Master thesis

7
s
77
il

’'//
7
I‘I/I %

/77
7

1//
7

N
,;:_.

/

Torsion motions of high-rise buildings due to wind loading

16 May 2022 H.A.O.Richardson

%
TUDelft



%
TU Delft Torsion motions of high—rise buildings due to wind loading

Anthony Richardson



Torsion motions of high—rise buildings due to wind loading

]
TUDelft

Student:

Student number:

Master thesis committee

Chairman

Committee member

Committee member

Committee member

Hypolite Anthony Orlando
Richardson 1113895

dr.ir. P.C.J. Hoogenboom
Stevinweg 1
2628CN Delft

di.ir. W.A.A.M. Bierbooms
Klyverweg 1

2628HS Delft

|

em.prof.ir. A.C.W.M. Vrouwenvelder
TNO/ TUDelft

Stevinweg 1

2628CN Delft

ir. C. Kasbergen
Stevinweg 1
2628CN Delft

May 2022


mailto:P.C.J.Hoogenboom@tudelft.nl
mailto:W.A.A.M.Bierbooms@tudelft.nl
mailto:A.C.W.M.Vrouwenvelder@tudelft.nl
mailto:C.Kasbergen@tudelft.nl

%
TU Delft Torsion motions of high—rise buildings due to wind loading

Anthony Richardson



Torsion motions of high—rise buildings due to wind loading TU Delft

Preface

I have chosen this subject for my thesis, because I have always been fascinated with high-
rise buildings as Taipei 101, World Trade centers, Burj Dubai, Millennium. For this same
reason I chose to specialize in structural mechanics, even though the subjects are more
challenging than those of other specializations. By working on this thesis, I have achieved
my dream to learn and research how the loads on a building are transferred from the fagade
to the foundation. I was also able to research factors which influence the comfort of
occupants of the building.

I must give thanks to the members of my thesis committee. I thank Professor
Vrouwenvelder for his critical view on the thesis. Dr. Hoogenboom for his help with
determining the structural characteristics of the buildings and proper textual presentation of
this thesis. I also would like to thank Dr. Bierbooms for his help with questions that I posed
pertaining to dynamics of wind, wind simulation and programming in Mathlab.

Finally, I would like to thank people along the way that helped me during this Master’s
thesis project and study at Delft University of Technology.
H.A.O. Richardson

Delft, 2022
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Summary

This thesis is on wind induced motions of high-rise buildings. The research question was to
make a modeling tool in Matlab to predict the bending and torsion oscillations of the
Juffertoren and Voorhof student building in Delft and also see if these buildings satisfy the

serviceability limit state. This research is a continuation of the thesis of Hans Breen [5].

The wind load causes translation in the wind direction and rotation around the vertical axis
and also translation perpendicular to the wind direction. This leads to a moment at the base
and a torsional moment around the vertical axis of the building. The created model does not

take the translational motions perpendicular to the wind into account.

After in-depth reading of various articles on the subject of torsion and bending acceleration
on buildings, no efficient tool could be found to determine the total acceleration. Presently,
in the dimensioning stage of a building, static wind load values are assumed but this
method has little accuracy. Therefore, a dynamic model has been made. This model has
been applied to the Juffertoren in Rotterdam and the Voorhof student building in Delft. The
most important output of this model are the acceleration and displacement of the building.
The outcome shows that if the acceleration due to torsion is added to the acceleration due
to bending, most buildings designed with the NEN 6702 (Dutch Norm) exceed the
serviceability limit state for acceleration which was also the case by the Juffertoren and the
Voorhof student building.

Most codes of practice neglect the torsional acceleration, which this thesis shows is not
acceptable.

Anthony Richardson -ii-
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List of symbols
A area [mz ]
A the area loaded by wind [ 2
A amplitude of the building movement [m]
A the area of the considerd wall or steel cross-section [mz]
A amplitude of the homogenous solution [m]
A, amplitude of the homogenous solution for torsion [m]
A, area of the floor [mz]
A, reference area of the structure [mz]
d limition demand of the acceleration [m/ SZ]
d acceleration [m/ s? ]
d maximum occurring acceleration due to bending and torsion motion [m/ SZ]
a, horizontal distance from node to the shear center [m]
, normalised limiting amplitude giving the deflection of structures with
very low damping [m]
a, horizontal distance from the node to the shear center of the building  [m]
a, calculation constant of the National building code of Canada
e the characteristic peak acceleration [m/ 52]
. the maximum acceleration [m/ 52]
ey LiMItation demand for the peak acceleration according to NEN 6702 [m/ 52}
a, the across wind acceleration of the building according to NBCC [m/ 52]
a, constant determining the damping proportional to the mass [rad/s]
a, constant determining the damping proportional to the stiffness [s/rad]
By pen constant determining the damping proportional to the mass [rad/s]
3, pon constant determining the damping proportional to the bending
stiffness [s/rad]
3oror constant determining the damping proportional to the polar moment
of inertia
[rad/s |
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3o constant determining the damping proportional to the torsion
stiffness
[s/rad ]
ENy the acceleration of the top of the building at time point I (node 48) [m/ 52]
E T, the maximum acceleration of the top of the building (node 48) [m/ 52]
Ays: peak peak acceleration of acceleration (node 48) [m/ 52]
Ay a0 Peak acceleration of acceleration for 10 minute period (node 48) [m/ 52]
dig e Peak acceleration of acceleration for hour long storm (node 48) [m/ SZ]
ug.peak:21600 Peak acceleration of acceleration for 6 hour long storm (node 48) [m/ Sz:l
B width of the building [m]
B? background factor [m]
b width of the building [m]
b constant of coherence [m]
b width of the added concrete walls [m]
b the length of 3D model, distance between both applied forces [m]
b reference width of the cross-section at which resonant vortex shedding
occurs
[m]
b, width of the considered wall segment [m]
b, width of the considered steel section [m]
b, width of the building perpendicular to the wind direction [m]
b, width of the building [m]
C damping matrix [ka/s |
C Raleigh value [-]
C coherence decrement [m]
COhﬂ((f ) coherence between the wind speed in points j and k [m]
Cron the damping matrix for bending [kg/s |
C. the aerodynamic constant dependat on cross-sectional shape [-]
C. energy disipation factor -]
C, rotational stiffness of the foundation [Nm]
c, summation of trust and suction factor -]
C ]k(f ) coherence decrement -]
C, rotational stiffness of the foundation [Nm]
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modal damping matrix

modal torsional damping matrix

the values of different types of fixations

" (f) coherence between the wind speed in points 1 and 2 at frequency f

height factor

directional factor

force coefficent

lateral force coefficient

basic value of the lateral force coefficient
roughness factor

roughness factor at height z
roughness factor at height ~,
orography factor at height z
orography factor at height ~,
structural factor

season factor
season factor

decay constant
decay constant
depth of the building
displacement height
displacement height

Young’s modulus
Young’s modulus of steel
Young’s modulus of concrete

Young’s modulus of concrete

axial stiffness
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EI Bending stiffness [Nmz}
ET, Bending stiffness in x-direction [Nmz}
EI y Bending stiffness in y-direction [Nmz}
E eigenmatrix containing the eigenvectors [-]
ET transposed eigenmatrix [-]
€ rotation in a node [rad]
F force vector [N]
F force matrix of mean and fluctuating wind speed for total realisation [N]
F force on structure in 3D model [N]
F force of one element on the structure [N]
F wind load on any arbitrary area [N]
F the nodal force matrix [N]
£, reduced spectra [-]
F, Davenport spectra [-]
F, force in node | [N]
F (t) force of horizontal row of areas loaded by wind [N]
F(t) force summation on row of nodes per time instant [N]
F J force in node | [N]
F, force in node k [N]
F, the wind force acting on a structure or structureal component [N]
f frequency [Hz]
f eigenfrequency [Hz]
f frequency of the building [Hz]
r, coriolisparameter [5-1 }
f natural frequency of the building [Hz]
f eigenfrequency [Hz]
f frequency of the system [Hz]
f, frequency of the building [Hz]
£, .., natural frequency of bending movement [Hz]
£ o natural frequency of torsional movement [Hz]
é_Woude,,be,g natural frequency of bending or torsional movement [Hz]
£, constant of the wind power spectral density
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N
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bm}

story

—_

z(h)
I(z)

natural frequency

weight building

shear modulus

shear modulus of structural steel
shear modulus of added concrete walls

constant of the size reduction fuction

constant of the size reduction fuction

torsional stiffness

gravitational acceleration

piekfactor

peak factor

height of the building

depth of the building

height of the building

height of structure

height of the concrete floor

length of the added concrete walls
story height

length of the considered wall segment
height of the considered steel section
height of the walls

height of the walls

thickness of the floor

height of one story of the building

moment of inertia
second moment of Area
identitiy matrix
turbulence intensity

turbulence intensity at height h
turbulence intensity at height z

polar moment of inertia
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I P polar moment of inertia [m"]
I o war  Polar moment of inertia of a wall [m4]
I _for  Polar moment of inertia of a floor [m4]
7, turbulence intensity []
I,(z) turbulence intensity at reference height - [-]
I(z,) turbulence intensity at reference height ~ - z, above ground [-]
I, second moment of inertia in x direction [m4]
I, second moment of inertia in x direction before renovation [m"]

second moment of inertia in x direction of steel structure before

renovation

[m"]

I, second moment of inertia in x direction of the added concrete walls [m4]
I y second moment of inertia in y direction [m"]
I yib second moment of inertia in y direction before renovation [m"]
I yw second moment of inertia in y direction of the added concrete walls [m4]
I identity matrix [—]
[ node number [—]
J torsional constant [mq
j lateral node number [—]
K stiffness matrix [N/m]
K mode shape factor [N/m]
K, aerodynamic damping parameter [N/m]
K, Mmaximum aerodynamic damping parameter [N/m]
K, spring stiffness [N/m]
Koo the stiffness matrix for bending [N/m]
K, effective stiffness of the system [N/m]
K negative stiffness of the upside-down pendulum N/m
p [N/m]
K, size reduction function -]
K,(n) size reduction function -]
o the stiffness matrix for torsion [N/m]
: modal stiffness matrix [N/m]
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modal stiffness matrix

effective correlation length factor
constant

constant

spring constant

factor

spring stiffness

factor of turbulence

turbulence factor

peak factor

terrain factor depending on the roughness length z,

terrain factor
height of the building

length of one element on the structure
correlation length

characteristic length of a wind gust
reference length scale

turbulence length scale
the building length
length of 1 element
length of the diagonal

the length of the structure between the nodes
length from shear center to outer point of building
length of 1 element floor height

pendulum length

mass matrix

moment

moment vector

the nodal moment matrix

moment on structure in 3D model

moment matrix of mean and fluctuating wind speed for total

realisation

(k]
[Nm]
[Nm]
[Nm]
[Nm]

[N]
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M mass of the floor and the walls of 1 storey [kg]
M, mass matrix for bending [ka]
M,, polar moment of inertia matrix for torsion [kgmz]
M’ modal mass matrix [kg]
M, modal torsional mass matrix
M, moment of the node / [Nm]
M, moment in node 1 [Nm]
M, moment in node 2 [Nm]
M, , torsional moment in element number of local node number 1 [Nm]
M,(t) ~moment summation on row of nodes per time instant [N]
M i moment matrix due to mean and fluctuationg wind speed [Nm]
M, lumped mass in node i [kg]
m static moment on one node height [Nm]
m mass of the building [ka]
m the number of antinodes of the vibrating structure in the considered

mode shape o, [-]
Myany  mass of the building [kg]
m, equivalent mass per unit length [kg/m]
m, equivalent mass of the building [kg]
M, o €quivalent polar moment of inertia of the building [kq]
m, moment applied on each node [Nm]
m,, the equivalent mass me per unit length for mode I as defined in

F.4 (D [Nm]
m, static moment per meter height [Nm]
My, static moment on total building height [Nm]

o the variable load on the floor [kg/ mz}

N the number of draws which follows from the number of local peaks

in the total time range [-]
n natural frequency of the structure [Hz]
n mode number [-]
n the number of discrete time points for which a,, have been calculated [
n critical buckling factor []
n the number of steel cross-sections that are located in the building [—]
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n the number of wall segments that the wall of the cross-section is

divided into [-]
n the number of added concrete walls in the cross-section of the building [
M foors the number of floors of the building []
n., the natural frequency of the considerd flexural mode I of cross-wind

vibration -]
N, second order factor -]
n.a. distance between the neutral axis and a parallel refernce line [m]
n, . natural frequency of the structure [Hz]
p load per area [N/mz}
P the variable load on the floor [N/ mz}
ﬁw;l value of the varying part of the wind pressure [N/ mz}
Q the building weight [N]
Q, critical buckling force [N]
Qapt, actual buckling force [N]
q force per length of the structure [N/m]
q dead weight of the structure [N/m]
4, representive dead weight of the floor [N/ mz]
dy.q dead weight of the structure [N/m]

. force per length of building weight [N/m]

g, (Z ) peak velocity pressure at reference height [N/m]
a, (Ze) peak velocity pressure at reference height ~, [N/m]
q, force per length [N/m]
R radius of the circle [m]
R square root of the resonant responce
R? resonance response factor
Sc Scruton number [-]
S, wind power spectral density fucnction [mz / 52}
St Strouhal number []
s, velocity spectrum [mz / SZJ
S, velocity spectrum [mz / SZJ
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s,, (F) velocity spectrum at frequency f [mz / 52}
S,, (w) velocity spectrum at frequency o

5% (f)  the cross-spectrum of the wind speeds in points 1 and points 2 [mz / 52}
Sva/ (f) auto-spectrum of the wind speeds in points i [mz / 52}

the perpendicular distance between the reference line and the
centre of gravity of the considerd wall or considered steel cross-section [m]

T vibration time [s]
T the averaging time for mean wind velocity [s]
T time range of signal [s]
7. time range of the signal [s]
T, period [s]
t time [s]
t thickness of the concrete floor [m]
U mean wind speed at reference height 10 meters [m/s]
u displacement [m]
u displacement vector [m]
u displacement calculated by the 3D program [m]
u(t) displacement of the forced damped equation [m]
u(t) natural vibration of bending or torsional movement at top building [m]
Upop displacement at the top of the structure due to bending [m]
U toor maximum acepptable displacement due to interstory drift [m]
u, displacement of node i [m]
u, displacement of node | [m]
u, displacement of node K [m]
u,(z) mean wind speed of the wind speed at point g [m/s]
u, Zj) mean wind speed of the wind speed at point z, [m/s]
7. average of the mean wind speed of the wind speed at points z,, z, [m/s]
u, ,, mean wind speed at reference height 10 meters [m/s]
u, mean wind speed at reference height 10 meters [m/s]
u,., reference speed at height of 10 m [m/s]
Unr o onalterd reference speed at height of 10 m [m/s]

Usatic,top - displacement at the top of the structure for bending due to static load [m)
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Ustory displacement left for torsional motion [m]
Uyitop displacement at the top of the structure due to torsion [m]
Uiop displacement at the top [m]
a, peak displacement at the top of the building [m]
a, eigenvector -]
u, friction velocity [m/s]
Uiy s friction velocity for a return period of 50 years [m/s]
u velocity [m/s]
u velocity vector [m/s]
U acceleration [m/ s? ]
U acceleration vector [m/ 52]
v the up-crossing frequency [Hz]
v hourly-averaged part of wind speed [m/s]
v(h) hourly-averaged part of wind speed at height h [m/s ]
v(2) hourly-averaged part of wind speed at height z [m/s ]
v(10) mean wind speed at reference height 10 meters [m/s]
V fluctuation part of wind speed [m/s]
v, basic wind velocity [m/s]
v,(z) basic wind velocity at height z [m/s]
Vo fundamental value of basic wind velocity [m/s]
Vare, critical wind velocity for mode 1 [m/s]
v, mean wind speed at top of the building [m/s]
v, the characteristic 10 minutes mean wind velocity specified in [10]

4.3.1(1) at the cross section where vortex shedding occurs [m/s]
v, (z) ~mean wind velocity at height z [m/s]
v, (z.) mean wind velocity at height Z, [m/s]
w width of the concrete floor [m]
x height of the building at which the rotation angle is required [m]
x dimensionless frequency []
X, the maximum displacement due to self weight applied in the vibration

direction [-]
y coordinate in width direction of the building [m]
y lateral coordinate [m]
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Yrmm largest displacement calculated for cross-wind amplitude [m]
y, node position relative to the left edge of the building [m]
V...  the characteristic maximum displacement at the point with the largest
movement [m]
z height above the surface of the earth [m]
z lateral coordinate [m]
. reference height or height of structure [m]
Z; lateral coordinate [m]
z, vertical coordinate [m]
z, value of the lateral an vertical coorinate divided by 2 [m]
Zoin minimum height [m]
z, roughness length [m]
Zon roughness length [m]
z, height of chosen node point above the surface of the earth [m]
Z, reference height [m]

Greek symbols

p wind turbulence factor

B, lift damping ratio [—]
&, dynamic amplification factor [—]
& nodal rotation between points i and | [-]
¢]7( nodal rotation between points j and k [—]
¢y constant of the size reduction function [—]
&, constant of the size reduction function [—]
Aw equal distance in which the velocity spectrum is divided into [rad/s]
Ao, equal distance k in which the velocity spectrum is divided into [rad/s]
Ar, the distance between points ; and k [rad/s]
) displacement [m]
0 the total logarithmic decrement of damping [-]
5@ displacement at top of building due to foundation rotation [m]
5y bending displacement at top of building due to wind [m]
Son shear displacement at top of building due to wind [m]
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Orop displacement at top of building [m]
5r0p;sec displacement at top of building including second order effect [m]
S, the total logarithmic decrement of aerodynamic damping —
S, the total logarithmic decrement of damping due to special devices —
s, the total logarithmic decrement of structural damping _
£ bandwidth factor —

®(y,z) the mode shape

o, (5) the cross-wind mode shape 1

!_|f_|f_|l_|lT| 11111
L L

. mode shape value at the point with maximum amplitude -
G damping ratio _
S, damping ratio of the I -th mode -
S, damping ratio of the i -th mode for torsion —
K curvature [1/m]
Von Karman constant -]
length divided by width of structure [—]
Ly ag mean value of acceleration realization of node 48 [m/ sz}
u, constant of coherence
Lo the reference mass per unit area [kg/sz
4 poisson ratio -]
v, poisson ratio of the concrete for additional structural walls [—]
v, poisson ratio of the structural steel [—]
Yo, mean mass density [kg/ma]
o mean mass density of air [kg/m3]
Yo average density of the building [kg/m3]
Yo the air density under vortex shedding conditon [kg/ ma]
Pe mean mass density of reinforced concrete [kg/ m3]
o mass of the building per meter height [kg/ma]
0 twist angle of element [rad]
twist angle of 3D model [rad]
0 random phase shift ; a number between 0 and 27z [rad]
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?, random phase shift of the i -th mode [rad]
®, random phase shift ; a number between 0 and 27z [rad]
A width degree of earth at location [°]
Q diagonal matrix with the eigenfrequencies [rad/s]
Q diagonal matrix with the eigenfrequencies for torsion [rad/s]
Q rotation speed of the earth [rad/s]
w© cyclic frequency [rad/s]
w, frequency of spring stiffness [rad/s]
@, damped natural frequency [rad/s]
o, damped natural frequency [rad/s]
o, frequency of the effective frequency of the system [rad/s]
@, yon s d@mped natural frequency for bending motion out of mathlab  [rad/s]
O, o mamas d@mped natural frequency for torsional motion out of mathlab  [rad/s]
O, oreen damped natural frequency for bending for Breen’s model [rad/s]
R— corrected damped natural frequency for Breen’s model [rad/s]
O, yuemey ~ natural frequency of bending or torsional movement [rad/s]
w, finite number of points of which the velocity spectrum is divided

into [rad/s]
o, eigenfrequency of the i -th mode [rad/s]
o, eigenfrequency of the i -th mode for torsion [rad/s]
o, first natural frequency [rad/s]
o, first natural frequency for torsion [rad/s ]
@y or first natural frequency of torsional movement [rad/s]
0, natural frequency of the upside-down pendulum [rad/s]
14 angle of rotation of the nodes [rad]
/g rotation of the cross section [rad]
Y cmeseomene. 20181€ Of Totation of static element [rad]
Y iop angle of rotation at the top of the building [rad]
v, angle of rotation of the node / [rad]
v, angle of rotation of the node 1 [rad]
v, angle of rotation of the node 2 [rad]
74 angular velocity of the nodes [rad/s]
W angular acceleration of the nodes [rad/ Sz}
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st standard deviation of acceleration of node 48 [mz/ S]
o, standard deviation of wind speed [m/s]
o2 variance of velocity spectrum [mz /Sz]
g, standard deviation of the displacement [m/s]
4 damping ratio [—]
<, damping ratio for torsion [—]
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1. Introduction

In this thesis, an investigation is presented of the bending and torsion oscillations of high-
rise buildings due to wind loading. This research is a continuation of the thesis of Hans
Breen [5]. The aim of this thesis is to make a modeling tool in Matlab to predict the bending
and torsion oscillations of high-rise buildings due to wind load fluctuations in time and
space. With the developed modeling tool more challenging designs are feasible, eliminating

conservative approximations in wind loading in sevicibility limit state.

The European and Dutch standards are expected to be conservative when it comes to wind
loading on tall buildings, which means that the buildings are over dimensioned. Many Dutch
and European standards also specify that there must be enough sunlight in a building. This
entails that a building’s width is limited, which makes the building more susceptible to

dynamic loading.
My research questions were:

Does the Juffertoren comply in the serviceability limit state when looking at bending

and torsional accelerations in the along wind direction?

Does the structurally strengthened student building Voorhof in Delft comply in the
serviceability limit state, when looking at bending and torsional accelerations in the
along wind direction? After strengthening there were still complaints that occupants

were experiencing motion sickness during storms.

This Master thesis researches whether the maximum acceleration of a building in the
serviceability limit state is exceeded due to wind loading. Research was also carried out on
how the natural frequencies vary due to different design rules and the effect this has on the

predicted maximum acceleration in the serviceability limit state.

The used Juffertoren design was never built, due to the fact that design calculations of DHV
showed that wind loading would cause accelerations that are too large by norm regulations.
These accelerations would be detrimental to the comfort of the users of the building. A

lower and less slender structure was built instead.

Due to the hign costs of a windtunnel aeroelastic model, companies are reluctant to build
this model in the early design fase when the dimensions of the building have only been
estimated. The outcomes of this model (the forces, moments and response) are only valid
for the specific shape of the model. A structural firm will not invest a large sum of money

which will be useless in a later stage.

-1- May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

This is why a computational design tool that can predict the occilations due to windload is

important.

In this thesis, the new method is first explained. Then the time-domain analysis values
(bending and torsional acceleration) for the Juffertoren are determined and are compared to
the values out of design formulas (bending acceleration). The same is done for the student
building Voorhof, before and after renovation. After which the frequency-domain analysis
results for the Juffertoren and the Student building Voorhof after renovation are presented
(bending acceleration). And finally the comparison between the bending acceleration results
for the time-domain analysis and frequency-domain analysis for the Juffertoren and the
student building Voorhof after renovation are presented.
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2. Literature study

Literature was sought for determining the torsional accelerations in buildings. The outcome
is that there have been many studies on wind on high rise buildings but very few guide lines
or tools exist to determine the bending and torsional accelerations accurately in the early

design stage.

2.1. Literature on dynamic modeling

Below is a list of publications that are relevant to the subject of dynamic modelling of high-

rise buildings.

Bezeos N, & Beskos D.E. (1996). Torsional moments on buildings subjected to wind loads.
Engineering Analysis with Boundary Elements. Elsevier Vol.18,No.4, pp. 305-310.

Geurts C.P.W. (1997). Wind-Induced Pressure Fluctuations on Building Facades.
Dissertation: Eindhoven University of Technology, The Netherlands.

Holmes J, Rofial A, & Arelius L. (2003). High frequency base balance methodologies for tall
buildings. Preceedings of the 11t international conference on Wind Engineering,
Texas, USA (online 13 dec. 2012: http://windtech.com.au/wp-
content/uploads/2012/08/09.pdf)

Hong S, Kang B, & Park J. (2003). Dynamic Analysis of Bending-Torsional Coupled Beam
structures Using Exact dynamic elements. Kumi.

Kareem A, Gu M, & Zhou Y. (2000). Eguivilent static buffeting wind loads on structures.
Notre Dame, Shanghai: University of Notre Dame, Tongji University.

Kareem A., & Chen. X. (2005). Validity of Wind Load Distribution based on High Frequency
Force Balance Measurements. Notre Dame, Indiana: University of Notre Dame.
Markarios T. (2008). Practical Calculations of the torsional stiffness radius of multistory tall

buildings. The Structural Design of Tall and Special Buildings, 39-65.

Oosterhout G.P.C. van. (1996). Wind-Induced Dynamic Behaviour of Tall Buildings.
dissertation Delft, University of Technology.

Steenbergen R.D.J.M. (2007). Super elements in High-Rise Buildings under Stochastic Wind
Load. dissertation Delft, University of Technology.

Tamara Y. (n.d.). Wind Tunnel Tests and Full-scale Mesurements.

Tomasevic S., Grubisic R., & Senjanovic I. (2007). Coupled Horizontal and Torsional
Vibrations of Container Ships.

Woudenberg I.A.R. (2001). Wind en de hoogbouwdraagconstructie. Thesis Delft, University
of Technology.
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2.2. Wind tunnel measurements

Wind induced torsion of a building is caused by a torsional moment due to fluctuating wind
gusts on a building surface and vortex shedding on edges of the facade surface. Torsion in

a building may also occur due to an irregular cross-section of a building.

There have been a lot of studies on motions of buildings in wind tunnels. The force-
balance approach (section 2.2.1) is mostly used to determine the forces, moments and
response on a structure. This model type is reasonably cheap and modifiable in comparison
with the pressure integration method (section 2.2.2) and aeroelastic model, (section

2.2.3). For slender buildings an expensive aeroelastic physical model has to be used.

2.2.1, Force-balance approach [21]

A force-balance test measures overall shears and moments at the base of a stiff and
lightweight model. The base moments are used to estimate the generalized forces for

further dynamic analysis. The force-balance test has several advantages:

- The required model has to be stiff and lightweight but no other requirement is necessary
except for the scaled geometry of the building.

- Aforce-balance model can be constructed quickly (typically within two to three weeks).

- The measurements of base moments inherently include the correlation of the wind forces on

various parts of the building.

- Structurally-connected towers can be tested by collecting simultaneous measurements on

each component using a multiple-balance setup.

- Another advantage is that relatively little (statistical) calculations are required to make the

results usable for the desigh engineer.

On the other hand, the force-balance analysis relies on the assumption of nearly linear
mode shapes. It is not suitable for flexible structures where the mode shapes may be
significantly non-linear. It is also not suitable for flexible structures where the natural

frequencies for higher modes lie in the range where significant wind energy is available.
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2.2.2, Pressure integration method [22]

State-of-the-art pressure instrumentation allows simultaneous local pressure measurements
at about 1,000 locations on a pressure model. These pressures can be converted to loads on
the building and can be integrated at each sampled time interval to determine the overall
structural load time histories. Generalized forces are calculated using the measured load
distribution with the mode shape.

The information obtained from the pressure integration method is generally equivalent to
that available from the force-balance tests. There are a number of differences between the

force-balance and pressure tests:

The integration of wind loads on all building surfaces includes the correlation and coherence of
the force components in the x, y and torsional directions.

- The variation of wind loads with height is available in detail and can be used together with any

variation of mode shapes.

- Estimates of the torsional contribution to the generalized forces are significantly improved over

the force-balance analysis.

- Apressure test is inherently more robust.

- The construction of a pressure model is more time consuming; hence, the information on

overall loads takes longer to develop than by using a force-balance model.

For very complex geometry or for multiple towers, a large number of pressure taps is
required to cover all building surfaces. It requires a large interior space in the pressure

model, and hence sometimes integration resolution can be compromised.

In general, the force-balance test and the pressure integration method can be treated as
equivalent. It is generally recommended that a force-balance study be carried out if
structural load information is required urgently or if there is good possibility of geometry
changes. The pressure integration method is more cost effective since only one model and

one set of tests are required to obtain both structural loads and local pressure information.
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2.2.3. Aeroelastic model [23]

Aeroelastic model tests are suitable for buildings that are unusually slender, flexible or have
significant structural coupling. Any of these characteristics may lead to significant wind-
induced motion. With this motion the building interacts with the surrounding air creating
additional forces not accounted for directly in the rigid model testing techniques. These
forces, commonly referred to as aerodynamic damping can enhance or mitigate building

motion.

An aeroelastic model is designed with correctly-scaled dynamic properties of the full scale
structure. Making this scale model is a challenge in itself. For some effects (cables on a
bridge) only a full size model is suitable.The wind induced responses (deflections,
accelerations, bending moments) may then be measured directly in the wind tunnel. The
responses inherently include the additional effect of the motion-induced forces.

If properly carried out, the aeroelastic model tests provide the most accurate information on
structural responses due to wind. They do require extensive design and construction of the

model and a more intensive test program.
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3. Idealisation of the Juffertoren building, bending
and torsional model

In this chapter, Juffertoren is idealized and the structural characteristics are determined.

3.1. Design and idealisation

This design model of DHV (structural firm) in the early design process is used, because
there were doubs that it would exceed the servicibility limit state requirement. A thesis
study with this design model was done by a student earlier [5] in which only the bending
accelerations are taking into account. In this model bending and torsional accelerations
occur simultaneously. The used Juffertoren design of DHV (structural firm) has a height of
144 m, a width of 26.34 m and a depth of 15.44 m. The design was planned to be built in
the Wijnhaven district of Rotterdam in the Netherlands. (Fig. 3.1) The final design for the
Juffertoren differs from this design.
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Figure 3.1: Drawing of the building
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Torsion motions of high—rise buildings due to wind loading

The Juffertoren building is modeled by 48 elements, 1 for each floor. The elements are

connected at nodes. Each node has two degrees of freedom, which represent the
displacement and the rotation of a floor. (Fig. 3.2)

Model a

Figure 3.2: a) Displacements and rotations of the floors b) Rotation of a representative
cross-section.

3.2. Cross-section properties

Centre of gravity

The location of the neutral axis of the cross-section in x and y direction of the building
structure can be determined with the formula:

A 277 S.
.S = \A C — Z IA
L e

Figure 3.3: Computation of the centre of gravity
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Where:

S, The perpendicular distance between the reference line and the centre of gravity of

7/
the considered wall, or column.

A, The area of the considered wall, or column.

7

The calculation of the location of the neutral axis in x and y direction is performed in Matlab
(Appendix 2). The neutral-axis of the Juffertoren design is located in the x direction at -

2.571 m from the centerline and located in the y direction at 0.021 m from the centerline.

The second moments of the cross-section are

n 3 n n n
1,=320.3s.4 1,-3"2 .54

/=1 i=1 i=1

where:

The number of wall segments that the wall of the cross-section is divided into.

3

b,  The width of the considered wall segments.

A,  The length of the considered wall segments.

s,,  The perpendicular distance between the reference line and the centre of gravity of
the considered wall, or column for x direction.

s,,  The perpendicular distance between the reference line and the centre of gravity of

the considered wall, or column for y direction.
A, The area of the considered wall, or column.

The second moment of inertia in x and y direction were calculated in Matlab (Appendix 2).

The outcome is 7, =3409.3 m*and 7, =666.4 m*.

The shear modulus is defined as

G- E
2(1+v)

We assume Vv =0.15 for uncracked concrete. We use a concrete strength for the

Juffertoren of C35/B65. ([25]) We assume £', = 30000 N/mm? = 3.00* 10" N/m? which

leads to a shear modulus of £/2.3 =13043 N/mm? =1.304 *10" N/m?
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Torsion Constant

The torsional constant is calculated as:
J= %beh, =2.7544 m*
i=1

The torsional stiffness of the cross section is:
GJ =3.592 %10 Nm?
Polar Moment of Inertia

The polar moment of inertia of the wall cross section is

I, =[rdA=1,+1,

p
A
The polar moment of inertia of the floor cross section is

I, gy =[PPAA=T +1,
A

Storey Mass

The mass of the floor and the walls of one storey can be calculated with the formula:

M=p.> A + p.h,A +m,A =1.479%10 kg
i=1

where:

p.  specific gravity of reinforced concrete, p, = 2500 kg/m?;
A, height of the walls, #=2.75m

A, area of the walls

h,  thickness of the floor, /1 =0.25m

A,  area of the floor

m,  The variable load on the floor , m, =70 kg/m? = 0.7 kN/m?;
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Mass of the furniture, decorations and inhabitants are estimated at
m,, =70 kg/m?* = 0.7 kN/m? !

Shear Center

The shear center is an imaginary point on a section, where a shear force can be applied
without introducing any torsion. If the section is twisted, it also rotates around the shear
center. It is not easy to compute the shear center. For now it is assumed that the shear
center is equal to the center of gravity. This is a good approximation due to the symmetry

of the floor plan.

1 When the mass becomes less the smallest natural frequency becomes larger. This can be closer to a

loading frequency. It is not possible to choose a safe value beforehand.
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4,

Structural Matrices

The essence of this chapter is to determine the different matrices and values for bending

and torsion and to show these are assembled in the global stiffness matrices. For the

Raleigh damping method [2] the matrices and values are also determined.

4.1. Field bending element

The model is built up of 48 elements. The flexibility of the elements is concentrated in

springs at the nodes. (Figure 4.1) The relation between the moment M and the rotation e

is:

s R WA ¢

i
e X

Figure 4.1: Bending element

The relation between the rotation and nodal displacements can be found with:

Hence:

-13-
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Torsion motions of high—rise buildings due to wind loading

Figure 4.2: Bending element deformation

M=Elk= E_/‘l
e= ! —>R= !
R e
So, M= E[%
Moment equilibrium gives:
F=-2
/
M
F =—-_
o

Horizontal equilibrium gives:

F,+Fj+Fk:O—>Fj:—F,—/-'k:2

This provides the stiffness matrix of a bending element

F 1 2 1]y,
Fl=52 4 2y
Fk 1 -2 1 u,

4.2, Field torsional element

The notation of the torsional moments will be written as the letter M followed by the
element number and the local node number, separated by a dash. Example: M 3.;

=(v1 —v>)
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Where ¥ is the angle of rotation of the nodes and @ is the twist angle of the element.

A ]

Mi

Figure 4.3: Field torsional element

4.3. Bending stiffness matrix

The derivation of the bending stiffness matrix for the last 3 nodes of the structure is shown

below
CE|... . . . . .
TAl. ... 14+l 22 1 0 0
. e e ol 2-2 114441 -2-2 1 0
F, AU 2-2 [tract| 22111 v,
Fig N | 1 2-2 1+4 | -2| u,
Fi | ..... 0 0 1 2 1| uy]
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The derivation of the bending stiffness matrix for the first 3 nodes of the structure is shown below

R +4+1] -2-2 1 0 1y, ]

A 2-211+4+1 -2-2 1 u,

F, - 1 2-211+4+1] -2-2 u,

£ =7 0 1 2-211+4+1 u,
Kben

In the global stiffness matrix, the first row and column can be omitted from the matrix

because the displacement of node 0 is set to zero.

[F ] 1+4+1] —2-2 1 N A
F, -2-2 [1+4+1 -2-2|. . . .||y,
I 1 2-2 J1+4+1]. . . .||l
ET
N

4.4. Torsional stiffness matrix

The derivation of the torsion stiffness matrix for the last 3 nodes of the structure is shown

below

|
GJ| -4 -=
My | -_:-_"‘_1_:_ -1, _O'I Vaz
Mg . |_—_1_| L+11 —1I Wag
| M, | o 0 Lo |y, |
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The derivation of the bending stiffness matrix for the first 3 nodes of the structure is shown below

o = - a7

740 3 |-1t11'I 1__11-: S|

1 GJ -2 _I_+_.I___ 1. ||

M=o 0 L1 Ty
Ktor

In the global stiffness matrix, the first row and column can be omitted from the matrix

because the rotation of node 0 is set to zero.

L 41

M, n .
M, SRS W 7
0

4.5. Mass matrix

The structure is modeled as discontinuous. This entails that the mass of the structure is
lumped in the nodes. The mass of each element is put on the diagonal in the mass matrix.

Mas

|
VT
\

M2

Figure 4.4: Lumping the mass in nodes

-17-
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4.6. Polar Moment of Inertia

The structure is modeled as discontinuous. This entails that the polar moment of inertia of
the structure is lumped in the nodes. The polar moment of inertia of each element is put on

the diagonal in the polar moment of inertia matrix.

I o =L+ L pe | =31503 m?
p- 12 12
4
fp_wa,, =1, +fy =4077 m
I4s
—l-—
lp g
Ip2 Ire
h+t
Ipt |
Ipo L
| B |

Figure 4.5: Lumping the polar moment of inertia in nodes

L= . hp+I o (hp+m,)=50521317 kgm’

p

story height e=h=3m mean density o = 2400 kg/m?
floor height h, =0.25m width building B = 26.34 m
depth building 4 =15.44m variable mass /7, = 70 kg/m?

=1, gp +1, oo (Byp+m,) = 35844192 kgm’

p4s8
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Assembling the global stiffness matrix

4.7.

The mass and polar moment of inertia matrixes for the entire building are assembled with

the use of Mathlab. The mass matrix is 49 x 49 before reduction.

B s @
ISIESIESNESSERNES S S iy
| |
; ]
®
O o oooo .00000M4
o oo ooo o0 o0 oo I o
o0 o S oo
-0 o0 oo o
-0 T oo oo
- S 0o oo oo
o o oooo I
o ooooo I o - o o
o o0ooo I oo - o o
O oo S oo o - o o
O o S oo oo - o o
O ST oo o oo - o o
S oo oo oo - o o
h )
I
r d
oL~ LN L™ LT L S LuF L
W W W ul Wl W [N
|

0 the reduced mass matrix is

= [j_l

Since U,

— N
SRS NS N Ny
L )
T !
@
O o oooo .00000M4
oo oooo o000 s o
o0 o0 S oo
-0 o0 oo o
-0 T oo oo
- S oo oo o
s
.Mw

oo oooo I
oo ooo I o - o o
O o0ooo I oo - o o
O oo ooo - o o
O o S oooo - o o
o T ooooo - o o
S oooooo - o o
L )

I
T 1
LN GO LT Y, 5. 2
Wl W W wuyw NN
L
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The polar moment of inertia matrix for the entire building is assembled with the use of
Mathlab. The matrix is 49 x 49 before reduction.

TUDelft

Vo
2
v,
Vs
72
Vs

o O O o o o

o O O o o o

o

o

o o

41
v,
Vs
Vs
Vs
Vs

Var
Vas

0

0
7, =0 the reduced matrix is

o O O o o o

o O O o o o

MfDI'

© O o o o o

O O O O O W\

O o o o Qo
QU

O O o o o

O O o o o

0

FYYYYY

Since v/,

0 0 0 0
0 0 0 0 I,
0 0 0 0 0 I,
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4.8. Damping matrix

The damping matrix is determined with the use of the Raleigh damping method [2]. The
Raleigh damping method or proportional damping method implicates that the damping
matrix is proportional to the mass and stiffness matrix. The Raleigh damping method is used
because it is nearly impossible to determine the damping of each individual mode of a

structure.

The mass matrix for bending is denoted as M, .

The polar moment of inertia matrix for torsion is denoted as M7, .
The stiffness matrix for bending is denoted as K., matrix.

The stiffness matrix for torsion is denoted as A", matrix.

tor

The general equations for proportional damping for bending and torsion are:

Cren = BovenMpen + A1penK pen

C

tor

= aotor Mtor + altorK

tor

From here on the subscripts M, and M, will not be added to matrices or coefficients

tor

pertaining to bending or torsion.

The proportional damping constants are [2]:

o 20 (610 ~5,01) {rad}

o 2 2
o, —

S
5 - 2am—g) s
! a)zz — a)12 rad

The proof is given below:

By using modal analysis we can prove the derivation of the constants of proportional

damping. The eigenmatrix will be noted as the matrix Eand 4, as eigenvector. [2]

g;

E =

n
/=1
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The modal stiffness matrix and modal mass matrix are now introduced, both matrices are

diagonal by definition because of the orthogonality conditions.

K" =E’KE

M" = E'ME
The term modal damping matrix will also be introduced now. The modal damping matrix will
also be diagonal and gives the following result:

C" =E'CE=gM" +3K" =3g,E'ME + 3 E'KE

A modal damping ratio is assumed, which entails that every mode / has its own damping
ratio g, . (This is a fully decoupled equation)

[2,0]=M"'C
Making use of two equations above results in:

[2c,0]=M"[aE'ME+4K"|=a]+aM K" = a1 +a4Q°

In which represents the eigenfrequencies of the undamped system on the diagonal,

consequently the damping ratios can be written as:

a 9
=5 t—o o
20, 2

This derivation above has proven this. The constants of proportional damping a,and

a, can be determined by the rearranging of the formula:

Lo RN ol

Anthony Richardson -22-
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The damping ratios of mode 1 and mode 2 and also mode 1 and mode 10 will be
determined later in this paragraph. The damping ratios of mode 1 and mode 2 are chosen
to be used in this calculation and from hereon after this chapter. The chosen 2 modes are
dominant for wind on the building.

The damping ratio for concrete we can calculate as: [17]

¢ =0.003+0.00767, + C, % (£, in Hz)

With
_10(03V9)
C. =10
In which:
¢ damping ratio for concrete [-]
f, natural frequency of the building structure [Hz]
C, energy dissipation factor [-]

g,  peak displacement at the top of the building [m]

height of the building [m]
d depth of the building [m]
For the values of b=264m;, £ = w/2r= 1,409/27z= 0.224Hz;

(see 5.4.1)
g, =0.1784m; h=144m

We attain the values for C,= 100359= 11.8 ~ 12

¢ =0.003+0.0076*0.224+12* %:0.019 (1.9%)

The damping ratio can be calculated from:[13]

a
=0.01£, +C, -2
g e+ e h

0.1784

¢ =0.01%0.224+12* =0.017 (1.7%)
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In [3] a damping ratio is proposed of ¢ =0.02 for a concrete structure but this value is

only valid in the Ultimate limit state. In the serviceability limit state there will be less
cracking of concrete. For this situation a conservative choice for the damping ratio is
¢=0.01.

For the Juffertoren the damping ratio is selected for mode 1 ¢ =0.01 and for mode 2

G =0.01.

The Raleigh damping coefficients for bending are g,,, =0.0243rad/s and
8,40, = 0.0002 s/rad for mode 1 and mode 2. The Raleigh damping coefficients for bending
are g, =0.0281rad/s and a,,, = 0.0001 s/rad for mode 1 and mode 10. When

interpreting the values of the Raleigh damping constants for bending, one can see that the
damping acts totally on the Modal mass matrix (low frequencies).

w, = 1.409 rad/s

e _ ben _ matlab

The Raleigh damping coefficients for torsion are g,, =0.013rad/s and

a,,, = 0.0058 s/rad for mode 1 and mode 2. The Raleigh damping coefficients for torsion

are &, =0.0165rad/s and @&, =0.0012s/rad for mode 1 and mode 10. When

tor
interpreting the values of the Raleigh damping constants for torsion, one can see that the

damping acts totally on the Modal mass matrix (low frequencies). «

e _tor _ matlab

= 0.502 rad/s

2 When reviewing the Mathlab code of Breen [5] the Raleigh damping coefficients for

bending were g, = 0.0256 rad/s and &, = 0.0018 s/rad . In the newly written code the corrected
Raleigh damping coefficients for bending were g, =0.0243 rad/sand &, = 0.0020 s/rad . The

reason for this is that Breen included the foundation stiffness in the modal. The K[2,2] in
ET

7

=1,48rad/s o

e _ matiab

@, preen =141lrad/s My

this study is 6% and in Breen is 5

assumption is that the actual displacement, velocity and acceleration would have been
smaller than what Breen displayed, when taking these aspects into consideration. Secondly,
even though Breen’s model also takes the foundation stiffness into account, this model does
not, which is a conservative approach. It is rigidly connected at the foundation. Breen also
includes the foundation stiffness.
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5.

Dynamic Simulations with Simulink

In this chapter the dynamic model for bending and torsion is determined and validated in

Simulink.

5.1. Simulink and equations of motion

Simulink is a sub program of Matlab in which graphical programming can be done for

modeling, simulating, and analyzing dynamic systems.
The equation of motion for bending and torsion can be written as: [12]

M, i+C, Uu+K, Uu=F
MtarV; + Ctorl/} + Ktorl// =M

The number of elements for this building model is 48, with at each node 2 degrees of
freedom. The bending and torsion equations of motions are loaded in separate matrices in
Simulink. The solution of the eigenmatrices required two separate matrices for bending and
torsion. The M, C and K matrices for bending and torsion are (48 x 48) matrices and
U, v and F, Mare (48 x1) vectors. State space formulation is introduced for the bending

and torsion equation of motion because Simulink cannot process a second order differential

equation.

5.2. State space formulation for bending

As explained before the equation of motion for bending of the building can be written as:

M, 0+C,U+K, u=F

Further on in Chapter 6.6, F is dicretised as a matrix. The bending state space

formulation is done by introducing a vector:
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Substitution of the equation above into the bending equation of motion results in:
I 0 : 0 -1 0
[X]+ [X]=
0 Mben Kben Cben F

I 0

Multiplication and rearranging with
0 M.,

} results in:

- 0 I I 010
[¥]- {-M* K. -MiC }[X] {o M MF}
ben"" ben ben™ ben ben
The state space equation in Simulink can be written as:

X =Ax +Bu
y=Cx+Du

In which U is the input and J is the output. The output of interest is the displacement U

and the velocity U/, because of this Y will be defined as:

[v1=[x]

Rearranging of two equations above results in:

e e

ben" " ben

W15 SJx1e o]
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The derived matrices above can be placed into Simulink as written below:

[0 I
A= 96x96
__Mzen/(ben _M;Jleaneni| ( X )
B- (_)1 } (96x48)
_Mben
c-|! 0} (96x96)
0 1
[0
D= 0} (96x48)
u=F] (48xti) (ti = number of timesteps)

The displacement vector ¢ and the damping matrix C are not identical to the matrix

C and the vector ¢ in Simulink.
The Simulink model can be viewed in Figure 5.1. The different contents of the model will
be explained in the text below. While Simulink runs, the state is recalculated for every

instant in time.

The contents of the blocks in the Simulink bending model will be given from left to right.
The first block contains the nodal forces as defined by 3 equations on previous page. The
output of this block is the nodal forces for every time step of the 48 nodes. In the second
block a transformation occurs which transforms the elements of the first block into a vector.
The third block contains the matrices defined in the equations on previous page. The inputs
of this block are the nodal forces and the outputs of this block are the displacements and
velocities of the 48 nodes. The next 2 blocks which are selecting only the displacement and
velocity of the top of the building as output from the total vector with all degrees of
freedom. The 3 output blocks at the right store the output in combination with the time of
which Matlab can make plots. The block between output velocity top and acceleration top

differentiates the velocity in time with outcome the acceleration of the top.

DD e < LI - ’;f’:z:g: —lu W
MHodal forces ) dizplacement top
for every timestep Input windload in: forces on the nodes output
Output a wector out: displacements of the nodes | displacement top
and welagity of the nodes .-
output vector velosity top
U Pl durdt

acceleration top

differentation

output
welocity

welocity top

Figure 5.1: Model for bending of the MDF system in Simulink.
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5.3. Verification of static bending behavior

The mass matrix has elements only on the diagonal, therfore verification is not necessary.
The stiffness matrix can be verified by placing equal static loads at all the nodes of the

structure. If a static load of g =62.1 kN/m (arbitrarily chosen) is placed on the structure,

the total static displacement of the top of the building will be:

4
ustal'ic;l'op = Sqéf =0.1666 m

The stiffness matrix can be validated in Matlab by using the formula:

u=K*F
with:
K The stiffness matrix is derived in Appendix E according to section 4.7

F The force vector is a (48x1) matrix. A force of 62.1 kN per meter height multiplied by
the height of one story is applied on each node of the structure. The load applied on each
node is A - 3*62.1= 186.3 kN. The load on the top node is half the value of the previous

ones.

Evaluation of the equation above in Matlab results in a static deflection at the top of 0.1784
m, the deflection of the structure can be viewed in (Figure 5.2). The outcome verifies that
the stiffness matrix is well defined. The absolute difference is 0.1784 — 0.1666 = 0.0118 m
The difference in percentage from the actual deflection is 0.0118 / 0.1666 *100 % = 7 %
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Plot Static deflection

T T T

140 - /
120 /

100 - 1

zim)

201 // N

0 1 1 1
0 0.05 0.1 0.15 0.2

uimjben

Figure 5.2: Static deflection of the building (bending)
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5.4. Verification of natural frequency

5.4.1. Computation of Natural Frequencies

The damping matrix and dynamic behavior can be verified by applying step function to the
system in the Simulink model. When the same force is applied as in the static displacement
control, this will result in a vibration equal to the defection of the static deflection round the

origin: (Figure 5.2)

The natural frequencies of the equation of motion can be determined by using the

homogeneous part of the equation of motion [2] ;
Mi+Cu+Ku=F
With the use of modal analysis this can be rewritten as:
E"MEi+E"CEu+E"KEU =M +Cu+K'u=0

Modal analysis implies that this differential equation above is a totally decoupled system.
x\-1 «\1 %
Multiplying this equation by (M ) and substituting the relation (M) K =0 we

conclude that:
.o 3 '1 X .
u+(M ) Cu+Qu=0

In which Q is a diagonal matrix with w, (/=1,2,...,48). And substitution of

(M*)_1 C' = 24, in this decoupled system can be written as follows: [2]

U +20U0 +a'u =0 (/ =1,2.., 48)

The homogeneous solution of the equation of motion is [2] [11]

/

u, (£) = Aet=o) sin(a),t 1—g,2+¢,) (/=1,2,...,48)

The solution for the first mode or natural frequency is:
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u, (t)= Ae s sin (a)ll\,l -¢° + ¢71)

cos(x) =sin(-x + g)

With (M* )-1 K" = Q?, Matlab can determine o, (the natural frequency). With ¢, =0.01 and

o, =1.41 rad | s the eigenfrequency of the damped system can be determined:

o, = o\1-¢? =1.41J1-0.012= 1.40 rad/s

Table 1: Natural frequencies bending

5.4.2, Manual calculation of the bending natural frequency

A hand calculation is performed to check that the eigenfrequency calculated by Simulink is
correct. The first natural frequency can be calculated [2] p.63

w, =C\|(EI | pAI")

n

({21, p.80)
which can be derived from the Raleigh quotient.

C =3.52 modulus of elasticity £ = 3.0F*° N/m?
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Second moment of inertia J = 667 m* mean mass density p = 675.54 kg/m?

Area building A=405.02 m’ height building /=144 m

@,

-C /(Ef / pAI*)= 3.52\/((3.0E1°*667) /(675.5366*405.02*1444)) = 1.451 rad/s

This has a reasonable agreement with the first natural frequency from Mathlab. The
difference is due to approximation when using the Raleigh quotient.

5.5. Response to a sinus load
5.5.1. Verification of the MDF system for bending

To further verify the Simulink model we have to prove that the displacement of the single
degree of freedom (SDF) and multi degree of freedom (MDF) are the same. In Simulink we
make a diagram to test the response of the multi degree of freedom system and see if the
displacement corresponds to the displacement of a single degree of freedom system. On

the MDF system for bending, a sinusoidal load will be placed on the top node.

(F =1000000 * sin(1*¢))

The responses of both systems are almost the same. (Compare Figure 5.5 to Figure 5.3)
The difference can be accounted for by the higher modes of the MDF system which are

neglected in the SDF system.

Torsion motions of high—rise buildings due to wind loading
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Figure 5.3: Response to sinusoidal load of MDF system (bending)
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5.5.2, Manual calculation of the dynamic bending behaviour

The dynamic displacement of the structure will mosty be due to the first mode of vibration,
if the forcing frequency is close to the natural frequency. The contribution of the higher
modes for the displacements are relatively small and can be neglected in this analysis. By
knowing the damping ratio of the first eigenmode (Section 4.8) and the natural frequency,
the behaviour of the multi degree of freedom (MDF) system can be approached by the
behaviour of a single degree of freedom (SDF) system. (Figure 5.4) On the SDF system for

bending, a sinusoidal load will be placed on the equivalent system.

(F =1000000 *sin(1 % ¢))

m,, =024% ho* A% | = 0.24 % 675.54 * 405.02 * 144 = 9455865 Kg 2] pp.75-80

o _3*El_3%*2003*E"
“T P 144°

k * 7 0.5
Cog =C*C, =C*2% i=0.01*2*‘/M=2.759*55[ dd J
m., 9455865 kg * M

=2.012*%F’ N
M

Meq Mag

Me
M1

Mo

7

Figure 5.4: Static deflection of building.

Schematizing the structure as an SDF system with the displacement at the top as the only

degree of freedom with ¢(0) =0 mand ¢(0) = 0 m/s gives [26] pp. 72-73.
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Displacement Sdof Simulink

0.1

T
—
1

0.05 T

E—— %

-0.05 \J |

_0-1 5 1 1 1 1 1
0 50 100 150 200 250 300

t(s)

Figure 5.5: Response to sinusoidal load of analytical SDF system (bending)

5.6. State space formulation for torsion

The equation of motion for torsion of the building can be written as:

M, ¥ + Cpp + Ky =M

(o)

Further on in Chapter 6.7 M s dicretised as a matrix. The torsion state space formulation

is done by introducing a vector:

Substitution of the equation above into the torsion equation of motion results in:

Anthony Richardson -34-



%
5. Dynamic Simulations with Simulink TUDelft

om0,

Multiplication and rearranging with {[ 01} results in:
tor
. 0 I I 0 0
[% J:{-M KmiC }[Xj{o M'IHM}
tor tor tor ™ tor tor

The state space equation in Simulink can be written as:

X =Ax +Bu
y =Cx+Du

In which U is the input and )/ is the output. The output of interest is the displacement U/

and the velocity U, because of this J/ will be defined as:

Rearranging of two equations above results in:

EIE [P R T

-5 7 |1+{g)m

The derived matrices above can be placed into Simulink as written below:

0 I

A= 96x96
_-M-t;r/(tor -M;;rctor:| ( X )
[0

B=| " } (96x48)
_Ml'or

c-|! 0} (96x96)
01
[0

D- 0} (96x48)

u=[M] (48xti) (ti = number of timesteps)
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The displacement vector U and the damping matrix C are not identical to the matrix C

and the vector U in Simulink. The Simulink model can be viewed in Figure 5.6.

The different contents of the model will be explained in the text below. While Simulink runs
the state is recalculated for every time step.

The contents of the blocks in the Simulink torsional model will be given from left to right on
the next page. The first block contains the nodal moments as defined in Section 6.7 The
output of this block is the nodal moments for every time step of the 48 nodes. In the
second block a transformation occurs, which transforms the elements of the first block into
a vector. The third block contains the matrices, defined in the equations above and written
on the previous page. The inputs of this block are the nodal moments and the outputs of
this block are the angular rotation and angular velocity of the 48 nodes. The next 2 blocks
only selects the angular displacement and angular velocity of the top of the building as
output from the total vector with all degrees of freedom. The 3 output blocks at the right
store the output in combination with the time of which Matlab can make plots. The block
between output velocity top and acceleration top differentiates the velocity in time with

outcome the acceleration of the top.

load matrioes.m in matlab before running this model
In matrioes.m the matrioes A_tor B_tor C_tor and D_tor
and the windmoments are defined

x = Ax+Bu
(T )y ———mu ¥ - v -
g d y
Ncdal moments . .
for every timestep Input windmoment in: moments on the nodes output reangular tist displacement top
Output a vector out: angle of twist of the nodes angle of twist top

and angular velocity of the nodes
output vector

X

2 ¥ velocity top
13.2 rangulsr velocity ooy

output
angular velocity top

acoeleration top

differentation rangular aceleration
velocity

Figure 5.6: Model for torsion of the MDF system in Simulink
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5.7. Verification of the static torsional behaviour

The mass matrix for torsion motion, as the bending matix, only has elements on the

diagonal. Verification of this matrix is therefore not necessary.

The stiffness matrix can be verified by placing a moment on each node of the structure. The
static angle of twist of the building has to be can be verified in Matlab by using the formula:

wv=K:M

tor

with:

K,, The stiffness matrix is derived in according to section 4.4. The moment vector M is a

(48x1) matrix. Each element of this vector is 10 KNm. The torsion stiffness of the

tor

10 2
matrix is GJ _ 3.592E" Nt _ 1.197F°Nm
/ 3m

Executing the equation above in Matlab gives , = 0.982F3rad at the top.

For the hand calculation, i the formula below will be used to determine the angle of twist at
the top of the building. The angle of twist multiplied by the distance from the outer node to
the shear center (23.4/2) results in an angular static deflection.

v ()= 225 )= (1-05%x)

where:

l//(X) angle of twist at height x [rad]

m, applied moment W

X distance from foundation to reference height [m]

G shear modulus [N / /772}
polar moment of inertia [m“]

/ height of the building [m]

the formula with values:
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B3
w(144) = (%j * (144 - 0.5* 144) = 0.962£ *rad

Plot Static Rotational Displacement

150 . : . ,
100 - o .
///
P
E
50 | s .
0 i L I I I 1
0 0.002 0.004 0.006 0.008 0.01 0.012

u tor(m)

Figure 5.7: Static deflection of building. (torsion)

The outcome matlab and hand calculation above validates that the stiffness matrix is well
defined.

Anthony Richardson -38-



%
5. Dynamic Simulations with Simulink TUDelft

5.8. Verification of the natural frequency

5.8.1.  Verification of MDF system for torsion

The damping matrix and dynamic behavior can be verified by applying step function to the
system in the Simulink model. When one uses the same moment as applied in the static
angular control, this will result in a vibration equal to the defection of the static deflection

around the origin (Figure 5.7)

The natural frequencies of the equation of motion can be determined by using the
homogeneous part of the equation: [2]

M,

tor

v+ C,

tor

v+K,w=M

With the use of modal analysis this can be rewritten as:

E™M,

tor

Ey+E"C, Ey+EK,

tor

Ey =M,y +C,

Of

W+ K =0

O/

Modal analysis implies that this differential equation above is a totally decoupled system.

