HWA planes (∘) for 𝑥/𝑐𝑥 = 0.22, 0.24, 0.26
and 0.28.

The resulting optimal amplitude turned out to be over five times larger than the initial amplitude
fed to the optimisation tool. To ensure the global minimum error is found and local minima are dis-
regarded, several tests are run with varying initial amplitudes. Next to the initial guess of 𝐴0/𝑢∞ =
3.5 × 10−3, therefore, 𝐴0/𝑢∞ = 0.026 and 𝐴0/𝑢∞ = 0.05 are run as well. Keeping in mind the histori-
cally widespread research into this type of flow field, the researcher is confident the optimal amplitude is
within these bounds. No irregularities are found within any of the convergence curves, which all appear
to converge smoothly to a single minimum value. Direct comparison of all the three initial amplitude
convergence curves (see Figure 5.9) confirms the effectiveness of the optimiser. The convergence
curves largely overlap and the same optimal disturbance amplitude is found each time, increasing
confidence in the NPSE optimisation results.

Figure 5.9: 𝜖 convergence plots for different initial amplitudes: (*) 𝐴0/𝑢∞ = 3.5×10−3, (∘) 𝐴0/𝑢∞ = 0.026 and (x) 𝐴0/𝑢∞ = 0.05.

Linear PSE is run for the same inflow amplitude of 𝐴0/𝑢∞ = 1.9401 × 10−2. Although linear PSE
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would make for a significantly faster optimisation tool, the problem with the equations is the inability to
assess its limitations efficiently. Results will always be returned, but it is hard to assess until what point
in the streamwise direction the results remain accurate. In this specific case, PSE was only accurate
up until 15% chord, as derived from the direct comparison with NPSE in Figure 5.10. Downstream
of 𝑥/𝑐𝑥 = 0.15, PSE and NPSE solutions start to differ noticeably. Because this research focuses on
the transition region, further downstream between 𝑥/𝑐𝑥 = 0.25 and 𝑥/𝑐𝑥 = 0.35 chord, PSE would not
result in a suitable inflow amplitude for the steady DNS. Therefore, the decision to use NPSE for the
optimisation tool was correct, and the researcher still deems it the most suitable tool for the job.

Figure 5.10: Chordwise evolution of 𝐴𝑢(0,𝑗)/𝑢∞ with 𝐴0/𝑢∞ = 1.9401×10−2, for linear PSE (∘) and NPSE Fourier modes j = 1-5
(-, thick-to-thin) and j = 0 (--). Vertical red line indicating experimental laminar-to-turbulent transition location.

5.2.2. DNS Results
The inflow disturbance amplitude resulting from the NPSE optimisation is used as an input for DNS.
Previous work by the likes of Casacuberta, Hickel, et al. (2022) showed DNS results to be really close
to its NPSE precursor. The DNS flow field that results indicates growing stationary crossflow vortices,
spaced 8mm apart as visualised by Figure 5.11. At 𝑥/𝑐𝑥 ≈ 0.18, the vortices reach a first saturation
amplitude, after which a second amplitude increase is discovered. This double saturation amplitude
growth is present in both NPSE and DNS. The double saturation curve could have a range of explana-
tions and is thought to be related to the pressure distribution imposed onto the flat plate geometry. After
the second saturation in amplitude growth at 𝑥/𝑐𝑥 ≈ 0.30, the amplitude noticeably starts to decline.
Most likely, this behaviour is related to the proximity of the outflow condition and the change in pres-
sure gradient moving more aft on the airfoil geometry. At the outflow, a constant pressure boundary
condition is applied, influencing the region of flow in its vicinity. There is no reason for concern, as
the influence remains local and the region of interest lies far upstream of the outflow, between 20%
and 35% chord. So although the amplitudes downstream of 𝑥/𝑐𝑥 = 0.32 are considered irrelevant
for comparison with the experimental results, since transition should already have occurred, it is still
useful to ensure the different numerical tools used throughout to generate the steady flow field agree
in this downstream region. Nevertheless, the main region of interest still lies upstream of the expected
transition front. Therefore it is positive that the three-dimensional boundary layer shows the presence
of strong stationary crossflow vortices, which is in line with the experimental results and can be linked
to the DREs used in the experimental model.

TheCFI amplitude growth in DNS, and the growth of its individual spanwise Fourier modes 𝐴𝑢(0,𝑗)/𝑢∞,
can be directly compared with the NPSE data to ensure the NPSE-based optimiser correctly repre-
sented the DNS simulations. By splitting up the total disturbance amplitude for DNS and NPSE into
modes 𝑗 = 1-5 and the mean flow distortion (𝑗 = 0), these modes can be graphically compared (see
Figure 5.12). The match between NPSE and DNS is very close until well past the transition region.
It is only downstream of 𝑥/𝑐𝑥 = 0.4 where the solutions start to diverge very slowly. As the region of
interest lies far upstream of this point, it is not expected to have any influence on the results. This ef-
fect is thought to be related to the outflow boundary condition in DNS, set to a constant static pressure
with a second-order Neumann-type boundary condition imposed on the velocity (Casacuberta, Hickel,
et al., 2022). This is an artificially generated boundary condition not directly based on the experimental
data, therefore, not likely to be a fully accurate depiction of reality. NPSE uses spatial marching in the
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x-direction, not solving the entire flow field at once. For this reason, the outflow boundary condition
does not affect the NPSE results as it marches towards it. DNS on the other hand, does get affected
by the outflow boundary conditions while solving for the complete flow field, making it a probable expla-
nation for the differences observed near the outflow. Among other possible causes for discrepancies
is the use of a flat plate domain, imposing the airfoil curvature of the experiment through boundary
conditions instead of simulating it. The use of a flat plate to emulate curved surfaces is generally ac-
cepted in numerical studies when the curvature remains low (Casacuberta et al., 2021). Small errors
based on this assumption may have been left undiscovered as this is the first direct numerical replica-
tion of this type of experiment. Although considered unlikely to introduce significant errors, this is an
assumption to keep in mind for future work, where further investigation into curvature effects could be
relevant. Disregarding these small differences near the outflow, DNS and NPSE agree very closely
in modal disturbance amplitude. The same also holds for the MFD and disturbance profiles as well,
where the difference is barely noticeable. Both the MFD and disturbance profiles at the locations of
the HWA planes, are compared with NPSE in Figure 5.14 and Figure 5.15, showing remarkably good
agreement. The resemblance of these curves for NPSE, DNS and HWA is further discussed at once
in the next section.

Figure 5.11: Steady DNS instantaneous 𝑄-criterion isosurface coloured by wall-distance (𝑦/𝛿0), along with 𝑦-𝑧 and 𝑦-𝑥 𝑢/𝑢∞
slices. Domain duplicated four times in z-direction based on periodic boundary conditions.

Figure 5.12: Chordwise evolution of the disturbance amplitude of inflow amplitude of 𝐴0/𝑢∞ = 1.9401 × 10−2, for NPSE (white
symbols) and DNS Fourier modes j = 1-5 (-, thick-to-thin) and j = 0 (--). Experimental laminar-to-turbulent transition location
indicated by vertical red line.

5.2.3. Steady Flow Field Review
The DNS simulation and NPSE results match closely up until 𝑥/𝑐𝑥 = 0.45. Due to the fact that NPSE
results are optimised to be as close as possible to the experimental data, the DNS simulation should
therefore also resemble the experimental data very well. Briefly comparing the maximum disturbance
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amplitude, this also appears to be the case, even though the experimental data points are limited
compared to the high-resolution numerical data set. Figure 5.13 provides this three-way comparison
for the disturbance amplitude (𝐴𝑞(0,0)) between NPSE, DNS and experimental data in graphical form,
normalised by the local free-stream velocity 𝑄𝑒.

Figure 5.13: Chordwise evolution of 𝐴𝑞(0,0)/𝑄𝑒 for NPSE (--), DNS (–) and experimental data (∘).

MFD profiles give a much better indication of the method’s accuracy at the HWA plane locations
than merely the maximum amplitude. All eight MFD profiles are shown for comparison in Figure 5.14,
and although there is variability between individual planes, the overall match with experimental data
is very close. The invariability between NPSE, DNS and experimental data is in this instance also
noticeable, with all three data sets producing very similar results. Even though the HWA data close to
the wall is not available due to the limitations of the measurement techniques, the characteristic shape
of the velocity profile that differentiates it from the baseflow boundary layer profiles is clearly visible and
incorporated within the area of comparison.

Figure 5.14: Mean Flow Distortion (MFD) profiles for all available HWA plane locations, comparing NPSE (--), DNS (–) and
experimental data (∘).

