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Abstract

This document presents the development of a user interface for an EEG motor imagery based Brain-
Computer Interface (BCI) as the interface subgroup. The aim of this subgroup in the project was to de-
sign and implement a graphical user interface (GUI) incorporating visual neurofeedback [1] to enhance
the accuracy of the decode algorithm, developed by the other subgroup, during the calibration/training
stage for the user such that the user will have better motor imagery control using the GUI. The GUI
features two interactive games, namely pong and breakout, and incorporates topographic maps dis-
playing the user’s brain activity. The primary goal of these maps was to improve the training process of
the algorithm for each individual user. Additionally, the thesis explores the feasibility of incorporating
steady-state visually evoked potential (SSVEP) elements in the games or for creating a new game that
combines motor imagery and SSVEP elements [2] allowing for more complex games to be played thus
positively affecting the user experience.
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Preface

This Bachelor thesis serves as a final graduation project in which the members of the group were tasked
to develop an electroencephalogram (EEG) based brain computer interface (BCI). Our subgroup specif-
ically was tasked with exploring the possibilities of user interfaces utilizing neurofeedback to potentially
improve the performance of the BCI system as well as create a fun and engaging environment for the
user. In this thesis, we will describe the design and implementation of a graphical user interface that
includes the ability to play two games providing neural feedback in the form of visual stimuli. Addi-
tionally, topographic mapping displaying the user’s brain activity is explored as well as research into
implementing SSVEP elements for future further development of the BAP project in order to positively
affect user experience.

We would like to thank our main supervisor prof. dr. B. Hunyadi and also prof.dr.ir. L. Abelmann for
giving his insight and advise during the project. Additionally we would like to thank the PhD students
who explained certain concepts as well as the staff of the Tellegen Hall, with a special emphasis on ing.
M. Schumacher who played the role of test-subject for numerous tests throughout the project.

We hope that this project will be picked up and further developed after completion of this thesis, since
it is a very interesting subject.
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1
Introduction

A Brain-Computer Interface (BCI) is a system that connects the brain with a computer and allows for
direct communication between the two [3], [4]. In Figure 1.1, a BCI is represented as a schematic. The
BCI works a follows: the user sets a mental intention, which creates a brain wave. The brain wave
is detected and recorded by a measurement device with electrodes and is then sent to a computer.
The acquired signal is then digitized and ready to be processed. In the signal processing, the signal
is decoded and translated into a command signal that is then sent from the computer to the interface
(effector). The interface executes the command it has received.

Figure 1.1: Schematic of a BCI [5]

Due to the setup of this system, it can be used for many different purposes. A lot of research has been
done already which uses some type of BCI, especially within the field of neurology and with the use of
electroencephalogram (EEG)-based BCI [6]. The research has resulted in many different applications
for which BCI has been proven useful. The following applications have been discovered:

1. Restoring neural functioning. An example would be a stroke, which causes not only motor im-
pairments but can also affect certain cognitive brain functions. [7] discusses stroke rehabilitation
methods including a section on using BCIs to stimulate affected brain regions into self-recovery.

2. Diagnosing neurological disorders. Several neurological disorders can be diagnosed with the
use of BCI such as epilepsy [8] and Parkinson’s disease. However, other disorders and diseases
such as brain tumors, ADHD and schizophrenia [9] can also be diagnosed using BCIs.

3. Physical rehabilitation. [10] discusses a BCI’s ability to stimulate physical rehabilitation for
patient with sensory-motor defects. They propose a method of combining exercise with video
games by using the kinect sensor (movement tracking).

4. Brain research. Brains are largely undiscovered mysteries due their vast complexity. BCIs can
be used to study brain activity and how certain processes are linked to which brain regions etc.
The researchers from [11] for example, studied learning behaviour in monkeys through BCIs.

5. Neuroprosthetics. [12] showed the feasibility of controlling an upper-limb prosthesis through a
BCI.

Even outside of medical research, BCI has shown to be very practical. While many applications have
been come up with, BCI has especially shown to have a lot of potential as a control system. So far,
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1.1. Problem definition 2

BCI has been used to control robotic systems, vehicles, and video games [6]. However, many of
these applications have been developed by using clinical-grade measurement equipment, which are
quite different from the consumer-grade measurement equipment that is available. Until this day, the
development of practical BCI applications using consumer-grade measurement equipment has been
not been as extensive as with the use of clinical-grade measurement equipment, and therefore, there
is still a lot of opportunity in that area of BCI development.

1.1. Problem definition
As mentioned previously, most BCI applications have been developed by using clinical-grade measure-
ment equipment. This type of equipment is very impractical when it comes to using it outside of clinical
settings. It requires very extensive and time-consuming setup, use and cleanup and it is expensive
[13]. Furthermore, the equipment has many uncomfortable electrodes that need conducting gel and
the system is stationary. Consumer-grade equipment have become more commercially available in the
recent years and have the advantages of being lighter weight, wireless, cheaper and generally easier
in use than its clinical-grade equivalent [14]. Whilst the consumer-grade equipment deals with issues
such as high susceptibility to noise, research has already shown that consumer-grade equipment can
still obtain ”fairly good quality EEG data” [15].

Today, the few consumer-grade measurement equipment on the market are either sold as merely a
measurement tool or come as a part of a simple BCI. These BCIs are often for entertainment purposes.
With this project, we hope to show that it is possible to create a BCI with consumer-grade measurement
equipment that has high practical value. We want to do this by showing that the BCI works well with
the interface that we create and consequently, the BCI system should work for applications such as
rehabilitation and online mobility for the motor-impaired. This thesis will describe and justify the design
process for the interface of the BCI.

1.2. Thesis outline
The thesis is structured as follows. In Chapter 2, the Program of Requirements is laid out. Chapter 3
explains the choice of the interface and the design plan created based on the requirements. Chapter
4 discusses the development of the games specifically and how the code written for the games is
structured. Chapter 5 goes into the literature study and tests conducted in order to make well-informed
decisions concerning the neurofeedback. In Chapter 6, some the steps taken towards the integration of
the entire BCI are described. Chapter 7 provides the conclusion and the future work that has to be done.
In the Appendices A-C, the Python scripts for the interface, topographic maps and the conducted tests
can be found. Appendix D contains the research done into the possibility of including SSVEP elements
in the games, with additional figures from the research located in Appendix E. Appendix F contains a
timetable with the tasks performed during the course of the project.



2
Program of Requirements

The general requirement from the BAP proposal goes as follows: create an EEG based BCI that will
allow a subject to control something. The general requirement for the interface subgroup has some
degree of freedom to it: create a user interface that can be interacted with based on the decoded
control signals from the decode subgroup. Although the proposal itself hinted at the use of a graphical
interface, it was still of importance to consider other forms of interfaces such as controlling an RC-car.
This consideration will be discussed in Chapter 3.

Based on the aforementioned general requirements, the interface group decided on the requirements
below with the primary goal of creating an enjoyable experience for the user.

• Must operate with a control input delay of less than 500 ms between the mental intention and the
command execution.

• Must receive commands from the decode group with an accuracy (with respect to the user’s
actual brainwaves) of at least 70 percent.

• Must be completed without needing any additional budget.
• Must create an initial user interface that works through manual control(such as a keyboard) and
that can easily be updated to work through decoded signal control.

• Should/could create a user interface for the user to control using control inputs from the decode
group.

• Should/could add a live topographic map that displays the brain activity and/or a live time-
frequency plot.

• Should/could add a calibration hub to obtain training data such that the decode subgroup can
use it as a baseline.

The 500 ms delay between the mental intention and the command execution is based on the idea that
having more than that amount of delay would be rather frustrating even when controlling simple things
such as a cursor. Similarly, a brain wave decoding accuracy of less then 70 percent will very likely
result in a less enjoyable experience for the user. Both the delay and accuracy requirements are a
necessity for the interface but is something that only the decode subgroup can work towards; therefore,
this requirement is also included by the decode group. It should however be said that the interface
group can have a small influence on the delay between receiving the command and the execution of
the command on the interface depending on the type of interface implemented; think of the time needed
to execute code or sending a command over Bluetooth to an actuator. The should/could requirements
include a topographic map of the scalp that would show the user which parts of their brain are the
most active, providing feedback. This also provides useful data and performance metrics for further
development and improvement of the EEG-BCI and for brainwave activity research purposes. The
other should/could requirement is a calibration hub such that the decode model can be trained for
every user separately since each individual’s brain works differently.
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3
Design of the interface

3.1. Interface choice
The choice for the type of interface affects the appearance and goal of the product as a whole and is
thus an important choice in the project. The following concepts were considered:

• Translation of covert speech to the selection of a specific word
• Control of a wheelchair/drone/RC-car
• Identification of emotions
• Control of a cursor
• Control of a game

Each of these designs was also proposed with the impact that the product could have on potential
users in mind. For most designs, the product is aimed at people with a certain impairment since they
would have a necessary use for the product. The budget requirement and time constraints have the
highest priority within the project and thus weigh greatly for the choice of the end product/interface. The
”translation of covert speech to the selection of a specific word” was taken out of the running mostly
because it would not be feasible within the given time range. Additionally, the knowledge needed to
accomplish this is not in line with that possessed by bachelor students. Controlling a wheelchair, drone
or vehicle with brain waves would not only violate the budgetary requirement because of the hardware
needed, there would also be a huge safety concern which would require too much time to offset. The
identification of emotions was deemed too complicated since there is a lot of discrepancy between
individuals in the way a specific emotion shows up in electroencephalographic (EEG) data [16].

This leaves only the option for the cursor and game. Ultimately, it was chosen to try to implement
both of these with the game as a main component because it satisfies the budgetary requirement
and was estimated to be feasible time-wise. Furthermore, this option was also feasible in terms of
required background knowledge with choosing motor imagery as the control paradigm. The control of
a cursor is also planned to be developed as soon as the decode subgroup would be able to classify
five different control commands since the additional implementation of a cursor would be relatively
straightforward. Another crucial factor for choosing a game for the interface is the fact that according
to literature, visual feedback can help the user better control the game with their brain waves. Overall,
using a graphical interface in the form of a game has a lot of potential for further development after the
Bachelor Graduation Project ends.

3.2. Design features
Since the main task for this subgroup is to create a graphical user interface in the form of a game for
the user to control, it is important to design the interface as user-friendly as possible. The interface
consists out of several features that ought to optimize user experience. The user can choose to pick
one of the features at the main menu. If the cursor hoovers over one of the menu options, that options
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3.2. Design features 5

takes on another color until the cursor is moved away from the menu option again. This phenomenon
can be seen in Figure 3.1. If the user wants to select the option that the cursor is hoovering over, the
user sends the correct command for that. If the cursor control does not end up being implemented as
mentioned in the previous section, then it is the plan to have the user be able to scroll through the menu
options and select one since this needs less control commands than a cursor that has to move freely
over a large area.

Two of the features that can be selected in the menu are the games pong and breakout. For both
games, the user controls the paddle in two directions, left and right for breakout and up and down
for pong. It was decided to create both these games because of their simplicity and similarities but
also with the idea in mind to analyze whether there are any difference in motor control ability between
left/right and up/down after the BCI system if fully integrated. Because of the nature of the games, the
user has incentive to move the paddle such that the ball is being reflected and does not travel past the
paddle. The design of the pong and breakout games is further discussed in Chapter 4.

The third feature that can be accessed through the main menu is the calibration screen. The purpose
of the calibration screen is for the user to check whether the electrodes are making properly contact
with the user’s scalp. The screen displays a layout of the user’s head with the electrodes positioned
on them and the electrodes are colored according to the sufficiency of the electrodes’ contact with the
scalp; red if the level of contact is insufficient and blue if the level of contact is sufficient. The calibra-
tion screen also displays the impedance of each electrode. The layout of the calibration screen can be
seen in Figure 3.2. The calibration hub is to be completed with the display of a topographic map. The
topographic map is supposed to display the live-recorded EEG data from the user, and this format is a
clear and user-friendly way of doing this. It is intended for the topographic map to be shown on the in-
terface during calibration such that they can increase their awareness of the required level of focus and
intention to successfully control the games when playing them. The topographic map is also displayed
during the games to provide the user with extra feedback. There is more information on topographic
maps in Chapter 5.

Figure 3.1: Main menu with cursor hoovering over ”Calibration” option
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Figure 3.2: Calibration screen

3.3. Conclusion
As was described at the start of this chapter, a number of ideas for the interface were considered for
the product with the end user, the BAP team’s ability, time constraint and budget in mind. The final
choice fell on a graphical user interface in the form of a game and optionally a movable cursor as well,
since this fitted the best within all the requirements mentioned and due to the benefit of visual feedback
according to literature. The features that are implemented in the graphical user interface are a start
screen and two games: pong and breakout, which were chosen for their simplicity and the possibility of
analyzing any motor imagery control performance difference between the games once the BCI is fully
integrated. The details of the two games and their implementation will be discussed in the next chapter.

It should be said that at the time of writing this thesis, the subgroups’ individual parts that form the
full BCI system are not integrated yet. The decode group focused on being able to decode 2-3 different
commands from the brain waves and since the cursor control requires 5 different commands, the cur-
sor has not been implemented as of yet. The start screen can still be navigated with a regular mouse
pad though. Also, the calibration hub was created but displaying the sensor electrodes does not work
since a way to send over the live impedances of the electrodes through the OpenVibe software was
not found. Openvibe will be explained in Chapter 6. If time permits it, the plan is to also figure out a
way together with the measurement group to still receive the live electrode impedances. This can also
be seen in the timetable in Appendix F.
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Pong and Breakout

The two games that have been implemented are the games pong and breakout. Both games require the
user to control a paddle in two directions such that a ball is reflected from the paddle instead of the ball
passing the line that the paddle moves across. The games are programmed in Python using a specific
library called Pygame. Pygame is designed for the development of video games in python and contains
several modules and features that are useful for this. This chapter will describe the process of designing
and implementing the games and will explain some of the principles behind certain techniques that are
used to give insight in some specific design choices. The last section of this chapter will also describe
the basic outline of the Pygame code for the games and the start screen.