)kll(* =0 we

tor

Multiplying this equation by (M;;r )_1 and substituting the relation (M*

tor

conclude that:
.. * -1 * .
v+ (Mtor) Cor¥ + QZ‘// =0

In which is a diagonal matrix withe, (/=1,2,...,48). And substitution of

(M;, )_1 C,, = 2¢,w, in this decoupled system can be written as follows: [2]
i + 250y, +oy, =0 (/ = 1,2,...,48)
The homogeneous solution of the equation of motion is [2] [11]
v, (£)= A sin(w,.t ¢ty (p,) (/=1,2,...,48)
The solution for the first mode or natural frequency is:

u, ([‘) = (,416(-g1a)1t) sin(a)lt 1- §12 +o )) * /crosssec
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With (M;r )_1 K., =Q?, Matlab can determine , (the natural frequency). With ¢, = 0.01

and @, = 0.502 rad/s the eigenfrequency of the damped system can be determined:

@, = 1 - ¢ =0.50241-0.012 = 0.502 rad/s

Table 2: Natural frequencies torsion

5.8.2. Manual calculation torsional natural frequency [2]

2/ I

p

@, = (—(2 - l)ﬂ) (QJ

mode n=1 shear modulus G =1.3043E£™ N/m?
50521317

polar moment of inertia 7, = T=16840439 kgm

building height /=144 m torsion constant J=2.7544 m*

@*n-nz, [G7)_,@*1-1)z, [[1.30436" *2.7544
_2in-bny | & ~0.504 rad
o =) (IPJ 14 )\/( 16840439 radfs

This has a reasonable agreement with the first natural frequency from Mathlab. The
difference is due to approximation when using the Raleigh quotient. The Raleigh quotient is
a upperbound calculation.

Anthony Richardson -40-



]
5. Dynamic Simulations with Simulink TU Delft

5.9. Response to a sinus load

5.9.1. Verification of MDF system for torsion

On the MDF system for torsion, a sinusoidal load will be placed on the top node.

(M=1E7*sin(04*t))

48 dof MDF system Simulink

0.15 T

005 Mv AR beere e RER R I

theta (rad)
o

'
©
-
(&)
T
1

_0'2 1 1 1 1
0 200 400 600 800 1000

t(s)

Figure 5.8: Angular Response to sinusoidal load of MDF system (torsion)
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5.9.2. Manual calculation of the dynamic torsional behaviour

On the SDF system for torsion, a sinusoidal load will be placed on the equivalent system.

(M=1E7*sin(0.4*t))

k
o, = /i _0.502729
meq S

_GJ3.5926* E"

Ky =— =2.4949* E*Nm
L 144
ké'q 8 2
m,, = ol 9.951E° kgm

K x £8 05
€ =(*C, =(*2% |— —0,01%2% ,/2'494—985 =9.9473*58£ij
m,, 9.951E kgm

Displacement Sdof Simulink

T T

0.2 T

0.15 T

0.05 r
|

theta (rad)
o

'
©
2 S
(&)}
T
1

_0.2 1 1 1 1

0 200 400 600 800 1000

t(s)

Figure 5.9: Angular response to sinusoidal load of analytical SDF system (torsion)
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5.10.

Simulink diagram for bending and torsion

The contents of the blocks in the Simulink bending and torsional model are the same as the

bending model (section 5.2) and torsional model (section 5.6 ). The only difference is that

the total acceleration due to bending and torsion is summated and stored in block 7.

¥

displzcement top ben

W)

velocity fop ben

scoelerstion top ben

displecement fop for

velocity top for

N o | ¥ = A N
@ MUY ¥ o, MUY
Hodal forces .
for every timestep! Input windlosd in: forozs on the nodes output
Ouputavedor!  Cut: dizplanements of the nodes | gigplacement top1
and velocity of the nodss
output vectord
vy duidt
it diﬁEIc-nltslinn
velocity top2 velodity 1
load matrices.m in matlab before running this model
In mafrices m the matrices A_ben B_ben C_ben [_ben
AtorB torC tor D tor
and the windload and moments are defined
vy p MU ¥ |
L },‘=CX+BIJ " L4 ¥
Hodsl moments ‘ ' ’ .
freveyimesep  Ipuwindmomens  Momoments on the nodes output r'snguls@acement
Outputavecior  Out: anguler displacements of the nodes | anguler displacement —
and angularelocity of the nodes fop LP y
output vector 132 b ’ @
rangler velodity
Uy ’
output

angular velocity top

differentation

anguler velacity

)
acoelerafion ben tor

i

o

accelerafion tor

rrangular acceleration

Figure 5.10: Model for bending and torsion of the MDF system in Simulink
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Wind

In this chapter the mean and fluctuating wind velocity are determined in space and time,
out of which the wind load and moments are determined on the structure.

6.1. Wind load and parameters for Juffertoren

Most building standards, NEN (Dutch), NBCC (Canadian), AS (Australian), AlJ (Japanese),
EN (Euro code), BS (British), ASCE (American), CNS (Chinese) split the velocity of the wind

into an hourly-averaged part v and a fluctuating part v [24].

The wind load on any arbitrary area can be written as

F:%p(;H/)ZACh

In which:

A the area loaded by wind

p density of air

C summation of thrust and suction factor

<

hourly-averaged part of the wind speed

v fluctuating part of the wind speed

The Dutch norm NEN 6702 [3] indicated that the Juffertoren would have been located in
Urban area II. This is true for one half of the building facing the city of Rotterdam. The
other half of the building, which is facing the Meuse River, would have to use Vacant area II
of the Dutch norm. For simplicity we use the values for rural area II of the NEN 6702 [3],
these would lead to the highest forces on the structure [13]. The coefficients are shown in

the table below.

Rural Urban
11 18
Usiz,5 2.3 m/s 2.82 m/s
Zo 0.2 m 0.7 m
d O m 3.5 m
k 1 - 0.9 -

Table 3: Parameters for hourly averaged wind speed, NEN 6702 page 128 Table 6.1
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[13] (p. 72)
The stability system of the Juffertoren has 2 main directions; because of this the use of the
reference period of 12.5 years is valid.
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6.2. Hourly-averaged part of the wind speed for return period
of 12.5 years

The NEN 6702 describes the hourly-averaged wind speed which varies with the height as:
(13D

E(z):ﬂm[z‘dw}

K z,

In which:

u, Friction velocity [m/s] =230 [m/s]
K Von Karman constant [1]; =04 [

z height above the surface of the earth [m] =144 [m]
d,  displacement height [m] =0 [m]
z,  roughness length [m] =02 [m]

From the values in Table 6.1 we acquired the profile for the extreme hourly wind speed
according to the NEN 6702 ([3])

150
//
//
100 |
B /
N
//v
.
50 | 7
gk ; ; ; : : ; ; :
22 24 26 28 30 32 34 36 38

v [m/s]

Figure 6.1: Extreme hourly-averaged wind speed profile for return period of 12.5 years
or return period of 50 years under unfavorable direction in Rotterdam
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Torsion motions of high—rise buildings due to wind loading

Harris and Deaves describes the hourly-averaged wind speed which varies the height:

[13]

v(z)= ﬂ(ln[z - d} +5.755-1.882° ~1.338° + 0.2534]

K z,
With: @ = z-d , z, = Y and . =2QsinA
z, 67,
In which:
u, Friction velocity [m/s] =230 [m/s]
K Von Karman constant [1]; =04 ]
z height above the surface of the earth [m] =144 [m]
d  displacement height [m] =0 [m]
z,  roughness length [m] =02 [m]
~ Coriolisparamenter [s]

) rotation speed of the earth [rad/s] (27T/ 24%60*60 = 7.2722F° rad|s )

A width degree [ ] A=51.75 ( Rotterdam)

From the values in Table 6.1 we acquired the wind profile for the extreem hourly wind

speed of Harris and Deaves.

150
/
/
(/
/
,‘/
100 Y3
.‘/
/
— /
E
N 7
/-
50 [ 1
IA
" ; ; ; ; A ; ; ; ;
2 24 26 28 30 32 34 36 38 40
v [m/s]

Figure 6.2: Extreme hourly-averaged wind speed profile for return period of 12.5
years or for return period of 50 years under unfavorable direction in Rotterdam
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Eurocode describes the hourly-averaged wind speed which varies the height: [13]

. — kS X X Z
With: U, = Cd/‘r Ctemp Ca/t uref,O ’ k[- = 0-19*( £

In which:

4 (Z) mean wind speed at height z [m/s]

z[m]

reference speed at height of 10 m [m/s]

terrain factor [-]
height above the face of the earth [m]

measure for the roughness of the terrain [m]

direction factor [-]

season factor [-]

height factor [-]

onalterd reference speed at height of 10 m [m/s]

roughness length

150

100 /

50

22 24 26 28 30 32 34 36 38
v [m/s]

zo,u

=215

=0.05

]0.0706

[m/s]

[m/s]

[m]
[m]

[m/s]

[m]

Figure 6.3: Extreme hourly-averaged wind speed for eurocode for return period of 12.5

years or return period of 50 years under unfavorable direction in Rotterdam
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For this thesis the extreme hourly-averaged wind of Harris and Deaves will be used from
now on in Matlab. This wind profile would lead to a larger overturning moment, stresses and

strains in the structure. Harris and Deaves is more precise.

Mean wind velocity
180 ; ; : . ; . : ; : .

Log profile
160 | —— Modified log profile | -
Eurocode profile

140 | 1 5

120 1

100t

z[m]

80

40

22 24 26 28 30 32 34 36 38 40

v [m/s]
Figure 6.4: Extreme hourly-averaged wind speed for NEN, Harris and Deaves and Eurocode

for return period of 12.5 years or return period of 50 years under unfavorable direction in
Rotterdam
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6.3. Fluctuating part of wind speed for return period of 12.5

years

The magnitude of the fluctuating part of the wind speed V can be described in terms of the

standard deviation o, [1].

The literature says that the standard deviation of the wind speed varies per height z. An

example where the standard deviation of the wind speed varies is shown below.

>
1=5,/V

<l
S

Variation of 17, 0, and I as a function of the height Z .

Figure 6.5: Standard deviation of the wind speed [1]

In the [3] the fluctuating part of the wind is defined as o =v * 7 =v (h)* 1 (h)

In which:
I Turbulence intensity [-]
v Mean wind speed [m/s]

The turbulence intensity is highest at the bottom of the structure and is lowest at the top of

the structure this is because the wind gusts reduce with the height of the structure.

The standard deviation of the wind speed is lowest at the bottom of the structure and is

highest at the top of the structure.

With:

I (z) - % Turbulence intensity factor;
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For the Juffertoren the standard deviation of wind speed at reference height 10 m is
determined below:

*
o - ku, _ 1.0*2.30 _5.75 m/s
K 0.4
In which:
u,  Friction velocity =2.30 [m/s]
K Von Karman constant =04 [
K Shape factor =10 [

The standard deviation of the wind speed varies per height. The standard deviation of the
wind speed at reference height has been determined above. The standard deviation of the
wind speed on the top of the building is determined with formula:

0

c,(2)=0, (ho)(zl; d} ([1] Ch.6 p.10).

In which:

o, (M) Standard deviation of wind speed at reference height = 5.75 [m/s]
o reference height =10 [

z height above the surface of the earth =144 [m]
d displacement height =0 [m]
Y power = 0.03 []

For the Juffertoren the values for the wind speed, standard deviation of wind speed and
turbulence intensity are shown for the top of the building and reference height of 10
meters. The wind speed at reference height and standard deviation of wind speed on the

top of building are put into Matlab in the wind generator. (Appendix 2)
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1=56,/V

<l
Q

Variation of V ,0, , and | as a function of the height L .

Figure 6.6: Standard deviation of the wind speed [1]

Height V Harris & Deaves Ov I
m m/s m/s -
144 39.6 6.23 0.16
10 22.62 5.75 0.25
[13] (p. 84)

Table 4: Mean wind speed, standard deviation and turbulence intensity
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The researchers, Davenport, Harris, and Simiu have determined spectra for fluctuations of
the wind speed in 3 directions.

The reduced spectra’s are

2 X
F,o== ( Davenport )
T3 (ex?)”
3 X
F,== ( Harris )
> (2 x2)5/6
2 X
F=——+ imi
3 (1 N X)SB ( Simiu )

0.35 T
Davenport
Harris
0.3 Simiu I

0.25

0.1

0.05

0 > e 1 1 1 1
1072 107" 10° 10’ 102 10°%

Figure 6.7: The reduced spectras
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The NEN uses the Davenport spectrum [1] to determine the fluctuating part of the wind

speed v. In [3], the fluctuating part of the wind speed Vv can be approximated by the

formula v ~2gr in which g — [2in(77) the piekfactor and 7(z) = kc/ln(z ;de =0, /V

0

the turbulence intensity.

The fluctuating part of the wind speed v when defined as above is an overestimation of the

actual fluctuation wind speed. Vv is conservative, because we use total correlation which
entails that the fluctuating part of the wind speed is the same everywhere. In reality the
fluctuating part of the wind speed varies in space and time.

In this thesis, a program in matlab will be used to approximate the fluctuating part of the
wind speed more accurately in longitudinal and latitudinal direction. The fagade loaded by
wind in the along wind direction is split into a grid of areas. For each time instant the
program will produce a randomly determined fluctuating wind speed on each area on the
facade. Before we can execute this program, the coherence, which is the standard deviation

of fluctuating wind speed and reduce spectra, have to be determined.

The velocity spectrum of the wind can be written as a function of the Davenport spectrum

by:
F, O'VZ
S (F) =722
with:
2 X
Fo== Davenport spectrum
3 2 4/3
(1+x?)
o, standard deviation of the wind speed
X = 119_”“ dimensionless frequency
v(10)
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This gives the variance spectrum of the wind speed as a function of the frequency f

2
_ngusr
v(10) o}

BES
14| =L
v(10)

with:

f frequency;

v(10) mean wind speed at 10 m height =22.62 m/s (Figure 6.2)

L characteristic length of a wind gust.

gust

The velocity spectrum s (F)can be written as a function of the circle-

frequency 5 () ([8] pp.9-14). The variance of velocity spectrum written as a function of

the circle-frequency «» is defined as o? =T Sw(a))da) and the variance of velocity
0

spectrum written as a function of the frequency f is defined as &2 = Tsw ( f) ar -
0

The relation between both velocity spectrums is:

S (@)do =5, () 5, (0)=5,(F -2 )L -5, (r-2 )L

By substituting the Davenport spectrum into the formula above the variance spectrum of

velocities as a function of cyclic-frequency «> is obtained:

( ol Jz [ ol T
5. ()= 12 27v(10) 270, _ 272v(10) 20,2
i 27 3 PN 2\*3 3w
[1 +[5)L j J {1 +(5)L j J
27v(10) 27v(10)

The variance spectrum of the fluctuating wind speed as a function of cyclic frequency « is

shown below in (Figure 6.8)
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10.3 =

S‘_”_,(m7/sz)

102 10! 10° 10°
w(rad/s)

Figure 6.8: Spectrum of the fluctuating wind speed

A realization of the wind in the time domain can now be calculated by dividing the cyclic

frequency «» domain into a finite number of points ©, at equal distance Aw. The

fluctuating part of the wind speed is now described by:

N
v=>a.sin(al+g¢,)

k=1

with:

a = A/25VVAa)k

@, Random number between 0 and 27

A possible realization of the wind velocity on basis of this model is shown in Figure 6.9.

15

10 | .

v(ms)

20 1 1 1 1
o 50 100 150 200 250

t(s)

Figure 6.9: A realization of the fluctuating wind speed
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6.4. Hourly-averaged part of the wind speed for return period
of one year

The formulas are given to determine the mean and standard deviation for maximum hourly-
averaged wind speed with the return period of 1 year in ([1] Ch.6 p.7). The formulas are

given below:

0.577

,u(vl):u1+T 0(V1):(a3€)

Ihe values are given for a and Ul for area 11 in the Netherlands In table 6.3 ([11Ch.6 p.7

). These values are g = 0_55i and u, = 20_4m. Out of which we can determine that
m S

_ 0.577 m B 7 B m
p(v,)=20.4 * 55 - 21.45 S and o(v,)= —(0.55* \/5) =233 S

The hourly-averaged wind speed described by a logarithmic function is given ([1] Ch.6 p.2).
(3D

For the Juffertoren we know that some of the values are given and known (6.2) for the

situation 7(10) and only the u, friction velocity has to be determined.

K Von Karman constant [1]; =04 [

z height above the surface of the earth [m] =10 [m]
d  displacement height [m] =0 [m]
z,  roughness length [m] =02 [m]

m
With the values above U, = 2-1932? )

For the Harris and Deaves and Eurocode profile the unknown friction velocity (w, )

andonalterd reference speed at height of 10 m ( ¢ are determined in the same

rer’,O)

method as above.
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The NEN 6702 describes the hourly-averaged wind speed which varies with the height as:

(3D

v(z)= ﬁln(z —a

K z,

In which:

u, Friction velocity [m/s]
K Von Karman constant [1];

z height above the surface of the earth [m]

d displacement height [m]

z,  roughness length [m]

|

= 2.1932

=144

[m/s]

[m]
[m]

[m]

From the values in Table 6.1 we acquired the profile for the extreme hourly wind speed

according to the NEN 6702 ([3])

150
/
¥
100 | /
///
=
N [
/
/
//
50 |
W
20 22 24 26 28 30 32 34 36

v [m/s]

Figure 6.10: Extreme hourly-averaged wind speed profile for return period of one year in

Rotterdam
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Harris and Deaves describes the hourly-averaged wind speed which varies the height:

[13]

v(z)= 5(In(z = d] +5.752 -1.882% ~1.332° + 0.25a4j

K z,
with: & =| 2=9 . z,=-= and £ =20sina
z, 6/,

In which:
u, Friction velocity [m/s] =2.18 [m/s]
K Von Karman constant [1]; =04 ]
z height above the surface of the earth [m] =144 [m]
d  displacement height [m] = [m]
z,  roughness length [m] =02 [m]
7. Coriolisparamenter [s™]
€)  rotation speed of the earth [rad/s] (27T/ 24%60*60 = 7.2722F° rad| s )
A width degree [ ] A =51.75 ( Rotterdam)

From the values above, we acquired the wind profile for the extreem hourly wind speed of

Harris and Deaves.

150 T
/
,v/
/,
.“/!
7
100 | /
//
— ///
£ /
N 7
//v
50 |
20 22 24 26 28 30 32 34 36 38

v [m/s]

Figure 6.11: Extreme hourly-averaged wind speed profile for return period of one
year in Rotterdam
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Eurocode describes the hourly-averaged wind speed which varies the height: [13]

0

v(z)=uk, '”[zij

0.0706
- — * S X Z,
With: Uper = Cy Ctemp Cot " Urro, k =0.19% [—0]

ZO,II

In which:

;(Z) mean wind speed at height z [m/s] = [m/s]
u,., reference speed at height of 10 m [m/s] =26.17 [m/s]
k,  terrain factor [-] =021 [

z height above the face of the earth [m] =144 [m]
z,  measure for the roughness of the terrain [m] =02 [m]
c, direction factor [-] =1 1
Cremp  S€@SON factor [-] =1 [-]
c,, height factor [-] =1 1
u,, , onalterd reference speed at height of 10 m [m/s] =26.17 [m/s]
z. roughness length =0.05 [m]

0,11

150

100 /

z[m]

50

o ; . ; ; J
20 22 24 26 28 30 32 34 36

v [m/s]
Figure 6.12: Extreme hourly-averaged wind speed for eurocode for return period of one

year in Rotterdam
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For this thesis the extreme hourly-averaged wind of Harris and Deaves will be used from
now on in Matlab. This wind profile would lead to a larger overturning moment, stresses and

strains in the structure. Harris and Deaves is more precise.

Mean wind velocity
180 . r ; . . . . : .

Log profile
160 f ——— Modified log profile
Eurocode profile

140 | A1

120 1 -

100 ]

z [m]

80 ]

60

20 22 24 26 28 30 32 34 36 38

v [m/s]

Figure 6.13: Extreme hourly-averaged wind speed for NEN, Harris and Deaves and

Eurocode for return period of one year in Rotterdam
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6.5. Fluctuating part of wind speed for return period of one
year

For the Juffertoren:

o, =2.33 m/s (6.4)

The standard deviation of the wind speed varies per height. The standard deviation of the
wind speed on the top of the building is determined with formula:

o,(2)=0, (ho)(z _dJ ([1] Ch.6 p.10).

hO
In which:
o, (M) Standard deviation of wind speed at reference height = 2.33 [m/s]
Ao reference height =10 [
z height above the surface of the earth =144 [m]
d displacement height =0 [m]
Y power = 0.03 []

For the Juffertoren the values for the wind speed, standard deviation of wind speed and
turbulence intensity are shown for the top of the building and reference height of 10
meters. The wind speed at reference height and standard deviation of wind speed on the

top of building are put into Matlab in the wind generator. (Appendix 2)

Height V Harris & Deaves Oy I
m m/s m/s -
144 37.62 2.52 0.07
10 21.45 2.33 0.11
[13] (p. 84)

Table 5: Mean wind speed, standard deviation and turbulence intensity
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6.6. Wind loads on the structure

In this thesis the focus is on the fluctuating pressures on the facade which cause torsional
moments.

The acceleration due to vortex shedding are not taken into account in the Matlab code.

The wind load of a horizontal row will be lumped as forces on the nodes, as can be seen in
Figure 6.14. The structure is divided into a grid of areas on the facade.

Fn(t) N
Fi(t) N
Fa(t) — >

Fa(t) —

Figure 6.14: Forces on a row of horizontal nodes as a function of time

The Juffertoren is divided into 2 * 48 height segments (1.5 meters) perpendicular to the
width of the building. Each height segment is also divided into 10 width segments (2.6
meters) in width direction. And illustration of a width row of horizontal areas can be seen
below in Figure 6.15.

Figure 6.15: Arbitrary chosen row of horizontal nodes
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Figure 6.16: Row of horizontal areas with arbitrary chosen forces

The force on a node is equal to:

with:

F; () Force of horizontal row of areas loaded by wind.

/ Node number

A The area loaded by wind; 4=20%1,5%26 =3*26 =78 m’

p Density of air; p = 1,25 kg/m’

C,  Thrust and suction shape factor; C, =0,8+0,4 =1,2 (NEN 6702 figure A.4)

The summation of the forces on a row of horizontal nodes can be represented as a vector
where each element represents a nodal force. The nodal force in the vector is the
summation of all the forces on that specific height. By discretization in time, these nodal
forces can be calculated for every time step, which makes a matrix of the nodal forces as

shown in equation below. The summations of nodal forces on a horizontal row are

numbered 1,/7,..n7 and the time steps are numbered 1,X,../m.

The nodal forces on a horizontal row can be written as:

Fl(t) F11 Flj . Fl/
F(t ): '(t) discretization in place = Fn £y
F” (t) F”l Fn/

The summations of nodal forces on a horizontal row are numbered 1,/,..7 and the time

steps are numbered 1,k,..m .
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, o F,
= discretization in time =| "' "%

F(¢) Fun Fu - Am
(0) A,

F,(t) F. . .F

nim

The nodal force matrix can be calculated by making use of the two equations in the

beginning of the section.

The mean wind speed v (Harris and Deaves logarithmic wind profile) is only fluctuating in

place and the fluctuating wind speed V is fluctuating in place and in time (random wind

generator), which gives:

M — 2 — 2 - 27
F <V11 + V111) (V1 + Vljk) . (V1 + Vllm)
1k 1im
_ 2 — 2
w oo |1 (vo+vim)  (vs+va)
ik _ 7 / lj U/
=ZAC,
. 2
F, — 2 - 2
mim (an + anl) . . (Vn + Vn/m)

The NEN 6702 assumes that the wind load on a structure for (z < 9/m) height is equal to

the wind load for (z = 9/m), this is done to account for the wind pressure what has to flow

around the base of the building, accounting for a higher mean wind speed. In this Matlab

model we will also assume this for the mean wind speed V(Z <9 m) = V(Z =9 m) and for the

fluctuating wind speed v (y,z<9m,t)=v(y,z =9 m,¢).

Anthony Richardson
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6.7. Wind moments on a structure

The wind moments on the horizontal row will be lumped as couples on the nodes as can be

seen in Figure 6.17. The moment on a node is equal to:

M, (t)= ZAC,,anj
J
with:

9, =2p(v+v)

a,; Horizontal distance from node to the shear center
Lateral Node number
The area loaded by wind; 4 = 20*1,5%26 = 3*26 = 78 m?

Density of air; p = 1,25 kg/m’

(o) R} S

,  Thrust and suction shape factor; C, = 0,8 + 0,4 = 1,2 (NEN 6702 figure A.4)

vl
o

Mz

Figure 6.17: Moments on the nodes as a function of time

Shear center

Figure 6.18: Row of horizontal areas
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The moments on the nodes can be presented as a vector where each element represents a

nodal moment. Which is a summation of all the nodal moments of a horizontal row of

nodes. The moment of each node is calculated by multiplying the fluctuating wind force by

the distance from the node to the shear center. By discretization in time, these nodal

moments can be calculated for every time step, which makes a matrix of the nodal

moments as shown in the equation below. The nodes are numbered 1,/,..n, the place steps

are numbered 1, j,../ and the time steps are numbered 1,X,../m . The horizontal distance

from the node to the shear center of building &, number 1Lp,.r.

M, (t)

/:11161 IElﬂ(ap * F g,

1m=r
M(t)= M,(t) discretization in time = | /1% i
Mﬂ (t) Fnllal - - 'En/mar

The moment on an area is the force of a wind load (fluctuating and mean) on a considered

area multiplied by the distance from the node to shear center.

The nodal moment matrix can be calculated by making use of the two equation in the

beginning of the section. The mean wind speed v ( Harris and Deaves logarithmic wind

profile) is only fluctuating in place and fluctuating wind speed V is fluctuating in place and

in time ( random wind generator), which gives:

Fljkap . F, a

Flllal 1m“r
M= F/’llal F/‘jkap
Fnllal . - Fn/mar

= l'46/7/0

— 2 — 2 — 2
(V11 + V111) a, (V1 + V1ﬂ<) a, (V1 + Vl/m) a,

2

— 2 —
(V/j +V/11) a, (V,j +|//]7() ap

2 — 2
(an + anl) a, (Vn + Vn/m) a,

In which &, is the horizontal distance from the node to the shear center of building

number 1,p,..r.

For all the nodes left of the shear center, a negative value will be given to the moments of

each node. The values of the moments on the right of the shear center will be held positive.

This is done because in reality these moments in different directions would equalize each

other. The resultant of these moments left and right would work on the structure.

Anthony Richardson

-68-



%
6. Wind TUDelft

6.8. Correlation of the wind speed at different locations

The fluctuating part of the wind speed varies in time and in place, due to wind gusts.
Because of this, the wind speed on the facade at different locations will not be the same at
each time instant. If there is a peak in the wind speed at one part of the building on the
other, a peak gust may not occur. In the NEN 6702 area reduction is present. Also now in
EN1991-1-4 via the factor c_c, . If the fluctuating wind speed at the different places of the

facade (nodes of the program) is totally independent of each other in lateral and
longitudinal direction, we call this uncorrelated. If the fluctuating wind speed at the
different places of the facade are the same, we call this fully correlated.

The coherence function is a frequency dependant measure of the amount of correlation

between the wind speeds at two points in space [15]

Correlation of wind speeds
20 T T T T T T

10~

vim/s)

=15}

-20 - =/ 2 N

-25 1 Il Il Il L 1
~20 =15 -10 -5 0 5 10 15 20

vim/s)

Figure 6.19: Correlation of Wind speed between yr node 1, 91 (blue) and node 1,2 (green)

In the figure above the correlation is shown for: Point 1 (yr=1.3 m, zr=9 m) and Point 91
(yr=1.3 m, zr=144 m) in blue and for Point 1 (yr=1.3 m, zr=9 m) and Point 2 (yr=1.3 m,
zr=10.5 m) in green. The figure shows that there is more correlation between points what
are situated closer to one an other (green) than points situated far from each other (blue).
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The correlation between the wind speeds at different points can be described with cross-

spectra:
S, (F) = 5,4, (F)S,,, (F)com?, (f)
with:
W, (f ) the cross-spectrum of the wind speeds in points 1 and 2
S, (f ) auto-spectrum of the wind in point|

CO/LIVIV2 (f ) coherence between the wind speeds in point 1 and 2 ([16] p.34])

The coherence can be written in many ways [16]. If the coherence has to be compared or

calculated one must recognize which coherence formula’s is used, to correctly compare two
coherence samples.

Examples of this are, the coherence formulas:

F\CHz, -2, +CX(y, - ¥,)

um av = 2
with:
) 274 lateral and vertical coordinate, respectively;
c,,C, coherence constant in lateral and longitudinal-direction
Up oy average of mean wind speed of the wind speed at points z,, z |
FCHz, - 2,) +C}(y, - 1,)
cohy,, (F)=exp| - VG2 + G 1,
12 U
m_10
with:
v,z lateral and vertical coordinate, respectively;
c,,C, coherence constant in lateral and longitudinal-direction.
U, 1o mean wind speed at reference height 10 meters.

The coherence formula above, does not account for the reference height dependence of the
coherence. This assumption is not a truth proven by experiments. [16]
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The coherence can be expressed with the Sandia method as (Frost): [15].

Car. f
Coh, ()= exp[——’
with:
Ary the distance between point’s j and k
U the velocity at reference height 10 meters
f frequency

C0/7]-k (f ) coherence between the wind speeds in point j and k
The coherence can be expressed with the Solari method as:

0.25
Ar,
Cjk =b (_ z_]kj

m

b=12+5u,

C.Ar.f
Coh, (f) = exp[—%j

z,=(z,+2,)/2

with:

Ary the distance between point’s j and k.

U the velocity at reference height 10 meters.

f frequency

z, value of the lateral and vertical coordinate divided by 2
z; lateral coordinate

zZ, vertical coordinate

c T (f ) Coherence decrement

C0/7].k (f ) coherence between the wind speeds in point j and k

For this thesis the coherence will be calculated with the formula without height dependence
which is more conservative than the formula with height dependence. The height
dependant coherence formula defines the coherence better.
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An other example of differences in coherence formula’s is that the coherence is squared in
the one formula and the others not, when determining the cross spectrum of the wind
speeds in 2 points. (Begin Section 6.8)

A written Matlab program will be used to determine the correlation on the fagade [4].
Before the correlation program can be ran, the mean wind speed at each longitudinal node

has to be calculated. These values have to be used in the written Matlab program.

The Autopower spectrum is determined in Matlab program [4] .

This program (wind0) calculates the fluctuating wind speed for every predefined point with

coordinates (y/, z) as a discrete function of the time. Before running the file, the standard

deviation, the mean wind speed and the coherence have to be defined. The Matlab program
(wind0) can be viewed in ([4], Appendix 2).

The fagade of the building has to be divided in equal areas with in the centre of each area a
point for which the wind speed as a function of time will be calculated. By knowing the wind
speed in a point, the wind load on the considered area can be calculated. (Section 5.2 and
6.6). The wind loads (fluctuating and mean) on a horizontal row of areas will be lumped in

the 48 nodes and are put in vector.

The moment on the building is the force of a wind load (fluctuating and mean) on a
considered area multiplied by the distance to shear center.
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The mesh of points on the fagade has to be fine enough so that the coherence can be taken
into account. On the fagade 910 points were taken ([5] p.21]). This led to a fine enough

mesh. The bending, torsional and bending and torsional acceleration and location will be
shown afters this.

—~L

Figure 6.20: Location of determined bending accelerations
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Figure 6.21: Wind speed calculation with 910 points: bending acceleration of the top
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Figure 6.22: Wind speed calculation with 910 points: torsional acceleration of the top corner building
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Figure 6.23: Location of determined bending and torsional accelerations
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Figure 6.24: Wind speed calculation with 910 points: bending and torsional acceleration of the top corner

building
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6.9. Autospectrum density function estimate

The reason why an autospectrum density function estimate (Figure 6.25) has to be done ,

is to check if the turbulence of the wind (Figure 6.9) has been generated correctly.

For the Juffertoren, the values for wind speed at the hub height (v = 21,45m) and
S

standard deviation at the top of the building (o—v = 2_529) were inputted. (Appendix 2:
S

Matlab file: specest_test_run.m)

In the figure below we see the controle line in blue (average) and the line with generated

turbulence in orange, we observe that they both fit each other.

AutoSpectrum Density function
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Figure 6.25: Autospectrum density function estimate of one data sequence
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7. Calculation results Juffertoren

In this chapter the modeled calculation results of the Juffertoren (bending and torsional
acceleration) are presented and compared to the known maximum allowed bending
acceleration. In this chapter the summary values of a 100 simulation in time-domain are
also presented.

7.1. Matlab

With the use of a Simulink model the maximum acceleration due to bending and torsion
added together is calculated for a time span of 10 minutes. For the calculation in this

paragraph we take the values form one of the 100 simulations, with mean velocity
Vlg =21.45m/S and return period of one year. (6.5)
7.1.1. Bending and torsion added together

The acceleration of the top of the building (Bending and Torsion motion added together)

a48 ben tor

04 - T

i

|

(mis?
: o)

e - M
e LURAUCIRA L

t(s)

Figure 7.1: Acceleration of the top of the building (bending and torsion motion added together)

The frequency belonging to this acceleration equals the lowest eigenfrequency of the

structure f =T =0.224Hz (section 5.4.1). The peak acceleration of the top of the
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building for bending and torsion added together is a,,, =0.3479m/s”, which is higher

than the maximal acceptable annual acceleration of 0.1m / s” according to NEN. In which the
number 48 is the node number at the top of the building.
We may assume that @,, is a normally distributed signal. The standard deviation of a,,can

be determined from:

1

" 1
Z (a48;/' T Haag )2 JZ

/=1

3|~

O-a;48 = [

n the number of discrete time points for which g,, have been calculated

Where:

a,,, the acceleration of the top of the building at time point i

H,.qe the mean value of a,

With o, =0.1030 m/s* and 4, ,, =0m/ s* calculated with Matlab, the expected peak

value of the acceleration for a given time range follows from:

Aug.peak = Maag T O0z.a8 2|n(N) ([1] eq. 3.38)

Note: The formula above assumes that all peaks are independent of each other which is not
true in reality, so this formula will give a value larger than the real peak acceleration.

Where /V is the number of draws which follows from the number of local peaks in the total
time range:
N=T.TF

s' e

Where:

T time range of the signal; T, =600 s

s

f, natural frequency which comes out of the mathlab model; f, =0.224Hz

Filling in peak value of acceleration gives:

g, peacn = 0-1030 [2In(600*0.224) = 0.322 mis?
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The difference between the expected peak value and the actual value is

(1—(0.3479/ 0.322))*100=—8.0%=8.0% which is reasonably accurate. The expected

peak value for a storm of 6 hours 21600 S can be calculated from:

B, peacaan = 0.1030,/21n (21600%0.224) = 0.424 s

The expected peak value for a storm of 1 hour (3600s) can be calculated from:

B peaan = 0.1030,21n (3600%0.224) = 0.377 m/s?

The expected peak value for an hour long storm derived from the Simulink simulation

values can be compared with the maximum acceleration according to NEN (8.2.1).

amax;NEN _ 0.113
a 0.377

48; peak ;3600

=0.300

The maximum acceleration due to bending and torsion motion added together is

exceeded by a factor of 3.3. The acceleration of the building is unacceptable.

7.1.2. Bending

In this section the maximum acceleration will be calculated for bending acceleration only
because this part of the model can be compared to known literature.
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Figure 7.2: Acceleration of the top of the building (bending)

The frequency belonging to this acceleration equals the lowest eigenfrequency of the
structure f = T;1 =0.224Hz (section 5.4.1) The peak acceleration of the top of the
building equals: 8, . = 0.0790m /s’ , Which is higher than the maximal acceptable

acceleration. We may assume that a,, is a normally distributed signal. View p.78 for the

formula of the standard deviation of a,q .

With o, =0.0319m/s* and x,, =0m/s’,

The expected peak value for a hour long storm derived from the Simulink simulation values
can be compared with the maximum acceleration according to NEN (8.2.1).

amax;NEN _ 0.113

= =0.966 -
48, peak 3600 0.117

The maximum acceleration due to bending is exceeded by about 4%. The acceleration of
the building is slightly unacceptable.
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7.2. 100 simulations in Time Domain

In the table below the summary values of a 100 simulations of the Juffertoren are given.
The average values and standard deviation for bending, torsion and bending and torsion are
given. The maximum and minimum of the 100 simulations are also given. We can conclude
that there is a big spread between the maximum and minimum value. For the values out of
the simulations view Appendix 3. The time of 1 simulation is about 18 minutes.

Average 0.0890 0.2585 0.2803 0.0282 0.0855 0.0904
a_ben a_tor a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
Max 0.1468 0.3473 0.3671 0.0422 0.1289 0.1322
Min " 00671”07077 0.2028 i 0.0198" 0.0570" 0.0640
Max - Ave 0.0578 0.0889 0.0868 0.0140 0.0434 0.0418
Average - 0.0220 0.0878 0.0775 0.0085 0.0286 0.0264
Percentag 64.90% 34.39% 30.98% 49.71% 50.74% 46.27%
Percentag 24.69% 33.97% 27.65% 30.01% 33.40% 29.16%

Table 6: Summary values of a 100 simulations of the Juffertoren in Time Domain

7.3. 10 simualtions in the Time Domain

In the table below the values and summary values of 10 simulations of the Juffertoren are
given. The average values and standard deviation for bending, torsion and bending and

torsion are given.

a pen a tor a ben_tor Ga ben | Oa tor |Oa_ben_tor

m/s? m/s® m/s? m/s? m/s? m/s?
Simulation 1 0.079 0.315 0.348 0.032 0.098 0.103
Simulation 2 0.095 0.229 0.226 0.028 0.067 0.072
Simulation 3 0.089 0.231 0.234 0.027 0.078 0.084
Simulation 4 0.106 0.203 0.271 0.025 0.067 0.072
Simulation 5 0.074 0.202 0.247 0.026 0.081 0.086
Simulation 6 0.081 0.234 0.269 0.027 0.070 0.076
Simulation 7 0.085 0.249 0.265 0.029 0.083 0.089
Simulation 8 0.072 0.258 0.241 0.020 0.094 0.096
Simulation 9 0.131 0.240 0.236 0.030 0.060 0.068
Simulation 10 0.081 0.227 0.242 0.026 0.077 0.081
Summation 0.0893 0.2388 0.2578 0.0270 0.0775 0.0827

Table 7: Values of 10 simulations of the Juffertoren in Time Domain
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We notice that there is a difference between the average values of a 100 and 10
simulations. How much simulations must be run to get a good average is not known in

advance.
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8.

Comparison to design formulas Juffertoren

The essence of this chapter is to show that the different documentation gives different
natural frequencies . There is also a considerable difference between the natural frequency
determined analytically and natural frequency determined in Mathlab. If we determine the

maximum acceptable deflection of the top of the building (v, = A/500) we can

top

determine the maximum acceleration of the buildings for each different formula.

In this chapter three cases will be distinguished.

1. The difference in acceleration between the different formulas of the NEN,
Scheuller, Euro code, Woudenberg, Dicke/Nijsse and proposed model in Simulink.
(without the torsional acceleration).

Most of these Formulas/Norms only look at along wind response while the across
wind response due to vortex shedding can be dominant for rectangular buildings
([17] p.61]).

2. The difference in acceleration between the different formulas without the use of
the proposed model in Simulink, Woudenberg empirical (with the torsional

acceleration and only alongwind response) .

3. The difference in acceleration between the different formulas, and total
acceleration due to bending and torsional movement in the proposed model in
Simulink. The acrosswind acceleration also will be determined by use of National
Building Code of Canada (NBCC).
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8.1. Maximum occuring accelerations for return period once in

1 year

In the table below the values of the comfort requirement is given for some norms and rules
of thumb. The average value (Matlab) for a 100 simulations is also given for bending,

torsion and bending and torsion.

Along wind Across wind
Formula Natural frequency Max bending Max torsional [ Max total Max bending [Max torsional| Max total
acceleration acceleration |acceleration| acceleration | acceleration | acceleration
Hz rad/s m/s? m/s? m/s? m/s? m/s? m/s?
NEN 0.231 1.451 0.113
Eurocode 0.134 0.843 1.965
NBCC 0.200 1.258
Woudenberg (emp) 0.319 2.007
Woudenberg 0.231 1.451
Schueller 0.186 1.167
Dicke/Nijsse 0.102 0.640

Table 8: Resulting annual maxima

Vb 02 Lao7 0089 s | o [

Table 9: The average out of a 100 simulations occurring acceleration in Simulink for the Juffertoren

Maximum occuring accelerations for return period of one
year

NEN

Eurocode

Woudenberg (emp) I
Woudenberg m
Schueller  m—
Dicke/Nijsse mm
Matlab bending mm
Matlab bending + torsion S

Comfort requirement =

0.000 0.500 1.000 1.500 2.000 2.500

Figure 8.1: Maximum occurring accelerations for return period of one year for the Juffertoren
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It can be concluded that the average value out of a 100 simulations for bending, out of
2

m
Matlab (0.089— ) is smaller the value for the NEN, Eurocode, Woudenberg (emp) and
S

Schueller. For bending and torsion added together we see that the average value out of a
2

m
100 simulations for bending and torsion added together ( 0.280— ) out of Matlab is larger
S

than, most Norms and rules of thumb. The Eurocode value is so over conservative for
bending, that it still meets the comfort requirement for bending and torsion which is not

logical.

The acceleration above does not take into account the effect of shear lag, the second order
effect and the reduction of effective area due to openings (windows) in structural elements.
The fact that the crosswind acceleration can be larger than the along wind acceleration in

many cases is neglected by many of the used formulas above.

The maximum occurring acceleration is the superposition of the alongwind, acrosswind and
torsional acceleration. In most of these formulas only one component of the acceleration is
taken into account, which makes these formula non-conservative. The actual acceleration
felt by a person in the building will be probably larger than the outcome of any formula

above.

The characteristic values of the simulations are given below: bending, torsion and bending
and torsion. The standard deviations in the table below has been taken out of the average
of 10 simulations (Table 7).

Juffertoren k O, Qar

R =1 year - m/s? m/s?
Bending 291 0.027 0.08
Torsion 2.91 0.078 0.23
Bending +Torsion 291 0.083 0.24

Table 10: characteristic values of the 10 acceleration simulations

k is related to about 1 promille of the time that the value exceeds a-kar and the maximum

expected value in one hour is about 3.5 times the standard deviation.

o, = mean of standard deviation of 10 simulations

a,., = k * o, = characteristic vaue of acceleration for 10 simulations
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The reason for determining a,, is because by only taking the outcome of one simulation,

you may be above or below the average of large numbers. In simple words, you maybe
below or above the average of a 10000 simulations. Because of time constraints, we use the
95% reliability threshold to determine the characteristic mean of the 10 simualtions
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8.2. Formulas to determine the maximum acceptable

acceleration

8.2.1. NEN

According to [3] vibrations are annoying when the acceleration exceeds a value depending

on the frequency (Figure 8.2).

10

10™ 10°

f.(Hz)

Figure 8.2: Limitation demand for the acceleration according to NEN 6702 figure 21

The [3] which gives the limitation demand for the peak value of the acceleration follows

from:
p,.C.b
oo = 16% <3
P1
Where:
a limitation demand of the acceleration for once per year a = 0.10 m/s*> ([3])

o, mass of the building per meter height p, = 2.68*10° kg/m
b width of the building perpendicular to the wind direction 5, = 26.3 m
summation of the shape factor C,= 0.8 + 0.4 = 1.2 ([3])

B, value for the varying part of the wind pressure p, . =100In(#/0.2) = 660 N/m?
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¢,  value depending on the dimensions, the eigenfrequency and the damping

4 - 0.0344 * £,/ B 0.0344 * 0.231% —0.909
“\g(1+0.12£,n)(1+0.27,5,) |0.01%(1+0.12%0.199*144)(1+0.2*0.199%26.3)

Where:

r eigenfrequency £, = 7' = 0.224 Hz (From Mathlab)
¢ damping ratio ¢ =0.01 (Section 4.8 )

7,  eigenfrequency £, = \/? = ’% =0.231 Hz (NEN 6702 [3])

a acceleration g = 0.384m/s?
4 6 x 4
) displacement & = gl _ _2.68F 10144 =7.2m
8F£I 8*3.00£7 *688
In which:

| = The building length: 144 m
Q = The building weight: 386,5 MN ( From Mathlab )
g = dead weight of the structure: 2.68 MN/m ( From Mathlab )
g = The gravitational acceleration: 9.81 m/s?
E = Young’s modulus: 3.00E10 N/m?
I = The bending stiffness: 688 m*

The deflection is determined by using the equation which is given in [14]. In this equation,
variable q is the total deadweight of the structure. The total deadweight of the structure is
the summation of the deadweight of the skyscraper's floors, load-bearing elements and

facade.

Floors:

The representative deadweight of the floor is U g.rep =0.25*24=6.0kN/m? .The design value
is g, =6.0%1.2=7.2kN/m?. The total area of the building is 26.3*15.4 ~ 405 m’ The total

deadweight of a storey of the building is: 405*7.2=2916 KN. The storey height is 3.0
metres, so it follows that deadweight perimeter height due to dead weight is
2916:3 =972 kN/m
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Vertical load-bearing elements:

The area of the concrete walls is 40.14 m?/m. The deadweight of the concrete walls is

=40.14*24 ~ 964 kN/m? .

Qg;rep

Facade:

The deadweight of the facade elements is 1.2 KN/m. The perimeter of the building is
2*26.3+2*154=83.4m . This means that the total deadweight of the facade elements is:
83*1.2~100 KN/m .

Total:

The total deadweight per meter building height is: 972+ 964 +100 = 2036 kN/m

This gives:

0.0344*0.231°2"®
¢, = =0.909
0.01*(1+0.12*0.199*144)(1+0.2*0.199* 26.3)

Filling in the formula for limitation demand for peak acceleration gives:

* * *
160-9097660%1.2%263 _ 110 2010 m/s?

2.68*10°
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8.2.2. Matlab

For tekst view paragraph 7.1
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9. Idealisation of the Voorhof building

In this chapter, the student building Voorhof is idealized, the structural characteristics,
natural frequencies, damping ratios, wind characteristics, mean wind speed and fluctuating
wind spead are determined, before and after renovation. The accelerations (bending,
torsion and bending and torsion) are determind with the new model for 4 time instances, 2
of which are recorded mean wind velocities ([17] Appendix I) and 2 according to the NEN
(SLS) and compared with earlier determined values.

9.1. Pictures and idealisation

For the Student dormitory building “Voorhof” a bending and torsional model was made.
The Student building “*Voorhof” has a height of 51.30 m, width of 80.81 m and depth of
14.20 m. [17]. The structure has been built at the E. du Perronlaan in Delft in the
Netherlands (Figure 9.1).

Figure 9.1: Picture of the Voorhof Student Building.
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The structure is built up out of load-bearing light weight steel frames.

| l?‘l‘m"“lm\‘u\‘u‘l‘.mp I

Figure 9.2: Picture of the Voorhof Student Building.

The building (Voorhof) is modeled by 19 elements. The elements are connected at nodes,
each node has two degrees of freedom, which represent the displacement and the rotation

of a floor (Figure 9.2).
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Model a
Model b

Figure 9.3: a) Displacements and rotations of the floors b) Rotated of a representative
cross-section.
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9.2. Structural Characteristics

9.2.1. Cross-section properties

Centre of gravity

The centre of gravity of the cross-section is assumed to be located in the neutral-axis of the

cross-section in x and y direction of the Voorhof building structure.

The bending stiffness in y direction before renovation

The bending stiffness in y direction of the Voorhof building before renovation

El, = 2.53*10°Nm’ ([17]). The bending stiffness had to be calibrated to fit the recorded

natural frequency, EI, . .., = 2.085*10" Nm” . The calibarion is explained later in 9.2.2.

The bending stiffness in x direction before renovation

The bending stiffness in x direction of the Voorhof building was determined by multiplying

the Young modulus of steel £, =2.1£° N/mm? = 2.10£* N/m? with the second moment of

inertia in the x-direction.
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The building consists of 17 stcel frames
of type A and 4 frames of type B.

figure 3 The stability system
a4

Figure 9.4: Schematization stability system Voorhof [17]
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The second moment of inertia of the Voorhof building in the x-direction was calculated with

the formula:
L 2
[X ss = 25/ '4/
i=1
where:
I, . The second moment of inertia of the steel structure of the Voorhof building
before renovation.
n The number of steel cross-sections that are located in the building structure.
s, The perpendicular distance between the reference line and the centre of
gravity of the considered steel cross-section. [17]
A The area of the considered steel cross-section. [17]

The second moment of inertia in x direction was calculated in Matlab the outcome is
I, =629.76 m*.

n 3 n 3 n
The first summation term z% in the complete formula 7, . = 2% + Y 5A can
i=1 /=1 i=1

n
be neglected because this term is a lot smaller than the second summation term 25/.2,4,. .
/=1

The second moments of the cross-section before renovation

The second moments of the cross-section can be determined, once both bending stiffnesses
are known in x and y direction. The known bending stiffness is divided by the Young

modulus.
ET EI
]x b= — 7 b = -
E vi E
where:
£l EI, Bending stiffness in x and y direction.
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E Young modulus.
14 12
I,,-= % ~620976m' I, = % 12,076 m*

The second moments of the cross-section after renovation are

IX:‘[X;D+‘[X;W ‘[}/ :[V'b+]V}W
n bh3 n n h b3 n
I, =>"1+> A I, = L+ sPA

/=1 12 /=1 /=1 12 i=1
where:
I,1, The second moment of inertia of the Voorhof building after renovation.
Iopid,., The second moment of inertia of the Voorhof building before renovation.
L., 1., The second moment of inertia of the added concrete walls.
n The number of added concrete walls in the cross-section of the building.
b The width of added concrete walls.
h The length of added concrete walls.
s, The perpendicular distance between the reference line and the centre of

gravity of the considered wall. [17]
A, The area of the considered wall. [17]

7

The second moment of inertia in the x and vy direction were calculated in Matlab. The

outcomeis 7, =8403.25 m*and 7, =85.74m*.

The second moment of inertia the x and vy direction of the building after

renovation are:

I, =629.76 +8403.25 = 9033.01 m* I =12.076 +85.74= 97.82 m’

EI, =1.90£' Nm? EI =2.05E" Nm’

The value of the bending stiffness determined in a previous study [17] was put into Matlab,

£ = 5.17E" Nm’ and was later calibrated, £ =4.26F" Nm’ to match the recorded

y _ calibrated

frequency, view 9.2.2.
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The shear modulus before renovation is defined as

E
—G=—"
= 2(1+v,)

We assume v, =0.25 for the structural steel. The Young’s modulus for structural steel is
assumed £ =210000 N/mm? = 2.1F* N/m*> [25], which lead to a shear modulus of

E/2.5= N/mm? =8.4*10°N/m? .

The shear modulus after renovation is defined as

For the steel structure:

E

G.=G=——=8.4*%10°N/m?
55 21+v,) /
For the added concrete walls:
G, = £
2(1+v,)

We assume v, =0.15 for the uncracked concrete. The concrete used for the additional

structural walls is B22.5 The Young’s modulus given for B22.5

E', =27875 N/mm? =2.7872F" N/m?* [17] which lead to a shear modulus of

£/2.3=11150 N/mm? =1.115*10" N/m? .

G, =1.115E°N/m?
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Torsion Stiffness before renovation

The torsional stiffness of the cross section was determined by placing 4 floors of the steel

structure of the Voorhof building [17] in Matrix frame CA out of which the

GJ = 4.53£"° Nm?

The torsion stiffness had to be determined in this manner because no values could be found

for the torsion stiffness in the available documentation.

The torsion stiffness had to be calibrated to fit the recorded natural frequency (view 9.2.3).

G yproted = 1.863E 12 Nm?

Calculation of the torsion stiffness

Figure 9.5: Calculation torsion stiffness

m=c1%
h
2
gp = L GJ = th
1, 2u
2
M=Fb
F Force on structure in 3D model [N]
u Displacement calculated by 3D program [m]
h Height of 3D model [m]
b The length of 3D model, distance between both applied forces [ m ]

Anthony Richardson -98-



<3
9. Student building “Voorhof” TU Delft

_ Fhb? 200000 *10.6 * 80°

GJ =
2u  2*((0.1529 +0.1460) /2)

= 4.53E"°N/m’

Calculation of the diagonal which replaces a floor

N
| [
[
|

;;*;;;;

III e, 'Y
PN ) /
I
Gt - W -
concrete
Figure 9.6: Diagonal which replaces a floor
n=_Gty
3
y=Y pewrem M Wl g
h v / wh
F=nw N=EAA—/ L:ﬂ
/I w F
G shear modulus of concrete [ N/m?]
t thickness of the concrete floor [m]
/ length of the diagonal [m]
w,h width and height of the concrete floor [m]
3
FA=1.212F"*0.13 % ﬁ =5.40E° N
10.6*4
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Figure 9.7: Voorhof structure in matrix

Torsion Stiffness after renovation

The torsional stiffness after renovation is the torsion stiffness before renovation plus the
torsional stiffness of the additional 4 concrete walls. Because the building is modeled as a
rectangular tube profile, the torsion stiffness of the added walls cannot be simply added to
the torsion stiffness before renovation. The added concrete walls are added to the Matrix

frame CAE model in a similar manner as the floor, a diagonal with calculated axial rigidity.

The torsional stiffness of the cross section after renovation was determined by placing 4
floors of the steel structure of the Voorhof building [17] in Matrix frame CA.

GJ =1.3046E£" Nm?

The torsion stiffness had to be determined is this manner because no values could be found

for the torsion stiffness in the available documentation.

GJ,

calibrated

—3.187F12 Nm2 (view 9.2.3)

Calculation of torsion Stiffness

_ Fhb*> 200000 *10.6 * 80°

GJ =
2u  2*((0.0037 +0.0067)/2)

=1.3046E”N/m?
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Diagonal which replaces a floor

10.97°

= =—1.49E" N
10.1*2.65

FA=1.212F" *0.25*

9.2.2. Story Mass

Before renovation

The mass of the floor and the walls of one storey can be calculated with the formula:

M:pczh/A/ +pchﬂ47 +pvbAﬂ
i=1

where:
P specific gravity of reinforced concrete, p_ = 2400 kg/m?®;
A, height of the walls, /1 =2.65m
A, area of the walls

hy thickness of the floor, /=0.15m
A, area of the floor

P The variable load on the floor, p, =58.3 kg/m? = 0.583 kN/m?;

Mass of the furniture, decorations and inhabitants are estimated at

p., = 58.3 ka/m’® = 0.583 kN/m? [17]

The determining of the weight of the building (10.943£° kg ) was done in a previous study
[17], from which the mass of the floor can be approximately determined,
10.943£°/19= 0.576 £° kg. When the mass of M, ., =580514 kg, M,, =493753 kg
and £I = 2.53E"Nm’ was put into Matlab, the frequency of the first mode was £,=0.69 Hz .

The bending modal parameters had to be calibrated (M, ,, =580514 kg

M,, = 493753 kg) and £l =2.085E°Nm’) to match the cyclic frequency £,= 0.624 Hz

which also was determined in a previous study [17].
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After renovation

The determining of the weight of the building (12.090£° kg ) was done in a previous study

([17] Appendix F p.6), from which the mass of the floor can be approximately determined,

12.090£°/19= 0.636£° kg. When the mass of M, ,, = 642499 kg, M,, = 525106 kg

and £ =5.17E"NMm’ was put into Matlab, the frequency of the first mode which was

calculated was £,=0.94Hz. The bending modal parameters had to be calibrated

(M, ,, = 642499 kg, M,, =525106 kg and EI, =4.26E°Nm’) to match the cyclic

frequency £,= 0.85 Hz was determined in a previous study ([17] p.146 Appendix E p.2).

9.2.3. Polar Moment of Inertia

The polar moment of inertia of the wall cross section is

I, o =[rtdA=1 +1,
A

The polar moment of inertia of the floor cross section is

L, gy =[FP@A=1 +1,
A

Before renovation

The structure is modeled as discontinuous, this entails that the polar moment of inertia of
the structure is lumped in the nodes. The polar moment of inertia of each element is put on
the diagonal in the polar moment of inertia matrix (before renovation).

L. =[ 1B+ LlHB®|-643738.7 m*
pfeor™{ 12 12

I,.=1 +1 =6418m’

p_wall -
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Ips

Figure 9.8: Lumping the polar moment of inertia in nodes

L=l hotl (h,p+m, )= 2.827E" kgm'

P

story height e=h=265m mean density  p = 2400 kg/m?
floor height h,=0.15m width building B =80.81m
depth building A =1420m variable mass  m, = 58.3 kg/m?
=1 h I h 2.760E° kgm’
p19 "~ “p_wal Ep+ p_ﬂoor( ﬂp+mvb) =4 gm

The polar moment of inertia which are shown above were determined in Matlab (Appendix
6) by use of the given values ([17] Appendix F). The Torsion stiffness is 4.53£° Nm?and
was determined with the formulas in (Section 9.2.1). If both parameters were put into

Mathlab the natural frequency of the torsional motion of the first mode calculated was
f

e _tor

=0.10 Hz. The natural frequency of the torsional motion recorded was

f, o =0.64-0.75Hz ([8]) ([17] p.-139). The torsional modal parameters had to be

calibrated ( GJ =1.863£ Nm?) to match the recorded cyclic frequency £

e _tor

= 0.64 Hz,

lower bound of the measured torsional frequency. ([17] p.139 Appendix E p.2).
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After renovation

The structure is modeled as discontinuous, this entails that the polar moment of inertia of
the structure is lumped in the nodes. The polar moment of inertia of each element is put on

the diagonal in the polar moment of inertia matrix.