The disturbance profiles show a similar trend when comparing all three data sets, with the NPSE
and DNS results lying very close to each other. The direct comparisons for all available HWA planes
are given by Figure 5.13. The difference between the almost identical NPSE and DNS profiles when
compared to the experimental profiles is still noticeable, especially around the upper sections of the
boundary layer. Depending on the chordwise location, the upper peak of the different profiles is mis-
aligned differently. The error does remain within a couple of percent difference between the local peak
amplitudes, and the three different curves all remain close to each other when considering all eight
planes available. In view of the overall match across all planes, the numerical simulation is consid-
ered an acceptable replication of the experiment at this stage. This numerical twin of the experiment is



46 5. Results

by no means perfect but remains a significant improvement compared to previous work by the likes of
Nishino and Shariff (2010) and Tempelmann et al. (2011). The individual differences in the results when
analysing different HWA planes can potentially be linked to a multitude of factors, but can with certainty
partially be attributed to the variation in experimental measurements. As outlined in section 2.2, the
time-intensive process of acquiring HWA data led to the planes being measured on different days and
under slightly different environmental conditions, leading to a variation in data which is impossible to
simulate in one numerical equivalent. Additionally, the wind tunnel may contain flow features that the
numerical simulation does not take into account.

Figure 5.15: Disturbance profiles for all available hotwire plane locations, comparing NPSE (--), DNS (–) and experimental data
(∘).

Figure 5.16: 𝑢′/𝑢∞ at the domain inflow boundary, resembling free-stream turbulence as a 3D (left) and 2D (right) 𝑧-𝑦 plane at
𝑥/𝑐𝑥 = 0.05.

5.3. Secondary Crossflow Instability Development and Transition
Secondary crossflow instabilities develop inside boundary layers modulated by primary CFI (Malik et
al., 1994; Malik et al., 1999). These secondary CFI are thought to be the leading cause of flow break-
down into turbulence. The development of secondary CFI is accelerated by the introduction of free-
stream turbulence (FST) through receptivity, a process this work attempts to replicate numerically. The
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implementation of FST in the numerical domain is based on a combination of recent methodology im-
provements described by Schlatter (2000), Brandt et al. (2004) and Balzer and Fasel (2016). These
improvements in numerical FST generation allow for a structured approach going forward, increas-
ing confidence and repeatability for similar work in the future. FST is reconstructed by creating and
summing a large number of pseudo-random disturbance modes. Using the approach discussed in
section 4.4, a large number of disturbance modes are generated and summed. The two-dimensional
disturbance field that results can be visualised as a 𝑧-𝑦 plane (see Figure 5.16), showing the FST inflow
boundary condition in both two and three dimensions, for 𝑢′/𝑢∞. Designed to be added on top of the
steady flow field at the inflow boundary, this plane exhibits random disturbances across the majority
of its area, resembling the FST levels in the wind tunnel environment. Two exemptions include the
areas near the wall and the top boundaries. The former is related to the shear sheltering, described in
subsection 4.4.2. The zone near the top boundary is artificially damped through exponential decay to
avoid unwanted interaction between the FST and the domain top boundary causing numerical stability
problems.

Figure 5.17: Instantaneous snapshot of the unsteady DNS Q-criterion isosurface coloured by wall-distance (𝑦/𝛿0), along with
𝑧-𝑦 and 𝑥-𝑦 𝑢/𝑢∞ slices. The periodic domain is duplicated four times in z-direction.

The many additional inflow modes inevitably increase the complexity of the flow field. This com-
plexity of FST implies it is more computationally expensive compared to more discrete forcing methods
(e.g. Blowing & Suction), using fewer disturbance modes. Nevertheless, it is able to obtain a repre-
sentative flow field and laminar-to-turbulent transition process without the need for iteration, leading to
a reduction in total computational cost across the project. This method also repeatedly produces an
unsteady flow field that captures crossflow-driven transition and allows the investigation of the tran-
sition location, type, and frequency content. Along with the potential for further extensive analysis.
Figure 5.17 shows a section of the Q-criterion isosurface (𝑄 = 10−4), within which the majority of the
laminar-to-turbulent transition process can be identified. Although this type of numerical flow field can
potentially be achieved with previously established methods, this particular result is obtained with just
a single simulation. All while maintaining excellent correlation with experimental data, as this section
will point out. There is no need for iterating the boundary conditions and input parameters in a trial-and-
error-based approach. With the wind tunnel parameters known, the correct settings can be analytically
determined and implemented. The Q-criterion isosurface of the unsteady simulation, presented by Fig-
ure 5.17, shows a rapid transition from a laminar to a turbulent state. Visually indicating a type-I-driven
process, this already indicates qualitatively the type of transition is similar to the experimental equiva-
lent (Rius-Vidales & Kotsonis, 2022). In the following sections, the transition location, transition type,
and frequency content will be discussed further. This along with a discussion on the FST implementa-
tion and its impact on the entire numerical domain, as well as a comparison with numerical simulations
without FST implemented.
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5.3.1. Laminar-Turbulent Transition Location
During the experiment, the transition location on the wind tunnel model is extracted through infrared (IR)
thermography (Rius-Vidales & Kotsonis, 2022). Although not a possibility in the numerical simulation,
the skin friction forces at the airfoil surface can be used as an alternative measure to IR thermogra-
phy. This can be explained through the Reynolds analogy, directly linking the skin friction coefficient
to the amount of heat transfer that occurs at the wall (Anderson, 2016). Therefore, higher skin fric-
tion generates more heat transfer resulting in a hotter airfoil surface, indicating a similar temperature
distribution pattern to IR thermography at the airfoil surface (see Figure 5.19). Although differences
in absolute magnitude are to be expected, for which an error margin needs to be kept in mind when
directly comparing the spanwise-averaged transition location, the skin friction is considered a good
qualitative measurement to compare with the IR thermography-based transition location. In DNS, the
first cell layer at the wall is used to extract this skin friction across the two-dimensional boundary. Due
to the fact that turbulence is inherently unsteady, the shear from the numerical simulation as a function
of 𝑥/𝑐𝑥 is both time-averaged and spanwise-averaged over 0.4 flow-through cycles. This sampling
length equals 6.5 periods of 1kHz or roughly 0.025 seconds per data point. This averaging window is
deemed sufficient to compare with the experimental data, knowing the bulk of the dominant frequencies
are located between 2kHz and 7kHz. The skin friction coefficient values that result from the statisti-
cal sampling are represented by the curve in Figure 5.18, showing the spanwise-averaged 𝐶𝑓 along
𝑥/𝑐𝑥. The two-dimensional shear across the wall suggests again that the one-dimensional representa-
tion conceals information, given that the shear along the span varies for the same 𝑥/𝑐𝑥 positions (see
Figure 5.19).

Figure 5.18: Time- and spanwise-averaged 𝐶𝑓 as a function of 𝑥/𝑐𝑥 along the wall boundary in the DNS domain with FST,
indicating the experimental laminar-to-turbulent transition location (--) (Rius-Vidales & Kotsonis, 2022).

Figure 5.19: Time-averaged 𝐶𝑓 in the 𝑥-𝑧 plane along the wall boundary in the DNS domain with FST.

Figure 5.18 highlights that the friction coefficient in the turbulent region is threefold the magnitude
of the laminar equivalent just before transition. As the skin friction does not instantly switch from this
low-shear laminar state to a high-shear turbulent state, there is a transition region with high gradients in
between. The onset of transition, where the rapid increase of skin friction starts, is found at 𝑥/𝑐𝑥 = 0.33.
A maximum skin friction coefficient is reached downstream of 𝑥/𝑐𝑥 = 0.35. To determine the exact tran-
sition location, the location with the highest 𝐶𝑓-gradient in the transition region is chosen. This point
(𝑥/𝑐𝑥 ≈ 0.34) is deemed most representative for comparison with qualitative methods such as the IR
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thermography used here since it represents the centre of the boundary between two clearly-defined 𝐶𝑓
regions, namely the laminar and turbulent boundary layer states. The results of the IR thermography in
Rius-Vidales and Kotsonis (2022) indicate transition from laminar to turbulent flow at 𝑥/𝑐𝑥 ≈ 0.32. The
red dashed line indicates this location. Both transition locations are within 𝑥/𝑐𝑥 = 0.02 of each other,
with the numerical transition occurring downstream of the experimental transition. Although the numer-
ical transition front location is considered an accurate representation of the experiment by the author,
possible reasons for this discrepancy will be brought up during the remainder of this work, based on
a more detailed analysis of the CFI development and transition. To put the accuracy of the numerical
simulation into perspective, the time-averaged 𝐶𝑓 at the wall for both the numerical and experimen-
tal flows is also compared qualitatively. Figure 5.20 shows the IR thermography of the wind tunnel
model on the left and the time-averaged numerical 𝐶𝑓 at the wall on the right. These two-dimensional
planes confirm the average transition location differs by 𝑥/𝑐𝑥 ≈ 0.02, and both show a type of saw-tooth
pattern. However, this saw-tooth pattern appears to generate a significantly higher transition location
variability in the experimental IR thermography. Variations of 𝑥/𝑐𝑥 = 0.05 are no exception, whereas
the numerical field variations remain around 𝑥/𝑐𝑥 = 0.01. This variation shows experimental transition
occurs as early as 𝑥/𝑐𝑥 = 0.29, but also partially at 𝑥/𝑐𝑥 = 0.34, matching the numerical transition
location. This qualitative analysis indicates this numerical simulation is representative of the experi-
mental flow field, but most probably lacks some of the CFI characteristics inherent to the wind tunnel
or free-flight conditions which are causing larger transition location variability.

