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A compressible two-fluid multiphase model for CO2 leakage 

through a wellbore 

Mehdi Musivand Arzanfudi * , Rafid Al-Khoury 

Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 
5048, 2600 GA Delft, The Netherlands 

Abstract 

This paper introduces an effectively mesh-independent and computationally efficient model for CO2 

leakage through wellbores. A one dimensional compressible two-fluid domain, representing a 

homogeneous air gas and a multiphase CO2 with a jump at the interface between them, is modeled.   

The physical domain is modeled using the drift-flux model, and the governing equations are solved 

using a mixed finite element discretization scheme. The standard Galerkin finite element method, the 

partition of unity method and the level-set method are integrated to solve the problem. All important 

physical phenomena and processes occurring along the wellbore path, including fluid dynamics, 

buoyancy, phase change, compressibility, thermal interaction, wall friction and slip between phases, 

together with the jump in density and enthalpy between air and CO2, are considered. Two numerical 

examples illustrating the computational capability and efficiency of the model are presented.  

 

Keywords: CO2 sequestration, drift-flux model, computational fluid dynamics, partition of unity, level 

set   

1 Introduction 

CO2 geo-sequestration is currently utilized as a means to mitigate CO2 emission into the earth 

atmosphere in an attempt to reduce the likely greenhouse effect. Selection of an appropriate geological 

formation for CO2 sequestration requires a good estimate of the amount of leakage that might take 

place in time. Leakage of CO2 to the ground surface or upper layers containing ground water is 

hazardous and considered as one of the major concerns of applying this technology. It is therefore vital 

to develop computational tools capable of modelling the leakage processes and phenomena. Two kinds 

of CO2 leakage can be identified: leakage via heterogeneous layered domains, for which the theory of 
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multiphase flow in porous medium domains is applicable; and leakage via faults and abandoned wells, 

for which the theory of fluid dynamics is applicable. The focus in this paper is placed on leakage via 

abandoned wellbores.  

The physical processes of CO2 leakage via a wellbore and the involved flow mechanisms are rather 

complicated. They involve movement of multiple fluids comprising multiple phases which can be 

dispersed, mixed and have no distinct interfaces between them. Several coupled mechanisms including 

buoyancy, heat transfer, phase change, compressibility, wall friction and slip between phases are 

involved. Computational modelling of such a physical combination occurring in a wellbore, hundreds 

of meters long, is challenging.  

Modeling fluid flow in wellbores has been a field of wide interest in oil and gas industry. A 

detailed review of the relevant physical processes and mathematical formulations can be found in Brill 

and Mukherjee [1] and Hasan et al. [2]. A review on the earlier wellbore models and codes can be 

found in Freeston and Hadgu [3] and Probst et al. [4]. An excellent overview of transport phenomena 

in multiphase systems is given by Faghri and Zhang [5].  

As the computational modeling of fluid flow is challenging and time and capacity demanding, 

different models deal with different aspects of the involved processes and geometry. Some treat CO2 

as a single phase and others treat it as a mixture; while many models simulate leakage in the wells 

only, and others are coupled with the reservoir. Some consider steady-state flow with no phase change, 

whereas several others consider transient flow with phase change. Stone et al. [6] proposed a finite 

volume model for coupled wellbore-reservoir transient two-fluid (oil-water), three-phase flow in the 

wellbore with phase change of water only (water/steam). Hadgu et al. [7] modeled transient two-fluid 

flow in a coupled wellbore-reservoir domain without phase change, using the coupled WFSA-TOUGH 

code. Livescu et al. [8] introduced a finite volume model for coupled wellbore-reservoir transient 

three-fluid, three-phase flow with phase change for oil and gas applications. Hasan and Kabir [9] 

presented a steady-state model for single-fluid (water) flow with phase change (water/steam). 

Recently, Pan and Oldenburg [10] developed a transient finite volume model for coupled wellbore-

reservoir for compressed air energy storage applications that include a two-fluid domain consisting of 

water and air but no phase change.  

