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State-of-the-art Model Predictive Control (MPC) applications for building heating adopt either a deter-
ministic controller together with a nonlinear model or a linearized model with a stochastic MPC con-
troller. However, deterministic MPC only considers one single realization of the disturbances and its
performance strongly depends on the quality of the forecast of the disturbances, which can lead to low
performance. In fact, inadequate building energy management can lead to high energy costs and CO2

emissions. On the other hand, a linearized model can fail to capture some dynamics and behavior of
the building under control. In this article, we combine a stochastic scenario-based MPC (SBMPC) con-
troller together with a nonlinear Modelica model that is able to provide a richer building description
and to capture the dynamics of the building more accurately than linear models. The adopted SBMPC con-
troller considers multiple realizations of the external disturbances obtained through a statistically accu-
rate model, so as to consider different possible disturbance evolutions and to robustify the control action.
To this purpose, we present a scenario generation method for building temperature control that can be
applied to several exogenous perturbartions, e.g. solar irradiance, outside temperature, and that satisfies
several important stastistical properties, in contrast with simpler and less accurate methods adopted in
the literature. We show the benefits of our proposed approach through several simulations in which we
compare our method against the standard ones from the literature, for several combinations of a trade-off
parameter between comfort and energy cost. We show how our SBMPC controller approach outperforms
the standard controllers available in the literature.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Energy consumed in buildings for heating, ventilation, and air-
conditioning (HVAC) purposes accounts for around half of total
energy used in buildings [1–5]. For companies, especially if they
are located in large buildings, it is therefore very important to limit
the amount of energy wasted due to bad temperature control. Fur-
thermore, it is also important to reduce as much as possible the
energy waste in order to decrease emissions due to e.g. natural
gas boilers [6]. Moreover, buildings have comfort temperature
bounds that have to be respected during working hours, with
few violations allowed [7]. The comfort violations should be lim-
ited while at the same time the energy cost has to be minimized.
Simple solutions where heaters always run at maximum power
are not acceptable due to the large costs and energy waste.

On top of that, buildings are subject to many exogenous distur-
bances, e.g. outside temperature, solar irradiance, and endogenous
ones, e.g. occupancy. The profile of these disturbances, if not prop-
erly considered when determining the control actions, can lead to
poor performance, both in terms of energy cost and discomfort.
Moreover, the model of the building considered, due to approxima-
tions, may lead to further errors. However, a too complex model is
also not useful for control purposes due to the high computational
burden that it entails. Therefore, the problem of controlling the
room temperature in large buildings is a complex task.
1.1. Literature review

In this section, we perform a brief literature review of the two
main topics of this research: control for buildings and scenario
generation.
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2 A time series variable is heteroscedastic if the variance changes throughout time.
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1.1.1. Modeling and control strategies for buildings
Many solutions have been proposed in the literature to control

the room temperature in buildings using information available on
the current temperature and forecasts of the disturbances. A sim-
ple solution involves a rule-based approach that is based on if-
then-else rules and information about the current disturbances
[8]. Although these controllers are simple to implement and may
achieve a reasonable performance, they are not very efficient since
they are based on user knowledge and rules-of-thumb and they do
not actually perform an optimization. Model predictive control
(MPC) [9–12] is a more advanced control strategy that is suitable
for the room temperature control problem, since it can naturally
include constraints in the control problem and since it can in gen-
eral achieve a better performance [13–15]. Moreover, a building is
subject to several disturbances, as mentioned before, and MPC can
deal well with disturbances by using a robust or stochastic con-
troller [11], which can achieve better performance than the deter-
ministic counterpart. However, despite having a better constraint
satisfaction, a robust MPC controller for buildings, e.g. [16], could
be too conservative for the task of controlling the temperature of
a room and it would result in a high amount of energy used as it
would try to compensate every possible disturbance realization.
Therefore, usually a stochastic MPC controller is preferred for
building heating systems [12,17]. Indeed, by considering the
stochastic properties of the disturbance or by considering several
disturbance scenarios, stochastic MPC controllers can potentially
achieve a better control performance compared to deterministic
controllers, leading therefore to a reduced energy consumption
while limiting the discomfort. In particular, scenario-based MPC
(SBMPC) methods stand out as a useful tool in building heating
systems, since they can use past data of the disturbances, which
are available in the case of building heating systems, and they
can successfully be applied to nonlinear models as well [12].

In this regard, several types ofMPC algorithms have been applied
to HVAC systems in the literature [13–15, 17–29]; see also [30,31]
and the references therein. Inparticular, [15]presents twostochastic
MPCalgorithms, i.e. a disturbance-feedback approach and a chance-
constraint one. The results show that the stochastic controllers
achieve a better performance than deterministic MPC and rule-
based control. Authors of [17] develop an SBMPCcontroller that uses
previous data of building occupancy and external ambient condi-
tions forecast errors to solve a scenario-based optimal control prob-
lem. The scenarios are built through copulas that can be learned
online and the method is applied to a room in a university building.
The results show that the proposed controller is able to achieve a
good performance in terms of energy cost, while having a larger
computational complexity than standard deterministic methods.
However, the method is applied to a single room and the authors
of [17] suggest that a study needs to be carried out to asses whether
themethod can be applied to a larger building. A similar approach is
presented in [18], where the main differences are that 1) slack vari-
ables are introduced in the cost function to improve the feasibility of
the optimizationproblemobtained and2) that different copula fam-
ilies are tested and compared (see also Section 1.1.2). In both papers,
the authors do not rely on Gaussian assumptions for what concerns
the properties of the disturbances. Given that the two previous
methods might result in a large computational complexity, the
authors of [19] extend the concept to an explicit SBMPC controller,
such that the control inputs are computedoffline and applied online.
Experiments were performed once again for a single university
room, showing better performance with respect to the standard
methods. In order to deal with a multi-room setting, a distributed
MPC controller is presented in [20],where a Lagrangiandual decom-
position relaxationmethod is used to reduce the computational bur-
den arising from the several rooms considered. Simulation results
obtained considering a network of 10 rooms show an increased per-
2

formance with respect to a baseline PID controller. In all these arti-
cles it is shown how stochastic MPC strategies can achieve a better
performance than deterministic MPC. The article [21] presents an
MPC algorithm in which a linear model is used to control a building
including an active cold thermal storage in order to implement a
demand response program. All these works, i.e. [15,17–21], use a
linearized model description and do not use a nonlinear model nor
othermore advancedmodeling tools, e.g. Modelica [32,33], possibly
leading to a decrease in the performance. Such tools and nonlinear
models for building heating control usually include more features
and components compared to a linear model and thus they can
potentially provide a more accurate description of the building and
of the influence of each disturbance, reducing therefore the model-
ing error and improving the overall performance. The article [22]
adopts a nonlinear model arising from the heat pump and a battery
inverter considered, but the considered MPC controller is a deter-
ministic one. Forwhat concerns nonlinear andmore advancedmod-
els, while some works did consider their usage for HVAC systems,
e.g. [13,14,23,24], all of them considered a deterministic setting
instead of a stochastic one. To the best of our knowledge, no work
has considered a nonlinear model description obtained through
Modelica togetherwith a stochastic controller,whichwould improve
the performance by taking into account a more accurate model and
the stochastic properties of the disturbances.
1.1.2. Scenario generation
Besides improving the state-of-the-art by proposing a control

approach for more realistic models, i.e. nonlinear Modelica models,
our work also contributes to the existing literature of scenario gen-
eration for buildings by improving upon the current state-of-the-
art. In particular, scenarios of random variables that represent a
time series, e.g. the ambient temperature for the next 24 h with
an hourly resolution, need to satisfy several important properties:

1. They should not be restricted to the standard assumption of
Gaussian disturbances/forecasting errors as this assumption is
quite restrictive when it comes to generating scenarios of
heteroscedastic2 processes, e.g. solar irradiance [19].