Figure 5.20: Experimental IR thermography of the wind tunnel model (left) and numerical wall shear (right), indicating the numer-
ical laminar-to-turbulent transition location (--) on both plots. IR thermography image reworked from Rius-Vidales and Kotsonis
(2022)

5.3.2. Secondary Crossflow Instability Type
As previously discussed in subsection 1.2.1, laminar-turbulent transition is triggered by secondary CFI
growth. Depending on the location within the boundary layer this secondary CFI manifests most dom-
inantly, this is referred to as Type-I, Type-II or Type-III secondary CFI (White & Saric, 2005). Rius-
Vidales and Kotsonis (2022) shows that in agreement with Serpieri and Kotsonis (2016), the secondary
CFI mode of Type-I drives the transition behaviour in the experiment considered in this work, show-
ing both a dominant Type-I secondary CFI, next to a noticeably present Type-II secondary CFI. It is
a well-documented transition process and is a crucial part of assessing the success of replication. A
detailed analysis of this secondary CFI is, therefore, desired to explain the small difference in transi-
tion location between numerical and experimental. The DNS results with FST applied appear to show
qualitative confirmation of both Type-I and Type-II secondary instability behaviour (see Figure 5.21 and
Figure 5.22). From the isosurfaces, Type-I secondary CFI is the most clearly recognisable, showing
vortex elongation in the upwelling region of the vortex creating diagonal streaks in both Figure 5.21
and Figure 5.22. Downstream, the rapid increase in secondary CFI in this region appears to break
down the elongated structures rapidly from around 𝑥/𝑐𝑥 = 0.34. During this process, the vortex elon-
gation in the Type-I region appears to influence the Type-II region more than seen in similar works
using the blowing and suction methodology instead of FST (e.g. Casacuberta, Groot, et al. (2022)).
The wall-distance colouring of the Q-criterion isosurface in Figure 5.21 accentuates this potential in-
volvement of the Type-II secondary CFI by colouring this region of instability darker blue, where close
to the turbulent region variations in colour start to appear. Both secondary instabilities of Type-I and
Type-II have been related to the development of the Kevin-Helmholtz type instability (Bonfigli & Kloker,
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2007). The Type-III secondary CFI is attributed to the interaction between stationary and travelling
crossflow vortices and is significantly harder to detect on the isosurfaces presented here (Rius-Vidales
& Kotsonis, 2022). Although further analysis is required to confirm if the Type-III instability is involved
in the transition process discussed here, the lack of Type-III instabilities in the numerical flow field is
to be expected due to the deliberate forcing of stationary disturbance modes at the numerical inflow
boundary. This, as well as the dominance of the Type-I and Type-II secondary CFI, can be confirmed
more definitively by analysing the velocity fluctuations in all three regions in the next few paragraphs.
Looking further downstream, from 𝑥/𝑐𝑥 = 0.36 onward, the breakdown of the flow structures does not
lead to the clearly distinguishable hairpin vortex structures described by Casacuberta, Groot, et al.
(2022). Instead, the turbulent boundary layer Q-criterion isosurface in Figure 5.21 shows much less
coherence. The second Q-criterion isosurface coloured by chordwise velocity (Figure 5.22) is also in-
cluded to allow for a different viewpoint on the transition process. Although the same conclusions can
be drawn from this second isosurface, the velocity differences around the different regions of instabil-
ity become more recognisable, as well as the chaotic-looking turbulent structures downstream. The
blending of the individual crossflow vortices into a single turbulent motion is also shown more clearly
through the diminishing velocity differences when moving downstream. As additional information, the
same isosurface coloured by 𝑣/𝑢∞ and 𝑤/𝑢∞ can be found in Appendix B as well.

Figure 5.21: Detailed snapshot of the unsteady DNS instantaneous Q-criterion isosurface coloured by 𝑦/𝛿0, along with 𝑦-𝑧 and
𝑦-𝑥 𝑢/𝑢∞ slices. Domain duplicated four times in z-direction based on periodic boundary conditions.

Figure 5.22: Detailed snapshot of the unsteady DNS instantaneous Q-criterion isosurface coloured by 𝑢/𝑢∞, along with 𝑦-𝑧 and
𝑦-𝑥 𝑢/𝑢∞ slices. Domain duplicated four times in z-direction based on periodic boundary conditions.

When comparing back to the transition behaviour seen by Casacuberta, Groot, et al. (2022), the
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Type-II region in both Figure 5.21 and Figure 5.22 shows noticeably more modulation with FST. This
increased modulation in both Type-I and Type-II regions might, in part, be caused by FST forcing a
broadband set of frequencies. Whereas the Blowing & Suction used in Casacuberta, Groot, et al.
(2022) and described in Appendix A forces discrete frequencies. This difference is then thought to
also be the cause of the less coherent turbulent structures downstream of transition in the FST-based
simulation. Qualitative analysis of the transition type already established some similarities between
numerical and experimental data through the isosurfaces. As no definitive conclusions can be drawn
from just isosurfaces of instantaneous flow variables, a quantitative analysis based on the standard
deviation of the temporal velocity fluctuations is performed as well (see Equation 4.16). By use of
the numerical instantaneous velocity data (𝑄) sampled at a frequency of 1𝑀𝐻𝑧, the velocity fluctua-
tions (𝑄′) measured by the HWA are numerically re-created. The numerical measurement points used
throughout this analysis form two-dimensional 𝑧-𝑦 arrays at a range of 𝑥-locations. The point spacing
within the arrays replicates the HWA plane resolution in y- and z-direction. This approach makes it pos-
sible to extract the numerical equivalents of the HWA planes. Through the standard deviation of the
instantaneous velocity measurements at each point, a spatial representation of the velocity fluctuation
magnitude and distribution is obtained in the form of 𝑧-𝑦 planes (see Figure 5.23).

Figure 5.23: Normalised standard deviation of the temporal velocity fluctuations (𝜎𝑄/𝑄𝑒, coloured contour plots) and matching
time-averaged velocity contour lines (𝑄/𝑄𝑒, solid lines).

Based on the full numerical data set (i.e. without frequency filtering), the eight planes in Figure 5.23
indicate the bulk of fluctuations is present in the upwelling region of the crossflow vortex, in the area
associated with Type-I secondary CFI. The evolution of these velocity fluctuations across the different
planes points towards a rapidly increasing growth rate in the downstream direction. The dominant
Type-I fluctuations also gradually start to expand towards the wall, and upwards towards the cusp of
the crossflow vortex, influencing the Type-II region. This confirms the qualitative analysis based on
the isosurfaces performed before that the transition behaviour is dominated by Type-I secondary CFI.
It does raise questions about the Type-II modulations observed in the isosurfaces of Figure 5.21 and
Figure 5.22, and their origin. While the isosurfaces hinted towards a separate Type-II secondary CFI,
it now becomes clear that Type-II itself is weak compared to the dominant Type-I secondary CFI in
the numerical flow field. Therefore, the modulations visible in the isosurface figures are thought to be
related more to the expansion of the Type-I towards the cusp of the vortex than a separate Type-II,
as visible in the downstream planes of Figure 5.23. With the numerical transition occurring further
downstream than the experimental data, additional planes downstream of the available HWA data are
extracted as well (see Figure 5.25). These additional 𝑧-𝑦 planes show rapid growth in unsteadiness
close to the transition location at 𝑥/𝑐𝑥 ≈ 0.34. Ultimately, the largest unsteadiness leading to transition
appears to start near the wall and spreads upward towards the cusp of the vortex. However, the bulk
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of the unsteadiness remains centred around the Type-I region, in line with the experimental results.

Figure 5.24: Normalised standard deviation of the temporal velocity fluctuations (𝜎𝑄/𝑄𝑒, coloured contour plots) and matching
time-averaged velocity contour lines (𝑄/𝑄𝑒, solid lines).

Figure 5.25: Normalised standard deviation of the temporal velocity fluctuations for both DNS (I) and HWA (II) data sets (𝜎𝑄/𝑄𝑒,
coloured contour plots) and matching time-averaged velocity contour lines (𝑄/𝑄𝑒, solid lines).

Because the exact HWA planes can be extracted from the numerical flow field, a direct compari-
son to confirm this analysis is also made possible. By processing the available 𝑄′ data for both data
sets in the same manner, a side-by-side comparison is generated in Figure 5.25. The top row in Fig-
ure 5.25 indicates the numerical instability evolution for four planes at different 𝑥/𝑐𝑥, while the bottom
row represents the equivalent processed HWA planes. Both the top and bottom rows show a similar
story, with clear Type-I dominant secondary CFI. The numerical secondary CFI remains centred closer
around this Type-I location and is largely limited to the upwelling region of the crossflow vortex, although
downstream these secondary CFI start to show signs of spreading towards the Type-II region as well.
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The HWA data, on the other hand, shows much more diffuse secondary CFI. While also centred around
the Type-I region, the temporal velocity fluctuations appear to spread out farther into both Type-II and
Type-III regions. Nevertheless, the largest magnitudes of 𝜎𝑄/𝑄𝑒 are achieved at roughly the same lo-
cations as the numerical equivalent, albeit a little closer to the wall within the upwelling region of the
vortex. These findings indicate that the numerical simulation follows a similar transition pattern as the
one observed in the experimental study performed by Rius-Vidales and Kotsonis (2022), where the
dominant temporal velocity fluctuations occur in the Type-I region.