I . =(L1BH+-1HB® |- 643738.7 m'
pfeor™{ 12 12

I .=l +1 =913082m’

p_wall

L=1 ot o (hop+m, )=3.367E" kgm'
story height e=h=265m mean density  p = 2400 kg/m?
floor height h, =0.15m width building B =80.81m
depth building 4 =1420m variable mass 7, = 58.3 kg/m?

h
IplQ:Ip_waII E p+Ip_ﬂoor (hflp+mvb) = 3030E8 kgm2

The polar moment of inertia which are shown above were determined in Matlab (Appendix
7) by use of the given values ([17] Appendix F). The torsion stiffness is 1.3046£" Nm?
and was determined with formulas (Section 9.2.1). When both parameters were put into

Matlab the natural frequency of the torsional motion of the first mode calculated was
f, = 0.49 Hz. The natural frequency of the torsion recorded was £

e_tor e_tor

=0.77 Hz ([17]

p.139 ). The torsional modal parameters had to be calibrated (GJ =3.187F£% Nm?) to

match the cyclic frequency £

e_tor

= 0.77 Hz, lower bound of the measured recorded

torsional frequency ([17] p.139 Appendix E p.2).
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9.2.4. Natural frequencies

Before renovation

A study [17] was done by a previous student in which the frequencies for the bending and

rad
torsional motion are determined, f, ., = 0.625 Hz = 3.927 - and

f. . =064-0.75Hz = 4.021 - 4.712 rad (18]) ([17]p.139).
- S

The natural frequencies of the Voorhof building for bending and torsion before renovation
have been calibrated and are shown in the tables below:

1654.857| 1711.237| 1745.682

Table 11: Natural frequencies bending before renovation

Table 12: Natural frequencies torsion before renovation

rad
The recorded first natural frequency for bending (3.927 T) corresponds with the first

rad
natural frequency for bending in the model (3.922 ?) (Table 11), this means that the

bending motions (acceleration,velocity and displacement) in the model will be the same as
reality.
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rad
The recorded first natural frequency for torison (4.021 - 4.712 >y )corresponds with the

rad
first natural frequency for torsion in the model (4.021 ?) (Table 12), this means that the

torsional motion (acceleration,velocity and displacement) ) in the model will be the same as
reality.

After renovation

The given frequencies for the bending and torsional motion were determined by a previous

rad rad
student and are £, ,, = 0.85Hz =5.341 - and £, ,, =0.77Hz = 4.838 - (81 (
[17] p.146 ).

The natural frequencies of the Voorhof building for bending and torsion after renovation
have been calibrated and are shown in the tables below:

2248.569| 2325.105| 2371.863

Table 13: Natural frequencies bending after renovation

116.105| 118.008

Table 14: Natural frequencies torsion after renovation
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rad
The recorded first natural frequency for bending (5.341 ?) corresponds with the first

rad
natural frequency for bending in the model (5.346 ?) (Table 13), this means that the

bending motions (acceleration,velocity and displacement) in the model will be the same as

reality.

rad
The recorded first natural frequency for torison (4.838 ?)corresponds with the first

L rad )
natural frequency for torsion in the model (4.838 ?) (Table 14). This means that the

torsional motion (acceleration,velocity and displacement) in the model will be the same as

reality.
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9.2.,5. Damping ratios before and after renovation

Before renovation
The damping ratios of mode 1 and mode 2 are chosen to be specified.

For the Voorhof Building before renovation the damping ratio is selected for mode 1
s, =0.0108 and for mode 2 is ¢, =0.0108 ([17] Appendix I).

The Raleigh damping coefficients for bending are @, =0.0730 and a, =0.0008 for

mode 1 and mode 2. When interpreting the values of the Raleigh damping constants for
bending, one can see that the damping acts totally on the Modal mass matrix (low

frequencies) @ =392rad /s,

e _ ben _ matlab

The Raleigh damping coefficients for torsion are @, =00651 and a_ =0.0013 for mode 1

and mode 2. When interpreting the values of the Raleigh damping constants for torsion, one

can see that the damping acts nearly totally on the Modal polar moment of inertia matrix

(low frequencies) @, =4.02rad /s,

e _tor _ matlab

After renovation

For the Voorhof Building after renovation the damping ratio is selected for mode 1
¢, =0.0146 and for mode 2 is ¢, =0.0146. ([17] Appendix 1)

The Raleigh damping coefficients for bending are @, =0.1346 and &, =0.0008 for

mode 1 and mode 2. When interpreting the values of the Raleigh damping constants for
bending, one can see that the damping acts totally on the Modal mass matrix (low

frequencies) @ =535rad /s,

e _ben _ matlab

The Raleigh damping coefficients for torsion are @, =0.1059 and @ =0.0015 for mode 1

and mode 2. When interpreting the values of the Raleigh damping constants for torsion, one
can see that the damping acts totally on the Modal polar moment of inertia matrix (low

frequencies) @ =484rad /s,

e _tor _matlab
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9.3. Wind parameters for the Student building “Voorhof”

according to NEN

The Dutch norm NEN 6702 [3] indicates that the Voorhof student building is located in
Urban area II. We will use the values for Urban area II of the NEN 6702 [3]. The
coefficients are shown in the table below.

Rural Urban
1T I
Usias 2.30 m/s 2.82 m/s
Zq 0.2 m 0.7 m
d Om 3.5 m
k 1.0 - 0.9 -

Table 15: Parameters for hourly averaged wind speed, NEN 6702 page 128 Table 6.1

The stability system of the Voorhof Building has 2 main directions; because of this the

use of the reference period of 12.5 years is valid.
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9.4. Wind parameters for the Student building “Voorhof” for

the measured wind speeds

The parameters for the average wind speed before and after renovation for the Voorhof

student building were determined in ([17] pp.131-138, Appendix E).

Before After
Usiz,s 2.25 ml/s 1.18 m/s
Zq 1.0 m 1.0 m
d 10.0 m 10.0 m
k 1.0 - 1.0 -

Table 16: Parameters for hourly averaged wind speed, ([17] Appendix E)

The manner in which the wind velocity is transformed from Rotterdam Airport to the
Voorhof Student Building in Delft is not correct ([17] pp.131-138, Appendix E). The wrong
transformation formula without the temperature as a coefficient is used. The wind velocity
transformation which was done is applicable to determine the average wind speed in a year
and not for short periods of 10 minutes. The temperature is a very important factor for wind
velocity transformations with short periods, making it not possible to determine the wind
velocity accurately without it.

Because no better values are available, the values ([17] pp.131-138, Appendix E) will be

used even thought it is known that these values are not 100% correct.
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9.5. Hourly-averaged part of the wind speed for return period

of 12.5 years

The NEN 6702 describes the hourly-averaged wind speed which varies with the height as:

(3D

In which:

u. Friction velocity [m/s] =2.82 [m/s]
K Von Karman constant [1]; =04

z height above the surface of the earth [m] =513 [m]
d, displacement height [m] =35 [m]
Z, roughness length [m] =07

[m] ([17] Appendix E )

From the values in Table 6.1 we acquired the profile for the extreme hourly wind speed

according to the NEN 6702 ([3])

55

50
45 |
40 | /

35

=a%f rd

[m

20

157

107

14 16 18 20 22 24 26 28
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30

Figure 9.9: Extreme hourly-averaged wind speed profile for return period of 12.5 years

or for return period of 50 years under unfavorable direction in Delft
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Harris and Deaves describes the hourly-averaged wind speed which varies the height:

[13]

v(z)= ﬂ(ln(z;d] +5.75a -1.882° —1.338° + 0.25a4J

In which:

Uy

and £, =2QsinA

u, Friction velocity [m/s] =2.82 [m/s]

K Von Karman constant [1]; =04 [

z height above the surface of the earth [m] =513 [m]

d  displacement height [m] =35 [m]

z,  roughness length [m] =07 [m]

7. Coriolisparamenter [s™]

€)  rotation speed of the earth [rad/s] (27T/ 24%60*60 = 7.2722F° rad|s )
1 width degree [ ] 4 =52.00 ( Delft)

From the values in Table 6.1 we acquired the wind profile for the extreem hourly wind

speed of Harris and Deaves.
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Figure 9.10: Extreme hourly-averaged wind speed profile for return period of 12.5
years or for return period of 50 years under unfavorable direction in Delft
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Eurocode describes the hourly-averaged wind speed which varies the height: [13]

V(2)= Uk, In[

With: Uyer = Cyr

In which:

X

V4

0

c

‘)

temp

Z
¥Cp ¥Upry, k =0.19% [—0

ZO,II

4 (Z) mean wind speed at height z [m/s] =

u,,, reference speed at height of 10 m [m/s] =25
k,  terrain factor [-] =021
z height above the face of the earth [m] =513
z,  measure for the roughness of the terrain [m] =0.2
c, direction factor [-] =1
Cienp  Season factor [-] =1

c,, height factor [-] =1
Uper o onalterd reference speed at height of 10 m [m/s] =25
= roughness length =0.05

0,11
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Figure 9.11: Extreme hourly-averaged wind speed for eurocode for return period of 12.5

years or return period of 50 years under unfavorable direction in Delft
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9.6. Fluctuating part of wind speed for return period of 12.5
years

For the Voorhof the standard deviation of wind speed at reference height 10 m is

determined below:

K 9%*2,
o, = Y _ —0 97282 =6.345 m/s
K
In which:
u,  Friction velocity =2.82 [m/s]
K Von Karman constant =04 [
k Shape factor =09 [

The standard deviation of the wind speed varies per height. The standard deviation of the
wind speed at reference height has been determined above. The standard deviation of the
wind speed on the top of the building is determined with formula:

o,(2)=0, (ho)(z_d] ([1] Ch.6 p.10).

hO
In which:
o, (M) Standard deviation of wind speed at reference height = 6.345 [m/s]
Ay reference height =10 [-]
z height above the surface of the earth =513 [m]
d displacement height =35 [m]
Y power =003 [
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For the Voorhof the values for the wind speed, standard deviation of wind speed and

turbulence intensity are shown for the top of the building and reference height of 10
meters. The wind speed at reference height and standard deviation of wind speed on the

top of building are put into Matlab in the wind generator, if the ultimate state load has to be

determined.

Height V Harris & Deaves Ov I
m m/s m/s -
51.3 30.17 6.65 0.22
10 15.79 6.35 0.40
[13] (p. 84)

Table 17: Mean wind speed, standard deviation and turbulence intensity
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9.7. Hourly-averaged part of the wind speed for return period

of one year

The formulas are given to determine the mean and standard deviation for maximum hourly-
averaged wind speed with the return period of 1 year in ([1] Ch.6 p.7). The formulas are

given below:

0.577

,u(vl):u1+T 0(V1):(a3€)

Ihe values are given for a and U, for area IT in the Netherlands In table 6.3 ([1] Ch.6 p.7

). These values are g = 0_55i and u, = 20_4m. Out of which we can determine that
m S

_ 0.577 m B 7 B m
p(v,)=20.4 * 55 - 21.45 S and o(v,)= —(0.55* \/5) =233 S

The hourly-averaged wind speed described by a logarithmic function is given ([1] Ch.6 p.2).
(3D

For the Juffertoren we know that some of the values are given and known (6.2) for the

situation ¥(10) and only the «, friction velocity has to be determined.

K Von Karman constant [1]; =04 [

z height above the surface of the earth [m] =10 [m]
d  displacement height [m] =35 [m]
z,  roughness length [m] =07 [m]

m
With the values above v, = 3.851—,
s

For the Harris and Deaves and Eurocode profile the unknown friction velocity (w., )
andonalterd reference speed at height of 10 m ( ¢, ) are determined in the same method

as above.
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The NEN 6702 describes the hourly-averaged wind speed which varies with the height as:

=

v(2)

U,
=—"In
K

7 —
ZO

In which:

u, Friction velocity [m/s] = 3.851 [m/s]
K Von Karman constant [1]; =04 []

z height above the surface of the earth [m] =513 [m]
d, displacement height [m] =35 [m]
z,  roughness length [m] =07 [m]

From the values in Table 6.1 we acquired the profile for the extreme hourly wind speed
according to the NEN 6702 ([3])

55

50

45 /

30 32 34 36 38 40
v [m/s]

20 24 26 28 42

Figure 9.12: Extreme hourly-averaged wind speed profile for return period of one year in
Delft
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Harris and Deaves describes the hourly-averaged wind speed which varies the height:

[13]

v(z)= 5(In(z = d] +5.752 -1.882% ~1.332° + 0.25a4j

K z,
with: & =| 2=9 . z,=-= and £ =20sina
z, 6/,

In which:
u, Friction velocity [m/s] = 3.835 [m/s]
p Von Karman constant [1]; =04 [
z height above the surface of the earth [m] =513 [m]
d  displacement height [m] =35 [m]
z,  roughness length [m] =07 [m]
7. Coriolisparamenter [s™]
() rotation speed of the earth [rad/s] (Zﬂ/ 24%60*60 = 7.2722E"° rad 5)
1 width degree [ ] 4 =52.00 ( Delft)

From the values above, we acquired the wind profile for the extreem hourly wind speed of

Harris and Deaves.

z [m]

55
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45 |
40|
35 A
307 7

25
20
15

S et

30 32 34 36 38 40
v [m/s]

20 24 26 28 42

Figure 9.13: Extreme hourly-averaged wind speed profile for return period of one
year in Delft
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Eurocode describes the hourly-averaged wind speed which varies the height: [13]

v(z)=uk, In[zij

0

0.0706
- — * S X Z,
With: Uper = Cy Ctemp Cot " Urro, k =0.19% [—Oj

ZO,II

In which:
;(Z) mean wind speed at height z [m/s] = [m/s]
u,., reference speed at height of 10 m [m/s] =26.17 [m/s]
k,  terrain factor [-] =021 [
z height above the face of the earth [m] =513 [m]
z,  measure for the roughness of the terrain [m] =02 [m]
¢,  direction factor [-] =1 [-]
Ciemp  S€@SON factor [-] =1 [-]
¢,,  height factor [-] =1 [-]
u,, , onalterd reference speed at height of 10 m [m/s] = 26.17 [m/s]
Z,, roughness length =0.05 [m]

55

50 /)

45t /,//
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351 /
— 30T
N o5t
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Figure 9.14: Extreme hourly-averaged wind speed for eurocode for return period of one
year in Delft
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9.8. Fluctuating part of wind speed for return period of one

year

For the Voorhof:

o, =2.33 m/s (0)

The standard deviation of the wind speed varies per height. The standard deviation of the
wind speed on the top of the building is determined with formula:

)
o,(2)=0, (/70)(z _dj ([1] Ch.6 p.10).

hO
In which:
o, (M) Standard deviation of wind speed at reference height = 2.33 [m/s]
A, reference height =10 [
z height above the surface of the earth =513 [m]
a displacement height =35 [m]
Y power = 0.03 []

For the Juffertoren the values for the wind speed, standard deviation of wind speed and
turbulence intensity are shown for the top of the building and reference height of 10
meters. The wind speed at reference height and standard deviation of wind speed on the

top of building are put into Matlab in the wind generator. (Appendix 6)

Height |V Haris & Deaves Oy I
m m/s m/s -
51.3 40.83 2.44 0.06
10 21.45 2.33 0.11
[13] (p. 84)

Table 18: Mean wind speed, standard deviation and turbulence intensity
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9.9.

Hourly-average part of recorded wind speeds

In this paragraph the recorded hourly-average wind speeds are presented.

9.9.1. Recorded hourly-average wind velocity before renovation 18.4 m/s

In a previos study ([17] Appendix E) the wind speed profile before renovation was recorded
on 14 January 1986.

60

50 -

40 -

20

10 15 20
v [m/s]

25

Figure 9.15: transformed hourly-averaged wind speed profile recorded 14 January 1986

unmodified in Delft

The hourly-mean wind speed before renovation is shown below, which is 18.4m/ s at 10

m height, because this profile is only valid above .
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20 20.5 21 215
v [m/s]
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Figure 9.16: transformed hourly-averaged wind speed profile recorded 14 January 1986
modified in Delft

-121-

May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

9.9.2. Recorded hourly-average wind velocity after renovation 9.2 m/s

In a previos study ([17] p.139) the wind speed profile after renovation was recorded on 31
Oktober 1994.

60 T T T T

50 - /

40 + /

z [m]
w
S

:
9
N

20

0 . . . . .
0 2 - 6 8 10

v [m/s]

Figure 9.17: hourly-averaged wind speed profile recorded 31 October 1994 unmodified
in Delft

The hourly-mean wind speed after renovation was determined below, which is 9.2m/ s at

10 meters height, because this profile is only valid above 9.2m/s.

45} 7 1

0 . . ! ey
9 9.5 10 10.5 11

v [m/s]

Figure 9.18: hourly-averaged wind speed profile recorded 31 October 1994 modified in
Delft
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9.10. Fluctuating part of recorded wind speed [17]

Fluctuating wind velocity before renovation

7 ( Z) - L Turbulence intensity factor;
In z-d,
ZO
For the Voorhof building:
k. =1.0 is a factor
d,=10 ([17] Appendix E p.2)
z,=1.0 ([17] Appendix E p.2)
1
I(z)=
(2) NER
ZO
1
[(51.3) = =0.269
| [51.3 - 10]
n
1
1(10)= 2 =280 _ 5304
v 8.4

Using the mean wind speed v from section 6.3 the formula for the standard deviation

o=V *I results in:

u, =2.25 ([17] Appendix E p.3)
ki 0*2,
o, =i:—10 2:25 =5.6 m/s
K 0.4

The standard deviation of the wind speed varies per height. This value corresponds to the
value at the 10 m height of the modeled building.
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For the 14 of January 1986 the recorded mean wind speed, standard deviation and
turbulence intensity are given in the table below.

Height V Mean oy |

m m/s m/s -
51.3 21 5.64 0.269
10 18.4 5.60 0.304

Table 19: Recorded mean wind speed, standard deviation and turbulence intensity

before renovation

Fluctuating wind velocity after renovation

For the 31 of Oktober 1994 the recorded mean wind speed, standard deviation and
turbulence intensity are given in the table below.

Height V Mean Gy |

m m/s m/s -
51.3 11 2.96 0.269
10 9.2 2.95 0.321

Table 20: Recorded mean wind speed, standard deviation and turbulence intensity

after renovation

Anthony Richardson
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10. Calculation results Student building “Voorhof”

In this chapter the modeled calculation results of the student building “Voorhof” (bending
and torsional acceleration) before and after renovation are presented for the comfort
requirement and the recorded wind speeds and accelerations. The summary values of a 100
simulations in time-domain are also presented. The Simulink outcome for acceleration
before and after renovation is presented and evaluated. For all the realisations the first 50
seconds of the modeled acceleration is not taken into account when determining the

maximum acceleration and standard deviation.

10.1. Before renovation with calibration

10.1.1. 100 simulations in Time Domain

In the table below the summary values of a 100 simulations of the Student building
“Voorhof” before renovation are given. The average values and standard deviation for
bending, torsion and bending and torsion added together are given. The maximum and
minimum of the 100 simulations are also given. We can conclude that there is a big spread
between the maximum and minimum value. For the values out of the simulations view

Appendix 8. The time of 1 simulation is about 16 minutes.

Average 0.0984 0.2607 0.2968 0.0285 0.0745 0.0746

a_ben a_tor  a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
Max 0.1520 0.4306 0.4847 0.0386 0.0909 0.0944
Min " 00720" 02073" 02302 i 002377  00632” 0.0620
Max - Average 0.0536 0.1699 0.1879 0.0101 0.0164 0.0198
Average - Min 0.0264 0.0534 0.0666 0.0048 0.0114 0.0126
Percentage Max 54.49% 65.20% 63.31% 35.61% 21.96% 26.53%
Percentage Min 26.88% 20.49% 22.44% 16.90% 15.26% 16.90%

Table 21: Summary values of a 100 simulations of the Voorhof building before renovation

for return period of one year

10.1.2. 10 simulations in Tine Domain

In the table below the values and summary values of 10 simulations of the Student building
“Voorhof” before renovation are given. The average values and standard deviation for
bending, torsion and bending and torsion added together are given.
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a pen a tor a pen_tor Ga_ben Ga tor | Oa ben tor

m/s? m/s® m/s? m/s? m/s® m/s?
Simulation 1 0.070 0.232 0.243 0.021 0.070 0.073
Simulation 2 0.095 0.332 0.336 0.027 0.075 0.076
Simulation 3 0.080 0.319 0.324 0.027 0.088 0.086
Simulation 4 0.089 0.239 0.273 0.025 0.064 0.064
Simulation 5 0.108 0.216 0.243 0.029 0.069 0.069
Simulation 6 0.104 0.272 0.301 0.034 0.080 0.085
Simulation 7 0.140 0.311 0.328 0.031 0.076 0.076
Simulation 8 0.113 0.291 0.317 0.028 0.073 0.073
Simulation 9 0.101 0.269 0.285 0.029 0.069 0.072
Simulation 10 0.095 0.271 0.308 0.028 0.078 0.077
Summation 0.0993 0.2753 0.2958 0.0279 0.0740 0.0749

Table 22: Values of 10 simulations of the Voorhof building before renovation for return
period of one year

We notice that there is a difference between the average values of a 100 and 10

simulations. How much simulations must be run to get a good average.

10.2. After renovation with calibration

10.2.1. 100 simulations in Time Domain

In the table below the summary values of a 100 simulations of the Student building
“Voorhof” after renovation are given. The average values and standard deviation for
bending, torsion and bending and torsion added together are given. The maximum and
minimum of the 100 simulations are also given. We can conclude that there is a big spread
between the maximum and minimum value. For the values out of the simulations view

Appendix 9. The time of 1 simulation is about 16 minutes.

Average 0.0522 0.1554 0.1696 0.0150 0.0435 0.0456

a_ben a_tor a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
Max 0.0650 0.1971 0.2201 0.0178 0.0505 0.0529
Min " 00427"7  012007 01292 i 00128"  0.0370” 0.0397
Max - Average 0.0129 0.0417 0.0506 0.0028 0.0070 0.0072
Average - Min 0.0094 0.0345 0.0404 0.0022 0.0065 0.0059
Percentage Max 24.66% 26.84% 29.83% 18.71% 16.09% 15.84%
Percentage Min 18.07% 22.20% 23.81% 14.76% 14.96% 13.04%

Table 23: Summary values of a 100 simulations of the Voorhof building after renovation for

return period of one year
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10.2.2. 10 simulations in Time Domain

In the table below the values and summary values of 10 simulations of the the Student
building “Voorhof” after renovation are given. The average values and standard deviation

for bending, torsion and bending and torsion added together are given.

a pen a o a pen_tor Ga_ben Ga_tor |Oa ben_tor

m/s? m/s? m/s? m/s? m/s? m/s?
Simulation 1 0.060 0.151 0.158 0.016 0.045 0.047
Simulation 2 0.057 0.145 0.142 0.016 0.045 0.047
Simulation 3 0.051 0.165 0.169 0.014 0.046 0.048
Simulation 4 0.051 0.121 0.129 0.014 0.039 0.042
Simulation 5 0.050 0.159 0.177 0.016 0.046 0.049
Simulation 6 0.052 0.148 0.147 0.015 0.043 0.046

Simulation 7 0.050 0.144 0.157
Simulation 8 0.058 0.156 0.168
Simulation 9 0.058 0.142 0.170
Simulation 10 0.047 0.164 0.172
Summation 0.0534 0.1496 0.1589

0.015 0.041 0.043
0.016 0.039 0.042
0.016 0.043 0.045
0.014 0.047 0.048
0.0152 0.0434 0.0459

Table 24: Values of 10 simulations of the Voorhof building after renovation for return period
of one year

We notice that there is a slight difference between the average values of a 100 and 10

simulations.

10.3. The acceleration realizations at 4 different point in time

In the following paragraph, the accelerations (bending, torsion and bending and torsion
added together) are determined and shown for 4 point in time, 2 of which are recorded
mean wind velocities [17] (Appendix I) and 2 according to the NEN and compared with
earlier determined values.

The reason for doing this is to show that with 1 simulation it can be proven that a building

(Voorhof) may not meet the comfort requirement (< 0_1m2 ) and that it is possible to
S

model the motions of a building in a storm accurately.
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10.3.1. Before renovation u, = 18.4 m/s (Recorded in reality [17] Appendix E)

For the recorded time instance u, = 18.4 m/s and o, =5.64 m/s, the modeled

accelerations are presented below, bending, torsion and bending and torsion added
together.

al19 ben
o.1 T

0.08

0.06

0.04

0.02

a(ms)

-0.02

-0.04

-0.06

-0.08

-0.1

o 100 200 300 400 500 600 700 800
t(s)

Figure 10.1: Wind speed calculation: bending acceleration of the top

(o] 1 (:')0 2(:')0 30‘0 4(‘)0 SCI)O 6C‘)O 7(‘)0 800
t (s)
Figure 10.2: Wind speed calculation: torsional acceleration of the top

al19 ben tor

a(ms)

o 100 200 300 400 500 600 700 800
t(s)

Figure 10.3: Wind speed calculation: bending and torsional acceleration of the top
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For the recorded time instance up, = 18.4 m/s and &, = 5.64 m/s , we can conclude for this

realization that the acceleration for torsion and bending and torsion added together does
not meet the comfort requirement in this storm.
The maximum recorded acceleration at the top and far end of the building before

renovation [17] (Appendix E) was 0.0767m2 with u(51_3m):21.om,
S S

u,(10m) =18.4and y, = 2.25.
S S

The average bending acceleration (new method) before renovation was 0.1067m2 and the
S

average bending and torsional acceleration added together was 0.3508m2 (Appendix 10).
S

These accelerations values (new method) where taking out of the average of 50

simulations.

It can be concluded that this model did not fit the recorded measurements. One option is
that the recorded value by company Van Dorsser was incorrect. The model after renovation

fits perfectly with the measured data.

10.3.2. Before renovation up, = 21.45 m/s (Return period once in 1 year)

For the NEN up = 21.45 m/s and o, = 2.44 m/s, the modeled accelerations are presented

below, bending, torsion and bending and torsion added together.

al19 ben
o.1 T

0.08 b
O0.06
0.04

0.02

-0.02

-0.04

-0.06 =]

-0.08 =]

_0.1 L + L s L s L
o 100 200 300 400 500 600 700 800

t (s)

Figure 10.4: Wind speed calculation: bending acceleration of the top
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o0.25

0.2

0.15
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_o.25 L . N . L . L
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Figure 10.5: Wind speed calculation: torsional acceleration of the top
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Figure 10.6: Wind speed calculation: bending and torsional acceleration of the top

For the recorded time instance up, = 21.45 m/s and o, = 2.44 m/s, we can conclude for

this realization that the acceleration for torsion and bending and torsion added together

does not meet the comfort requirement.

The average bending acceleration according to NEN (new method) before renovation was

0.0984m2 and the average bending and torsional acceleration added together was
S
m

0.2968 —. .
S

These accelerations values above (new method) where taking out of the average of a 100

simulations.

10.3.3. After renovation up, = 9.2 m/s (Recorded in reality [17] Appendix E)
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For the recorded time instance u, = 9.2 m/s and o, =2.96 m/s, the modeled

accelerations are presented below, bending, torsion and bending and torsion added

together.

0.01

0.008
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-0.002
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Figure 10.7: Wind speed calculation: bending acceleration of the top
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Figure 10.8: Wind speed calculation: torsional acceleration of the top
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Figure 10.9: Wind speed calculation: bending and torsional acceleration of the top
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For the recorded time instance up = 9.2 m/s and o, = 2.96 m/s , we can conclude for this

realization that the acceleration for bending, torsion and bending and torsion added
together meets the comfort requirement in the storm.

The maximum recorded acceleration at the top and far end of the building after renovation

[17] (Appendix J) was 0.03773 with u(51.3m)=11.0"1, u (10m)=9.22,
S S S

u =118".
S

The average bending acceleration (new method) after renovation was 0.0076m2 and the
S

average bending and torsional acceleration added together was 0.0258m2 (Appendix 11).
S

These accelerations values (new method) where taking out of the average of 50

simulations.

Comparing the accelerations above of 0.0377m2 to 0.0258m2 , it can be concluded that this
S S

model did fit the recorded measurements.

10.3.4. After renovation u, = 21.45 m/s (Return period once in 1 year)

For the NEN up, = 21.45 m/s and o, = 2.44 m/s, the modeled accelerations are presented

below, bending, torsion and bending and torsion added together.
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Figure 10.10: Wind speed calculation: bending acceleration of the top
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a19 tor
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Figure 10.11: Wind speed calculation: torsional acceleration of the top
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Figure 10.12: Wind speed calculation: bending and torsional acceleration of the top

For the recorded time instance up = 21.45 m/s and o, = 2.44 m/s, we can conclude for
this realization that the acceleration for bending meets the comfort requirement. The
acceleration for torsion and bending and torsion added together does not meet the comfort

requirement.

The average bending acceleration according to NEN (new method) after renovation was
0.0522m2 and the average bending and torsional acceleration added together was
S

0.1696m2.

S

These accelerations values above (new method) where taking out of the average of a 100

simulations.
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It is possible to determine the bending, torsional and total (bending and torsional added
together) acceleration of a building when the structural characteristics are known. We can
now see how a refurbished office building will act in a storm. Will this building comply with

the comfort requirement.
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11.

Comparison to design formulas for the Student
building “Voorhof”

In this chapter, the acceleration out of the new model (bending, torsion and bending and

torsion added together) are compared to design formulas and rules of thumb.

11.1. Maximum occuring accelerations for return period of one
year before renovation

In the table below the values of the comfort requirement is given for some norms and rules

of thumb. The average value (Matlab) for a 100 simulations is also given for bending,

torsion and bending and torsion added together.

Table 25: Resulting annual maxima before renovation

Along wind Across wind
Formula Natural frequency Max bending Max torsional | Max total Max bending |Max torsional| Max total
acceleration acceleration |acceleration| acceleration | acceleration | acceleration
Hz rad/s m/s? m/s? m/s? m/s? m/s? m/s?
NEN 0.733 4.605 0.099
Eurocode 0.897 5.634 1.373
NBCC 0.733 4.605

Woudenberg (emp) 0.897 5.634 1.628
Woudenberg 0.741 4.655 0.157
Schueller 0.590 3.707 0.705
Dicke/Nijsse 0.076 0.479 0.026

Matlab

0.624

3.922

0.098

Table 26: The average out of a 100 simulations occurring acceleration in Simulink for the Voorhof before
renovation for return period of one year
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Resulting annual maxima and comfort requirement

NEN

Eurocode
Woudenberg (emp)
Woudenberg
Schueller
Dicke/Nijsse

Matlab bending

Matlab bending + torsion

Comfort requirement

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1400 1.600 1.800

Figure 11.1: Resulting annual maxima and comfort requirement before

renovation

2

m
It can be concluded that the average value for bending out of Matlab ( 0.098— ) is smaller
S

the value for the NEN, Eurocode, Woudenberg (emp), Woudenberg and Schueller. For
bending and torsion added together we see that the average value out of a 100 simulations

2

m
for bending and torsion added together (0.297 — ) out of Matlab is larger than NEN,
S

Woudenberg, Dicke/Nijsse. The Eurocode, Woudenberg(emp) and Schueller value are so
over conservative for bending, that it still meets the comfort requirement for bending and

torsion which is not logical.

The acceleration above does not take into account the effect of shear lag, the second order
effect and the reduction of effective area due to (window) openings in structural elements.
The fact that the crosswind acceleration which can be larger than the along wind

acceleration in many cases is also neglected by many of the used formulas above.

The maximum acceleration is the superposition of the alongwind, acrosswind and torsional
acceleration. In the most of these formulas only one component of the acceleration is taken
into account, which makes these formula non-conservative. The actual acceleration felt by a

person dwelling in the building will be larger than the outcome of any formula above.
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The characteristic values of the simulations are given below: bending, torsion and bending

and torsion added together. The standard deviations in the table below has been taken out

of the average of 10 simulations (Table 22).

Voorhof before renovation k Ca Ayar
R = 1 year - m/s? m/s?
Bending 291 0.028 0.08

Torsion 291 0.074 0.22

Bending +Torsion 291 0.075 0.22

Table 27: characteristic values of the 10 acceleration simualtions before renovation

View page 85 for explination of /(, c,d

kar *
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11.2. Maximum occuring accelerations for return period of one

year after renovation

In the table below the values of the comfort requirement is given for some norms and rules
of thumb. The average value (Matlab) for a 100 simulations is also given for bending,

torsion and bending and torsion added together.

Along wind Across wind
Formula Natural frequency Max bending Max torsional [ Max total Max bending |Max torsional Max total
acceleration acceleration |acceleration| acceleration | acceleration | acceleration
Hz rad/s m/s? m/s? m/s? m/s? m/s? m/s?
NEN 0.996 6.258 0.061
Eurocode 0.897 5.634 0.852
NBCC 0.996 6.259

Woudenberg (emp) 0.897 5.634 1.628
Woudenberg 0.698 4.388 0.211
Schueller 0.801 5.034 1.300
Dicke/Nijsse 0.130 0.816 0.049

Table 28: Resulting annual maxima after renovation

Table 29: The average out of a 100 simulations occurring acceleration in Simulink for the Voorhof after
renovation for return period of one year

Resulting annual maxima and comfort requirement

NEN ~wm

Eurocode

Woudenberg (emp)

Woudenberg — e—

Schueller

Dicke/Nijsse
Matlab bending ==
Matlab bending + torsion s
Comfort requirement

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800

Figure 11.2: Resulting annual maxima and comfort requirement after renovation
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2

m
It can be concluded that the average value for bending out of Matlab (0.052— ) is
S

smaller the value for the NEN, Eurocode, Woudenberg (emp), Woudenberg and Schueller.
For bending and torsion we see that the average value out of a 100 simulations for bending

2

m
and torsion ( 0.170— ) out of Matlab is smaller than most Norms and rules of thumb. The
S

Eurocode, Woudenberg (emp) and Schueller value is so over conservative for bending, that
it still meets the comfort requirement for bending and torsion which is not logical.

The acceleration above does not take into account the effect of shear lag, the second order
effect and the reduction of effective area due to (window) openings in structural elements.
The fact that the crosswind acceleration which can be larger than the along wind

acceleration in many cases is also neglected by many of the used formulas above.

The maximum acceleration is the superposition of the alongwind, acrosswind and torsional
acceleration. In the most of these formulas only one component of the acceleration is taken
into account, which makes these formula non conservative. The actual acceleration felt by a
person dwelling in the building will be larger than the outcome of any formula above.

The characteristic values of the simulations are given below: bending, torsion and bending
and torsion added together. The standard deviations in the table below has been taken out

of the average of 10 simulations (Table 24).

Voorhof after renovation k O, Qar
R = 1year - m/s? m/s?
Bending 291 0.015 0.04
Torsion 291 0.043 0.13
Bending +Torsion 291 0.046 0.13

Table 30: characteristic values of the 10 acceleration simulations after renovation

View page 85 for explination of /(, c,d

kar *°

-139- May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

Anthony Richardson -140-



<3
12. Frequency domain response analysis TU Delft

12. Frequency domain analysis

In this chapter, the method for the frequency domain analysis is presented. The method is
explained for the case of a force spectra with an arbitrary loading for a single damped
degree of freedom system (SDOF) and the case of a force spectrum with an arbitrary
loading for a multi degree of freedom system (NDOF). The spectra of accelerations for
bending are also presented for the Juffertoren and Student building “Voorhof” before and
after renovation. The spectra of accelerations for torsion and bending and torsion added

together was not done.

12.1. Introduction of a single damped degree of freedom system

under stochastic loading

Note: Most of the following text and figures are taken directly from the lecture notes of
Random Vibration ([1] ch. 2-3), the reason for giving it, is because if left away, one does
not understand how the calculated values are built up and how the calculated values are
reached. First the method is explained for a single damped degree of freedom system with
harmonic loading after which the single damped degree of freedom system with stochastic
loading.

12.1.1. Single damped degree of freedom system with harmonic loading

A single damped degree of freedom system under harmonic loading ([1] ch.3, [11] ch. 2-4)
can be described by a mass m, spring constant k and damping constant ¢, which is loaded

by a time dependant load F (t) . The response is given as U (t) .

F(t) l

* \m 2, / km
Figure 12.1: Single damped degree of freedom system under harmonic loading
([1] ch.3)
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The force F is input and the response U(t) output. The response of a harmonic load is

given below.

F=Fsin(at+¢)= Im(lfei(‘””"’)) (input)

u=|H|Fsin(at+¢+y)=|H| Im(lfe‘(“’”‘”“”)) (output)

With:
1
Hl-JH (o) - 2
k[{l—(a)/ a)e)z} +{2§’(a)/ a)e)z}}
y = arctan M
1- (0! w,)
@ = frequency @, = natural frequency; @, = k/m

¢ = damping factor; ¢ =C/ 2%

If we have a single damped degree of freedom system with harmonic load with parameters:

F =100N @ =Orad t=0-50s
m = 1000kg ¢=17325N/(m/s) k=3000N/m
w=1rad /s o, =173rad /s ¢ =0.05[-]
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Fordng load (N)

NAAAAAAL
il

Figure 12.2: Forcing load of the single damped degree of freedom system with

harmonic loading

Responce (m}

0.04 —

002 —
0 . ! 1 | 1 . T
20 30 40

-0.02

—004

—006

Figure 12.3: Response of the single damped degree of freedom system with

harmonic loading
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12.1.2.

is zero

Single damped degree of freedom system with stochastic loading with n

The only difference between a single damped degree of freedom system with harmonic

loading and stochastic loading with z = O is that load (F =F Sm(a)t + (0)) is made up of

a infinite amount of sinusses with an infinite amount of cyclic frequencies and random

phases ([1] ch.2.2). An illustration of this is given below.

50

40

30

20

10

Force (N)

Random Loading

Time (s)

Figure 12.4: Single degree of freedom system under random loading

To explain the random loading, we take a forcing term made up of 2 harmonic loads

(F = Iflsin(a)1t+(pl)+ Ifzsin(a)zt+¢)2)).

with values: (just a possible realization)

w =0.5rad /s
w,=0.1rad /s

¢, =4.119rad
¢, =1.076rad

50

Anthony Richardson
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Random Loading

100
80 - B
60 | .
a0 L ‘,-":l‘ i

20F / = -

Force (N)
o}
T
Il

-100

Time (s)

Figure 12.5: Single damped degree of freedom system under random loading

made up of 2 terms

The output of the system will be a summation of the ouput of the single terms, view 12.1.1

for the output of a single term.

If we have a single damped degree of freedom system with system parameters (below) and

forcing parameters as the previous page, will get a response as given below.

m =1000kg c=3464N/(m/s)  k=3000N/m

o, =173rad /s ¢ =0.01[-]

Responce random loading with 2 terms

Responce (m)
(o}
T
|

-0.01 \ 1
-0.02 | i

-0.03 | - .

-0.04 . . L .
(0] 10 20 30 40 50
Time (s)

Figure 12.6: Single damped degree of freedom system under random loading

made up of 2 harmonic terms
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N
If the random loading (F(t) = ZFK Sin(a)k + @, )j (Figure 12.4) is given and the
k=1

amplitudes of force ( Fk )r cyclic frequencies (@, ) and random phases (), ) of the infinite

amount of sinusses are unknown, then a Fourier series ([1] ch.2 p.3) is used to determine

variance (%) of the random loading.
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12.2. Random wind loading for a single damped degree of
freedom system

12.2.1. Theory

The only difference between a single damped degree of freedom system with stochastic

loading with mean of the force spectra zero(,uF = 0) and random wind loading is that
mean of the force spectra in not zero ( He # 0). When the load is a Gaussian process with

mean (,u,: ) and force spectra (SFF ) then it can be said according to ([1] ch. 2.4):
/’lu = _/’lF
Sw (a)) = | H (a))|2 Ser

Ser

[H ()]

uu

122

Figure 12.7: Analysis of the single mass spring system ([1] ch. 3.1)

The variance of the response is given by
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u

o’ :jSuu(a))da)
0

For the comfort requirement we are not instrested in the variance of response but the

variance of acceleration.

The variance of the acceleration is given by

An approximation of the arbitrary load is given for the spectrum of responce ([1] ch. 3.3 p.5
eq. 3.23). This approximation is used later in this report (12.6-12.8) to determine the
variance of response and ultimately the variance of acceleration for the Juffertoren, Voorhof

before and after renovation for return period of 12.5 years and for return period of one

year.
_ See (a)) See (a)e)
Suu (a)) - k2 + 2 2 212 2
k {(1—a) /a)e) +(2lw ! w,) }
With:
Suu = response spectrum Q) = frequency SFF = force spectrum
k = spring stiffness @, = natural frequency £ = damping factor;

12.2.2. Matlab

Before the approximation formula can be used , the velocity spectra (SW ) of the windload

on the building must be determined, after which the force spectra (SF,:)can be

determined.

The velocity spectra ( SW) is taken at reference height of the building.
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For the Juffertoren:

For the Voorhof:

Viuis = Viguis = 22.62M /'S (6.3 Table 4)

Oy.toputs = Ovitasuts = 6.23m/s

Viw:sts = Vaosis = 21.45m/s (6.5 Table 5)

Oy.topsts = Oviuaasis = 2.52m/s

Viuis = Viours =19.79M/'S (9.6 Table 17)

O-V;Top;ULS = O-v;51.3;ULS =6.65m/s

Viw:sts = Vaosis = 21.45m/'s (9.8 Table 18)

O\y1op:sts — Ovitaasis = 2.44m /s

First the velocity spectra (SW) is determined in Matlab (Appendix 14 S_FF_we.m). The

characteristic length (L 21200m), windspeed at the hub height (Vm) and standard

deviation at top of building (Gv)are inputted in the formula for fluctuating wind velocities

for the Davenport spectrum.

with:

Fyo, 2

S (F) =22
2
£, :% X 7 Davenport spectrum
(1 + X )
o, standard deviation of the wind speed
X = % dimensionless frequency
Vio

-149- May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

The force spectra (SFF) is determined by multiplying the velocity spectra with the air

density (pair =1.25kg / m3), Area (A[mzj) of one floor of the building parallel to
wind flow direction, the summation of drag and suction coefficient (Ch =1.2[—]) and the

mean wind speed at height h (Vh) . The force spectra (SFF ) is determined for each floor of

the building of the building after which the force spectra is selected for the top floor.
See = (par *A*Ch*V, )" *S,, ([1] ch.6 eq. 6.50)

with:

For the Juffertoren: VTop;ULS = V144;ULS =39.6m / S (6.3 Table 4)

Vigpsts = Viagsis = 37-62M/'S (6.5 Table 5)

For the Voorhof: VTop;ULS = V5l.3;ULS = 3017m / S (96 Table 17)

Viop:sis = Verss = 40.83m ['S (9.8 Table 18)

Now the response spectra (Suu)can be determined with the approximation formula

Ser (a)) Ser (a)e)
2 T 2
K kz{(l—a)zla)ez) +(2§a)/a)e)2}

, after which the acceleration

Su (a)) =

spectra (Saa) out of formula (Saa (a)) = 6028uu (a))) can be determind.

Last the standard deviation is taken from the acceleration spectra (Saa) . No aerodynamic

admittance and coherence calculated for the single damped degree of freedom system.
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12.3. Multi damped degree of freedom system with harmonic
loading

The steady state response of a multi degree of freedom system with harmonic loading in the
frequency domain can be simply solved ([2] pp. 44-59) ([5] pp. 52-53). Modal analysis can
be applied to the multi degree of freedom system.

The equation of motion is given below:

Mi+Cu+Ku=F

With '\4 , (_: , K which are (n*n) matrices and F and U which are vectors with length

(n*1), n being the being the number of degres of freedom.

The forcing and response vector can be written as:

For the comfort requirement the absolute of the complex acceleration is required and can be

written as:

la(0)| = o |u(@) = o [H,

|F (o)
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12.3.1. Juffertoren

For the Juffertoren a (48*48) matrix is found. The transfer function of acceleration for the
48 node (top of building) is given below. The eigenfrequencies corresponding to the natural
bending frequencies found in time domain are given

Open 123,45 = 1.41; 8.82; 24.67; 48.24; 79.52 rad/s (p. 31) and the natural torsional

frequencies found in time domain are given

@y 12345 = 0.50; 1.50; 2.51; 3.50; 4.50 rad/s (p. 40).

1.2 T T T T T T T T T

0.6

-1
H_,glka™)

0.4 | f
'l

02 ||

o 1
0 10 20 30 40 50 60 70 80 90
w(rad/s)

Figure 12.8: The transfer function of acceleration of the Juffertoren building for the 48 node for return

period of one year

12.3.2. Voorhof before renovation

For the Voorhof before renovation a (19*19) matrix is found. The transfer function of
acceleration for the 19 node (top of building) is given below. The eigenfrequencies
corresponding to the natural frequencies found in time domain are given

Open 15 = 3.92; 24.52; 68.25 rad/s (p. 105) and the natural torsional frequencies found in

time domain are given w,, ,,; =4.02; 12.04; 19.98 rad/s (p. 105).

Anthony Richardson
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-4
1.4X10 T T T T T T T T T

-1
H_olkg™)

.." o g 1
0 10 20 30 40 50 60 70 80 90 100
w(rad/s)

Figure 12.9: The transfer function of acceleration of the Voorhof before renovation for the 19 node for
return period of one year

12.3.3. Voorhof after renovation

For the Voorhof after renovation a (19*19) matrix is found. The transfer function of
acceleration for the 19 node (top of building) is given below. The eigenfrequencies
corresponding to the natural frequencies found in time domain are given

=5.35; 33.42; 92.96 rad/s (p. 106) and the natural torsional frequencies found in

a)ben _1;2;3

time domain are given w,, ,,; = 4.84; 14.48; 24.03 rad/s (p. 106).

SRR
1 x10 T T T T T T T T T
0.8 | ]
(
& ‘l
' 0.6 | |
= 1
o ( 'i
;m 04r {\ | i
il
\ [\
o2f |
/| / N i~
ob— T —— 1 L i § ! = = !
0 10 20 30 40 50 60 70 80 90 100

w(rad/s)

Figure 12.10: The transfer function of acceleration of the Voorhof after renovation for the 19 node for
return period of one year
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12.4. Random wind loading for a multi damped degree of

freedom system (NDOF) with stochastic loading with full

coherence

12.4.1. Theory

The only difference between a multi damped degree of freedom system with harmonic
loading and a multi damped degree of freedom system with stochastic loading is that the
loading term is not harmonic but random (stochastic). To be able to determine the

response, we use discrete Fourier transform to turn the arbitrarily loaded masses in time
domain to force spectra in frequency domain, now the force spectra of load (SF,:) is
known. With the force spectra known, we go from force spectra to displacement spectra

(Suu ) and then to the acceleration spectra (Saa =a’S,, ) :

When determing the displacement spectra we use the formula S, (@)= | H (a))|2 Ser

to determine the displacement spectra.

12.4.2. Matlab

No separate code is given for the multi damped degree of freedom system with random
wind loading with full coherence. The matlab code in Appendix 13 can be modified, just

omit the aerodynamic admittance and coherence terms.

Anthony Richardson -154-



12. Frequency domain response analysis

]
TUDelft

12.5.
freedom system (NDOF) with stochastic loading with coherence

Random wind loading for a multi damped degree of

and admittance

12.5.1. Theory

The only difference between a multi damped degree of freedom system with stochastic
loading with full coherence (previous paragraph) and with coherence and admittance are
those terms. The procedure with admittance and coherence is explained in the Mathlab

section below.

12.5.2. Matlab

In Appendix 13, the Matlab code for the multi damped degree of freedom system is given
for the Juffertoren for return period once in 1 year. First the velocity spectra (va) is

determined with the Davenport Spectrum (6.3) in Matlab (Appendix 13

Spectrum_acceleration.m). The characteristic length (L), windspeed at the reference

height of the building (Vlo) and standard deviation at top of building (O'V) are inputted in

the formula for fluctuating wind velocities for the Davenport spectrum.

F, O'V2
S (F) =27
with:
Fo2_X D rt spect
»=3 CTE avenport spectrum

(1 + X )

o, standard deviation of the wind speed

11

X = 2L dimensionless frequency
Vio

f frequency
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The values for the velocity spectra can be found in the Matlab file.

One must remember that the velocity spectra for Davenport is independent of height. In
simple words all spectras on the nodes are the same.

In the program the mean wind velocity on the 96 half floors are made into the velocity on

each floor, 48 nodes. These velocities are needed to calculate the force spectrum (SF,: ) .

With coherence :

S :(Co o, *[(Sag *sz)) ([1] ch. 6 p.25)

Vivy

In the matlab code, the velocity spectra terms on the diagonal are written as aa or bb in

which aa is equal to bb, these are the auto spectra terms.

S_w(aa,bb,n)= (Cohm(aa, bb)*\/(S _w(aa,bb,n)*S _w(aa,bb, n)))

In the matlab code, the velocity spectra terms off the diagonal are written as aa or bb in

which aa is unequal to bb, these are the cross spectra terms.

S_w(aa,bb,n)= (Cohm(aa, bb)*\/(S _w(aa,aa,n)*S_w(bb,bb, n)))

With:

aa and bb from 1 to 48 degrees of freedom

In the coherence file (Appendix 13 coherence_2_run.m), the coherency is determined for

the different points.

Bz = \/(sz (Zl —Z4 )2 + Cj(yl -Y )2) ([1] ch. 6 p.26)
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With:

coh = exp(&]
VlO

7 londitudinal coherence
10 lateral coherence
height node 1
height node 2
lateral place node 1

lateral place node 2

frequency

mean wind speed at 10 meters

[-]

[-]

[m]

[m]

[m]

[m]
[Hz]

[Hz]

The force spectra (SFF) is determined for each height. For each height a different force

spectra (SFF )

With:

O >

=<l
=

D

Ser = (pAChvh )2 O'vzh x° T ([1] ch. 6 p.26 eq. 6.51.a)

air density
area of one story perpendicular to wind direction

suction and drag coefficient of wind

mean wind speed at height h

[ka/m3]
[m?]
[-]

[m/s]

-157-

May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

o) A standard deviation of the fluctuating wind speed at height h  [m/s]

FD Davenport spectrum (6.3)

f frequency [Hz]

2
YA aerodynamic admittance

With:

In the admittance file (Appendix 13 admittance_2_run.m), the admittance is determined for

the different points.

Bz = \/(CZZ (z-2 )2 +Cy (Y, - yz)z) ([1] ch. 6 p.26)

After that the displacement spectra (Suu ) is determind. The displacement spectra is built

up of a quasi-static part and a dynamic part and then added together. The formulas for both

are given below.

Quasi-static part:

Sy ()= ZZSH F (f)H,« (O)H:IFJ_ (0) (11]1ch. 6 eq.6.58)

u U . U U
Suu, =ZZZZ%_";{W Ser. ([11ch. 4 eq. 432) (with @=0)
p a k I k I
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T
kk = k" generalized spring constant U, [K ]gk

T
k| = 1™ generalized spring constant U, [K ]g
U = k" eigenvector
Uy ; = i" characteristic number of the k" eigenvector
Hk,p =  p'" characteristic number of the k™ eigenvector
U = I"eigenvector
u j = j"characteristic number of the | ™ eigenvector
y, q = Q" characteristic number of the | ™" eigenvector

Dynamic part:

u, .u U .U

Suu. = —IZep =28 g ([1]ch.4 eq. 4.32)

i ;Zq:zk:z k, —m .o’ +ic.wk —mae’ —iceo FoFa
with:
m = & i « [M

K = generalized mass U, U,
C, = k"generalized damping constant ng [C]gk
kk = k" generalized spring constant QkT [K ]Qk
M = 1" generalized mass Uy [M ]g,
C, = I™generalized damping constant QlT [C]g,
k| = 1™ generalized spring constant Q,T [K ]Q
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After which the acceleration spectra (Saa) is determind.

Then the standard deviation (0 a) is taken out of the acceleration spectra (Saa = a)ZSUU) .
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12.6. Juffertoren

The formula for the spectra of the acceleration of the top of the Juffertoren building will be
given below. In the computer simulation 48 modes were used.

Where H, . is the complex transfer function of the acceleration of the 48t node for a
harmonic force on node / and H*%F]_ is the complex conjugate of Hiop - For /=],

Ser (@) S the auto-spectra of the force and for i # j, s - (@) Is the cross-spectra of the
force.

12.6.1. Return period of 12.5 years
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Figure 12.11: Spectra of force of node 48 of the system for return period of 12.5 years
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Figure 12.12: Spectra of acceleration of node 48 of the system for return period of 12.5 years

From the spectra of the accelerations the variance of the acceleration can be determined

by:

And the standard deviation follows from:

Oa48 = \Oa48

The decisive standard deviation for the Juffertoren for return period of 12.5 years equals:

0,4 =0.061m I's*. The expected peak value can be calculated from:

*

a48;peak;expected = O-3;48 ZIn(Tsf;) ([1] €q. 338)

With TS =800s and fe = 0.22Hz the decisive expected peak value for the Juffertoren for

return period of 12.5 years equals: 8sg, peg = 0.196M /'S* . In the table below, the peak

values and standard deviations are given for a single damped degree of freedom and a 48

degree of freedom system for different ranges of the frequency.
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2 different types of Spectral analysis were run in the Frequency Domain:

S Dof Omega: 0to 25 Time=2s S Dof Omega: 0to 165 Time=2s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.026 Average 0.008 UPPERBOUND 0.053 Average 0.017
(t=800) step 0.01 (t=800) step 0.01
S Dof Omega: 0to 677 Time=7s 48 Dof Omega Oto 2 Time =222s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.127 Average 0.040 UPPERBOUND 0.133 Average 0.041
(t=800) step 0.01 (t=800) step 0.1
48 Dof Omega 0to 25 Time = 2506 s 48 Dof Omega 0to 165 Time =16379s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.140 Average 0.043 UPPERBOUND 0.196 Average 0.061
(t=800) step 0.1 (t=800) step 0.1
w_e= 1.4085 rad/s
f 0= 0.22 Hz
T= 800 s

*

a =u +o 2In(77f))

Table 31: Values of 2 different spectral analysis for the Juffertoren
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12.6.2. Return period of one year
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Figure 12.13: Spectra of force of node 48 of the system for return period of one year
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Figure 12.14: Spectra of acceleration of node 48 of the system for return period of one year

From the spectra of the accelerations the variance of the acceleration can be determined

by:
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And the standard deviation follows from:

a;48 =

a;48

The decisive standard deviation for the Juffertoren for return period of one year equals:

0,45 =0.024m/ s’ The expected peak value can be calculated from:

*

a

48; peak ;exp ected = 0-5;48 2|n

£,) (11] eq. 3.38)

With TS =800s and fe = 0.22Hz the decisive expected peak value for the Juffertoren for

return period of one year equals: g, pesc = 0.077m/ s In the table below, the peak

values and standard deviations are given for a single damped degree of freedom and a 48

degree of freedom system for different ranges of the frequency.

2 different types of Spectral analysis were run in the Frequency Domain:

S Dof Omega: 0to 25
a_star (a_ben_max)
UPPERBOUND 0.010 Average
(t=800)
S Dof Omega: 0to 677
a_star (a_ben_max)
UPPERBOUND 0.048 Average
(t=800)
48 Dof Omega 0to 25
a_star (a_ben_max)
UPPERBOUND 0.054 Average
(t=800)
w_e= 1.4085 rad/s
fo= 0.22 Hz
T= 800 s

*

a =u +o+2n(7F)

Time=2s

sigma_a_ben
0.003

step 0.01

Time=2s

sigma_a_ben
0.015

step 0.01

Time =2882s
sigma_a_ben
0.017

step 0.1

S Dof Omega: 0to 165 Time=2s
a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.020 Average 0.006
(t=800) step 0.01
48 Dof Omega Oto 2 Time =219s
a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.052 Average 0.016
(t=800) step 0.1
48 Dof Omega Oto 165 Time =1739%6 s
a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.077 Average 0.024
(t=800) step 0.1

Table 32: Values of 2 different spectral analysis for the Juffertoren
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12.7.

Voorhof before renovation

The formula for the spectra of the acceleration of the top of the Juffertoren building will be
given below. In the computer simulation 19 modes were used.

r aof; (a))H aof; (0))5,://_-} (C())
Where H, . is the complex transfer function of the acceleration of the 19% node for a

harmonic force on node / and H af,; is the complex conjugate of 4 _. For /=],

Ser (@) S the auto-spectra of the force and for i = j, S, (w) 18 the cross-spectra of the
force.

12.7.1. Return period of 12.5 years
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£
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Figure 12.15: Spectra of force of node 19 of the system for return period of 12.5 years before
renovation
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w(rad/s)

70

Figure 12.16: Spectra of acceleration of node 19 of the system for return period of 12.5 years

before renovation

From the spectra of the accelerations the variance of the acceleration can be determined
by:

Ol = TS (0)do
0

aa

And the standard deviation follows from:

The decisive standard deviation for the Voorhof before renovation for return period of 12.5

years equals: 0,.,, = 0.053m/ s* . The expected peak value can be calculated from:

*

a19;peak;expected =019 2|n(7-5fe) ([1] eq. 3.38)

With TS =800s and fe = 0.625Hz the decisive expected peak value for the Voorhof

before renovation for return period of 12.5 years equals: a;g;peak =0.185m/s”. In the

table below, the peak values and standard deviations are given for a single damped degree

of freedom and a 19 degree of freedom system for a range of the frequency.
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2 different types of Spectral analysis were run in the Frequency Domain:

S Dof Omega: 0to 69
a_star (a_ben_max)

UPPERBOUND 0.051 Average
(t=800)
S Dof Omega: 0to 1372

a_star (a_ben_max)

UPPERBOUND 0.192 Average
(t=800)

19 Dof Omega 0to 431

a_star (a_ben_max)

UPPERBOUND 0.185 Average
(t=800)
e= 3.922 rad/s
f 0= 0.62 Hz
T= 800 s

*

a =pu +o 2In(T/Z)

Time=2s

sigma_a_ben
0.015

step 0.01

Time=2s

sigma_a_ben
0.054

step 0.01

Time =1011s
sigma_a_ben
0.053

step 0.1

S Dof

UPPERBOU
(t=800)

19 Dof

UPPERBOUND

(t=800)

Omega: 0to 431
a_star (a_ben_max)
ND 0.097 Average

Omega 0to 69
a_star (a_ben_max)
0.092 Average

Table 33: Values of 2 different spectral analysis for the Voorhof before renovation

Time=2s

sigma_a_ben
0.028

step 0.01

Time =161s
sigma_a_ben
0.026

step 0.1

Anthony Richardson
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12.7.2.

Return period of one year
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Figure 12.17: Spectra of force of node 19 of the system for return period of one year before renovation
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Figure 12.18: Spectra of acceleration of node 19 of the system for return period of one year

before renovation

From the spectra of the accelerations the variance of the acceleration can be determined

by:

©

2
O—a;19 - J.
0

S (w)da)

aa
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And the standard deviation follows from:

The decisive standard deviation for the Voorhof before renovation for return period of one

year equals r: 0, = 0.0293m/ s°. The expected peak value can be calculated from:

*

al9 ; peak ;exp ected

= 0-5;19 2|n(7-5fe) ([1] €q. 338)

with T =800s and f, = 0.625HZ the decisive expected peak value for the Voorhof

before renovation for return period of one year equals: &g, pes = 0.103m/ s*. In the table

below, the peak values and standard deviations are given for a single damped degree of

freedom and a 19 degree of freedom system for a range of the frequency.