2. They need to consider the multivariate distribution of the ran-
dom variables: if the scenarios represent a random variable at
different time steps in the future, these scenarios should model
the time correlation of the random variable [34].

3. Besides modeling the time correlation, they should explicitly
take into account the different time dependencies and avoid
modeling a stationary distribution; i.e. the distribution of the
random variable might be different at different hours of the
day/times of the year or might change with the prediction
horizon.

4. The methods to generate scenarios should be flexible enough to
explicitly model the dependencies of the random variables on
exogenous variables.

5. The computational burden of the scenario generation method
should be small enough for online implementation.

In the context of building heating, while some scenario genera-
tion methods have been considered [15, 17–20, 25,35–40], they
have several problems. In particular, some of the existing methods
[35,36,15] rely on the standard Gaussian assumptions [19]. In addi-
tion, although several works have addressed the Gaussian assump-
tion [17–20, 25,37, 39, 40], they still lack some of the required
properties.

More specifically, in [17], a method based on empirical copulas
is proposed. While the method satisfies some properties, e.g. time
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correlation, it fails to satisfy the following two: 1) it does not model
time dependencies but it assumes that the marginal distributions
are stationary, i.e. it assumes that the n-hours ahead distribution
of a variable is the same at any hour of the day, any day of the year;
2) the scenarios are generated based on historical data without
considering other possible exogenous inputs. The analytical copula
method proposed in [20] overcomes some of these issues as it
explicitly models the time dependency during a day. However,
the distributions are still stationary, i.e. they vary within a day
but they do not change along a year, and they are just based on his-
torical data. In [18,19], a more general approach is proposed where
different copula families are tested, and the best one is selected to
generate scenarios. While the method is very general and flexible,
it requires to compare different copula functions and can easily
become computationally infeasible for online MPC. In addition,
the method has two other problems: the best copula is selected
by comparison with the empirical copula of [17], hence it has the
same problems as [17]; moreover, the time dependencies consid-
ered by the copulas are not specified. In [37], scenarios from a
weather meteorological model are employed. Even though the goal
of weather models is to provide an ensemble of scenarios, to cap-
ture the uncertainty in the prediction, the method displays system-
atic errors, e.g. biases, and requires the application of advanced
post-processing techniques based on copulas, e.g. ensemble copula
coupling [41]. In [25], a method based on sampling historical fore-
casting errors is considered. Despite the method attempts to cap-
ture time correlation using an auto-regressive error model, that
model is only used for error correction. In particular, to generate
scenarios, the method samples from past historical errors and fails
to satisfy Properties 2–4. The recursive feasibility and stability of
SBMPC is studied in [39]. To do so, it is assumed that disturbances
can be represented by a scenario tree, and that the tree can be built
using empirical samples from a discrete set of disturbances. This
approach is clearly very limited as, it does not satisfy Properties
2–4, and in addition it could have scalability and computational
issues when the number of random variables increases. In [40],
scenarios are used for modeling electricity prices and independent
optimization problems are solved for each scenario; however, the
method cannot be used to model uncertainty in other variables,
e.g. weather variables, and fails to satisfy Properties 2–4. In [38],
two Poisson distributions are employed to model the occupancy
in the building as a birth–death process. While such a parametric
distribution might work well for occupancy, it has the same issue
as the Gaussian assumption: the method cannot be generalized
to other random variables.
1.2. Motivation and contributions of the paper

In this article, we focus on a scenario-based MPC (SBMPC) algo-
rithm that includes both a nonlinear system description through
Modelica, while using a scenario generation method based on
probability distributions obtained empirically, making it a very
suitable tool for a building heating control problem. The Modelica
model description can lead to an improvement of the model accu-
racy; note that in the current literature of SBMPC for heating sys-
tems in buildings, a linearized model is always used. On top of
that, by using a nonlinear Modelica model, we implement for the
first time an SBMPC controller for HVAC systems in buildings that
uses a nonlinear Modelica model description. In addition, we pre-
sent a parametric Gaussian copula method to generate scenarios
that it can satisfy the five required properties, whereas the meth-
ods used in the literature of HVAC systems for scenario generation
suffer from some statistical problems, as mentioned earlier. We
perform several simulations showing the benefits of the presented
approach. Our contribution is therefore threefold:
3

� We propose a control method for a building heating systems
that considers a Modelica nonlinear model and an SBMPC
controller.

� We generate scenarios using a new approach that, unlike the
existing methods, satisfies all the important properties of sce-
nario generation methods for time series data.

� We perform a comparison between several combinations of the
couple model-controller: as models, we consider a Modelica
and linear and as controller we consider a deterministic MPC
and SBMPC.

1.3. Outline

The outline of the article is as follows. In Section 2, we describe
theproblemunder consideration.Wepresent the control algorithms
used throughout the article in Section 3. In Section 4, the adopted
scenario generationmethod is presented.Wepresent the simulation
results on a case study in Section 5 and lastly we present some con-
clusions and suggestions for future work in Section 6.
2. Model description

2.1. Buildings

In this paper, we focus our attention on buildings with local
heat production units. The type of building considered can be con-

trolled via two control inputs, i.e. u ¼ qheat qcool
� �>, where qheat is

the amount of heating power transferred to the building and qcool is
the cooling power provided to the building. We assume that the
building can be modeled using an RC-model with two states

[13]: Tzone as the average temperature of the rooms and Twall as
the average temperature of the walls. In addition, it is assumed
that the building is affected by three disturbances: solar irradiance

I, outdoor temperature Tamb, and building occupancy hocc. While
past measurements of external disturbances, e.g. solar irradiance
and outdoor temperature, are available, we do not have any mea-
surement of the occupancy of the building. Note that, although this
is an important disturbance to consider, it is also difficult to mea-
sure in practice [42,43]. Therefore, to estimate the models and to
perform simulations, we assume that the occupancy profile is fixed
for every day of the week, i.e. we assume that the building is fully
occupied during working hours and empty outside of these hours.
2.2. Modelica

We have modeled the buildings, comprising also the heating,
cooling, and ventilation units, with Modelica [32,33], which is an
object-oriented and equation-oriented language that is designed
tomodel thebehavior of physical systems. In particular, the building
ismodeledbasedonanRC-model,whichhasbeen identifiedthrough
the Grey-Box Buildings toolbox [44]. The building has also been
extensively validated using data collected from the building as in
[44,13]. Such data has been gathered between 2016 and 2018 and
includes e.g. internal temperature, domestic hotwater usage, exter-
nal temperature, and solar irradiance. The adoption of Modelica in
our work provides the benefit that we can improve the amount of
detail and accuracy of the model w.r.t. linear models. Note that e.g.
some of the HVAC components modeled in Modelica result in non-
linear model components. Therefore, although many other works,
e.g. [15,17–20], use indeed a linearization of a nonlinear model, in
thisworkwedirectly use a nonlinearmodel andwe obtain therefore
amoremeaningful representationof the realbuilding.Readers inter-
ested in themodeling procedure of buildings in aModelica environ-
ment are referred to [13,44].
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Note that other high-fidelity simulation tools exist for buildings,
e.g. TRNSYS, EnergyPlus, ESP-r, IDA ICE; see [45,46] for a complete
review. However, compared to Modelica, these software tools lack
in modularity and flexibility for prototyping and simulating new
technologies [47]. Moreover, in our particular setting, we have data
available from the buildings to be controlled that allows us to esti-
mate the parameters of the building. However, the data is not com-
prehensive enough for satisfactory white-box modeling. Therefore,
as highlighted in [44], we adopt a grey-box model due to necessity
of estimating certain parameters of the model of the building that
are not known a priori. Whereas in the aforementioned white-box
modeling tools it could in theory be possible to calibrate the
parameters of the model, the lack of a more detailed physical
knowledge of the building makes the choice of a white-box model,
for our specific setting, less desirable. Lastly, note that Modelica is
an open-source tool, making it particularly appealing for commer-
cial applications. For more advantages of using Modelica for HVAC
systems we refer to [48].