Compared to the HWA data which only provides velocity magnitude (𝑄 = √(𝑢𝑐𝑜𝑠Λ + 𝑤𝑠𝑖𝑛Λ)2 + 𝑣2),
the numerical simulation provides the individual 𝑢-, 𝑣- and 𝑤-components. This benefit of numerical
work can provide a wealth of additional information on the secondary CFI components in different
directions such as the standard deviation of the velocity fluctuations of the individual components 𝜎𝑢,
𝜎𝑣, and 𝜎𝑤 (see Figure 5.26). 𝜎𝑄 is added to the right of Figure 5.26 to compare with the velocity
magnitude measured by HWA. The most noticeable is the dominance 𝜎𝑢 and 𝜎𝑤, compared to the v-
component. The ratio between 𝜎𝑢 and 𝜎𝑤 remains roughly equal to the ratio of their mean velocities,
which results in equal orders of magnitude in Figure 5.26 as 𝜎𝑢 and 𝜎𝑤 are normalised by 𝑈𝑒 and 𝑊𝑒,
respectively. At the most upstream planes in the data set, 𝜎𝑣 remain small, several orders of magnitude
lower than 𝜎𝑢 and 𝜎𝑤. Because of the normalisation with 𝑉𝑒, which is several orders of magnitude
smaller than 𝑈𝑒 and 𝑊𝑒 as well, this difference remains somewhat masked in the figures used. From
Figure 5.27, it appears the increase in the magnitude of 𝜎𝑣 relative to the other components is larger
when moving downstream. Although only becoming manifesting larger values further downstream than
the 𝜎𝑢 and 𝜎𝑤 components, this indicates 𝜎𝑣 is nevertheless a contributor in the transition process. The
different frequency components of these temporal velocity fluctuations, which have currently only been
examined in terms of absolute magnitude, are the topic of the last CFI analysis between HWA and
numerical data. This is a necessary analysis in order to confirm the Type-I dominant secondary CFI
displays the same characteristics in both the numerical simulation and the experiment. Even though
the secondary CFI type appears similar between both data sets, the frequency analysis might lead to
an explanation for the slight difference in laminar-turbulent transition location.

Figure 5.26: Normalised standard deviation of the temporal velocity fluctuations in DNS at 𝑥/𝑐𝑥 = 0.253, for 𝑢-, 𝑣- and 𝑤-
components (a-c) and the velocity magnitude 𝑄 (d). Time-averaged velocity contours are included as solid lines.

Figure 5.27: Normalised standard deviation of the temporal velocity fluctuations in DNS at 𝑥/𝑐𝑥 = 0.28, for 𝑢-, 𝑣- and 𝑤-
components (a-c) and the velocity magnitude 𝑄 (d). Time-averaged velocity contours are included as solid lines.

5.3.3. Frequency Content
To attempt to find an explanation for the slight delay in transition to turbulence, the similarity between
numerical and experimental data in terms of frequency content is evaluated through a Power Spectral
Density (PSD) analysis. This is a method to expose any discrepancies in the numerical flow field the
standard deviation approach (Equation 4.16) was not able to detect. Each type of secondary CFI has a
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characteristic frequency range, allowing an assessment of the flow field transition mechanics compared
to the experimental data, as well as historical work on this topic. The Type-I-driven laminar-turbulent
transition has been observed during the experiment of Rius-Vidales and Kotsonis (2022). Both the
numerical isosurfaces, as well as the temporal velocity fluctuations, have highlighted the numerical flow
field produces a similar-looking transition behaviour. The unfiltered standard deviation data 𝜎𝑞, confirms
Type-I is the dominant secondary CFI in the numerical flow field, and shows its spatial dependency.
Analysing the DNS measurement points located in the Type-I, Type-II and Type-III regions now allows
for a qualitative comparison of the frequency content between the experimental and numerical flow
fields, which is a key step in the identification of the Type-I secondary CFI dominance. At a single 𝑥/𝑐𝑥-
location, the PSD analysis related to each secondary CFI type is extracted for direct comparison (see
Figure 5.28). A PSD plot for a point in the free-stream flow is added for comparison as well. All four
measurement points are indicated on the average velocity contour on the left of Figure 5.28. The plane
depicted here is just downstream of the 𝑥/𝑐𝑥 = 0.28 HWA plane. This is the most downstream HWA
plane, which is deemed most relevant for the transition process as it is closest to the transition location.
The conclusions drawn from Figure 5.28 are two-fold. The broadband lower frequency component of
the fluctuations, between 1𝑘𝐻𝑧 and 3𝑘𝐻𝑧, is clearly present in both data sets. This agrees well with the
observations reported in Rius-Vidales and Kotsonis (2022), where a low-frequency peak centred around
2𝑘𝐻𝑧 was also distinguishable. Within this band, the Type-I CFI is found most dominant, confirming
the transition type discussed before. Type-II frequency amplitudes are lower magnitude than Type-
I, but still much more pronounced than Type-III instabilities. From this single plane can already be
observed that the numerical simulation is lacking the high-frequency components of 𝑞′. (Rius-Vidales
& Kotsonis, 2022) points out a high-frequency component centred around 5𝑘𝐻𝑧 not distinguishable in
the numerical results. While already present upstream of 𝑥/𝑐𝑥 = 0.253 in experimental data, the high-
frequency component does not start to show up until very close to the transition region, downstream
of the last available HWA plane at 𝑥/𝑐𝑥 = 0.28 (Figure 5.28). The apparent sudden damping of these
lacking high-frequency components in the numerical results is thought to be related to discrepancies in
the numerical setup, either through the inflow boundary conditions or the dissipation of high frequencies
throughout the domain. If these are valid suspicions, and if the numerical setup is to blame for these
discrepancies, will be discussed in the next section of this chapter.

Figure 5.28: Power Spectral Density (PSD) analysis of the unfiltered temporal velocity data at 𝑥/𝑐𝑥 = 0.29 using probes in the
Type-I (P1), Type-II (P2), Type-III (P3) and free-stream flow regions.

Although it makes sense that the amplification of higher frequencies happens further downstream,
given transition occurs further downstream as well, frequencies above 4𝑘𝐻𝑧 only start to become sig-
nificant very close to transition. When performing a spectral analysis for the Type-I secondary CFI
point at a range of 𝑥/𝑐𝑥 planes (Figure 5.29), this trend in frequency growth can be assessed more
clearly. The dominant broadband frequency of 1 to 3 kHz is highlighted even further, monotonically
growing in magnitude when moving downstream. Although the higher frequencies also gain in mag-
nitude, the amplitude of all frequencies above 3𝑘𝐻𝑧 rises without a specific band visible. The most
explicit feature remains the prominent low-frequency band, which stays dominant until transition oc-
curs. Whereas no explicit signs of the experimental high-frequency band around 5𝑘𝐻𝑧 reported in
Rius-Vidales and Kotsonis (2022) appear across all 𝑥-locations, it is relevant to point out that broad-
band high-frequency content is still rapidly gaining amplitude. A higher-frequency component starts to
develop around 4𝑘𝐻𝑧 very close to transition, pointing towards its relevance for the transition behaviour.
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Nevertheless, considering the entire region upstream of transition, the high-frequency behaviour seen
during the experiment is not reflected in the numerical data.

The Type-II spectral analysis, performed in an identical way to the Type-I analysis, confirms both
areas of the flow are strongly linked in their transition behaviour (Figure 5.30). Although Type-I remains
dominant by several orders of magnitude, Type-II indicates the same dominant frequency band of 1𝑘𝐻𝑧
to 3𝑘𝐻𝑧 and a growth scenario centred around the 2𝑘𝐻𝑧 most amplified frequency. The larger ampli-
tude jumps between the most downstream planes do appear to indicate a significant increase in growth
rate close to transition. The higher frequencies also catch up with the lower frequencies, indicating a
noteworthy difference in growth rates. The Type-III frequency spectrum, on the other hand, remains
much flatter for longer. Plotted in an identical way to the Type-I and Type-II instabilities, Figure 5.31
again indicates maximum spectral amplitude around 2𝑘𝐻𝑧, although slightly biased towards lower fre-
quencies. A secondary peak around 4𝑘𝐻𝑧 starts to form slowly, but the amplitude remains inferior to
the lower frequency band. Next to the missing high-frequency band centred around 5𝑘𝐻𝑧, another ob-
servation for all three instability types is the apparent lack of variation in high-frequency content at all,
upstream of 𝑥/𝑐𝑥 = 0.33. At least up until very close to the transition region, where high-frequency os-
cillations are amplified rapidly. This behaviour is somewhat different from the experimental data, where
high-frequency content is already detectable in the HWA measurements at 𝑥/𝑐𝑥 = 0.22 (Rius-Vidales
& Kotsonis, 2022). Even though FST at the inflow boundary produces frequencies between 26𝐻𝑧 and
26𝑘𝐻𝑧, it appears from this spectral analysis that the receptivity process favours the lower frequency
bands. Higher frequencies do show rapid increases in growth rates very close to transition, however,
indicating they are still introduced into the flow. Their initial amplitude upstream could be a potential
reason for this behaviour, assuming their initial amplitude is significantly lower than lower frequencies.