4.1. Pong
Pong is a game that is played one on one. The user controls a paddle on one end of the field while the
other paddle on the other side of the field is controlled by another player or is AI-controlled. The goal is
to try to score a point by getting the ball past the paddle of the opponent and to prevent the opponent
from scoring a point by hitting the ball back to the opponent’s side of the field before the ball passes
one’s own paddle. The game ends when either the player or the opponent first reaches a score of five
points.

Figure 4.1: Pong
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4.2. Breakout 8

4.2. Breakout
Breakout is a single-player game where the user tries to eliminate all the bricks on the top of the screen
by hitting them with a ball. At the same time, the player must use a paddle to keep the ball from passing
through the bottom of the field and to reflect the ball back to the top of the field where the bricks are
located. If the ball gets past the paddle at the bottom of the field, the ball is put back in the game and
the player loses a life. The games ends when either all the bricks have been eliminated or the player
has no lives left, whichever happens first.

Figure 4.2: Breakout
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4.3. Coding process and outline
Figure 4.3 below shows a rough overview of the full Pygame code which includes the start screen,
calibration screen and the two games. In general, Pygame works by creating an infinite repeating
game loop according to a certain number of frames per second and within each iteration certain game
elements can be drawn on top of each other after which the screen is updated.

Figure 4.3: Code overview

The games are coded in a way such that they work on keyboard control, since the decode group must
first be finished with their decode algorithm in order to know how to integrate the decoded outputs with
the game. In the code, sprite classes are utilized for the paddles and the ball in which the drawing of the
object and behavioural functions are defined. A sprite class is defined by Pygame itself and contains
useful properties for moving objects. For instance, given that all sprite classes in one’s game have a
draw function defined, it is possible to draw them all at once on the screen with one line of code. The
small piece of code below shows such a draw function.

1 self.image = pygame.Surface([width, height])
2 self.image.fill(black)
3 self.image.set_colorkey(black)
4

5 #For the ball:
6 pygame.draw.ellipse(self.image, white, [0, 0, width, height])
7

8 #For the paddle:
9 pygame.draw.rect(self.image, white, [0, 0, width, height])

The way to create games in Pygame is by creating surfaces with shapes on them and then overlaying
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them on top of each other in the desired manner each iteration of the game loop. The small piece of
code above creates a surface of the same color as the background of the field (black), on which the
desired shape such as a circle is then drawn in white. This manner of creating visual objects is typical
for Pygame. The paddle class further contains functions that are called upon when their respective
key is pressed. As can be seen in lines 448-449 of Appendix A.1, if the key ”up” gets pressed, the
function move_player_up() is called, in which the vertical position of the paddle is adjusted upwards
if the topside of the paddle is still below the upper boundary of the screen. A similar mechanism is
used for the paddle to move down, left or right. The ball class contains update functions and a reset
function. In the update functions, the code is written such that the ball continues its course but gets
reflected if it hits a paddle, a brick in breakout, the upper or lower boundary of the field in pong, or the
upper, left side or right side boundary of the field in breakout. It also updates the scores of the players
if the ball hits the left side or right side boundary of the field in pong and updates the number of lives of
the player if the ball hits the lower boundary of the field in breakout. The reset function is then called,
which positions the ball back into the field and decides randomly in which direction the ball is launched.
The paddle move functions and the position update functions are part of the ’game logic’ in Figure 4.3.
The ball reflections are part of the ’bounce algorithm’ shown in Figure 4.3. Figure 4.4 below shows a
diagram of the ball bounce code in the case of collision between ball and brick in the breakout game.
The principle is the same for all other reflection such as the ones in the pong game. The initial script
for the interface can be found in Appendix A.1.

Figure 4.4: Ball bounce algorithm



4.4. Conclusion 11

4.4. Conclusion
The games pong and breakout are fully coded, implemented and tested with manual keyboard control.
The scripts are written with the user in mind; for example, the AI in pong is made to be imperfect and
the measurements of objects are defined such that the game can be played on screens with different
dimensions without looking distorted.

As briefly mentioned in the conclusion of the previous chapter (Section 3.3), at this time, the BCI sys-
tem is not fully integrated yet. In order to integrate the interface with the rest of the BCI, the code must
be slightly adjusted for the new input. This should not prove difficult since this could for example be
done with a single integer variable that is received from the decode group. This variable will replace
the keyboard inputs up/down or left/right. However, whether the games will still function accordingly
with the control commands that are decoded from the measured EEG data, can only be truly known
after testing the fully assembled BCI. Subsequently, some fine tuning of the ball speed, paddle speed
or AI behaviour might be needed to keep the games enjoyable to play. If time permits, the plan is to
integrate the BCI system and thus change the games control from keyboard to commands from the de-
code group in the weeks before the thesis defence. This can also be seen in the timetable in Appendix
F.



5
Visual feedback

5.1. Neurofeedback choice and improvement
As mentioned in the introduction, neurofeedback has proven to have a positive impact on the perfor-
mance of one’s motor imagery control [17]. This is especially significant since it allows for the BCI
system to have a higher overall performance without having to improve anything internally. Whilst neu-
rofeedback has shown to be beneficial for the most common modalities of sensory feedback across
the board, there are (sometimes subtle) differences between their efficacy on specific motor-imagery-
controlled mechanisms. For example, a 2023 study compared how tactile, visual and tactile-visual
feedback influenced the performance of participants executing several different motor controlled tasks
with a myoelectric prosthetic hand, and it concluded that each of the three types of feedback had the
most impact on a different type of motor controlled task [18]. Although [18] mentions multiple studies
with different conclusions on the comparison between the effectiveness of tactile and visual feedback,
it seems that some sort of kinesthetic feedback is generally more beneficial than visual feedback for the
improvement of motor imagery control [19]. Based on this knowledge, choosing a form of kinesthetic
feedback as the sole form of feedback or as part of the feedback system would optimize the overall BCI
system the most. However, Chapter 3 discussed the reasoning (such as time constraints and budget
etc) for choosing a graphical user interface and therefore visual feedback as neurofeedback, which
might not be the best option but still a fitting one in the context of this project. It is planned to test the
effect of the visual feedback after the entire BCI is integrated by having one test group doing motor
imagery through playing the games and having another test group simply doing motor imagery with
their eyes closed. The results are expected to show that the first test group has a higher accuracy in
the translation of the mental intention to the control command than the second test group. This would
indicate that the visual feedback in fact improves the performance of the entire BCI system.

5.2. Topographic maps
Another visual feedback related topic that was also included as a should/could element in the program
of requirements, is topographic maps ([20] discusses an algorithm for topographic brain activity plotting).
The idea behind using topographic maps, potentially during the calibration of the decode algorithm for
a user, is to help the user learn what works best and how hard they should focus to best control the
game by showing their brain activity. Furthermore, the topographic map can be displayed during the
game to provide the user with additional feedback.

5.2.1. Background
Understanding the information shown by topographic mapping of brain activity requires some knowl-
edge on what actually happens in the brain and how the EEG measurements are then used to create
the map.

In order for a certain brain activity to occur, neurotransmitters are used to signal neurons in the brain.

12
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Pyramidal neurons are neurons that are located near the cortical surface and are positioned perpendic-
ular to it. The apical dendrites of the pyramidal neurons lay parallel to each other and run from the cell
body to the cortical surface [21]. The arrangement of the pyramidal neurons is depicted in Figure 5.1b.
When the pyramidal neurons receive neurotransmitters, channels in the neuron membrane are opened
and allow for a flow of ions into or out of the neuron. As a result, an electrical potential is created in
the local extracellular space. For excitatory synapses, the local extracellular space becomes negative
while for inhibitory synapses, the local extracellular space becomes positive. A dipole exists as the rela-
tive charge in the non-local extracellular space is opposite to the charge in the local extracellular space.
This generates a current going in a specific direction [22]. Since the pyramidal neurons are arranged
parallel to each other, the currents can sum up to a large enough current that it can be detected through
the scalp [21]. In general, an area of about 10 cm2 should have simultaneously activated neurons for
the brain activity to be recorded over the scalp [21].
Synapses can exist close to the cell body of the pyramidal neuron or further away on one of the den-
drites. If a synapse that is located on an apical dendrite close to the cortical surface causes an Excitatory
Postsynaptic Potential (EPSP), or a synapse far from the cortical surface causes an Inhibitory Postsy-
naptic Potential (IPSP), the negative pole of the dipole is near the cortical surface. If a synapse that is
located on an apical dendrite close to the cortical surface causes an Inhibitory Postsynaptic Potential
(IPSP), or a synapse far from the cortical surface causes an Excitatory Postsynaptic Potential (EPSP),
the positive pole of the dipole is near the cortical surface. Figure 5.1b shows a visual representation of
this phenomenon.
Because the cortical surface does not run parallel to the skull everywhere, one does not simply observe
a positive or negative potential right above an area of neural activity. The orientation of the dipole along
the neurons relative to the scalp determines how the positive and negative potentials are distributed
on a topographic map. Figure 5.2 depicts how this occurs.

The electrodes measure the potentials on the scalp only on the point where they make contact. For
the areas between the electrodes, interpolation is used to calculate the potentials there [22]. The po-
tentials can then be mapped as has been done in Figure 5.3, where the blue color represents negative
potentials and the red color represents positive potentials. There is however also a different way of
plotting topographic maps compared to the ’classic’ topographic maps described before. Appendix E.3
shows an example of such a map which is called a PSD topographic map. Rather than potential, these
maps show the spectral power density averaged over a specified range of frequencies or at a specific
frequency. So to clarify, the units of the classic and PSD topographic maps are µV and µV 2/Hz re-
spectively. Note that the PSD topographic maps display only red colours since power spectral density
is always positive. It should also be noted that there are different ways of creating classic topographic
maps in temporal terms. As described before, PSD topographic maps are created by averaging the
PSD of a data segment over a certain range of frequency or at a certain frequency. For classic to-
pograhpic maps however, it is possible to plot the activity at one time instance as well as the average
activity over a certain time window.

(a) Pyramidal neuron (b) EPSP and IPSP [21]

Figure 5.1: Schematics of pyramidal neurons
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Figure 5.2: Orientation of dipole relative to the scalp [22]

5.2.2. Coding
Initially, a script for topographic mapping was written such that a recording of EEG data could be plotted.
The data that was used for this initial script was a motor control recording made by the measurement
subgroup. During the recording of the data, the subject had their left hand open hand, clenched a fist
and then released it again. The code for generating the topographic mapping is written in Python and
makes use of the library MNE. MNE is specifically made for working with neurophysiological data, which
includes EEG. In the code, a montage of the helmet with the sensors’ positions is created. The recorded
data is extracted from its file and set with the sensor locations; with this, topographic maps are created
for each timestamp. Using the function FuncAnimate(), an animation is created from the individual
topographic maps. The animation is similar to how the mapping should look like on live-streamed data.
The script of this code can be found in Appendix C.1. The code here creates a topographic map for
each timestamp, but the code can be adjusted such that the topographic map is made for the average
of multiple timestamps, as has been done for the code in Appendix C.2.

5.2.3. Interpretation
The topographic maps are relatively easy to interpret. In Figure 5.3, the topographic maps shown are
snapshots from the animation that was mentioned in the previous subsection. As mentioned in Section
5.2.1, the blue color represents negative measured potentials and the red color represents positive
measured potentials. The darker the color is, the higher the absolute amplitude is. The measured
potentials are scaled in µV . The topographic map is quite intuitive to read in the sense that the area on
the head plot with darker red or blue corresponds to the part of the brain where relatively more activity
is taking place. This phenomenon can also be seen in Figure 5.3.

(a) t = 0 - 0.128 s (b) t = 0.256 - 0.384 s

Figure 5.3: Left hand clench topographic maps
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As briefly mentioned before, the test setup from which the above topographic maps resulted, included
left hand clenches. The electrode placements on the scalp followed the 10-20 system. The 10-20
system, as shown in Figure D.2, is especially designed to capture all the different interesting brain
regions with specific electrode placements on the scalp. The electrodes names are a reference to
certain brain regions, where Figure D.2 also shows these main human brain regions and their names.
For example, in the O1 and O2 electrodes, the letter ’O’ stands for the occipital region and the number
1 indicates that it is the most left position; an increase in number means that the electrode is more to
the right.

(a) Brain regions) (b) 10-20 EEG electrode system

Figure 5.4: Brain regions and electrode placement

For this test, where the subject is clenching their right hand the regions of interest lie in the motor cortex
as indicated in the figure below. The motor cortex is mainly involved in planning, control and execution
of voluntary movements. The closest electrodes on the OpenBCI headset to this region are C3 and
C4. These are represented by two black dots in the previously shown topographic map, where C3 is
the middle left dot (near the slightly darker orange/red color) and C4 is the middle right dot (right on
top of the dark blue are). It is expected that from a left hand clench, there should first be a relatively
high negative potential response from C4 and a smaller positive potential at the opposite C3. Then
afterwards the opposite should happen where there will be a relatively high positive potential response
from C4 and a smaller negative potential response from C3. This phenomenon should show virtually
only in the alpha waves (7-12 Hz) [23]. Though, since during the test, the subject had their eyes closed
and sat as still as possible, these expected alpha wave potentials should be dominant such that they
will be clearly visible in the potential topographic map that contains all frequencies.