2 different types of Spectral analysis were run in the Frequency Domain:

S Dof Omega: 0to 69 Time=2s S Dof Omega: 0to 431
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max)
UPPERBOUND 0.028 Average 0.008 UPPERBOUND 0.053 Average
(t=800) step 0.01 (t=800)
S Dof Omega: 0to 1371 Time=2s 19 Dof Omega 0to 69
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max)
UPPERBOUND 0.105 Average 0.030 UPPERBOUND 0.053 Average
(t=800) step 0.01 (t=800)
19 Dof Omega 0to 431 Time = 1003 s
a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.103 Average 0.029
(t=800) step 0.1
e= 3.922 rad/s
f o= 0.62 Hz
T= 800 s

a*=y5+aabm(m)

Table 34: Values of 2 different spectral analysis for the Voorhot before renovation

Time=2s

sigma_a_ben
0.015

step 0.01

Time =160 s
sigma_a_ben
0.015

step 0.1
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12.8. Voorhof after renovation

The formula for the spectra of the acceleration of the top of the Juffertoren building will be
given below. In the computer simulation 19 modes were used.

- aof; (C()) H*‘319Fj (0)) SF/F/ (C())
i1 4

Where H, . is the complex transfer function of the acceleration of the 19% node for a
harmonic force on node / and H af, is the complex conjugate of 4 _ . For i=7,

Ser (@) S the auto-spectra of the force and for i # j, () 5 the cross-spectra of the
force.

12.8.1. Return period of 12.5 years
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Figure 12.19: Spectra of force of node 19 of the system for return period of 12.5 years after
renovation
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Figure 12.20: Spectra of acceleration of node 19 of the system for return period of 12.5 years
after renovation

From the spectra of the accelerations the variance of the acceleration can be determined
by:

0';19 = TS (w)da)
0

aa

And the standard deviation follows from:

_ [
Oa19 = /%219

The decisive standard deviation for the Voorhof after renovation for return period of 12.5

years equals: 0, = 0.031m/ s . The expected peak value can be calculated from:

*

al9;peak;expected = 65;48 2|n(rsfe) ([1] eq. 338)

With TS =800s and fe = 0.85Hz the decisive expected peak value for the Voorhof after

renovation for return period of 12.5 years equals: 8. peax = 0.111m/ s*. In the table

below, the peak values and standard deviations are given for a single damped degree of

freedom and a 19 degree of freedom system for a range of the frequency.

100
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2 different types of Spectral analysis were run in the Frequency Domain:

S Dof Omega: 0to 93 Time=2s S Dof Omega: 0to 587 Time=2s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.033 Average 0.009 UPPERBOUND 0.061 Average 0.017
(t=800) step 0.01 (t=800) step 0.01
S Dof Omega: 0to 1865 Time=2s 19 Dof Omega 0to 93 Time =237s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.118 Average 0.033 UPPERBOUND 0.049 Average 0.014
(t=800) step 0.01 (t=800) step 0.1
19 Dof Omega 0to 587 Time =1419s
a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.111 Average 0.031
(t=800) step 0.1
w_es= 5.3456 rad/s
f o= 0.85 Hz
T= 800 s

*

a =pu +o 2|n(7’f;)

Table 35: Values of 2 different spectral analysis for the Voorhof before renovation
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12.8.2. Return period of one 1 year
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Figure 12.21: Spectra of force of node 19 of the system for return period of one year after

renovation
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Figure 12.22: Spectra of acceleration of node 19 of the system for return period of one year
after renovation

From the spectra of the accelerations the variance of the acceleration can be determined

by:

aa

Oryg = TS (0)do
0
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And the standard deviation follows from:

The decisive standard deviation for the Voorhof after renovation for return period of one

year equals: 0., =0.017m/ s*. The expected peak value can be calculated from:

*

al9;peak;expected = 0419 2|n(7-sfe) ([1] eq. 3.38)

With TS =800s and fe = 0.85Hz the decisive expected peak value for the Voorhof after

renovation for return period of one year equals: &;g. poq = 0.061m /s, In the table below,

the peak values and standard deviations are given for a single damped degree of freedom

and a 19 degree of freedom system for a range of the frequency.

2 different types of Spectral analysis were run in the Frequency Domain:

S Dof Omega: 0to 93 Time=2s S Dof Omega: 0to 587  Time=2s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.018 Average 0.005 UPPERBOUND 0.033 Average 0.009
(t=800) step 0.01 (t=800) step 0.01
S Dof Omega: 0to 1865 Time=2s 19 Dof Omega 0to 93 Time =253s
a_star (a_ben_max) sigma_a_ben a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.065 Average 0.018 UPPERBOUND 0.028 Average 0.008
(t=800) step 0.01 (t=800) step 0.1
19 Dof Omega 0to 587 Time = 1468 s
a_star (a_ben_max) sigma_a_ben
UPPERBOUND 0.061 Average 0.017
(t=800) step 0.1
e= 5.3456 rad/s
f o= 0.85 Hz
T= 800 s

*

a =u +o+2n(7F)

Table 36: Values of 2 different spectral analysis for the Voorhof after renovation
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13. Comparisson Time Domain Frequency Domain

In this chapter the bending accelerations of the Juffertoren computed in the time domain
(p.81) are compared to the bending accelerations computed in the frequency domain
(pp.161-165). The bending accelerations of the Voorhof before and after renovation
computed in the time domain are also given (p.125 and p.126) and compared to the
bending accelerations computed in the frequency domain (pp.166-170 and pp.171-175).
The conclusions are also given for the comparision of each situation and all situations. The
comparison of time domain and frequency domain was requested by the graduation
committee. For torsion and bending and torsion no comparisson will be given, because this

was not done.

13.1. Juffertoren

13.1.1. Return period of 12.5 years

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

time domain is a_, = 0.164m /s (Appendix 17).

peak

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

frequency domain with random wind loading with a single damped degree of freedom

system is a;eak =0.127m/ s* (Range omega is 0-677 rad/s) (12.6.1).

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

frequency domain with random wind loading with a multi damped degree of freedom

system is a;eak =0.196m/s” (Range omega is 0-165 rad/s) (12.6.1).

The peak bending acceleration of the spectral analysis does not agree with the peak

bending acceleration of the simulations in time-domain.
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13.1.2. Return period of one year

The peak bending acceleration value of the Juffertoren for return period of one year in time

domainis a__ =0.147m/ s,

peak

The peak bending acceleration value of the Juffertoren for return period of one year in

frequency domain with random wind loading with a single damped degree of freedom

system is 5 = 0.048m/ s* (Range omega is 0-677 rad/s) (12.6.2).
The peak bending acceleration value of the Juffertoren for return period of one year in

frequency domain with random wind loading with a multi damped degree of freedom

system is a;eak =0.077m/ s* (Range omega is 0-165 rad/s) (12.6.2).

The peak bending acceleration of the spectral analysis does not agree with the peak

bending acceleration of the simulations in time-domain.

13.1.3. Conclusion comparison for Juffertoren

For return period of 12.5 years and for return period of one year the comparison time
domain frequency domain does not fit, the reason for this was not found.

Anthony Richardson -178-



13. Comparisson Time Domain Frequency Domain TU Delft

13.2. Voorhof before renovation

13.2.1. Return period of 12.5 years

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

time domain is @ =0.211m/ s* (Appendix 18).

peak

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

frequency domain with random wind loading with a single damped degree of freedom

system is a;eak =0.192m/s* (Range omega is 0-1372 rad/s) (12.7.1)

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in
frequency domain with random wind loading with a multi damped degree of freedom

system is a;eak =0.185m/s® (Range omega is 0-431 rad/s) (12.7.1).

The peak bending acceleration of the spectral analysis does fit with the peak bending

acceleration of the simulations in time-domain.

13.2.2. Return period of one year

The peak bending acceleration value of the Juffertoren for return period of one year in time

domain is a_, =0.152m /s’ (10.1.1)

The peak bending acceleration value of the Juffertoren for return period of one year in

frequency domain with random wind loading with a single damped degree of freedom

system is a;eak =0.105m/ s* (Range omega is 0-1372 rad/s) (12.7.2).

The peak bending acceleration value of the Juffertoren for return period of one year in

frequency domain with random wind loading with a multi damped degree of freedom

system is a;eak =0.103m/ s* (Range omega is 0-431 rad/s) (12.7.2).

The peak bending acceleration of the spectral analysis does not fit with the peak bending

acceleration of the simulations in time-domain.

-179- May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

13.2.3. Conclusion comparison for Voorhof before renovation

For return period of 12.5 years the comparison time domain frequency domain does fit but

for return period of one year it does not fit, the reason for this was not found.
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13.3. Voorhof after renovation

13.3.1. Return period of 12.5 years

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

time domain is &, =0.109m/ s* (Appendix 19).

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

frequency domain with random wind loading with a single damped degree of freedom

system is a;eak =0.118m/s® (Range omega is 0-1865 rad/s) (12.8.1).

The peak bending acceleration value of the Juffertoren for return period of 12.5 years in

frequency domain with random wind loading with a multi damped degree of freedom

system is a;eak =0.111m/s° (Range omega is 0-587 rad/s) (12.8.1).

The peak bending acceleration of the spectral analysis fits with the peak bending

acceleration of the simulations in time-domain.

13.3.2. Return period of one 1 year

The peak bending acceleration value of the Juffertoren for return period of one year in time

domainis a_ =0.065m /s’ (10.2.1).

peak

The peak bending acceleration value of the Juffertoren for return period of one year in

frequency domain with random wind loading with a single damped degree of freedom

system is a;eak =0.065m / s° (Range omega is 0-1865 rad/s) (12.8.2).

The peak bending acceleration value of the Juffertoren for return period of one year in

frequency domain with random wind loading with a multi damped degree of freedom

system is a;eak =0.061m/s” (Range omega is 0-587 rad/s) (12.8.2).

The peak bending acceleration of the spectral analysis fits with the peak bending

acceleration of the simulations in time-domain.
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13.3.3. Conclusion comparison for Voorhof after renovation

For return period of 12.5 years and for return period of one year the comparison time

domain frequency domain fits.
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13.4. Conclusion of comparisons

Accelerations
Building
a peak a peak
m/s? m/s?
Time domain simulation Frequency domain
Return Period = R

SDOF approximation NDOF
Juffertoren (R = 12.5 years) 0.164 0.127 0.196
Juffertoren (R =1 year) 0.147 0.048 0.077
Voorhof before renovation (R = 12.5 years) 0.211 0.192 0.185
Voorhof before renovation (R = 1 year) 0.152 0.105 0.103
Voorhof after renovation (R = 12.5 years) 0.109 0.118 0.111
Voorhof after renovation (R = 1 year) 0.065 0.065 0.061

Table 37: Values comparisson time domain frequency domain

For the Juffertoren for return period of 12.5 years and for return period of one year the

comparison time domain frequency domain does not fit.

For the Voorhof before renovation for return period of 12.5 years the comparison time

domain frequency domain partially fits.

For the the Voorhof before renovation for return period of one year, the comparison time

domain frequency domain does not fit.

For the Voorhof after renovation for return period of 12.5 years and for return period of one

year the comparison time domain frequency domain fits.

The reason why the models do not fit has not been found.
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14. Conclusions and Recomendations

In this chapter the conclusions and recommendations are given for the research done.

14.1. Conclusions

= It is possible to make a computational model in which the bending and torsional
acceleration can be determined accurately, without the use of the Finite Element
Method and wind tunnels models which saves time and costs in early design fase.
This was done for the Juffertoren (pp.7-82) and it has been shown that the
acceleration due to torsional motion can be very substantial 0.280m / s* (p.84). A
model was also made for the Voorhof building before and after renovation (pp.91-
124), and it is also shown that the acceleration due to torsional motion can be very

substantial respectively 0.297m /s’ and 0.170m / s* (p.135) (p.138).

=  The Juffertoren, as it was planned to be built, would not have satisfied the comfort
criterion of the NEN 6702 (Dutch Norm) (pp.77-81). This does not agree with

Breen'’s conclusion [5].

= The student building Voorhof does not comply with the comfort criterion when
looking at bending, torsional or bending and torsional accelerations added together
in the along wind direction, even after structurally strengthening. (p.138)

= Rules of thumb are not applicable in all situations. In the case of light buildings
these formulas can become invalid or result in large over estimations. (p.138) The
rules of thumb that are not applicable in all situations are Woudenberg (empirical),

Sheuller, Dicke/Nijsse.
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14.2. Recommendations.

= A study must be conducted to see if windcomfort norm for pedestrians (NEN 8100)
is satisfied. This is if, a person can walk outside a building, without been blown

away. I did not do this.

=  Seeing that the Dutch NEN norm does not look at the across wind acceleration,
which is normally much larger than the along wind acceleration. But is this really
true ? When we add the acceleration due to torsional motion on the along wind
acceleration, then this along wind acceleration will once again be the dominant
one. We have to check if the alongwind acceleration due to bending and torsion is
dominant compared to the alongwind acceleration in concrete structures and

lightweight steel structures.

= [Itis recommended to develop new rules of thumb.

= In this study the Saint-Venant torsion theory has been used. It is recommended to
repeat the study uving the Vlasov torsion theory because restrained warping at the
foundation cn have a significant effect on the torsion stiffness and on the torsion
natural frequencies. In addition, the rotation stiffness of the foundation can be

included in future studies.
=  One limitation of this model is that the wind field is generated as if there are no

other buildings in the surrounding area. This is not true in reality. Buildings in the
immediate area can make the wind velocity on the building increase substantially.

= Make a model in which coupling of the modes is incorporated.

* Modeling of irregular shapes and determining how the torsional acceleration will be
affected by this.

*= Moving the shear center and looking at the effect on the total acceleration of the
building.

= Determining the natural frequency with a FEM model, from which the maximum
acceleration can be calculated and see how this corresponds to this model.
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= When reviewing literature, the National Building Code of Canada (NBCC), the
acrosswind acceleration is larger than the alongwind acceleration if

(bd)“ //7 <0.33 for a rectangular shape building. (In which the b is the wind in the

along wind direction.) This acrosswind acceleration is dominant for the dimensions
of the Juffertoren building. ([17] p.61]). (Richting afhankelijke respons ([13] p.56]
) A model would have to be made in which the vortex-shedding is taken into

account to determine the across wind acceleration.

= A spectral analysis for torsion should be made. Does the spectral analysis for
bending and torsion added together, equal the acellerations for bending and

torsion added together in the time domain ?
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Appendix 1  Flow diagrams for Matlab code

In this appendix we give the flow diagrams for the Matlab programs in Time Domain and Frequency
Domain.

Time Domain

2 hathlab
A_File_to
_File_to_run_program 1 Mathiab
Input wal
B_Varizbles_wallplaces MUt vEles
= Coherz
-
. . Winda -
C_Crosssection_calculation T
T autopow
D_Stiffness_matrix uc [mfs]
E_Space_state_formulation

1 Uiimport UC1.mat W [m,s]
F_Forces_moments_48_DOF F[N]
[F.mat; M.mat) M [N

Figure 14.1: A flow diagram for Matlab in Time Domain
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3 Simulink

q‘lld.l.:ll.ﬂ.l

G_Simulink_run_file

q‘lld.l.;ll.ﬂ.l for

Tout Yout

Figure 14.2: Flow diagram for Simulink in Time Domain

4 Mathlab

H_Max_acceleration_wvalues_and_graphs_output

QIIM;II.HJ tor

Figure 14.3: A flow diagram for Matlab in Time Domain
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Frequency Domain

NDOF

1 Matlak

Spectrum_acceleration

cohorence

admittance

Figure 14.4: Flow diagram for Matlab in Frequency Domain (NDOF)

SDOF

2

Matlak

Arbitrary Load Spectrum

5_FF_we

3| From 45 DOF to_ 1 Dof

Figure 14.5: Flow diagram for Matlab in Frequency Domain (SDOF)
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Appendix 2  Matlab code Juffertoren (time domain

analysis)

Below the Matlab code is given for the Juffertoren for return period of one year, the only difference
with the Matlab code for return period of 12.5 years is that the wind parameters for Harris and Deaves

(6.2) are taken and inputted in Matlab file: A_File_to_run_programs.m and Y, =22.62m/s and

o, =6.23m I's (6.3) are inputted in Matlab file: Inputvalues.m

A_File_to_run_programs.m
% Program to run the different modules

% Author: H.A.O.Richardson (Anthony)
% Thesis: Torsion motions of high-rise buildings due to wind loading.

% Clear memory

clear
clear all
clc

close all

disp ('-Reading problem data')
%inputting variables of the buidling construction

B Variabels Wallplaces;

oe

Determining of the mass, bendingstiffness polar moments and
torsional stiffness of the cross section.

o

load matrices
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[Area,Awalltot,Dist,DistX,DistY, xref, yref,Jtot,G, TorSTif, Ix, Iy, Ixtot, Iytot,
EI,Ipwall, Ipfloor,Ipl,Ip,Ip48,massfloor,massl, mass48,mass,Q gebouw,rhob, rho
l11]=CCrossectioncalcualtion(L,B,H, rhoconcrete,h,1,hwall,g,nbfloors,hfl, Pvb,
gfacade,E,vu,v,x11l,x12, tend, timestep,nwallsegm, P) ;

save matrices Area Awalltot Dist DistX DistY xref yref Jtot G TorSTif Ix Iy
Ixtot Iytot EI Ipwall Ipfloor Ip Ip48 massfloor massl mass48 mass Q gebouw
rhob rholl -append

$inputting variables of the buidling construction

%buidling construction

o

% Determining maximum wind profile

o

u star=2.18; Friction velocity

kappa=0.4; % Terrain Roughness

%d=3.5; % average height of buildings (m)

d=0; % average height of buildings (m) ( Ivar Woudenberqg)
sz_0=2; % Terrain Roughness according NEN 6702

z 0=0.2; % Terrain Roughness according to Ivar Woudenberg.
step z=1.5; %

% DETERMING V_10
step z=1.0;

[v_mean]=velocitymeanlogmodified(L,u star, kappa,d,z 0,step z);

Vhub=v_mean (1, 2);

o)

% meanwind velocity according to Harris and Deaves

step z=1.5;
[v_mean]=velocitymeanlogmodified(L,u star, kappa,d,z 0,step z);
% meanwind velocity according to NEN 6702
%[v_mean]=velocitymeanlog (L,u star,kappa,d,z 0,step z);

vh=max (v_mean) ;

save matrices vh Vhub v_mean -append
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disp('-Input Simulink data')

[}

% Printing Without graphs

[k,K ben,M ben,omega eig ben,a ben,Cd ben,phsi ben, ktor,K tor,M tor,omega e
ig tor,a tor,Cd tor,Cd,Cr]=D Stiffness matrix(v,EI,L,1,Cd,massfloor,massl,m
ass48,G,Jtot, Ip, Ip48,xil,xi2);

save matrices K ben M ben omega eig ben Cd ben a ben v k Cr -append;
save matrices K tor M tor omega eig tor Cd tor a tor ktor -append;

£=186300;
1 crossc=B;
% Run Without graphs

[A ben,B ben,C ben,D ben, fe,fe tor,A tor,B tor,C tor,D tor]=E Space state f
ormulation(f,v,K ben,M ben,Cd ben,omega eig ben,EI,L,1 crossc,K tor,M tor,C
d tor,omega eig tor,1,G,Jtot);

save matrices A ben B ben C ben D ben v -append;

save matrices fe fe tor A tor B tor C tor D tor -append;

o\°

% load matrices

uiimport UCl.mat %loading the fluctuating velocities

Inputvalues; S%undo

[}

% for running windo unindent text below
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% tic

% [t,UC]=windO (yr, zr,U,sigma v,N,deltat, fmax);

% toc

% save ('UC'")

% save ('UCl','ucCc") % orignal modify
%$save matrices; First time when run UC and UCl not present
in map

%save matrices UCl -append

Are=(yr (2)-yr(l))*(zr(2)-zr(l));% area of one node which is loaded by wind

[F,M, t, FvoorWoudenberg, F woud]=F Forces moments 48 DOF (v_mean,N,Ch,Are, rho,
B,deltat,L);

save ('F','F','t") %
save ('M','M','t") %

aving Force of each time step

S
Saving moment of each time step

save matrices FvoorWoudenberg F woud -append

disp('-Running Simulink ")
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B Variabels Wallplaces.m

% Inputting varibles of the construction

% Author: H.A.O.Richardson (Anthony)
% Thesis: Torsion motions of high-rise buildings due to wind loading.

o°

The outer dimensions of the total building

1L.=144; % [m] length of the building

B=26.34; % [m] width of the building

H=15.44; % [m] height of the building

rhoconcrete= 2400; % [kg/m3]specific density concrete

rho=1.29; % [kg/m3]specific density air

Ch=1.2; % [-] Thrust and Suction shape factor

h=3.00; % [m] height of story of the building

1=h; % [m] lenght of one element

hfl=0.25; % [m] thickness of floor of the building

hwall=h-hfl; % [m] height of the walls of the building

nbfloors=L/h; % [-] amount of floors of the building

Pvb=70; % [kg/m2] weight of load on the floor (0,7kN/m2)

gfacade=120; % [kg/m2] weight of facade elements per m2
(1,2kN/m2)

% Limitation to the benchmark Skyscraper page 111)

E=3.0e10; % [N/m2] Youngsmodulus of the concrete C35/B65

vu=0.15; % [-] Poisson ratio

g=9.81; % [m/s2] Gravitational acceleration

v= 48; % number of elements

dof= 2; % degrees of freedom per node

Q

% units (meters and kN)

x11=0.01; % damping ratio of the first eigenmode
xi2=0.01; damping ratio of the second eigenmode
deltat=0.1; % delta t

oe
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o\°

is
% divided into.

nwallsegm=16;

% Declaring matrix for the wall segments.

P=zeros (nwallsegm, 4);

e

e

e

bottom corner.

% Length x

5 Length y
midpoint to

Startpoint O

Distance x midpoint to

Startpoint O

P(1,3)=15.440/2;
P(2,3)=6.920/2;

P(3,3)=6.620+0.3+1.1+1.0/2;

nwallseg is the amount wall segments that the walls of the cross section

The cross-section is divided into 16 wall segments for calculation.

The origin of the cross sectiion of the building is taken in the left

Distance y

P(4,3)=6.620+0.3+1.1+1.0+0.3/2;

P(5,3)=15.44-6.120/2;
P(6,3)=15.44-3.02-0.3-3.1/2;
P(7,3)=15.44-3.02-0.3-3.1/2;
P(8,3)=6.620+0.3/2;
P(9,3)=15.44-3.02-0.3/2;

P(10,3)=15.44-3.02-0.3-3.1/2;

341.02+0.3+2.3+0.2/2;

P(11,3)=15.44-3.02-0.3-3.1/2;

P(12,3)=15.44-6.120/2;

P(13,3)=6.620+0.3+1.1+1.0+0.3/2;

P(14,3)=6.920/2;

P(15,3)=6.620+0.3+1.1+1.0/2;

P(1,1)=15.440; P(1,2)=0.500;
P(1,4)=26.340-0.5/2;

P(2,1)=6.920; P(2,2)=0.600;
P(2,4)=0.5+4.7+0.6+14.74+40.6/2;
P(3,1)=1.000; P(3,2)=0.300;
P(3,4)=0.5+4.74+0.6+14.74+0.3/2;
P(4,1)=0.300; P(4,2)=3.720;
P(4,4)=0.5+4.74+0.6+14.74+0.3-2.72/2;
P(5,1)=6.120; P(5,2)=0.300;
P(5,4)=0.5+4.74+0.6+14.74-2.1-0.3/2;
P(6,1)=3.100; P(6,2)=0.300;
P(6,4)=0.5+4.74+0.6+14.74-2.1-0.3-1.02-0.3/2;
P(7,1)=3.100; P(7,2)=0.200;
P(7,4)=0.5+4.74+40.6+14.74-2.1-0.3-1.02-0.3-2.3-0.2/2;
P(8,1)=0.300; P(8,2)=14.740;
P(8,4)=0.5+4.74+0.6+14.74/2;
P(9,1)=0.300; P(9,2)=7.900;
P(9,4)=0.5+4.7+0.6+14.74/2;
P(10,1)=3.100; P(10,2)=0.200;
P(10,4)=0.5+4.74+0.06+2.1+0.
P(11,1)=3.100; P(11,2)=0.300;
P(11,4)=0.5+4.7+0.6+2.1+0.3+1.02+0.3/2;
P(12,1)=6.120; P(12,2)=0.300;
P(12,4)=0.5+4.7+0.64+2.1+0.3/2;
P(13,1)=0.300; P(13,2)=3.720;
P(13,4)=0.5+5.0+2.72/2;
P(14,1)=6.920; P(14,2)=0.600;
P(14,4)=0.5+4.7+0.6/2;
P(15,1)=1.000; P(15,2)=0.300;
P(15,4)=0.5+5.0+0.3/2;
P(16,1)=15.440; P(16,2)=0.500;

P(16,4)=0.5/2;

%$save matrices

P(16,3)=15.440/2;

Anthony Richardson

-206-



&
Appendix 2 TUDelft

save matrices L B H rhoconcrete rho Ch h 1 hwall g nbfloors hfl Pvb gfacade
E vu v xil xi12 tend timestep deltat nwallsegm P -append
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CCrossectioncalcualtion.m

function[Area,Awalltot,Dist,DistX,DistY, xref, yref,Jtot,G, TorSTif,Ix,Iy,Ixto
t,Iytot,EI, Ipwall, Ipfloor,Ipl,Ip,Ip48,massfloor,massl, mass48,mass,Q gebouw,
rhob, rholl]=CCrossectioncalcualtion(L,B,H, rhoconcrete,h,1l,hwall,g,nbfloors,
hfl,Pvb,gfacade,E,vu,v,xil,xi2, tend, timestep,nwallsegm, P)

Syntax: [Area,Awalltot,Dist,DistX,DistY,xref,yref,Jtot,G, TorSTif,Ix, Iy, Ixtot
, Iyto
% t,EI,Ipwall,Ipfloor,Ipl,Ip,Ip48,massfloor,massl,mass48,mass,Q gebouw,rhob

C Crossection calcualtion(L,B,H, rhoconcrete,h,1l,hwall,g,nbfloors,hfl, Pvb,
facade,E,vu,v,x11,x1i2, tend, timestep, nwallsegm, P)

Calculating the variables of the cross-section

Author: H.A.O.Richardson (Anthony)
Thesis: Torsion motions of high-rise buildings due to wind loading.

Ad° o o o° o° o° o°  Q — o°

o°

load matrices
Area of the wall or columbs

o\

for j=l:nwallsegm
Area (3)=P(J,1)*P(j,2);
end

Awalltot = sum(Area);

)

% Perpendicular distance between midpoint of the walls and Point O.

for j=l:nwallsegm
Dist(jll)zP(jl3); DiSt(jIZ)zP(jl4);
end

o)

% Perpendicular distance between midpoint of the walls and the centre of
gravity.

xref= (15.440/2); % xref= (H/2);
yref= (26.34/2); % yref= (B/2);

for j=l:nwallsegm
DistX (j)=(P(3j,3)-xref);

DistY (J)=(P(3,4)-yref);
end

[}

% Distance between the reference line and the neutral axis.
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Zxa=dot (Area, DistY
Zya=dot (Area,DistX

Area));
Area));

um
um

) / (sum (
) / (sum (

[}

% For sipliciy we first assume Distance between the reference line and the
neutral axis.

Zxa=0;
Zya=0;

% Torsion constant of each wall.

for j=l:nwallsegm
if(P(3,1)>P(3,2))
J(3)=(P(3,1)*(P(3,2))"3)/3;
else
J(3)=(P(3,2)*(P(3,1))"3)/3;
end

end

% Torsion constant of all walls.
Jtot=sum(J) ;
% Distance from middle of walls to centre of gravity.
for j=l:nwallsegm
r(j)=((DistX(j)-Zxa) "2+ (DistY (j)-Zya)"2)".5;
end
% Shearmodulus of the concrete. ( Ridigidy modulus)
G=E/ (2* (1+vu) ) ;
% The torsional stiffness of one floor of the structure.
TorSTif=G*Jtot;
% Second moment of inertia and steiners rule
for j=l:nwallsegm
Ix(3)=(P(3,1)*(P(3,2))"3)/12+((DistY(]j)"2) *Area(]));
Iy(3)=(P(3,2)*(P(J,1))"3)/12+((DistX(]j)"2) *Area(]));

end

Ixtot=sum(Ix);
Iytot=sum(Ily);

o)

% Bending stiffness in X-direction

EI=E*Iytot;
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% Polar inertia of the walls Ix and Iy of a floor
Ipwall=Ixtot+Iytot;
% Polar inertia of the floor Ix and Iy

Ipfloor=((1/12) *H*B"3)+((1/12) *B*H"3) ;

% Polar inertia of the bottom floor of the building

Ipl=Ipwall* (3/2)*h*rhoconcrete+Ipfloor* (hfl*rhoconcrete+Pvb) ;

% Polar inertia of the floor segments node 2 to node 47

Ip=Ipwall*h*rhoconcrete+Ipfloor* (hfl*rhoconcrete+Pvb);

% Polar inertia of the top floor of the building

Ip48=Ipwall* (h/2) *rhoconcrete+Ipfloor* (hfl*rhoconcrete+PvDb) ;

% Mass of bottom floor of the building node 1 extra length wall
Loading of floor gekozen( 70 kg/m2 ) gfacade= ( 120 kg/m2 )

o

massl=(Awalltot+ (h/2))*hwall*rhoconcrete+H*B*hfl*rhoconcrete+ (H*B-
Awalltot) *Pvb+gfacade*2*B*H*h;

o

The mass of one storey existing of walls, floor and loading on the floor
node 2- 47
Loading of floor gekozen( 70 kg/m2 ) gfacade= ( 120 kg/m2 )

o

o

massfloor=Awalltot*hwall*rhoconcrete+H*B*hfl*rhoconcrete+ (H*B-
Awalltot) *Pvb+gfacade*2*B*H*h;

% Mass of top floor of the building

% No VB on roof
mass48=sum(Area) * (h/2) *rhoconcrete+ (H*B-
Awalltot) *hfl*rhoconcrete+gfacade*2*B*H* (h/2) ;
% Total mass of the buidling
% mass building of 48 floors walls + top floor

mass=massl+ (v-2) *massfloor+mass4s8;
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Q

% Total weigth of the building
Q gebouw=mass*g;

% Spefic density of building
rhob=mass/ (B*H*L) ;

% mass per meter building height

rholl=mass/ (L) ;

% Gewicht building

[kg/m3]

[kg/ml]
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D Stiffness matrix.m

function[k,K ben,M ben,omega eig ben,a ben,Cd ben,phsi ben, ktor,K tor,M tor
,omega eig tor,a tor,Cd tor,Cd,Cr]=D Stiffness matrix(v,EI,L,1,Cd,massfloor
,massl,mass48,G,Jtot, Ip,Ipd8,xil, xi2)

oo

oo

Determining stiffness and torsion matrix

o°

$INPUT

% v number of elements [-]

% EI: bending stiffness [Nm2 ]
% 1: lenght of element [m]

% massfloor: mass of a floor 1-47 floor [m]

% massl: mass of bottom floor [m]

% mass48: mass of top floor [m]

% G: Shear modulus [N/mm2]
% Jtot: Torsion constant [mm4 ]
% Ip: Second moment of inertia 1-47 floor [mm4]
% Ip48: Second moment of inertia 48 floor [mm4 ]
% xil: damping ratio of first eigenmode [-]

% xi2: damping ratio of second eigenmode [-]
$OUTPUT

% k: Bending stiffness field elements

% K ben: Bending stiffness matrix

% M ben: Mass stiffness matrix

% omega eig ben: Eigen frequency bending matrix MDF

% a_ben: Damping martix first and second term

% Cd ben: Damping matrix bending MDF

% phsi ben: Damping ratios matrix bending

% ktor: Torsional stiffness field elements

% K tor: Torsion stiffness matrix

% M tor Mass torsion matrix

% omega eig tor: Eigen frequency torsion matrix MDF

% a_tor: Damping martix first and second term

% cd tor: Torsion damping matrix MDF

% Cd: Damping matrix contoles system bending MDF
% omega eig: Eigen frequency contolled bending matrix MDF

o°

oe

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

oe

% Bending Field elements

k=EI/1"3*[1 -2 1;
-2 4 -2;
1 -2 1];% bending element stifnessmatrix
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K ben=zeros(v+4,v+4); % Total systemmatrix bending
for o=0:1:(v-1)%v-1
for n=1:1:3
for m=1:1:3
K ben (o+n, o+m)=K ben (o+n, o+m) +k (n,m) ;
end
end
end

$Rearanging bending matrix for simulink test

K ben(l,:)=[];
K ben(:,1)=[];
K ben(l,:)=[];

o\

Top element

o°

K ben(:,50)=[]; % K ben(:, ((Size (K ben,2))+2)=[]
K ben (50,:)=[];
K ben(:,49)=[];
K ben (49, :)=[];

oo

oo

M ben=zeros (v,V);

for n=1:1:v
M ben (n,n)=massfloor;

end

Q

% Making the first and last term of mass matrix correct

%M ben (1,1)=massl;
M ben (n,n)=mass48;

oo

oo

o)

[E_ben,omegakw ben] = eig(K ben,M ben);
for n=1:1:v

Delting the unwanted and coloum k-matrix for half element.

% E is the modal matrix; omegakw is modal K*E = M*E*OMEGAKW
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omega_eig ben (n)=sqgrt (omegakw ben(n,n));
end

o\°

Damping on mode 1 and mode 2

a _ben=2*(inv ([1/ (omega eig ben(l)) (omega eig ben(l));
1/omega _eig ben(2) omega eig ben(2)])*[xil;xi2]);

% Damping on mode 1 and mode 10

%a_ben=2* (inv ([1/ (omega eig ben(l)) (omega eig ben(l));
1/omega _eig ben(10) omega eig ben(10)])*[xil;xi2]);

Cd _ben=a ben(l,1)*M ben+a ben(2,1)*K ben;

oo

el

o°

damping ratio of the eigenmodes of the structure
for n=1:1:v;

phsi ben(n)=a ben(l,1)/(2*omega _eig ben(n))+a ben(2,1)/2*omega eig ben(n);
end

oo

% Torsional Field elements

ktor=(G*Jtot) /1*[1 -1
-1 11; % 1 floor height is 3 meters

Q

K tor=zeros(v+2,v+2); % Total systemmatrix bending
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for o=0:1:(v-1)
for n=1:1:2
for m=1:1:2
K tor (o+n,o+m)=K tor (o+n,o+m)+ktor (n,m);
end
end
end

o\

Bottom element
Delting the unwanted row and coloum k-matrix for half element.

o\

K tor(:,1)=[];
K_tor(l,:)=[];

o°

Top element
Delting the unwanted and coloum k-matrix for half element.

o°

K tor(:,49)=[];
K tor(49,:)=[1;

o\

oo

M tor=zeros (v,V);
for n=1:1:v

M tor(n,n)=Ip;
end

% Making the first and last term of the torsional matrix correct.

M tor(n,n)=Ip48;

o°

% Determing the eigen frequency (MDF)

oo

% E is the modal matrix; omegakw is modal K*E = M*E*OMEGAKW

°

[E tor,omegakw tor] = eig(K tor,M tor);
for n=1:1:v

omega_eig tor (n)=sqrt (omegakw tor(n,n));
end

oo

-215- May 2022



%
TU Delft Torsion motions of high—rise buildings due to wind loading

[}

% Damping on mode 1 and mode 2

a_tor=2*(inv([1l/ (omega eig tor(l)) (omega eig tor(l));
1/omega _eig tor(2) omega eig tor(2)])*[xil;xi2]);

Q

% Damping on mode 1 and mode 10
%a_tor=2*(inv([1l/ (omega eig tor(l)) (omega eig tor(l));

1/omega eig tor(10) omega eig tor(10)])*[xil;xi2]);

Cd _tor=a tor(l,1)*M tor+a tor(2,1)*K tor;

o°

oo

o°

damping ratio of the eigenmodes of the structure
for n=1:1:v;

phsi tor(n)=a tor(l,1)/(2*omega eig tor(n))+a tor(2,1)/2*omega eig tor(n);
end
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E Space state formulation.m

function[A ben,B ben,C ben,D ben, fe,fe tor,A tor,B tor,C tor,D tor]=E Space
_state formulation(f,v,K ben,M ben,Cd ben,omega eig ben,EI,L,l1 crossc,K tor
M tor,Cd tor,omega eig tor,1,G,Jtot)

o°

o°

Determining Space state formulation bending and torsion,Plotting
displacement of building bending and torsion, Space stateformulaton
bending and torsion,Validation of dynamic behaviour bending and torsion.

o oo

o°

$INPUT

% f: Total force of horizontal row of nodes [N]

% v Number of elements [-1]

% K ben: Bending stiffness matrix

% M ben: Mass stiffness matrix

% Cd ben: Damping matrix bending MDF

% omega_eig ben: Eigen frequency bending matrix MDF [rad]
% EI: bending stiffness [Nm2 ]
% L: Height building [m]

% 1 crossc: Width building [m]

% K tor: Torsion stiffness matrix

% M tor: Mass torsion matrix

% Cd tor: Damping matrix bending MDF

% omega_ eig tor: Eigen frequency torsion matrix MDF [rad]
% 1: Height building [m]

% G: Shear modulus [N/m2]
% Jtot: Torsion constant [mm4 ]
sOUTPUT

% A ben State space bending input matrix for simulink
% B ben State space bending input matrix for simulink
% C _ben State space bending input matrix for simulink
% D _ben State space bending input matrix for simulink
% fe Bending Frequency [Hz]
% fe tor Torsion Frequency [Hz]
% A tor State space torsion input matrix for simulink
% B tor State space torsion input matrix for simulink
% C tor State space torsion input matrix for simulink
% D tor State space torsion input matrix for simulink

o o

oe

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

oe

% Space state formulation
% Changing the matrices into formulation readable for simulink

oe

Determining static diplacement
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%$f=186300; % Force on each node in N
= zeros(v,1);
for lr=1:1:v
F(lr,1)=%f;

end

% Bending Displacement

u_ben=(-inv (K ben)) *F;
% The z cordinates of the nodes in vertical direction
= zeros(v,1);
zzz= 1.5;

for zrn=1l:1:v

Z(zrn,l)=(zzz+(zrn-1)*3);
end

}
% Placing space state formlation Matrix A

A2 ben=eye (v,V);
A3 ben=-inv (M _ben) *K ben;
A4 ben=-inv (M ben) *Cd ben;

o)

% Placing space state formlation Matrix B

Bl ben=inv (M ben);
Cl ben=eye (v,vV);

A ben(l:v,v+1:1:2*v)=A2 ben;
A ben(v+l:1:2*v,1:v)=A3 ben;
A ben(v+l:1:2*v,v+1:1:2*v)=A4 ben;
B ben(v+l:1:2*v,1:v)=Bl ben;

C_ben=eye (2*v,2*V) ;
D ben=zeros (2*v,V);
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% over on each side 0.17
over=0.17;
% horizondat division length
Yrd=2.6/2;
Arm=1 crossc/2-over-Yrd;
$£f=186300; % Force on each node in N
£f=62100; % Force per meter on each node in N
m=f*Arm*30; % *30 voor groter moment 21797100 Nm

[}

% To validate the static torsional displacement we will put a positive
moentt and then a negative monet on each consecative node.
M= zeros(v,1l);
for 1lr=1l:2:v
M(1lr,1)=m;
M(lr+l,1)=-m;
end
u tor=-inv (K tor)*M;
% The z cordinates of the nodes in vertical direction
Zy tor= zeros(v,1);
zzz= 1.5;

for zrn=1l:1:v

2y tor(zrn,l)=(zzz+(zrn-1)*3);
end
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{5}

Placing space state formlation Matrix A

o° o

A2 tor=eye(v,V);
A3 tor=-inv (M tor)*K tor;
A4 tor=-inv (M tor)*Cd tor;

% Placing space state formlation Matrix B

Bl tor=inv (M _tor);
Cl tor=eye(v,v);

A tor(l:v,v+1:1:2*v)=A2 tor;

A tor(v+l:1:2*v,1:v)=A3 tor;

A tor(v+l:1:2*v,v+1:1:2*v)=A4 tor;
B tor(v+l:1:2*v,1:v)=Bl tor;

C _tor=eye(2*v,2*v);

D tor=zeros(2*v,v);
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autopow.m

function S=autopow (f,U, sigma)
% syntax: function S=autopow (f,U,sigma_v)
% Autopower spectral density function of turbulence

% Input:

% f: frequency (Hz)

% U: the (10 minute) mean wind speed (m/s)
% sigma v: standard deviation (m/s)

% Output:

% S: autopower spectral density (m"2/s)

% Thesis: Torsion motions of high-rise buildings due to wind loading
% Author: H.A.O. Richardson (Anthony)

oo

S=(2/3)* ((£.*L./U) ."2./ ((L+(£.*L./(U)) ."2) .~ (4/3))) .*(sigma."2./(£));
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Coher3.m

function Coh=Coher3(f,Yrtot,Zrtot,U,option)

syntax: function Coh=coher (f,Yrtot,Zrtot,Vhub, zhub, option)
Coherency function of longitudinal wind velocity fluctuations
Implemented options:

o oo

oo

% % 1. Coherence of longitudinal and lateral wind velocity fluctuations
% Input:

% f: frequency

[Hz]

% Yrtot: lateral distance (in projection of rotor plane) [m]
% Zrtot: longditudinal distance (in projection of rotor plane) [m]
% Vhub: the 10 minute average wind speed at hub height [m/s}

% zhub: the hub height of the wind turbine (m)

% Output:

o°

Coh: coherency (-)

o\

o\

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o\

o°

o°

Cz=7; % Londitudinal Coherence
Cy=10; % Lateral Coherence

if (option==1)

o°

Coherency according to NEN 6702
Turbulent scale parameter

o°

x=f.* ((sqrt ((Cz.”2).*((Zrtot) ."2)+(Cy."2) .*((Yrtot) ."2)))./U);
Coh=exp (-1.*x);

else
error 'option not implemented in COHER'
end
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windO.m

function [t,UC]=windO (yr,zr,U,sigma_v,N,deltat, fmax)
simulation of a turbulent wind field

o\

o\

% INPUT:

% yr, zr: specification of coordinates on the facade of the structure
% U: mean wind velocity at 10 m above the surface of the earth
(m/s)

% sigma v: standard deviation of the fluctuating part of the wind
speed (m/s)

% N: number of time points (including zero); N must be a power
of 2

% deltat: time step (s)

% fmax: maximum frequentie spectrum (Hz)

% OUTPUT:

% ucC: constrained turbulent wind velocities (m/s)

o\

o\

Thesis: Torsion motions of high-rise buildings due to wind loading
Modified by: H.A.O. Richardson (Anthony)

o°

Syr=1.3:2.6:24.7;
$zr=9:1.5:144;
$v_10=16.36;
%sigma=6.345;
$N=10;
deltat=.1;
Sfmax=5;

o)

% number of points in rotor plane

Ny=length (yr) ;

Nz=length (zr) ;

Np=Ny*Nz;

% y and z coordinates of all rotor points in one column vector
Yr=reshape (yr'*ones (1,Nz),Np,1);
Zr=reshape (ones (Ny,1) *zr,Np, 1) ;

Yrtot=zeros (Np,Np) ;
for i=1:Np
for j=i+1:Np
% distances between points
Yrtot (i, j)=Yr(i)-Yr(j);
Yrtot(j,i)=Yrtot(i,3);
end
end

Zrtot=zeros (Np,Np) ;
for i=1:Np
for j=i+1:Np
% distances between points
Zrtot (i, j)=(Zr(i1)-2r(j));
Zrtot (j,1i)=Zrtot(i,]):;
end
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end

% time vector
t=[0:N-1] '*deltat;
% period
T=N*deltat;
% frequency step
deltaf=1/T;
% discretized frequencies
k=[1:N/2-11";
f=k.*deltaf;
% autopower spectral density (one-sided)
Sa=autopow (f,U, sigma v);
% spectrum is cut-off above fmax by application of window
Index=find (f>fmax) ;
if ~isempty (Index)
Nw=Index (1) ;
w=zeros (N/2-1,1);
W=window ('hann', 2*Nw+1) ;w (1l :Nw+1)=W (Nw+1:2*Nw+1) ;
Sa=w.*Sa;
end
% renormalize Sa to variance
Sa=sigma_v"2/ (sum(Sa)/T) *Sa;
% Fouriercoefficients points in rotor plane
ak=zeros (Np,N/2-1) ;
bk=zeros (Np,N/2-1) ;
for k=1:N/2-1
Coh=coher3 (f(k),Yrtot,Zrtot,U,1);
% Choleski decomposition
L=sqgrt (Sa (k) /T) *chol (Coh) ';
% vector of unit variance normal random numbers
ran=randn (Np, 1) ;
ak(:,k)=L*ran;
ran=randn (Np, 1) ;
bk (:,k)=L*ran;
end

o)

% complex notation
i=sqgrt (-1);
UC=zeros (N,Np) ;
for j=1:Np
C=ak(j,:)'-i*bk(j,:)";
C=1/2*[0;C;0;rot90(C")];
% inverse FFT
uc=N*ifft (C);
if any(abs (imag(uc)) >= le-T7*abs(uc) & abs(imag(uc)) >= le-12)
max (abs (uc))
max (imag (uc) )
error ('imag too large uc')
end
UC(:,])=real (uc);
end
% reshape UC: separate indices for y and z
UC=reshape (UC, N, Ny,Nz) ;
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F Forces moments 48 DOF.m

function[F,M, t, FvoorWoudenberg, F woud]=F Forces moments 48 DOF (v_mean,N,Ch,
Are, rho,B,deltat, L)
Syntax: function[F,M]=Force mod(v_mean)

o0 o

oo

Summation of mean wind speed and flucuating wind speed determining the
Nodal forces and Nodal moments for the grided area.

o°

oe

$INPUT

% vmean: Mean wind speead at height

[kg/m]

% Ucl Fluctuating velocity from the random generator

[m/s]

$OUTPUT

% F Force martix [N]
% M Moment matrix

[Nm]

o°

o°

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

o\

load matrices

load UC1L $Importing the fluctuating velocity from the random
generator.

Uf(:,:,3:1:93)=0C; $places matrix UC in matrix Uf from position 3 to
93

Uf(:,:,1)=0£(:,:,3); %places the fluctuating values of Uf(:,:,3) in

Uf(:,:,2)and Uf(:,:,1)
Uf(:,:,2)=U£f(:,:,3);

N=8192;

% Mean velocity according to NEN 6702
%vimean(l,l,3:1:93)=uistar/kappa*log(z—d/zio); % mean wind speed at
reference height

$for n=1:

v _mean2(1,1,3:1:93)=v_mean;

v _mean2(1l,1,1)=v mean2(1,1,3);
is given to vmean(l,1,1 and 2)
v_mean2(1l,1,2)=v_mean2(1,1,3);

svelocity out of vmean(l,1,3)

vV_mean=v_mean2;

o\

Mean velocity is determined for each time step
There is 10 timesteps in a second this is the 1 to 10 in vmean
v mean(:,1,:)or N

o\

o\

% v_mean(:,1,:) nodes in the width direction which are 10 for this
% buidling
v_mean(:,1,:)=v_mean(l,1,:);
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v_mean(:,2,:)=v_mean(l,1,:);
v_mean(:,3,:)=v_mean(l,1,:);
v_mean(:,4,:)=v_mean(l,1,:);
v_mean(:,5,:)=v_mean(l,1,:);
v_mean(:,6,:)=v_mean(l,1,:);
v _mean(:,7,:)=v_mean(l,1,:);
v_mean(:,8,:)=v_mean(l,1,:);
v_mean(:,9,:)=v_mean(l,1,:);
v mean(:,10,:)=v mean(1l,1,:);

v_mean=repmat (v_mean, [N 1 1]);

U=Uf+v_mean; $Sommation of the fluctuation velocity and the mean
velocity in matrix U
U(:,:,94)=0; % U(:,:,94)=0;This term in needed for the active

damping system ?? on even number at top

F=1/2*Are*Ch*rho* (U) .”2; % turrning velocities on area into forces

M=zeros (size (F)); % making Moment matrix (M)the same size as F matrix

for n=1:1:94 % Reading 94 half heights of 1,5 meters into 45

)

% make 10 a variable

for p=1:1:10 % horizontal distance is divided in 10 pieces Yr
if p<o6
M(:,p,n)=F(:,p,n)*(=-1)*((B/2-(p-0.5)*2.6)-0.17); % B/2-over-
Yrd;
else
M(:,p,n)=F(:,p,n)*(1)*((B/2+((p-5.5)*2.6)-0.17));
end
end
end
M=sum (M, 2) ; % Summation of the moments of each row in the

matrix. 6 horizontal places
M=squeeze (M) ; % remove the singleton variable.

m(l:1:N,1:1:2)=2*M(1:1:N,1:1:2); %onderste 2 nodes
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for n=3:1:48 % Summating the system 90 half heights
of 1,5 meters into 45
m(:,n)=M(:,2*n=-3)+M(:,2*n=-2); % into 45 spaces of 3 meters
m(:,n)=M(:,2*n=-3)+M(:,2*n=-2); % into 45 spaces of 3 meters
end
M=m;

%the torsion stiffess was taken in the stifnessmatix per meter height here
it is per 3 meters height so i1 have to diide the moents by 3 to get the
same height.

F=sum (F, 2) ; % Summation of the forces of each row in the
matrix. 6 horizontal places
F=squeeze (F) ; % remove the singleton variable.

f(1:1:N,1:1:2)=2*F(1:1:N,1:1:2);

for n=3:1:48

of 1,5 meters into 45
f(:,n)=F(:,2*n=-3)+F(:,2*n-2);

oe

onderste 2 nodes
Summating the system 90 half heights

o°

o°

into 45 spaces of 3 meters

t=[deltat:deltat: (N*deltat)]"';

FvoorWoudenberg=sum (F, 2) ;
F_woud= (FvoorWoudenberg (1)) /L;
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H Max acceleration values and graphs output.m

o\

o\

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

oe

oe

o° oo

close all

load matrices

we=omega_eig ben(1l,1);

% Determining of the highest acceleration, mean and standard deviation of
% the realization.

REALI max a=max (yout (50000:end, 3));
REALTI mean a=mean (yout (50000:end, 3));
REALI std=std(yout (50000:end, 3),1);

$Determining the mean and standard deviation of the realization of time
%50 sec to 800 sec

Reali a 48 peak 750 ben=REALI mean a+REALI std* (2*log(21600* (we/2*%pi)))"0.5

’

save matrices REALI max a REALI mean a REALI_std
Reali a 48 peak 750 ben -append

Determining of the highest acceleration, mean and standard deviation of
the realization.

o° oP

REALT max a tor R=max(yout (50000:end,6));
REALI mean a tor R=mean (yout (50000:end, 6));
REALI std tor R=std(yout (50000:end,6),1);

$Determining the mean and standard deviation of the realsisation of time
350 sec to 800 sec
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Reali a 48 peak 750 tor R=REALI mean a tor R+REALI std tor R*(2*1og(21600%* (
we/2*pi)))"0.5;

save matrices REALI max a tor R REALI mean a tor R REALI std tor R
Reali a 48 peak 750 tor R -append

% Determining the maximum torsional acceleration in yout (Left)

% Determining of the highest acceleration, mean and standard deviation of
% the realization.

REALI max a tor L=max(yout (50000:end,10));
REALI mean_ a tor L=mean (yout (50000:end, 10));
REALI std tor L=std(yout (50000:end,10),1);

$Determining the mean and standard deviation of the realsisation of time
%200 sec to 800 sec

Reali a 48 peak 750 tor L=REALI mean a tor L+REALI std tor L*(2*1og(21600%*(
we/2*pi)))"0.5;

save matrices REALI max a tor L REALI mean a tor L REALI std tor L
Reali a 48 peak 750 tor L -append

% Determining the maximum acceleration bending and torsion in yout (right)

REALI max a ben tor R=max (yout (50000:end,7));
REALI mean_a ben tor R=mean (yout (50000:end, 7))
REALI std ben tor R=std(yout(50000:end,7),1);

o\

% Determining the maximum acceleration bending and torsion in yout (left)

oo

REALI max a ben tor L=max (yout (50000:end,11));
REALI mean a ben tor L=mean (yout (50000:end,11));
REALI std ben tor L=std(yout(50000:end,11),1);

Reali a 48 peak 750 ben tor L=REALI mean a ben tor L+REALI std ben tor L*(2
*1og (21600* (we/2*%pi)))~0.5;
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save matrices REALI max a ben tor R REALI max a ben tor L
REALI mean a ben tor R REALI mean a ben tor L REALI std ben tor R
REALI std ben tor L Reali a 48 peak 750 ben tor L -append

figure

plot (tout, yout(:,3)):;

hold on

axis ([0 800 -0.12 0.121)
xlabel ('t (s)")
ylabel ('a (m/s”2)")
title('a48 ben')

hold off

saveas (gcf, 'a48 ben.jpeg', 'jpeg');

figure

plot (tout, yout(:,6));

hold on

axis ([0 800 -0.4 0.4])
xlabel ('t (s)")
ylabel ('a (m/s"2)")
title('a48 tor'")

hold off

saveas (gcf, 'a48 tor.jpeg', 'Jpeg');

figure
plot (tout, yout(:,7));

hold on

axis ([0 800 -0.45 0.457])
xlabel ('t (s)")
ylabel ('a (m/s”2)")
title('a48 ben tor')

hold off

saveas (gcf, 'a48 ben tor.jpeg', 'jpeg');
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velocitymeanlogmodified.m

function [v_mean]=velocitymeanlogmodified(L,u star, kappa,d,z 0,step z)
$syntax: function velocitymeanlog

O o0 A O A A A A A A AN A AN A A AN A A A A O° O° o o°

o°

o\

el

$L=144;
%u_star=2.82;
skappa=0.4;

The corrected log profile Harris and Deaves

INPUT: (Windbelasting en de hoogbouwdraagconstructie page 84)
L: length of the building (m)
u_star: shear velocity (m/s)
kappa: Von Karman constant = 0.4
d: average height of buildings (m)
Z: height above the face of the earth (m)
z 0: measure for the roughness of the terrain (roughness length)
step z: height of grid in which the building is devided in z

direction (m)

Calcualted input

a: dimensionless argument (-)
Z g gradient height (m)
f c Coriolisparameter (s -1)
omega_a angular velocity of the earth (rad/s)
lambda width degree (degree)
OUTPUT:
v_mean: mean wind speed ( in x-directions ) at height z (m/s)

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O. Richardson (Anthony)

o

Height of the buidling
Friction velocity
Terrain Roughness

o°

o°

%d=3.5; % average height of buildings (m)

%d=0; % average height of buildings (m) ( Ivar Woudenbergq)
sz _0=2; % Terrain Roughness according NEN 6702

$z_0=0.2; % Terrain Roughness according to Ivar Woudenberg.
sstep z=1.5; s

lambda=51.75; % Width degree of rotterdam: 51,75 degrees

9:step z:L); % Grid on which the height is divided for 9 meters.
(9:1.5:144);
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omega a=(2*pi)/ (24*60*60); % Cyclic frequency of the earth 7,2722e-5
(rad/s))

f c=2*omega a*sin(lambda); %Coriolisparameter (s -1)
z_g=u star/(6*f c); % Gradient height

a=((z-d)/z_qg); % dimensionless argument

%v_mean=(u_star/kappa)*((loq(z—d/z_0)+5.75*a)); until 200 meters
v_mean=u_star/kappa.* (log(z-d/z 0)+5.75.*a-1.88.%a."2-
1.33.%a.”3+40.25.*a.”4);

% mean wind speed at reference height Harris and Deaves.

figure (1)
plot (v_mean, z) ;

xlabel ('v [m/s”2]")
ylabel('z [m]")

% rearanging values in matrices z and v _mean
r=zeros (size(z,1l), (size(z,2)+2));
for X=l:size(z,2);

r(l,X+1)=z(1,X);

end

v_mean2 (1, (size(z,1)+1):1: (size(z,2)+1))=u_star/kappa* (log(z-
d/z _0)+5.75.*%a-1.88.%a.”2-1.33.%a.73+0.25.%a."4);

v_mean2(1l,1)=v_mean2(1l,2);
v_mean2 (1, (size(z,2)+2))=v_mean2(l, (size(z,2)+1));
figure (2)

plot(v_mean2,r);

xlabel ('v [m/s”2]")
ylabel ('z [m]")
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velocitymeaneurocode.m

function
[v_mean]=velocitymeaneurocode (L,u ref 0,C DIR,C TEMP,C ALT,z o,step z)
$syntax: function
%[v_mean]=velocitymeaneurocodel (L,u ref,u ref 0,C DIR,C TEMP,C ALT,z o,step
z)

Exponential powerfunction Eurocode 1 (ENV 1991-2-4)

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O. Richardson (Anthony)

% INPUT: (Belasting en de hoogbouwdraag constructie page 86 )
% L: length of the building (m)

% u ref: reference speed at height of 10 m (m/s)

% u ref O: onalterd reference speed at height of 10 m (m/s)

% C DIR: direction factor (-)

% C TEMP: season factor (-)

% C ALT: height factor (-)

% K t: terrain factor (-)

% Z: height above the face of the earth (m)

% Z O: measure for the roughness of the terrain (roughness length)
% step z: height of grid in which the building is devided in z
% direction (m)

$ OUTPUT:

% vmean: mean wind speed ( in x-directions ) at height z (m/s)

sL=144;
%u_star=2.82;
su_ref 0=27.5;

o°

Height of the buidling
Friction velocity
onalterd reference speed at height of 10 m (m/s)

o°

o°

$C_DIR=1; % direction factor (-)

$C_TEMP=1; % season factor (-)

$C_ALT=1; % height factor (-)

$z_0=0.2; % measure for the roughness of the terrain (roughness
length)

o

5z 0 2=0.05;
$step z=1.5;
direction (m)

roughness length area 2
height of grid in which the building is devided in z

o\°

z=(9:step_z:L); % Grid on which the height is divided for 9 meters.

k T =0.19*%(z 0/z 0 2)70.0706;
u_ref=C DIR*C TEMP*C ALT*u ref O;

v_mean=u_ref*k T*log(z/z 0);
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figure (1)
plot (v_mean, z);

xlabel ('Vmean [m/s”2]")

ylabel ('L [m]")

$rearanging values in matrices z and v_mean
r=zeros (size(z,1l), (size(z,2)+2));
for X=l:size(z,2);
r(l,X+1)=z(1,X);
end
v_mean2 (1, (size(z,1)+1):1: (size(z,2)+1))=u _ref*k T*log(z/z 0);
v_mean2(1l,1)=v _mean2(1,2);

v_mean2 (1, (size(z,2)+2))=v_mean2(1l, (size(z,2)+1));

figure (2)
plot (v_mean2,r);

xlabel ('Vmean [m/s"2]")
ylabel ('L [m]")

Anthony Richardson -234-



]
Appendix 2 T U D elft

Inputvalues.m

o°

Input values for simulation of a turbulent wind field

o°

o°

INPUT:
yr, zr: specification of coordinates on the facade of the structure
v_10: mean wind velocity at 10 m above the surface of the earth (m/s)
sigma: standard deviation of the fluctuating part of the wind speed

m/s)

N: number of time points (including zero); N must be a power of 2
deltat: time step (s)
fmax: maximum frequentie spectrum (Hz)

OUTPUT:
UC: constrailned turbulent wind velocities (m/s)

oo

oo

o0 —~ oo

o° o o o oe

o°

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o°

vr=1.3:2.6:24.7;
zr=9:1.5:144;

v_10=21.45;
U=v_10;

sigma=2.52;
sigma v=sigma;

N=8192;
deltat=.1;
fmax=5;
timestep=0.1;

save matrices yr zr U sigma v N deltat timestep fmax -append
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specest.m

function [Pxx,freqg] = specest(x,m,samplf,noverlap)

o°

Syntax : [Pxx,freq] = specest(x,m,samplf,noverlap)

oe

o°

AutoPower Spectral Density function estimate of one data sequence.
[Pxx, freq] = specest (x,m,samplf) performs FFT analysis of

the sequence using the Welch method of power spectrum estimation.
The x sequence of n points is divided into k sections of

m points each (m must be a power of two). Using an m-point FFT,
successive sections are windowed, FFT'd and accumulated. The choise
of a certain window, can be made within the listing of this file,
specest.m.