Figure 5.29: Spectral analysis of Type-I probes at different chordwise locations in the outer upwelling region 𝑃1, ranging from
𝑥/𝑐 = 0.24 (thinnest line) to 𝑥/𝑐 = 0.35 (thickest line).

Figure 5.30: Spectral analysis of Type-II probes at different chordwise locations in the upper region of the crossflow vortex 𝑃2,
ranging from 𝑥/𝑐 = 0.24 (thinnest line) to 𝑥/𝑐 = 0.35 (thickest line).
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Figure 5.31: Spectral analysis of Type-III probes at different chordwise locations in the inner upwelling region 𝑃3, ranging from
𝑥/𝑐 = 0.24 (thinnest line) to 𝑥/𝑐 = 0.35 (thickest line).

This late exponential growth of high-frequency instabilities becomes evenmore visible when dividing
the signal per 𝑘𝐻𝑧, and analysing the overall picture for each 𝑥/𝑐𝑥 plane used. By calculating the PSD
for the temporal velocity fluctuations at each measurement point and dividing the PSD amplitudes into
1𝑘𝐻𝑧 bins, centred around each integer value (+/ − 500𝐻𝑧), a simplified analysis can be performed.
Integrating the amplitudes for each frequency bin across the entire plane at each 𝑥/𝑐𝑥 location, results
in a single amplitude value for each 𝑘𝐻𝑧 bin at each plane location. Figure 5.32 shows the growth
of this integral amplitude for the frequency bins from 1𝑘𝐻𝑧 to 7𝑘𝐻𝑧. From this comparison, 2𝑘𝐻𝑧 is
again found to be dominant across all planes, where the high frequencies start to catch up moving
downstream. When converting these amplitudes to non-dimensional values by dividing each curve
by their amplitude at 𝑥/𝑐𝑥 = 0.24, shows the exponential growth of the high frequencies even more
clearly. Although the growth of these higher frequencies seems much more gradual in the experimental
data, it is positive that these frequencies eventually appear in the numerical flow field as well, albeit
very late. Certainly when considering they are deemed responsible for the Type-I transition process
in crossflow-driven transition on swept wing flows. This difference in frequency content compared to
experimental HWA data does therefore not disprove these results. The neutral points for both high and
low frequencies as presented by Casacuberta, Groot, et al. (2022) could still be respected as well, since
also here, the amplification of the higher frequencies appears to start further downstream compared to
the low frequencies. This thought process banks on the initial amplitudes of the high frequencies being
significantly lower than the lower frequencies. When no longer integrating across the entire plane,
but looking specifically at the maximum amplitudes in the Type-I region, this hypothesis appears to get
confirmed. Figure 5.34 indicates the higher frequency components start at amplitudes several orders of
magnitude below the lower frequencies. Past 𝑥/𝑐𝑥 = 0.30, the higher frequencies then start to increase
in growth rate, almost catching up with the lower frequencies before transition occurs at 𝑥/𝑐𝑥 = 0.34.
This leads the author to believe the Type-I transition behaviour is more driven by lower frequencies than
higher frequencies. As lower frequencies tend to produce a less unstable crossflow vortex, this would
also explain the slight delay in transition when analysing the location observed in subsection 5.3.1.

Figure 5.32: Secondary CFI PSD amplitude development as a function of 𝑥/𝑐𝑥 for frequencies from 1𝑘𝐻𝑧 to 7𝑘𝐻𝑧, in bands of
1𝑘𝐻𝑧. Values are based on the integration of the amplitudes of each measurement point at a specific 𝑥/𝑐𝑥 location.
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Figure 5.33: Secondary CFI PSD amplitude development as a function of 𝑥/𝑐𝑥 for frequencies from 1𝑘𝐻𝑧 to 7𝑘𝐻𝑧, in bands of
1𝑘𝐻𝑧. Values are based on the integration of the amplitudes of each measurement point at a specific 𝑥/𝑐𝑥 location. Each curve
is normalised by their respective amplitudes at 𝑥/𝑐 = 0.22.

Figure 5.34: Secondary CFI PSD amplitude development as a function of 𝑥/𝑐𝑥 for frequencies from 1𝑘𝐻𝑧 to 7𝑘𝐻𝑧, in bands of
1𝑘𝐻𝑧. Values are based on the maximum PSD amplitude found at a specific 𝑥/𝑐𝑥 location.

To confirm this lower-frequency dominance and the differences in high-frequency amplitudes be-
tween DNS and experiments, a spatial analysis of the secondary CFI frequency bands was performed
as well. The author returns to the standard deviation analysis (𝜎𝑄/𝑄𝑒) like was performed in subsec-
tion 5.3.2. By now filtering the raw 𝑄′ signals, and using this to calculate 𝜎𝑄/𝑄𝑒 across each HWA plane,
the spread of frequency amplitude inside the crossflow vortices can be analysed. Following the same
steps outlined in Rius-Vidales and Kotsonis (2022), two frequency bands are filtered. A low-frequency
band (𝐵𝐿, 450𝐻𝑧 ≤ 𝑓 ≤ 3𝑘𝐻𝑧) and a high-frequency band (𝐵𝐻, 3.5𝑘𝐻𝑧 ≤ 𝑓 ≤ 9𝑘𝐻𝑧). Spatially repre-
sented by Figure 5.35 and Figure 5.36, respectively, they both compare four 𝑧-𝑦 planes upstream of
transition. For 𝐵𝐿, the magnitudes of 𝜎 remain very similar between both DNS and HWA data. Like in
the unfiltered data, the HWA data is again more diffused than the numerical equivalent, but the similar-
ities are apparent. The rapid growth in magnitude when moving downstream is also similar between
DNS and HWA. The differences in the magnitude of 𝜎 are more pronounced for 𝐵𝐻 in Figure 5.36,
where the maximum HWA 𝜎𝑄/𝑄𝑒 magnitudes are higher in every plane. More relevant perhaps, is the
noticeably faster growth in the magnitude of the DNS fluctuations, even though the initial magnitude
of 𝜎𝑄 in DNS at 𝑥/𝑐𝑥 = 0.284 is significantly lower than its HWA equivalent. This again backs up the
earlier findings that high-frequency content only becomes significant much further downstream in DNS,
but then starts to grow much faster than the HWA data indicates.

The numerical signal length of only 0.025s does not offer an explanation for the discrepancies in
the high-frequency band. With a sampling rate of over 250𝑘𝐻𝑧, the Nyquist frequency is as high as
125𝑘𝐻𝑧, more than sufficient for capturing 5𝑘𝐻𝑧 velocity fluctuations. The shorter signal only influences
the lowest possible frequency captured, although this is well below the range of interest, at 180𝐻𝑧.
The free-stream turbulence modes prescribed at the inflow boundary also introduce a large range of
frequencies, from 26𝐻𝑧 to 26𝑘𝐻𝑧, excluding insufficient frequency range from the potential issues.
The amplitudes assigned to the disturbance modes introducing these frequencies do potentially cause
problems, though it is an unlikely scenario. The distribution of free-stream turbulence inflow modes
is based on energy. Distributed around a central frequency based on the turbulence integral length
scale, it provides an optimal spread, even though the frequency bands furthest away from this central
frequency are less represented in the flow field. This under-representation of the higher frequency
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bands could point towards a discrepancy in dissipation rates, where higher frequencies are dissipated
faster. However, one thing becomes increasingly apparent, which is the lack of high-frequency content
far upstream of the numerical transition region. All other factors considered when comparing DNS and
experimental data have a good agreement, only a tangible explanation for the lack of high-frequency
components is still missing to complete this study.

Figure 5.35: Bandpass filtered (𝐵𝐿,450𝐻𝑧 ≤ 𝑓 ≤ 3000𝐻𝑧) normalised standard deviation of the raw temporal velocity fluctuations
for both DNS (I) and HWA (II) data (coloured contour plots) and matching time-averaged velocity field 𝑄/𝑄𝑒 (solid lines).

Figure 5.36: Bandpass filtered (𝐵𝐻,3500𝐻𝑧 ≤ 𝑓 ≤ 9000𝐻𝑧) normalised standard deviation of the raw temporal velocity fluctua-
tions for both DNS (I) and HWA (II) data (coloured contour plots) and matching time-averaged velocity field 𝑄/𝑄𝑒 (solid lines)..