Looking back once again at the two topographic maps from the left hand clench in Figure 5.3, we
indeed see the high negative peak as the dark blue color on top of C4 in the left hand figure, alongside
the high positive potential in C4 in the right hand figure. A longer sequence of topographic maps from
this left hand clench are shown in Appendix E.1. The topographic maps are each created from the
average potentials from 32 samples of data (approximately equal to 130 ms). The maps start from t =
0, which simply indicates the starting point that was chosen where the left hand clench approximately
started and not the very start of the recording itself.

5.3. Conclusion
So now to go back to the initial goals of this chapter in order to discuss the conclusion for them: 1) dis-
cuss the choice of neurofeedback chosen and 2) create and implement topographic maps to potentially
help with user calibration.
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As described at the start of this chapter, it will only be possible to fully test the influence of visual
feedback and justify our choice once the entire BCI has been integrated using the work of all three
subgroups. So the conclusion is that tests should be done after integration in case of continuation
of the BAP project after the deadline. The proposal for the future is to create a test setup with two
separate groups where one group plays the games using the BCI system while the other group has to
simply close their eyes and attempt to think of left and right while comparing decode algorithm accuracy
results.

As far as the topographic maps go, it is possible to plot them for pre-recorded data. The previously
shown topographic maps from a left hand clenching data segment, showed results that were very sim-
ilar to what was expected. Though looking at the longer sequence of topographic maps in Appendix
E.1, it becomes evident that the topographic maps do not show perfect results. The second figure (t =
0.128-0.256) for example, shows an odd topographic map in-between the very nice looking maps. It
should also be said that not all left hand clenches appeared in the way shown in Figure 5.3. Sometimes
they showed very messy topographic maps indicating a lot of activity in other channels. Unfortunately,
the brain is very complex and recorded brain waves are very sensitive to all sorts of factors such as
test setup, focus, noise etc.

But nonetheless, the topographic maps could be a helpful tool for extra feedback by making the user
aware of the focus required to create a correct command from the decode algorithm. However, as will
be discussed in Chapter 6, the integration with the software that will connect all the subgroups together
and will provide the topographic maps with live data to plot, came with some issues. At this moment
in time, this issue was not solved. It was collectively decided that all the subgroups should focus on
their individual parts and to leave the live data integration for the weeks before the thesis defence,
which again can be seen in the timetable in Appendix F. Once the BCI is assembled, the effect of the
topographic maps can also be tested in a similar test setup as proposed for the testing of the visual
feedback that the game provides; have one test group train the decode algorithm with motor imagery
tasks while looking at the topographic map of their own brain activity while another does the same but
without the feedback from the topographic maps. A third and final test proposal is for testing the influ-
ence of showing the live topographic map of the user’s brain activity while playing the games. Similar
to the other tests, one group should play the game without the topographic map and the other group
with the topographic map.



6
Integration elements

6.1. Concurrency
The possibility of showing topographic maps of brain activity during the game was explored after the
creation of the intial script described in Section 5.2.2. Recall that this was a should/could point in the
determined requirements in Chapter 2 as well. Pygame already handles ’events’ such as keyboard
inputs in a concurrent way, however the future addition of live topographic map plotting might not work
so well in synchronous code. The infinite game loop iterates a certain number of times per second
and it could for example happen that the topographic map plot takes too much time in order for the
game loop to upkeep its framerate. The framerate is tied to the speed of certain game elements and
thus it could cause unwanted behaviour. In order to prepare for the need for parallel execution of both
the interface with the games and the topographic map plotting for the complete integration of the BCI
system, the possibilities of asynchronous/concurrent programming was researched and implemented
using an animation plotting function from the package matplotlib in Python to simulate the topographic
map plotting. There are three packages available for Python that allow for asynchronous, concurrent
and/or parallel execution of code: multiprocessing, threading and asynchio. Each of these has their
own advantages and disadvantages which will be discussed below in order to pick the most suited
option.

Multiprocessing runs multiple processes simultaneously and has a separate memory space for each
of the processes. It uses multiple CPU cores and is therefore able to truly run the processes parallel.
Being able to truly execute tasks parallel increases the performance of the program since the work-
load is distributed across the CPU cores and their resources are used efficiently. True parallelism
also comes with the benefit that the failure of one process does not affect the other processes which
makes for a more robust program. Because of the use of multiple CPU core, multiprocessing is great
for performing CPU-bound tasks such as simulations and extensive calculations. However, there are
also negative consequences attached to the use of multiprocessing. Even though the individual mem-
ory allocation of each process has benefits, it also results in a higher memory usage, which can be
a very large downside depending on the nature of the program multiprocessing is used on. Another
disadvantage of multiprocessing is the time consumption for the startup and teardown that comes with
the creation and management of processes, and for the additional communication overhead needed
to share data between processes. If these downsides have too large of a negative impact, the use of
threading or asyncio should be considered.

Threading allows for running multiple threads with a single process. Threading has the major advan-
tage that it is easily applicable; if code has not explicitly been written to run asynchronous, threads can
still be used with this. However, this also comes with a foundational limitation to threading. Threading
is not true parallelism. In Python, only one thread is allowed to execute code at a time. Threading is
still more efficient than subsequent programming but it is not improving the performance of a program

17
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on the same scale as for example multiprocessing does. That is not to say that there are not other
characteristics that make threading a viable option for certain scenarios. Threading comes with the
benefit that threads are lighter-weight than processes since the threads within a process share one
memory space. The shared space of memory also allows for simplified communication between the
threads within a process. Moreover, the creation and management of threads is generally faster and
requires less overhead than processes. Even though threads have great properties, there are also a
few issues to take into account with them. Multiple threads simultaneously accessing shared resources
can lead to race conditions and damage to data. Thread safety must therefore be managed but this can
be challenging. Furthermore, an increasing number of threads can exhaust resources for their creation
and the increasing overhead to manage the threads can have a negative impact on the performance.

Asyncio uses a single-threaded event loop to switch between coroutines, which results in efficient han-
dling of I/O operations without the execution being blocked. More specifically, the I/O-bound tasks are
efficiently handled because other coroutines are allowed to continue their execution while waiting for
I/O operations to complete. The keywords ”async” and ”await” are used to create the coroutines. The
coroutines can be scheduled and executed concurrently. The single-threaded operation of the event
loop provides a level of simplicity in reasoning the concurrency since there are not multiple processes or
threads to manage. It also makes asyncio more efficiently handle many concurrent connections, which
is a desirable trait for certain applications. Unfortunately, the single-threaded nature of asyncio also
has negative consequences; for once, it does not allow for true parallelism which makes CPU-related
tasks perform low with. Using asyncio can also be quite complex to incorporate if one does not have a
good enough understanding of its operating procedure.

When considering the concurrent execution of the plotting animation and interface games, the code
is not I/O bound. I/O bound refers to long waiting times on inputs, such as with servers processing
requests. The reason for implementing concurrency was the possible CPU bound within each game
loop iteration. According to the advantages and disadvantages of the three concurrency packages ex-
plained above, multiprocessing is the best option for a CPU bound problem. On the other hand, this
is not a classic CPU bound problem but a relative CPU bound caused by the framerate of Pygame
(number of game loop iterations per second). As a result, threading could also be suited for this par-
ticular case, since in case of running things concurrently the potential issue of the topomap plotting
taking too long for the game framerate is no longer. Both multiprocessing and threading have been
tested without any noticeable difference between the two. Due to the nature of the code it is hard to
truly benchmark the efficiency of both concurrency methods but since multiprocessing requires more
overhead, it was ultimately decided to go with threading. A number of things in the initial interface code
had to be adapted to work with threading. The revised code can be viewed in Appendix A.2.

6.2. Implementation
At the end of the project, it is the goal to integrate the parts from each subgroup into a fully functioning
BCI. Collectively, it was decided to first attempt to do the integration in OpenVibe [24]. OpenVibe is the
software that the measurement subgroup used to acquiring the data from the OpenBCI headset, which
streams the recorded raw data to a USB stick that can be plugged into a computer. OpenVibe can be
used to read out this USB stick and display the live incoming data. It is also possible in OpenVibe to
create boxes in which subsystems are defined and then to assemble the full system by connecting the
boxes with lines. The lines are drawn so that signals can be transported between different parts of the
system. For a Python script to be executed in OpenVibe, it must be put into a Python Scripting box
and the code itself should be structured in a specific manner. The code should contain a class called
MyOVBox which should be made up out of a constructor, a process function and a deconstructor. In
the process function, new chunks of data that have been stored in an input buffer by OpenVibe can
be accessed. The data is then to be used for whatever the script has been written for and possible
output data can be stored in an output buffer. Therefore, the Python code that has been written for the
interface has to be adjusted such that it conforms to this format. This manner of integration is using
built-in functions of OpenVibe, but it would also be possible to have the data from the OpenBCI headset
be streamed to an IP address and to access that data whilst executing the code in Spyder, PyCharm
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or another environment that supports Python. Both are possible but using the built-in functions of
OpenVibe would streamline the total integration of the BCI, so executing the code in OpenVibe is the
initial approach.

A first attempt towards integration was done by adjusting the code written for the topographic map for
it to fit the format that OpenVibe requires for Python scripts. If it ended up being possible to display the
topographic map in OpenVibe and to make the data it plots be live streamed, then this would indicate
that integrating the entire BCI system this way is very likely to be successful. OpenVibe essentially
calls on the process function every clock tick (with a maximum frequency of 128 Hz) to update the
input buffer with new chunks of data. As a result the way in which the animation is created in the
original script would not work with this architecture of data. Since the function that takes care of the
animation (FuncAnimation from the matplot library) in fact behaves as a while loop that runs until all
frames of the animation have been displayed, the execution of the script in OpenVibe would cause
the entire software to crash. The script was then rewritten such that the individual topographic map
for the average of a selection of timestamps would be plotted in a window and then the window would
be cleared; for the next iteration of the looping process function, the topographic map for the average
of the next selection of timestamps would be plotted in the same window and then the window would
be cleared again. The window should thus never close. However, running this script in OpenVibe
did not give the desired results. The topographic map of the average of a selection of timestamps
would be plotted but the window had to be manually closed before a new window would pop up with
the topographic map for the next selection of timestamps. The script can be found in Appendix C. It
is most likely that there is something internally with OpenVibe that causes this since the code does
work in Spyder when the OpenVibe-specific format is removed and the code is put in a while loop. The
alternative way of streaming the measurement data to an IP address and executing the code externally
would bypass the issues with OpenVibe; however, it does affect how the entire BCI is integrated. In
the coming weeks, this option that can be discussed and explored with the other subgroups.

6.3. Conclusion
The interface has also been coded in a revised way that allows for an animation to run concurrently with
the interface, in preparation for live topographic map plotting while running the interface as soon as the
BCI system is integrated. The method of concurrency was chosen to be the Threading method since
multiprocessing and threading showed no difference and threading is known to require less overhead.
Attempts at using OpenVibe to make the first steps towards the integration of the complete BCI have
been unsuccessful. More time must be done to either get this to work or an alternative method must
be explored.
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Conclusion

7.1. Conclusion
The goal of this part of the project was to create an interface as part of a BCI system. It was decided that
the interface were to consist out of two games that can be controlled using the command signals that
were decoded from the EEG data. Besides the two games that were developed, a complete graphical
user interface was created with additional features to optimize the user experience.

The interface had to comply to the requirements stated in Chapter 2. The requirements cannot be said
to have all been met so far; this is mainly due to the fact that we have not been able to receive input
from other subsystems to test requirements or be able to consider requirements fulfilled without that
ability:

• The requirement to create a user interface that works with manual control has been met.
• For the requirement to create a user interface for the user to control using control input from the
decode group, the user interface has in fact been created as mentioned in the previous point but
it is still not being controlled with decoded control commands.

• For the requirement to operate with a control input delay of less than 500 ms between the mental
intention and the command execution and the requirement to receive commands from the decode
group with an accuracy of at least 70 percent, these cannot be achieved (solely) by us. These
requirements are very much depended on the performance of the decode subsystem. We have
also not been able to test whether these requirements are met since that would require the full
integration of the BCI.

• The requirement for the subsystem to be completed without the use any additional budget has
been met.

• For the requirement to possibly add a live topographic map or live time-frequency plot, the topo-
graphic map has been implemented but has not been shown to work on live streamed data as of
yet.

• For the requirement to possibly add a calibration hub, many elements of this feature have been
written but as will be discussed in the next section, this is not completely finished.

Furthermore, research has been done into the possibility of including SSVEP elements in the games
in the future. This could be done by making the ball constantly flicker or even creating new games
that combine motor imagery tasks and SSVEP elements. The research is described in Appendix E.2.
This is placed in an appendix because the conclusions following from the research do not relate to the
requirements described in Chapter 2.
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7.2. Future work
There are several aspects of the interface that can be improved in the future such that the interface
can be fully functional and work within the BCI as intended.

As of now, the interface still works through keyboard and mouse control. A substantial amount of time
has already been spent adjusting pieces of code to attempt using it in OpenVibe. OpenVibe is the
environment which was initially intended for the project to integrate the entire system on but due to
the problems that were encountered trying to do this, as described in Section 6.2, this might not end
up being used. Either a lot of time must be spent resolving the problems or an alternative to using
OpenVibe must be searched for. Actually changing the keyboard input to a command input coming
from the decode subsystem should be quite straightforward.