Remark 1. Note that, as mentioned in [44], the actual difference
between white-box and grey-box models does not depend on the
complexity of the model. For instance, even a single-state model
can be a white-box model if all its parameters can be determined
based solely on physical knowledge. However, a white-box model
becomes grey when one or more of its parameters are estimated
based on a fitting of the model to measurement data, irrespectively
of the complexity of the white-box model.
Remark 2. The model of the building used in this paper has been
extensively validated following the exact same procedure reported
in [44]. Therefore, the validation process is omitted here as it is
already explained in the aforementioned paper. Multiple-years
data has been used to identify and validate the model. The inter-
ested readers might find the whole identification and validation
procedure in [44,13].
Fig. 1. Scheme of the MPC framework (adapted from [13]).
2.3. Model predictive control

MPC is a control tool that has been extensively studied in the
last forty years [10,9,11]. The main strength of MPC is to use a
model of the system under control to find optimal inputs for that
system with respect to a certain objective, which can be either sta-
bilizing the system or minimizing an economical goal. Since in the
MPC framework the problem of finding the optimal inputs for the
system is an optimization problem, constraints can easily be
included, as well as several performance criteria. Compared to sim-
pler strategies e.g. rule-based control, MPC requires a larger com-
putational effort and requires to solve an optimization problem
online but it can provide an increase in performance. Due to its ver-
satility and good performance achieved, MPC has been applied to
various systems and fields, e.g. power systems [49,50], traffic net-
works [51], water networks [52], aerospace [53], among others. For
a survey that includes also MPC applications for large-scale and
industrial systems, we refer the reader to [54].

In recent years, several MPC strategies have been developed to
cope with external disturbances, in particular, robust and stochas-
tic MPC strategies. In this paper we focus on an SBMPC algorithm,
which is presented in Section 3.2.

2.4. Control loop and practical implementation

Many operations have to be carried out on the real building by
the building energy management system; the overall control
scheme is presented in Fig. 1. The operations are [13]:
4

1. Monitoring: some measurements, e.g. water temperature, heat
flux, are performed by the building energy control and manage-
ment system.

2. Forecasting: weather forecasts are obtained as will be explained
in Section 4.

3. State estimation: some states, e.g. internal wall temperatures,
cannot be measured and therefore they have to be estimated.

4. Optimization of the control inputs: an optimization problem,
explained in Section 3, is solved at every time step with a sam-
pling time of 1 h. Only the first inputs of the optimal sequence
are applied to the system.

The real building is therefore controlled by all these steps, car-
ried out in sequence. The optimization problem discussed in step 4
above is solved through JModelica.org [55]. The direct collocation
method is used to discretize time so that the optimization problem
is reduced to a nonlinear programming problem [56]. CasADi [57]
is used to obtain the first-order and second-order derivatives of the
expressions in the nonlinear programming problemwith respect to
the decision variables, which are required by the solvers used by
JModelica.org. We use IPOPT [58] to solve the nonlinear program-
ming problem, together with the sparse linear solver MA57 [59].

Remark 3. Note that in this sectionwe consider simulations instead
of experiments in the real building. This implies a small differencew.
r.t. Fig. 1: instead of applying the inputs to the real building, we
simulate its behavior through Modelica for one time step. In other
words, the loop is ‘‘closed” by applying the optimal inputs to amodel
of the building rather than to the building itself, using the actual
values of the disturbances instead of the forecasts. The model used
for simulating the building behavior is the same Modelica model
used for the optimal control problem in the MPC framework.
2.5. Linear model estimation

To compare the nonlinear MPC controller with the standard lin-
ear counterpart, a linear model of the building is needed. To obtain
such a model, data from the building is considered and a linear
model is estimated using linear least squares. In detail, considering
the same inputs, state space, and disturbances as for the nonlinear
model (see Section 2.1), we can assume that the building dynamics
are of the form:

Tzon
kþ1

Twall
kþ1

" #
¼ A

Tzon
k

Twall
k

" #
þ B1

qheat
k

qcool
k

" #
þ B2

Tamb
k

Ik
hocck

2
64

3
75: ð1Þ
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Then, using the same data as those used for estimating the
Modelica nonlinear model, we solve a linear least square problem
and estimate the values of the matrices A;B1, and B2, using the
mean absolute error as key performance indicator.

Remark 4. In this article, as highlighted in Remark 3, we use the
nonlinear Modelica model to compute the next state for the closed-
loop simulations. This can introduce some bias when comparing
the performance of the controllers that use the linear model with
respect to the ones that use the Modelica model, since there would
be no model mismatch in the latter case. Nevertheless, we present
here also a linearized model as a reference, to show how such
model would behave in the considered scenario.
Remark 5. Related to the previous remark, note also that this kind
of nonlinear Modelica model has been already applied to a building
heating system in [13]. Indeed, in that reference the same model-
ing procedure was applied to a similar building and experimental
results were carried out. No large mismatch between the Modelica
nonlinear model and the actual physical building nor other funda-
mental flaws were noticed. Therefore, we can argue that the non-
linear Modelica model is a very good approximation of the real
building and can therefore be used in the closed-loop simulations
to simulate the evolution of the system.
3. Control algorithms and models

In this section we present the two considered control algo-
rithms, i.e. MPC and SBMPC.

3.1. Deterministic MPC

In Deterministic MPC, the external disturbances, e.g. tempera-
ture or solar irradiance, are predicted with a point forecasting tech-
nique and in which the predictions are then assumed to represent
the expected value. In this context, at each time step, the MPC opti-
mization problem is solved, yielding an optimal control input
sequence u�. Then the first element of the sequence is applied,
the horizon is moved one time step forward, the system is sam-
pled, and the optimization problem is solved again.

Given the task of controlling the room temperature in a building
while minimizing both the energy costs and the discomfort, the
optimization problem solved at each time step by a deterministic
MPC controller is given by:

minimize
T1; q1 . . . ;

qN ; TNþ1

XN
k¼1

a Jdk þ Jek
� �

þ a JdNþ1 ð2aÞ

subjectto
T1 ¼ T1

ð2bÞ

Tkþ1 ¼ f Tk; qk;dkð Þ; for k ¼ 1; . . . ;N ð2cÞ
0 6 qheat

k 6 Qheat
max; for k ¼ 1; . . . ;N ð2dÞ

0 6 qcool
k 6 Q cool

max; for k ¼ 1; . . . ;N ð2eÞ
where:

� N is the prediction horizon.

� The system state is defined by Tk ¼ Tzon
k ; Twall

k

h i
, with Tzon

k and

Twall
k as the room and wall temperatures.

� T1 is the current temperature.
� The input control is defined by qk ¼ qheat

k ; qcool
k

� �
, with qheat

k and
qcool
k as the input heating/cooling power.
5

� The cost function represents the weighted average between the

energy cost Jek and the discomfort cost Jdk :
Jdk ¼ max Tzon
k � Tmax

k ;0
� �þmin Tzon

k � Tmin
k ;0

� �� �2
; ð3Þ

Jek ¼ cgask

qheat
k

ggas
k

þ celek

qcool
k

gcool
; ð4Þ

and a is the weighting parameter that defines the relative
importance of each cost.