5.3.4. Receptivity: Free-Stream Turbulence
With free-stream turbulence being used as the source of unsteadiness in this simulation, it is most
likely to harbour the explanation as to why the high-frequency component of the Type-I secondary CFI
is underrepresented. Free-stream turbulence is continuously generated and prescribed at the inflow
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boundary of the domain. Its exact magnitude is based on separate wind tunnel tests measuring the tur-
bulence intensity at a range of different velocities with the model in the test section (Serpieri, 2018). Due
to the large relative spread of turbulence intensity values for the different velocities (see Figure 5.37a),
the decision was made to curve-fit the measurement points to get the best estimate of 𝑇𝑢. The result
is 𝑇𝑢 = 0.022%, which the numerical methodology introduces at the inflow plane using frequencies
between 46𝐻𝑧 and 26𝑘𝐻𝑧. Due to the methodology used to assign which frequencies get prescribed,
the spread is somewhat biased towards the lower side of the frequency spectrum, as visualised in
Figure 5.37b. After numerical implementation at the inflow, the energy contained within this FST spec-
trum starts to dissipate while propagating downstream. Unlike in the wind tunnel, there are no external
factors influencing and therefore dissipation of the FST in this case always starts immediately after ini-
tiation at the inflow. This implies the turbulence intensity value in the free-stream flow field decreases
monotonically and reduces an order of magnitude in intensity in a matter of 10% of the chord. The
extracted turbulence intensity values at several different x-locations along the chord, for two different
wall-normal distances in the free-stream flow, prove this high dissipation rate (see Figure 5.38a). It is
expected that the turbulence intensity value in the experiment remains relatively constant across the
test section, which is now proven not to be the case in the numerical domain.

(a) (b)

Figure 5.37: a) Wind tunnel 𝑇𝑢-levels without a model in the test section at a range of free-stream velocities (*), curve-fitted (–)
and interpolated for the required velocity (*). HWA-measured 𝑇𝑢 extracted from the sampled planes indicated for the readers’
information (∘) Turbulence intensity measurements performed by Serpieri (2018). b) Distribution of the relative amplitudes as-
signed to each frequency at the inflow of the numerical domain as part of the free-stream turbulence generation.

(a) (b)

Figure 5.38: a) DNS 𝑇𝑢-levels as a function of 𝑥/𝑐𝑥 for 𝑦/𝛿0 = 10 (–) and 𝑦/𝛿0 = 20 (--). b) 𝑇𝑢-levels in the DNS free-stream
flow as a function of 𝑥/𝑐𝑥 for the low-frequency band (𝑓 ≤ 3000𝐻𝑧, black line), the high-frequency band (3000𝐻𝑧 ≤ 𝑓, blue line)
and the total free-stream flow (red line).
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Now that a monotonically dissipating trend in the total FST propagation has been identified, a closer
look also reveals differences between the dissipation of high and low frequencies. By dividing the total
FST content into a low (𝑓 ≤ 3000𝐻𝑧) and high (3000𝐻𝑧 ≤ 𝑓) frequency segment, the overall dissipa-
tion trend discussed previously can be reconstructed for these separate segments (see Figure 5.38b).
Although the turbulence intensity levels for both segments very close to the inflow are similar, this anal-
ysis indicates these values start to diverge rather quickly further downstream. With the high-frequency
content dissipation faster, the difference in 𝑇𝑢 with the low-frequency content is already an order of
magnitude after only 5% of the chord. How large this impacts the frequency spectrum at positions
downstream of the inflow boundary is also clear when comparing overlapped PSD plots for different
𝑥/𝑐𝑥 positions (see Figure 5.39). While near the inflow boundary, the PSD spectrum is still roughly flat,
the higher frequency sections start to drop more quickly in magnitude than the lowest frequencies. This
difference in dissipation rate is therefore another major factor that could play a role in the suppression
of high-frequency content inside the Type-I secondary CFI region.

Figure 5.39: Spectral analysis of probes at different chordwise locations in the free-stream flow, ranging from 𝑥/𝑐𝑥 = 0.05 to
𝑥/𝑐𝑥 = 0.23, indicating the increased dissipation rate of the higher frequencies within the spectrum.

The HWA measurements at the upper boundary of each extracted plane provide data close to free-
stream conditions, although potentially contaminated by the boundary layer instabilities, these appear
to confirm the relatively constant turbulence intensity across the measurement domain assumed earlier.
Using the HWA planes is merely an estimation of the turbulence intensity values, however, and most
likely an exaggeration due to influences of the boundary layer. Even if the exact turbulent energy
dissipation rates across the experimental test section would be known, it would require significant
research and numerical implementation to impose the exact turbulence intensity values on the DNS
domain. On top of this inherent dissipation problem, grid resolution in the free-stream flow is coarser
than inside the boundary layer. To avoid additional dissipation increases related to grid resolution
increases in free-stream grid refinement are to be considered in future research. Being too costly
for this research, a higher grid resolution is not considered here. However, it is expected to improve
future research outcomes. Keep in mind that increasing resolution is not going to inverse turbulence
dissipation, but the process will most likely be delayed. Especially higher frequencies could benefit
from this improvement, potentially increasing the high-frequency content in the boundary layer as well.

Figure 5.40: Wall-normal velocity 𝑣/𝑢∞ along the domain top boundary (𝑦/𝛿0 = 25), where negative values indicate flow moving
towards the wing.

With the wall-normal velocity component in the free-stream flow pointing towards the wall, there is
an additional influx of unperturbed flow through the top domain boundary. In this particular simulation,
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free-stream turbulence is only being prescribed at the inflow boundary, and therefore the influx from
the top boundary does not contain any disturbances. Although the effect is minimal in the upstream
sections of the flow, its influence slowly gets closer to the boundary layer. Figure 5.40 indicates the
velocity through the top boundary, giving the reader an idea of the influx of flow not containing free-
stream turbulence. Based on this, it could be argued that future research should include free-stream
turbulence introduction through the top boundary if the domain increases in streamwise length.

5.4. Laminar-Turbulent Transition Without FST
Multiple other techniques to trigger unsteady disturbances in the flow field exist, such as the Blowing
& Suction technique commonly used when simulating incompressible flow turbulent transition over a
swept wing. Previously used in work as Casacuberta et al. (2021) and Casacuberta, Hickel, et al.
(2022), this Blowing & Suction technique is discussed more in detail in Appendix A. Proven to work
well in the past, this is a suitable technique to trigger unsteadiness inside the boundary layer. However,
it is more likely to require an iterative approach to arrive at the desired numerical solution than the FST
methodology presented in this work. To emphasise the effectiveness of unsteady forcing, and more
specifically the FST methodology used here, a simulation without any unsteady forcing is run as well to
briefly compare the impact on the transition front location and corresponding isosurfaces. This implies
continuing to run the steady flow field simulation used in the FST methodology, but instead of adding
unsteadiness, simply removing the artificial stabilisation (SFD). When left to develop without stabilisa-
tion, transition is expected to occur if the domain is large enough, regardless if unsteady forcing is used
or not. This approach is unlikely to result in a flow field that resembles the experimental measurements
since unsteadiness is inherently present near the numerical inflow boundary in every possible flight or
wind tunnel scenario. Nevertheless, it is an excellent confirmation numerical free-stream turbulence
improves the simulation capabilities of crossflow-driven transition over a swept wing. As the domain
remains the same as the previously discussed free-stream turbulence simulation, the transition location
of both cases can be assessed in the same way (see Figure 5.41). Through an analysis of the skin fric-
tion coefficient 𝐶𝑓 in Figure 5.41, the large difference with the experimental transition location becomes
clear. With transition in the numerical case without unsteady forcing occurring at roughly 𝑥/𝑐𝑥 = 0.42,
this results in a difference of about 𝑥/𝑐𝑥 = 0.1 with the experiment.

Figure 5.41: Time- and spanwise-averaged 𝐶𝑓 as a function of 𝑥/𝑐𝑥 along the wall boundary in the DNS domain without FST,
indicating the experimental laminar-to-turbulent transition location (--) (Rius-Vidales & Kotsonis, 2022).

Figure 5.42: Time-averaged 𝐶𝑓 in the 𝑥-𝑧 plane along the wall boundary in the DNS domain without FST.
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The two-dimensional plane of 𝐶𝑓 across the wing (see Figure 5.42) backs up this finding that with-
out unsteady forcing through FST, the transition front moves about 8% of the chord downstream, while
this difference is 10% chord compared to the experimental data. This behaviour is the logical result
of not introducing unsteadiness at the inflow boundary. Although the secondary CFI naturally starts to
develop moving downstream, these take longer to develop than disturbances already introduced with
a measurable amplitude at the inflow boundary. Looking at the Q-criterion isosurface of this simula-
tion in Figure 5.43, it shows very coherent structures leading to a seemingly slower transition process
compared to FST. Also starting with modulations in the upwelling Type-I region of the crossflow vortex,
these disturbances slowly start to spread around the Type-I region, eventually leading to breakdown.
The breakdown appears to start closer to the wall than with FST, affecting the upper parts of the bound-
ary layer less in the early stages of transition. Instead of Type-II modulation, Type-III seems the second
most dominant instability in this simulation, although conclusions can not be drawn from this isosurface
alone. The flow field after transition also shows a much less chaotic pattern than the FST simulation,
and the formation of hairpin vortices is clearly visible in a pattern similar to that seen with Blowing &
Suction in Casacuberta, Groot, et al. (2022).