As described in Chapter 5, the impact of the visual feedback still needs to be tested. Only after the
assembly of the complete BCI system, the tests can be conducted. Three tests have been proposed
to conduct after the completion of the BCI, which should indicate whether the visual feedback has an
effect on the user’s performance. The first test consists of two test groups where one group plays the
games using the BCI system while the other group is the control group. The second test requires the
first group to train the decode algorithm with motor imagery tasks with feedback from the topographic
map of their own brain activity, whilst the control group does the same but without the feedback from
the topographic maps. For the third test, the first test group plays the games with a live topographic
map as additional feedback and the control group plays the games without the topographic map being
shown. It is expected that in each test, the group with the (additional) visual feedback has better results
than the control group and that it can be concluded that the feedback improves the performance of the
entire BCI. However, this can only be done after the tests have actually taken place.

Another point of improvement would be the completion of the calibration hub. So far, several features
have been created for the calibration, such as the topographic map and the calibration screen with the
display of the electrode impedances and with the map that shows whether an electrode is making con-
tact with the user’s scalp. Above all, the calibration hub must be tested with live input from the headset
and decoded control commands, and again, this can only be done after the BCI is fully integrated.
For the calibration hub, there is also the issue with the ability to display the topographic map in the
same window as the calibration. This is mostly a stylistic issue as the topographic map could also be
shown in a separate window and still fulfill its purpose. Therefore, this issue has been put on the back
burner but this is still something we would like to resolve. The same is true for the topographic map
being displayed during the game.

As mentioned, research into the feasibility of including SSVEPs or combining them with motor imagery
to increase the user experience was done since it would allow for more complicated games to be
played. The research showed that we can see SSVEP responses from the measurement with the
OpenBCI headset and data acquisition methods employed by the measurement subgroup. Though,
the SSVEP responses were not present in the expected occipital channels. Since most SSVEP detec-
tion algorithms would then probably fail to actually detect them, it should be concluded that at this time,
working with SSVEPs will prove to be difficult. Nonetheless, SSVEPs are a very interesting topic and
thus we propose that in case of further development of the BAP project, more test should be conducted
to try and get better results such that combining SSVEPs with motor imagery and implementing an
SSVEP detection algorithm would be feasible in the future.
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A
Python scripts for the interface

A.1. Initial interface code
1 import ctypes
2 import random
3 import sys
4 from time import sleep
5

6 import matplotlib
7 import mne
8 import pygame
9 from matplotlib import pyplot as plt
10 from matplotlib.lines import Line2D
11 from matplotlib.pyplot import subplots
12

13 ctypes.windll.shcore.SetProcessDpiAwareness(1)
14 pygame.init()
15 pygame.font.init()
16 info = pygame.display.Info()
17 screen_width, screen_height = info.current_w, info.current_h
18 screen = pygame.display.set_mode((screen_width, screen_height))
19

20 # Global variables
21 playerScore = 0
22 AIScore = 0
23 playerLives = 3
24 gameState = 'start_menu'
25 sensor_change = 1
26

27 # Color definitions
28 black = (0, 0, 0)
29 white = (255, 255, 255)
30 red = (255, 0, 0)
31 blue = (0, 0, 255)
32 orange = (255, 119, 34)
33 yellow = (255, 225, 0)
34 green = (102, 204, 0)
35

36 # Create background to overwrite each frame
37 background = pygame.Surface((screen.get_width(), screen.get_height()))
38 background.fill(black)
39

40 # Frame rate
41 gameClock = pygame.time.Clock()
42 FPS = 120
43

44 # Speeds
45 ballSpeed = 3
46 rectangleSpeed = 6
47 cursorSpeed = 2

25
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48

49 # Object dimensions
50 ballWidth = 15
51 ballHeight = 15
52 paddleWidth = 10
53 paddleHeight = 100
54

55 BrickWidth = 120
56 BrickHeight = 50
57

58 # Check type of collision between the ball and a brick
59 def check_which_collision(ball, brick):
60 if ball.speedX > 0:
61 delta_x = ball.rect.right - brick.left
62 else:
63 delta_x = brick.right - ball.rect.left
64 if ball.speedY > 0:
65 delta_y = ball.rect.bottom - brick.top
66 else:
67 delta_y = brick.bottom - ball.rect.top
68 if abs(delta_x - delta_y) < 10:
69 ball.speedX *= -1
70 ball.speedY *= -1
71 if delta_x > delta_y:
72 ball.speedY *= -1
73 elif delta_x < delta_y:
74 ball.speedX *= -1
75

76

77 # Class for paddles
78 class Rectangle(pygame.sprite.Sprite):
79 def __init__(self, color, width, height, speed, posX, posY):
80 super().__init__()
81 self.color = color
82 self.width = width
83 self.height = height
84 self.speed = speed
85 self.posX = posX
86 self.posY = posY
87 self.rect = pygame.Rect(posX, posY, width, height)
88

89 self.image = pygame.Surface([width, height])
90 self.image.fill(black)
91 self.image.set_colorkey(black)
92

93 pygame.draw.rect(self.image, color, [0, 0, width, height])
94

95 # Move the paddle to the left but no further than the left field boundary
96 def move_player_left(self):
97 if self.rect.left > 0:
98 self.rect.x -= self.speed
99 return
100

101 # Move the paddle to the right but no further than the right field boundary
102 def move_player_right(self):
103 if self.rect.right < screen_width:
104 self.rect.x += self.speed
105 return
106

107 # Move the paddle up but no further than the upper field boundary
108 def move_player_up(self):
109 if self.rect.top > 0:
110 self.rect.y -= self.speed
111 return
112

113 # Move the paddle down but no further than the lower field boundary
114 def move_player_down(self):
115 if self.rect.bottom < screen_height:
116 self.rect.y += self.speed
117 return
118
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119

120 # Class for the ball
121 class Ball(pygame.sprite.Sprite):
122 def __init__(self, color, size, speedX, speedY, posX, posY, width, height):
123 super().__init__()
124 self.color = color
125 self.size = size
126 self.speedX = speedX
127 self.speedY = speedY
128 self.posX = posX
129 self.posY = posY
130 self.width = width
131 self.height = height
132 self.rect = pygame.Rect(posX, posY, size, size)
133 self.invisibleRect = pygame.Rect(posX, posY, size, size)
134 self.speedX = speedX
135 self.playerCollisions = 0
136

137 self.image = pygame.Surface([width, height])
138 self.image.fill(black)
139 self.image.set_colorkey(black)
140

141 pygame.draw.ellipse(self.image, white, [0, 0, width, height])
142

143 # Update the ball for pong based on events
144 def updateBall_pong(self, player, AI):
145 global AIScore
146 global playerScore
147

148 # Update ball speed based on which collision:
149 # - Collision with upper boundary or lower boundary
150 if self.rect.top < 0 or self.rect.bottom > screen_height:
151 self.speedY *= -1
152

153 # - Collision with left or right boundary --> player or AI gets a point, ball resets
to starting position

154 elif self.rect.left < 0:
155 AIScore += 1
156 self.reset()
157 elif self.rect.right > screen_width:
158 playerScore += 1
159 self.reset()
160

161 # - Collision with player's or AI's paddle
162 elif self.rect.colliderect(AI) or self.rect.colliderect(player):
163 self.speedX *= -1
164

165 # Update ball position based on speed
166 self.rect.x += self.speedX
167 self.rect.y += self.speedY
168 return
169

170 # Update the ball for breakout based on events
171 def updateBall_breakout(self, player):
172 global playerLives
173

174 # Update ball speed based on which collision:
175 # - Collision with upper boundary
176 if self.rect.top < 0:
177 self.speedY *= -1
178

179 # - Collision with lower boundary --> player loses a life, ball resets to starting
position

180 elif self.rect.bottom > screen_height:
181 playerLives -= 1
182 self.reset()
183

184 # - Collision with left or right boundary
185 elif self.rect.left < 0 or self.rect.right > screen_width:
186 self.speedX *= -1
187
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188 # - Collision with player's paddle
189 elif self.rect.colliderect(player):
190 if self.speedX > 0:
191 delta_x = self.rect.right - player.rect.left
192 else:
193 delta_x = player.rect.right - self.rect.left
194 if self.speedY > 0:
195 delta_y = self.rect.bottom - player.rect.top
196 else:
197 delta_y = player.rect.bottom - self.rect.top
198 if abs(delta_x - delta_y) < 10:
199 self.speedX *= -1
200 self.speedY *= -1
201 elif delta_x > delta_y:
202 self.speedY *= -1
203 elif delta_x < delta_y:
204 self.speedX *= -1
205

206 # Update ball position based on speed
207 self.rect.x += self.speedX
208 self.rect.y += self.speedY
209 return
210

211 # Reset ball to starting position, launch ball into random direction
212 def reset(self):
213 sleep(2)
214 self.rect = pygame.Rect(self.posX, self.posY, self.size, self.size)
215 self.speedX *= random.choice([-1, 1])
216 self.speedY *= random.choice([-1, 1])
217

218

219 # Class for button (menu options)
220 class ButtonRect:
221 def __init__(self, width, height, posX, posY):
222 self.width = width
223 self.height = height
224 self.posX = posX
225 self.posY = posY
226 self.invisibleRect = pygame.Rect(posX, posY, width, height)
227

228

229 # Class for text on buttons (menu options)
230 class ButtonText:
231 def __init__(self, color1, color2, posX, posY):
232 self.color1 = color1
233 self.color2 = color2
234 self.color = color1
235 self.posX = posX
236 self.posY = posY
237

238 # Text is a certain color if cursor hovers over the button
239 def Button_hover(self, words):
240 self.color = self.color2
241 self.Button_render(words)
242 return
243

244 # Text is a certain color is cursor does not hover over the button
245 def Button_unhover(self, words):
246 self.color = self.color1
247 self.Button_render(words)
248 return
249

250 # Render and blit the text of the button on the screen
251 def Button_render(self, words):
252 text = font.render(words, True, self.color)
253 screen.blit(text, (self.posX, self.posY))
254 return
255

256

257 # Lists that contain all the sprites intended for use in the games
258 all_sprites_list_pong = pygame.sprite.Group()
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259 all_sprites_list_breakout = pygame.sprite.Group()
260

261 # Font sizes
262 font = pygame.font.Font(None, 36)
263 large_font = pygame.font.Font(None, 60)
264

265

266 # PONG:
267 # Render scores for the player and AI
268 scorePlayer = font.render(str(playerScore), True, red)
269 scoreAI = font.render(str(AIScore), True, red)
270

271 # Create button (menu option) for pong
272 pongRect = ButtonRect(80, 20, screen_width / 2 - 50, screen_height / 2)
273 pongText = ButtonText(white, blue, screen_width / 2 - 50, screen_height / 2)
274 pongText.Button_render('PONG')
275

276 # Create objects
277 player_pong = Rectangle(white, paddleWidth, paddleHeight, rectangleSpeed, 40, screen_height /

2)
278 AI = Rectangle(white, paddleWidth, paddleHeight, rectangleSpeed, screen_width - 50,

screen_height / 2)
279 ball = Ball(white, 15, ballSpeed, -ballSpeed, screen_width / 2, screen_height / 2, ballWidth,

ballHeight)
280 pygame.mouse.set_pos(random.randint(0, screen_width - 20), random.randint(0, screen_height -

20))
281 pygame.display.flip()
282

283 # Add objects to list
284 all_sprites_list_pong.add(player_pong)
285 all_sprites_list_pong.add(AI)
286 all_sprites_list_pong.add(ball)
287

288

289 # BREAKOUT:
290 # Render lives of the player
291 livesPlayer = font.render(str(playerLives), True, red)
292

293 # Create button (menu option) for breakout
294 breakoutRect = ButtonRect(80, 20, screen_width / 2 - 82, screen_height / 2 + 50)
295 breakoutText = ButtonText(white, blue, screen_width / 2 - 82, screen_height / 2 + 50)
296 breakoutText.Button_render('BREAKOUT')
297

298 # Create objects
299 player_breakout = Rectangle(white, paddleHeight, paddleWidth, rectangleSpeed, screen_width /

2, screen_height - 40)
300 pygame.mouse.set_pos(random.randint(0, screen_width - 20), random.randint(0, screen_height -

20))
301 pygame.display.flip()
302

303 brick_colors = [red, orange, yellow, green, blue]
304

305 # Add objects to list
306 brick_list = [pygame.Rect(40 + i * (BrickWidth + 10), 40 + j * (BrickHeight + 10), BrickWidth

, BrickHeight) for i in
307 range(14) for j in range(4)]
308 all_sprites_list_breakout.add(player_breakout)
309 all_sprites_list_breakout.add(ball)
310

311

312 # CALIBRATION:
313 # Create button (menu option) for calibration screen
314 calRect = ButtonRect(80, 20, screen_width / 2 - 100, screen_height / 2 + 100)
315 calibrationText = ButtonText(white, blue, screen_width / 2 - 100, screen_height / 2 + 100)
316 calibrationText.Button_render('CALIBRATION')
317

318 # Create montage and info
319 standard_montage = mne.channels.make_standard_montage('biosemi16')
320 n_channels = len(standard_montage.ch_names)
321 info = mne.create_info(standard_montage.ch_names, 250, 'eeg')
322 info.set_montage(standard_montage)
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323 # channel_names = ['Fp1', 'Fp2', 'F4', 'Fz', 'F3', 'T7', 'C3', 'Cz', 'C4', 'T8', 'P4', 'Pz',
'P3', 'O1', 'Oz', 'O2']

324 channel_groups = [[0, 1, 2], [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]
325

326 # Create legend
327 legend_elements = [Line2D([0], [0], marker='o', label='Connected sensor',
328 markerfacecolor="#000080", markersize=22),
329 Line2D([0], [0],
330 lw=0),
331 Line2D([0], [0], marker='o', label='Unconnected sensor',
332 markerfacecolor="#800000", markersize=22)
333 ]
334