00 A° o° A o° o° o° o°

o\

The unit of the power spectrum Pxx is such, that integration of the
values of Pxx over the frequencies yields the standard deviation.

o oo

o°

Input
x : data sequence
m : length of window
samplf : sampling frequency (Hz) of signal x, equal to
1/ (sampling time)
noverlap : m-point sections should overlap 'noverlap' points,
is optional, doesn't have to be specified

oC 0° o o° o° o o

o\

Output
Pxx : Autopower Spectral Density function estimate of x, only for
postive frequencies, compensation in the positive frequencies
for the negative frequencies
freq : corresponding frequency vector for Pxx, only positive
frequencies, upto Nyquist frequency (=sampling frequency/2)

o0 o o o

o

o\

Author : A.H.J. Winnemuller
Date : 04-20-1995
Revised

o° oo

o°

o°

o°

Check if noverlap is specified, if not : make it zero
if (nargin == 3), noverlap = 0; end

% Make sure x is a column vector

X = x(:);

% Number of data points
n = max(size(x));

% Number of windows (k=fix(n/m) for noverlap=0)
k = fix((n-noverlap)/ (m-noverlap));

o\

Window specification; choose from
bartlett, blackman, boxcar, chebwin, hamming, hanning,
kaiser or triang
For a good representation of the stochastic process the
signal belongs to, use : e.g. blackman (but not boxcar).
If no window is to be applied, use boxcar.

o

o° oP

oe

oe
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index = 1l:m;
w = boxcar (m);

% Normalizing scale factor KMU
W=fft (w);

WW=W. *con7j (W) ;

KMU=sum (WW) *k* (1/m) * (samplf) ;

% Calculate power spectral density of signal x, where trend is removed
% from the sections, to prevent distortion of the spectrum

Pxx = zeros(m,1);

for i=1:k
xw = w.*detrend(x (index)) ;
index = index + (m - noverlap);
Xx = abs (fft(xw)) ."2;
Pxx = Pxx + Xx;

end

% Normalize the two-sided spectrum
Pxx=Pxx/KMU;

o\

Nyquist frequency occurs at point m/2+1 of the m-point section.
Remove the spectral estimates corresponding to negative frequencies
ans compensate for them in the positive frequencies

Pxx (m/2+2:m)=[];

Pxx(2:m/2)=2*Pxx(2:m/2) ;

o\

o°

% Creation of frequency vector, running from 0 Hz to the Nyquist

% frequency
freg=(0: (m/2))/ (m/2) *samplf/2;
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specest_test_run.m

o\©

Checking the Spectral density function

o\°

o\©

Thesis: Torsion motions of high-rise buildings due to wind loading
Author : H.A.o.Richardson (Anthony)

o°

clear
close all

Q

% Loading the generated wind velocities

load UC1

o

% Selecting a node and generating a time vector
u=UC(:,1,1);
t=(1:1:8192)*0.1;

[}

% Plotting figure time versus the generated wind velocities

figure
plot(t,u);

o

% Calling the program specest.m (different ranges to choose from)

[Pxx, freq] = specest(u,1024,10);
[Pxx, freq] = specest(u,512,10);
[Pxx, freq] = specest(u,256,10);

o)

% Plotting output specest

figure
plot (freq, Pxx) ;

figure
semilogy (freq, Pxx) ;

o)

% Making a frequency time line and inputting the inputted values for
windspeed at hub height and standard deviation of wind speed in the
autopower spectrum

f=(0.001:0.001:5);
S=autopow (f,21.45,2.52);

Q

% Plotting frequency versus autopower spectrum

figure

semilogy (f,S);

% Plotting frequency versus autopower spectrum and generated wind
velocities

figure
semilogy(f, S, freg(2:end),Pxx(2:end)) ;
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Appendix 3  The Juffertoren output of the 100

simulations for return period of one year

max_a_ben max_a_tor max_a_ben_tor sigma_v_a_ben sigma_v_a_tor sigma_v_a_ben_tor
1 0.07901997 0.3154349 0.347868574 0.031884807  0.097929211 0.102993374
2 0.09502604 0.2287908 0.225850924 0.028115223  0.067419462 0.072179545
3 0.08879392 0.2312267 0.2336136 0.026846394  0.077938953 0.083766051
4 0.10615966 0.2031683 0.270922504 0.0251388  0.066920912 0.07188217
5 0.0736211 0.2015533 0.247111679 0.026224231  0.080844871 0.0855873
6 0.08078583 0.2341519 0.268814781 0.026592566  0.070060124 0.075708769
7 0.08541438 0.249131 0.265200283 0.029473679  0.083269218 0.089176754
8 0.07210333 0.2579831 0.241273924 0.019752246  0.093835705 0.096105797
9 0.13054919 0.2398426 0.235520817 0.030073112  0.060388326 0.068064975
10 0.08138736 0.2269369 0.241830173 0.025732798  0.076559066 0.081261858
11 0.09919487 0.2680968 0.317176085 0.03039881  0.090701335 0.096010367
12 0.10400851 0.2415562 0.278614354 0.029040682  0.075157222 0.08106332
13 0.07506417 0.227017 0.254067133 0.027530949  0.088724806 0.093777656
14 0.09112941 0.3118245 0.357956698 0.02548089  0.095829132 0.099183317
15 0.08084645 0.2374471 0.254215733 0.02471953  0.067617723 0.071942393
16 0.08101202 0.2334264 0.224069929 0.024796893 0.06944557 0.073362182
17 0.07679948 0.2721974 0.275561386 0.027328724  0.088819358 0.094256668
18 0.09665245 0.250642 0.282281823 0.027810513  0.098101193 0.101829621
19 0.08839106 0.2431482 0.245513462 0.0278197  0.080150922 0.085250782
20 0.10854 0.2707078 0.30502623 0.031819829  0.110032915 0.114261271
21 0.07837437 0.2071293 0.266883724 0.022751603  0.062801089 0.065724809
22 0.09778053 0.2570626 0.243423482 0.02504102  0.082809933 0.086483211
23 0.09505646 0.2273086 0.227212401 0.029416008  0.069109222 0.076017137
24 0.08856752 0.204231 0.25276404 0.030100928  0.064249038 0.071356932
25 0.07834746 0.3206495 0.348140414 0.030072151  0.126312435 0.129295129
26 0.08914042 0.2502305 0.292177947 0.030658104  0.070394482 0.078406003
27 0.08900862 0.2059822 0.231338263 0.025037439  0.066827051 0.071495308
28 0.09113444 0.2773968 0.300049901 0.023573273  0.102236978 0.103935674
29 0.09694114 0.194166 0.262098859 0.032457306  0.056953225 0.064016696
30 0.14682591 0.2146753 0.318700152 0.03361227  0.076898999 0.083250098
31 0.09421751 0.2712761 0.272828404 0.031457569  0.077414355 0.082692316
32 0.07695353 0.3351562 0.353238403 0.027332071  0.112661957 0.116399174
33 0.08367757 0.3312502 0.290940187 0.029931995  0.115752231 0.119598381
34 0.09421759 0.2728489 0.225796349 0.031673278 0.07713853 0.085205891
35 0.08154371 0.2314921 0.258869055 0.031584988  0.084135747 0.090691919
36 0.1155729 0.2667198 0.325697711 0.031441818  0.074342546 0.080823537
37 0.0804843 0.196095 0.215927765 0.026585369  0.078399722 0.082615485
38 0.06993247 0.2227549 0.214069599 0.025415821  0.065959439 0.071919526
39 0.12859407 0.2479667 0.321107747 0.033112213  0.089871517 0.095594086
40 0.10089678 0.2555727 0.305778185 0.03020859 0.08070116 0.085343493
41 0.07104905 0.209015 0.222081497 0.022916168  0.066224983 0.070737656
42 0.09715038 0.1932312 0.202770808 0.03311036  0.073444956 0.081073318
43 0.09401802 0.2428575 0.290574477 0.025615311  0.081211157 0.085516732
44 0.07130808 0.2742605 0.306073536 0.029068044  0.087484177 0.091663874
45 0.10649363 0.3009411 0.336744989 0.027140327  0.101589876 0.105994995
46 0.08179491 0.2400594 0.253401477 0.027596213  0.068729826 0.073191005
47 0.08239944 0.2618932 0.255315624 0.026949153 0.09156893 0.095856063
48 0.09343369 0.2692511 0.307915902 0.036771507  0.095312997 0.101861375
49 0.09845596 0.2728585 0.29025337 0.028753191  0.088335183 0.093319901
50 0.08412185 0.2703046 0.290280601 0.023639648 0.10862627 0.110818164
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

0.08412185
0.07757371
0.08524064
0.09738446
0.08704866
0.08698624
0.07884446
0.08623691
0.06947999
0.09358635
0.09212752
0.08199818
0.09527037
0.09812317
0.07391004
0.07119504
0.09013005
0.09310774
0.09912049
0.09760287
0.07419547
0.07624585
0.06705839
0.08852208
0.08760393
0.08339804
0.06792917
0.08407408
0.10738459
0.06846484
0.11170106
0.10842811
0.07893048
0.13492696
0.07787353
0.09812013
0.09323893
0.07698314
0.07885024
0.07875916
0.09667609
0.07428866

0.0999251
0.08467466
0.07615857
0.06722977
0.09471137
0.11237251
0.07993901
0.09029062
0.07821876

0.2703046
0.2408457
0.2275992
0.268816
0.2287985
0.27792
0.313843
0.2995805
0.2719755
0.1706568
0.2591273
0.3158783
0.2713995
0.3473477
0.2407578
0.2263872
0.292834
0.2727566
0.2612763
0.2587812
0.2990337
0.2312022
0.2530859
0.2745583
0.2730636
0.2857885
0.1979205
0.2994298
0.2443405
0.2231908
0.3074799
0.1971032
0.2726799
0.2426756
0.2597489
0.2659874
0.29038
0.2501046
0.2708426
0.3378433
0.3275849
0.1918223
0.3441147
0.3473279
0.2139997
0.266699
0.2079731
0.3008401
0.3120294
0.2539699
0.2886099

0.290280601
0.249179007

0.26608179
0.280123701
0.260372811
0.290317349
0.327210731
0.294183097

0.25935968
0.212125945
0.274868804
0.339245102
0.286476756
0.351292021
0.232606726
0.273643925
0.318489913
0.305832959
0.269895485
0.286304882
0.306723114

0.26083605
0.254394652

0.27554601
0.295432966
0.291488836
0.217703377
0.307316015
0.267945388
0.238895539
0.331554775
0.234713847
0.280179963
0.296094743

0.27426618
0.303037628
0.308445665
0.276608006
0.328016825
0.342113176
0.367087398
0.218785754
0.351481911
0.366065206
0.246478605
0.260068328
0.267910045
0.322325274
0.307897054
0.290262274
0.304810918

0.023639648
0.027674879
0.022325849
0.032560162
0.031450677
0.030526951
0.024894461
0.023215837
0.026427083
0.029660752
0.027422612
0.027068803
0.033568575

0.02754538
0.022893411
0.023026724
0.026868967
0.032845032
0.029103781
0.033875528
0.023075607
0.023797771
0.024483663

0.02764329
0.032179728

0.02930333
0.022535256
0.033765918
0.031696823
0.023611531
0.034383715
0.036041491
0.026414594
0.037171804

0.02557191
0.024636878
0.031062577
0.025723913
0.026798197
0.022621681
0.026730192
0.028769533
0.028265931
0.024819995
0.025440583
0.022860946
0.032242381
0.042248094
0.027270763
0.031911913
0.026384818

0.10862627
0.076548667
0.091220343
0.093529436
0.093413447
0.073664855
0.102307881
0.102809614
0.101268979

0.05983622
0.087991725
0.128905333
0.083852398

0.10948055

0.07538152
0.087625033
0.097863106
0.102269849
0.080287329
0.079054052
0.098203667
0.081636732
0.071932967
0.071856698
0.085560979
0.084931794
0.078949515
0.098522841

0.08347872
0.076111416

0.09505573
0.071335391
0.088925232
0.080594688
0.100593297

0.08141364
0.088509935
0.080182305
0.080291469
0.125466468
0.097159731
0.061062749
0.105735321
0.097631654
0.073022348
0.082241712
0.073597462
0.100937033
0.097586129
0.091324537
0.083215684

0.110818164
0.081859227
0.093831935
0.100062341
0.097739543
0.080888252
0.105978544
0.106135784
0.105217104
0.067299691
0.092057406
0.132189224
0.089943952
0.112792408
0.078314601
0.091573059

0.10241843
0.107687308
0.084555794
0.083976231
0.100454213
0.085785605
0.076072072
0.075769768
0.091520915
0.089144172
0.082945319
0.103670046
0.088317221
0.080320097
0.100782984
0.081142271
0.094385945
0.088603472
0.103853019
0.084322415

0.09509343
0.083584801
0.085373717
0.127974392
0.100739464
0.065828115
0.109267861
0.101408988
0.076841441
0.085264018
0.079429955
0.109828299
0.101943831
0.096527497
0.088117416
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Formulas to determine the maximum

acceptable acceleration for Juffertoren

Eurocode

The wind force acting on a structure or structural component is: [10]

Fw :Cscd*cf*qp(ze)*A

ref

F =093*144%g (2,)* A,

structural factor
force coefficient
peak velocity pressure at reference height z,

reference area of the structure

Force coefficient. [10] p.67

Structural factor [10]

c, =144
C142%k, %1, (2,)* VB + R?
€t = 1+7*%1,(z,)

(1 +2%3.17%0.16 * \J0.45 + 0.487)

€sCa = (1+7%0.16) =093

reference height or height of structure.

peak factor.

turbulence intensity
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B*: background factor.

R*: resonance response factor.

Background factor [10] Eurocode procedure 2

B’ = =0.45
L3 ( 26.3 jz +( 144 )2 +( 263 , 144 )2
2\\1829) \1829) (1829 1829

Wind Turbulence [10]

o =0.67 +0.05*In(z,) = 0.67 +0.05*In(0.2) =0.59 [13] pp.86-87

With:
b, h: width and height of structure
L(z.): turbulence length scale. It is on the safe side to use 8% =1

z,=0.6*h>z,  =0.6*144 = 86.4 [10]

kszZ*M(V*TﬁL

2*In(v*T)

0.6
k, = 2*In(0.13%600) + =3.17
aa ) J2*In(0.13* 600)

Resonance response factor ([10] p.110])
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2

, T
R = 2% 5 * SL (Ze’nl,x)* Ks (nl,x)
2 7
— * kS
R? = %5 S (2o, )*K ()
72_2
2-__~____%0,143%*0.3319 = 0.487
2*0.48
With:
) The total logarithmic decrement of damping [10]
S, wind power spectral density function given B.1(2)
L x natural frequency of the structure [10]
. size reduction function [10]

The total logarithmic decrement of damping

6=06,+0,+0,=0.10+0.38+0=0.48

The total logarithmic decrement of structural damping

5, =0.10

The total logarithmic decrement of aerodynamic damping

5,=0.38

The total logarithmic decrement of damping due to special devices

5,=0
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wind power spectral density function given [10]

* *
5. (2, )- n*s, (Zze,n) __ 68*f (z,,n) . 6.8 % 0.716 L -0143
o, (1+102*7 (z,,n))" (1+10.2*0.716)
* [ *
f(z,,n)= nriz) f,(86.4,0.13) = Q371829 _ 716
v, (2, 343

o =0.67 +0.05*In(z,) =0.67 +0.05*In(0.2) =0.59 [13] pp.86-87

natural frequency of the structure [10]

5_dl' _ 2.68E°*144°
8EI  8*3.00£™ * 688

n-n —>[2]-L (%)zo.w Hz [10]p.185
' 27 |\ x, 27 [\ 6.98

=6.98 m

1

1+J(Gy *¢y)2+(Gz*¢z)z+(2*Gy*¢y *Gz*qﬁzj
T

2

1
K. (n)= = - 0.3319

1+ J(o.s *1.18)" +(0.278 ¥6.48) + [2 *0.5%1.18 % 0.278 * 6.48)

T
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y ¢, *b*n 115%263%0.13
"ov,(2) 343

e

=1.18

y ¢, *h*n 11.5%144*0.13
© v, (2) 343

e

=6.48

Decay constants

1

The peak velocity pressure is calculated using g, (Z) =1+7%*1 (Z) * > *p* V; (z)
With:
1,(z2) turbulence intensity
P air density
v, (Z) mean wind velocity
Turbulence intensity ([10] p.21])

7, (2)=2 - ! 1 ~0.15 [13] pp. 86-87

v, (2) ¢ (2)*In(z/z,) 1*In(144/0.2)

o, K, _ 1
1,(z ):Vm(ze)_CO(ZE)*m(Ze/zO)_1*In(86.4/0.2)

=0.16

Terrain roughness [10] p.21

Zy

0.07
k (z)=0.19* In[ J ( Terrain category III )

ZO AT

0 2 0.07
k (z)=0.19* |n(0—65j =0.21 [-]
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zj
C =0.21*| 144 =1.38 [- ( Terrain category III )
,(z)_. nm—. [-] gory
86.4

¢ (z.)=0.21% In[o—.'zj =1.27 [-]

¢ (2)=k (z)*ln(

N

Mean wind velocity [10] p.19

v (2)=c(2)*c (2)*v,=138%1%27 =37.2 m/s’

*c (z)*v, =127*%1%27 =343 mys’

With:

c (2) roughness factor
G (2) orography factor
Vb

basic wind velocity

Basic wind velocity [10] p.18

v, (z)=c,*c_ *v, =1%1%27 =27 m/s’

With

Cyir directional factor
Ceeacon season factor
V,

b0 fundamental value of basic wind velocity

For the Netherlands, the euro code states that the fundamental value of basic wind velocity
is equal to 27 m/s.

Acceleration for serviceability assessments [10] pp.111-112

K, *K,*(y,z
Tar (V72) =€ 0", (2.) " Vi (2) " R* =% @ma(x !
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1*5/3%1
F3

o, (v,2)=1.44¥1.29%0.16 * (34.3)" * 0.698 * =0.621 m/s’

The standard deviation o,, of the characteristic along-wind acceleration of the structural

point with coordinates (y,z) is approximately given by Expression [10].

where:

c, force coefficient

)2 air density

I(z,) turbulence intensity at height Z=Z, above ground

v, (ZE) characteristic mean wind velocity at height Z,

R square root of the resonant response

K, K, constants given in C.2 (6)

Hror the reference mass per unit area

®(y,2) the mode shape

o) mode shape value at the point with maximum amplitude

max

The characteristic peak accelerations are obtained by multiplying the standard deviation in
by the peak factor in B. 2 (3) using the natural frequency as upcrossing frequency, i.e.

vV =

1,x '

a, =ko (yz)=3.17*0621=1965ms’

This value is totally unrealistic. The found value for only bending is about 17 times bigger

than the found yearly annual maxima for NEN of 0.113m/s’.
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Woudenberg empirical formula’s

The formula to calculate the frequency in this article is [19]

P 46

e_ Woudenburg — 7
In which:

height building: 144 m

Substituting the variables into the frequency formula gives:

_ % L 0310H
144

e _Woudenburg

The cyclic frequency: @, e, =27 *f, = 201Hz

The maximum acceptable deflection of the top of the building is v,,, = #/ /500 . When the height is

substituted we get a deflection of 144 /500 = 0.288m . The amplitude A of our building is the half of the
maximum acceptable deflection of the top of the building, this is 0.288 /2 =0.144m.

The formula for the natural vibration can be written as u(t) = Asin(at + ¢) . The acceleration is the
second derivative of the natural vibration formula a(t) =ti(t) = A sin(at + @) . Out of which the

maximum bending acceleration is a = A*®” . Substituting the variables into the formula gives
a=0.144*2.012 =0.580 my/s?.

This maximum occurring acceleration is far above the maximum acceptable acceleration of
a=0.1nys2.
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Determining the torsional acceleration with the empirical formula in Woudenberg article [19]

72

e_Woudenburg — F

In which:

h = height building: 144 m

Substituting the variables into the frequency formula gives:

7—2=0.5 Hz

e _Woudenburg = 1 4 4

The angular cyclic freqUency is @, e, = 2 7 f, =314z

The maximum acceptable deflection of one floor of the building is «

top

= H /500 . When the
height is substituted we get a deflection of 144 /500 = 0.288 m. The maximum acceptable
bending deflection per story is 0.288/48 = 6£°> m. To determine the torsion on a floor we
have to look at the interstory drift of a building. The maximum acceptable displacement due
to interstory drift is Usy = h5tgry /300, substitution gives Vg, =3/300 = 1£7°m . The

displacement left for torsion motion is 0.01-0.006 = 0.004 m.

We assume in our model that the bending and torsional motions are uncoupled. The
maximum amplitude due to torsional motion is 0.004 M. This maximum amplitude for

torsion should not be disregarded for the maximum deflection of the total building.

Astory h 3 144

u, = - L L
foor =300 500%*n 300 500*48

floors

=0.01-0.006 = 0.004

The formula for the natural vibration can be written as u(t) = Asin(at+¢). The

acceleration is the second derivative of the natural vibration formula

a(t) =(t) = Aw®sin(awt +¢) .  Substituting the variables into the formula gives

a=0.004*3.14% =0.039m/s?> which is the maximum torsional acceleration.
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This maximum occurring acceleration due to bending and torsion motion is

a=0.580+0.039 = 0.619 m/s?, far above the maximum acceptable acceleration of

a=0.1m/s’.
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Woudenberg formulas
The formulas to calculate the frequency in this article “Windbelasting en het hoogbouwontwerp”

[19]

Formulas

Bending displacement at top of building due to wind load

*x P4 X 4
o, —[ 9 h*) _ (16160 141 433 m
8E£I 8*2.003E

Shear displacement at top of building due to wind load

* f2 * 2
oo = [ n _ 1616010 144 33484 m
2GA 2*1.25E" *40.14

displacement at top of building due to foundation rotation

C, =20*FI /L =2.786™ Nm [5]

3 3
oo =| o[ 1| _g67E m
~\2c, ) \2*2.78€

Total displacement at top of the building

Opp = O + 0y + 0., =5.23E7 m

Critical buckling force

* h2 * 2
Q, =| 9| _ (1616071447 ) _ (401708934 N
2 5.23E

Top
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Second order effect

n 16.56
second order = —— = =1.
n-1 16.56-1
o 1 1 _ 1 L ~16.56
Qu Gy h b} 268 1447 144 L 144
8EI 2GA 2C, 8*2.003E° 2*1.25E"° *40.14 2*2.78F"

Mg * 9 39399240%9.81
h 144

Mg = 39399240 kg (Mathlab) ¢, = = 2.68E° N/m

Total displacement due to wind load and foundation rotation (including
second order effect)

= 5 -106%5.23E" =554E"m
n-1"7

Top;sec -

Amplitude

A=0.0554/2=2.77E"m

Natural frequency ( Section 5.4.2)

o, =C, /(El / pAI*)= 3.52\/((3.0E1°*667)/(675.5366*405.02*144")) = 1.451 rad/s

Do _woudenberg = ©Pn = 1.451 rad/s

The formula for the natural vibration can be written as u(t) = Asin(at+¢). The
acceleration is the second derivative of the natural vibration formula.
a(t) =ti(t) = Aw’sin(at +¢), Of which the maximum acceleration is a=A*a@’.

Substituting the variables into the formula gives a =0.0277*1.451?> =0.059 m/s?.

This maximum occurring acceleration is below the maximum acceptable acceleration of

a=0.1m/s®.
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Schueller

The eigenfrequency of the structure must be known to determine the acceleration what occurs. [18] .

The formula to calculate the vibration time is:

¢ -2ens (@A ES)

In which:
H= the building height: 144 m
Q= the building weight: 386.5 MN (Mathlab)
g= the gravitational acceleration: 9.81 m/s?
E= Young'’s modulus: 3.00E10 N/m?
I= the moment of inertia: 688 m*

Substituting the variables into the formula gives:

T=2%z*J((Q*H~3)/(8*E*g))=5385
The eigenfrequency f =1/T =1/5.38 ~0.186 Hz . The cyclic frequency is @=2*z* f =1.167 rad .

The maximum acceptable deflection of the top of the building is u,,,=H/500. When the height is

substituted we get a deflection of 144/500 = 0.288 m. The amplitude A of our building is the half of
the maximum acceptable deflection of the top of the building, this is 0.288/2 = 0.144 m.

The formula for the natural vibration can be written as u(t) = Asin(at + ¢) . The acceleration is the
second derivative of the natural vibration formula a(#) = & (¢) = Aw? sin(wt + ¢) , of which the
maximum acceleration is a = Aw?. Substituting the variables into the formula gives

a = 0.144%1.167° = 0.196 m/s.

This maximum occurring acceleration is far above the maximum acceptable acceleration of
a=0.1m/s.
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Dicke/Nijsse

The formula to calculate the frequency in this article is [20] :

The values of ¢ by different types of fixations

c=1 spring
c=0.83 Cantilever
c=0.67 on piles

c=0.64 on rock ground

The variables of the building loaded by wind

L Length of building [m]
m Mass of the building [kg]
I Second Moment of Area [m*]

The gravitational effect of the upside-down pendulum

Ke = Effective stiffness of the system [N/m]
Kb = Spring stiffness [N/m]

Kp = Negative stiffness of the upside-down pendulum [N/m]

Mathematic Pendulum

T=2*n*\E (Independent of Mass) [S]
2z o .
T=7 (From vibration time to cyclic frequency) [S]
summation of a)2=%
2 K . 2_ Kp
" = e ( Single degree of freedom system) 10} e~
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K m
Combination of @* = Ep and @ = g givesus K, = ™

with G=m*g
Upside-down pendulum

| pendulum length

C values of cantilevers.

I building length
L, =c*I
Calculations

Weight building
G =m * g = 39399240 * 9.81 =396506544 N

Pendulum length

l, = 0.67 * 144 = 96.48 m

Negative stiffness of the upside-down pendulum

« = M*g_39399240%0.81
P 96.48

p

= 40060800 N/m

Spring stiffness

* 13
K=o =208 0134066 Njm

Effective stiffness of the system

K, = K,- K, = 16127987 N/m
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K
o - /J _ [H0060800 _ 349 raq/s
>~ \'m ~\39399240
v, = [Ke _ [P0134066 _ o 0c e
m ~ \39399240
o, < [Ke _ [6127987 _ cag oy
m ~ \(39399240

Frequency of Professor Dicke

Foe 0640 410,
27 T

Vibration time of Professor Dicke

= L =9.821sec

r-1
£, 0.102

Critical buckling factor

L _ W _ 0715

=2t = S =5.026
, 0.640
Second order effect
po= 22026 o
* n-1 4.026

Amplitude

h

A=
500

/2:0.288/2:0.144 m
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Maximum acceleration

The maximum acceleration is a = A*@? *n,, . Substituting the variables into the formula

gives a=0.144*0.640%*1.25=0.074 m/s?

This maximum occurring acceleration is below the maximum acceptable acceleration of

a=0.1m/s”.
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NBCC Acrosswind acceleration

) ) ) . ) ) 0.5
The acrosswind acceleration will be larger than the alongwind acceleration if (6d) "~ <0.33.

[17]. This is the case in most buildings with a rectangular cross section, so the acrosswind

acceleration will be dominant.

The National Building Code of Canada (NBCC) will be used to determine the across wind

acceleration of the building [17]

. f,g,a,\bd

’ pbg\/E

With:
f,  frequency of the building Hz
g, peak factor [-]
b,  width of the building m
P average density of the building kg/ms3
] gravitational acceleration m/s?
B, lift damping ratio [-]
b width of the building m
d depth of the building m

a, is calculated by the following equation:

3.3
a, = 0.0785(\/—“}

f,Jb, *b,

With:

f,  frequency of the building Hz
b,  width of the building m
v,  mean wind speed at top of the building m/s?
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. _fo,abd 0201%35%47.40%/263%163

= =0.179 m/s?
YN 2.8E5*9.81*4/0.01
a, is calculated by the following equation:
33 36 8 3.3
V,
a =0.0785 ———| =0.0785 - =47.40[-]
' L f, b, *b, ] (0.201\/26.3*26.3]
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Eurocode acrosswind acceleration

E.1.2 Criteria for vortex shedding [10]

(1) The effect of vortex shedding should be investigated when the ratio of the largest to
the smallest crosswind dimension of the structure, both taken in the plane
perpendicular to the wind, exceed 6.

(2) The effect of vortex shedding need not be investigated if

Vs >1.25%v, (E.1)
25.84 >1.25*37.19
where:
Vg; IS the critical wind velocity for mode I, as defined in E.1.3.1
Y is the characteristic 10 minutes mean wind velocity specified in 4.3.1 (1) at the cross section

m

where vortex shedding occurs. ( Figure E.3)

E.1.3 Basic parameters for vortex shedding

E.1.3.1 Critical wind velocity vcriti

The critical wind velocity for bending vibration mode i is defined as the wind velocity at
which the frequency of vortex shedding equals a natural frequency of the structure or a

structural element and is given in Expression (E.2).

Vi = b*n,, (E.2)
criti — St '
15.4*0.13
Vy =————=2584 m/s’
' 0.08
where:
b is the reference width of the cross-section at which resonant vortex shedding occurs

and where the modal deflection is maximum for the structure or structural part

considered; for circular cylinders the reference width is the outer diameter.
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n,, Is the natural frequency of the considered flexural mode i of cross-wind vibration;

approximations for ni,y are given in F.2

St Strouhal number as defined in E.1.3.2.

E.1.3.2 Strouhal number St

The Strouhal number St for different cross-sections may be taken from Table E.1
d/b=26.34/15.44=1.71[-]
St=0.08 [-]

E.1.3.3 Scruton number Sc ([10] p.119)

The susceptibility of vibrations depends on the structural damping and the ratio of structural

mass to fluid mass.

This is expressed by the Scruton number Sc, which is given in Expression (E.4).

_2%5,*m,,

Sc P (E4)
* * 5
_ 2*0.1 2.112E _1378

1.29*15.4
where:
o, is the structural damping expressed by the logarithmic decrement.
P is the air density under vortex shedding conditions.
m,, is the equivalent mass me per unit length for mode i as defined in F.4 (1)
b is the reference width of the cross-section at which resonant vortex shedding occurs
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E.1.5 Calculation of the cross wind amplitude

E.1.5.1 General

(1) Two different approaches for calculating the vortex excited cross-wind

amplitudes are given in E.1.5.2 and E.1.5.3.

(2) The approach given in E.1.5.2 can be used for various kind of structures and mode
shapes. It includes turbulence and roughness effects and it may be used for normal climatic

conditions.

(3) The approach given in E.1.5.3 may be used to calculate the response for vibrations in
the first mode of cantilevered structures with a regular distribution of cross wind dimensions

along the main axis of the structure.

Typically structures covered are chimneys or masts. It cannot be applied for grouped or in-
line arrangements and for coupled cylinders. This approach allows for the consideration of
different turbulence intensities, which may differ due to meteorological conditions. For
regions where it is likely that it may become very cold and stratified flow conditions may

occur (e.g. in coastal areas in Northern Europe), approach E.1.5.3 may be used.

E.1.5.2 Approach 1 for the calculation of the cross wind amplitudes

E.1.5.2.1 Calculation of displacements [10]

The largest displacement y:... can be calculated using Expression (E.7).

Vemo ~ 1w unp wg

b St? Sc lat

(E.7)

Y max = %*L*O.l3*0.60*1.1*15.4 =1.499 m
' 0.08° 137.8

where:
St is the Strouhal number given in Table E.1
Sc is the Scruton number given in E.1.3.3
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K, is the effective correlation length factor given in E.1.5.2.4

K is the mode shape factor given in E.1.5.2.5

Ciat is the lateral force coefficient given in Table E.2

E.1.5.2.2 Lateral force coefficient clat

The basic value, c..., of the lateral force coefficient is given in Table E.2.

Ciato =1.1

E.1.5.2.3 Correlation length L [10] pp 124-126

The correlation length Lj, should be positioned in the range of antinodes. Examples are
given in Figure E.3. For guyed masts and continuous multispan bridges special advice is

necessary.

L /b L,/b 1, (L;/bY
Kw:3 J * l— ] +_* ]
A A 2 A

E.1.5.2.5 Mode shape factor [10]

The mode shape factor K is given in Expression (E.9).

> J‘Di,y (s)ds
K = =t
4*n*2!®ﬁy (s)ds
=L

K=0.13 (E.9)
where:
m is defined in E.1.5.2.4 (1)
@, (s) is the cross-wind mode shape i (see F.3)
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| is the length of the structure between two nodes (see Figure E.3)

The maximum acceleration is:

8, = Vi o ¥(2¥ 2% £, ) =1499% (2% 2*0.13) =1.066 m/s” |
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Approach 2, for the calculation of the cross wind amplitudes

The characteristic maximum displacement at the point with the largest movement is given in

Expression (E.13).

Youx =0, *k,  (E.13)
0.746 =0.528 * 1.415
where:
o, Is the standard deviation of the displacement

k, is the peak factor

The standard deviation o of the displacement related to the width b at the point with the

largest deflection ( @ =1) can be calculated by using Expression (E.14).

o 1 C *p* _|b
Y s - = *1/ . *\E (E.14)
Sc o
—K *[1- y
o)

where:

C is the aerodynamic constant dependent on the cross-sectional shape, and for a

circular cylinder also dependent on the Reynolds number Re as defined in E.1.3.4
(1); given in Table E.6.

K is the aerodynamic damping parameter as given in E.1.5.3 (4)
a, Iisthe normalised limiting amplitude giving the deflection of structures with very low

damping; given in TableE.6

St s the Strouhal number given in E.1.6.2

P is the air density under vortex shedding conditions, see Note 1

m is the effective mass per unit length; given in F.4 (1)

h,b is the height and width of structure. For structures with varying width, the width at

the point with largest displacements is used.
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(3) The solution to Expression (E.14) is given in Expression (E.15).

2
O
(FYJ =cl+4/cf+c2 (E.15)

{g—ylj = (-0.0)+(-0.1* +0

o, =0.528m

where the constants ci and c2 are given by:

2
C =i* 1_L , c _,O*b2 *a_ﬁ*cf *9
) 4*7*K, > m* K, St* h’
2 * 2 2 2
Cl:o.4 *(1— 137.8 j:—o.l 2:1.25 15;4 L 0.4 *O'Oi 154 _ 000
2 4*7*6 2.11E 6 08 144
(E.16)

For a circular cylinder and a square cross-section the constants Cc, Ka,max and aL are given in
Table E.6.

C,=0.04 K, o =6 a =04

The peak factor kp should be determined.

kp = \/E * [1 +1.2 arctan{0.75 * L]J

(4*z*K,)*

(4*7*6

k, =2 % [1 +1.2 arctan(0.75 * LB)“B -1.415
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The number of load cycles may be obtained from E.1.5.2.6 using a bandwidth factor of
&, =0.15

The maximum acceleration is:

a, *(2x*f,) =0.746%(2* *0.13) = 0531 m/s’ .

iax = yF‘max
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Appendix 5  Verification Student building “Voorhof”

In this appendix, the dynamic model for bending and torsion is determined and verified in
Simulink for the student building “Voorhof” before and after renovation.

Simulink is a sub program of Mathlab in which graphical programming can be done for
modeling, simulating, and analyzing dynamic systems. Simulink enables you to pose a

question about a system, model it, and see what happens.
The equation of motion for bending and torsion motion can be written as: ([12])

M, 0+C,u+K, u=F
MtarV; + Ctorlr/./ + Ktorl// =M

The number of elements for this building model is 19, with at each node 2 degrees of
freedom. The bending and torsion equations of motions are loaded in separate matrices in
Simulink. The solution of the eigenmatrices required two separate matrices for bending and

torsion. The M, C and K matrices for bending and torsion are (19 x 19) matrices and U, ¥
and F, M are (19 x1) vectors. State space formulation had to be introduced for the bending

and torsion equations of motion because Simulink cannot process a second order differential

equation.

Verification of dynamic bending behaviour: eigenfrequency
before renovation with calibration

Computation of the bending natural frequency

In Matlab the natural frequency ®, can be determined. With 4 =0.0108 and

o, =3.92 rad/s the eigenfrequency of the damped system can be determined:

0, = o1 ¢ =3.92{1-0.0108" =3.92 rad/s

Manual calculation of the bending natural frequency
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A hand calculation will be performed to check that the eigenfrequency calculated by
Simulink is correct. The first natural frequency is calculated using the Raleigh Quotient ([2]

p.801)
w, =C\|(EI | pAI*)
C =352 bending stiffness ET =2.085F£* Nm?
mean density  p =193 kg/m? Area building A=1047.50 m’

height building | =51.3m

o, =C, /(Ef | pAI*) = 3.52\/((2.085512) /(193 *1047.50 * 51.3* )) =4.30 rad/s

The first natural frequency from Mathlab corresponds to the first natural frequency of the
Raleigh Quotient ([2] p.80]) is 1 - (3.92 / 4.30)* 100% = 8.7%

_2z_ 27

A
o, 430

=146 s

Verification of the dynamic torsional behaviour: eigenfrequency
before renovation with calibration
Computation of the natural torsion frequency

In Matlab the natural frequency ®, can be determined. With 4 =0.0108 and

o, =4.021 rad/s the eigenfrequency of the damped system can be determined:

0, = o[t - ¢ =4.02131-0.0108" = 4.021 rad/s

Manual calculation of the torsion natural frequency
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2/ I

p

e @00 [

mode n=1 torsion stiffness GJ =1.863 £?* Nm?
8 2
building height /=513m I = M =106679245kgm
p 2.65m

2/ pl 2*51.3 106679245

P

o, = (27 -V7, [GJ J _2*1 -y [1.863 F® ]:4_05 rad/s

With the outcome of

n_tor
to be calibrated. The torsion stiffness is 0.7% off. (1 - (4.021 / 4.05) * 100% = 0.7%) The
torsion stiffness of the structure is most likely larger that the value determined in section
9.2.1.

above on can see why the building characteristic values have

Verification of dynamic bending behaviour: eigenfrequency after

renovation with calibration

Computation of the bending natural frequency

In Matlab the natural frequency @, can be determined. With ¢ =0.0146 and

o, = 5.35 rad/s the eigenfrequency of the damped system can be determined:

0, = w1 - ¢ =5.35\1-0.0146" = 5.35 rad/s

Manual calculation of the bending natural frequency

A hand calculation will be performed to check that the eigenfrequency calculated by
Simulink is correct. The first natural frequency can be calculated by using the Raleigh
Quotient ([2] p.80])

w, = C\|(EI | pAI*)

n
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C =352 bending stiffness ET =4.26F% Nm?
mean density  p = 213 kg/m? Area building A=1047.50 m’

height building 1=51.3m

o, =C, /(EJ | pAI*) = 3.52\]((4.26512) /(213*1047.50 * 51.3')) = 6.14 rad/s

The first natural frequency from Mathlab corresponds to the first natural frequency of the
Raleigh Quotient ([2] p.80]) is 1 - (5.35/ 6.14)* 100% = 12.9%

n=2Z_ % 10
o 6.14

Verification of the dynamic torsional behaviour: eigenfrequency
after renovation with calibration

Computation of the torsion natural frequency

In Matlab the natural frequency w, can be determined. With ¢ =0.0146 and

@, = 4.84 rad/s the eigenfrequency of the damped system can be determined:

0, = o1 -} = 4.84\1-0.0146* = 4.84 rad/s

Manual calculation of the torsion natural frequency

_*n-Dx [

p
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mode n=1 torsion stiffness GJ = 3.187 £ Nm?
8 2
building height /=513m 1= >3%7E KIM _4o0056604kgm
L 2.65m

X *q _ 12
wn:((z n 1)77) GJ :((2 1 1);z) 3.187 £ _ 4.85rad/s
2/ 7, 2*51.3 127056604

With the outcome of o above on can see why the building characteristic values have

n_tor
to be calibrated. The torsion stiffness is 0.2% off. (1 - (4.84 / 4.85) * 100% = 0.2%) The
torsion stiffness of the structure is most likely larger that the value determined in section

9.2.1.
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Appendix 6  Matlab code Voorhof before renovation

(time domain analysis)

The matlab code which is the same as the Juffertoren is not given.

Below the Matlab code is given for the Voorhof before renovation for return period of one year, the
only difference with the Matlab code for return period of 12.5 years is that the wind parameters for

Harris and Deaves (9.5) are taken and inputted in Matlab file: A_File_to_run_programs.m and

V, =15.79m/s and o, =6.65m/$ (9.6) are inputted in Matlab file: Inputvalues.m

A_File_to_run_programs.m
% Program to run the different modules

% Thesis: Torsion motions of high-rise buildings due to wind loading.
% Author: H.A.O.Richardson (Anthony)

% Clear memory

clear
clear all
clc

close all

% Start timer

tic

disp('-Reading problem data')
%inputting variables of the building construction

save matrices
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B Variables Wallplaces;

o\

Determining of the mass, bendingstiffness polarmoments and
torsionalstiffness of the cross section.

o\

C Voorhof before renovation

o

% Determining maximum wind profile

u _star=3.836; % Friction velocity

kappa=0.4; % Terrain Roughness

d=3.5; % average height of buildings (m)

z 0=0.7; % Terrain Roughness according NEN 6702

step z=1.325;

o°

Height of grid in which the building is divided

% DETERMING V_10
step z=1.0;

[v_mean]=velocitymeanlogmodified(L,u_star, kappa,d,z_0,step z);

Vhub=v_mean (1, 2);

% meanwind velocity according to Harris and Deaves

step z=1.325;
[v_mean]=velocitymeanlogmodified(L,u star, kappa,d,z 0,step z);
vh=max (v_mean) ;

Iz top=(u_star/kappa)/vh;
Iz 10=(u_star/kappa)/Vhub;

save matrices vh Vhub v mean Iz top Iz 10 -append

disp('-Input Simulink data')

[k,K ben,M ben,omega eig ben,a ben,Cd ben,phsi ben,ktor,K tor,M tor,omega e
ig tor,a tor,Cd tor,Cd,E ben]=D Stiffness matrix(v,EI,1,Cd,massfloor,massl,
massl9,G,Jtot, Ip,Ipl,Ipl9,xil,xi2);

save matrices K ben M ben omega eig ben Cd ben a ben v k EI E ben -append;
save matrices K tor M tor omega eig tor Cd tor a tor ktor -append;
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£=1350000;% force on node is
1 crossc=B;

[A ben,B ben,C ben,D ben, fe,fe tor,A tor,B tor,C tor,D tor]=E Space state f
ormulation(f,v,K ben,M ben,Cd ben,omega eig ben,EI,L,1 crossc,K tor,M tor,C
d tor,omega eig tor,1,G,Jtot);

save matrices A ben B ben C ben D ben v -append;

save matrices fe fe tor A tor B tor C _tor D tor -append;

load matrices

uiimport UCl.mat %loading the fluctuating velocities %undo

o°
—

Inputvalues;

tic

[t,UC]=wind0O (yr,zr,U,sigma v,N,deltat, fmax);
toc

save ('UC")

save ('Ucl','uc") % original

5 {

5}
$Are=2.5*1.325; % area of one node which is loaded by wind

Are=(yr (2)-yr(l))*(zr(2)-zr(l));% area of one node which is loaded by wind
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[F,M, t, FvoorWoudenberg, F woud]=F Forces moments 19 DOF (v_mean,N,Ch,Are, rho,
B,deltat,L);

o

% Saving generated forces and Moments

aving force of each time step

save ('F','F','t") %
% Saving moment of each time step

S
save ('M','M','t") S

disp('-Run Simulink ")

$sim('G _Simulink run file');

% Getting the maximums of bending, torsion and bending and torsion

disp( '-Finished analysis. Time:' )
toc
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B_Variables_Wall_Places.m

Thesis:
Author:

oe

L=51.3;

B=80.81;

H=14.2;
rhoconcrete= 2400;
rho=1.29;

Ch=1.2;

o
]

hwall=h-hfl;

nbfloors=L/h;

Pvb=58.3;

gfacade=120;
(1,2kN/m2)

E=3el0;

vu=0.2;

g=9.81;

o
]

o° oo

o

o

o

o

o

Inputting varibles of the construction

Torsion motions of high-rise buildings due to wind loading.
H.A.O0.Richardson

(Anthony)

The outer dimensions of the total building

o

3 [m] length of the building

m] width of the building

] height of the building
kg/m3]specific density concrete
kg/m3]specific density air

-] Thrust and Suction shape factor

[
[m
[
[
[

[m] height of story of the building

[m] lenght of one element

[m] thickness of floor of the building

[m] height of the walls of the building

[-] amount of floors of the building

% [kg/m2] weight of load on the floor (0,7kN/m2)
[kg/m2] weight of facade elements per m2

Limitation to the benchmark Skyscraper page 111)
[N/m2] Youngsmodulus of the concrete C35/B65
Poisson ratio

(-]

[m/s2] Gravitational acceleration

v= 19;

dof= 2;

o

5 units (meters and kN)

xi1=0.0108;
x12=0.0108;
tend=10;

timestep=5e-5;
deltat=0.1;

o oo

oe

% nwallseg is the amount
s

-

number of elements

degrees of freedom per node

% damping ratio of the first eigenmode

% damping ratio of the first eigenmode
duration of the simulink simulation time
fixed timestep in simulink

delta t

wall segments that the walls of the cross section
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\o

> divided into.

nwallsegm=16;

o\

Declaring matrix for the wall segments.

P=zeros (nwallsegm, 4);

o\

The cross-section is divided into 16 wall segments for calculation.

o\

The origin of the cross sectiion of the building is taken in the left
bottom corner.

o\

% Length x Length vy Distance x midpoint to Distance vy
midpoint to
% Startpoint O

Startpoint O

=15.440; P(1,2)=0.500; P(1,3)=15.440/2;

2

6.920; P(2,2)=0.600; P(2,3)=6.920/2;

0.5+4.7+0.6+14.74+0.6/2;

1.000; P(3,2)=0.300; P(3,3)=6.620+0.3+1.1+1.0/2;

0.5+4.7+0.6+14.74+0.3/2;

0.300; P(4,2)=3.720; P(4,3)=6.620+0.3+1.1+1.0+0.3/2;

0.5+4.7+0.6+14.744+0.3-2.72/2;

6.120; P(5,2)=0.300; P(5,3)=15.44-6.120/2;
=0.5+4.74+40.6+14.74-2.1-0.3/2;

3.100; P(6,2)=0.300; P(6,3)=15.44-3.02-0.3-3.1/2;

0.5+4.7+0.6+14.74-2.1-0.3-1.02-0.3/2;

3.100; P(7,2)=0.200; P(7,3)=15.44-3.02-0.3-3.1/2;

0.5+4.740.6+14.74-2.1-0.3-1.02-0.3-2.3-0.2/2;

0.300; P(8,2)=14.740; P(8,3)=6.620+0.3/2;

0.5+4.7+0.6+14.74/2;

0.300; P(9,2)=7.900; P(9,3)=15.44-3.02-0.3/2;

0.5+4.74+0.6+14.74/2;

Lol o v vl Bl v B v s o i v B v ALy B v B v L Bl v B v B B v B v By v

0,1)=3.100; P(10,2)=0.200; P(10,3)=15.44-3.02-0.3-3.1/2;
0,4)=0.54+4.7+0.64+42.1+0.3+1.024+40.3+2.34+0.2/2;
P(11,1)=3.100; P(11,2)=0.300; P(11,3)=15.44-3.02-0.3-3.1/2;
P(11,4)=0.5+4.74+0.6+2.1+0.3+1.02+0.3/2;
P(12,1)=6.120; P(12,2)=0.300; P(12,3)=15.44-6.120/2;
P(12,4)=0.5+4.7+0.6+2.140.3/2;
P(13,1)=0.300; P(13,2)=3.720; P(13,3)=6.620+0.3+1.14+1.0+0.3/2;
P(13,4)=0.5+5.0+2.72/2;
P(14,1)=6.920; P(14,2)=0.600; P(14,3)=6.920/2;
P(14,4)=0.5+4.7+0.6/2;
P(15,1)=1.000; P(15,2)=0.300; P(15,3)=6.620+0.3+1.1+1.0/2;
P(15,4)=0.5+5.0+0.3/2;

P(16,1)=15.440; P(16,2)=0.500; P(16,3)=15.440/2;
P(l16,4)=0.5/2;

$save matrices
save matrices L B H rhoconcrete rho Ch h 1 hwall g nbfloors hfl Pvb gfacade
E vu v xil xi2 tend timestep deltat nwallsegm P -append
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C_Voorhof_before_renovation.m

oo

Determining stiffness and torsion matrix for voorhof

oo

oo

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

oo

$INPUT
v=19; % number of elements [-]
1=2.65; % lenght of element [m]
mvb=58.3; % variable floor mass [kg/m2]
rhosteel=7900; % Mass denisity of steel [kg/m3]

o)

%$Bending before renonvation

SEI=2.53E12; %(1)
EI=2.085E12; %(2)

o\

bending stiffness
bending stiffness modified

o

% maas buidling 10.943E6/19 page 129b[m]

%1
massfloor=(10.943E6-(10.943E6/(19*%2)))/18;

massl1l9=10.943E6/(19*2); % Weight of top floor is approximated half
of other floors

o

page 129 % M.Pols

%mass steel = 0.538E6
%mass floor = 7.672E6
%mass partition walls = 1.764E6
%mass facade = 0.969E6

massfloor=580514;

floormasstot= 10.943E6;

floormassl9= 7.672E6+0.5* (0.538E6+1.764E6+0.969E6) ;

verh= floormassl9/floormasstot; %0.85 without foundation
$verh=floormassl9/ (floormasstot+1.451E6);%0.75 with foundation

massl9=massfloor*verh;
jo)
51

5}

% Tekst f building is 0.641 to 0.750 HZ Page 139 [17]
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Q

% Additional strucural stiffness (walls and steel frame) p.153

Q

% Strucural stiffness building (walls, steel frame, non structural
elements) p.153

Q

%$Ixx structural steel (Pols) (Before Renovation)

Ess=2.1E5*1000*1000; %[N/m2] 2.1E5 N/mm2 modulus of elasticity
Iss=EI/Ess; SHEA 260

%Issy=Iss/ (3668/10455) ;

$Issy=4*Iss;

$Issy=16*Iss;

o)

% determining Issy

Y1=(2*161304+2*%2530)/(1000*1000); % mm2area of cross-section profile
Y1

Y2=(2*11250+2*%19160)

Y3=(2*24020+2*2530) /

Y4=(2*24020+2*2530) /

1000*1000); %area of cross-section profile Y1

/(1000*1000); %area of cross-section profile Y1
(
(1000*1000) ; %Sarea of cross-section profile Y1

Issy=2*% (Y3*4"2+Y3*872+Y3*12724Y3*16724Y3*20"2) + ((Y3+Y4) *2472)+ ((Y2+Y4) *28"2
)+ ((Y34Y4) *3272) +2*Y2*3672+42*Y1*40"2;

% Shearmodulus of the structural steel . ( Ridigidy modulus)

$Ess=2.1E5*1000*1000; %$[N/m2] 2.1E5 N/mm2 modulus of
elasticity

Gss=Ess/ (2* (1+vu)) ; % [N/m2]
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%Gss=79.3E9; % Shear modulus struc steel 79.3
Gpa[N/mm2] website

% Shearmodulus of the buidling. ( Ridigidy modulus)

°

G=Gss; % Shear modulus Steel (before renovation)

[N/m2]

%$G=3.6E11;

%$torsion constant of structural steel

% J van 1 profile is 54.2 cm4

]

Jss=8*54.2/(10000*10000); % [m4]

%$torsion constant of concrete walls

$Jtot=Jss; % Torsion constant (before) [m4]

$Jtot=12000000*Jss;

o

% The torsional stiffness of one floor of the structure.
$TorSTif=G*Jtot;

$TorSTif=4.53E10;% (1) % determined in Matrix CAE
TorSTif=1.863E12; % modified

Jtot=TorSTif/Gss;

%$Polar moment of inertia (Before renovation)

%$Strucural steel (before renovation)

Ixtot=Iss; % HEA 260

Iytot=Issy;

% Polar inertia of the walls Ix and Iy of a floor

0
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Ipwall=Ixtot+Iytot;

Q

% Polar inertia of the floor Ix and Iy

Ipfloor=((1/12) *H*B"3)+((1/12) *B*H"3) ;

Q

%$Before Renovation

Q

% Polar inertia of the floor segments node 1 to node 18

Ip=Ipwall*h*rhosteel+Ipfloor* (hfl*rhoconcrete+mvb) ;

o

% Polar inertia of the top floor of the building

Ipl9=Ipwall* (h/2) *rhosteel+Ipfloor* (hfl*rhoconcrete+mvb) ;

$Arbituarly chosen values (calibration)

x11=0.0108;
x12=0.0108;

o°

damping ratio of first eigenmode [-]
damping ratio of second eigenmode [-]

o°

massl=massfloor;
Ipl=Ip;

o°

Second moment of inertia 1 floor

o)

% Total mass of the buidling

% mass building of 18 floors walls + top floor
mass=massl+ (v-2) *massfloor+massl9;
% mass=v*massfloor+H*B*hfloor*rhoconcrete;

% Total weigth of the building

Q gebouw=mass*g; % Gewicht building
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o)

% Spefic density of building [kg/m3]

rhob=mass/ (B*H*L) ;

% mass per meter building height [kg/ml]

rholl=mass/ (L) ;

% mass per area [kg/m2]

rho m2=mass/ (B*H) ;
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D_Stiffnes_matrix.m

function[k,K ben,M ben,omega eig ben,a ben,Cd ben,phsi ben, ktor,K tor,M tor
,omega eig tor,a tor,Cd tor,Cd,E ben]=D Stiffness matrix(v,EI,1,Cd, massfloo
r,massl,massl9,G,Jtot,Ip,Ipl,Ipl9,xil,xi2)

oo

oe

Determining stiffness and torsion matrix

oe

$INPUT

% v number of elements [-]

% ET: bending stiffness [Nm2 ]
S 1: lenght of element [m]

% massfloor: mass of a floor [m]

% massl: mass of bottom floor [m]

% massl9: mass of top floor [m]

% G: Shear modulus [N/mm2 ]
% Jtot: Torsion constant [mm4 ]
% Ip: Second moment of inertia [mm4 ]
% Ipl: Second moment of inertia 1 floor [mm4 ]
% Ipl9: Second moment of inertia 19 floor [mm4 ]
% xil: damping ratio of first eigenmode [-]

% xi2: damping ratio of second eigenmode [-]
$OUTPUT

% k: Bending stiffness field elements

% K ben: Bending stiffness matrix

% M ben: Mass stiffness matrix

% omega eig ben: Eigen frequency bending matrix MDF

% a_ben: Damping martix first and second term

% Cd_ben: Damping matrix bending MDF

% phsi ben: Damping ratios matrix bending

% ktor: Torsional stiffness field elements

% K tor: Torsion stiffness matrix

% M tor Mass torsion matrix

% omega eig tor: Eigen frequency torsion matrix MDF

% a_tor: Damping martix first and second term

% cd tor: Torsion damping matrix MDF

% Cd: Damping matrix contoles system bending MDF
% omega_ eig: Eigen frequency contolled bending matrix MDF

o° oP

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

o\

1 -2 1]1:;% bending element stifnessmatrix

K ben=zeros(v+4,v+4); % Total systemmatrix bending
for o=0:1:(v-1)%v-1
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for n=1:1:3
for m=1:1:3
K ben (o+n, 0o+m)=K ben (o+n, o+m)+k (n,m) ;
end
end
end

$Rearanging bending matrix for simulink

K_ben(:,1)=[];
K ben(1,:)=[1;
K_ben(:,1)=[];
K_ben(1,:)=[];

% Top element

% Delting the unwanted and coloum k-matrix for half element.