Figure 5.43: Detailed snapshot of the unsteady DNS instantaneous Q-criterion isosurface without FST, coloured by 𝑣/𝑢∞, along
with 𝑦-𝑧 and 𝑦-𝑥 𝑢/𝑢∞ slices. Domain duplicated four times in z-direction based on periodic boundary conditions.

These clear differences with the FST simulation in transition type and behaviour amplify the need
for a suitable numerical framework to simulate crossflow development and transition to turbulence on
swept wings. The numerical use of free-stream turbulence for this purpose has proven to be a practical
tool to represent the experimental flow field. Therefore, it can already be concluded that there is a
clear need for artificial unsteadiness introduction in this type of simulation and that FST is an excellent
candidate to set up DNS in future research.
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Conclusion & Recommendations

This work’s main aim lay in determining how to generate a framework to numerically simulate the
development of crossflow instabilities (CFI) and transition over a swept wing. The structure ultimately
provided, based around a global free-stream turbulence (FST) method, offers flexibility towards future
research because of its lacking need for a priori transition information. This chapter concludes the
Master’s Thesis report by bundling the main findings of this work. Not only focusing on the agreement
between the experimental and numerical data sets but also on the possible reasons for discrepancies
between both. Assessing how the numerical tools played a role in the outcome, and what experimental
data proved to be most useful, leads to recommendations for future work. These recommendations
will be made on two main fronts: the reference experimental data available, along with the possibilities
for future improvement on the numerical methodology.

6.1. Conclusion
The generation of a framework for the simulation of CFI development and transition to turbulence over
a swept wing was based on the replication of experimental data obtained by Rius-Vidales and Kotsonis
(2022). Throughout the numerical reconstruction of the unsteady wind tunnel flow field, three major
components have been identified. The first of which was the baseflow, where baseflow refers to the
steady-state solution of the Navier-Stokes equations. To subsequently obtain the steady flow field,
primary crossflow instabilities (CFI) were then introduced in the baseflow, followed by the addition of
FST to trigger secondary CFI growth in the last step towards transition to turbulence. Resembling three
different stages within the transition process, the three steps were implemented chronologically. With
limited experimental data on the baseflow available, the spanwise invariant simulation was based on
the airfoil static pressure data and wind tunnel parameters such as inflow velocity magnitude and total
pressure. A model for incompressible swept-wing flow was laid out to generate this type of baseflow
repeatedly. Both experimental pressure data and the FSC boundary layer equations used for reference
indicate variations of less than 2% compared to the computed DNS free-stream velocity magnitude dis-
tribution, 𝑈𝑒. Even though in-depth confirmation of the numerical accuracy remains challenging due to
the lack of experimental data available on the baseflow, overall, a solid basis for the addition of primary
CFI was obtained. These primary CFI were generated by a linear local stability method (ILST) and
assigned an amplitude through NPSE-based optimisation before being added to the numerical domain
at the inflow boundary. Converged in time, the resulting flow field shows crossflow vortices creating
wave-like structures inside the boundary layer and is referred to as the steady flow field. Directly com-
paring numerical and experimental primary CFI growth rates, MFD and disturbance profiles showed
good agreement in both shape and amplitude.

The numerical match with experimental data at this stage was by no means perfect, however, but
remained a significant improvement compared to previous attempts by Nishino and Shariff (2010) and
Tempelmann et al. (2011). By building a numerical framework for the generation of inflow boundary
conditions with stability tools (ILST & NPSE), a fairly low-cost method to tailor the numerical flow field
to the experimental data has been developed. Proven to work for flow over the pressure side of an
airfoil, one of the main reasons for discrepancies in the results can be traced back to the experimental
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data. Sampling HWA data takes significant time and resources, leading to each of the HWA planes
being sampled on different days. The Low Turbulence wind tunnel at TU Delft is operated based on the
Reynolds number alone, therefore, the ambient parameters varied over the different experimental test
days. Among others, this led to noticeable differences in free-stream velocity and pressure. The vari-
ation in free-stream parameters the wind tunnel operated on while measuring each HWA plane were
discussed in section 2.2. Full correction for these differences is difficult, but their effects have been mit-
igated as much as possible by normalising the data before comparison. However, small errors varying
per plane are therefore still expected, and only the average fit to all planes is taken into account across
this research. Neglecting the geometric curvature of the airfoil can be considered another source of
error. The effect of the curvature is reproduced through the boundary conditions with success, but
exact replication remains an assumption based on small surface curvature. This effect is nevertheless
considered minor compared to not simulating the flow around the leading edge. Receptivity to distur-
bances is generally strongest near the front of the airfoil, which therefore plays a large role in transition
behaviour. Although mostly relevant for secondary instabilities, primary crossflow instabilities are also
first found near the leading edge. Without the most upstream 5% of the airfoil chord being simulated,
this work still managed to produce sufficiently accurate inflow boundary conditions to reproduce the
steady experimental flow field.

Other minor effects that could play a role in the result accuracy, such as wind tunnel wall influences
and the infinite span wing assumption, are excluded from this work but are thought to have limited
impact on this experimental setup (Rius-Vidales & Kotsonis, 2022). Based on the results presented
in this section, this method has proven to produce a steady numerical flow field very close to the
experimental equivalent. This method remains relatively low-cost and repeatable because of the use of
stability tools and the limited input necessary. Most NPSE input parameters are not case-specific, and
therefore the main challenge for future projects is related to obtaining an accurate baseflow as input for
the NPSE optimisation. If no DNS baseflow is available, the required input can also be generated using
numerical boundary layer solvers instead. When the baseflow is available and the experimental data
is then formatted correctly, the optimisation procedure is able to calculate the remaining DNS inputs
required. The experimental data used is preferably obtained through HWA or PIV techniques, which
allows for the straightforward generation of disturbance profiles. Other types of experimental data can
also be used, considering they can provide the necessary data to generate disturbance profiles. If that
is not possible, the method will have to be adapted for a different error metric. This flexibility implies
this methodology does not only work in a narrow range of applications but can be tailored to a number
of different inputs, depending on the experimental data and numerical tools available. The steady flow
field discussion can be closed here for now, as a well-matching numerical result is available as a basis
to start simulating unsteadiness.

By then numerically generating FST based on the wind tunnel measurements, secondary CFI
growth was triggered within the steady flow field. Without the addition of FST, transition was shown
to occur 10% of the chord further downstream than the experimental data suggested. Through the
addition of FST, this difference was reduced to a mere 2% of the chord downstream of the experimen-
tally determined transition front. Considering the spanwise differences in laminar-turbulent transition
location of up to 𝑥/𝑐𝑥 = 0.05 throughout the experiment, visible in the IR thermography images from
Rius-Vidales and Kotsonis (2022), the numerical transition-front location is still deemed an accept-
able compared to experiments. The Type-I-dominant transition behaviour present in the simulation
with FST also matches the experimental observations, even though the noticeable Type-II secondary
CFI response observed during the experiment remains largely subdued in DNS. Potential causes for
this discrepancy can be found in the secondary CFI frequency content. The lower frequency content
(450𝐻𝑧 ≤ 𝑓 ≤ 3000𝐻𝑧) in DNS is the most prominent in the Power Spectral Density (PSD) analysis.
This band is also distinguishable in the experimental PSD analysis, based on the HWA data from Rius-
Vidales and Kotsonis (2022). The most dominant frequencies measured during the experiment in the
Type-I region (4000𝐻𝑧 ≤ 𝑓 ≤ 6000𝐻𝑧), are noticeably less strong in the DNS. These high-frequency
secondary CFI are much less prominent in the earlier stage of transition in the numerical simulation.
However, the rapid growth of the high-frequency CFI very close to transition still indicates the same
Type-I-dominated transition mechanisms discovered in experiments. This delayed growth of higher fre-
quencies is most likely the cause of the small difference in transition-front location due to the inherent
high-frequency nature of the Type-I instability (Koch et al., 2000).

Despite the resemblance in transition-front location between the numerical and experimental data,
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the delayed amplitude growth of high-frequency secondary CFI thus indicated the necessity for further
research. The assessment of the similarity between both data sets hinged on two main pillars: the
NPSE optimisation leading to a representative steady flow field in DNS, and the FST methodology trig-
gering secondary CFI. While the former was proven to lead to an acceptable match with experiments,
FST required additional analysis to identify its current benefits and shortcomings. The capability of
FST to reproduce the unsteady flow field without the need for iteration on the boundary conditions is
its major advantage. Previous techniques such as Blowing & Suction, required a number of DNS itera-
tions to obtain representative inputs, while FST makes use of actual wind tunnel parameters, reducing
the need for iterative DNS simulations. In spite of it showing good agreement in transition location and
secondary CFI types, discrepancies in terms of frequency content were still noticeable with the exper-
imental equivalent. Considering the size of the numerical domain is significantly smaller than the wind
tunnel test section, an aspect of the unsteady experimental flow field is most likely under-represented
at the inflow boundary. The current methodology to generate FST focuses on the random distribution
of wavenumbers, which are all assigned certain energy levels based on the turbulence integral length
scale and the desired turbulence intensity. Despite high frequencies being introduced at the DNS in-
flow boundary, the current FST methodology indicates a distribution bias towards the lower frequencies
within the used range. Because of the turbulence integral length scale used, the energy distribution
within this frequency range is also biased towards the lower frequencies. Adding the problem that
higher frequencies dissipate rapidly within the free-stream flow, this is thought to be the main contrib-
utor to the delay of high-frequency growth within the Type-I and Type-II secondary CFI. Regardless of
the remaining discrepancies, this framework has shown potential benefits for future research. Next to
the optimisation technique to simulate the steady flow field reliably, the promising nature of FST gen-
eration in DNS has also been presented. Despite the need for more research on this front, the current
framework that has been developed for numerical simulation of crossflow development and transition
on swept wings showed room for both flexibility and repeatability. Therefore, the author is confident
the framework will prove valuable for future numerical and experimental research on incompressible
crossflow over swept wings. Not only as a whole, but also smaller sections to generate an accurate
baseflow, or create a trustworthy steady flow field for transition studies.