335 # Create display of electrode impedances
336 impRect = ButtonRect(80, 20, 1200, 150)
337 impText = ButtonText(white, white, 1200, 150)
338 impText.Button_render('Electrode impedances')
339

340 fp1Rect = ButtonRect(80, 20, 1150, 200)
341 fp1Text = ButtonText(white, white, 1150, 200)
342 fp1Text.Button_render('Fp1:')
343

344 fp2Rect = ButtonRect(80, 20, 1150, 250)
345 fp2Text = ButtonText(white, white, 1150, 250)
346 fp2Text.Button_render('Fp2:')
347

348 f4Rect = ButtonRect(80, 20, 1150, 300)
349 f4Text = ButtonText(white, white, 1150, 300)
350 f4Text.Button_render('F4:')
351

352

353 # Game loop
354 while True:
355 gameClock.tick(FPS)
356

357 # Exit interface if escape is pressed
358 for event in pygame.event.get():
359 if event.type == pygame.QUIT:
360 pygame.quit()
361 sys.exit()
362

363

364 # START MENU:
365 if gameState == 'start_menu':
366

367 # Exit interface if escape is pressed
368 keys = pygame.key.get_pressed()
369 if keys[pygame.K_ESCAPE]:
370 pygame.quit()
371 sys.exit()
372

373 # If mouse hovers over an option, let its text change color
374 # Go to the respective game state if the option gets selected
375 mousePOS = pygame.mouse.get_pos()
376 if pongRect.invisibleRect.collidepoint(mousePOS[0], mousePOS[1]):
377 pongText.Button_hover('PONG')
378 breakoutText.Button_unhover('BREAKOUT')
379 calibrationText.Button_unhover('CALIBRATION')
380 mouse_pressed = pygame.mouse.get_pressed(num_buttons=3)[0]
381 if mouse_pressed:
382 gameState = 'pong_game'
383 elif breakoutRect.invisibleRect.collidepoint(mousePOS[0], mousePOS[1]):
384 breakoutText.Button_hover('BREAKOUT')
385 pongText.Button_unhover('PONG')
386 calibrationText.Button_unhover('CALIBRATION')
387 mouse_pressed = pygame.mouse.get_pressed(num_buttons=3)[0]
388 if mouse_pressed:
389 gameState = 'breakout_game'
390 elif calRect.invisibleRect.collidepoint(mousePOS[0], mousePOS[1]):
391 breakoutText.Button_unhover('BREAKOUT')
392 pongText.Button_unhover('PONG')
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393 calibrationText.Button_hover('CALIBRATION')
394 mouse_pressed = pygame.mouse.get_pressed(num_buttons=3)[0]
395 if mouse_pressed:
396 gameState = 'calibration'
397 else:
398 pongText.Button_unhover('PONG')
399 breakoutText.Button_unhover('BREAKOUT')
400 calibrationText.Button_unhover('CALIBRATION')
401

402 # Display the buttons (menu options)
403 screen.blit(background, (0, 0))
404 breakoutText.Button_render('BREAKOUT')
405 pongText.Button_render('PONG')
406 calibrationText.Button_render('CALIBRATION')
407 pygame.display.flip()
408

409

410 # CALIBRATION SCREEN:
411 elif gameState == 'calibration':
412

413 # Exit interface if escape is pressed, go back to start menu if backspace is pressed
414 keys = pygame.key.get_pressed()
415 if keys[pygame.K_ESCAPE]:
416 pygame.quit()
417 sys.exit()
418 if keys[pygame.K_BACKSPACE]:
419 gameState == 'start_menu'
420

421 # Plot the electrode layout
422 if sensor_change:
423 fig, ax = subplots(1,1)
424 mne.viz.plot_sensors(info, show_names=True, ch_groups=channel_groups, linewidth

=0.5, show=False, axes=ax)
425 plt.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1.2,1.1),

frameon= False)
426 plt.savefig("sensors.png", dpi=150)
427 sensor_change = 0
428 sensors = pygame.image.load("sensors.png")
429

430 # Display the electrode impedances
431 screen.blit(background, (0, 0))
432 screen.blit(sensors, (20, 200))
433 impText.Button_render('Electrode impedances')
434 fp1Text.Button_render('Fp1:')
435 fp2Text.Button_render('Fp2:')
436 f4Text.Button_render('F4:')
437 pygame.display.flip()
438

439

440 # PONG:
441 elif gameState == 'pong_game':
442

443 keys = pygame.key.get_pressed()
444 # Exit interface if escape is pressed, go back to start menu if backspace is pressed
445 # Move player's paddle up if up key is pressed and down if down key is pressed
446 if keys[pygame.K_DOWN]:
447 player_pong.move_player_down()
448 if keys[pygame.K_UP]:
449 player_pong.move_player_up()
450 if keys[pygame.K_BACKSPACE]:
451 gameState = 'start_menu'
452 if keys[pygame.K_ESCAPE]:
453 pygame.quit()
454 sys.exit()
455

456 # Introduce imperfections in the AI
457 # - AI predicts the ball position if the ball is going towards the AI's paddle
458 # and passed the first quarter of the screen
459 # - AI executes a movement 70% of the time
460 if ball.speedX > 0 and ball.rect.x > 0.25 * screen_width:
461 if ball.rect.y < AI.rect.top and AI.rect.top > 0:



A.1. Initial interface code 32

462 bias = random.randint(1, 10)
463 if bias <= 7:
464 AI.move_player_up()
465 if ball.rect.y > AI.rect.bottom and AI.rect.bottom < screen_height:
466 bias = random.randint(1, 10)
467 if bias <= 7:
468 AI.move_player_down()
469

470 # Print all updated objects on the screen
471 screen.blit(background, (0, 0))
472 scorePlayer = font.render(str(playerScore), True, red)
473 scoreAI = font.render(str(AIScore), True, red)
474 screen.blit(scorePlayer, (0.25 * screen_width, 0.1 * screen_height))
475 screen.blit(scoreAI, (0.75 * screen_width, 0.1 * screen_height))
476 all_sprites_list_pong.update()
477 all_sprites_list_pong.draw(screen)
478 ball.updateBall_pong(player_pong, AI)
479

480 # Go to the end screen if either the player or AI reaches a score of 3
481 if AIScore == 3 or playerScore == 3:
482 gameState = 'end_screen'
483

484 pygame.display.flip()
485

486

487 # BREAKOUT:
488 elif gameState == 'breakout_game':
489

490 # Exit interface if escape is pressed, go back to start menu if backspace is pressed
491 # Move player's paddle left if left key is pressed and right if right key is pressed
492 keys = pygame.key.get_pressed()
493 if keys[pygame.K_LEFT]:
494 player_breakout.move_player_left()
495 if keys[pygame.K_RIGHT]:
496 player_breakout.move_player_right()
497 if keys[pygame.K_BACKSPACE]:
498 gameState = 'start_menu'
499 if keys[pygame.K_ESCAPE]:
500 pygame.quit()
501 sys.exit()
502

503 # Remove a brick if it has been hit with the ball
504 hit_index = ball.rect.collidelist(brick_list)
505 if 0 <= hit_index <= 14 * 4:
506 check_which_collision(ball, brick_list[hit_index])
507 brick_list.pop(hit_index)
508

509 # Print all updated objects on the screen
510 screen.blit(background, (0, 0))
511 livesPlayer = font.render(str(playerLives), True, red)
512 screen.blit(livesPlayer, (screen_width - 40, screen_height - 40))
513 all_sprites_list_breakout.update()
514 ball.updateBall_breakout(player_breakout)
515 all_sprites_list_breakout.draw(screen)
516 [pygame.draw.rect(screen, brick_colors[0], brick_list[i]) for i in range(len(

brick_list))]
517

518 # Go to the end screen if either the player has no lives left or all the brick have
been eliminated

519 if playerLives == 0 or len(brick_list) == 0:
520 gameState = 'end_screen'
521

522 pygame.display.flip()
523

524

525 # END SCREEN:
526 elif gameState == 'end_screen':
527

528 # Create a message with the result of the game
529 if playerLives == 0:
530 message1 = "You lost"
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531 message2 = "Score:"
532 message3 = "  {}".format(str(11 * 4 - len(brick_list)))
533 elif len(brick_list) == 0:
534 message1 = "You won!"
535 message2 = ""
536 message3 = ""
537 elif AIScore == 3:
538 message1 = "You lost"
539 message2 = "Score"
540 message3 = "{} - {}".format(playerScore, AIScore)
541 elif playerScore == 3:
542 message1 = "You won!"
543 message2 = "Score"
544 message3 = "{} - {}".format(playerScore, AIScore)
545

546 # Render messages
547 text1 = large_font.render(message1, True, red)
548 text2 = font.render(message2, True, red)
549 text3 = font.render(message3, True, red)
550

551 # Display messages
552 screen.blit(background, (0, 0))
553 screen.blit(text1, (screen_width / 2 - 100, screen_height / 2 - 100))
554 screen.blit(text2, (screen_width / 2 - 50, screen_height / 2))
555 screen.blit(text3, (screen_width / 2 - 40, screen_height / 2 + 50))
556

557 pygame.display.flip()

A.2. Concurrent interface code
1 import threading
2 import multiprocessing
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from matplotlib.animation import FuncAnimation
6 from time import sleep
7

8 import ctypes
9 import random
10 import sys
11 from time import sleep
12

13 import matplotlib
14 import mne
15 import pygame
16 from matplotlib import pyplot as plt
17 from matplotlib.lines import Line2D
18 from matplotlib.pyplot import subplots
19

20

21 # Check type of collision between the ball and a brick
22 def check_which_collision(ball, brick):
23 if ball.speedX > 0:
24 delta_x = ball.rect.right - brick.left
25 else:
26 delta_x = brick.right - ball.rect.left
27 if ball.speedY > 0:
28 delta_y = ball.rect.bottom - brick.top
29 else:
30 delta_y = brick.bottom - ball.rect.top
31 if abs(delta_x - delta_y) < 10:
32 ball.speedX *= -1
33 ball.speedY *= -1
34 if delta_x > delta_y:
35 ball.speedY *= -1
36 elif delta_x < delta_y:
37 ball.speedX *= -1
38

39

40 # Class for paddles
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41 class Rectangle(pygame.sprite.Sprite):
42 def __init__(self, color, width, height, speed, posX, posY):
43 super().__init__()
44 self.color = color
45 self.width = width
46 self.height = height
47 self.speed = speed
48 self.posX = posX
49 self.posY = posY
50 self.rect = pygame.Rect(posX, posY, width, height)
51

52 self.image = pygame.Surface([width, height])
53 self.image.fill(black)
54 self.image.set_colorkey(black)
55

56 pygame.draw.rect(self.image, color, [0, 0, width, height])
57

58 # Move the paddle to the left but no further than the left field boundary
59 def move_player_left(self):
60 if self.rect.left > 0:
61 self.rect.x -= self.speed
62 return
63

64 # Move the paddle to the right but no further than the right field boundary
65 def move_player_right(self):
66 if self.rect.right < screen_width:
67 self.rect.x += self.speed
68 return
69

70 # Move the paddle up but no further than the upper field boundary
71 def move_player_up(self):
72 if self.rect.top > 0:
73 self.rect.y -= self.speed
74 return
75

76 # Move the paddle down but no further than the lower field boundary
77 def move_player_down(self):
78 if self.rect.bottom < screen_height:
79 self.rect.y += self.speed
80 return
81

82

83 # Class for the ball
84 class Ball(pygame.sprite.Sprite):
85 def __init__(self, color, size, speedX, speedY, posX, posY, width, height):
86 super().__init__()
87 self.color = color
88 self.size = size
89 self.speedX = speedX
90 self.speedY = speedY
91 self.posX = posX
92 self.posY = posY
93 self.width = width
94 self.height = height
95 self.rect = pygame.Rect(posX, posY, size, size)
96 self.invisibleRect = pygame.Rect(posX, posY, size, size)
97 self.speedX = speedX
98 self.playerCollisions = 0
99

100 self.image = pygame.Surface([width, height])
101 self.image.fill(black)
102 self.image.set_colorkey(black)
103

104 pygame.draw.ellipse(self.image, white, [0, 0, width, height])
105

106 # Update the ball for pong based on events
107 def updateBall_pong(self, player, AI):
108 global AIScore
109 global playerScore
110 # Update ball speed based on which collision:
111 # - Collision with upper boundary or lower boundary
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112 if self.rect.top < 0 or self.rect.bottom > screen_height:
113 self.speedY *= -1
114

115 # - Collision with left or right boundary --> player or AI gets a point, ball resets
to starting position

116 elif self.rect.left < 0:
117 AIScore += 1
118 self.reset()
119 elif self.rect.right > screen_width:
120 playerScore += 1
121 self.reset()
122

123 # - Collision with player's or AI's paddle
124 elif self.rect.colliderect(AI) or self.rect.colliderect(player):
125 self.speedX *= -1
126

127 # Update ball position based on speed
128 self.rect.x += self.speedX
129 self.rect.y += self.speedY
130 return
131

132 # Update the ball for breakout based on events
133 def updateBall_breakout(self, player):
134 global playerLives
135 # Update ball speed based on which collision:
136 # - Collision with upper boundary
137 if self.rect.top < 0:
138 self.speedY *= -1
139

140 # - Collision with lower boundary --> player loses a life, ball resets to starting
position

141 elif self.rect.bottom > screen_height:
142 playerLives -= 1
143 self.reset()
144

145 # - Collision with left or right boundary
146 elif self.rect.left < 0 or self.rect.right > screen_width:
147 self.speedX *= -1
148