Regarding CO2 flow in a wellbore, Cronshaw and Bolling [11] developed a finite volume 

numerical model for transient two-fluid (CO2-water), three-phase flow in the wellbore with phase 

change of CO2 only. Lu and Connell [12] and Lindeberg [13] introduced models based on Runge–

Kutta finite difference method to simulate steady-state two-phase, single-fluid flow of CO2 with phase 

change in the wellbore. Paterson et al. [14] modeled a transient two-phase, single-fluid flow of CO2 

with phase change in the wellbore. Pan et al. [15] presented a finite volume model for transient flow in 

wellbores of two-fluid (CO2-brine) with phase change of CO2 only. Remoroza et al. [16] utilized 

TOUGH2 to study the coupled wellbore-reservoir steady-state two-fluid flow (CO2 and water) with no 

phase change for geothermal heat flow applications. 
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In these models, while providing very useful basis for developing computational tools for fluid 

flow in wellbores, the focus is placed on modeling the physical processes, rather than the numerical 

solutions. Mostly, standard numerical discretization schemes are utilized. This normally requires the 

use of excessively fine meshes (grids) with adaptive meshing, or some other appropriate approaches. 

As a consequence, these models suffer from two main shortcomings: 1. computational inefficiency, 

and 2. mesh size dependency. This paper intensively addresses a solution to these two issues. 

The objective of this work is to develop an accurate, mesh-independent and computationally efficient 

transient model for CO2 leakage through wellbores. A detailed modeling approach is given hereafter.  

2 Modeling approach 

Deriving an accurate, mesh-independent and computationally efficient transient model for CO2 

leakage from a geo-sequestration site via an abandoned wellbore requires a well-designed formulation 

of the mathematical model and the numerical model. 

Regarding the mathematical model, it is apparent that the model should take into consideration all 

important physical phenomena and processes occurring along the wellbore. Fluid dynamics, buoyancy, 

phase change, compressibility, thermal interactions, wall friction, slip between phases, together with 

all relevant thermodynamic relationships must be considered. Initially, the wellbore is filled with air 

and the CO2 in the reservoir is, most probably, in a supercritical state. Upon leakage, the CO2 changes 

phase and starts displacing the air. This gives rise to having two fluids in the domain: air and CO2. The 

air is a homogeneous gas, and the CO2 is a multiphase fluid constituting supercritical liquid, liquid and 

gas, which are, in general, dispersed, mixed and having no distinct interfaces. The physical processes 

of such a domain are governed by the conservation laws of transport of mass, momentum and energy 

given by the Navier-Stokes equations. As the size of the engineering system that we are dealing with is 

huge and the CO2 phases are dispersed and mixed, relying on an averaging approach is indispensable. 

Here, we model the air and the CO2 as two separate fluids. The air is modeled as a homogenous gas, 

and the CO2 is modeled as a homogeneous mixture. The jump condition at the interface between the 

air and the CO2 is considered. We utilize the one-dimensional drift-flux model to simulate the 

transport of air and CO2 in the wellbore. This model adopts the area-averaged approach, where 

detailed analysis of the local behavior of the involved phases are averaged over the cross-sectional 

area of the wellbore. Important aspects of fluid dynamics such as the inertia force, buoyancy, wall 

friction, drift velocity, flow profile are considered in the drift-flux model.  

To model two fluids, two sets of governing equations representing the two fluids are needed, 

together with a constraint condition at the interface between them. In literature, however, many 

models utilized for CO2 flow in a wellbore, or similar applications, consider single phase with no 

phase change. The primary state variables usually utilized in such models are velocity, pressure and 

temperature. For a single phase, such primary variables are sufficient, as the variation of enthalpy is 
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directly related to the variations of temperature and pressure. However, for a multiphase, the fluid 

temperature is not directly related to the enthalpy, and additional constitutive equations relating the 

variation of enthalpy to the variations of pressure, temperature, entropy and molar fraction are 

necessary (see Lu and Connell [12]).  

Here, we utilize a set of drift-flux model equations to represent the two fluids, but impose a jump at 

the interface between them. This necessitates adopting the mass density as a primary state variable 

instead of the temperature to clearly distinguish between the two fluids. The set of the primary state 

variables in this paper is thus: velocity, pressure and density. In such a set, there is a fundamental 

thermodynamic relationship relating the fluid mass density to the gas/liquid volume fraction, that 

allows for a distinct separation between the liquid and gas phases, and avoids the additional 

constitutive relationships mentioned above. However, this should be supplemented with a proper 

numerical scheme capable of modeling the jump between the two fluids.   

Regarding the numerical model, it is obvious that the model should take into consideration the local 

and global conservative nature of the system and its nonlinear hyperbolic characteristics. Using 

standard numerical discretization methods such as the finite difference, the finite volume or the finite 

element necessitate excessively fine grids and small time steps. Therefore, in order to obtain a 

computationally efficient model, adopting an advanced discretization procedure is indispensable. 