� The building dynamics are defined by (2c), where f �ð Þ represents
the Modelica model of the building.

� The building is disturbed by some uncontrollable inputs

dk ¼ Tamb
k ; Ik; h

occ
k

h i
, with Tamb

k the ambient temperature, Ik the

solar irradiance, and hocck the building occupancy.
� The upper and lower comfort temperature bounds are respec-

tively defined by Tmax
k and Tmin

k , and they vary in time depending
on the hour of the day and day of the week.

� Qheat
max;Q

cool
max;gcool;ggas; cgas, and cele are constant parameters and

are, respectively, the maximum heating power, the maximum
cooling power, the cooling efficiency, the heating efficiency,
the gas cost, and the electricity cost.

It is important to note that the role of the discomfort cost Jd is to
act as a soft constraint so that it penalizes the deviations of the
temperature outside the comfort bounds, but remains 0 if the tem-
perature is inside the bounds. The controller can therefore choose
to implement a control action that leads to a violation of the com-
fort bounds if this can lead to a lower total cost. Lastly, note that in
(2a) the final cost is related only to the states. This is standard in
the MPC framework (see e.g. [11], Eq. 2.3), since the inputs are
applied from kþ 1 until kþ N, thus the evolution of the system
is considered from kþ 2 until kþ N þ 1. Therefore, there is no
input cost considered for time-step kþ N þ 1, but there is a state
cost that is the one we obtain by applying the inputs at kþ N.

3.2. Scenario-based MPC

It is possible to improve the performance of the deterministic
MPC of the previous subsection by considering several scenarios
of the disturbances acting into the system. This approach, known
as scenario-based MPC (SBMPC), considers multiple realizations/
scenarios for the disturbances, different system states for each sce-
nario, and a cost function that consists of the average of the origi-
nal cost functions across all scenarios. For the control inputs, two
possibilities exist: different control inputs for each scenario (as
with the system state) and shared control inputs across all scenar-
ios. While the former has the advantage of being less conservative,
the latter is more computational friendly. For the case of building
control, we consider shared control inputs across all scenarios as
this reduces the computational complexity.

Defining M different scenarios for the disturbances.

i.e. d ¼ dk;i

� 	M
i¼1

n oN

k¼1
, the SBMPC optimization problem solved at

each time step can be defined as:

minimizeT1; q1 . . . ;

qN ; TNþ1

XM
i¼1

XN
k¼1

a Jdk;i þ Jek;i
� �

þ a JdNþ1;i

 !
ð5aÞ

subject to
T1;i ¼ T1 for i ¼ 1; . . . ;M

ð5bÞ

Tkþ1;i ¼ f Tk;i; qk; dk;i
� �

; for i ¼ 1; . . . ;M
for k ¼ 1; . . . ;N

ð5cÞ

0 6 qheat
k 6 Qheat

max ; for k ¼ 1; . . . ;Nð5dÞ
0 6 qcool

k 6 Q cool
max; for k ¼ 1; . . . ;Nð5eÞ



T. Pippia, J. Lago, R. De Coninck et al. Energy & Buildings 247 (2021) 111108
where:

� Tk ¼ Tzon
k;1 ; T

wall
k;1 ; . . . ; Tzon

k;M; T
wall
k;M

h i
represents the state at time step

k for each of the M scenarios.

� dk;i ¼ Tamb
k;i ; Ik;i; h

occ
k;i

h i
, represents the ith disturbance scenario at

time step k.
� The cost function is the average across all scenarios of the
weighted average between the energy cost Jek and the discom-

fort cost Jdk of each specific scenario.
� The input control qk ¼ qheat

k ; qcool
k

� �
remains equal across all

scenarios.
� The building dynamics are represented independently for each
scenario by (5c).

� The constant parameters are the same as for deterministic MPC.
Remark 6. Note that other stochastic formulations exist that can
provide guarantees on the feasibility of the obtained solution,
e.g. [19]. In this paper, we adopt the scenario-based formulation
(also referred to as multi-scenario formulation) as in e.g.[60–63].
The implementation of other stochastic methods will be investi-
gated as future work.

3.3. Linear MPC

We will compare the SBMPC approach against two linear MPC
approaches: deterministic linear MPC and linear SBMPC. In both
cases, the optimization problems solved at each time step are
the same as the ones defined by (2b) and (5a) but with a minor
modification. Instead of using the nonlinear dynamics (2c) and
(5c), the dynamics are given by the linear model defined in (1).
In particular, for linear deterministic MPC, constraint (2c) is
replaced by:

Tkþ1 ¼ ATk þ B1 qk þ B2 dk; for k ¼ 1; . . . ;N: ð5fÞ
Similarly, for linear SBMPC, constraint (5c) is replaced by:

Tkþ1;i ¼ ATk;i þ B1 qk þ B2 dk;i; for i ¼ 1; . . . ;M
for k ¼ 1; . . . ;N:

ð5gÞ
4. Scenario generation method

In this section, we describe the scenario generation method for
modeling the uncertainty in the system disturbances.

4.1. Introduction

Let us define a random variable X representing some time series
process, e.g. external temperature, and the related multidimen-
sional random variable X representing the distribution of X in a
time grid of N time steps, i.e. X ¼ X1; . . . ;XN½ �>. To generate scenar-
ios, we will build the multivariate distribution of X, i.e. F Xð Þ, so
that by sampling from F Xð Þ we can obtain M scenarios of X,
i.e. x1; . . . ;xM .

When building F Xð Þ, in order to satisfy the desired properties of
scenario generation methods (see Section 1.1.2), several require-
ments need to be satisfied:

� F Xð Þ should not be substituted by the N marginal distributions
F X1ð Þ; . . . ; F XNð Þ. In particular, F Xið Þ only represents the distribu-
tion of X at time step i but does not consider the correlation
between X1; . . . ;XN .
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� F Xð Þ should not be built as a stationary distribution. Instead, the
distribution should consider the properties of the underlying
random variable X. For example, in the case of temperature or
solar irradiance, it is clear that F Xð Þ should vary with the day
of the year d as well as the hour of the day h,
i.e. F Xð Þ :¼ g X; d;hð Þ.

� The distribution F Xð Þ should include any external dependency
of X. For instance, if X represents the ambient temperature,
F Xð Þ needs to explicitly include the dependency w.r.t. factors
like the solar irradiance I, i.e. F Xð Þ :¼ g X; Ið Þ.

4.2. Scenario generation method

The proposed method consists of four steps:

1. generation of a deterministic forecast �x of the random variable
X.

2. Generation of the marginal probability distribution
F X1ð Þ; . . . ; F XNð Þ along the horizon N.

3. Generation of the distribution F Xð Þ using a parametric copula
and the marginal distributions F X1ð Þ; . . . ; F XNð Þ.

4. Sampling of scenarios using F Xð Þ.

In this section, we explain the four steps in detail.

4.2.1. Deterministic forecast
To build a deterministic/point forecast of the variable of interest

we employ state-of-the-art methods for each variable of interest:

� For the solar irradiance, we consider two forecasting models:
the deep neural network proposed in [64] for the short-term
predictions (anything below 6 h), and the ECMWFweather fore-
cast [65] for long-term predictions (anything beyond 6 h). This
distinction is made because, in the context of solar irradiance
forecasting, machine learning techniques perform better for
the short-term horizons, while numerical weather forecasts
are more accurate for long-term horizons [64] (see also Remark
7). For what concerns the long-term prediction forecasts, note
that weather-based models are highly complex models based
on weather patterns; for practical applications, these forecasts
are not produced by researcher but rather purchased from three
main providers of weather forecasts worldwide and for our
study we purchased them from ECMWF [65].