149 # - Collision with player's paddle
150 elif self.rect.colliderect(player):
151 if self.speedX > 0:
152 delta_x = self.rect.right - player.rect.left
153 else:
154 delta_x = player.rect.right - self.rect.left
155 if self.speedY > 0:
156 delta_y = self.rect.bottom - player.rect.top
157 else:
158 delta_y = player.rect.bottom - self.rect.top
159 if abs(delta_x - delta_y) < 10:
160 self.speedX *= -1
161 self.speedY *= -1
162 elif delta_x > delta_y:
163 self.speedY *= -1
164 elif delta_x < delta_y:
165 self.speedX *= -1
166

167 # Update ball position based on speed
168 self.rect.x += self.speedX
169 self.rect.y += self.speedY
170 return
171

172 # Reset ball to starting position, launch ball into random direction
173 def reset(self):
174 sleep(2)
175 self.rect = pygame.Rect(self.posX, self.posY, self.size, self.size)
176 self.speedX *= random.choice([-1, 1])
177 self.speedY *= random.choice([-1, 1])
178

179

180 # Class for button (menu options)
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181 class ButtonRect:
182 def __init__(self, width, height, posX, posY):
183 self.width = width
184 self.height = height
185 self.posX = posX
186 self.posY = posY
187 self.invisibleRect = pygame.Rect(posX, posY, width, height)
188

189

190 # Class for text on buttons (menu options)
191 class ButtonText:
192 def __init__(self, color1, color2, posX, posY):
193 self.color1 = color1
194 self.color2 = color2
195 self.color = color1
196 self.posX = posX
197 self.posY = posY
198

199 # Text is a certain color if cursor hovers over the button
200 def Button_hover(self, words):
201 self.color = self.color2
202 self.Button_render(words)
203 return
204

205 # Text is a certain color is cursor does not hover over the button
206 def Button_unhover(self, words):
207 self.color = self.color1
208 self.Button_render(words)
209 return
210

211 # Render and blit the text of the button on the screen
212 def Button_render(self, words):
213

214 text = font.render(words, True, self.color)
215 screen.blit(text, (self.posX, self.posY))
216 return
217

218

219 def interface():
220 ctypes.windll.shcore.SetProcessDpiAwareness(1)
221 pygame.init()
222 pygame.font.init()
223 info = pygame.display.Info()
224 global screen_width
225 global screen_height
226 screen_width, screen_height = info.current_w, info.current_h
227 global screen
228 screen = pygame.display.set_mode((screen_width, screen_height))
229

230 # Global variables
231 global playerScore
232 global AIScore
233 global playerLives
234 playerScore = 0
235 AIScore = 0
236 playerLives = 3
237 gameState = 'start_menu'
238 sensor_change = 1
239

240 # Color definitions
241 global black, white, red, blue, orange, yellow, green
242 black = (0, 0, 0)
243 white = (255, 255, 255)
244 red = (255, 0, 0)
245 blue = (0, 0, 255)
246 orange = (255, 119, 34)
247 yellow = (255, 225, 0)
248 green = (102, 204, 0)
249

250 # Create background to overwrite each frame
251 background = pygame.Surface((screen.get_width(), screen.get_height()))
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252 background.fill(black)
253

254 # Frame rate
255 gameClock = pygame.time.Clock()
256 FPS = 120
257

258 # Speeds
259 ballSpeed = 3
260 rectangleSpeed = 6
261 cursorSpeed = 2
262

263 # Object dimensions
264 ballWidth = 15
265 ballHeight = 15
266 paddleWidth = 10
267 paddleHeight = 100
268

269 BrickWidth = 120
270 BrickHeight = 50
271

272 # Lists that contain all the sprites intended for use in the games
273 all_sprites_list_pong = pygame.sprite.Group()
274 all_sprites_list_breakout = pygame.sprite.Group()
275

276 # Font sizes
277 global font
278 font = pygame.font.Font(None, 36)
279 large_font = pygame.font.Font(None, 60)
280

281 # PONG:
282 # Render scores for the player and AI
283 scorePlayer = font.render(str(playerScore), True, red)
284 scoreAI = font.render(str(AIScore), True, red)
285

286 # Create button (menu option) for pong
287 pongRect = ButtonRect(80, 20, screen_width / 2 - 50, screen_height / 2)
288 pongText = ButtonText(white, blue, screen_width / 2 - 50, screen_height / 2)
289 pongText.Button_render('PONG')
290

291 # Create objects
292 player_pong = Rectangle(white, paddleWidth, paddleHeight, rectangleSpeed, 40,

screen_height / 2)
293 AI = Rectangle(white, paddleWidth, paddleHeight, rectangleSpeed, screen_width - 50,

screen_height / 2)
294 ball = Ball(white, 15, ballSpeed, -ballSpeed, screen_width / 2, screen_height / 2,

ballWidth, ballHeight)
295 pygame.mouse.set_pos(random.randint(0, screen_width - 20), random.randint(0,

screen_height - 20))
296 pygame.display.flip()
297

298 # Add objects to list
299 all_sprites_list_pong.add(player_pong)
300 all_sprites_list_pong.add(AI)
301 all_sprites_list_pong.add(ball)
302

303 # BREAKOUT:
304 # Render lives of the player
305 livesPlayer = font.render(str(playerLives), True, red)
306

307 # Create button (menu option) for breakout
308 breakoutRect = ButtonRect(80, 20, screen_width / 2 - 82, screen_height / 2 + 50)
309 breakoutText = ButtonText(white, blue, screen_width / 2 - 82, screen_height / 2 + 50)
310 breakoutText.Button_render('BREAKOUT')
311

312 # Create objects
313 player_breakout = Rectangle(white, paddleHeight, paddleWidth, rectangleSpeed,

screen_width / 2, screen_height - 40)
314 pygame.mouse.set_pos(random.randint(0, screen_width - 20), random.randint(0,

screen_height - 20))
315 pygame.display.flip()
316
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317 brick_colors = [red, orange, yellow, green, blue]
318

319 # Add objects to list
320 brick_list = [pygame.Rect(40 + i * (BrickWidth + 10), 40 + j * (BrickHeight + 10),

BrickWidth, BrickHeight) for i in
321 range(14) for j in range(4)]
322 all_sprites_list_breakout.add(player_breakout)
323 all_sprites_list_breakout.add(ball)
324

325 # CALIBRATION:
326 # Create button (menu option) for calibration screen
327 calRect = ButtonRect(80, 20, screen_width / 2 - 100, screen_height / 2 + 100)
328 calibrationText = ButtonText(white, blue, screen_width / 2 - 100, screen_height / 2 +

100)
329 calibrationText.Button_render('CALIBRATION')
330

331 # Create montage and info
332 standard_montage = mne.channels.make_standard_montage('biosemi16')
333 n_channels = len(standard_montage.ch_names)
334 info = mne.create_info(standard_montage.ch_names, 250, 'eeg')
335 info.set_montage(standard_montage)
336 # channel_names = ['Fp1', 'Fp2', 'F4', 'Fz', 'F3', 'T7', 'C3', 'Cz', 'C4', 'T8', 'P4', '

Pz', 'P3', 'O1', 'Oz', 'O2']
337 channel_groups = [[0, 1, 2], [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]
338

339 # Create legend
340 legend_elements = [Line2D([0], [0], marker='o', label='Connected sensor',
341 markerfacecolor="#000080", markersize=22),
342 Line2D([0], [0],
343 lw=0),
344 Line2D([0], [0], marker='o', label='Unconnected sensor',
345 markerfacecolor="#800000", markersize=22)
346 ]
347

348 # Create display of electrode impedances
349 impRect = ButtonRect(80, 20, 1200, 150)
350 impText = ButtonText(white, white, 1200, 150)
351 impText.Button_render('Electrode impedances')
352

353 fp1Rect = ButtonRect(80, 20, 1150, 200)
354 fp1Text = ButtonText(white, white, 1150, 200)
355 fp1Text.Button_render('Fp1:')
356

357 fp2Rect = ButtonRect(80, 20, 1150, 250)
358 fp2Text = ButtonText(white, white, 1150, 250)
359 fp2Text.Button_render('Fp2:')
360

361 f4Rect = ButtonRect(80, 20, 1150, 300)
362 f4Text = ButtonText(white, white, 1150, 300)
363 f4Text.Button_render('F4:')
364

365 # Game loop
366 while True:
367 gameClock.tick(FPS)
368

369 # Exit interface if escape is pressed
370 for event in pygame.event.get():
371 if event.type == pygame.QUIT:
372 pygame.quit()
373 sys.exit()
374

375 # START MENU:
376 if gameState == 'start_menu':
377

378 # Exit interface if escape is pressed
379 keys = pygame.key.get_pressed()
380 if keys[pygame.K_ESCAPE]:
381 pygame.quit()
382 sys.exit()
383

384 # If mouse hovers over an option, let its text change color
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385 # Go to the respective game state if the option gets selected
386 mousePOS = pygame.mouse.get_pos()
387 if pongRect.invisibleRect.collidepoint(mousePOS[0], mousePOS[1]):
388 pongText.Button_hover('PONG')
389 breakoutText.Button_unhover('BREAKOUT')
390 calibrationText.Button_unhover('CALIBRATION')
391 mouse_pressed = pygame.mouse.get_pressed(num_buttons=3)[0]
392 if mouse_pressed:
393 gameState = 'pong_game'
394 elif breakoutRect.invisibleRect.collidepoint(mousePOS[0], mousePOS[1]):
395 breakoutText.Button_hover('BREAKOUT')
396 pongText.Button_unhover('PONG')
397 calibrationText.Button_unhover('CALIBRATION')
398 mouse_pressed = pygame.mouse.get_pressed(num_buttons=3)[0]
399 if mouse_pressed:
400 gameState = 'breakout_game'
401 elif calRect.invisibleRect.collidepoint(mousePOS[0], mousePOS[1]):
402 breakoutText.Button_unhover('BREAKOUT')
403 pongText.Button_unhover('PONG')
404 calibrationText.Button_hover('CALIBRATION')
405 mouse_pressed = pygame.mouse.get_pressed(num_buttons=3)[0]
406 if mouse_pressed:
407 gameState = 'calibration'
408 else:
409 pongText.Button_unhover('PONG')
410 breakoutText.Button_unhover('BREAKOUT')
411 calibrationText.Button_unhover('CALIBRATION')
412

413 # Display the buttons (menu options)
414 screen.blit(background, (0, 0))
415 breakoutText.Button_render('BREAKOUT')
416 pongText.Button_render('PONG')
417 calibrationText.Button_render('CALIBRATION')
418 pygame.display.flip()
419

420

421 # CALIBRATION SCREEN:
422 elif gameState == 'calibration':
423

424 # Exit interface if escape is pressed, go back to start menu if backspace is
pressed

425 keys = pygame.key.get_pressed()
426 if keys[pygame.K_ESCAPE]:
427 pygame.quit()
428 sys.exit()
429 if keys[pygame.K_BACKSPACE]:
430 gameState == 'start_menu'
431

432 # Plot the electrode layout
433 if sensor_change:
434 fig, ax = subplots(1, 1)
435 mne.viz.plot_sensors(info, show_names=True, ch_groups=channel_groups,

linewidth=0.5, show=False,
436 axes=ax)
437 plt.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1.2,

1.1), frameon=False)
438 plt.savefig("sensors.png", dpi=150)
439 sensor_change = 0
440 sensors = pygame.image.load("sensors.png")
441

442 # Display the electrode impedances
443 screen.blit(background, (0, 0))
444 screen.blit(sensors, (20, 200))
445 impText.Button_render('Electrode impedances')
446 fp1Text.Button_render('Fp1:')
447 fp2Text.Button_render('Fp2:')
448 f4Text.Button_render('F4:')
449 pygame.display.flip()
450

451

452 # PONG:
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453 elif gameState == 'pong_game':
454

455 keys = pygame.key.get_pressed()
456 # Exit interface if escape is pressed, go back to start menu if backspace is

pressed
457 # Move player's paddle up if up key is pressed and down if down key is pressed
458 if keys[pygame.K_DOWN]:
459 player_pong.move_player_down()
460 if keys[pygame.K_UP]:
461 player_pong.move_player_up()
462 if keys[pygame.K_BACKSPACE]:
463 gameState = 'start_menu'
464 if keys[pygame.K_ESCAPE]:
465 pygame.quit()
466 sys.exit()
467

468 # Introduce imperfections in the AI
469 # - AI predicts the ball position if the ball is going towards the AI's paddle
470 # and passed the first quarter of the screen
471 # - AI executes a movement 70% of the time
472 if ball.speedX > 0 and ball.rect.x > 0.25 * screen_width:
473 if ball.rect.y < AI.rect.top and AI.rect.top > 0:
474 bias = random.randint(1, 10)
475 if bias <= 7:
476 AI.move_player_up()
477 if ball.rect.y > AI.rect.bottom and AI.rect.bottom < screen_height:
478 bias = random.randint(1, 10)
479 if bias <= 7:
480 AI.move_player_down()
481

482 # Print all updated objects on the screen
483 screen.blit(background, (0, 0))
484 scorePlayer = font.render(str(playerScore), True, red)
485 scoreAI = font.render(str(AIScore), True, red)
486 screen.blit(scorePlayer, (0.25 * screen_width, 0.1 * screen_height))
487 screen.blit(scoreAI, (0.75 * screen_width, 0.1 * screen_height))
488 all_sprites_list_pong.update()
489 all_sprites_list_pong.draw(screen)
490 ball.updateBall_pong(player_pong, AI)
491

492 # Go to the end screen if either the player or AI reaches a score of 3
493 if AIScore == 3 or playerScore == 3:
494 gameState = 'end_screen'
495