Here, we adopt a mixed discretization scheme. In this scheme, state variables exhibiting different 

physical nature are treated using different numerical discretization techniques. Techniques such as the 

standard Galerkin finite element method (SG), the partition of unity finite element method (PUM), and 

the level-set method (LS) are integrated in a single numerical scheme. SG is utilized to discretize the 

diffusive dominant field equations, and PUM, within the framework of the extended finite element 

method (XFEM), together with LS are utilized to discretize the advective dominant field equations. 

The level-set method is employed to trace and locate the CO2 front, and the extended finite element 

method is employed to model the associated jump in the mass density field. The use of LS and XFEM 

for the advective field leads to a globally and locally conservative discretization, giving a stable and 

effectively mesh-independent scheme. The proposed mixed discretization scheme differs from the 

well-known mixed FEM such that in the mixed FEM, different state variables are utilized but adopt a 

single discretization technique; whereas in the mixed discretization scheme, we utilize different state 

variables and adopt different discretization techniques, depending on the physical nature of the state 

variable and the associated balance equations.   

Compressible fluid dynamic equations inevitably involve acoustic waves. Numerically, this 

requires fine grids and small time steps. However, for CO2 leakage in a wellbore, the time scale of 

interest is dominated by the time scale of the fluid advection, and hence, the acoustic waves pose no 

significance on the analysis. Therefore it is desirable to remove the acoustic wave from the system of 

equations. This is done by decoupling the pressure term of the balance momentum equation from the 

mass and energy equations.  
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3 Governing equations 

The governing equations of the drift-flux model are described in many literature, including Shi et al. 

[17], Ishii and Hibiki [18] and Pan and Oldenburg [10]. Here, a listing of the governing equations of 

this model and its associated thermodynamic and engineering constitutive relationships is given. We 

utilize a set of governing equations to describe both, the air and the CO2, but impose a jump at the 

interface between them. The fluids are allowed to exist at any state or mixture composition, depending 

on their thermodynamic conditions along the wellbore. However, no mass exchange at the interface is 

allowed. This assumption is justified because CO2 leakage via a wellbore is advection-dominant and 

the rate of dissolution and diffusion between the two fluids is negligible. This inevitably entails that 

the fluids velocities and pressures at the interface are continuous, but discontinuous in the their mass 

density and enthalpy, giving: 

� �

� �

2

2

2

2

co air

co air

co air

co air

at d

m

m

v v

p p

h h h

ρ ρ ρ

=

= Γ

= −

= −

  (1)      

3.1 Drift-flux balance equations with discontinuity 

Based on the drift-flux model, the balance equations of fluid mixture flow in one dimension with a 

jump condition at the interface between two separate fluids (air and CO2) can be described as  

Mass balance 

( ) � � ( ) 0m
m m m m dv v n z z

t z

ρ
ρ ρ δ

∂ ∂
+ + ⋅ − =

∂ ∂
 (2) 

Momentum balance 

( ) ( ) � � ( )2 2 sin
4

m m m
m m m m m m d m

i

f v vp
v v v n z z g

t z z r

ρ
ρ ρ γ ρ δ ρ θ

∂∂ ∂
+ + + ⋅ − =− − −

∂ ∂ ∂
 (3) 

Energy balance 
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v
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r

ρ ρ

ρ δ ρ θ
π

    ∂ ∂    + − + +      ∂ ∂      
  + + ⋅ − = −   

 (4) 

where δ  is the Dirac delta function (unit= 1m− ), dz  is the coordinate of interface between CO2 and 

air, shown in Fig. 1, n is the unit normal vector, ir  is the inner radius of the wellbore, mρ  is the 

mixture density, mv  is the mixture velocity, p  is the pressure, f  is the wall friction coefficient, g  is 
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the gravitational constant, θ  is the inclination angle of the well, mh  is the specific enthalpy of the 

mixture, Q  is the heat exchange between the well and its surrounding formation, and γ  describes the 

slip between two phases. The definitions of the drift flux model parameters are listed in Appendix A. 

 

Fig. 1 Definitions of domains, interface, coordinate and unit normal vector to the boundary 

3.2 Constitutive equations 

A comprehensive treatment of the CO2 constitutive equations is given in Musivand Arzanfudi 

and Al-Khoury [19]. The  relevant constitutive equations for the CO2, together with those for 

air, are given in Appendix B.  