� For the ambient temperature, considering the recent success of
deep learning methods for forecasting energy-related variables
[66–72], we develop a deep neural network that uses as inputs
the past values of the ambient temperature (hourly values over
the last three days), the ECMWF weather forecast of the solar
irradiance on hourly resolution over the forecasting horizon,
and the hour of the day and day of the year when the prediction
is made. For the deep neural network, we consider a two–hid-
den layer architecture whose parameters are optimized using
hyperopt [66], a Bayesian optimization algorithm. We optimize
the number of neurons per layer and the activation function. As
a result of the optimization we considered a deep neural net-
work with 240 (first hidden layer) and 135 (second hidden
layer) neurons. The network uses the rectifier linear unit as acti-
vation function and is optimized using the Adam [67] optimizer
with early stopping.

It is important to note that the other steps to generate scenarios
are independent of the method employed to generate the deter-
ministic forecast. As such, while we advocate for the use of state-
of-the-art methods to obtain the most accurate scenarios, the pro-
posed methodology would work as well with any deterministic
forecast.



T. Pippia, J. Lago, R. De Coninck et al. Energy & Buildings 247 (2021) 111108
Remark 7. The splits between horizon regarding the forecast of
the irradiance are a well studied problem in the literature (see e.g.
[68,64]). Note that the exact split (4, 5, 6 h) might be specific to the
location.
4.2.2. Marginal distributions
To generate the marginal distributions, considering its simplic-

ity yet high accuracy, we employ the method of empirical quantiles
[69]. In detail, to generate the marginal distribution F Xð Þ of a vari-
able X, the simplest version of this method consists of four steps:

1. Consider deterministic forecasts of the variable in the past,
e.g. �x1; . . . ; �xn.

2. Compute the associated historical forecasting errors of the
deterministic forecast, e.g. ��1; . . . ; ��n.

3. Compute the empirical quantiles of the errors and its associated
empirical distribution F �ð Þ.

4. Model the marginal distributions as the point forecast plus the
marginal distribution of the errors:
F Xð Þ ¼ �xþ F �ð Þ:

For the proposed approach, the method is modified in order to
model non-stationary marginal distributions. In particular, defin-
ing Xk;h;d as the random variable representing the value of X at time
h of day d that is predicted k time steps ahead, the proposed
approach estimates each distribution F Xk;h;d

� �
independently. To

do so, the distributions of the errors �k;h;d are independently consid-
ered for each time step k, time h, and day d, and the distribution
F Xk;h;d

� �
is estimated accordingly:

F Xk;h;d

� � ¼ �xk;h;d þ F �k;h;d
� �

: ð5iÞ
In addition, the following two considerations are made:

� To obtain non-stationary marginal distributions that explicitly
model the variability of the distribution along a year, F �k;h;d

� �
is estimated using the historical errors of the last 60 days.

� To explicitly model the variability of the distribution with the
time step and time of the day, F �k;h;d

� �
is estimated using past

errors of the deterministic forecasts made for the same time
step k and time of the day h. Particularly, F �k;h;d

� �
is estimated

using the historical errors ��k;h;d�1; ��k;h;d�2; . . . ; ��k;h;d�n.

4.2.3. Scenario generation
To generate scenarios, we consider the marginal distributions

estimated in the previous step, a Gaussian copula function [70],
and Sklar’s Theorem [71,72]. In detail, let us define an N-
dimensional random variable X ¼ X1; . . . ;XN½ �>, its associated mar-
ginal distributions by F1 X1ð Þ; . . . ; FN XNð Þ, and the multivariate
cumulative distribution by F X1; . . . ;XNð Þ. If the marginals are con-
tinuous, Sklar’s theorem states that there is a copula function

C : 0;1½ �N ! 0;1½ � such that:

F X1; . . . ;XNð Þ ¼ C F1 X1ð Þ; . . . ; FN XNð Þð Þ: ð5jÞ
In other words, assuming that the copula function is known, the

multivariate cumulative distribution can be easily obtained if the
marginal distributions are known.

Using this theorem, to generate scenarios, we employ one of the
copulas functions that requires fewer computational time: the
Gaussian copula. This selection is done for three reasons: i) the
method to generate scenarios should be fast for real time imple-
mentation; ii) empirically, we observed the Gaussian copula to
be a good fit for the disturbances considered, i.e. ambient temper-
ature and irradiance; iii) the Gaussian copula is a well established
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method that has been used to generate scenarios for different
energy-based applications [70,73].

For the sake of simplicity, we refer to [70] for details on the esti-
mation of the Gaussian copula. Here, we simply outline the main
idea of the method, which relies on two random variables
transformations:

1. Given a marginal distribution Fi Xið Þ of a random variable Xi, we
can define a new random variable Yi ¼ Fi Xið Þ. Due to the prop-
erties of Fi Xið Þ, it can be easily shown that Yi � U 0;1½ �, i.e. the
new random variable follows an uniform distribution.

2. Given a random variable Yi � U 0;1½ �, we can obtain a random
variable Zi ¼ U Yið Þ � N 0;1ð Þ that is normally distributed,
where U is the probit function.

Then, to generate M scenarios of X at time step k,

i.e. �xj
k ¼ �xjk;1; . . . ; �x

j
k;N

h i>
 �M

j¼1
, the method consist of 5 steps:

1. Consider historical realizations xk�1; . . . ;xk�n of X.
2. Use the marginal distributions F1 X1ð Þ; . . . ; FN XNð Þ to map each

historical sample xi ¼ xi;1; . . . ; xi;N
� �> to a transformed sample

zi ¼ zi;1; . . . ; zi;N
� �>, where Zi;j � N 0;1ð Þ.

3. Compute the covariance matrix R of the historical transformed
samples zk�1; . . . ; zk�n.

4. Draw M samples �z1; . . . ; �zM from the normal distribution
N 0;Rð Þ.

5. Use the inverse of the two transformations applied in the previ-
ous steps to map the samples �z1; . . . ; �zM to a set of samples
�x1; . . . ; �xM .

The samples �x1; . . . ; �xM represent the M required scenarios

�xj
k ¼ �xjk;1; . . . ; �x

j
k;N

h i>
 �M

j¼1
. In particular, they follow the original

marginal distributions F1 X1ð Þ; . . . ; FN XNð Þ and they model the
inter-correlation in X ¼ X1; . . . ;XN½ �>.

As it was done for the marginal distributions, the Gaussian cop-
ula method is modified in order to model non-stationary distribu-
tions. In particular, defining Xk;h;d as the random variable
representing the value of X at time h of day d and predicted with
a time step k, the proposed approach estimates the copula function
with the two following modifications:

� To have non-stationary distributions that explicitly model the
variability of the distribution along a year, the copula function
is estimated using the historical data of the last 60 days.

� To explicitly model the variability of the distribution with the
time step and time of the day, the copulas are estimated using
marginal distributions F �k;h;d

� �
that explicitly model the distri-

bution of X as a function of the time step ahead k, time of the
day h, and day of the year d.

We show 10 temperature scenarios and 10 solar irradiance sce-
narios in Figs. 2 and 3, respectively.