K ben(:,21)=[]; % K ben(:, ((Size(K ben,2))+2)=[]
K ben(21,:)=[];
K ben(:,20)=[];
K ben (20, :)=[1;

M ben=zeros (v,V);
for n=1:1:v;

M ben (n,n)=massfloor;
end

% Making the first and last term of mass matrix correct

M ben(n,n)=massl9;

E is the modal matrix; omegakw is modal K*E = M*E*OMEGAKW

[E_ben,omegakw ben] = eig(K ben,M ben);
£

end

-287-

May 2022



%
TU Delft Torsion motions of high—rise buildings due to wind loading

a ben=2* (inv ([1/ (omega eig ben(l)) (omega eig ben(1l));
1/omega _eig ben(2) omega eig ben(2)])*[xil;xi2]);
Cd ben=a ben(l,1)*M ben+a ben(2,1)*K ben;

% damping ratio of the eigenmodes of the structure
for n=1:1:v;

phsi ben(n)=a ben(l,1)/(2*omega_eig ben(n))+a ben(2,1)/2*omega _eig ben(n);
end

5 {

figure

plot (phsi ben)

xlabel ('eigenmode')

ylabel ('value')

title ('Plot Damping Ratio Bending')

%}

save matrices K ben M ben omega eig ben Cd ben a ben v -append;

oo

% Torsional Field elements

ktor=(G*Jtot) /1*[1 -1
-1 11, % 1 floor height is 2.65 meters

o)

K tor=zeros(v+2,v+2); % Total systemmatrix bending

for o=0:1:(v-1)
for n=1:1:2
for m=1:1:2
K tor (o+n,o+m)=K tor (o+n,o+m)+ktor (n,m);
end
end
end
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o\

Bottom element
Deleting the unwanted row and coloum k-matrix for half element.

oe

K tor(:,1)=[];
K _tor(l,:)=[];

o\

Top element
Deleting the unwanted and coloum k-matrix for half element.

o°

K tor(:,20)=[];
K tor(20,:)=[];

oo

el

M tor=zeros (v,V);

for n=1:1:v;
M tor(n,n)=Ip;
end

o\

Making the first and last term of the torsional matrix correct.

%M tor (1l,1)=Ipl;
M tor(n,n)=Ipl9;

o°

% E is the modal matrix; omegakw is modal K*E = M*E*OMEGAKW
[E_tor,omegakw tor] = eig(K tor,M tor);
for n=1:1:v

omega_eig tor (n)=sqgrt (omegakw tor(n,n));
end

a_tor=2*(inv([1l/ (omega eig tor(l)) (omega eig tor(l));
1/omega eig tor(2) omega eig tor(2)])*[xil;xi2]);
Cd _tor=a tor(l,1)*M tor+a tor(2,1)*K tor;

% damping ratio of the eigenmodes of the structure
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for n=1:1:v;

phsi tor(n)=a tor(l,1)/(2*omega eig tor(n))+a tor(2,1)/2*omega eig tor(n);
end

o°

{
figure
plot (phsi tor)
xlabel ('eigenmode')
ylabel ('value')
title ('Plot Damping Ratio Torsion')

o°
—

save matrices K tor M tor omega eig tor Cd _tor a tor -append;
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E_Space_state_formulation.m

function[A ben,B ben,C ben,D ben, fe,fe tor,A tor,B tor,C tor,D tor]=E Space
_state formulation(f,v,K ben,M ben,Cd ben,omega eig ben,EI,L,1 crossc,K tor
M tor,Cd tor,omega eig tor,1,G,Jtot)

o°

oe

Determining Space state formulation bending and torsion,Plotting
displacement of building bending and torsion, Space stateformulaton
bending and torsion,Validation of dynamic behaviour bending and torsion.

o o

o°

$INPUT

S f: Total force of horizontal row of nodes [N]

% v Number of elements [-]

% K ben: Bending stiffness matrix

% M ben: Mass stiffness matrix

% Cd ben: Damping matrix bending MDF

% omega_eig ben: Eigen frequency bending matrix MDF [rad]
% ET: bending stiffness [Nm2 ]
% L: Height building [m]

% 1 crossc: Width building [m]

% K tor: Torsion stiffness matrix

% M tor: Mass torsion matrix

% Cd tor: Damping matrix bending MDF

% omega eig tor: Eigen frequency torsion matrix MDF [rad]
% 1: Height building [m]

% G: Shear modulus [N/m2]
% Jtot: Torsion constant [mm4 ]
$OUTPUT

% A ben State space bending input matrix for simulink
% B ben State space bending input matrix for simulink
% C _ben State space bending input matrix for simulink
% D ben State space bending input matrix for simulink
% fe Bending Frequency [Hz]
% fe tor Torsion Frequency [Hz]
% A tor State space torsion input matrix for simulink
% B tor State space torsion input matrix for simulink
% C_tor State space torsion input matrix for simulink
% D tor State space torsion input matrix for simulink

o

o° oP

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

o\

% Space state formulation
% Changing the matrices into formulation readable for simulink
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for lr=1:1:v
F(lr,1)=%f;
end

o

% Bending Displacement

u_ben=(-inv (K ben)) *F;

% The z cordinates of the nodes in vertical direction
Zz= zeros(v,1);

z722=2.65;

for zrn=l:1l:v

Z(zrn,l)=(zzz+(zrn-1)*2.65);
end

)

figure
plot (abs (u_ben), 2)

axis ([0 0.21 0 551)
set(gca, 'YTick',0:10:55)
set (gca, 'XTick',0:0.05:0.20)

xlabel ('"u(m)ben')
ylabel ('z (m)")
title('Plot Static deflection')

o)

%Space State Formulation.

% Placing space state formlation Matrix A

A2 ben=eye (v,V);
A3 ben=-inv (M _ben) *K ben;
A4 ben=-inv (M ben) *Cd ben;

[}

% Placing space state formlation Matrix B
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Bl ben=inv (M ben);
Cl ben=eye (v,V);

A ben(l:v,v+1:1:2*v)=A2 ben;
A ben(v+l:1:2*v,1:v)=A3 ben;
A ben(v+l:1:2*v,v+1:1:2*v)=A4 ben;
B ben(v+1l:1:2*v,1:v)=Bl ben;

C_ben=eye (2*v,2*V);
D ben=zeros (2*v,v);

o°

Zie matrix omega eigen ben(l,1) demping first natural frequency
zetal=0.01;

omega_e ben=omega eig ben(l,1)*(l-zetal”2)"0.5;

[}

% Equivelent stiffness
keg=(8*EI)/ (1.0*L"4);

verp=500000* (1.0*L"4) /(8*EI); %500 kn/ml (story 2.65)=1350 kn/ml
diff=verp+u ben(19,1);

diffper=diff/verp*100;

diffper2=(1-(verp/u ben(19,1)));

\o

s zetal=0.01; not used because in the memory already

Ftop=-1*(keg*u ben(19,1));

o°

Equivelent Mass

meg=keq/ (omega_eig ben(l,1)"2);
zetameqg=0.05;

we=omega_e ben;

fe=we/ (2*pi);

oo

oo

o\
| -~

for n=1:1:20000
t=n/100;

sx_ 48

(n)=(Ftop/keq) * (cos (we*t)) ;
x 48 (n

(

(

n)
)=1.05* (Ftop/keq) * (1- (exp (-

(keg/meq) *t)~0.5))) * (cos (we*t))) ;

n)=(Ftop/keq) * ( (exp (-zetameg* ( ( (keg/meq) *t)~0.5))) * (cos (we*t))) ;

zetameg* (
sx_47
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tijd(n)=n/100;
end

figure
plot(tijd,x 48,'b")

hold on
splot (tijd,x 47,'r")
hold off

xlabel ('t (s
ylabel ('u(m)'

]

axis ([0 80 0 0.4])
) ")
) ")

el

% over on each side 0.17
over=0.17;

% horizondat division length
Yrd=2.6/2;
Arm=1 crossc/2-over-Yrd;
£=186300; %
m=f*Arm*10; %

o)

Force on each node in N
*10 voor groter moment 21797100 Nm

% To validate the static torsional displacement we will put a positive

moment and then a negative moment on each consecative node.

M= zeros(v,1);

lr=1:1:v
M(lr,1l)=-m;

for

end
u_tor=-inv (K tor)*M;
2y tor= zeros(v,1);

%zzz= 1.5; undo for normal run
zrn=1:1:v

for

Zy _tor(zrn,l)=(zzz+(zrn-1)*3);
end

% The z cordinates of the nodes in vertical

direction

Anthony Richardson
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o

$Plotting rotational displacment of the building.

figure
plot (u tor,2)

%axis ([0 0.21 0 1457)
%set(gca, 'YTick',0:20:144)
%set (gca, 'XTick',0:0.05:0.21)

xlabel ('u tor(m)"')

ylabel ('z (m)")

t

[}

o

o\

o

o

oo

o\

o

o\°

itle('Plot Static Rotational Displacement')

Space State Formulation.

Placing space state formlation Matrix A
A2 tor=eye(v,Vv);
A3 tor=-inv (M tor)*K tor;
A4 tor=-inv (M tor)*Cd tor;

Placing space state formlation Matrix B

Bl tor=inv (M _tor);
Cl tor=eye(v,v);

A tor(l:v,v+1:1:2*v)=A2 tor;

A tor(v+l:1:2*v,1:v)=A3 tor;

A tor(v+l:1:2*v,v+1:1:2*v)=A4 tor;
B tor(v+l:1:2*v,1:v)=Bl tor;
C_tor=eye(2*v,2*v);

D tor=zeros (2*v,V);

Zie matix omega eigen tor(l,1l) demping first natural frequency
omega_ e tor=omega eig tor(l,1)*(l-zetal”2)”"0.5;
fe tor=omega eig tor(l,1)/(2*pi); % added 04/01

Equivelent stiffness
keg_tor=(1*Arm)/G*Jtot;

zetal=0.01; not used because in the memory already

-295- May 2022



%
TU Delft Torsion motions of high—rise buildings due to wind loading

Mtop=-1* (keq tor*u tor(18,1));

Q

% Equivelent Polar moment

Ip eg=keq tor/(omega eig tor(l,1)"2);
zetameqg=0.05;

o°
—~—

for n=1:1:20000
t=n/100;

$x_ 48 (n)=(Mtop/keq tor)* (l-cos(we*t));
x_48_tor(n)=1.05*(Mtop/keq tor)* (1-(exp (-

zetameq*(((keq_tor/lp_eq)*t)AO.S))7*(cos(omega_e_tor*t)));
x 47 tor(n)=(Mtop/keq tor)* (1-(exp (-
zetameqg* ( ((keq tor/Ip eq)*t)”0.5)))* (cos(omega e tor*t)));

tijd(n)=n/100;
end

figure
plot (tijd,x 48 tor,'b'")

hold on
plot(tijd,x 47 tor,'r")
hold off

$axis ([0 80 -0.0001 0.00017)

o°
—
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F_Forces_moments_19_DOF.m

function[F,M, t, FvoorWoudenberg, F woud]=F Forces moments 19 DOF (v_mean,N,Ch,
Are, rho,B,deltat, L)
Syntax: function[F,M]=Force mod(v_mean)

o° oo

o\

Summation of mean wind speed and flucuating wind speed determining the
Nodal forces and Nodal moments for the grided area.

o\

oo

$INPUT

% vmean: Mean wind speead at height

[kg/m]

% UCl: Fluctuating velocity from the random generator

[m/s]

$OUTPUT

% F Force martix [N]
% M Moment matrix

[Nm]

o°

o\

Thesis: Torsion motions of high-rise buildings due to wind loading.
Author: H.A.O.Richardson (Anthony)

o\

load matrices

load UC1 $Importing the fluctuating velocity from the random
generator.

Uf(:,:,5:1:30)=0C; %places matrix UC in matrix Uf from position 8 to
37

Uf(:,:,1)=0£f(:,:,8); %places the fluctuating values of Uf(:,:,8) in
Uf(:,:,2)and Uf(:,:,1)

Uf(:,:,2)=U£(:,:,8);

Uf(:,:,3)=Uf(:,:,8); %places the fluctuating values of Uf(:,:,8) in
Uf(:,:,4)and Uf(:,:,3)

Uf(:,:,4)=Uf(:,:,8);

¥N=8192; Stake away
% Mean velocity according to NEN 6702
$v_mean(1,1,3:1:93)=u_star/kappa*log(z-d/z 0); % mean wind speed at
reference height

$for n=1:
v_mean2(1,1,5:1:36)=v_mean;

%end
for x=1:1:4

v_mean2(l,1,x)=v_mean2(1,1,3); %velocity out of wvmean(l,1,3) is given to
vmean (1l,1,1-7)

end

vV_mean=v_mean2;
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o® o° o°

o°

v _mean(:,1
buidling

o°
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for this

v mean(:,11,:)=v mean(l,1,:);
v mean(:,12,:)=v mean(1l,1,:);
v mean(:,13,:)=v mean(1l,1,:);
v mean(:,14,:)=v mean(1l,1,:);
v mean(:,15,:)=v mean(1l,1,:);
v mean(:,16,:)=v mean(1l,1,:);
v mean(:,17,:)=v mean(1l,1,:);
v mean(:,18,:)=v mean(1l,1,:);
v mean(:,19,:)=v mean(1l,1,:);
v mean(:,20,:)=v mean(1l,1,:);
v mean(:,21,:)=v mean(l,1,:);
v mean(:,22,:)=v mean(l,1,:);
v mean(:,23,:)=v mean(l,1,:);
v mean(:,24,:)=v mean(1l,1,:);
v mean(:,25,:)=v mean(1l,1,:);
v mean(:,26,:)=v mean(l,1,:);
v mean(:,27,:)=v mean(1l,1,:);
v mean(:,28,:)=v mean(1l,1,:);
v mean(:,29,:)=v mean(1l,1,:);
v mean(:,30,:)=v mean(1l,1,:);
v mean(:,31,:)=v mean(l,1,:);
v mean(:,32,:)=v mean(l,1,:);

v_mean=repmat (v_mean, [N 1 1]);

U=Uf+v_mean; $Sommation of the fluctuation velocity and the mean
velocity in matrix U
U(:,:,32)=0; % U(:,:,94)=0;This term in needed for the active

damping system ?? on even number at top

F=1/2*Are*Ch*rho* (U) .”2; % turrning velocities on area into forces

% Moments code
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M=zeros (size (F)); % making Moment matrix (M)the same size as F matrix

for n=1:1:36 % Reading 32 half heights of 1,5 meters into 14

% make 32 a variable

for p=1:1:32 % horizontal distance is divided in 32 pieces Yr
if p<le
M(:,p,n)=F(:,p,n)*(-1)*((B/2-(p-0.5)*2.5)-0.405) ; % B/2-over-
Yrd;
else

M(:,p,n)=F(:,p,n)*(1)* ((B/2+((p-16.5)*2.5)-0.405));

end

end
end
M=sum (M, 2) ; % Summation of the moments of each row in the
matrix. 6 horizontal places
M=squeeze (M) ; % remove the singleton variable.
m(l:1:N,1:1:4)=2*M(1:1:N,1:1:4); % bottom 2 nodes
m(l:1:N,1)=0; %half of bottoms node %
kelder

for n=5:1:19

of 1,5 meters into 45
m(:,n)=M(:,2*n-3)+M(:,2*n-2);
m(:,n)=M(:,2*n-3)+M(:,2*n-2);

end

M=m;

Summating the system 90 half heights

o°

oe

into 45 spaces of 3 meters
into 45 spaces of 3 meters

oe

o)

$Ending of moment code

F=sum (F, 2) ; % Summation of the forces of each row in the
matrix. 6 horizontal places
F=squeeze (F) ; % remove the singleton variable.
f(1:1:N,1:1:4)=2*F(1:1:N,1:1:4); % bottom 2 nodes

f(1:1:N,1:1)=0; $Firstnode

for n=5:1:19
f(:,n)=F(:,2*n-3)+F(:,2*n=-2);
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t=[deltat:deltat: (N*deltat)]';

FvoorWoudenberg=sum (F, 2) ;
F_woud= (FvoorWoudenberg (1)) /L;

Anthony Richardson
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Inputvalues.m

oe

Input values for simulation of a turbulent wind field

oe

oe

INPUT:
yr, zr: specification of coordinates on the facade of the structure
v_10: mean wind velocity at 10 m above the surface of the earth (m/s)
sigma: standard deviation of the fluctuating part of the wind speed

m/s)

N: number of time points (including zero); N must be a power of 2
deltat: time step (s)
fmax: maximum frequentie spectrum (Hz)

OUTPUT:
UC: constrained turbulent wind velocities (m/s)

oe

o\

o0 —~ o°

o® o o o oP

o°

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o\

yr=1.655:2.5:80.81;
zr=(10.225:1.325:51.3);
v_10=21.45; 5 (Urban 2)

U=v_10;

sigma=2.44;
sigma v=sigma;

N=8192;
deltat=.1;
fmax=5;
timestep=0.1;

save matrices yr zr U sigma v N deltat timestep fmax -append
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specest_test_run.m

o\©

Checking the Spectral density function

o\°

o\©

Thesis: Torsion motions of high-rise buildings due to wind loading
Author : H.A.o.Richardson (Anthony)

o°

clear
close all

Q

% Loading the generated wind velocities

load UC1

o

% Selecting a node and generating a time vector
u=UC(:,1,1);
t=(1:1:8192)*0.1;

[}

% Plotting figure time versus the generated wind velocities

figure
plot(t,u);

o

% Calling the program specest.m (different ranges to choose from)

[Pxx, freq] = specest(u,1024,10);
[Pxx, freq] = specest(u,512,10);
[Pxx, freq] = specest(u,256,10);

o)

% Plotting output specest

figure
plot (freq, Pxx) ;

figure
semilogy (freq, Pxx) ;

o)

% Making a frequency time line and inputting the inputted values for
windspeed at hub height and standard deviation of wind speed in the
autopower spectrum

f=(0.001:0.001:5);
S=autopow (f,21.45,2.44);

Q

% Plotting frequency versus autopower spectrum

figure

semilogy (f,S);

% Plotting frequency versus autopower spectrum and generated wind
velocities

figure
semilogy(f, S, freg(2:end),Pxx(2:end)) ;
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Appendix 7  Matlab code Voorhof after renovation

(time domain analysis)

The matlab code which is the same as the Juffertoren and Voorhof before renovation is not given.

Below the Matlab code is given for the Voorhof after renovation for return period of one year, the only
difference with the Matlab code for return period of 12.5 years is that the wind parameters for Harris

and Deaves (9.5) are taken and inputted in Matlab file: A_File_to_run_programs.m and

V, =15.79m/s and o, =6.65m/$ (9.6) are inputted in Matlab file: Inputvalues.m

A_File_to_run_programs.m

% Program to run the different modules

% Thesis: Torsion motions of high-rise buildings due to wind loading.
% Author: H.A.O.Richardson (Anthony)

% Clear memory

clear
clear all
clc

close all

% Start timer

tic

disp ('-Reading problem data')
$inputting variables of the buidling construction

save matrices
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B Variabels Wallplaces;

o\

Determining of the mass, bendingstiffness polarmoments and
torsionalstiffness of the cross section.

o\

C Voorhof after renovation

Q

% Determining maximum wind profile

o°

u star=3.836; Friction velocity

kappa=0.4; % Terrain Roughness
d=3.5; % average height of buildings (m)
z 0=0.7; % Terrain Roughness according NEN 6702

o

step z=1.325; Half of floor length

% DETERMING V_lO
step z=1.0;
[v_mean]=velocitymeanlogmodified(L,u_star, kappa,d,z_0,step z);

Vhub=v_mean (1, 2);

o)

% meanwind velocity according to Harris and Deaves

step z=1.325;
[v_mean]=velocitymeanlogmodified(L,u star, kappa,d,z 0,step z); %CHANGE
vh=max (v_mean) ;

Iz top=(u_star/kappa)/vh;

Iz 10=(u_star/kappa)/Vhub;

save matrices vh Vhub v mean Iz top Iz 10 -append

disp('-Input Simulink data')

[k,K ben,M ben,omega eig ben,a ben,Cd ben,phsi ben, ktor,K tor,M tor,omega e
ig tor,a tor,Cd tor,Cd,E ben]=D Stiffness matrix(v,EI,1,Cd,massfloor,massl,
massl9,G,Jtot, Ip,Ipl,Ipl9,xil,xi2);

save matrices K ben M ben omega eig ben Cd ben a ben v k EI E ben -append;
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save matrices K tor M tor omega eig tor Cd _tor a tor ktor -append;

£f=1350000;% force on node is
1 crossc=B;

[A ben,B ben,C ben,D ben,fe, fe tor,A tor,B tor,C tor,D tor]=E Space state f
ormulation(f,v,K ben,M ben,Cd ben,omega eig ben,EI,L,1 crossc,K tor,M tor,C
d tor,omega eig tor,1,G,Jtot);

save matrices A ben B ben C ben D ben v -append;

save matrices fe fe tor A tor B tor C tor D tor -append;

% Fluctuatiing wind (wind generator)

load matrices

uiimport UCl.mat %loading the fluctuating velocities %undo

o°
—

Inputvalues;

tic

[t,UC]=windO (yr,zr,U,sigma v,N,deltat, fmax);
toc

save ('UC")

save ('UC1','UC') % orignal modify

5 {

5}
$Are=2.5*1.325; % area of one node which is loaded by wind

Are=(yr(2)-yr(l))*(zr(2)-zr(l));% area of one node which is loaded by wind

[F,M, t, FvoorWoudenberg, F woud]=F Force moments 19 DOF(v_mean,N,Ch,Are, rho,B
,deltat,L);
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save ('F','F','t")
save ('M','M','t")

Saving moment of each time step
Saving moment of each time step

o
o
o
]

disp('-Run Simulink ")
$sim('G_Simulink run file');

% Getting the maximums of bending, torsion and bending and torsion

$H Max acceleration values and graphs output

disp( '-Finished analysis. Time:' )
toc
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B_Variables_Wall_Places.m

% Inputting varibles of the construction

% Thesis: Torsion motions of high-rise buildings due to wind loading.
% Author: H.A.O.Richardson (Anthony)

oe

The outer dimensions of the total building

L=51.3; % [m] length of the building

B=80.81; % [m] width of the building

H=14.2; % [m] height of the building

rhoconcrete= 2400; % [kg/m3]specific density concrete
rho=1.29; % [kg/m3]specific density air

Ch=1.2; % [-] Thrust and Suction shape factor
h=2.65; % [m] height of story of the building
1=h; % [m] lenght of one element

hfl=0.15; % [m] thickness of floor of the building
hwall=h-hfl; % [m] height of the walls of the building
nbfloors=L/h; % [-] amount of floors of the building
$Pvb=70; % [kg/m2] weight of load on the floor (0,7kN/m2)

mvb=58.3; % 22/02

o°

[kg/m2] weight of load on the floor (0,7kN/m2)

vu=0.2; % [-] Poisson ratio
rhosteel=7900; % Mass denisity of steel [kg/m3]
sgfacade=120; % [kg/m2] weight of facade elements per m2
(1,2kN/m2)
% Limitation to the benchmark Skyscraper page 111)
$E=3e10; % [N/m2] Youngsmodulus of the concrete C35/B65
g=9.81; % [m/s2] Gravitational acceleration
v= 19; % number of elements
dof= 2; % degrees of freedom per node

% Damping ratios
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xi1=0.0146; % damping ratio of the first eigenmode
xi12=0.0146; % damping ratio of the first eigenmode
tend=10; % duration of the simulink simulation time

o°

timestep=5e-5;
deltat=0.1;

fixed timestep in simulink
delta t

o\

% nwallseg is the amount wall segments that the walls of the cross section
S
% divided into.

-

nwallsegm=16;

o°

Declaring matrix for the wall segments.

P=zeros (nwallsegm, 4);

o\

The cross-section is divided into 16 wall segments for calculation.

o\

The origin of the cross sectiion of the building is taken in the left
bottom corner.

o\

% Length x Length vy Distance x midpoint to Distance vy
midpoint to
% Startpoint O

Startpoint O

=15.440; P(1,2)=0.500; P(1,3)=15.440/2;

2

6.920; P(2,2)=0.600; P(2,3)=6.920/2;

0.5+4.7+0.6+14.74+0.6/2;

1.000; P(3,2)=0.300; P(3,3)=6.620+0.3+1.1+1.0/2;

0.5+4.7+0.6+14.74+40.3/2;

0.300; P(4,2)=3.720; P(4,3)=6.620+0.3+1.1+1.0+0.3/2;

0.5+4.740.6+14.74+0.3-2.72/2;

6.120; P(5,2)=0.300; P(5,3)=15.44-6.120/2;
=0.5+4.74+40.6+14.74-2.1-0.3/2;

3.100; P(6,2)=0.300; P(6,3)=15.44-3.02-0.3-3.1/2;

0.5+4.7+0.6+14.74-2.1-0.3-1.02-0.3/2;

3.100; P(7,2)=0.200; P(7,3)=15.44-3.02-0.3-3.1/2;

0.5+4.740.6+14.74-2.1-0.3-1.02-0.3-2.3-0.2/2;

0.300; P(8,2)=14.740; ©P(8,3)=6.620+0.3/2;

0.5+4.7+0.6+14.74/2;

0.300; P(9,2)=7.900; P(9,3)=15.44-3.02-0.3/2;

0.5+4.7+0.6+14.74/2;

vl v B v v Bl vl v IR s B v B v By v B v B v Bl o Bl v B v B B v B v By v

0,1)=3.100; P(10,2)=0.200; P(10,3)=15.44-3.02-0.3-3.1/2;
0,4)=0.5+4.7+0.6+2.1+0.3+1.0240.342.340.2/2;
P(11,1)=3.100; ©P(11,2)=0.300; ©P(11,3)=15.44-3.02-0.3-3.1/2;
P(11,4)=0.5+4.74+0.6+2.1+0.3+1.02+0.3/2;
P(12,1)=6.120; P(12,2)=0.300; P(12,3)=15.44-6.120/2;
P(12,4)=0.5+4.7+0.6+2.140.3/2;
P(13,1)=0.300; P(13,2)=3.720; P(13,3)=6.620+0.3+1.14+1.0+0.3/2;
P(13,4)=0.5+5.0+2.72/2;
P(14,1)=6.920; P(14,2)=0.600; P(14,3)=6.920/2;
P(14,4)=0.5+4.7+0.6/2;
P(15,1)=1.000; P(15,2)=0.300; P(15,3)=6.620+0.3+1.1+1.0/2;
P(15,4)=0.5+5.0+0.3/2;
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lav]

(16,1)=15.440; P(16,2)=0.500; P(16,3)=15.440/2;
P(l16,4)=0.5/2;

save matrices L B H rhoconcrete rho Ch h 1 hwall rhosteel g nbfloors hfl
mvb v xil xi2 tend timestep deltat nwallsegm P -append
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C_Voorhof_after_renovation.m

oo

Determining stiffness and torsion matrix for voorhof

oo

oo

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

oo

oe

$INPUT

$v=19; S number of elements [-1]
$1=2.65; S lenght of element [m]
smvb=58.3; % variable floor mass [kg/m2]
$rhosteel=7900; % Mass denisity of steel [kg/m3]
%$Bending before renovation

$EIb=2.53E12; % (1) % bending stiffness

EIb=2.085E12; %(2) % bending stiffness

%1

EI=2.53E12; % bending stiffness

massfloor=607944; % mass of a floor maas buidling

10.943E6/19 page 129
massl19=303972;

%}

o°

mass of top floor

o°

Tekst f building is 0.641 to 0.750 HZ Page 139

Additional strucural stiffness (walls and steel frame) p.153

% Strucural stiffness building (walls, steel frame, non structural
) p.153

o°

elements

SEI=5.17E12; %(1) % bending stiffness p.155
EI=4.26E12; %(2) % bending stiffness modified

$massfloor=636421;%(1l) % mass of a floor maas buidling
12.092E6/19 page 130b[m]

massfloor=(12.092E6-(12.092E6/(19*%2)))/18;
massl9=12.092E6/(19*2); % Weight of top floor is approximated half
of other floors

5}
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Appendix F page 6 $ M.Pols

%mass steel = 0.650E6
%mass floor = 7.672E6
$mass partition walls = 1.469E6
%mass facade = 1.134E6
$stabilty walls = 1.165E6

massfloor=642499;%(2) % mass of a floor maas buidling

modified
floormasstot= 12.090E6;
floormassl9= 7.672E6+0.5* (0.650E6+1.469E6+1.134E6+1.165E6) ;
verh= floormassl9/floormasstot; %0.8173 without foundation
$verh=floormass48/ (floormasstot+1.451E6);%0.75 with foundation
massl9=massfloor*verh;

% E and Ixx and Izz structural walls p.153 (Pols) (After renovation)
EIw=2.39E12; % [N/m2] Concrete B22.5 pol
Ew=27875*1000*1000; % [N/m2] is 27875[N/mm2] Concrete B22.5
Ixxw=EIw/Ew;
bw=0.25;
hw=10.1;

Y1

o)

% Calculated Second Moment of Inertia Concrete walls (Richardson)

Ixxwm=4* (1/12) *bw*hw”3;
Iyywm=4* (1/12) *hw*bw"3+2*hw*bw*8"2+2*hw*bw*40"2;

structural steel (Pols) (Before Renovation)

Ess=2.1E5*1000*1000; $[N/m2] 2.1E5 N/mm2 modulus of elasticity
Iss=EIb/Ess; SHEA 260

o)

% determining Issy

Y1=(2*16130+2*2530)/(1000*1000); % mm2area of cross-section profile

Y2=(2*11250+2*19160)
Y3=(2*24020+2%2530) /
Y4=(2*24020+2%2530) /

1000*1000); %Sarea of cross-section profile Y1

/(1000*1000); %area of cross-section profile Y1
(
(1000*1000) ; %Sarea of cross-section profile Y1
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Issy=2* (Y3*4"2+Y3*8M2+Y3*12724+Y3*1672+Y3*20"2) + ((Y3+Y4) *2472) + ((Y2+Y4) *28"2
)+ ((Y3+Y4) *3272) +2*Y2*3672+2*Y1*40"2;

% Shearmodulus of the structural steel .( Ridigidy modulus)

$Ess=2.1E5*1000*1000; $[N/m2] 2.1E5 N/mm2 modulus of
elasticity

Gss=Ess/ (2* (1+vu)) ; % [N/m2]

%$Gss=79.3E9; % Shear modulus struc steel 79.3

Gpa[N/mm2] website

% Shearmodulus of the concrete. ( Ridigidy modulus)

% Ew=2.1E5*1000*1000; $[N/m2] 2.1E5 N/mm2 modulus of
elasticity

Gw=Ew/ (2* (1+vu)) ; % [N/m2]

o)

% Shearmodulus of the buidling. ( Ridigidy modulus)

$G=Gss; % Shear modulus Steel (before renovation)
[N/m2]
G=Gss+Gw; % Shear modulus Concrete (after renovation) [N/m2]

%torsion constant of concrete walls

Jw=((1/3) *bw"3*hw) *4; % [m4]

%$torsion constant of structural steel

o)

% J van 1 profile is 54.2 cm4
Jss=8%*54.2/(10000*10000); % [m4]
Jss=12000000*Jss;

%torsion constant of concrete walls

o\°

$Jtot=Jss;
sJtot=Jw+Jss;
$Jtot=8*Jw;

Torsion constant (before) [m4]
Torsion constant (after) [m4]
Arbituary chosen number

o

o

o

% The torsional stiffness of one floor of the structure.

$TorSTif=G*Jtot;
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$TorSTif=1.3046E12; %$(1) % determined in Matrix
TorSTif=3.187E12; %$(2) % modified
Jtot=TorSTif/G;

Q

%$Polar moment of inertia (Before renovation)

$Strucural steel (before renovation)

$Ixtot=Iss; % HEA 260
$Iytot=Issy;

%$Strucural steel with concrete walls (after renovation)

Ixtot=Iss+Ixxwm; % HEA 260
Iytot=Issy+Iyywm;

o)

% Polar inertia of the walls Ix and Iy of a floor

Ipwall=Ixtot+Iytot;

o

% Polar inertia of the floor Ix and Iy

Ipfloor=((1/12)*H*B"3)+((1/12) *B*H"3) ;

)

%Before Renovation

)

% Polar inertia of the floor segments node 1 to node 18

$Ip=Ipwall*h*rhosteel+Ipfloor* (hfl*rhoconcrete+mvb) ;

)

% Polar inertia of the top floor of the building

$Ipl9=Ipwall* (h/2) *rhosteel+Ipfloor* (hfl*rhoconcrete+mvb) ;

o)

$After Renovation

o)

% Polar inertia of the floor segments node 2 to node 19

$Ip=Iss+Ixxwmt+Issy+Iyywm;
$Ip=Ipwall*h*rhoconcrete+Ipfloor* (hfl*rhoconcrete+mvb) ;

Ip=(Iss+Issy)*h*rhosteel+ (Ixxwm+Iyywm) *h*rhoconcrete+Ipfloor* (hfl*rhoconcre
te+mvb) ;

Q

% Polar inertia of the top floor of the building

Ipl9=(Iss+Issy)* (h/2) *rhosteel+ (Ixxwm+Iyywm)* (h/2) *rhoconcrete+Ipfloor* (hfl
*rhoconcrete+mvb) ;
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$Arbituarly chosen values

$x11=0.0146; %Appendix I % damping ratio of first eigenmode

$x12=0.0146; SM.Pols

o°

damping ratio of second eigenmode

massl=massfloor;
Ipl=Ip;

% Total mass of the buidling

°

% mass building of 48 floors walls + top floor

°

o)

mass=massl+ (v-2) *massfloor+massl9; % edit 10-07-2021

Total weigth of the building
Q _gebouw=mass*g; % weight building

Spefic density of building [kg/m3]
rhob=mass/ (B*H*L) ;

mass per meter building height [kg/ml]
rholl=mass/ (L) ;

mass per area [kg/m2]

rho m2=mass/ (B*H) ;

save matrices EIb EI massfloor massl9 EIw Ixxw Ixxwm Iyywm Ess Ess Issy Gss
Gw G Jw TorSTif Jtot Ixtot Iytot Ipwall Ipfloor Ip Ipl9 mass -appen
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The Voorhof before renovation with

calibration output of the 100 simulations for return

period of one year

a_ben a_tor  a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
1 0.06968581 0.2323952 0.2425436 0.02073865 0.06999912 0.073308746
2 0.09459908 0.3324859 0.3363541 0.027142111 0.07454332 0.075802652
3 0.07981099 0.319223 0.3241027 0.027187926 0.08776767 0.086216955
4 0.08852405 0.2386805 0.2732928 0.02529268 0.06354616 0.063661003
5 0.10780719 0.2161534 0.2432105 0.028723298  0.0691151 0.068706984
6 0.10393684 0.2722841 0.3006352 0.033922993 0.08044134 0.084569951
7 0.13983604 0.3107522 0.3275735 0.030809479 0.07559226 0.07568096
8 0.11266355 0.2910735 0.3173023 0.028387038 0.07251213 0.072839736
9 0.10118157 0.2694308 0.2850848 0.028625121 0.06897747 0.071688119
10 0.094874 0.2707378 0.3083641 0.027963864 0.07755586 0.07657867
11 0.09103684 0.4306071 0.4846919 0.026045572 0.07736404 0.076885403
12 0.1192959 0.3678819 0.3972573 0.028212741 0.08383017 0.082239681
13 0.10037784 0.2339367 0.2736085 0.027185709 0.06804569 0.067141071
14 0.09650082 0.2271779 0.2656233 0.029410598 0.07123267 0.069525583
15 0.10526886 0.2346658 0.2880861 0.031548737 0.07795531 0.074358185
16 0.08657789 0.2325341 0.2744868 0.02724236 0.07279285 0.073425833
17 0.11537893 0.2451352 0.3466249 0.033849215 0.07160541 0.070007816
18 0.11905488 0.2312176 0.2878769 0.027666468 0.07070848 0.072233234
19 0.09318995 0.2418974 0.2804626 0.02809755 0.06859543 0.063949594
20 0.10733049 0.2521839 0.2895513 0.031121525 0.067547 0.070439647
21 0.09586113 0.2451115 0.2811913 0.03141114 0.07305372 0.075522359
22 0.09422124 0.2265356 0.2635227 0.027370288 0.07430079 0.076066951
23 0.10157598 0.2246911 0.2598122 0.02789948 0.07375591 0.073268751
24 0.11371913 0.2483587  0.286389 0.029893843 0.06998979 0.067275778
25 0.08609646 0.3200284  0.336961 0.025601263 0.07542853 0.075973793
26 0.11820078 0.2420689 0.2877038 0.027224473 0.07450878 0.073830983
27 0.08709277 0.2638212 0.2796252 0.027543432 0.08106 0.080698627
28 0.14168451 0.231262 0.2448968 0.03149429 0.07406183 0.077670899
29 0.08330143 0.2337006 0.2787854 0.025219417 0.07723349 0.075716244
30 0.08021751 0.2170814 0.2520742 0.023898409 0.07047064 0.070266123
31 0.08588611 0.3210228 0.3652437 0.02579652  0.0858468 0.084254363
32 0.09998934 0.272798 0.2725435 0.029668637 0.07291383 0.07705215
33 0.10289949 0.2616814 0.3183038 0.027851542  0.0856182 0.084307902
34 0.10610138 0.2852645 0.3140343 0.033193161 0.07980131 0.08163677
35 0.08840539 0.2084205  0.254627 0.025457889  0.0742258 0.07430919
36 0.09243891 0.2222352 0.2810523 0.027631785 0.06747276 0.069142719
37 0.12466199 0.3424759 0.3807099 0.038632567 0.09088218 0.094380345
38 0.09872472 0.269861 0.3366244 0.029828716 0.07001902 0.069683742
39 0.08354948 0.2167586 0.2676394 0.025113691 0.06962668 0.065923367
40 0.10392215 0.2797081 0.3320671 0.028126512 0.07911515 0.076944732
41 0.08686265 0.2508106 0.3235119 0.026257703 0.07027384 0.069922742
42 0.07195468 0.2427826 0.2880514 0.023674742 0.06952888 0.067695942
43 0.09215262 0.2260216 0.2656651 0.029505594 0.07200773 0.072720948
44 0.09873573 0.251212 0.3167027 0.030004219 0.07201672 0.072308785
45 0.08631015 0.2804093 0.3114786 0.027549207  0.0689346 0.064698772
46 0.08635972 0.2672592 0.2867134 0.025917354 0.09075052 0.090831298
47  0.1095098 0.2121968 0.2644319 0.032696609 0.06738026 0.065425947
48 0.11374896 0.2173716 0.2559811 0.028621996 0.07053527 0.074426434
49 0.09264699 0.3025396  0.308538 0.025843507 0.07944526 0.082390185
50 0.09703506 0.2700021 0.2906911 0.028619461 0.07868107 0.07888268
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51 0.10873508 0.2072597 0.2614061 0.031599256  0.0659975 0.064526159
52 0.0923521 0.2440859 0.2755421 0.024305516  0.0794656 0.078577627
53 0.09445844 0.231962 0.2820508 0.026853739 0.07149167 0.073339116
54 0.09421834 0.3422295 0.3850462 0.026924778  0.0826733 0.083165378
55 0.09778426 0.2955212 0.3097031 0.028865149 0.07258231 0.072972648
56 0.08390384 0.2362627 0.2716683 0.026761413 0.07123976 0.068628016
57 0.09782747 0.2788395 0.2992525 0.029860589  0.0812375 0.082455696
58 0.13366137 0.2831212 0.3426366 0.030759259  0.0756661 0.076699284
59 0.10567685 0.2423624 0.2704474 0.026326732 0.06760412 0.072412651
60 0.08798872 0.2118911 0.2537081 0.027425236 0.06315061 0.061990113
61 0.07904974 0.2814664 0.3283452 0.026636855  0.0748814 0.071497644
62 0.10573049 0.2927015 0.3119549 0.032826907 0.08291921 0.083417278
63 0.08741304 0.3024827 0.3106739 0.025400672 0.07986983 0.07884547
64 0.11248963 0.2621553 0.3210056 0.030682309 0.06659212 0.070077987
65 0.07881942 0.270469 0.3484155 0.026831758 0.07242281 0.07224251
66 0.10318829 0.2460462 0.2806025 0.031540559 0.07417331 0.077465654
67 0.07481322 0.2455863 0.3141527 0.025999075 0.07047544 0.068163067
68 0.08150063 0.2563806 0.2766879 0.024163349 0.08013136 0.081246231
69 0.08712915 0.2746013 0.2777074 0.025078503 0.08088448 0.078169162
70 0.10507293 0.2682962 0.3208513 0.032095268  0.0856253 0.083670384
71 0.09451755 0.2337716 0.2895274 0.028013751 0.07162449 0.070207607
72 0.12155937 0.3392853 0.3275946 0.033036569 0.08093443 0.079103053
73 0.09736786 0.2721337 0.3362344 0.033092115 0.07420541 0.071937256
74 0.09847456 0.2781615 0.3131084 0.024613638 0.07212286 0.069200064
75 0.09139178 0.2338469 0.2836615 0.028068663  0.0727667 0.07052742
76 0.08482044 0.2453991 0.2841524 0.025374028 0.07457693 0.071919917
77 0.09906002 0.2634985 0.3318196 0.029588047 0.08350898 0.083478467
78 0.10582695 0.2212191 0.2712574 0.031142613 0.06920075 0.065285556
79 0.08307613 0.224204 0.2594861 0.026015836 0.07088928 0.071236395
80 0.11542022 0.2865435 0.3209713 0.029305174 0.07708191 0.078923558
81 0.10305177 0.2571853 0.3481012 0.034307146 0.08126231 0.080446386
82 0.10427048 0.2248203  0.265095 0.029796679 0.06936201 0.073322147
83 0.08883197 0.2867356 0.2971252 0.02786614 0.07567606 0.077415261
84 0.09806447 0.2217529 0.2433477 0.032649971 0.06511947 0.065380014
85 0.15201754 0.2793504 0.3045406 0.034961936 0.07841229 0.082474226
86 0.09095487 0.2607863 0.2364978 0.028472871 0.07164584 0.072057077
87 0.09392804 0.2808446 0.2736179 0.026417386 0.06772404 0.070060998
88 0.09687944 0.2302677 0.2767709 0.02613545 0.07984792 0.079293729
89 0.09061728 0.2302001 0.2509917 0.027921541 0.06643955 0.067576221
90 0.11660052 0.2591182 0.3125904 0.029627042 0.07474458 0.075528149
91 0.10656865 0.214868 0.2556724 0.03004593 0.07198833 0.071358262
92 0.08485424 0.2959943 0.3702379 0.028127996 0.08208029 0.082476402
93 0.08046477 0.2342171 0.2630544 0.024627958 0.07340187 0.07084539
94 0.08716646 0.2976506 0.3044983 0.028733526 0.07463346 0.07320379
95 0.09455275 0.2098555  0.249255 0.031035693 0.06627594 0.068296085
96 0.10655824 0.213618 0.2301995 0.030327627 0.06583291 0.070223143
97 0.10979627 0.3018169 0.3230461 0.027651079 0.07856811 0.079641814
98 0.09345996 0.3027426  0.285258 0.028791126 0.07877702 0.079269441
99 0.08193727 0.2365753 0.2532 0.02532765 0.07676286 0.077607367
100 0.10534629 0.2523827 0.3239992 0.030169527 0.07875074 0.079003235
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The Voorhof after renovation with

calibration output of the 100 simulations for return

period of one year

a_ben a_tor  a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
1 0.05976313 0.1513281 0.1579253 0.015979828 0.04487348 0.047365481
2 0.05652056 0.1448139 0.1418168 0.01610822 0.04536202 0.047454826
3 0.05136874 0.1652138 0.1685007 0.014352097 0.04573289 0.048301589
4 0.05146955 0.1208907 0.1291855 0.013923399 0.03936891 0.042159703
5 0.05020175 0.1591799 0.1773519 0.016325876  0.0461672 0.048715556
6 0.05170829  0.14767 0.1474878 0.014938506 0.04305784 0.045641543
7 0.04974838 0.1435849 0.1569219 0.015119611 0.04073288 0.043116046
8 0.05842028 0.156474 0.1678372 0.015727833 0.03909816 0.042111825
9 0.05780921 0.1419809 0.1701099 0.015617824 0.04313251 0.045433173
10 0.04743413 0.1644738 0.1720629 0.013692645 0.04665831 0.048474041
11 0.05774946  0.138435 0.1403325 0.014230101  0.0416503 0.043700851
12 0.05336552 0.1733502 0.2009804 0.015702391 0.04031342 0.043635609
13 0.05925306 0.1589006 0.1792989 0.015705833 0.04037993 0.04282512
14 0.04658816 0.1376759 0.1549639 0.01498649 0.04167663 0.043995902
15 0.04380667 0.1491126  0.152079 0.013359213 0.04570731 0.046507203
16 0.04723745 0.1649446 0.1841781 0.01338408 0.04614615 0.047394367
17 0.05651648 0.1612043 0.1828555 0.016104617  0.0432206 0.045646527
18 0.04410889 0.17573 0.1989676 0.013750655 0.04641823 0.047596894
19 0.05076669 0.1588492 0.1603332 0.013619825 0.04590617 0.046592558
20 0.04810722 0.160807 0.1766668 0.0149198 0.05052763 0.052851411
21 0.05127209 0.1340369 0.1463355 0.015639961 0.04003163 0.042276237
22 0.04629481 0.1328333 0.1500292 0.01403408 0.04339174 0.045044851
23 0.05784195 0.1592646 0.1698472 0.017027428 0.04565665 0.048258154
24 0.04573132 0.1469331 0.1695548 0.01318519 0.04306062 0.044281785
25 0.05553655 0.138333 0.1668156 0.017001229 0.04349419 0.046333235
26 0.0578549 0.1442753 0.1627096 0.017725141 0.04086919 0.043875677
27 0.05812749 0.1511259 0.1594743 0.014505834 0.04553826 0.046965834
28 0.04610464 0.1659812  0.182418 0.013865843 0.04346201 0.044839009
29 0.05561656 0.131993 0.1493497 0.016405747 0.04238426 0.044446187
30 0.05660978 0.1455675 0.1501849 0.015629025 0.03992041 0.042436553
31 0.05083463 0.1492727 0.1674445 0.015763018 0.04945467 0.051493028
32 0.04793023 0.1485064 0.1479009 0.015261762 0.04362482 0.045707947
33 0.04747013  0.18731 0.1961606 0.014707412 0.04592213 0.047568223
34 0.05265228 0.1451135 0.1612663 0.015881331 0.04849516 0.050926866
35 0.05571721 0.1455886 0.1619306 0.015532608 0.04446265 0.046316213
36 0.0525307 0.1556255 0.1802466 0.014495112 0.04518252 0.047230382
37 0.05119899 0.1522708 0.1566731 0.014178271 0.04607297 0.047517554
38 0.0543459 0.1444395 0.1704945 0.015179308 0.04195046 0.044226519
39 0.0454023 0.1781848 0.1779274 0.015842054 0.04836891 0.050822861
40 0.0448714 0.1365988 0.1514352 0.014365612  0.0395114 0.04116435
41 0.05746137 0.1515396 0.1683724 0.015413266 0.04046936 0.043642018
42 0.05715052 0.1546987 0.165354 0.017789997 0.04105911 0.044748767
43 0.05311228 0.1633059 0.181997 0.015226414 0.04493326 0.047262839
44 0.04797795 0.1636256 0.1963769 0.013733967 0.04613675 0.046921203
45 0.04898144 0.1421144 0.1564908 0.014898677 0.04037391 0.042710616
46 0.05908468 0.1903077 0.2005996 0.016285859 0.04803129 0.050152288
47 0.04450188 0.1710141 0.2080492 0.013018289 0.04109678 0.042436913
48 0.05402815 0.1381079 0.1608818 0.014039757 0.04237056 0.043995177
49 0.04829275 0.1626424 0.1892593 0.015113721 0.04546485 0.047416154
50 0.04892869 0.1374643 0.1525066 0.014341509 0.03893 0.040389363
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51 0.04626648 0.1622078 0.1744252 0.015012276 0.04603069 0.047585064
52 0.05568904 0.1390987 0.1614398 0.015989496 0.04064272 0.04242614
53 0.04995129 0.1523983 0.1665253 0.015901319  0.0432281 0.046185205
54 0.05351534 0.1371881 0.1578774 0.016401646 0.04321826 0.046084335
55 0.05152323 0.1670306 0.1783497 0.016059036 0.04684048 0.049401808
56 0.06208938 0.1614985 0.164503 0.01740832  0.0437006 0.046513219
57 0.05832961 0.1500825 0.1554171 0.015309016 0.04079667 0.043141716
58 0.06076961 0.1429302 0.1578035 0.012998786 0.04414658 0.045445878
59 0.04762482 0.1769906  0.193227 0.015216546 0.04446804 0.046671188
60 0.05898548 0.1915251 0.2201322 0.015982533 0.04840857 0.050907472
61 0.05517837 0.1777094 0.1996463 0.014512543 0.045855 0.047203861
62 0.04826472 0.1850609 0.1842753 0.014835978 0.04342645 0.045622228
63 0.05517632 0.1277348 0.1492548 0.014442591 0.03992322 0.041933685
64 0.05796889 0.1717115 0.188073 0.0157031 0.04725519 0.049597022
65 0.05167892 0.162092 0.1749119 0.014801526 0.04567126 0.048291949
66 0.04571168 0.1695468 0.1791248 0.013555639 0.04227943 0.043738053
67 0.06502127 0.1456628 0.1642747 0.01673845 0.04292546 0.045292988
68 0.05296632 0.1595158 0.1714528 0.015891463 0.04641633 0.049125485
69 0.04820408  0.15865 0.1800312 0.014259737 0.04137286 0.042831078
70 0.05331303 0.1503899 0.1463386 0.01530971 0.04078819 0.043505915
71 0.05332907 0.1970937 0.217179 0.015382382 0.04500305 0.046755203
72 0.04603305 0.1563576 0.1922291 0.014849345 0.04337498 0.045625652
73 0.04721129 0.1613374 0.1683834 0.014162639 0.04468793 0.046734205
74 0.05041464 0.1436732 0.1679368 0.013591215 0.04502103 0.046330115
75 0.0574447 0.1634421 0.157613 0.014969693 0.04228537 0.044653705
76 0.0619812 0.1375816 0.1451502 0.016099118 0.03701516 0.040088012
77 0.04446912 0.1715323  0.158808 0.013739941 0.04558275 0.046679773
78 0.04273304 0.1297246  0.139635 0.013075981 0.04170955 0.043564785
79 0.05718429 0.1599348 0.1587893 0.015813166 0.04158941 0.043693702
80 0.05005585 0.1505995 0.1572004 0.014294989 0.04125553 0.043529218
81 0.04498865 0.1522213 0.1722845 0.012774149 0.04358175 0.044517048
82 0.0507932 0.1736167 0.1825878 0.014471183 0.04151254 0.042958293
83 0.05362913 0.1412566 0.1697407 0.015566066 0.04377198 0.046279072
84 0.05597482 0.1806593 0.2046209 0.01420719 0.04647772 0.04862704
85 0.05189925 0.1634807 0.1759104 0.015060425 0.03941479 0.041724603
86 0.06062021 0.1380548 0.1651255 0.016632908 0.03716163 0.040392267
87 0.04471026 0.1685392 0.1795652 0.01337834 0.04258251 0.044333356
88 0.05934646 0.1402346 0.1655277 0.016587615 0.04066268 0.043215022
89 0.04403393 0.1581042  0.160948 0.013490785 0.04449465 0.0460693
90 0.0589074 0.1496075 0.1670196 0.016291575  0.0473275 0.049962752
91 0.0439191 0.1557181 0.1800662 0.013009044 0.04421942 0.045381321
92 0.05129651 0.1834788 0.1854588 0.014702558 0.04392213 0.045820645
93 0.04434232 0.1554517 0.1617167 0.013761609 0.04252297 0.043981332
94 0.05282164 0.1337995 0.1491153 0.014494773 0.03777531 0.039675116
95 0.05290772 0.1512687 0.1554517 0.015246723  0.0448809 0.048016921
96 0.04933598 0.1542397 0.1667761 0.01463108 0.04480414 0.046378334
97 0.04915997 0.183186 0.2017828 0.014411971 0.04495599 0.04649084
98 0.05005978 0.1515308 0.161145 0.013481495  0.0451663 0.047418932
99 0.05702237 0.1645609 0.1768556 0.014929579 0.04382237 0.046138172
100 0.05569363 0.1373605 0.1654077 0.015555812 0.04267954 0.044781568
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Appendix 10 The Voorhof before renovation with

calibration output of the 50 simulations with wind

speed 18.4 m/s.

a_ben a_tor a_ben_tor sigma_a_bersigma_a_tor sigma_a_ben_tor

1 0.075951 0.275219 0.296667 0.02205787 0.077935512 0.08097891
2 0.116354 0.38499 0.496571 0.02934827 0.085387039 0.085768877
3 0.125639 0.308054 0.345731 0.02789903 0.075791855 0.075612101
4 0.111138 0.254214 0.302103 0.03083876 0.078047774 0.078449199
5 0.13691 0.31785 0.362222 0.03684749 0.089956313 0.094213544
6 0.11959 0.363527 0.382644 0.0318823 0.086364083 0.086363845
7 0.095157 0.284833 0.313466 0.0297067 0.079322538 0.079175701
8 0.109519 0.349301 0.371306 0.03083661 0.077325458 0.078821247
9 0.101143 0.260907 0.30009 0.02836518 0.086321166 0.084618535
10 0.091989 0.521309 0.587117 0.02773489 0.090298353 0.088893984
11 0.122772 0.456135 0.498462 0.03034366 0.094735008 0.093719553
12 0.119281 0.298151 0.351204 0.02897868 0.075369711 0.07446363
13 0.102315 0.27578 0.333013 0.03171778 0.081856675 0.080619329
14 0.131628 0.271551 0.322184 0.03306813  0.08702367 0.083158091
15 0.090834 0.28419 0.336033 0.02833336 0.080443273 0.082259205
16 0.12494 0.306281 0.407121 0.03752326 0.082171174 0.080811723
17 0.093891 0.284868 0.322766 0.02860962 0.080723526 0.081674337
18 0.107705 0.364787 0.419803 0.03000754 0.076276314 0.072462337
19 0.100615 0.273087 0.29411 0.03146495 0.075416824 0.077547837
20 0.101387 0.251612 0.304095 0.03339892 0.080225878 0.08336529
21 0.104952 0.265737 0.295904 0.0307203 0.086433092 0.088999204
22 0.088687 0.302337 0.318548 0.02904207 0.084514423 0.083163006
23 0.118102 0.236254 0.267206 0.03128528 0.079031666 0.076150198
24 0.099476 0.405285 0.424333 0.0266435 0.088783036 0.088487475
25 0.09527 0.267601 0.305551 0.02834139 0.082427408 0.082102513
26 0.099682 0.339449 0.377458 0.0293891 0.092854391 0.09160806
27 0.160978 0.267433 0.28012 0.03293008 0.081693593 0.084900834
28 0.091412 0.291127 0.355401 0.02688705 0.086791734 0.085830209
29 0.095799 0.26765 0.29821 0.02569651 0.078952674 0.078939933
30 0.09758 0.339032 0.387828 0.02763985  0.09570591 0.094503769
31 0.128575 0.285043 0.284602 0.03064045 0.080547468 0.084087427
32 0.116318 0.346442 0.393124 0.03037045 0.097044296 0.096385459
33 0.110485 0.329353 0.346056 0.03680632  0.09139412 0.092720692
34 0.086404 0.260392 0.285721 0.02655553  0.08497409 0.084473465
35 0.106755 0.258123 0.27755 0.02921664 0.074674957 0.07656011
36 0.14836 0.386234 0.434988 0.04179915  0.09926104 0.103167414
37 0.103544 0.33343 0.324843 0.03241928 0.079908988 0.080150382
38 0.088436 0.26879 0.32643 0.0279111 0.078296605 0.074591237
39 0.116763 0.300454 0.354985 0.03112015 0.088910909 0.087460097
40 0.09355 0.263213 0.323435 0.02674557 0.075950028 0.076950632
41 0.074032 0.288135 0.319766 0.02452914 0.079271229 0.077376487
42 0.100418 0.27619 0.320656 0.03067193 0.080754693 0.0821582
43 0.116427 0.308517 0.380815 0.03225737 0.080898442 0.082079481
44 0.097737 0.387174 0.421509 0.02968658 0.079645262 0.074606365
45 0.098265 0.326089 0.375677 0.02800039 0.104749963 0.103797592
46 0.118548 0.245881 0.298171 0.03441489 0.076457148 0.074591045
47 0.104248 0.326436 0.341187 0.03196974 0.087657022 0.090981399
48 0.093448 0.29009 0.353642 0.02573315 0.090830689 0.091803848
49 0.087994 0.253067 0.315519 0.02640019 0.078095689 0.077460038
50 0.113726 0.343226 0.403138 0.03137786 0.085235526 0.085226307
Average 0.1067 0.3089 0.3508 0.0301 0.0839 0.0839

-319- May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

Anthony Richardson -320-



Appendix 11

]
TUDelft

Appendix 11 The Voorhof after renovation with

calibration output of the 50 simulations with wind

speed 9.2 m/s.

max_a_ben max_a_tor max_a_ben_tor

sigma_v_a_ben sigma_v_a_tor sigma_v_a_ben_tor

1 0.00721456 0.0222206 0.027162306 0.00207776 0.00568695 0.006042697
2 0.00772237 0.0236591 0.022862488 0.00211326  0.006621345 0.006949389
3 0.00736908 0.0307778 0.028869059 0.001798732  0.005586459 0.005752898
4 0.00867452 0.0231883 0.024087504 0.002217215 0.005696801 0.006064925
5 0.00660858 0.0258441 0.028212485 0.001823923  0.006443393 0.006704333
6 0.00662554 0.0233309 0.025951907 0.001922658 0.006287209 0.006455571
7 0.0085662 0.0309846 0.030720525 0.001908064  0.005970272 0.006222839
8 0.00968254 0.0256271 0.025865787 0.001953385 0.006149118 0.006451267
9 0.00799978 0.0280257 0.025891687 0.001789693 0.00630833 0.006547832
10 0.00871002 0.0210739 0.025239678 0.001870554  0.005533957 0.005802478
11 0.00757419 0.022029 0.020946658 0.002061742  0.005964676 0.006387874
12 0.00787641  0.024902 0.027980679 0.002049076  0.006293811 0.006586584
13 0.00653486 0.0200402 0.020911764 0.002005823 0.005747416 0.006092743
14 0.00920319 0.0259208 0.031218609 0.001858194  0.006416712 0.006565894
15 0.00690278 0.0189183 0.021773334 0.00175652  0.005943998 0.006144334
16 0.00782178 0.0237568 0.023876732 0.002116888 0.005620063 0.006016481
17 0.00646338 0.0247695 0.029287303 0.001898632  0.006409668 0.006536027
18 0.007182 0.0313307 0.032814154 0.001805355  0.006150608 0.006307286
19 0.00704502 0.0207398 0.026178543 0.001956456 0.00601466 0.006343596
20 0.00780784 0.0256325 0.022985937 0.002091921  0.005956086 0.006233525
21 0.00619033 0.0232419 0.024689783 0.001805199 0.00557438 0.005811322
22 0.01037292 0.0279572 0.032049781 0.002314844  0.006240383 0.006584279
23 0.00625954 0.0280836 0.025265932 0.00176731 0.006277103 0.006455471
24 0.00828672 0.0269073 0.028242942 0.002079865  0.006644806 0.006889912
25 0.00755832  0.023153 0.025282217 0.00226188 0.006319953 0.006650617
26 0.00865531 0.0226225 0.024805918 0.00189692  0.005763315 0.005919474
27 0.00672448 0.0216023 0.02414147 0.0017408 0.005970644 0.00607484
28 0.00779923 0.01964 0.022387351 0.002080794 0.005297639 0.005572366
29 0.00786504 0.0265386 0.028761761 0.001955834  0.005907859 0.006170222
30 0.00769052 0.0204848 0.021948174 0.002135833  0.005765999 0.006044473
31 0.00624388 0.0203235 0.022754743 0.001905744  0.005620407 0.00591163
32 0.0083853 0.0227692 0.027462224 0.002062959 0.00566111 0.005865816
33 0.00760509 0.0309411 0.031441901 0.002115818 0.007033567 0.007274473
34 0.00682642 0.0250015 0.026678327 0.001960763  0.006305736 0.006473427
35 0.00659029 0.0261365 0.025831684 0.001863525 0.00581853 0.006070116
36 0.00661796 0.0232756 0.027428488 0.001808215 0.006368448 0.006594826
37 0.00716542 0.0234552 0.025307669 0.001845597  0.006086952 0.006261165
38 0.0074945 0.0234143 0.023974672 0.002068432  0.005783729 0.006042626
39 0.0060533 0.0206309 0.024728352 0.001893227  0.005794858 0.00601112
40 0.00837527 0.0225067 0.023451362 0.002036368 0.006137302 0.006509209
41 0.00895996 0.0240274 0.025237471 0.002209085  0.006095478 0.006436268
42 0.00703792 0.0213733 0.023993265 0.001945985 0.005357071 0.005702202
43 0.00604619 0.0198596 0.021103946 0.001715548 0.005680292 0.005846591
44 0.00578906 0.0231722 0.022178032 0.00191262 0.005712881 0.005972499
45 0.00772706 0.0236537 0.025251181 0.002247997  0.005934119 0.00625711
46 0.007007  0.022369 0.023901151 0.00172952  0.006194247 0.00635461
47 0.00837941 0.0236048 0.02997162 0.001994836  0.006364139 0.00656652
48 0.00862992 0.0308411 0.032800994 0.002241268 0.00689173 0.007178617
49 0.01022218 0.021016 0.022849959 0.002262717 0.00554361 0.005913361
50 0.0082164 0.0252751 0.024620442 0.002200198 0.006308139 0.006675295
Average 0.0076 0.0241 0.0258 0.0020 0.0060 0.0063
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Appendix 12 Formulas to determine the maximum
acceptable acceleration for Student building “Voorhof”
after renovation

In this appendix, the calculated acceleration out of matlab for the Student building “Voorhof” (bending,

torsion and bending and torsion) are compared to design formulas.