3.3 Initial and boundary conditions 

Initially, the primary state variables might be described as 

( ) ( )0,0 at 0G z G z t= =  (5) 

where G  can be mv , p , or mρ . 

The Dirichlet boundary conditions might be described as 

( ) ( )ˆ on uG t G t= Γ  (6) 

in which uΓ  is the Dirichlet boundary.  

The Neumann boundary conditions are defined as 

( )
( )2

2

ˆ ˆˆ

ˆ ˆˆ ˆ on

ˆˆˆ ˆˆ
2

m m

v m m q

m
e m m m

q v n

q v n

v
q v h n

ρ ρ

ρ γ

ρ

= ⋅

= + ⋅ Γ

   = + ⋅      

 (7) 

where qΓ  is the Neumann boundary, and the subscripts ρ, v and e refer to mass, momentum and 

energy, respectively.  

At an outflow boundary, the Neumann boundary conditions are defined as 

 

( )
( )2

2

on

2

m m

v m m o

m
e m m m

q v n

q v n

v
q v h n

ρ ρ

ρ γ

ρ

= ⋅

= + ⋅ Γ

   = + ⋅      

 (8) 
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where oΓ  is the outflow boundary. Note that the primary state variables at this boundary are not 

known and have to be calculated. Otherwise, this boundary becomes by definition close, or have to be 

assigned a typical Dirichlet or Neumann boundary conditions. As it will be shown later, the 

discretization of this kind of boundary conditions will add up terms to the finite element matrices, 

including the left-hand side. 

4 Modeling the discontinuity between air and CO2 

At the front of the CO2 plume, a discontinuity in the density field, together with other thermodynamic 

properties differentiating air from CO2, exists. This discontinuity is traced using the level-set method.  

4.1 Tracing the front: level-set method 

The level-set method is a numerical technique usually utilized to trace a moving interface, dΓ , 

between two zones, for instance, +Ω  and −Ω . A level-set function is defined as a signed distance 

function, ( )zφ , which is positive in +Ω , negative in −Ω , and zero at the interface between them. For a 

one-dimensional domain, it can be described as 

( ) ( ) ,d

d

z z z
z z z

z z z
φ φ

+

−

 − ∈Ω= ∈ℜ ∈Ω− − ∈Ω
 (9) 

where dz  is the coordinate of the interface. The sign indicates different domains, and the magnitude 

represents the distance to the interface. The level-set function is advected by a field motion equation of 

the form 

0
d

v
t dz

φ φ∂
+ =

∂
 (10) 

where v represents the interface (front) velocity, taken here as the average of the two fluids velocities 

at the vicinity of the interface.  

4.2 Thermodynamic properties 

The thermodynamic properties of the two fluids exhibit a jump at the interface between them. For 

instance, the temperature can be calculated as a function of pressure and mixture density as 

( )
( )
( )

2co

air

,
, ,

,

m

m

m

T p z
T z p

T p z

ρ
ρ

ρ

+

−

 ∈Ω= ∈Ω
 (11) 

where 
2coT  is the CO2 temperature in +Ω  zone, and airT   is the air temperature in −Ω  zone. In terms of 

the level-set function, Eq. (11) can be described as 
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( )
( )
( )

2co

air

, 0
, ,

, 0

m

m

m

T p
T p

T p

ρ φ
φ ρ

ρ φ

 >= ≤
 (12) 

This can be equivalently written as 

( ) ( ) ( ) ( )
2co air, , ( ) , 1 ( ) ,m m mT p H T p H T pφ ρ φ ρ φ ρ= + −  (13) 

where ( )H φ  is the Heaviside function, that reads  

1 0
( )

0 0
H

φ
φ

φ

 >= ≤
 (14) 

Similar equations can be derived for the enthalpy,mh , gas volume fraction, Gf , gas density, Gρ , 

and liquid density, Lρ . 

5 Acoustic filtration 

The fully compressible fluid flow equations given above are not exactly suited to the type of fluid flow 

in wellbores because of the inevitable generation of acoustic waves. The mean velocity flow of the 

CO2 plume is much slower than that of the acoustic wave. Therefore, it is useful to filter out the 

unwanted acoustic modes. These modes can be filtered out by decoupling the pressure in the 

momentum equation from that arising from the density-temperature-pressure equations of state. 

An early work in this field was introduced by Rehm and Baum [20], for inviscid flow; and Paolucci 

[21], for viscous flow. An in-depth analysis of this problem is given by Principe and Codina [22] and 

Reddy and Gartling [23].  