6.2. Recommendations
Based on the numerical match achieved, the framework for numerical simulation developed during
this research shows benefits for future research into crossflow, both with and without complementary
experimental data. Despite current shortcomings in terms of high-frequency oscillations in the laminar-
turbulent transition region, future work based on the findings of this research can fine-tune the function-
ing of this framework. This in turn can lead to achieving replication of more complex crossflow-driven
transition scenarios, at the same time enlarging the experimental data set noticeably.

6.2.1. Experimental Data
Acquiring experimental data of CFI-dominated boundary layers is a time- and cost-intensive process,
often limited in the type and amount of measurements that can be taken at once. Therefore, not all mea-
surement data desired to set up a numerical equivalent can always be provided. In this particular work,
a wealth of experimental data is made available, which is found still to be rather limiting when it comes to
setting up a simulation. To allow for baseflow simulation within this framework, surface pressure ports
are a necessity. Ideally, free-stream velocity components are available (i.e. through multi-axis HWA
measurements), though this work has proven decomposition is possible for incompressible flow without
major assumptions is possible. For steady and unsteady flow field generation, there is a need for some
sort of three-dimensional measurement data. Either through multiple two-dimensional HWA planes,
or PIV. Alternatives can replace HWA in the future, but this type of measurement is sufficient for this
framework. To increase confidence in the NPSE-based optimiser, individual velocity components are
still preferred over the velocity magnitude 𝑄 (= √(𝑢 cosΛ + 𝑤 sinΛ)2 + 𝑣2), to ensure all components
are adequately represented in the steady flow field. The main recommendation on the HWA or PIV
data for future work is to include several free-stream measurements, sufficiently far from the boundary
layer. Given the FST methodology works with free-stream wind tunnel conditions, it is beneficial to
have direct wind tunnel measurements available, rather than convoluted ways to obtain statistical wind
tunnel data. Despite being proven sufficient to produce an accurate numerical simulation within this
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framework, all measurement data used is considered strictly required. The additional measurements
mentioned in this section are therefore only desired to facilitate the process and reduce the number of
assumptions made.

6.2.2. Numerical Crossflow Replication
The baseflow and primary CFI components of the framework introduced here produce an acceptable
representation of the experimental flow field. The secondary CFI component based on FST requires
further research, in spite of its promising match with the experimental transition-front location and CFI
types. Therefore, the main recommendations for future work centre around potentially improving the
secondary CFI frequency content. Since the free-stream frequency content can be directly linked to
both the FST technique and the overall simulation setup, improvements to the methodology will be
required. A broader range of frequencies should be introduced, which is currently limited by the free-
stream grid resolution. By increasing this resolution, the range of wavenumbers used in the method-
ology becomes larger, resulting in a wider frequency spread at the inflow. Despite the inherent bias
of this method to lower frequencies, it is still believed this will shift the frequency range to higher fre-
quencies overall. To allow for these higher frequencies, and potentially lower dissipation rates, a higher
free-stream grid resolution will also have to be investigated. Higher resolution will inevitably result in
an increase in computational resources required but is deemed necessary to resolve these frequen-
cies across the domain. This increased resolution is thought to also lower dissipation rates, potentially
supporting the highest frequencies within the FST until further downstream. If this does not achieve
the desired results, a different method should be researched to keep the FST levels high throughout
the domain. If this is successful, one might think about moving the inflow boundary of the DNS domain
further upstream on the wing if computational resources allow. Since DNS currently only simulates
a small portion of the wind tunnel test section, a large number of assumptions were made about the
non-simulated flow around the domain. A larger simulation domain thus implies fewer assumptions in
this regard, as well as a long domain for sustained FST to influence the boundary layer and instability
growth. Additionally, an equivalent numerical simulation with this Blowing & Suction should also be run
to directly compare the FST methodology with existing methods for unsteady forcing. This is to provide
a more comprehensive study of the benefits and downsides of FST compared to established methods.
These recommended studies will further provide proof of the value of this work. The ultimate test left
will then be to apply the framework to a different low-speed experiment over a swept-wing model.
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A
Blowing & Suction

The most often used technique to introduce unsteadiness into the numerical flow field, other than free-
stream turbulence, is blowing & suction. This is a forcing method, that prescribes disturbances of a
set frequency, wavelength and amplitude at a fixed location on the wall. One can visually think of this
method as a vibrating membrane at a set location on the wall, which vibrates at a certain frequency
and amplitude with a preset wavelength. Since it has been the go-to method at TU Delft by work such
as Casacuberta et al. (2021) and Casacuberta, Hickel, et al. (2022), this work also aims to compare
the blowing & suction technique to the newer free-stream turbulence methodology. An assessment
can so be made to which technique is more applicable to similar numerical work. Blowing & suction
is commonly applied in combination with the numerical solver used at TU Delft, and therefore requires
minimal implementation. What is left is to determine the inputs necessary for the method to work.
This includes the surface section of the wall where the forcing is applied, and the different frequencies,
wavelengths and amplitudes forced.

The surface section used is often modelled as a strip in spanwise direction across the entire domain.
Forcing takes place near the inflow to allow the disturbances to develop naturally downstream. In this
work, settings are used from a very similar numerical flow field, set up by Casacuberta, Groot, et al.
(2022). Therefore the disturbance strip runs from 𝑥/𝛿0 = 20 to 𝑥/𝛿0 = 32, and across the full spanwise
length of the domain. The disturbance is prescribed within this strip through the wall-normal velocity,
calculated as

𝑣 (𝑥, 0, 𝑧, 𝑡) = 𝐴0𝑓𝑓 (𝑥) cos (𝛽𝑧 + 𝜔𝑡) , (A.1)

where 𝐴0 is the amplitude of the disturbances, 𝛽 is a spanwise wavelength, and 𝜔 the desired angular
frequency for the disturbance. The 𝑓-term ensures the disturbance strip blends smoothly into the rest
of the surface, without any irregularities (Casacuberta, Groot, et al., 2022). 𝑓 is set using purely the
x-coordinates of the disturbance strip, and calculated as,

𝑓𝑓 (𝑥) = (
4 (𝑥 − 𝑥start) (𝑥end − 𝑥)

(𝑥end − 𝑥start)
2 )

3

. (A.2)

Multiple spanwise wavenumbers and angular frequencies can be forced with this method, in which
case the different 𝑣-profiles calculated with Equation A.1 are summed before being added to the nu-
merical domain. For this simulation, the setup parameters of fellow researchers at TU Delft are repli-
cated, where only the fundamental spanwise wavenumber 0.6604 is used to force multiple angular
frequencies 𝜔. These frequencies range from 3𝑘𝐻𝑧 to 14𝑘𝐻𝑧, in increments of 1𝑘𝐻𝑧. Simply adding
this 𝑣-component to the domain at the predefined points results in the unsteady numerical simulation.
Although an easy and repeatable method to implement, it is time and cost-intensive to set up inde-
pendently. If wavenumbers and frequencies to implement need to be chosen without prior research to
base settings on, a trial-and-error approach would likely be needed. Inflicting a considerable amount of
computational cost, the free-stream turbulence method would therefore be a more efficient method if its
working is proven in this research. It is arguably also a less natural way of introducing disturbances into
the boundary layer. Instead of receptivity to the free-stream disturbances, blowing & suction enforces
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disturbances from the wall. This could potentially trigger different transition mechanisms than experi-
mental flows, and also the discrete frequencies being forced do not help with matching experimental
data.



B
Additional DNS Unsteady Flow Field

Isosurfaces

B.1. Q-Criterion Isosurface: Coloured by Wall-Normal Velocity

Figure B.1: Detailed snapshot of the unsteady DNS instantaneous Q-criterion isosurface coloured by 𝑣/𝑢∞, along with 𝑦-𝑧 and
𝑦-𝑥 𝑢/𝑢∞ slices. Domain duplicated four times in z-direction based on periodic boundary conditions.
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B.2. Q-Criterion Isosurface: Coloured by Spanwise Velocity

Figure B.2: Detailed snapshot of the unsteady DNS instantaneous Q-criterion isosurface coloured by 𝑤/𝑢∞, along with 𝑦-𝑧 and
𝑦-𝑥 𝑢/𝑢∞ slices. Domain duplicated four times in z-direction based on periodic boundary conditions.
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