496 pygame.display.flip()
497

498

499 # BREAKOUT:
500 elif gameState == 'breakout_game':
501

502 # Exit interface if escape is pressed, go back to start menu if backspace is
pressed

503 # Move player's paddle left if left key is pressed and right if right key is
pressed

504 keys = pygame.key.get_pressed()
505 if keys[pygame.K_LEFT]:
506 player_breakout.move_player_left()
507 if keys[pygame.K_RIGHT]:
508 player_breakout.move_player_right()
509 if keys[pygame.K_BACKSPACE]:
510 gameState = 'start_menu'
511 if keys[pygame.K_ESCAPE]:
512 pygame.quit()
513 sys.exit()
514

515 # Remove a brick if it has been hit with the ball
516 hit_index = ball.rect.collidelist(brick_list)
517 if 0 <= hit_index <= 14 * 4:
518 check_which_collision(ball, brick_list[hit_index])
519 brick_list.pop(hit_index)
520
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521 # Print all updated objects on the screen
522 screen.blit(background, (0, 0))
523 livesPlayer = font.render(str(playerLives), True, red)
524 screen.blit(livesPlayer, (screen_width - 40, screen_height - 40))
525 all_sprites_list_breakout.update()
526 ball.updateBall_breakout(player_breakout)
527 all_sprites_list_breakout.draw(screen)
528 [pygame.draw.rect(screen, brick_colors[0], brick_list[i]) for i in range(len(

brick_list))]
529

530 # Go to the end screen if either the player has no lives left or all the brick
have been eliminated

531 if playerLives == 0 or len(brick_list) == 0:
532 gameState = 'end_screen'
533

534 pygame.display.flip()
535

536

537 # END SCREEN:
538 elif gameState == 'end_screen':
539

540 # Create a message with the result of the game
541 if playerLives == 0:
542 message1 = "You lost"
543 message2 = "Score:"
544 message3 = "  {}".format(str(11 * 4 - len(brick_list)))
545 elif len(brick_list) == 0:
546 message1 = "You won!"
547 message2 = ""
548 message3 = ""
549 elif AIScore == 3:
550 message1 = "You lost"
551 message2 = "Score"
552 message3 = "{} - {}".format(playerScore, AIScore)
553 elif playerScore == 3:
554 message1 = "You won!"
555 message2 = "Score"
556 message3 = "{} - {}".format(playerScore, AIScore)
557

558 # Render messages
559 text1 = large_font.render(message1, True, red)
560 text2 = font.render(message2, True, red)
561 text3 = font.render(message3, True, red)
562

563 # Display messages
564 screen.blit(background, (0, 0))
565 screen.blit(text1, (screen_width / 2 - 100, screen_height / 2 - 100))
566 screen.blit(text2, (screen_width / 2 - 50, screen_height / 2))
567 screen.blit(text3, (screen_width / 2 - 40, screen_height / 2 + 50))
568

569 pygame.display.flip()
570

571

572 def init():
573 line.set_data([], [])
574 return line,
575

576

577 def animate(i):
578 x = np.linspace(0, 4, 1000)
579 y = np.sin(2 * np.pi * (x - 0.01 * i))
580 line.set_data(x, y)
581 return line,
582

583

584 if __name__ == '__main__':
585 fig = plt.figure()
586 ax = plt.axes(xlim=(0, 4), ylim=(-2, 2))
587 line, = ax.plot([], [], lw=3)
588

589 anim = FuncAnimation(fig, animate, init_func=init,
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590 frames=200, interval=20, blit=False)
591

592 # Create and start the print thread
593 # interface_thread = threading.Thread(target=interface)
594 # interface_thread.start()
595

596 interface_process = multiprocessing.Process(target=interface)
597 interface_process.start()
598 # Start the animation
599 plt.show()
600

601 # Wait for the print thread to finish
602 # interface_thread.join()
603 interface_process.join()



B
Python scripts for plots

B.1. PSD, topomaps and raw EEG plotting
1

2 import math
3

4 import numpy as np
5 from matplotlib import pyplot as plt, cm
6 import mne
7 import pandas as pd
8 from scipy import signal
9 from matplotlib.colors import BoundaryNorm
10 from matplotlib.ticker import MaxNLocator
11 import time
12 import matplotlib.animation as ani
13

14

15 # get correct data columns from csv file by dropping certain elements
16 def data_csv(path: str, drop: list[str]):
17 df = pd.read_csv(path)
18 df.drop(drop, axis=1, inplace=True)
19 Xt = df.to_numpy()
20 t = Xt[:, 0]
21 X = Xt[:, 1:]
22 n = X.shape[1]
23 return t, X # return time array and data array (n_times, n_channels)
24

25

26 # create info object from MNE library. Info hold information needed for creating MNE raw
object

27 def createInfo(channel_names, fs):
28 channel_types = 'eeg'
29 # montage = 'biosemi16'
30

31 info = mne.create_info(channel_names, fs, channel_types)
32

33 return info
34

35

36 # plot PSD
37 def plot_PSD(raw):
38 raw.compute_psd().plot(picks="data", exclude="bads")
39 plt.show()
40 return
41

42

43 # plot raw eeg signals
44 def plot_raw(raw, ch_picks):
45 raw.plot(n_channels=len(ch_picks), scalings='auto', title='EEG data',
46 show=True, block=False, show_scrollbars=False, duration=5)

43
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47 return
48

49

50 # plot 16 short time averaged topomaps to show behaviour in time
51 def topomap_temporal(raw):
52 x = raw._data
53 times_seconds = np.arange(22.4, 22.4 + 17 * 0.1, 0.1) # Define the time points in

seconds
54 times_samples = (times_seconds * raw.info['sfreq']).astype(int) # Convert time points to

sample indices
55 n_subplots = min(len(times_samples) - 1, 16)
56 fig, axes = plt.subplots(4, 4, figsize=(12, 12)) # Adjust the subplot layout as per your

preference
57

58 for i in range(n_subplots):
59 ax = axes[i // 4, i % 4] # Adjust the indexing for subplot layout
60 t0 = times_samples[i]
61 t1 = times_samples[i + 1]
62 mne.viz.plot_topomap(x[:, t0:t1].mean(axis=1), raw.info, axes=ax, show=False)
63 ax.set_title(f'Time: {times_seconds[i]:.1f}s-{times_seconds[i + 1]:.1f}s')
64 return
65

66

67 # plot power topomap at specific frequency
68 def plot_power_topomap(raw, sfreq):
69 x = raw._data
70 n_samples = x.shape[1]
71 times = np.arange(n_samples) / sfreq
72

73 # power spectrum of all channels
74 power_spectrum = np.abs(np.fft.fft(x, axis=1)) ** 2
75

76 # find index of frequency of interest
77 frequency_of_interest = 15 # Frequency of interest (Hz)
78 freq_index = int(frequency_of_interest * n_samples / sfreq)
79

80 # get power values of freq of interest for all channels
81 power_at_freq = power_spectrum[:, freq_index]
82

83 # plot power topomap
84 fig, ax = plt.subplots()
85 mne.viz.plot_topomap(power_at_freq, raw.info, axes=ax, show=True)
86 return
87

88

89 # plot power topomap at specific frequency bands
90 def plot_PSD_bands_topomap(raw):
91 raw.compute_psd().plot_topomap()
92 plt.show()
93 return
94

95

96 # plot potential topomap averaged over time (you lose temporal dynamics)
97 def plot_potential_topomap(raw):
98 x = raw._data
99 fig, ax = plt.subplots(figsize=(10, 10))
100 im, cm = mne.viz.plot_topomap(x.mean(axis=1), raw.info, contours=0, axes=ax, show=False)
101 # colorbar
102 ax_x_start = 0.8
103 ax_x_width = 0.04
104 ax_y_start = 0.1
105 ax_y_height = 0.7
106 cbar_ax = fig.add_axes([ax_x_start, ax_y_start, ax_x_width, ax_y_height])
107 clb = fig.colorbar(im, cax=cbar_ax)
108 clb.ax.set_title('Volt', fontsize=10)
109 plt.show()
110 return
111

112

113 # plot small segment of eeg data of one channel
114 def plot_zoomed_in_raw(raw, pick):
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115 raw.pick(pick)
116 x = raw._data
117 x = x[0] # fix format of x for plt.plot
118 # prepare data for plot
119 Nx = x.size
120 t = np.arange(0, Nx / fs, 1 / fs)
121 # plot data
122 plt.plot(t, x)
123 plt.ylabel('Amplitude �[V]')
124 plt.xlabel('Time [s]')
125 plt.title('Checkerboard test O1 data segment')
126 plt.show()
127 return
128

129

130 # create a montage/info needed for plotting
131 # biosemi16 = standard 16 channel config using 10-20 system
132 standard_montage = mne.channels.make_standard_montage('biosemi16')
133 n_channels = len(standard_montage.ch_names)
134 info = createInfo(channel_names=standard_montage.ch_names, fs=250)
135 info.set_montage(standard_montage)
136 # names of biosemi16 channels
137 ch_names = ['Fp1', 'Fp2', 'F4', 'Fz', 'F3', 'T7', 'C3', 'Cz', 'C4', 'T8', 'P4', 'Pz', 'P3', '

O1', 'Oz', 'O2']
138 # measurement group only used these for motor imagery
139 motor_imagery = [0, 1, 3, 7, 6, 8, 12, 10]
140 # we only used these for visual functions
141 visual = [4, 2, 12, 11, 10, 13, 14, 15]
142 drop = ['Event Id', 'Event Date', 'Event Duration', 'Channel 9',
143 'Channel 10', 'Channel 11', 'Epoch']
144 fs = 250
145 # time and data array
146 t, X = data_csv('short_hair_flickering2.csv', drop)
147 # mne expects data(n_channels, n_times) so need to transpose
148 x_tr = np.transpose(X)
149

150 # mne still expects 16 channels of data due to biosemi 16 config
151 # create empty array with zeros and fill in the channels we used
152 data = np.zeros((n_channels, x_tr.shape[1]))
153 for j, data_idx in enumerate(visual):
154 data[data_idx, :] = x_tr[j, :]
155

156 # create raw object, contains data and other information
157 raw = mne.io.RawArray(data, info)
158 # mne expects data in V not uV so scale the data
159 raw.apply_function(lambda x: x * 1e-6)
160

161 # pick certain channels only
162 ch_picks = visual
163 ch_pick_names = ch_names[ch_picks[0]]
164 raw.pick(ch_picks)
165

166 # take only a portion of total data. First 10 to 20s were rest
167 raw.crop(tmin=25, tmax=50, include_tmax=True)
168 plot_PSD(raw)
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Python scripts for the topographic

maps

C.1. Initial script
1 import numpy as np
2 from matplotlib import pyplot as plt
3 import mne
4 import pandas as pd
5 import time
6 import matplotlib.animation as ani
7

8 # Function to get the data from our own measurements
9 # Only works with no labels
10 def data_csv(path: str, drop: list[str]):
11 df = pd.read_csv(path)
12 df.drop(drop, axis=1, inplace=True)
13 Xt = df.to_numpy() # Containing time and channel data
14 t = Xt[:, 0]
15 X = Xt[:, 1:]
16 n = X.shape[1]
17 return t, X
18

19

20 # Creates info about the sensors and measurement methods
21 def createInfo(channel_names, fs):
22 channel_types = 'eeg'
23 info = mne.create_info(channel_names, fs, channel_types)
24

25 return info
26

27

28 # Creates the topomap
29 def EEG_topo(i):
30 ax.cla()
31 for j, data_idx in enumerate([0, 1, 3, 7, 6, 8, 12, 10]):
32 data[data_idx] = x_tr[j, i]
33

34 evokedArray = mne.EvokedArray(data, info)
35 evokedArray.set_montage(standard_montage)
36

37 mne.viz.plot_topomap(evokedArray.data[:, 0], evokedArray.info, axes=ax)
38

39 # Creates the montage
40 standard_montage = mne.channels.make_standard_montage('biosemi16')
41 n_channels = len(standard_montage.ch_names)
42 info = createInfo(channel_names=standard_montage.ch_names, fs=250)
43

44 # Extracts data from the file and prepares it for the topomaps

46
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45 drop = ['Event Id', 'Event Date', 'Event Duration', 'Channel 9', 'Channel 10', 'Channel 11',
'Epoch']

46 t, X = data_csv('Thib_lefthand_filtered_1.csv', drop)
47 x_tr = np.transpose(X)
48 data = np.zeros((n_channels, 1))
49

50 # Creates the animation of the topomaps
51 fig, ax = plt.subplots(figsize=(10, 10))
52 animator = ani.FuncAnimation(fig, EEG_topo, frames=15, interval=500)
53 plt.show()

C.2. Script adjusted for OpenVibe
1 import numpy
2 from matplotlib import pyplot as plt
3 import matplotlib
4 import mne
5 import time
6

7

8 # Box class that inherits from OVBox
9 class MyOVBox(OVBox):
10 def __init__(self):
11 OVBox.__init__(self)
12 self.signalHeader = None
13 self.fig=plt.figure(figsize=(10,10))
14 self.standard_montage = mne.channels.make_standard_montage('biosemi16')
15 self.n_channels = len(self.standard_montage.ch_names)
16 self.info = mne.create_info(ch_names=self.standard_montage.ch_names, sfreq=250,

ch_types='eeg', verbose=None)
17 self.info.set_montage(self.standard_montage)
18 self.data = numpy.zeros((self.n_channels ,32))
19

20 # The process method will be called by openvibe on every clock tick
21 def process(self):
22 # Iterate over all the input chunks in the input buffer
23 for chunkIndex in range( len(self.input[0]) ):
24 # If it is a header, it is saved
25 if(type(self.input[0][chunkIndex]) == OVSignalHeader):
26 self.signalHeader = self.input[0].pop()
27