The general approach is that the fluid pressure is decomposed into two terms: a spatially uniform, 

time-dependent background (thermodynamic) pressure 0 ( )p t ; and a dynamical (mechanical) pressure, 

( ),p z t′ ; such that 

( ) ( ) ( )0, ,p z t p t p z t′= +  (15) 

The background pressure, 0 ( )p t , is utilized in the thermodynamic properties formulations, e.g. Eq. 

(13), such that 

( ) ( ) ( ) ( )( ) ( )0 0 0, , , 1 ,c a
m m mT p H T p H T pφ ρ φ ρ φ ρ= + −  (16) 

Other properties follow suite.  

The dynamical pressure ( ),p z t′  is utilized instead of the total pressure, p , which appears on the 

right-hand side of the momentum balance equations, Eq. (3).  
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The common practice of assuming 0 ( )p t  as spatially uniform can be in many cases realistic, 

especially those dealing with relatively small geometry constituting fluids with an insignificant 

pressure variation. However, for a CO2 leakage case, which involves long wellbores with a huge 

pressure variation along its length, this assumption is not realistic. To circumvent this, we assume this 

pressure to have a linear variation between the pressure at the bottom boundary and that at the top 

boundary of the wellbore. This is done at every time step, giving 

( ) ( ) ( )0, , ,p z t p z t p z t′= +  (17) 

Following this, and since the background pressure is a function of space as well, the original 

momentum balance equation, Eq. (3), can be utilized. The use of acoustic filtration allows for using 

larger time step sizes while preserving the accuracy of the results [23], which will obviously result in a 

more efficient computational model. 

6 Mixed discretization finite element scheme (PUM-SG) 

The governing drift-flux equations, together with the initial and boundary conditions, form an initial 

and boundary value problem that is dynamic, advective, nonlinear and involves a jump condition. 

Solving such a problem using standard finite element procedures entails utilization of excessively fine 

and adaptive meshes and small time steps, but nevertheless, the model can be unstable and the results 

are very likely mesh-dependent. Above all, standard finite element discretization procedure is not 

locally convergent, a feature necessary to model the jump condition at the interface between the two 

fluids. To tackle this, we solve the problem using a mixed finite element discretization scheme. This 

scheme entails solving different balance equations using different discretization schemes, which are 

tailored to accurately describe the nature of the involved primary state variables mv , p , and mρ . The 

discontinuity at the interface is modeled using the level-set method to trace the interface; and the 

partition of unity to discretize the mass density.    

6.1 Level-set discretization 

Applying the weighted residual finite element discretization procedure to Eq. (10) gives 

0
d

w d wv d
t dz

φ φ

Ω Ω

∂
Ω+ Ω=

∂∫ ∫  (18) 

Approximating φ as ( ) ( )z tN Φφ= , with ( )zN a vector of shape functions and ( )tΦ  a vector of nodal 

values of the level-set function at time t , and assuming w N=  yields 

0T T d
d v d

t dz

Φ N
N N N Φ

Ω Ω

∂
Ω+ Ω=

∂∫ ∫  (19) 
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Utilizing the level-set method to trace a moving front requires re-distancing (re-initialization) at 

every time step. This is necessary because otherwise the distance property of the level-set function is 

no longer maintained after advection. We utilize the direct distancing approach proposed by Cho et al. 

[24] for this purpose. In this approach, the re-distancing is performed by geometrical updating of the 

advective front instead of solving a re-initialization equation. 

6.2 PUM-SG formulation 

The standard Galerkin finite element method (SG) and the partition of unity method (PUM), within the 

framework of the extended finite element method, are integrated to discretize the problem. The first is, 

in general, accurate and computationally efficient for solving continuous problems, and the second is 

accurate and effective in solving discontinuous problems.  

As stated above, the mixture velocity and pressure are continuous at the interface between CO2 and 

air, and thus SG suffices, entailing   

( ) ( ) ( ) ( ) ( ),m i mi m
i I

v z t N z v t z tN v
∈

= =∑  (20) 

( ) ( ) ( ) ( )i i
i I

p N z p t z tN p
∈

= =∑  (21) 

in which I  is the set of all nodes in the domain, ( )iN z is the shape function of node i , ( )miv t  and 

( )ip t  are the nodal values of the mixture velocity and pressure for node i , respectively, and ( )zN , 

( )m tv , and ( )tp  are the associated nodal vectors. 