Toevaluate themarginaldistributions,wecompute their90%and
80% coverage. That is, we compute the percentage of historical ele-
ments that do indeed fall in the interval [5%, 95%] and [10%, 90%].
As can be seen from Table 1, the coverage of the distributions is
acceptable. As could be expected, the distribution of the irradiance
is more far off, but overall the coverage is within expected errors.

Remark 8. Let us explain here how we capture the correlation
between the different variables. Since we generate scenarios using
copula functions and given a set of individual variables with their



Fig. 3. 10 solar irradiance scenarios obtained with the method presented in
Section 4. A time step corresponds one hour. The actual measured value of the
temperature is shown in black color.

Table 1
Coverage of the temperature and irradiance scenarios.

Coverage
90% 80%

Temperature 95.59% 84.71%
Irradiance 85.56% 75.85%

Fig. 2. 10 temperature scenarios obtained with the method presented in Section 4.
A time step corresponds one hour. The actual measured value of the temperature is
shown in black color.
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marginal distribution, we can use a copula function to represent
the full distribution of all the variables. For that, we use the
individual marginal distributions and some map/inference process.
The individual variables can be either the same variable at different
time points, e.g. the temperature at different hours, or different
variables altogether. From the perspective of the method it does
not make any difference. In both cases we consider the marginal
distributions of the individual variables (something that we can
compute with historical data), and we map them to a copula
function that captures the full distribution of the variables
(including correlation).
4.2.4. Properties
As a final remark, we outline how the proposed method satisfies

each of the required properties mentioned in Section 1.1.2:

1. As the distribution of the disturbances are modelled with non-
parametric quantile functions, the generated scenarios are not
restricted to the standard assumption of Gaussian forecasting
errors.

2. Since the scenarios are generated using a copula function, the
multivariate distribution is explicitly considered and the sce-
narios include the time correlations.
8

3. As the marginal distributions are estimated for each hour of the
day, time of the year, and time-step, the resulting multivariate
distribution is non-stationary and captures all time
dependencies.

4. As the point forecast considers external factors, the method is
not limited to historical data of the variable of interest.

5. Since the Gaussian copula and the empirical quantile methods
have low computational costs, the method is especially suitable
for online optimization.
Remark 9. In this section, we presented the properties that sce-
nario generation methods should have and we adopt the method
presented in Section 4.2.3, qualitatively comparing it against other
scenario generation methods used in the literature for SBMPC.
However, a comparative and quantitative study comprehending
several scenario generation methods aimed at investigating which
one provides the best control performance is out of scope for this
work and is left as a suggestion for future work in Section 6.

5. Case study

We present in this section the simulation results in which we
compare 5 different controllers:

� PIMPC: perfect-information MPC, obtained using the values of
the measurements of the disturbances as if they were known
in advance. It is of course not possible to have the real values
of the actual measurements beforehand in practice, but this
controller can be used as a benchmark for the ideal theoretical
achievable performance.

� DetMPC-Mod: deterministic MPC controller presented in Sec-
tion 3.1 together with the nonlinear Modelica model.

� SBMPC-Mod: SBMPC controller presented in Section 3.2
together with the nonlinear Modelica model.

� DetMPC-Lin: deterministic MPC controller together with the
linearized model presented in Section 2.5.

� SBMPC-Lin: SBMPC controller together with the linearized
model.

First, the simulation setup is discussed, then the results and the
discussions are presented.

5.1. Setup

The closed-loop control is applied as explained in Section 2.4,
i.e. the MPC problem is solved and the first input is applied to
the system. Then, for all the controllers, the evolution of the real
building between sampling times is simulated through Modelica.

We perform simulations for one month in the winter season
with 1h sampling time, i.e. we solve 24 � 30 ¼ 720 optimization
problems for each controller. The prediction horizon is Np ¼ 24,
i.e. corresponding to one day. We consider an office building in
Brussels, Belgium, with 7 floors and a total surface of 10000 m2.
A nonlinear model of the building is estimated using Modelica
based on the considerations of Section 2.1 and using data from
the real building. In addition, a linear counterpart is also estimated
using regular linear least squares as explained in Section 2.5. The
heating system consists of 2 gas boilers of 500 kW each and one
chiller of 500 kW. We consider thermal comfort bounds that
change throughout time, i.e. the lower and upper comfort bounds
are set respectively to 21.5 �C and 24 �C during occupation hours
and 18 �C and 26 �C during the non-occupation hours, as shown
in Fig. 5. Furthermore, the building occupancy profile follows the
temperature comfort bounds, i.e. the occupancy is set to 1 when
the comfort bounds are tight and 0 when they are loose. The solver
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and software tools used to solve the optimization problem are as
explained in Section 2.4. Lastly, the parameters of the building pre-
sented in Section 3 are shown in Table 2.

For what concerns the SBMPC controllers, we choose 4 different
number of scenarios: 10, 20, 30, and 40. Moreover, we perform the
same simulations varying the parameter a in Section 3, choosing
the values in the set 50;100;200;500f g; recall that a higher a
means a higher focus on the comfort of the occupants rather than
on the economical cost. We indicate respectively by SBMPC-
Mod-ns and by SBMPC-Lin-ns;ns 2 10;20;30;40f g, the SBMPC con-
troller with the Modelica model and the SBMPC controller with the
linear model, considering ns scenarios.
5.2. Results and discussion

We focus our attention on four different aspects:

1. an analysis for the performance of the controller with different
values of a.

2. A comparison between the nonlinear Modelica model and the
linear model.

3. A comparison between SBMPC strategies and DetMPC
strategies.

4. A comparison between the SBMPC strategies with different
numbers of scenarios.

Lastly, we pick a single representative optimization result and
discuss it in more detail.

We show the results of the simulations in Figs. 4, 6–9 and
Tables 3–5. In Table 3, we show the total closed-loop costs for each
strategy and each different a. In Table 4, we show the percentage of
each subcost with respect to the total closed-loop cost for each
strategy and each different a, i.e. we show Je

JeþaJd and
aJd

JeþaJd. In Table 5

we show the total amount of discomfort using the unit measure
K � h, as standard in the literature [17,25,13,15], i.e. we show the
integral of the comfort bounds violation. Fig. 4 reports the results
presented in Table 4 in a graphic way; the same holds for Fig. 6
and Table 5. Lastly, Figs. 7,9 show respectively the temperature
evolution, the heating power, and the temperature and irradiance
profiles for the representative simulation.
5.2.1. Performance with different values of a
In this section, we analyze how the different values of a alters

the performance of the controllers in terms of energy cost and dis-
comfort. This analysis should always be carried out when consider-
ing a case study as the one presented here, in order to understand
which is the range of values for a that provide the best trade-off
between comfort and energy cost reduction.

From Tables 3–5 we can notice that the larger the a, the larger,
in general, the total costs and the lower the discomfort. This is as
expected, since the role of a is to penalize the discomfort and a lar-
ger value means that we aim for a lower discomfort. We have
noticed through simulations that, for this specific case study, a
value of a lower than 50 yields a very high and unacceptable dis-
Table 2
Parameters of the building considered in Section 5.

Parameter Value Definition

Qheat
max [W] 500000 Maximum heating power

Q cool
max [W] 300000 Maximum cooling power

gcool 2.5 Cooling efficiency
ggas 0.9 Heating efficiency
cgas [€/kWh] 0.041 Gas cost
cele [€/kWh] 0.15 Electricity cost

9

comfort cost, while for values larger than 500, the energy costs
increase highly without yielding a high reduction in the discomfort
costs. Therefore, we focus our analysis on a in the range 50;500½ �.