28

29 # If it is a buffer, it gets popped and put in a numpy array at the right
dimensions

30 elif(type(self.input[0][chunkIndex]) == OVSignalBuffer):
31 chunk = self.input[0].pop()
32 numpyBuffer = numpy.array(chunk).reshape(tuple(self.signalHeader.dimensionSizes)

)
33 chunk = OVSignalBuffer(chunk.startTime, chunk.endTime, numpyBuffer.tolist())
34

35 # Put the data of the channels corresponding to the sensors in the data array
36 for j, data_idx in enumerate([0,1,3,7,6,8,12,10]):
37 self.data[data_idx ,:]=numpyBuffer[j]
38

39 # Average the data of each channel
40 data_avg=numpy.zeros((16,1))
41 for n in range(16):
42 data_avg[n] = numpy.average(self.data[n,:])
43

44 # Create an evoked object and set the montage
45 evokedArray = mne.EvokedArray(data_avg, self.info)
46 evokedArray.set_montage(self.standard_montage)
47

48 # Clear the window and create a new subplot
49 plt.clf()
50 ax=plt.subplot(1,1,1)
51

52 # Plot the topomap in the new subplot
53 mne.viz.plot_topomap(evokedArray.data[:,0], self.info,axes=ax)
54
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55

56

57

58 # At the end-of-stream, print a message
59 elif(type(self.input[0][chunkIndex]) == OVSignalEnd):
60 self.output[0].append(self.input[0].pop())
61 print("End of signal")
62

63 # Notify OpenVibe that the box instance 'box' is now an instance of MyOVBox.
64 box = MyOVBox()



D
SSVEP research

In some papers, visually evoked potential (VEP or SSVEP for steady state version) based BCIs are re-
searched and implemented, such as in [25]. (SS)VEPs are induced by alternating patterns or flickering
objects. Similar to motor imagery, SSVEPs caused by certain stimulus frequencies are often used as a
paradigm for BCIs. SSVEPs are generally speaking easily identifiable in the power spectra of the EEG
channels. Although SSVEPs do not have a direct impact on motor imagery control, they can have a
major influence on the attention span and meditation level, which can directly have a positive effect on
motor imagery control in motor based BCI. A positive effect on motor imagery control could contribute
to the 70% accuracy requirement as stated in Chapter 2. But also, since the (fun) experience of the
user is of importance to the interface subgroup and with the future of the BAP project in mind, new
game ideas should be thought of, as well as ways to combine certain BCI paradigms instead of just
using motor imagery. Therefore it was decided to conduct some research into the possibility of includ-
ing SSVEP elements in the games by, for instance, making the ball constantly flicker or even creating
new games that combine motor imagery tasks and SSVEP elements. The latter is also described in
[2] for instance. The paper discusses numerous examples such as the classic Tetris game, where left
and right motor imagery (MI) makes the brick move left or right and the user can stare at a flickering
object in the corner to rotate the object. The research into the working of SSVEPs and whether they
can be identified with a simple setup using the current headset and data acquisition will be shown in the
coming sections. The results will be used in order to predict if including/combining SSVEP elements
along with MI would be feasible to implement in case of further development of the BAP project . This
part of the report should be treated as research and not as part of the design process according to the
requirements, hence why it has been placed in the appendix.

D.1. Visually evoked potentials (VEP)
From EEG data, several types of visual responses can be observed; one of these responses are event
related potentials (ERP). ERPs show up as electric responses in the EEG data when a specific event
occurs in one’s brain. Specifically, ERPs are described as ”the variations in brain voltage that occur after
the commencement of a distinct visual, auditory, or other sensory stimuli, as well as signals activating
the motor preparation, motor execution, or covert mental functions” in [26]. P100 (or P1) is a commonly-
studied ERP component; it is related to the sensory and perceptually processing of visual stimuli and
is observed in the evoked waveform as a positive peak at about 100 ms after the stimulus [27]. Since
P100 is evoked due to a visual stimulus, the component is considered a visual evoked potential (VEP).
Another VEP is the steady state visually evoked potential (SSVEP). The SSVEP is a potential that is
evoked by a visual stimulus that changes/flickers with a frequency of 6 Hz or higher [28], but should
preferably be above 10 Hz [29]. The SSVEP shows up in frequency spectra as peaks at the frequencies
that equal the rate of flickering and its harmonics [28]. The SSVEP also appears as peaks at the
harmonics because of nonlinear characteristics of neuronal populations. With each higher integer-
multiple of the harmonics, the peaks become less prominent ( see [30] and also figure D.1b.

49
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(a) P100 (P1) (b) SSVEP of a stimulus with a 15 Hz flickering rate [31]

Figure D.1: Two commonly-known visual evoked potentials

D.2. VEP tests
In order to determine if incorporating SSVEPs into the games or combining SSVEPs with motor imagery
in new games would be doable in the future of the BAP project, a simple test that induces SSVEPs
while measuring EEG data should be conducted. The EEG data from the test should be analyzed
to see if the stimulus frequency can indeed be identified using the currently used OpenBCI headset
and the data acquisition techniques employed by the measurement group to ensure quality data. After
consulting literature, a very simple test setup was found where a subject can simply be subjected to a
flickering object on a computer screen. The next sections will discuss the electrode setup and results
for the test.

D.2.1. EEG electrodes setup
For this test, the same 10-20 system is used as for the motor imagery tests done by the measurement
subgroup. The 10-20 system, as shown in Figure D.2, is especially designed to capture all the different
interesting brain regions with specific electrode placements on the scalp. The electrodes names are a
reference to certain brain regions, where Figure D.2 also shows these main human brain regions and
their names. For example, in the O1 and O2 electrodes, the letter ’O’ stands for the occipital region and
the number 1 indicates that it is the most left position; an increase in number means that the electrode
is more to the right. The ’z’ channels such as Pz and Oz are usually used as reference electrodes used
to filter out noise. The available 8 electrodes (see measurement subgroup report) for the test were
placed on O1, O2, Oz, P3, P4, Pz, F3 and F4, because these are positioned on brain regions that each
(to some extent) play a role in visual functions. Table D.1 gives the region and visual related function
of each of the mentioned electrodes (see the table caption for more description). For both upcoming
tests though, it is expected to see the SSVEP response from the O1, O2 and Oz electrodes so those
will be focused on for the results.
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(a) Brain regions) (b) 10-20 EEG electrode system

Figure D.2: Brain regions and electrode placement

Table D.1: EEG Electrodes and Associated Brain Regions. The occipital cortex, also known a the visual cortex, is widely
known to mainly be involved in visual processing, hence its name visual cortex. The parietal cortex is mainly involved in visual
spatial processing [32]. The Frontal cortex contains the frontal eye field (FEF) and supplementary eye field (SEF) regions

which play a small role in visuals; namely visual fixation (gaze) and eye movements [33][34]. For the tests though, the regions
of interest are mainly the electrodes positioned on the occipital cortex. The other electrodes were included since there are 8

electrodes available.

EEG Electrode Associated Brain Region Visual related function(s)
O1 (Left) Occipital Lobe Visual processing and perception
O2 (Right) Occipital Lobe Visual processing and perception
Oz (Midline) Occipital Lobe Visual processing and perception
P3 (Left) Parietal Lobe Visual spatial processing
P4 (Right) Parietal Lobe Visual spatial processing
Pz (Midline) Parietal Lobe Visual spatial processing
F3 (left) frontal lobe visual fixation, eye movement
F4 (right) frontal lobe visual fixation, eye movement

D.2.2. Flicker test
As was also discussed previously, the test revolving around SSVEPs involves showing a flickering
object at 15 Hz. The decision for using 15 Hz is due the fact that in literature it was stated that 10 Hz
and above will show the best result [29], so the choice fell on a slightly higher number as to not be right
on the edge.

Figure D.3 shows the power spectrum from all 8 channels that resulted from the flicker test in Figure
D.3a, as well as the induvidual channel Pz. PSD topographic maps indicating brain activity are shown
in Section E.3. Peaks in the PSD can clearly be seen around 15 Hz, 30 Hz and even a small one
around 45 Hz. It should be noted that there are rather large slopes at the sides of the spectrum, which
are caused by a 7-30 Hz bandpass filter employed by the measurement group before sending over the
data. Still, the relative peak compared to the neighboring frequencies at 45 Hz can be seen. An odd
observation from these results is the fact that only the Pz and P3 channel really show a response to
the flickering stimulus, whereas the occipital channels do not show all that much response. Figures
E.2 and E.3 in Appendix E.2 show the expected results.
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(a) All channels

(b) Pz channel only

Figure D.3: EEG power spectrum of 15 Hz flicker test

An interesting thing to show that was not necessarily the goal to show for this part of the report are the
figures in Appendix E.4. These figures are the results of a ”faulty” SSVEP trial where during the trial,
people were talking directly to the right of the subject. This trial showed a rather high relative increase
of power activity from the F3 electrode. This can be seen by comparing the PSD of the bad trial (Figure
E.7a) to the previously showed PSD of the other trial (Figure D.3a), in both of which the F3 electrode
is represented by the light blue line. Although there is a band-pass filter applied by the measurement
subgroup from 7-30 Hz, the relative increase in power recorded from the F3 electrode is still visible.
This seems especially so in the higher frequencies 40-120 Hz. The code for some plotting functions
used for the data in this chapter can be viewed in appendix B.

D.3. Conclusion
From the test it was expected to see a clear 15 Hz peak in the frequency spectrum as well as a peak at
its harmonic frequencies (see Figure D.1b). Figures E.2 and E.3 both show the expected topographic
maps; relatively much more activity in the occipital region (O1, O2 and Oz electrodes in the test setup)
compared to the other channels. The harmonic frequencies were indeed visible as peaks in the power
spectrum density (PSD) of all channels. Strangely though, the peaks were prominent at the Pz and
P3 electrodes while only the 30 Hz peak seemed to be visible for the O1, O2 and Oz peaks. Several
PSD topographic maps can also be found in Appendix E.3. Figure E.4 shows which brain regions
showed the most activity for 15 Hz. As became also apparent from the PSD itself, only the Pz and
P3 electrodes seem to indicate a response from the 15 Hz stimulation frequency. Unfortunately, due
to time constraints (see timeline in Appendix F), conducting more tests to see why this is the case
was not possible. There could be many reasons as to why the results are not as expected, such as
individual subject differences, general noise, no referencing, high impedance (meaning bad connection)
for the occipital electrodes, test setup and test environment. So now going back to the purpose of this
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research chapter; whether or not SSVEPs could be easily detected using the current headset, data
acquisition setup and filtering methods (7-30 Hz bandpass employed by the measurement subgroup)
in order to predict whether incorporating SSVEPs elements in games for future reference of the BAP
project. Some SSVEP responses are seen from certain channels but not the channels that they were
most expected to be from. As such, the conclusion for now will have to be that using SSVEPs would
not be doable since any SSVEP detection algorithm such as spectral analysis (PSDA) and CCA (see
[35]) would fail to actually detect the SSVEPs. It should be said however that more tests should be
conducted to try and get better SSVEP responses in order to fully determine if using SSVEP elements
in the games would be doable in the future.

As briefly mentioned in the results of the SSVEP flicker test, a trial where people were making auditory
noise directly to the right of the subject. The increased range of frequencies from the F3 electrode
are often referred to as gamma waves which mainly consist of frequencies in the range of 30-100
Hz. These higher frequencies as well as the frontal lobe are both known to be related to attention
functionalities within the human brain, which is also mentioned in [36] and [37]. Additionally, since the
brain functions in a contra-lateral way, which simply means that the right side of the body is controlled
by the left half of the brain and vice versa, it does make sense that the F3 electrode positioned on the
left frontal lobe shows heightened activity with respect to gamma waves from the distraction to the right
of the subject. The fact that such a distraction can already very much influence the brain waves, shows
the importance of attention and focus when it comes to brain wave operated BCIs. This might prove a
significant challenge in case the full BCI system is integrated and operational in the future.



E
Figures

E.1. Topographic mapping samples

(a) t = 0 - 0.128 s (b) t = 0.128 - 0.256 s (c) t = 0.256 - 0.384 s

(d) t = 0.384 - 0.512 s (e) t = 0.512 - 0.640 s

Figure E.1: Left hand clench topographic mapping samples

E.2. SSVEP literature figures

Figure E.2: Figure of topographic map at harmonic SSVEP frequencies from [38]

54
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Figure E.3: Figure of topographic map of 15Hz SSVEP frequency from [39]

E.3. Flicker trial

Figure E.4: PSD topographic map at 15Hz
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Figure E.5: SSVEP PSD topographic map of several frequency bands

Figure E.6: temporal dynamics with topograhpic maps of a segment of EEG data from the 15Hz SSVEP test
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E.4. Bad flicker trial

(a) Bad SSVEP flicker trial Power spectrum

(b) Bad SSVEP flicker trial topomap

Figure E.7: EEG power spectrum of bad 15Hz flicker trial



F
Timetable

Table F.1: Executed tasks for each week

Week Tasks

1 Literature study and general orientation
2 Start on coding pong for keyboard control
3 Finish coding of pong and complete code breakout for keyboard
4 Complete code animation of topographic mapping for recorded data and start- and end

screens
5 Complete code calibration screen, research working with OpenVibe and research concur-

rency
6 Adjusting code for OpenVibe and research visual feedback
7 Make measurements for VEP tests, implement concurrency and start on thesis

8 Finish thesis, start integrating entire BCI and receive impedances
9 Finish integrating entire BCI and start preparing for final presentation and grand final
10 Final presentation and grand final
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