Along wind Across wind
Formula Natural frequency Max bending Max torsional [ Max total Max bending [Max torsional Max total
acceleration acceleration |acceleration| acceleration [ acceleration | acceleration
Hz rad/s m/s? m/s? m/s? m/s? m/s? m/s?
NEN 0.996 6.258 0.061
Eurocode 0.897 5.634 0.852
NBCC 0.996 6.259

Woudenberg (emp) 0.897 5.634 1.628
Woudenberg 0.698 4.388 0.211
Schueller 0.801 5.034 1.300
Dicke/Nijsse 0.130 0.816 0.049

Table 38: Resulting annual maxima after renovation

Table 39: The average out of a 100 simulations occurring acceleration in Simulink for the Voorhof

after renovation for return period of one year

Resulting annual maxima and comfort requirement

NEN ==

Eurocode

Woudenberg (emp)

Woudenberg — —

Schueller

Dicke/Nijsse m
Matlab bending ==
Matlab bending + torsion
Comfort requirement

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800

Figure 14.6: Resulting annual maxima and comfort requirement after renovation
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According to NEN 6702 ([3]) vibrations are annoying when the acceleration exceeds a value
depending on the frequency (Figure 14.2).

10"

10™ 10°

f (H2)

Figure 14.7: Limitation demand for the acceleration according to NEN 6702 figure 21
The NEN 6702 ([3]) which gives the limitation demand for the peak value of the

acceleration follows from:

— 1-6 ¢ZpW;1Ctbm <
Py

a

max

a

Where:

a limitation demand of the acceleration for once per year a = 0.10 m/s? ([3])
o, mass of the building per meter height p, = 2.36%10° kg/m

width of the building perpendicular to the wind direction 5, =80.81 m

C, summation of the shape factor C,= 0.8 + 0.4 = 1.2 ([3])

P, Value for the varying part of the wind pressure 5, =100In(#/0.2) =555 N/m?
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¢,  value depending on the dimensions, the eigenfrequency and the damping

5= 0.0344* f,*° ~ 0.0344*0.996 %" _0.168
* \¢(1+0.12f,h)(1+0.2f,b,) 10.01*(1+0.12%0.996*51.3)(1+0.2*0.996*80.81)

Where:

f eigenfrequency f, =T ' =0.85 Hz (From Mathlab)

e

¢ damping ratio section ¢ =0.01 (Section 9.2.5)

f, eigenfrequency f, = \/gz ’% =0.996 Hz (NEN 6702 [3])

a acceleration a =0.384m/s?

4 6 % 4
) displacement ¢ = l = M =40m
8El 8*2.1E~*12.076

In which:
| = The building length: 51.3 m
Q = The building weight: 107.3 MN ( Pols)
g = dead weight of the structure: 2.31 MN/m ( Pols )
g = The gravitational acceleration: 9.81 m/s?
E = Young’s modulus: 2.1E10 N/mZ
I = The bending stiffness: 12.076 m*

The deflection is determined by using the equation which is given ([14] figure 6.19). In this
equation, variable q is the total deadweight of the structure. The total deadweight of the
structure is the summation of the deadweight of the buildings floors, load-bearing elements
and fagade.

Floors:

The representative deadweight of the floor is (.. =0.15*24 =3.6kN / m’ The design

g;rep
value is of 0 ,=36*1.2=432kN/m’. The total area of the building is
26.3*15.4 ~ 405m°. The total deadweight of a storey of the building is:

1147*4.32 =4955kN . The storey height is 2.65 metres so it follow’s that the
deadweight perimeter height due to dead weight is 4955 2.65 ~1891kN .

-325- May 2022



TU Delft Torsion motions of high—rise buildings due to wind loading

Vertical load-bearing elements:

The area of the concrete walls is 4*10.10*0.25=10.1 m’/mThe deadweight of the

concrete walls is 0. =10.1*24 = 242kN / m*,

g,rep
Steel Structure:

The mass of the steel structure m=6.5E°kg. The weight per meter s

5%
g =2 E 98 o5k,
51.3

Partition walls

The mass of the steel structure m=1.134 E® kg. The weight per meter is

1469 E°*9.81

~ 281 kKN/m .
o 51.3

Facade:

The mass of the facade m=1134E°kg. The weight per meter is

6 %
Gy = 1134 E**9.81 ~217 KN/m .
51.3
Total:
The total deadweight per meter building height is:

1891.2 + 242 +125+ 281+ 217 =2726.2 kN/m.

This gives:

0.0344*0.996 7'
¢, = =0.168
0.01*(1+0.12*0.996*51.3)(1+0.2*0.996*80.81)

Filling in the formula for limitation demand for peak acceleration gives:

16 0.168*555*1.2*80.81

T =0.061 m/s* <0.10 m/s’®
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Matlab
With the use of a Simulink model the maximum acceleration due to bending and torsion is
calculated for a time span of 10 minutes. For the calculation in this paragraph we take the

values form one of the 100 simulations, with mean velocity Vi = 2145 M/S and return

period of one year. (9.8)

The acceleration of the top of the building (Bending and Torsion motion added together)

al19 ben tor

o 100 200 300 400 500 600 700 800
t(s)

Figure 14.8: Acceleration of the top of the building (bending and torsion motion added together)

The frequency belonging to this acceleration equals the lowest eigenfrequency of the

structure £, =7, =0.851 Hz (section 9.2.4). The peak acceleration of the top of the

building for bending and torsion motion added together equals: Qg = 0.170m/ 8%,

which is higher than the maximal acceptable annual acceleration of 0.1m/ s®according to

NEN. In which the number 19 is the node number at the top of the building.

We may assume that a,, is a normally distributed signal. The standard deviation of a,, can

be determined from:

1
1Z 2
Ua;19 = (; 2(619;i - /'la;19 )ZJ

/=1

Where:
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n the number of discrete time points for which g, have been calculated

a,,., the acceleration of the top of the building at time point i

., the mean value of a,

With o, , = 0.047 m/s’ and 4, =0 m/s" calculated with Matlab, the expected peak value of

the acceleration for a given time range follows from:
Figppeac = Hss * T\ [2N(NV) ([1] eq. 3.38)

Note: The formula above assumes that all peaks are independent of each other which is not

true in reality, so this formula will give a value larger than the real peak acceleration.

Where NV is the number of draws which follows from the number of local peaks in the total

time range:
N=T.rF,

s' e

Where:

T time range of the signal; T, =600 s

S

£, natural frequency which comes out of the mathlab model; f, =0.851Hz

Filling in peak value of acceleration gives:

8ig,peaceao = 0.0.047,/2In (600*0.851) = 0.167 m/s’

The difference between the expected peak value and the actual value is:

(l—(0.158/0.167))*100 =5.4% , which is reasonably accurate. The expected peak value

for a storm of 6 hours (21600s) can be calculated from:

B g0 = 0.047[21n (21600 % 0.851) = 0.208 m/s?

The expected peak value for a storm of 1 hour (3600s) can be calculated from:

B = 0.0474[21n (3600 %0.851) = 0.188 m/s?

The expected peak value for a hour long storm derived from the Simulink simulation values

can be compared with the maximum acceleration according to NEN 6702,
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Baenen 0.061

= =0.324 .
a19; peak ;3600 0 188

The maximum acceleration due to bending and torsion motion added together is
exceeded by a factor 3.1. The acceleration of the building is unacceptable.

In this section the maximum acceleration will be calculated for bending

acceleration only because this part of the model can be compared to known
literature.

a19 ben

-0.02

-0.04 ! -

-0.06 1

(o} 100 200 300 400 500 600 700 800
t(s)

Figure 14.9: Bending acceleration of the top of the building

The frequency belonging to this acceleration equals the lowest eigenfrequency of the

structure 7, = 7, = 0.851 Hz (section 9.2.4). The peak acceleration of the top of the
building equals: a,, . =0.060m/s?, which is lower than the maximal acceptable
acceleration. We may assume that a,, is a normally distributed signal. View p.328 for the

formula of the standard deviation of a,, .

With o, =0.016 m/s’ and u,, =0m/s’,

The expected peak value for a hour long storm derived from the Simulink simulation values
can be compared with the maximum acceleration according to NEN 6702,

Aracnen  0.061

= =0.953.
Qg peakize00  0-064
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The maximum acceleration due to bending is exceeded by about 5%. The acceleration of
the building is unacceptable.
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Eurocode

The wind force acting on a structure or structural component is: ([10] p.25])

':W :Cscd *Cf *qp (Ze)*A'ef

F, =0.77*%0.67*0, (2, )* Au

With:

C.Cy - Structural factor

(o Force coefficient

a,(z): peak velocity pressure at reference height z,
A, reference area of the structure

Force coefficient. [10] p.67
c, =0.67

Structural factor ([10] p.28])

_1+2%k, %1, (z,)*VB* +R?

e 1+7*1,(z,)
(1+2%3.69*0.29%/0.35+0.083)
o0 = (1+7%0.29) =076
With:
z,: reference height or height of structure.
k,: peak factor.
I, : turbulence intensity
B?: Background factor.
R*: resonance response factor.
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Background factor ([10] p.110] ) Eurocode procedure 2

B® = =0.35

3 (80.81)2 (51.3)2 (80.81*51.3]2
1+= + +
2\\ 856 ) (856) | 856 856

Wind Turbulence ([10] p.104])

@ =0.67+0.05*In(z,)=0.67+0.05*In(1) = 0.67

With:
b,h: width and height of structure
L(z,): Turbulence length scale. It is on the safe side to use B* =1

2, =0.6*h>z,, =0.6%51.3=30.78:([10] p.29])

0.6

K, = 2% IN(V*T) + ————
P ( ) 2*In(v*T)

k, =+/2*In(0.80%600) + 08 =3.69

2*In(0.80*600)

Resonance response factor ([10] p.110])

2
2 T

R = 2*5*SL (Ze'nl,x)*Ks (nl,x)
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T
R = vy ot (Zem,)* Ko (s, )
72_2
2= *0.068*0.0143=0.033
2*0.15

With:

) The total logarithmic decrement of damping ([10] pp. 145-1471)
S, wind power spectral density function given B.1(2)

n,  hatural frequency of the structure ([10] p.144])

K,  size reduction function ([10] p.111])

The total logarithmic decrement of damping

5=05,+08,+35,=007+0.08+0=0.15

The total logarithmic decrement of structural damping

5, =0.07

The total logarithmic decrement of aerodynamic damping for fundamental mode

5, =0.08

The total logarithmic decrement of damping due to special devices
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wind power spectral density function given ([10] p.104])

S (2n,,) = n*s,(z,,n) _ 68*f, (z,,n) __ 68%2754 oo
e o (1+10.2% f_(z,,n))"°  (1+10.2%2.754)"
f(z,,n)= %ﬁz)) — f, (85.6,0.80) = % —2.754

a=0.67+0.05*In(z,)=0.67+0.05*In(1) = 0.67
natural frequency of the structure [10] p.144]

s_al' _ 231E°*5L3'
8EI 8*5.29E°*97.85

n-n -+ [[9]- L (%jzo.som
" 27\ x ) 27\ 0.39

size reduction function ([10] p.111])

=0.39m

1

K. ()= : 2
1+ \/(Gy *¢y) +(G,*¢, )2 +(7[*Gy x4 *G, *¢Zj

1
Ki(n)= _=0.0144

1+ J(o.5*34.35)2 +(0.278*21.80)° +(2*0.5*34.35*0.278*21.80j
T
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_ G *b*n _11.5*80.81*0.80

= = =34.35
& Vo (Z) 21.68
c,*h*n * *

P _115*51.3%0.80 _,, o
v, (z.) 21.68

Decay constants

1
The peak velocity pressure is calculated using 0, (2) =1+7*1, (z)*E*p*vfn (2)

With:

I,(2): turbulence intensity
o air density

V2 (2): mean wind velocity

Turbulence intensity ([10] p.21])

o, K, _ 1
Vo (2) ¢ (2)*In(z/z,) 1*In(51.3/1)

=0.25

1 (2)

o, K 1

Vi (2.) - o (2.)*In(z,/2,) - 1*In(30.78/1) =0.29

Iv(ZE):

Terrain roughness ([10] p.20])

0.07
k. (z)=0.19*In (ij ( Terrain category IV )

ZO,II

1 0.07
k. (z)= 0.19*In(m) =0.23[]
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e (2)=k (2] £

Zy
51.3

¢ (2)= 0.23*In(Tj =0.92 [] ( Terrain category IV )

¢, (z.)=0.23*In (&178) =0.80 [-]

Mean wind velocity ([10] p.21])

Vo (2)=c, (2)*c,(2)*V, =0.92*1*27 = 24.9 m/s?

Vi (Z,) =6, (2)* ¢, (2. )*V, =0.80*1*27 = 21.68 nV/s?

With:

c (2) roughness factor
¢ (2) orography factor
Vy basic wind velocity

Basic wind velocity ([10] p.19])

Vb (Z) =Cdir*cseason *Vb,o =1*1*27 =27 m/32

With
Cyir directional factor
season season factor
Vio fundamental value of basic wind velocity

For the Netherlands, the euro code states that the fundamental value of basic wind velocity
is equal to 27 m/s.
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Acceleration for serviceability assessments ([10] p.111])

K,*K, *O(y,z)

Z)= * 5| *\/2 *R*
aa,x(yz) Cf P V(Ze) Vm(Ze) /uref*(Dmax

*G/Q*
% =0.231 m/s’

o, (¥,2)=0.67%1.29%0.29%(21.68)" *0.182* el =

The standard deviation o,, of the characteristic along-wind acceleration of the structural

point with coordinates (y,z) is approximately given by Expression ([10])

where:

C; force coefficient

P air density

1, (z) turbulence intensity at height ze above ground

V2 (z,) characteristic mean wind velocity at height ze

R square root of the resonant response

K,. K, constants given in C.2 (6)

7 the reference mass per unit area

D(y.z) the mode shape

) mode shape value at the point with maximum amplitude

max

The characteristic peak accelerations are obtained by multiplying the standard deviation by

the peak factor in B. 2 (3) using the natural frequency as upcrossing frequency, i.e. v = nix.

Arax = Kpoay (¥,2) =3.69%0.231=0.852 m/s?
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Woudenberg empirical formula’s

The formula to calculate the frequency in this article is ([19] p.32]):

46

e_Woudenburg — 7
In which:

height building: 51.3m

Substituting the variables into the frequency formula gives:

e _ Woudenburg

46
=——=~0.897 Hz
51.3

The cyclic frequency o

e _Woudenberg

=2*7z*f ~5.63 rad/s.

The maximum acceptable deflection of the top of the building is v,,, = #/500. When the height is

substituted we get a deflection of 51.3 /500 = 0.1026/77. The amplitude A of our building is the half
of the maximum acceptable deflection of the top of the building, this is 0.1026 /2 =0.0513m.

The formula for the natural vibration can be written as u(t) = Asin(at + ¢) . The acceleration is the
second derivative of the natural vibration formula, a(t) = ti(t) = Aw? sin(at + ¢) , of which the

maximum bending acceleration is a = A*@” . Substituting the variables into the formula gives
a=0.0513*5.63%= 1.628 m/s2 .

This maximum occurring acceleration is far above the maximum acceptable acceleration of

a=0.1m/s?.
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Determining the torsional acceleration with the empirical formula in Woudenberg article
([19] p.32]):

72

fefWoudenburg = /7
building

In which:

h = height building: 51.3m

Substituting the variables into the frequency formula gives:

_ 72 404z
51.3

e _Woudenburg

The angular cyclic frequency is o

e _ Woudenberg

=2*z*f ~8.819 rad/s .

The maximum acceptable deflection of one floor of the building is «,

wp = H /500 . When the
height is substituted we get a deflection of 51.3/500 =0.103 m. The maximum acceptable
bending deflection per story is 0.103/19=5.4E> m. To determine the torsion on a floor we
have to look at the interstory drift of a building. The maximum acceptable displacement due

to interstory drift is v, = A,,, /300. Substitution gives .  =2.65/300=8.83£7 m.

The displacement left for torsion motion is 8.83E? - 5.40E° = 3.43E°m.

We assume in our model that the bending and torsional motions are uncoupled. The
maximum amplitude due to torsional motion is 0.00343/77. The maximum amplitude for

torsion, should not be desregarded for the maximum deflection of a building.

Petory h 265 144

u = = —
o300 500%*n,,. 300 500%*48

=8.83£7% -5.40£7 =3.43E°m

The formula for the natural vibration can be written as u(t) = Asin(at+¢). The

acceleration is the second derivative of the natural vibration formula

a(t) =(t) = Aw?sin(awt +¢) .  Substituting the variables into the formula gives

a=0.00343*8.819% =0.267 m/s?, which is the maximum torsional acceleration.
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This maximum occurring acceleration due to bending and torsion motion is

a=1.628+0.267 =1.895 m/s? far above the maximum acceptable acceleration of

a=0.1m/s’.
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Woudenberg formulas

The formulas to calculate the frequency in this article “Windbelasting en het hoogbouwontwerp”
([19] p.28-36]):

Formulas

Bending displacement at top due to wind load

g, *h*)_(33553*51.3* 3
o, =| 9w = =5.62E7 m
7 ( 8ET 8*5.17E"

Shear displacement at top due to wind load

g, *h\ (33553%51.3 4
Dy = | = = =2.11E* m
“ ( 2GA 2*2.09E"

Displacement at the top due to foundation rotation

C, =20*FEI /L =2.02F™ Nm ([51)

3 3
oo =| o[22 12 m
+~\2¢, )"\ 2* 2028

Total displacement at top of the building

Orep =Ogr +O0gy + 0, = 7.0E3 m

Critical buckling force

* 2 * 2
Q =| %N | 335537513 ) _ 15003689795 N
o 7.0E
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Second order effect

n__ 107411 o

second order = = =
n-1 107.111-1

Qk _ 1 1 _ 1 1
T4 (3 2N 6 3 2
Quw On[ M h b} 231E( 513 - 51.3 - 51.3 .
8EI 2GA 2C, 8*5.17E  2*2.09E" 2*2.02F

=107.111

mbwd//ng * g _ 121E7*981

= 2.31E° N/m
h 51.3 /

m, =1.21 F’ kg(Mathlab) ¢, =

buidling

Total displacement due to wind load and foundation rotation (including

second order effect)

0. =" &5 -1.01%0.007 = 0.00707 m

Top sec To,
P n-— 1 P

Amplitude
A=0.00707 /2 =3.54E°m

Natural frequency

o, =C, f(Ef | pAI") = 3.52\j((2.54512 ) /(205.39 * 1147.50 * 51.3")) = 4.39 rad/s

a)e_Waudenberg =, = 4.39 rad/s

The formula for the natural vibration can be written as u(t) = Asin(at+¢). The
acceleration is the second derivative of the natural vibration formula,
a(t) =) = Aw?sin(wt +¢) . Of which the maximum acceleration is, a=A*o’.

Substituting the variables into the formula gives a =0.0035*4.392 =0.068 m/s”.

This maximum occurring acceleration is below the maximum acceptable acceleration of

a=0.1 m/s®.
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Schueller

The eigenfrequency of the structure must be known, to determine the acceleration what occurs ([18]
p. 176]).

The formula to calculate the vibration time is:

¢ —20xe @ HIEET)

In which:
H= The building Height: 51.3 m
Q= The building weight: 119 MN (Pols)
g= The gravitational acceleration: 9.81 m/s?
E= Young’s modulus: 5.29E10 N/m?
I= The bending stiffness: 97.82 m*

Substituting the variables into the formula gives:

T = z*ﬁ*\/((Q*HA3)/(8*Ef*g)) =1.248 s
The eigenfrequency f =1/T =1/1.248 ~0.801 Hz . The cyclic frequency is w=2*z* f =5.034 rad .

The maximum acceptable deflection of the top of the building is v,,, = #/500. When the height is

substituted we get a deflection of 51.3 /500 = 0.103/77. The amplitude A of our building is the half
of the maximum acceptable deflection of the top of the building, thisis 0.103/2 =0.051m.

The formula for the natural vibration can be written as ¢(t) = Asin(wt + @) . The acceleration is the
second derivative of the natural vibration formula, a(#) = &(t) = Aw? sin(wt + @) , of which the
maximum acceleration is a = A*®” . Substituting the variables into the formula gives

a = 0.051*5.034* = 1.300 m/s.

This maximum occurring acceleration is above the maximum acceptable acceleration of
a=0.1m/s.
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Dicke/Nijsse

The formula to calculate the frequency in this article is ([20] p.32]):

The values of ¢ by different types of fixations

c=1 spring
c=0.83 Cantilever
c=0.67 on piles

c=0.64 on rock ground

The variables of the building loaded by wind

L Length of building [m]
m Mass of the building [kg]
I Second Moment of Area [m*]

The gravitational effect of the upside-down pendulum

Ke = Effective stiffness of the system [N/m]
Kb = Spring stiffness [N/m]

Kp = Negative stiffness of the upside-down pendulum [N/m]

Mathematic Pendulum

T=2*”*E (Independent of Mass) [S]
2%z
T=7 (From vibration time to cyclic frequency) [S]

i 2_9
summation of @ =+
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g

K
Combination of ®’ = % and @ = gives us K,
m

with G=m*g
Upside-down pendulum

| pendulum length

C values of cantilevers.

| building length

| =c*|
Calculations

Weight building
G=m*g=1.21F *9.81 =118602900 N

Pendulum length

I, =0.67 *51.3 = 34.37 m

Negative stiffness of the upside-down pendulum

m*g _1.21E7*%9.81 _

K — —
37.37

p
ID

34506677 N/m

Spring stiffness

X 12
K =E=355'%=114920410 N/m

Effective stiffness of the system

( Single degree of freedom system)

%N
]
3|~

mg
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K. = K,- K, = 80413733 N/m
K

o = /J - ’M =0.534 rad/s

r m 1.209E

o, = f& - /W =0.975 rad/s
m 1.209E

o, = [Ke - 80413733 _ 4 816 rad/s
m 1.209E

Frequency of Professor Dicke

Fo 08164 50y,
2z Vid

Vibration time of Professor Dicke

= L =7.704sec

1
T==
£, 0.130

Critical buckling factor

2 2
n= 2 0975 _ 533
w;, 0.534

Second order effect

-390 p

n
= n1 2330

Amplitude

5/
A= /5 _0.103/2=0.0515
500 / m
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Maximum acceleration

The maximum acceleration is a = A*@? *n,, . Substituting the variables into the formula

gives a=0.0515*0.816%*1.43=0.049 m/s?

This maximum occurring acceleration is below the maximum acceptable acceleration of

a=0.1 m/s®.
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NBCC Acrosswind acceleration

0.5
The acrosswind acceleration will be larger than the alongwind acceleration if (bd ) <0.33

([17] p.61]). This is the case in most buildings with a rectangular cross section, so the

acrosswind acceleration will be dominant.

The National Building Code of Canada (NBCC) will be used to determine the across wind
acceleration of the building ([17] p.61]).

. f,g,a,\bd
’ pbg\/E

With:
f, frequency of the building Hz
g, peak factor [-]
b,  width of the building m
P average density of the building kg/ms
] gravitational acceleration m/s?
B, lift damping ratio [-]
b width of the building m
d depth of the building m

aris calculated by the following equation:

33
a, =0.0785] —
f. Jb, *b,

With:

f,  frequency of the building Hz
b,  width of the building m
v,  mean wind speed at top of the building m/s?
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. f,0,avbd  0.096%3.74*0.0288*/80.81%14.2

= =0.013 m/s?
- N/ 205.38%9.81*+/0.020

aris calculated by the following equation:

3.3 36 8 33

V,

a, =0.0785| —L—| =0.0785 : =0.0288 [-]
[ f. /o, *b, J {0.996\/80.81*14.2 )
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Eurocode Acrosswind acceleration

E.1.2 Criteria for vortex shedding ([10] p.116)

(3) The effect of vortex shedding should be investigated when the ratio of the largest to
the smallest crosswind dimension of the structure, both taken in the plane
perpendicular to the wind, exceed 6.

(4) The effect of vortex shedding need not be investigated if

Vi >1.25%v (E.1)
106.34 >1.25*24.91
where:
Vs IS the critical wind velocity for mode I, as defined in E.1.3.1
v is the characteristic 10 minutes mean wind velocity specified in 4.3.1 (1) at the cross section

where vortex shedding occurs. (Figure E.3).

Vortex shedding need not be investigated

E.1.3 Basic parameters for vortex shedding

E.1.3.1 Critical wind velocity vcriti

The critical wind velocity for bending vibration mode i is defined as the wind velocity at
which the frequency of vortex shedding equals a natural frequency of the structure or a

structural element and is given in Expression (E.2).

Vg = (E2)
crit,i — St '
*
Vo = 1427080 106.34 m/s®
' 0.107

where:
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b is the reference width of the cross-section at which resonant vortex shedding occurs
and where the modal deflection is maximum for the structure or structural part

considered; for circular cylinders the reference width is the outer diameter.

n is the natural frequency of the considered flexural mode i of cross-wind vibration;

iy

approximations for ni,y are given in F.2

St Strouhal number as defined in E.1.3.2.

E.1.3.2 Strouhal number St
The Strouhal number St for different cross-sections may be taken from Table E.1
d/b=80.81/14.2=5.69 [-]

St=0.107 []

E.1.3.3 Scruton number Sc ([10] p.119)

The susceptibility of vibrations depends on the structural damping and the ratio of structural

mass to fluid mass.

This is expressed by the Scruton number Sc, which is given in Expression (E.4).

_2%5,*m,

Sc pTz'*e (E.4)
* * 5

SC:Z 0.08 2.3EZSE _1450
1.29*14.2

where:

o, is the structural damping expressed by the logarithmic decrement.
1% is the air density under vortex shedding conditions.
m is the equivalent mass me per unit length for mode i as defined in F.4 (1)

ie
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b is the reference width of the cross-section at which resonant vortex shedding occurs

E.1.5 Calculation of the cross wind amplitude

E.1.5.1 General

(1) Two different approaches for calculating the vortex excited cross-wind

amplitudes are given in E.1.5.2 and E.1.5.3.

(2) The approach given in E.1.5.2 can be used for various kind of structures and mode
shapes. It includes turbulence and roughness effects and it may be used for normal climatic

conditions.

(3) The approach given in E.1.5.3 may be used to calculate the response for vibrations in
the first mode of cantilevered structures with a regular distribution of cross wind dimensions

along the main axis of the structure.

Typically structures covered are chimneys or masts. It cannot be applied for grouped or in-
line arrangements and for coupled cylinders. This approach allows for the consideration of
different turbulence intensities, which may differ due to meteorological conditions. For
regions where it is likely that it may become very cold and stratified flow conditions may
occur (e.g. in coastal areas in Northern Europe), approach E.1.5.3 may be used.

E.1.5.2 Approach 1 for the calculation of the cross wind amplitudes

E.1.5.2.1 Calculation of displacements ([10] p.121)

The largest displacement y:... can be calculated using Expression (E.7).

yF,max :i* 1 *K*

b St2 g Kw*clat (E-7)

Ve ra = o * = *0.13%0.60*1.1%142 = 0.7341 m

0.107* 145.0

where:
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St is the Strouhal number given in Table E.1
Sc is the Scruton number given in E.1.3.3
K, Iis the effective correlation length factor given in E.1.5.2.4
K is the mode shape factor given in E.1.5.2.5
Cx is the lateral force coefficient given in Table E.2

E.1.5.2.2 Lateral force coefficient clat

The basic value, c..o, of the lateral force coefficient is given in Table E.2.

=1.1

CIat.D

E.1.5.2.3 Correlation length L ([10] p.124)

The correlation length Lj, should be positioned in the range of antinodes. Examples are

given in Figure E.3. For guyed masts and continuous multispan bridges special advice is

necessary.

L /b L,/b 1, (L;/bY
Kw:3 J * l— ] +_* ]
A A 2 A

K, =0.6 [-]

E.1.5.2.5 Mode shape factor ([10] p.125)

The mode shape factor K is given in Expression (E.9).

i _[d)ivy(s) ds
K = j=1 Ijm
4*E*ZI®ﬁy(s)ds
K =0.13 (E.9)
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where:
m is defined in E.1.5.2.4 (1)
@, (s) is the cross-wind mode shape i (see F.3)

l; is the length of the structure between two nodes (see Figure E.3)

The maximum acceleration is:

B = Voo ¥(2% 7% 1, ) =0.7341%(2* 7%0.8)° =18.55 m/s?,
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Appendix 13 Matlab code NDOF Juffertoren (frequency

domain analysis )

Below the Matlab code is given for the Juffertoren for return period of one year, the only difference

with the Matlab code for return period of 12.5 years is that V,, = 22.62m I's and o, =6.23m I's (6.3)

are inputted in Matlab file: Spectra_acceleration.m
For this code to run take generated file matrices.mat from the time domain analysis file folder.
Spectra_acceleration.m

clear
close all

% Calculating the spectra of acceleration
% Input: K ben M ben Cd ben
% Output: Saa

% Author: H.A.O.Richardson (Anthony)
% Thesis: Wind induced torsions in high-rise buildings due to wind loading.

o)

% Loading Mass-, Stiffness-, Damping- Velocity-, eigen matrix bending
matrix

%load matrices M ben K ben Cd ben v _mean omega eig ben E ben V _Hub yr zr
sedit 09-07

load matrices M ben K ben Cd ben v _mean omega eig ben E ben %edit 28-04-
2019

zr=3:3:144; %48 ndes of freedom system

yr(:)=0; % there is no coherence in y direction

v=48; % Bending degrees of freedom

L=1200; % characteristic length Davenport

sigma v=2.52; % standard deviation of the wind speed variation with
height

v _10=21.45; % mean wind speed at 10 m height

U=v_10;
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V_Hub=U;

rho=1.25; % Air density

A=3*26.34; % Area of the building surfice one node height *
Building width

Ch=1.2; % Summation of suction and drag coefficient

omega max=max (omega eig ben)+200; % Maximum value of the natural frequency
matrix plus 200

delta=.1;

for c=1:1:v-2
v_mean 48 (1,2+c)=v_mean((2*c-1));
end
v_mean 48(1,1)=v _mean 48(1,3);
v_mean 48(1,2)=v_mean 48(1,3);

% Generalised mass, damping-, spring constant added

for n=1:1:v;
m_k (n)=transpose(E ben(:,n))*M ben*E ben(:,n);
end

xx=transpose (E ben(:,1));

for n=1:1:v;
c_k(n)=transpose(E ben(:,n))*Cd ben*E ben(:,n);

end

for n=1:1:v;

k k(n)=transpose(E ben(:,n))*K ben*E ben(:,n);
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end

S _vv=zeros(v,v,2);
S FF=zeros(v,v,2);
S vv_1=zeros(v,v,2);
for n=1:1:(25*10) ;

omega (n)=n/10;% plotting omega for every interval

for p=1:1:v

% Depending on height (only autospectra)

o°

o°

making 48 *48 matrix to be able to do the coherence

S vv(p,p,n)=((omega(n).*L./(2.*pi.*v_10))."2)./((1+(omega(n).*L./(2.*pi.*v_
10)).72) .7 (4/3)) .*(((2/3) .*sigma _v.”"2)./omega(n));

end

oo

oo

Coh=cohorence 2 run(n,omega,yr,zr,U);
Cohm=Coh;
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for aa=1:1:v
for bb=1:1:v

if (aa==bb)

S _vv(aa,bb,n)=(Cohm(aa,bb).* (S _vv(aa,aa,n).*S vv(bb,bb,n)).".5);%edit 20-

04-2019
else

S _vv(aa,bb,n)=(Cohm(aa,bb).* (S vv(aa,aa,n).*S vv(bb,bb,n)).”.5);
end

end
end

% Determining the force spectra for ever node on diagonal
for d=1:1:v

S FF(d,d,n)=(rho.*A.*Ch.*v _mean(d))."2.*S vv(d,d,n); % CT4145

Page 26

o

no aerodynamic admittance in the function

o

At ever node there is a different velocity, for each velocity

o°

force spectra must be determined.
end

for aaa=1l:1:v
for bbb=1:1:v
if (aaa==bbb)
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S _FF (aaa,bbb,n)=S vv(aaa,bbb,n).* ((rho.*A.*Ch).”2).*v _mean (aaa) .*v_mean (bbb
) .* (ADM (aaa, bbb) *2) ;

else

S _FF (aaa,bbb,n)=S vv(aaa,bbb,n).* ((rho.*A.*Ch).”2).*v _mean (aaa) .*v_mean (bbb
) . * (ADM (aaa, bbb) *2) ;
end
end
end

S FFco(:,:,n)=S FF(:,:,n);

end

%% Quasi-static part of the response spectra
ii=48;
j=48;
ps=v;qgs=v; ks=v;ls=v;

$starting calculation

S _UU quasi=zeros(v,v);

for n=1:1:(25*10)

omega (n)=n/10;% plotting omega for every interval
omega_quasi(n)=0;% plotting omega for every interval

S UU 1s gquasi=0;
S UU quasi(ii,J)=0;

for ps=1:1:v
for gs=1:1:v
for ks=1:1:v

for ls=1:1:v

S UU 1s quasi=S UU 1ls quasi+ ((((E_ben(ii, ks))*(E ben(ps,ks)))/ ((k _k(ks)-
omega_quasi (n)*2*m_k(ks)+i*omega quasi(n)*c _k(ks)))))*((((E_ben(j,1s))*(E Db
en(gs,1ls)))/ ((k_k(ls)-omega quasi(n)”2*m k(ls)-

i*omega quasi(n)*c _k(ls)))))* (S FF(ps,gs,n));

end
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end
end

end

S UU psf quasi(n)=S UU ls quasi;
end

figure
h=semilogy (omega,abs (S _UU psf quasi));

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S u u g u a s 1i(m2s/rad)','FontSize',8)

1i=48;
j=48;

ps=v;qgs=v; ks=v; ls=v;
$starting calculation

S _UU dyn=zeros(v,V);

for n=1:1:(25*10)
omega (n)=n/10;% ploting omega for every interval

S UU 1s dyn=0;
S UU dyn(ii,3j)=0;

for ps=1:1:v
for gs=1:1:v
for ks=1:1:v

for 1ls=1:1:v

S UU 1s dyn=S UU 1s dyn+((((E ben(ii,ks))*(E ben(ps,ks)))/ ((k_k(ks)-
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omega (n) *2*m_k (ks) +i*omega (n) *c_k (ks)

)))) 1s))*(E ben(gs,1s)))/
((k_k(ls)-omega(n)”2*m k(ls)-i*omega (n)*c_

14
S FF(ps,gs,n));
end
end
end

end

S UU psf dyn(n)=S UU 1ls dyn;
end
figure
h=semilogy (omega,abs (S _UU psf dyn));

xlabel ('\omega (rad/s) ', "FontSize', 8)
ylabel ('S u u d y n(m2s/rad) ', "FontSize', 8)

%% Adding the quasi-static and dynamic responce spectra

for n=1:1:(25*10)
S UU psf(n)=S UU psf quasi(n)+S UU psf dyn(n);
end

figure
h=semilogy (omega,abs (S _UU psf));

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S u u d y n(m2s/rad) ', "FontSize', 8)

%% Calculation of the acceleration spectra

for n=1:1:(25*10)
omega (n)=n/10;% ploting omega for every interval
S _aa psf(n)=S UU psf(n)*omega(n)"2;

end

figure
h=semilogy (omega, abs (S_aa psf));
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xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S a a(m~2/s"4)"','FontSize"', 8)
%% Plotting and saving the figures

toc

I spectrums plot

save Output spectral.mat

[}

%Getting the standard deviation of the acceleration

maximum value
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admittance 2 run.m

function ADM=admittance 2 run (n,omega,yr,zr,U)
syntax: function ADM=admittance 2 run(f,Yrtot,Zrtot,Vhub, zhub,option)
Aerodynamic Admittance

o oP

o\

% Input:

% n: number counted which divides the omega spectra (-]
% omega: cyclic frequency

[Rad/s]

% Yr: lateral node places [m]
% Zr: longditudinal node places [m]
% U: the 10 minute average wind speed at hub height

[m/s}

% Output:

o°

ADM: aerodynamic admittance (-)

o°

o\

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o\

[}

% number of points in rotor plane

Ny=length (yr) ;

Nz=length(zr);

Np=Ny*Nz;

% y and z coordinates of all rotor points in one column vector
Yr=reshape (yr'*ones(1,Nz),Np,1);
Zr=reshape (ones (Ny, 1) *zr,Np, 1) ;

Yrtot=zeros (Np, Np) ;
for i=1:Np
for j=i+1:Np
% distances between points
Yrtot (i,]3)=Yr(i)-Yr(3);
Yrtot (j,1)=Yrtot(i,3);
end
end

Zrtot=zeros (Np,Np) ;
for i=1:Np
for j=i+1:Np
% distances between points
Zrtot (i,j)=(Zr(1)-2r(j));
Zrtot(j,i)=Zrtot(i,3);

end
end
f=omega (n) / (2*pi());
Cz=7; % Londitudinal Coherence
Cy=10; % Lateral Coherence
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x=2*f.* ((sqrt ((Cz.”2) .* ((Zrtot) .”2)+(Cy"2).* ((Yrtot)."2)))/U);
ADM=1./(1+((x).~(4/3)));
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coherence 2 run.m

function Coh=coherence 2 run(n,omega,yr,zr,U)
syntax: function Coh=coher (f,Yrtot,Zrtot,Vhub, zhub, option)
Coherency function of longitudinal wind velocity fluctuations

o° o

o°

% Input:

% n: number counted which divides the omega spectra [-]
% omega: cyclic frequency

[Rad/s]

% Yr: lateral node places [m]
% Zr: longditudinal node places [m]
% U: the 10 minute average wind speed at hub height

[m/s}

% Output:

o\

Coh: coherency (-)

o°

o°

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o\

[}

% number of points in rotor plane

Ny=length (yr) ;

Nz=length(zr);

Np=Ny*Nz;

% y and z coordinates of all rotor points in one column vector
Yr=reshape (yr'*ones (1,Nz),Np,1);
Zr=reshape (ones (Ny,1) *zr,Np, 1) ;

Yrtot=zeros (Np,Np) ;
for i=1:Np
for j=i+1:Np
% distances between points
Yrtot (i,]3)=Yr(i)-Yr(3);
Yrtot(j,i)=Yrtot(i,3);
end
end

Zrtot=zeros (Np,Np) ;
for i=1:Np
for j=i+1l:Np
% distances between points
Zrtot (i,j)=(Zr(1)-2r(j));
Zrtot (j,1i)=Zrtot(i,]):;
end
end

f=omega (n) / (2*pi());
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Cz=7; % Londitudinal Coherence
Cy=10; % Lateral Coherence

x=f.* ((sqrt ((Cz.”2).*((Zrtot) ."2)+(Cy™2) .* ((Yrtot) ."2)))/U);
Coh=exp (-1.*x);
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Transversion E ben.m

$Making the Modal eigen vectors (start with 1 in first column)

o\°

o°

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o°

o°

making the bottom value of the eigen vector 1 and recalculating the other
values.

o\°

E ben modified=zeros (v);

% putting 1 in the top row of the matrix
for n=1:1:v;
E ben modified(1l,n)=1;

end

o

% fulling in the calculated values in the first column vector

for n=2:1:v;
for p=1:1:v;

E ben modified(n,p)=2;
end
end
% N Dof
for p=1:1:v;
for n=2:1:v;
if n==2;
k x=(E ben modified(n-1,p)/E ben(n-1,p));
E ben modified(n,p)=(E_ben modified(n-1,p)/E ben (n-

1,p))*E _ben(n,p);

else
E ben modified(n,p)=k x*E ben(n,p);

end
end

end

E ben=E ben modified;

-367- May 2022



%
TU Delft Torsion motions of high—rise buildings due to wind loading

Maximum value.m

% Thesis: Torsion motions of high-rise buildings due to wind loading
% Author: H.A.O. Richardson (Anthony)

mu_u=0; % Mean of the displacement spectra [-]
sigma u square=trapz (omega,S UU psf); % Variance of the displacement
spectra [-] % 48 dof

Q

sigma u=sqrt(sigma u square); % Standard deviation of the displacement
spectra [-] % 48 dof

T=800; % Period of a signal
[seconds]
omega_eig ben l=omega eig ben(1l); % angular frequency [rad/s] %

omega=2*pi*f

Q

f O=omega eig ben 1/(2*pi); % radial frequency [Hz] or [1/s] % f =
omega/ (2*pi)

u_star=mu_u+sigma u* (2*log(T*f 0))".5; % N Dof

mu_a=0; % Mean of the acceleration spectra [-]
sigma a square=trapz (omega,S aa psf); % Variance of the acceleration
spectra [-] % 48 dof

sigma a=sqrt(sigma_a square); % Standard deviation of the acceleration
spectra [-] % 48 dof

T a=800; % Period of a signal

[seconds]

omega_eig ben l=omega eig ben(1l); % angular frequency [rad/s] %

omega=2*pi*f

o)

f O=omega eig ben 1/(2*pi); % radial frequency [Hz] or [1/s] $ £ =
omega/ (2*pi)

a_star=mu_a+sigma_a* (2*log(T_a*f 0))".5; % N Dof
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I spectums plot.m

o o

o°

Author: H.A.0. Richardson (Anthony)

o°

o\

figure
h=semilogy (omega, abs (S _UU psf));

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S u u(m2s/rad)','FontSize', 8)

saveas (gcf, 'S UU psf.jpeg', 'Jjpeg');

S _vv _N=(zeros(l,size(S_vv,3)));

for xx=1:1:size(S_vv,3);
S_vv_N(xx)=S vvco(v,V,XXx);
end

figure
h=loglog (omega,S vv N);

axis ([le-2 lel le-1 1le2])

set (h, 'LinewWidth', .1)

set (gca, 'FontSize', 8)

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S v v(m"2/s"2)"','FontSize"', 8)
set (gcf, 'PaperPositionMode', 'manual');
set (gcf, 'PaperUnits', 'centimeters');
set (gcf, 'PaperPosition', [4 4 15 6]);

saveas (gcf, 'S vv N.jpeg', 'jpeg');

S FF N=(zeros(l,size(S FF,3)));

for xx=1:1:size (S vv,3);
S FF N(xx)=S FFco(v,Vv,Xx);
end

figure

h=loglog (omega,S FF N);

set (h, 'LinewWidth', .1)

set (gca, 'FontSize', 8)

xlabel ('\omega (rad/s) ', '"FontSize', 8)
ylabel ('S F F(N"2)', 'FontSize',8)

set (gcf, 'PaperPositionMode', 'manual');
set (gcf, 'PaperUnits', 'centimeters');
set (gcf, 'PaperPosition', [4 4 15 6]);

Thesis: Torsion motions of high-rise buildings due to wind loading
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saveas (gcf, 'S FF N.jpeg', 'jpeg');

figure

h=semilogy (omega, abs (S_aa psf));

set (h, "Linewidth', .1)

set (gca, 'FontSize', 8)

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S a a(m~2/s"4)"','FontSize', 8)
set (gcf, 'PaperPositionMode', 'manual');
set (gcf, 'PaperUnits', 'centimeters');
set (gcf, 'PaperPosition', [4 4 15 6]);

saveas (gcf, 'S aa psf', 'jpeg');

% saving values in matrices

save matrices omega S UU psf S vv S vvw N S vvco S FF N S FF S FFco S aa psf
—append
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Appendix 14 Matlab code SDOF Juffertoren (frequency

domain analysis )

Below the Matlab code is given for the Juffertoren for return period of one year, the only difference

with the Matlab code for return period of 12.5 years is that V,, =22.62m/s, o =6.23m/s and

v, =V_mean(l) =39.60m/s (6.3) are inputted in Matlab file: S_FF_we.m

For this code to run take generated file matrices.mat from the time domain analysis file folder.

S _dof approximation.m

3.3 Responce to a arbitrary load [1]

e

e

o\

Thesis: Torsion motions of high-rise buildings due to wind loading
% Author: H.A.O. Richardson (Anthony)

close all;
clear;

)

% Determining S _FF (we)
ve=10000; % length of omega divided by 100
deltaom=0.01l; % splitting 1 radian into 100 intervals

S_FF we

From 48 DOF to 1 Dof
% Formulas
w_e=(k/m)".5;

zeta= (c)/(2*sqgrt (k*m)) ;

$original S uu
omega=20;

S uu original=(S 0/ (((k"2)* ((1-(omega/w_e)"2)"2+(2*zeta* (omega/w _e))"2))));
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o)

% Plotting S _uu omega variable
deltaom=0.01;
for n=1:1: (ve)
omega (n)=n*deltaom;
S uu(n)=(S_FF N(n)./k.”2)+(S_0./(k"2*(((1-
(omega (n)./w_e) ."2) .%2)+(2*zeta* (omega (n) ./w_e))."2)));

% checked with S uu original formula is correct
S _aa=S uu.*omega."2;

o°

_aa(n)=S _uu(n).*omega(n)."2;
the first value of the displacement spectrum has to be according to
figure 3.3. page 3 S 0/k"2 is corrrect 3*10-5

o

o°

end

S uu(l);

S 0/k"2;

% Plotting Displacement Spectra

figure

plot (omega,S uu);
grid

title('s u u'")

axis ([0 10 0 .10])
figure

plot (omega,S aa);
grid

title('s a a'")

axis ([0 10 O .157])

% Determining the Variance of the Displacement Spectra

Sigma u square white noise=(pi*w e*S 0)/(4*zeta*k"2);

Sigma F square = trapz(omega,S FF N);
Sigma u square=((Sigma F square)/k"2)+(pi*w _e*S 0)/(4*zeta*k"2)

Sigma u=Sigma_u_ square”.5;

o

% Integrating the variance of Displacement Spectra

Q = trapz (omega, S _uu)
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Q root=sqrt (Q);

o)

% Integrating the variance of Acceleration Spectra

Sigma a square = trapz(omega,S aa);
Sigma a=sqrt(Sigma_a square);
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S_FF_we.m

o\°

Determining the load of the force spectra for the first natural
frequency (S_FF (we))

o° o

o°

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o\°

Q

load matrices omega eig ben % Loading of the eigenfrequencies

% First we have to determine the velocity spectra

o°

v=1;

1=1200;
v_10=21.45;
sigma v=2.52;
height

degrees of freedom

characteristic length Davenport

mean wind speed at 10 m height

standard deviation of the wind speed variation with

o oP

o

S _vv=zeros(v,v,ve);
S FF=zeros(v,v,ve);
S vv_1=zeros(v,v,ve);

for n=1:1: (ve)

omega (n)=n*deltaom;

for p=1:1:v

S vv(p,p,n)=((omega(n) . .*L./(2.*pi.*v_10))."2)./((1+(omega(n).*L./(2.%*pi.*v_
10)) .72) .~ (4/3)) .*(((2/3) .*sigma v."2)./omega(n));

end
end

% plotting velocity spectra

for xx=1:1:size (S vv,3);
S vv_N(xx)=S vv(v,Vv,xx);
end

figure
h=loglog (omega,S vv_N);
title('s v v loglog')

figure
plot (omega,S_vv_N);
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title('s v v'")
axis ([0 10 0 807)

o\

Next we have to determine the force spectra ( top of the buiding to be
% conservitive)

rho=1.25; % Alir density
A=3*26.34; % Area of the building surfice one node height *
Ch=1.2; % Summation of suction and drag coefficient

v_mean(1)=37.62; $velociy at node 48 .... the velocity will always be
smaller than this so it is conservative.

for n=1:1: (ve)
omega (n)=n*deltaom;

o

% Determining the force spectrum for ever node on diagonal
for d=1:1:v

S FF(d,d,n)=(rho.*A.*Ch.*v_mean(d))."2.*S vv(d,d,n); S CT4145

Page 26
% no aerodynamic admittance in the function
% At ever node there is a different velocity, for each velocity
a
% force spectra must be determined.
end
end

o)

% plotting force spectra

for xx=1:1:size(S_FF,3);
S FF N(xx)=S FF(v,v,xx);
end

figure

h=loglog (omega,S FF N);
title('s F F loglog')
figure

plot (omega,S FF N);
title ('S F F')

Q

% Next we determine the S FF (we)
omega_e=round(omega_eig_ben(1)*(1/deltaom));

S _0=S FF N(omega_e);
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From_48_DOF_to_1 Dof.m

o\°

Transfering from 48 DOF to 1 Dof for M,C,K-Matrix

o\°

o°

Thesis: Torsion motions of high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o°

% Loading the M, C, K matrix of the 48 DOF system and eigenfrequencies

load matrices K ben Cd ben M ben omega eig ben v EI L

[}

% Determining the total mass of the building
M total=0;

for s=1:1:v

M total(s)=M ben(s,s);

end

o°

dof=0.24%675.54*%405.02*144; % Equivilent mass page 79 + 80 CT 4140

M s dof=0.24*rho*A*1l; % Equivilent mass page 79 CT 4140
M s

omega_eig ben(l); % Natural eigenfrequency

% K s _dof mod=3*3*1000*%1000*1000*10%667/(144~3) % K=(3*EI)/1"3
K s dof mod=(3*EI)/(L"3); % spring stiffness for one dof Page .. CT 2022

w_e=sqrt (K s dof mod/M s dof);

k=K s dof mod;
m=M s dof;

o)

% to determine ¢ we look at Reader CT 2022 page 58
c_kr=2*sqgrt (k*m) ;
zeta=0.01;

c=zeta*c kr;
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Appendix 15 Matlab code NDOF Voorhof after renovation

(frequency domain analysis)

Below the Matlab code is given for the Voorhof after renovation for return period of one year, the only
difference with the Matlab code for return period of 12.5 years is that V, =15.79m/s and

o, =6.65m/s (9.6) are inputted in Matlab file: Spectra_acceleration.m. For the Voorhof before

renovation the a different file: matrices.mat has to be loaded.

For this code to run take generated file matrices.mat from the time domain analysis file folder.

Frequency domain files what are the same as Juffertoren (Appendix 13) are not given.