We can observe that for a ¼ 50 the discomfort cost is high and
that the comfort could be improved by increasing a. For a P 100,
the discomfort reaches more acceptable levels and this happens
by consuming a larger quantity of energy in heating and thus
increasing the total costs. However, the small decrease in the dis-
comfort between the case a ¼ 500 and a 2 100;200f g does not
seem to justify the large increase in the total cost observed for
a ¼ 500. Therefore, we can claim that, for this case study, the opti-
mal values for a are in the range 100;200½ �. Note also that from
Fig. 4 and Table 4 we can notice how the two costs, i.e. energy
and comfort, compose the total cost. As a increases, we notice an
increase in the aJd cost with respect to the Je, as a higher a penal-
izes more even the small deviations from the comfort bounds.
Therefore, we should not wrongly conclude that less energy is con-
sumed for higher values of a, but rather that small deviations are
penalized more.

5.2.2. Comparison between the nonlinear Modelica model and the
linear model

Recalling Remarks 4,5, we present here a comparison between
the controllers that use the Modelica model with respect to the
ones that use the linear model. While using the Modelica model
in the closed-loop for computing the evolution of the system
results in a bias towards the nonlinear controllers, it is neverthe-
less of interest analyzing how good the linear controllers are com-
pared to the ones using the Modelica model. From Table 3, we can
see that all the controllers that use Modelica perform better than
their linear counterparts for all the values of a P 100. For a ¼ 50,
instead, the linear model yields a lower total cost than the one of
Modelica in 3 out of 5 cases. Nevertheless, the linear model might
seem to work better, i.e. to have a lower total cost, for a lower
value of a because it always allows a large discomfort cost and it
cannot manage well to keep the temperature within or close to
the comfort bounds. The total cost can therefore be lower than
for the Modelica-based controllers, but this occurs because the
energy cost is low and the discomfort cost, although high, does
not have a large impact on the total cost for a small a. This also
explains why for a large a, i.e. for a P 100, the total cost of the lin-
ear model controllers can become much higher than the one of the
controllers that use Modelica. Indeed, the discomfort cost is always
high, but the larger penalization, i.e. the larger a, makes the total
cost much higher. This fact can also be observed from Table 5,
where we observe a much higher discomfort for all the controllers
with the linear models. The same conclusions can be drawn by
analyzing Fig. 6, which displays the results of Table 5. Moreover,
from Fig. 4 we can notice how for all the values of a the controllers
that use the linear model have a much higher comfort cost compo-
nent than an energy cost component. The linear model does not
employ more energy to reduce the comfort, which in turn results
in high comfort violations. This concept will be discussed also in
Section 5.2.5. We can therefore conclude that, independently of
the bias mentioned in Remark 4, the linear model in this case fails
to provide satisfactory performance in terms of comfort for the
occupants of the building.

5.2.3. Comparison between SBMPC strategies and DetMPC strategies
By checking again Table 3 we can compare the SBMPC strategies

to the DetMPC ones. It can be noted from the table that, for all the
values of a, the SBMPC controllers perform almost always better
than their deterministic counterpart, both for the linear and the
nonlinear Modelica model. Note that the reduction, although not
very large, is still consistent and it ranges from a minimum of
1:98% to a maximum of 14:03% for the controllers that use the



Fig. 5. Comfort bound profiles.

Fig. 4. Contribution of the subcosts Je and Jd to the total closed-loop for all the controllers considered in the case study, for each different controller and value of a. The data
used for this plot is shown in Table 4.
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Modelica model. Furthermore, by checking Table 5 and Fig. 6, we
can notice that the SBMPC strategies perform better than the
DetMPC ones also in terms of comfort. Therefore, the SBMPC con-
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trollers can improve the overall performance, both in terms of total
costs and discomfort, with respect to their DetMPC counterparts.

5.2.4. Comparison between the SBMPC strategies with different
number of scenarios

By analyzing the results of Table 3, there does not seem to be a
value for the number of scenarios that outperforms the other val-
ues, i.e. the performance does not seem to increase by increasing
the number of scenarios. In 2 out of 4 columns of Table 3, the
SBMPC-Mod-20 achieves the best performance among the
SBMPC-Mod controllers and in the other two cases, a number of
scenarios equal to respectively 10 and 40 appear to be better than
the other values. Therefore, increasing the number of scenarios
does not seem to directly lead to a decrease in the total cost. This
could be related to the fact that, while increasing the number of
scenarios makes the system more robust to disturbances, it also
makes the problem more complex to solve. Therefore, it might
happen that, the larger the number of scenarios, more local min-



Fig. 6. Discomfort for the different controllers as a function of a. The x-axis is in log-
scale.

Fig. 7. Temperature evolution during one week of a representative simulation with
a ¼ 100 and 20 scenarios for the SBMPC controllers.

Fig. 8. Heating power during 1 week of a representative simulation with a ¼ 100
and 20 scenarios for the SBMPC controllers.

Fig. 9. External temperature and solar irradiance during 1 week of a representative
simulation with a ¼ 100 and 20 scenarios for the SBMPC controllers.
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ima exists, and the more likely it is that the solver converges to a
suboptimal local minimum. Note that this issue does not affect
the controllers with the linear model, as the problem solved in that
case is a quadratic programming one; thus it is convex, and does
not suffer from local minima issues.

5.2.5. Representative simulation
In this section, we present a representative simulation, i.e. one

week of simulation of the building, by showing the temperature
11
evolution, heating power, and external disturbances for a specific
value of a and of the number of scenarios. While the analysis of
the results shown in this section are related to a specific case,
the results can be generalized and the analysis of a case with a dif-
ferent a would be similar to what is here presented.

We compare three different control strategies here, namely
SBMPC-Mod, SBMPC-Lin and PIMPC. We show in Fig. 7 the temper-
ature evolution inside the room, in Fig. 8 the heating power, and in
Fig. 9 the temperature and irradiance profile, for one week of sim-
ulation with 20 scenarios and a ¼ 100. For Fig. 7, we also show the
lower comfort bounds.

By analyzing the Figs. 7 and 8, we can note that the PIMPC man-
ages to keep the temperature within the comfort bounds by using
properly the heating power, thanks to the knowledge of the actual
values of the future disturbances. For what concerns SBMPC-Mod
and SBMPC-Lin, we can notice in Fig. 7 what we have already
underlined in Section 5.2.2, i.e. the fact that a controller that uses
a linear model is not able to keep the temperature within the com-
fort bounds. We see indeed that, for most of the time, SBMPC-Lin
yields the temperature profile that has the lowest value. This can
also be observed from Fig. 8, where we can notice that SBMPC-
Lin heats less than SBMPC-Mod and it also starts heating later.
On the other hand, SBMPC-Mod is able to maintain a larger tem-
perature in the room and to be closer to the temperature comfort
bounds. It uses more heating power, as can be seen from Fig. 8,
which leads to a higher energy cost compared to SBMPC-Lin, but
also leads to an overall lower total cost and higher comfort from
the user, as can be observed from Tables 3–5.

In the first two days of simulation, which correspond to the
weekend days, the heating power is turned off due to the low com-
fort bounds and to the prediction horizon of 24 h. However, it is
possible to observe an increase in the room temperature, both
for the day 16/12/2017 and 17/12/2017; for the latter, the rise in
the temperature is even steeper. This can be explained by looking
at Fig. 9, where we can observe that the day 17/02/2017 was a par-
ticularly sunny day. Hence, the steep increase in the temperature is
due to large value of the solar irradiance in that particular day. This
shows how important the influence of the external disturbances on
the building can be, which once again underlines the importance of
having good forecasts and it corroborates our choice of a scenario-
based approach.