Spectra_acceleration.m

clear
close all

% Calculating the spectra of acceleration
% Input: K ben M ben Cd ben

% Output: Saa

% Author: H.A.O.Richardson (Anthony)
% Thesis: Wind induced torsions in high-rise buildings due to wind loading.

tic

o)

% Loading Mass-, Stiffness-, Damping- Velocity-, eigen matrix bending
matrix

%load matrices M ben K ben Cd ben v _mean omega eig ben E ben V Hub yr zr
load matrices M ben K ben Cd ben v _mean omega eig ben E ben

zr=2.65:2.65:50.35; %19 ndes of freedom system

yr(:)=0; % there is no coherence in y direction

v=19;

o\

Bending degrees of freedom

L=1200; % characteristic length Davenport
sigma v=2.44; % standard deviation of the wind speed variation with
height
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v_10=21.45; % mean wind speed at 10 m height (Urban 2)

U=v _10;

V_Hub=U;

rho=1.25; % Air density

A=2.65%80.81; % Area of the building surfice one node height *
%$Building width

Ch=1.2; % Summation of suction and drag coefficient

omega max=

max (omega eig ben)+200; % Maximum value of the natural frequency

matrix plus 200

delta=.1;

ve=93*10;

% Length of omega interval devided bij amount of steps.

o

v-3 % 3 from the bottom missing

v_mean 19(1,3+c)=v_mean((2*c-1));

for c=1:1:
end

v
v

mean 19(1,1)=v _mean 19(1,4);
mean 19(1,2)=v_mean 19(1,4);

v_mean 19(1,3)=v _mean 19(1,4);

Transversion E ben

for n=1:1:

v

m_k (n)=transpose(E ben(:,n))*M ben*E ben(:,n);

end

xx=transpose (E ben(:,1));

for n=1:1:v;

c_k(n)=transpose(E ben(:,n))*Cd ben*E ben(:,n);

end
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for n=1:1:v;
k k(n)=transpose(E ben(:,n))*K ben*E ben(:,n);

end

S _vv=zeros(v,v,2);

S FF=zeros(v,v,2);

S vv_l=zeros(v,v,2);

for n=1:1: (ve);
omega (n)=n/10;% ploting omega for every interval
for p=1:1:v

% Depending on height (only autospectra)

% making 48 *48 matrix to be able to do the coherence

S vv(p,p,n)=((omega(n).*L./(2.%pi.*v_10))."2)./ ((1+(omega(n).*L./ (2.*pi.*v_
10)).72) .~ (4/3)) .*(((2/3) .*sigma v."2)./omega(n));

end

% Depending on height (autospectra and cross spectra)

oo

o\

Coh=cohorence 2 run(n,omega,yr,zr,U);
Cohm=Coh;
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for aa=1l:1:v
for bb=1:1:v

if (aa==bb)
S _vv(aa,bb,n)=(Cohm(aa,bb).*(S vv(aa,aa,n).*S vv(bb,bb,n)).”.5);
else

S _vv(aa,bb,n)=(Cohm(aa,bb).* (S vv(aa,aa,n).*S vv(bb,bb,n)).”.5);
end
end
end

S vvco(:,:,n)=S vv(:,:,n);

% Determining the force spectra for ever node on diagonal
for d=1:1:v

S FF(d,d,n)=(rho.*A.*Ch.*v _mean(d))."2.*S vv(d,d,n); % CT4145
Page 26 edit 20-04-2019
% no aerodynamic admittance in the function

o

s At ever node there is a different velocity,for each velocity

% force spectra must be determined.
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for aaa=1l:1:v
for bbb=1l:1:v
if (aaa==bbb)

S _FF(aaa,bbb,n)=S vv(aaa,bbb,n).*((rho.*A.*Ch).”2).*v_mean(aaa) .*v_mean (bbb
) .* (ADM (aaa, bbb) *2) ;

else

S _FF (aaa,bbb,n)=S vv(aaa,bbb,n).* ((rho.*A.*Ch).”2).*v _mean (aaa) .*v_mean (bbb
) .* (ADM (aaa, bbb) *2) ;
end
end
end

S FFco(:,:,n)=S FF(:,:,n);
end

%% Quasi-static part of the response spectra
1i=19;
3=19;
pPs=v;qgs=v; ks=v; ls=v;
$starting calculation

S _UU quasi=zeros(v,V);

for n=1:1: (ve)

omega (n)=n/10;% plotting omega for every interval
omega_quasi(n)=0;% plotting omega for every interval

S UU 1s quasi=0;
S UU quasi(ii, J)=0;

for ps=1:1:v
for gs=1:1:v
for ks=1:1:v

for 1ls=1:1:v

S UU 1ls quasi=S UU 1ls quasi+((((E ben(ii,ks))*(E ben(ps,ks)))/ ((k _k(ks)-
omega_quasi(n)*2*m_k(ks)+i*omega quasi(n)*c _k(ks)))))*((((E_ben(j,1s))*(E Db
en(gs,1s)))/ ((k_k(ls)-omega quasi(n)”2*m k(ls)-

i*omega quasi(n)*c_k(ls)))))*(S_FF(ps,gs,n));
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end
end
end

end

S UU psf quasi(n)=S UU ls quasi;
end

figure
h=semilogy (omega,abs (S _UU psf quasi));

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S u u g u a s i(m2s/rad)"','FontSize',8)

ii=19;
j=19;

ps=v;qgs=v; ks=v; ls=v;
$starting calculation

S _UU dyn=zeros(v,V);

for n=1:1: (ve)
omega (n)=n/10;% plotting omega for every interval

S UU 1s dyn=0;
S UU dyn(ii,3j)=0;

for ps=1:1:v
for gs=1:1:v
for ks=1:1:v

for 1ls=1:1:v
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S UU 1s dyn=S UU 1ls dyn+((((E_ben(ii, ks))* (E ben(ps, ks)))/( k (ks) -
omega (n) *2*m_k(ks)+i*omega (n)*c k(ks)))))*((((E_ben (], ls)) (E ben(qs 1s)))/
((k_k(ls)-omega(n)”2*m k(ls)-i*omega(n)*c k(ls)))))* (S _FF(ps,gs,n));

end
end
end

end

S UU psf dyn(n)=S UU 1ls dyn;
end
figure
h=semilogy (omega,abs (S _UU psf dyn));

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S u u d y n(m2s/rad) ', "FontSize', 8)

%% Adding the quasi-static and dynamic responce spectra

for n=1:1: (ve)

S UU psf(n)=S UU psf quasi(n)+S UU psf dyn(n);

end

figure
h=semilogy (omega, abs (S _UU psf));

xlabel ('\omega (rad/s) ', 'FontSize', 8)
ylabel ('S u u d y n(m2s/rad) ', "FontSize', 8)

%% Calculation of the acceleration spectra

for n=1:1: (ve)
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omega (n)=n/10;% plotting omega for every interval

S _aa psf(n)=S UU psf (n)*omega(n)"2;

end

figure
h=semilogy (omega, abs (S_aa psf));

xlabel ('\omega (rad/s) ', "FontSize', 8)
ylabel ('S a a(m”2/s"4)"','FontSize"', 8)

%% Plotting and saving figures

toc

I spectrums plot

save Output spectral.mat

o)

%Getting the standard deviation of the acceleration

maximum value
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Appendix 16 Matlab code SDOF Voorhof after renovation

(frequency domain analysis)

Below the Matlab code is given for the Voorhof after renovation for return period of one year, the only

difference with the Matlab code for return period of 12.5 years is that V,; =15.79m/s o =6.6m/s

and V. =V_mean(1) =30.17m/s (9.6) are inputted in Matlab file: S_FF_we.m. For the Voorhof

before renovation the a different file: matrices.mat has to be loaded.
For this code to run take generated file matrices.mat from the time domain analysis file folder.
S _dof approximation.m

o

& 3.3 Responce to a arbitrary load [1]

close all;
clear;

tic

% Determining S FF (we)

ve=9300; % length of omega divided by 100
deltaom=0.1; % splitting 1 radian into 100 intervals

S _FF we

% values from 19 by 19 matrix

From 19 DOF to 1 Dof

% Formulas

w_e=(k/m)".5;

zeta= (c)/ (2*sqrt (k*m)) ;
omega=20;

S uu_original=(S_0/(((k"2)* ((1l-(omega/w_e)"2)"2+(2*zeta* (omega/w_e))"2))));

o)

% Plotting S _uu omega variable
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deltaom=0.01;

for n=1:1: (ve)
omega (n)=n*deltaom;
S uu(n)=(S_FF N(n)./k."2)+(S_0./(k*2* (((1-

(omega (n) ./w_e)."2)."2)+(2*zeta* (omega (n) ./w_e))."2)));
S _aa(n)=S uu(n).*omega (n)."2;

end

S uu(l);

S 0/k"2;

o)

% Plotting Displacement Spectra
figure
plot (omega,S uu);

grid
title('S u
i [

figure
plot (omega,S aa);
grid

o)

% Determining the Variance of the Displacement Spectra

Sigma u square white noise=(pi*w e*S 0)/(4*zeta*k"2);

Sigma F square = trapz(omega,S FF N);
Sigma u square=((Sigma F square)/k"2)+(pi*w _e*S 0)/(4*zeta*k"2)

Sigma u=Sigma u square”.5;

% Integrating the variance of Displacement Spectra

°

Q = trapz(omega,S uu)
Q root=sqrt(Q);

% Integrating the variance of Acceleration Spectra

Sigma_ a square = trapz(omega,S_aa);
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Sigma a=sqrt(Sigma_a square);
Sigma a=sqrt (Sigma a square)

Toc
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S_FF_we.m

o\

o\

Thesis: Torsion motions in high-rise buildings due to wind loading
Author: H.A.O. Richardson (Anthony)

o o° o

o\

Determining the S _FF (we)
load matrices omega eig ben

% First we have to determine the velocity spectra

v=1; %degrees of freedom

L=1200; % characteristic length Davenport

v_10=21.45; % mean wind speed at 10 m height (Urban 2)

sigma v=2.44; % standard deviation of the wind speed variation with
height

S _vv=zeros(v,v,ve);

S FF=zeros(v,v,ve);

S vv_l=zeros(v,v,ve);
for n=1:1: (ve)

omega (n)=n*deltaom;

for p=1:1:v

S vv(p,p,n)=((omega(n) . .*L./(2.*pi.*v_10))."2)./((1+(omega(n).*L./(2.%*pi.*v_
10)) .72) .~ (4/3)) .*(((2/3) .*sigma v."2)./omega(n));

end
end

Q

% plotting velocity spectra

for xx=1:1:size (S vv,3);
S vv_N(xx)=S vv(v,Vv,xx);
end

figure
h=loglog (omega,S vv_N);
title('s v v loglog')

figure
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plot (omega,S_vv_N);
title('s v v'")
axis ([0 10 0 20])

o\

Next we have to determine the foce spectra (top of the buiding to be
% conservative)

rho=1.25; % Air density
A=2.65%80.81; % Area of the building surfice one node height *
$Building width

Ch=1.2; % Summation of suction and drag coefficient

v_mean(1)=40.83; %velociy at node 19 .... the velocity will always be
smaller than this so it is conservative.

for n=1:1: (ve)
omega (n)=n*deltaom;

)

% Determining the force spectra for ever node on diagonal
for d=1:1:v

S FF(d,d,n)=(rho.*A.*Ch.*v _mean(d)).”2.*S vv(d,d,n); % CT4145

Page 26
% no aerodynamic admittance in the function
% At ever node there is a different velocity, for each velocity
a
% force spectra must be determined.
end
end

Q

% plotting force spectra

for xx=1:1:size(S_FF,3);
S FF N(xx)=S FF(v,Vv,xx);
end

figure
h=loglog (omega,S FF N);
title('S F F loglog'")

figure

plot (omega,S_FF N);
title('S F F'")
%axis ([0 10 0 80])
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% Next we determine the S FF (we)
omega e=round (omega eig ben(1l)* (1/deltaom));

S 0=S FF N(omega e);

Anthony Richardson -390-



]
Appendix 16 TU Delft

From_19 DOF_to_1 Dof.m

o°

o°

Thesis: Torsion motions of high-rise buildings dueto wind loading
Author: H.A.O. Richardson (Anthony)

o® o o°

o\

Transfering from 19 DOF to 1 Dof for M,C,K-Matrix

load matrices K ben Cd ben M ben omega eig ben v EI L

o

% Determining the total mass of the building
M total=0;
for s=1:1:v
M total(s)=M ben(s,s);
end
M s dof=0.24*193*1047.50*51.3; % Equivilent mass page 79 + 80 CT 4140

% w_e s dof=sqrt (K s dof/M s dof);
omega_eig ben(1l);

K s dof mod=(3*EI)/(L"3); % spring stiffness for one dof Page .. CT 2022

w_e=sqrt (K _s dof mod/M s dof);

k=K s dof mod;
m=M s dof;

[}

% to determine ¢ we look at Reader CT 2022 page 58
c_kr=2*sqgrt (k*m) ;
zeta=0.01;

c=zeta*c kr;
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Appendix 17 The Juffertoren output of the 100

simulations for return period of 12.5 years

a_ben a_tor a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor

1 0.11155162 0.7240442 0.7529165 0.045232227 0.30425964 0.306685147
2 0.11154716 0.7535971 0.7523307 0.036706371 0.32850244 0.330266968
3 0.12207007 1.0275112 1.0439641 0.035139772 0.35889044 0.360490992
4 0.08123533 0.8335365 0.8895186 0.030133125 0.31225813 0.313517404
5 0.10649015 0.8463609 0.8026797 0.036741006 0.33094116 0.332579065
6 0.09709362 1.1307521 1.1032707 0.033369465 0.42835881 0.429987219
7 0.12203673 0.71412 0.7518118 0.038566534 0.26733601 0.270005669
8 0.07322891 0.7473262 0.7408825 0.025514988 0.27868555 0.278803869
9 0.14101176 1.2264156 1.1935362 0.036223971  0.4865884 0.487816669
10 0.08880326 0.6916713 0.7431123 0.033026409 0.21673336 0.219136729
11 0.12144215 0.9111311 0.9261201 0.038445007 0.40035031 0.401784007
12 0.0960403 0.9390306 0.96418 0.036537158 0.39780731 0.39933767
13 0.10590692 0.803761 0.8523703 0.03612345  0.3051248 0.307018163
14 0.10207226 0.7637198 0.7130528 0.033309708 0.28144942 0.283300145
15 0.09571262 1.0166797 1.0428508 0.032120528 0.40932801 0.410159476
16 0.10572411 0.6316116 0.6110616 0.035895362  0.2183409 0.220870349
17 0.10433771 1.0107509 1.0323002 0.036379406 0.32683324 0.328829347
18 0.09921264 0.9616628 0.9690588 0.033896618 0.40792548 0.409846019
19 0.11916774 1.2770978 1.3111538 0.037978374 0.38711023 0.38906324
20 0.13981833 0.9523267 0.967581 0.041539122 0.32315908 0.326658162
21 0.10212301 0.9262693  0.904917 0.031826813 0.34617496 0.347219038
22 0.09547567 0.7888494 0.7997443 0.032019423 0.28332144 0.284908351
23 0.11039158 0.5462329 0.5744725 0.042216799 0.21676839 0.221412682
24 0.13171787 0.7204073 0.7562632 0.041255215 0.21313584 0.217197241
25 0.10416771 1.6338502 1.6621087 0.039591149 0.58406417 0.585491302
26 0.12751228 0.9212298 0.9398589 0.039866864 0.40535691 0.407250369
27 0.09089154 0.5789663 0.6358961 0.031368715 0.22586404 0.228153975
28 0.08943601 1.2092585 1.1856382 0.031592693 0.45465738 0.4563995
29 0.13415781 1.376461 1.3726039 0.043328572 0.53524776 0.537351279
30 0.15054447 0.763181 0.7574961 0.041640781 0.26767704 0.270566379
31 0.13065983 0.79529 0.8208232 0.043233487 0.24437001 0.248277814
32 0.10094152 1.1494006 1.1607516 0.038896919  0.4238933 0.426084569
33 0.11291509 1.1492907 1.1569513 0.039993302 0.35994058 0.362214366
34 0.10648614 0.8206881 0.9268075 0.039011234 0.32223967 0.324345161
35 0.1227019 0.9654759 1.0449254 0.043479751 0.46199467 0.464531858
36 0.14317864 0.5946757 0.6223826 0.044515359  0.2204906 0.223769746
37 0.11538301 0.9727054 0.9461839 0.0406628 0.31518568 0.31680453
38 0.09644733 0.8677593 0.8143642 0.032433367 0.35651754 0.357668883
39 0.11370954 1.1524265 1.1689825 0.038258104 0.43551727 0.437273967
40 0.13974251 0.9469874 1.0257016 0.042549235 0.35605827 0.35906679
41 0.09797074 0.8191425 0.8745917 0.03294019 0.28403185 0.285821253
42 0.1145659 1.1371351 1.1722362 0.041707543 0.43238507 0.43434747
43 0.09642182 1.1995268 1.2137461 0.032154439 0.42101929 0.422354015
44 0.09262831 1.1624503 1.1095597 0.039713925 0.49429076 0.496064021
45 0.13460785 0.7684799 0.7604683 0.034111714 0.33278106 0.334155848
46 0.12248393 0.6111439 0.6368132 0.041109877 0.23812139 0.241670343
47 0.10740418 0.9199761 0.9146816 0.033453774 0.33998494 0.3411787
48 0.13134568 0.8374438 0.9246274 0.052261648 0.34454469 0.347869468
49 0.13513289 0.59933 0.5950603 0.038116629 0.20889168 0.213272253
50 0.08824578 0.8813119 0.8448471 0.031673141 0.38918575 0.390740443
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51 0.09580143 0.8062081 0.8502503 0.038614348 0.27892686 0.281557931
52 0.07727698 1.2251641 1.2224122 0.027850488 0.46978914 0.470980064
53 0.11070123 1.0705018 1.1252116 0.043469381 0.45527329 0.456855312
54 0.11139118 0.7598042 0.7493865 0.03936605 0.38024833 0.382228226
55 0.09778569  0.81286 0.8386133 0.039958567 0.32637361 0.328661598
56 0.11458405 1.0809081 1.1318065 0.035376996 0.39657207 0.398451538
57 0.08261843 1.1702562 1.2096019 0.028760886 0.42131014 0.423015958
58 0.10373064 0.8772859  0.915561 0.037120748 0.26238075 0.264945704
59 0.13442928 0.9741576 1.0559203 0.041223902 0.38007053 0.381682196
60 0.13587528 0.7637833 0.7971412 0.039480519 0.29918353 0.301638626
61 0.10391039 0.7539139 0.7455163 0.038870177 0.32775544 0.330630914
62 0.13007813 0.8153754 0.8749848 0.044597976  0.33055357 0.333278841
63 0.12974387 1.5096973 1.5373902 0.035922622 0.55872755 0.560112709
64 0.08203779 0.9905184 0.9793398 0.030314132 0.36916452 0.370392922
65 0.09004452 1.1164703 1.1062243 0.030296912 0.35788098 0.35974387
66 0.09784234 1.0621523 1.0616422 0.033184098 0.38923999 0.391572271
67 0.11732801 1.1037101 1.0859689 0.043312559 0.46364103 0.465322342
68 0.10910267 0.6374185 0.6671115 0.037847288  0.2603165 0.263159439
69 0.12922448 0.8526041 0.8555102 0.045605869 0.29531877 0.297782079
70 0.10528255 0.7669827 0.8360539 0.032567044 0.31986756 0.322431036
71 0.11388114 1.1834371 1.2062057 0.032511507 0.44999605 0.451220532
72 0.09687676 0.6493315 0.7047312 0.033195809 0.27904404 0.281033794
73 0.11079533 0.9611422 0.9471013 0.037700275 0.36770925 0.369347995
74 0.11231311 0.9771492 1.0149984 0.041596316 0.41691538 0.419845326
75 0.12252081 0.8985467 0.9522642 0.040383648 0.37397927 0.376524539
76 0.09258126 1.1001019 1.1468076 0.02904632 0.38310239 0.384120826
77 0.12040577  1.20839 1.1740847 0.04806841 0.40583965 0.408735257
78 0.11993758 0.7813485 0.8196963 0.043245827 0.33125693 0.333705581
79 0.09132328 0.896939 0.8931612 0.030867305 0.32026334 0.321418751
80 0.12659561 0.9830988 1.0123525 0.043846424 0.43493308 0.437530457
81 0.13309465 0.9576078 1.0031816 0.047064159 0.29377657 0.297997385
82 0.11151291 0.5194993  0.536611 0.037799344 0.20076435 0.204361095
83 0.12568093 1.1553116 1.1198721 0.041052616 0.39546627 0.397190272
84 0.08540602 0.6915491 0.704115 0.033096045 0.25112652 0.253025573
85 0.08665458 1.0749553 1.0869305 0.02926637 0.41186051 0.412731835
86 0.12985464 0.8319342 0.8922802 0.041478877 0.27140727 0.274799743
87 0.1075108 0.742153 0.7084196 0.036035927 0.28034993 0.281892299
88 0.10199785 0.8730948 0.8577882 0.035818031 0.30330039 0.30523129
89 0.08609803 0.8628105 0.8601541 0.02713402 0.39743195 0.398807262
90 0.09728932 1.0090079 0.9877342 0.033325184 0.38348676 0.385046838
91 0.10023876 0.6917141 0.7398942 0.038193207 0.26712968 0.269175222
92 0.09909306 0.7866573 0.8036583 0.036017551 0.27079935 0.272771794
93 0.10937251 1.3202472 1.3643269 0.028758794 0.53360348 0.534489899
94 0.10229493 0.7771343 0.7706437 0.034776131 0.27534725 0.277754076
95 0.08740679 0.9927196 1.0131793 0.030698062 0.43257101 0.434160455
96 0.11044981 0.8396332 0.8216313 0.040653199 0.29233076 0.295234148
97 0.16412163 1.3239315 1.3273079 0.057281223 0.44499718 0.449037697
98 0.11201777 1.1198973 1.1272282 0.038716252 0.42393748 0.426235976
99 0.1223254 0.8216679 0.8598863 0.042505837 0.34846899 0.350903788
100 0.10820045 1.1216217 1.1246774 0.034769163 0.45157417 0.453210194
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Average 0.1103 0.9308 0.9471 0.0374 0.3532 0.3553
a_ben a_tor a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor

Max 0.1641 1.6339 1.6621 0.0573 0.5841 0.5855
Min " 007327 051957 05366 d 0.0255"  0.2008" 0.2044
Max - Average 0.0538 0.7030 0.7150 0.0199 0.2309 0.2302
Average - Min 0.0371 0.4113 0.4105 0.0119 0.1524 0.1510
Percentage Max 48.79% 75.53% 75.49% 53.30% 65.37% 64.78%
Percentage Min 33.61% 44.19% 43.34% 31.71% 43.16% 42.48%
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Appendix 18 The Voorhof before renovation with

calibration output of the 100 simulations for return

period of 12.5 years

a_ben a_tor  a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor

1 0.09649697 0.351435 0.3800669 0.028370068 0.09999785 0.103887581
2 0.14540427 0.4867301 0.6247119 0.038457497 0.10910995 0.109957001
3 0.12751248 0.5422838 0.5813574 0.03658601 0.12765911 0.125761152
4 0.15959592 0.3872076 0.4561543 0.036262761 0.09481892 0.094899466
5 0.14762725 0.3156306 0.3743804 0.041030072 0.09967165 0.100326703
6 0.1734521 0.4032311 0.4552789 0.048381454 0.11555663 0.121079228
7 0.15019483 0.4919103 0.5154553 0.041502701 0.11281542 0.112855361
8 0.12782259 0.3702924 0.4095992 0.038965912 0.10203626 0.102241538
9 0.13747845 0.4273922 0.4551484 0.040499428 0.09964971 0.102432878
10 0.12811846 0.3256745 0.3746686 0.036660426 0.11006152 0.107720172
11 0.12296435 0.659849  0.745356 0.036314136 0.11366039 0.112475043
12 0.1657138 0.5776488 0.6328011 0.040094384 0.12237036 0.121442329
13 0.15596778 0.3810602 0.4450258 0.037751248 0.09642428 0.095338617
14 0.12694036 0.3595883 0.4201109 0.041173853 0.10430388 0.103166627
15 0.17051178 0.3478351 0.4238272 0.043485582 0.11136169 0.106647472
16 0.11793732 0.3599206 0.4317439 0.037181927 0.10420938 0.106706257
17 0.15734492 0.3883633 0.5271338 0.049078363 0.10355698 0.101609115
18 0.13718916 0.3736449 0.4299218 0.038454404 0.10415848 0.105589189
19 0.14855405 0.4449869 0.5142121 0.039754527 0.09774031 0.092588603
20 0.1313605 0.3454546 0.3691304 0.041650078 0.09595602 0.098506235
21 0.13482855 0.3316444 0.3790342 0.043939146 0.10238576 0.106826957
22 0.13555948 0.3467348 0.4002336 0.039543674  0.1078547 0.110771679
23 0.11975998 0.3669065 0.3909308 0.03809152 0.10797074 0.106457106
24 0.15397082 0.298511 0.3833735 0.041685637 0.10239164 0.099013964
25 0.13343347 0.5351907 0.5604411 0.035328181 0.11457776 0.114089488
26 0.12794951 0.3537474 0.3910802 0.037619558 0.10753263 0.107212992
27 0.12729389 0.4224129 0.4684538 0.037867778 0.11859303 0.117487372
28 0.21121793 0.3511537 0.3652245 0.043646719 0.10703209 0.112017565
29 0.11532394 0.3580504 0.4337115 0.035552466 0.11261712 0.11158713
30 0.13112328 0.3454862 0.3906931 0.034329787 0.10350013 0.103557073
31 0.12266379 0.4431435 0.5034237 0.037049285 0.12380507 0.123014505
32 0.16672247 0.3517951 0.3578881 0.038924768 0.10146131 0.105833876
33 0.14775704 0.4401334 0.5040143 0.039897662 0.12142172 0.120579023
34 0.14756268 0.4296455 0.4616533 0.047742217 0.11788131 0.119317905
35 0.11159247 0.3239829 0.3594107 0.034596833 0.10903069 0.108812833
36 0.13783082 0.3511309 0.3688706 0.038622327 0.09658001 0.099178147
37 0.19519764 0.4895597 0.5504264 0.054803989 0.12469727 0.130231681
38 0.13784192 0.425173 0.4105403 0.042167971 0.10107685 0.10132235
39 0.11273059 0.3584888  0.432216 0.03724614 0.10240713 0.098366789
40 0.15064468 0.358091 0.4262803 0.04083239 0.11343239 0.112506468
41 0.11626953 0.3432656 0.4046392 0.035675635 0.09676606 0.09797102
42 0.1023177 0.3632445 0.4060627 0.032166809 0.10136995 0.098770275
43 0.13126381 0.346113 0.4070056 0.040047321 0.10191882 0.103737272
44 0.15456299 0.391567 0.4866338 0.042025769 0.10638957 0.107710902
45  0.1270725 0.4923767 0.5481358 0.039546052 0.10137904 0.095466907
46 0.13455244 0.3923775 0.4723063 0.037278563 0.13050725 0.129991701
47 0.15489461 0.3352314 0.4051269 0.045442732 0.09711204 0.09465116
48 0.11359417 0.3500217 0.4517313 0.039379507 0.10226301 0.105808147
49 0.13734674 0.4563548 0.4786169 0.038108706  0.1176309 0.121047408
50 0.14526906 0.4189269 0.4318263 0.040997761 0.11613052 0.11564979
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51 0.1753547 0.2981933  0.392323 0.045566959 0.09942692 0.098188818
52 0.1354474 0.4191949 0.4734244 0.03370788 0.11350158 0.11160774
53 0.13884932 0.3680704 0.4911139 0.037412608 0.10218982 0.105018897
54 0.1283997 0.5534368 0.6244032 0.037418562 0.122866 0.122143746
55 0.13460068 0.4699993 0.5122507 0.03936288 0.10500092 0.105345061
56 0.1315033 0.4163951 0.4882474 0.039299678 0.10342747 0.101262536
57 0.13025327 0.4083049 0.4221163 0.042014836  0.1125111 0.116602499
58 0.13378487 0.4030406 0.4844331 0.039841884  0.1096787 0.108247257
59 0.13303794 0.3514702 0.3474696 0.037329139 0.09576697 0.102426657
60 0.13320796 0.3152209  0.395979 0.038298292 0.08945441 0.089945073
61 0.12014364 0.4406796 0.4875159 0.038024848 0.10904493 0.10604064
62 0.14859897 0.492519 0.5121671 0.046049981  0.1229759 0.123538375
63 0.13662566 0.4116096 0.4503083 0.035866665 0.11823777 0.116527472
64 0.17059657 0.4242329 0.510831 0.043168976 0.09765262 0.101764535
65 0.12300821 0.3734298 0.4414065 0.037416529 0.10288398 0.104031712
66  0.1468865 0.3813493 0.4503098 0.044613026  0.1014569 0.106581189
67 0.11964474 0.4139302 0.5215624 0.035037831 0.10192618 0.098414403
68 0.12728639 0.3893063  0.466125 0.034689838 0.11700555 0.118431364
69 0.11868043 0.4375379 0.4409886 0.035126296 0.11079614 0.10779417
70 0.16667924 0.4010538 0.4487732 0.045593702  0.1213264 0.118992552
71 0.14603586 0.3595576 0.4206958 0.03894886 0.10119474 0.098844495
72 0.15243331 0.4983419 0.5093322 0.044445257 0.11578715 0.113617826
73 0.14106339 0.4322909 0.5235611 0.046240201  0.1078804 0.103600887
74 0.15769345 0.3513879 0.4109179 0.035393499 0.10383696 0.099774167
75 0.1433859 0.3531954  0.443351 0.040707311 0.10573898 0.104238757
76 0.11704625 0.2986968 0.3632758 0.034768477 0.10534315 0.102966637
77 0.13362746 0.4062027 0.5083474 0.041835083 0.11999208 0.119830443
78 0.17342969 0.3473905  0.403453 0.044572452 0.10587119 0.100205391
79 0.11175981 0.3303821 0.3850093 0.034570399 0.10060112 0.100132861
80 0.17398775 0.4207488 0.4558118 0.042115642 0.10857504 0.11175142
81 0.15303541 0.3466968 0.4414335 0.048174618 0.11538078 0.115396219
82 0.15809405 0.3327233 0.4429751 0.044100881 0.10120486 0.105913118
83 0.135832 0.5352715 0.5191027 0.039210504 0.11279891 0.115187421
84 0.14967419 0.3466654 0.3696011 0.044346532 0.09274285 0.092730582
85 0.165844 0.4007122 0.4552371 0.047472458 0.10698722 0.111880416
86 0.12565201 0.2990651 0.3316148 0.040056389 0.09829931 0.099885341
87 0.13942383 0.5422419 0.5384726 0.036434504 0.10699189 0.107793013
88 0.14350422 0.3783525 0.4666652 0.036644465 0.11326301 0.112068567
89 0.12933969 0.4053049  0.434423 0.039074247 0.09267483 0.094960389
90 0.14576178 0.4047482  0.475232 0.041129122 0.10831271 0.108300794
91 0.16302922 0.3242777 0.4045413 0.043969651 0.10450883 0.103314743
92 0.12497326 0.4570684 0.5768062 0.03767892 0.12360524 0.123746292
93 0.11453794 0.3976571  0.436525 0.036207006 0.10820471 0.105210443
94 0.13519667 0.4139943 0.4340521 0.040337579 0.10616805 0.103541871
95 0.14605296 0.3155768 0.3664308 0.045310549 0.09804047 0.10174165
96 0.16812909 0.3281347 0.401734 0.045189926  0.0987467 0.104706395
97 0.11409273  0.42809 0.4499317 0.037275979 0.11492277 0.115795832
98 0.13114562 0.4345981 0.4367704 0.041020062 0.11108084 0.11235459
99 0.12295722 0.3408237 0.3927261 0.036259876 0.10776118 0.110096076
100 0.13892786 0.3919973 0.4663421 0.040668847 0.11194839 0.112259785
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Average 0.1397 0.3970 0.4522 0.0399 0.1076 0.1078

a_ben a_tor a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
Max 0.2112 0.6598 0.7454 0.0548 0.1305 0.1302
Min " 010237 02082”03316 d 00322"  0.0895" 0.0899
Max - Average 0.0715 0.2628 0.2931 0.0149 0.0229 0.0224
Average - Min 0.0374 0.0988 0.1206 0.0078 0.0181 0.0178
Percentage Max 51.14% 66.20% 64.82% 37.29% 21.31% 20.82%
Percentage Min 26.78% 24.89% 26.67% 19.42% 16.85% 16.56%
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Appendix 19 The Voorhof after renovation with

calibration output of the 100 simulations for return

period once in 12.5 years

a_ben a_tor  a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
1 0.08748323 0.2281594 0.2207814 0.022928099 0.06420448 0.067617603
2 0.08343268 0.1806239 0.2160944 0.022926468 0.06398548 0.066941249
3 0.07812935 0.23733 0.2296463 0.020923643 0.06578367 0.069742655
4 0.07498889 0.2082795 0.2364079 0.01934875 0.05676201 0.060530239
5 0.07812951 0.2635823 0.2830256 0.022750942 0.06886751 0.072293505
6 0.07009173 0.2328343 0.2283077 0.020467099 0.06186376 0.065497232
7 0.07205909 0.2287433 0.2528382 0.021318947 0.05897368 0.06231949
8 0.08463715 0.2367531 0.2519956 0.022310156 0.05800968 0.062075614
9 0.08740452 0.2391109 0.2391643 0.022123444 0.06284046 0.065928187
10 0.07328503 0.249453 0.2597503 0.019490812 0.06689762 0.069748819
11 0.09925264 0.2056909 0.2574586 0.02083733 0.06037943 0.063125497
12 0.0785463 0.2540401 0.2889154 0.022096088 0.05965718 0.064200866
13 0.09129559 0.2106645 0.2349373 0.022398842 0.05744393 0.060976972
14 0.06717727 0.2223697  0.243268 0.020748218 0.05825883 0.061755398
15 0.06212077 0.2290535 0.2456473 0.018834389 0.06491926 0.066095285
16 0.07332581 0.2405706 0.2745698 0.019071917 0.06574238 0.067687208
17  0.0855748 0.2085541 0.2290752 0.023093088 0.06177257 0.06565839
18 0.06422299 0.2738348 0.2974679 0.019830362 0.06777616 0.069246083
19 0.07188914 0.2500358 0.256723 0.019895679 0.06560618 0.066763143
20 0.06754884 0.2445067 0.258834 0.02155497 0.07272396 0.076133125
21 0.08147208 0.1910316 0.2035349 0.02281629 0.05761598 0.061126553
22 0.05896339 0.217577 0.2213009 0.020128232 0.06232499 0.065021138
23 0.09382381 0.2435451 0.2603529 0.024284692 0.06578894 0.069321463
24 0.07729272 0.2364881 0.2540303 0.019120373 0.06287577 0.064534327
25 0.08583633 0.2332802 0.2606821 0.0238697 0.06195219 0.065855529
26 0.08656234 0.2078057 0.2337801 0.024875053 0.05777183 0.061881537
27 0.09378299 0.2244188 0.250212 0.020528836 0.06407587 0.066015739
28 0.064008 0.2345957 0.2401558 0.019458442 0.06322424 0.064998768
29 0.08619728 0.1912027 0.2366897 0.02314442 0.06009877 0.0630542
30 0.08626555 0.2088685 0.2278196 0.022144238 0.05803004 0.061505937
31 0.07026398 0.2475704  0.269981 0.022259181 0.07084897 0.073685491
32 0.07064708 0.2215741 0.2403371 0.021817385 0.06173292 0.064791465
33 0.06990862 0.2613637 0.2781777 0.021024082 0.06783644 0.070104837
34 0.09099968 0.2258312 0.2384206 0.023132652 0.06895055 0.072623645
35 0.08395568 0.2285796 0.2558073 0.021598141 0.06255302 0.064941946
36 0.07775708 0.2484795  0.255256 0.020327872 0.06423521 0.06686882
37 0.07746178 0.2186691 0.2239203 0.020152614 0.06589457 0.067934369
38 0.07645566 0.2163365 0.2426436 0.020542099 0.05874916 0.06170581
39 0.08872555 0.2448551 0.2621398 0.022386809 0.07036159 0.073567101
40 0.06716545 0.2077217 0.2262275 0.020313638 0.05689091 0.059145265
41 0.08484253 0.1883053 0.2244157 0.02129132 0.05701925 0.061199213
42 0.08344099 0.2577632 0.2803028 0.023968075 0.06089766 0.065298602
43 0.07258027 0.2364256 0.25393 0.020996285  0.0644357 0.067454177
44 0.07346205 0.2856569  0.321719 0.019402897 0.06681873 0.06770359
45 0.06218325 0.2387973 0.2650501 0.021226447 0.06017099 0.063355529
46 0.10277139 0.3382014 0.3595778 0.024585392 0.07003386 0.073518688
47 0.07118809 0.2459559 0.2999107 0.018801957 0.05932458 0.061107563
48 0.08831073 0.2162611 0.2609306 0.019920528 0.06319581 0.065578853
49 0.06899945 0.2280141 0.2311113 0.021073101 0.06471865 0.067189369
50 0.07843753 0.236444 0.2534777 0.020513876  0.05665839 0.058824617
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51 0.06955724 0.2551307 0.280121 0.021479398 0.06564061 0.067911055
52 0.08904057 0.2127689 0.2456701 0.022547118 0.05907937 0.061614912
53 0.07630033 0.2417611 0.2552657 0.022606589 0.06253608 0.066817893
54 0.07320222 0.2108218 0.2324764 0.022834091 0.06027073 0.06414595
55 0.0720731 0.2466039 0.2787788 0.023279655  0.0694646 0.072955599
56 0.10851564 0.2287132 0.2641741 0.024876678 0.06363638 0.067455292
57 0.09045926 0.2544316 0.2598717 0.021776155 0.05841701 0.061856505
58 0.08662741 0.2226464 0.2392706 0.019138709 0.06469715 0.066723068
59 0.07439614 0.2419094 0.2679006 0.021652615 0.06283449 0.066118768
60 0.09877084 0.2731522 0.3290516 0.022939162 0.07099487 0.074285614
61 0.07899144 0.2878056 0.3176168 0.020845676 0.06565255 0.067689447
62 0.06722461 0.2942286 0.2940876 0.021347553 0.06372721 0.067008846
63 0.07959919 0.2059838 0.2301513 0.021235409 0.05800744 0.061195151
64 0.09451489 0.2452086 0.2739212 0.023255588 0.06955204 0.073021515
65 0.0774023 0.2834301 0.3075374 0.020334194 0.06648289 0.069783049
66 0.06902913 0.2741004 0.2919384 0.019596141 0.06189101 0.064019548
67 0.0969677 0.2214668 0.2410853 0.023969064 0.06132233 0.064781374
68 0.07932535 0.2750316 0.2810199 0.023327298 0.06646147 0.070496318
69 0.07051959 0.2273734 0.2566797 0.020230285 0.05943879 0.061838866
70 0.08476181 0.2216636 0.2424201 0.022003345 0.05934493 0.063184433
71 0.07816418 0.3301339 0.3673266 0.02247661 0.06568833 0.068340517
72 0.07060447 0.2344967 0.2871761 0.021533292 0.06452004 0.067777138
73 0.06574023 0.260168 0.2811709 0.019823082 0.06446949 0.067285841
74 0.07517628 0.1977595 0.1969721 0.019493305  0.0626924 0.064667442
75 0.08787502 0.2239016 0.2099263 0.02068572 0.06009626 0.062986291
76 0.08088247 0.2394268 0.2496978 0.022703676 0.05381763 0.058173199
77 0.06378968 0.2554589 0.2350529 0.01964011 0.06442219 0.06611276
78 0.06544252 0.2137902 0.2172378 0.018201307 0.05953718 0.061716891
79 0.08681823 0.2566892 0.2679315 0.023090703  0.0603019 0.063709403
80 0.08017447 0.196986 0.2224708 0.019983934 0.06042992 0.063514748
81 0.06470438 0.264498 0.2685368 0.017896612 0.06241703 0.063474118
82 0.0731774 0.2678179 0.2794206 0.020597272 0.06076912 0.062841956
83 0.08895352 0.2135875 0.2397689 0.022984074 0.06153115 0.06575581
84 0.07777969 0.2444185 0.2519309 0.019419553 0.06673464 0.069325071
85 0.0905185 0.2487885 0.2622185 0.021895165 0.05786821 0.06112227
86 0.0926652 0.2368339 0.2661405 0.023326984 0.05408971 0.058474734
87 0.07249708 0.2374821 0.2526839 0.019778799 0.05973683 0.062639012
88 0.08548303 0.1978707 0.2312587 0.023874038 0.05758903 0.061543631
89 0.07011713 0.2457232 0.2529308 0.019736725 0.06579724 0.068058933
90 0.08352781 0.2557928 0.2848257 0.023409037 0.06644363 0.070212351
91 0.06061306 0.2434062 0.2406677 0.018452599 0.06458204 0.066269948
92 0.08084918 0.3004816 0.303575 0.020884712 0.06198633 0.064812225
93 0.05750803 0.2116206 0.2458869 0.01916567 0.06037551 0.062439342
94 0.07411018 0.1958417 0.2351502 0.020343714 0.05522453 0.057747261
95 0.08150271 0.214581 0.2274061 0.022311368 0.06272967 0.067254672
96 0.07102569 0.2477276 0.2767815 0.021459349 0.06765524 0.069871088
97 0.07622672 0.2399854 0.2665907 0.020507945  0.0642177 0.066494677
98 0.08915402 0.2768522 0.2649512 0.020149657  0.0654388 0.068932751
99 0.08169533 0.2349085 0.2744434 0.020897706 0.06269294 0.065632239
100 0.08629204 0.2036609 0.2687212 0.022050703 0.06119987 0.063910134
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Average 0.0787 0.2374 0.2575 0.0213 0.0627 0.0657
a_ben a_tor a_ben_tor sigma_a_ben sigma_a_tor sigma_a_ben_tor
Max 0.1085 0.3382 0.3673 0.0249 0.0727 0.0761
Min " 005757 01806  0.1970 d 00179"  0.0538" 0.0577
Max - Average 0.0298 0.1008 0.1098 0.0035 0.0100 0.0105
Average - Min 0.0212 0.0568 0.0606 0.0035 0.0089 0.0079
Percentage Max 37.80% 42.46% 42.63% 16.53% 15.95% 15.91%
Percentage Min 26.97% 23.92% 23.52% 16.17% 14.19% 12.08%
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Appendix 20 Discrepancies in thesis Hans Breen

Formula Breen [5] equation 3.18 p.12 is not correct.

|k
u(z‘)zf 1-e g‘Et *sin(w,t)
k e

The correct formula Fout! Verwijzingsbron niet gevonden. p.64 under equation 4.68.

u(t)= %(l—&e“St cos[a)et —arctan QJJ
Q. [0)

e e

With

Figure 4.2 Breen [5] p.16 is not correct.

For urban area II

m _
v _10is not 10 — but v (10)= 2.82 In 10-3.5)_ 15.71 7
s 0.9 0.7 s
For vacant area II: because of open side with sea.
m _
v_10is not 107 but 7 (10) = 2300 (1020 _ 55 497
s 0.4 0.2 s

Formula Breen [5] equation 4.9 p.17 is not correct.

The correct formula is:

( ol jz [ ol ]2
s, ()= 12 272v(10) 270, _ 27v(10) 20,?

27 3 2\ @ 23 3
1+ ?LJ 1+ (?Lj
{ (Zm/(lO) 271(10)
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Formula Breen [5] equation 4.11 p.18 is not correct.
The correct formula is:

ku, 1.0*2.
o, = u =10 230:5'75m
K 0.4 S
Vacant area II not urban area II half of the building is facing the Mass river.

Figure 4.3 Breen [5] p.18 is not correct.

The correct figure :

105 = (""’"’””"””

2,.2
S, (m*/s%)

10° -

10° 10"
w(rad/s)

Reference Breen [5] p.55 is not correct.

the reference to Appendix 1 is not correct ... it has to be Appendix 8

Appendix Breen [5] file wind.m p.75 is not correct.

v _10is not 10ﬂ f maxis not 10 fmaX:;: 1 =5Hz
s 2*¥At 2*0.1
Appendix Breen [5] file autospectrum....m p.99 is not correct.
. m .
v _10is not 10? vV _gemis not 35
v_gem = 22.62 ; 39.60 _ 31.11%
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Appendix 21 Modified Matlab code Hans Breen

Note: Below are the files that I have modified to determine the natural frequency with Breen’s model.
The coherence was kept constant in his model. From Breeen'’s files one could conclude that the return
periode of 12.5 years was checked (sigma_v =6.345m/s [5] Appendix 5). Take the wind generator files

(wind0.m, autopow.m and coher3.m) from Appendix 2.

A_File_to_run_programs.m

$Thesis: Torsion motions of high-rise buildings due to wind loading.
%$Author: H.A.O.Richardson (Anthony)

Clear memory
clear all

clc

clear

close all

% Start timer
tic

disp('———=——————"— - ")
disp('Thesis: Torsion motions in high-rise buildings')
disp('-———=-—"—"——"—————— - ")
disp ('-Reading problem data')

% Problem data (change this to the name of the mesh, leaving off .m)

B cross_section prop;

[

% Start solve
disp('-Starting solution procedure')

% Determining of the mass, bendingstiffness of the cross section.
C datay;

D stiffness matrix;

E State space formulation;
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%
TU Delft Torsion motions of high—rise buildings due to wind loading

$Inputvalues;
$windO;
%Force;

$sim('Simulink run file);

disp( '-Finished analysis. Time:' )
toc
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%
TUDelft

B_cross_section_prop.m

load matrices %$viuw values of all matrices

% The cross-section 1s divided into 8 walls,

% Location of the neutral-axis, the centerline is taken as the reference

1i

% Area of the walls

Area(1)=2*0.5*15.44;

Area (2)=2*0.3*1;

Area (3)=2*0.3*3.72;

Area (4)=2*0.3*6.12;

Area (5)=2*(0.3+0.2)*3.1;

Area (0)= O 3*7.9;

Area (7)=0.3*14.74;

Area (8) 2*6 92*0.6;

% Perpendicular distance between center of mass and reference line
s (1)=0;

s(2)=0.8;

s(3)=1.3+0.15;

s(4)=6.12/2+1.6;

s(5)=3.1/2+1.3;

s(6)=0.3/2+3.1+1.3;

s(7)=-(0.15+0.8);

s(8)=-(6.92/2+0.8);

% Distance between the reference line and the neutral axis

na=dot (Area,s)/ (sum(Area)) ;

% The second moment of inertia
Teig(l)=2*1/12*.5%*15.44"3;

Teig(2)=2%1/12%.3%1"3;

Teig(3)=2*1/12*3.72*.3"3;

Teig(4)=2*1/12*.3*6.12"3;

Teig(5)=2*1/12*.5*3.1"3;

Teig(6)=1/12*7.9*%.3"3;

Teig(7)=1*1/12*14.74*.3"3;
8)

Teig(8)=2*1/12*.6*6.92"3;

% Rule of Steiner
Isteiner=sum(s.”2.*Area);

% Total second moment of inertia
I=sum(Ieig)+Isteiner;

E=3el10;

EI=E*I;

% The mass of one storey existing of
$walls, floor and loading on the floor

mass=sum(Area) *2.75*2500+15.44*26.34*.25*2500+15.44*26.34*250;

save matrices EI mass na -append
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C_data.m

$clear

clc

L=144; % height of building

= 48; % dof

% units (meters and kN)

mass= 6.3182e+005; % mass kg (maple file)+2,5kN/m"2
1=3; % lenght of one element

xi1=0.01; % damping ratio of the first eigenmode
xi2=0.01; % damping ratio of the second eigenmode
tend=10; % duration of the simulink simulation time
$timestep=5e-5; %$fixed timestep in simulink
timestep=0.1; %fixed timestep in simulink

$save matrices v 1 xil xi2 tend timestep -append;

$save matrices L v mass 1 EI xil xi2 g tend timestep -append;
save ('matrices','L','v','l','mass','xil"', 'xi2"', "timestep', 'tend');

% save ('matrices','v','l',6'xil', 'xi2'");
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%
TUDelft

D_stiffness_matrix.m

clc
load matrices

S {

input

v = degrees of freedom

EI = bending stiffness

L = height of the structure

1 = lenght of element

zetal = damping ratio of first eigenmode
zeta?2 = damping ratio of second eigenmode
v = 48;

L = 144;

1 = 3;

mass=631815.9;

%)

$EI = 2.003e+013;
zetal = 0.01;
zetaz = 0.01;

Cr=20*EI/L;

% stiffness matrix
% Field elements

k=EI/1"3*[1 -2 1;
-2 4 -2;
1 -2 1]1;% bending element stifnessmatrix

)

K=zeros (v+4,v+4); % Total systemmatrix bending
for o=0:1: (v+1)
for n=1:1:3
for m=1:1:3
K(o+n, o+m) =K (o+n, o+m) +k (n,m) ;

end
end

end

% Edge element (rotation of the foundation)
K(3,3)=K(3,3)+1/1"2* (1/(1/(2*EI)+1/Cr));
$K(2,1)=K(2,1)-1/172*(1/(1/(2*EI)+1/Cxr)) ;
$K(1,2)=K(1,2)-1/172*(1/(1/(2*EI)+1/Cr)) ;
$K(1,1)=K(1,1)+1/172*(1/(1/(2*EI)+1/Cr)) ;

% Bottom element

% Delting the unwanted row and coloum k-matrix for half element.

K(:,1)=1[1; % restrained displacement node 0 = 0
K(1,:)=[1; % restrained twist = 0
K(:,1)=[1; % restrained displacement node 0 = 0
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K(1,:)=1[1; % restrained twist = 0

% Top element
% Delting the unwanted and coloum k-matrix for half element.

K(:,50)=[1; % restrained displacement node 0 = 0
K(50,:)=1[1; % restrained twist = 0

K(:,49)=[1: % restrained displacement node 0 = 0
K(49,:)=[1; % restrained twist = 0

% end stiffness matrix

Cr=20*EI/L;

% mass matrix
M=zeros (v,V) ;
for n=1:1:v;

M(n,n)=mass;
end

o)

% end mass matrix

% E is the modal matrix; omegakw is modal K*E = M*E*OMEGAKW
[E,omegakw] = eig(K,M);
for n=1:1:v
omega_eig(n)=sqgrt (omegakw(n,n));
end
% end eigen frequency

% damping matrix

a=2* (([1/ (omega_eig(l)) (omega eig(l)); 1l/omega eig(2) omega eig(2)])"-
1*[zetal;zeta2]); %04-10

Cd=a (1, 1) *M+a (2, 1) *K;

)

% end damping matrix

save matrices K M omega eig Cd -append;

o)

% damping ratio of the eigenmodes of the structure
for n=1:1:48;
phsi(n)=a(l,1)/(2*omega eig(n))+a(2,1)/2*omega eig(n);
end
plot (phsi)

% This has been done already in a matrix

a0=2*omega eig(l)*omega eig(2) * (zetal*omega eig(2)-

zeta2*omega eig(l))/ ((omega eig(2))"2-(omega eig(l))"2);

al=2* (zeta2*omega eig(2)-zetal*omega eig(l))/((omega eig(2))"2-
(omega_eig(1l))"2);

save matrices a a0 al -append;
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%
TUDelft

E_Space_state_formulation.m

clc % clears comand window
clf % clears figure

%clear

%clc

load matrices

S {

input

v = degrees of freedom

EI = bending stiffness

L = height of the structure

1 = lenght of element

xil = damping ratio of first eigenmode
xi2 = damping ratio of second eigenmode

%}

Cr=20*EI/144;

% stiffness matrix
% Field elements

k=EI/1"3*[1 -2 1;
-2 4 -2;
1 -2 1]1;% bending element stifnessmatrix

K=zeros (v+1l,v+l); % Total systemmatrix bending
for 0=0:1:46
for n=1:1:3
for m=1:1:3
K(o+n,o+m)=K (o+n, o+m) +k (n,m) ;
end
end
end
% Edge element (rotation of the foundation)

K(2,2)=K(2,2)+1/172*(1/(1/ (2*EI)+1/Cr));
K(2,1)=K(2,1)-1/172* (1/(1/(2*ET)+1/Cr)) ;
K(1,2)=K(1,2)-1/172* (1/(1/(2*ET)+1/Cr)) ;
K(1,1)=K(1,1)+1/172*(1/(1/(2*EI)+1/Cr));

K(:,1)=1[1; % restrained displacement node 0 = 0
K(1,:)=1[1; % restrained twist = 0

% end stiffness matrix

o\

mass matrix

M=zeros (v, V) ;

for n=1:1:v;
M(n,n)=mass;

end
% end mass matrix
[E,omegakw] = eig(K,M);

for n=1:1:v

omega_ eig(n)=sqgrt (omegakw(n,n));
end
% end eigen frequency

% damping matrix

A

a=2*(([1/ (omega _eig(l)) (omega eig(l)); 1l/omega eig(2) omega eig(2)])"-

1*[x11;x12]);

A

aa=2*(([1/ (omega_eig(l)) (omega eig(l)); l/omega eig(2) omega eig(2)])"-

1*[xil;x1i2]); % edit 27-08-2018
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Cd=a(l,1)*M+a(2,1)*
% end damping matrix

save matrices K M omega eig Cd -append;

% damping ratio of the eigenmodes of the structure

for n=1:1:48;
phsi(n)=a(l,1)/(2*omega eig(n))+a(2,1)/2*omega eig(n);
end

figure
plot (phsi)

o)

% This has been doen already in a matrix

al0=2*omega eig(l)*omega eig(2)* (xil*omega eig(2)-
xi2*omega_eig(l))/((omega_eig(Z))A2—(omega_eig(1))A2);
al=2*(xi2*omega eig(2)-xil*omega eig(l))/((omega eig(2))"2-
(omega_eig(l))"2);

load matrices

o)

% Placing space state formlation Matrix A

A2=eye (v,V);
A3=-inv (M) *K;
Ad=-inv (M) *Cd;

% Placing space state formlation Matrix B

Bl=inv (M) ;
Cl=eye (v, V)

A(l:v,vtl:1:2*v)=A2;
A(v+l:1:2*v,1:v)=A3;
A(v+l:1:2*v,v+l:1:2*v)=A4;
B(v+l:1:2*v,1:v)=Bl;
%C(l:1:v,1:1:v)=Cl; corrected 17-11
C=eye (2*v,2*Vv);

D=

zeros (2*v,v) ;

[E,pl=
for n=
a(n,1)
end

HI—‘(D

ig(A);
:1:2%48
p(n,n);

for n=1:1:48
phi(:,n)=E(1:1:48,2*n-1); %04-10
end

save matrices A B C D -append;

% Plot off 10-11-2008
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%
TUDelft

R=real (E);

o°

o°

for n=1:1:10000
t=n/100;

o°

o\

x 48 (n)=phi (48,48) *exp (p (96,96) *t)+R (48, 96) *exp (p (95, 95) *t) ;

$x_ 48 (n)=phi (48,48) *exp (p (65, 65) *t)+E (48, 96) *exp (p (64,64) *t) ;

o°

tijd(n)=n/100;

o

send
splot (tijd,x 48)

% Determining static diplacement
f=186300; % put the values in Nm
F= zeros(v,1);
for 1lr=1l:1:v
F(lr,1)=f;
end
u=-inv (K) *F;
% THE Z POSITION OF THE NODES
Zz= zeros(v,1);
zzz= 1.5;

for zrn=l:1:v

Z(zrn,l)=(zzz+(zrn-1)*3);
end

$Plotting displacment of the buiding.

figure

plot (abs (u), 2)

axis ([0 0.21 0 145])
set(gca, 'YTick',0:20:144)
set(gca, 'XTick',0:0.05:0.21)

xlabel ("u(m) ")

ylabel ('z(m)")
title('Plot Static deflection')

% Validation of dynamic behavior

we=omega_eig(l,1)* (l-zetal”2)"0.5;

wee=(l-zetal”2)"0.5;

% Zie matix omega eigen(l,1) demping first antral frequency
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=(8*EI)/ (1.2*L"4);
% zetal=0.01; not used becasue in teh memeory already
Ftop=-1*(kk*u(48,1));

meg=kk/ (omega _eig(1l,1)"2);

zetameqg=0.05;

alpha=0.01;
beta=-1;

for n=1:1:20000

t=n/100;

$x_48(n)=(Ftop/kk) ;

$x_ 48 (n)=(Ftop/kk) *sin (we*t);

$x_ 48 (n)=(Ftop/kk)* (1-cos (we*t));

$x_48 (n)=alpha* exp(beta*t/lOO)

$x_ 48 (n)= (Ftop/kk) * (exp (- O.95*1.48)*t)*(1—cos(we*t)),

$x_48 (n)=(Ftop/kk) * (exp (-zetameqg* ( ( (kk/meq) *t)*0.5))) *cos (we*t);

$x_ 48 (n)=(Ftop/kk)* (1-cos (we*t));

x_48(n)=l.05*(Ftop/kk)*(l—(exp(—
zetameq*(((kk/meq)*t)AO.S)))*(cos(we*t))),

x 47 (n)=(Ftop/kk) * (1- (exp (-zetameg* ( ( (kk/meq) *t) *0.5))) * (cos (we*t))) ;

sx_47 (n)=(Ftop/kk) * (1+exp (-zetameqg* ( ( (kk/meq) *t)*0.5))) *sin (we*t);

$x_ 48 (n)=(Ftop/kk) *sin (we*t);

$x_ 48 (n)=(Ftop/kk) * ((l-exp(-zetal* (((kk/meq)*t)"0.5))) *sin(we*t));

$x_ 48 (n)=phi (48,48) *exp(p(96,96) *t)+R(48,96) *exp (p (95, 95) *t) ;

end

figure
plot (tijd,x 48,'b")

hold on
plot(tijd,x _47,'r")
hold off

axis ([0 80 0 0.457)
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Force.m

load matrices

rho=1.25; % [kg/m”*3]
Area=3*26.34/20; % [m™2]

Ch=1.2; % thrust coefficient
u star=2.82;

kappa=0.4;

d=3.5;

z 0=2;

z=(9:1.5:144);

load UCL

Uf(:,:,3:1:93)=UC;

Uf(:,:,1)=U0£(:,:,3);
Uf(:,:,2)=Uf(:,:,3);

% average part

v_mean(l,1,3:1:93)=u_star/kappa*log(z-d/z 0); % mean wind speed
at reference height

v_mean(l,1,1:1:2)=v mean(1,1,3);

v mean(:,1,:)=v_mean(l,1,:);
v mean(:,2,:)=v mean(1l,1,:);
v mean(:,3,:)=v mean(1l,1,:);
v mean(:,4,:)=v mean(1,1,:);
v mean(:,5,:)=v mean(1l,1,:);
v_mean(:,6,:)=v_mean(l,1,:);
v mean(:,7,:)=v mean(1l,1,:);
v mean(:,8,:)=v mean(1,1,:);
v mean(:,9,:)=v_mean(l,1,:);
v_mean(:,10,:)=v_mean(l,1,:);
v_mean=repmat (v_mean, [N 1 1]);

U=Uf+v_mean;
U(:,:,94)=0;

F=1/2*Area*Ch*rho* (U) ."2;
F=sum (F, 2);
F=squeeze (F) ;

f(1:1:N,1:1:2)=2*F(1:1:N,1:1:2); % bottom 2 nodes
for n=3:1:48
f(:,n)=F(:,2*n=-3)+F (:,2*n-2);

end
F=f;
% F(:,49)=0; % for active demping place

t=[deltat:deltat: (N*deltat)]';
save ('F','F','t")
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wind0.m

function [UC]=windO (yr,zr,v_10,sigma,N,deltat, fmax);
% simulation of a turbulent wind field

o°

o°

INPUT:
yr, zr: specification of coordinates on the facade of the structure
v_10: mean wind velocity at 10 m above the surface of the earth (m/s)
sigma: standard deviation of the fluctuating part of the wind speed

m/s)

N: number of time points (including zero); N must be a power of 2
deltat: time step (s)
fmax: maximum frequentie spectrum (Hz)

OUTPUT:
UC: constrained turbulent wind velocities (m/s)

o\

o\

o0 —~ o

o® oo oo

o°

Syr=1.3:2.6:24.7;
$zr=9:1.5:144;

sv_10=10;
%sigma=6.345;
$N=10;

%deltat=.1;
$fmax=10;

load matrices

[}

% number of points in rotor plane

Ny=length (yr) ;

Nz=length(zr);

Np=Ny*Nz;

% y and z coordinates of all rotor points in one column vector
Yr=reshape (yr'*ones(1,Nz),Np,1);
Zr=reshape (ones (Ny,1) *zr,Np, 1) ;

r=zeros (Np, Np) ;
for i=1:Np
for j=i+1:Np
% distances between points
r(i,j)=sqrt ((Yr(i)-Yr(j)) 2+ (2r(i)-2r(j))"2);
r(jli):r(ilj);
end
end
% time vector
t=[0:N-1]"'"*deltat;
% period
T=N*deltat;
% frequency step
deltaf=1/T;
% discretized frequencies
k=[1:N/2-11";
f=k.*deltaf;
% autopower spectral density (one-sided)
a=autopow (f,v_10,sigma) ;
spectrum is cut-off above fmax by application of window
Index=find (f>fmax) ;
if ~isempty (Index)
Nw=Index (1) ;

o
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w=zeros (N/2-1,1);
W=window ('hann', 2*Nw+1) ;w (1 :Nw+1)=W (Nw+1:2*Nw+1) ;
Sa=w.*Sa;

end

% renormalize Sa to variance
Sa=sigma”2/ (sum(Sa) /T) *Sa;

o)

% Fouriercoefficients points in rotor plane
ak=zeros (Np,N/2-1) ;

bk=zeros (Np,N/2-1) ;

for k=1:N/2-1

Coh=coher (f (k) ,r,v_10);

% Choleski decomposition
L=sqgrt (Sa (k) /T) *chol (Coh) ';
% vector of unit variance normal random numbers

ran=randn (Np, 1) ;

ak(:,k)=L*ran;

ran=randn (Np, 1) ;

bk (:,k)=L*ran;
end

% complex notation
i=sqgrt (-1);
UC=zeros (N,Np) ;
for j=1:Np
C=ak(j,:)"-1*bk(3,:)";
C=1/2*[0;C;0;rot90(C")1;
% 1nverse FFT
uc=N*ifft (C);
if any(abs(imag(uc)) >= le-7*abs(uc) & abs(imag(uc)) >= le-12)
max (abs (uc) )
max (imag (uc))
error ('imag too large uc')
end
UC(:,j)=real (uc);
end
% reshape UC: separate indices for y and z
UC=reshape (UC,N,Ny,Nz) ;

save ('UC")
save ('UcCl','uc")

$save matrices;
$save matrices UCl -append
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%
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AUTOPOW.m

function S=autopow (f,v 10, sigma)
syntax: function S=autopow (f,v_ 10, sigma)
Autopower spectral density function of turbulence
Input:
f: frequency (Hz)
v_10: the mean wind speed at 10 m above (m/s)
sigma: standard deviation (m/s)
Output:
S: autopower spectral density (m"2/s)

o® o d° o° o° o o°

o°

sigma v=6.345; % standard deviation of the wind speed variation with
height

L=1200; % characteristic length Davenport

v_10=10; % mean wind speed at 10 m height

S=2/3* (£.*L/v_10) .72 ./ ((1+(f.*L/(v_10))."2) .7 (4/3)) .*sigma v"2./(f);
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COHER.m

function Coh=coher (f,r,v 10)
syntax: function Coh=coher (f,r,v 10)
Coherency function
of longitudinal wind velocity fluctuations
Input:
f: frequency (Hz)
r: mutual distance coordinates
V_10: the 10 minute average wind speed at hub height (m/s)
Output:
Coh: coherency (-)

A® o° o° o° o° o o° o°

o\

C=10;
x=f.*C.*r./v_10
Coh=exp (-1.*x);
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