Table 3
Total closed-loop costs for all the controllers considered in the case study.

a ¼ 50 a ¼ 100 a ¼ 200 a ¼ 500

PIMPC 8104 9009 10573 14676

DetMPC-Lin 11770 17773 29722 65616
DetMPC-Mod 10462 12236 15308 23961

SBMPC-Mod-10 8994 10590 14032 20603
SBMPC-Mod-20 9909 10767 13778 21247
SBMPC-Mod-30 9417 11088 13204 21466
SBMPC-Mod-40 10517 11950 14014 20888

SBMPC-Lin-10 8519 15856 19203 48135
SBMPC-Lin-20 8810 13556 22498 51368
SBMPC-Lin-30 11477 11485 23472 49714
SBMPC-Lin-40 8485 12957 30431 33807

Table 5
Total amount of discomfort measured in Kh.

a ¼ 50 a ¼ 100 a ¼ 200 a ¼ 500

PIMPC 49.2 36.7 29.6 25.4

DetMPC-Lin 156.8 146.4 140.5 137.2
DetMPC-Mod 93.3 74.9 62.7 53.7

SBMPC-Mod-10 69.0 58.0 51.6 41.9
SBMPC-Mod-20 79.7 53.2 49.4 43.5
SBMPC-Mod-30 71.7 60.8 50.0 42.4
SBMPC-Mod-40 90.8 67.2 50.6 41.7

SBMPC-Lin-10 115.6 129.9 90.9 105.9
SBMPC-Lin-20 100.8 114.7 103.3 112.9
SBMPC-Lin-30 147.7 98.8 115.3 111.6
SBMPC-Lin-40 124.2 105.2 113.7 83.4
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Note also that, while a longer prediction horizon could have
been more beneficial and could have led to a higher performance
of the controllers, we chose to focus our analysis on a horizon of
24 h as it provides a good trade-off between performance and com-
putation time of all the simulations. The analysis performed here is
still valid even when considering other prediction horizons. More-
over, carrying out a study on which prediction horizon is more
beneficial for the considered building is beyond the scope of this
paper.

5.3. Summary

We can summarize the observations obtained from the results
of the simulations:

� too low values of a, i.e. a < 100, yield a high discomfort and
too high values of a, i.e. a P 500 yield a very large total cost
without leading to a large improvement of the comfort. A
trade-off between the two costs seems to be well achieved
by a value of a between these two extrema,
i.e. a 2 100;200½ �. Moreover, tuning the parameter a is of
great importance in order not to obtain a very large discom-
fort for the occupants of the building.

� For all the values of a, the linear model shows a very large value
of discomfort. In general, the linear model fails to capture many
model dynamics, by heating much less and thus leading to tem-
peratures that are well outside the comfort bounds.

� SBMPC can improve the performance with respect to DetMPC
strategies, for both the linear and the Modelica models. This is
due to the fact that SBMPC strategies consider different external
disturbances scenarios and they have a large impact on the tem-
perature evolution of the room.
Table 4
Contribution of the subcosts Je and aJd to the total closed-loop for all the controllers conside
in the total cost, while the second number represents the percentage of the discomfort co

a ¼ 50 a ¼ 100

PIMPC 80.9% j 19.1% 74.8% j
DetMPC-Lin 31.0% j 69.0% 20.0% j
DetMPC-Mod 66.0% j 34.0% 58.1% j
SBMPC-Mod-10 72.1% j 27.9% 66.0% j
SBMPC-Mod-20 70.2% j 29.8% 66.1% j
SBMPC-Mod-30 71.2% j 28.8% 62.7% j
SBMPC-Mod-40 66.5% j 33.5% 59.9% j
SBMPC-Lin-10 36.4% j 63.6% 22.3% j
SBMPC-Lin-20 36.1% j 63.9% 23.6% j
SBMPC-Lin-30 31.9% j 68.1% 26.0% j
SBMPC-Lin-40 31.4% j 68.6% 23.7% j
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� Increasing the number of scenarios does not seem to lead to a
large decrease in the cost. This can be related to the fact that
increasing the number of scenarios also increases the optimiza-
tion complexity.
Remark 10. Note that all the simulations performed in this work
refer to a single, specific building. However, the controller designed
can be applied to any building, as long as the model is adapted to
the specific building under control. For instance, a similar con-
troller, using a Modelica model and a deterministic MPC algorithm,
has been applied to a different building with successful results in
[13]. Moreover, the scenario generation method presented here
can also be applied to several disturbances that affect buildings.
Therefore, while the results presented in this section refer to a sin-
gle building, the method can be applied to any building. The results
presented in Tables 3–5 will change if another building is consid-
ered, but we expect in any case similar results when applying
the presented method to other buildings.
6. Conclusions

We have presented a stochastic SBMPC controller using a
Modelica nonlinear model that can be applied to building heating
in buildings and that overcomes the limitations of both determin-
istic and linear MPC approaches. The building under control is
affected by several external disturbances, e.g. outside temperature,
solar irradiance, and we have proposed a new approach for gener-
ating disturbance scenarios that, unlike the existing methods from
the literature, satisfies all the important properties of scenario gen-
eration methods for time series data. This proposed scenario gen-
eration method can be used in the SBMPC controllers.

To analyze and study the control approach, we considered a real
building and performed several simulations to compare the con-
red in the case study. The first number represents the percentage of the energy cost Je
st multiplied by a, i.e. aJd. This table is also depicted as a stacked bar plot in Fig. 4.

a ¼ 200 a ¼ 500

25.2% 65.7% j 35.3% 49.8% j 50.2%
80.0% 11.7% j 88.3% 05.2% j 94.8%
41.9% 47.6% j 52.4% 31.1% j 68.9%
34.0% 51.3% j 48.7% 35.5% j 64.5%
33.9% 52.4% j 47.6% 34.5% j 65.5%
37.3% 53.9% j 46.1% 34.7% j 65.3%
40.1% 51.4% j 48.6% 36.6% j 63.4%
77.7% 15.2% j 84.8% 06.8% j 93.2%
76.4% 14.0% j 86.0% 06.6% j 93.4%
74.0% 13.9% j 86.1% 06.7% j 93.3%
76.3% 10.6% j 89.4% 08.3% j 91.7%
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troller that uses the linearized model against the controller that
uses the Modelica model, different cost weights in the MPC cost
function, deterministic MPC against SBMPC, and lastly different
number of scenarios. Based on the results, we showed that SBMPC
controllers outperform the deterministic MPC controllers both
with and without the Modelica model. At the same time, the linear
model has shown not to be able to capture many model dynamics
and this leads to poor performance, justifying the usage of more
advanced models, e.g. Modelica ones.

As future work, we will develop a model with e.g. EnergyPlus to
be used in the closed-loop simulations to improve the comparison
performed between the linear and nonlinear model in Section 5.
After such step, we will also perform experiments in the real build-
ing. Moreover, a quantitative study on different scenario genera-
tion methods can be considered, in order to assess how the
performance of the controller varies with the different scenario
generation methods, as well as other stochastic MPC algorithms.
Furthermore, a thorough comparison could be performed between
our proposed method and other ones present in the literature of
building heating systems, e.g. H1, fuzzy control, rule-based con-
trol. On top of that, a distributed or decentralized MPC controller
can be developed to control independently each room, which
might be more beneficial for very large buildings compared to con-
trolling all the rooms with a single centralized controller. Lastly, it
is known that occupancy can largely affect the energy performance
of buildings. Occupancy data was not available in this study, but
we suggest to carry out a characterization study of such distur-
bance, so that occupancy scenarios can be generated and the over-
all performance of the proposed SBMPC controllers can be further
assessed.
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