On the other hand, the mixture mass density is discontinuous at the interface between CO2 and air, 

and for this PUM suffices, entailing   

( )

( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( )eh
m i mi i mi

i I i I

eh
m m

z t N z t N z t

z t z tN ρ N ρ

ρ ρ ρ
∗∈ ∈

= +

= +

∑ ∑ ɶ

ɶ
 (22) 

where I ∗  is the subset of enriched nodes, ( )mi tρ  and ( )mi tρɶ  are the conventional and additional 

(extended) nodal values of the mixture density at node i , and ( )eh
iN z  is an enriched shape function at 

node i ,  and ( )m tρ , ( )m tρɶ  and ( )eh zN  are the associated nodal vectors. ( )eh
iN z  is defined as 

( ) ( ) ( )eh
i i iN z N zψ φ=  (23) 

in which ( )iψ φ  is the shifted enrichment function [25] at node i , defined as 

( ) ( ) ( )i iH Hψ φ φ φ= −  (24) 
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where iφ  is the value of level-set function at node i . Using the shifted PUM leads to the existence of a 

non-zero enriched shape function over both sides of the discontinuity. Consequently, the density of 

each fluid across the discontinuity is calculated as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2co

air

,

,

eh
d d m d m

eh
d d m d m

z t z t z t

z t z t z t

N ρ N ρ

N ρ N ρ

ρ

ρ

+

−

= +

= +

ɶ

ɶ
 (25) 

in which ehN +  and ehN −  are the enriched shape functions at the neighborhood of the discontinuity on 

+Ω  and −Ω , respectively. Note that we utilized the shifted enrichment approximation because the 

conventional un-shifted PUM does not, in general, have the Kronecker-δ property of the standard 

FEM, rendering the imposition of essential boundary conditions difficult. A comprehensive treatment 

of this issue is given by Fries and Belytschko [26]. 

Using the weighted residual method, the finite element formulation of the governing equations; 

Eqs. (2), (3) and (4); can be described as 

Mass balance 

( ) � � 0
d

m
m m m mw d w v d w v n d

t z

ρ
ρ ρ

Ω Ω Γ

∂ ∂
Ω+ Ω+ ⋅ Γ=

∂ ∂∫ ∫ ∫  (26) 

Momentum balance 
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ρ ρ γ ρ

ρ
ρ θ

Ω Ω Γ

Ω Ω Ω

∂ ∂′ ′ ′Ω+ + Ω+ ⋅ Γ
∂ ∂

∂′ ′ ′=− Ω− Ω− Ω
∂

∫ ∫ ∫

∫ ∫ ∫
 (27) 

Energy balance 

� � � �

2
2

2

2

1

2 2

sin
2d

m
m m m m m m

m
m m m m m

i

v
w h v p d w v h d

t z

v Q
w v h n d w v g d w d

r

ρ ρ

ρ ρ θ
π

Ω Ω

Γ Ω Ω

    ∂ ∂   ′′ ′′ + − Ω+ + Ω      ∂ ∂      
 ′′ ′′ ′′+ + ⋅ Γ= Ω− Ω   

∫ ∫

∫ ∫ ∫
 (28) 

in which w , w′  and w′′  are the weighting functions of the mass, momentum and energy balance 

equations respectively.  

As the discontinuity occurs in one primary state variable, only one balance equation is needed to be 

partitioned. For this, we chose the energy balance equation since its jump term contains the specific 

enthalpy term, which is a function of density, and accordingly exhibiting a discontinuity at the 

interface between air and CO2. Thus, for the mass and momentum balance equations, a continuous 

weighting function is utilized; whereas for the energy balance equation, a discontinuous weighting 

function is utilized, i.e. 
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w w N′= =  (29) 

ehw N N′′ = +  (30) 

where the dependency on the spatial coordinates are ignored for simplicity of notation. 

Substituting Eq. (29) into Eqs. (26) and (27), and applying Green’s theorem, yields   

Mass balance 

( ) � �ˆ 0
q o d

T T eh T T eh
m m m m m m

T T T
m m m m

d d v d v d

q d v n d v n d

N Nρ N N ρ B Nρ B N ρ

N N Nρ ρ ρ

Ω Ω Ω Ω

Γ Γ Γ

Ω+ Ω− Ω− Ω

+ Γ+ ⋅ Γ+ ⋅ Γ=

∫ ∫ ∫ ∫
∫ ∫ ∫

ɺɺ ɶ ɶ

 (31) 

in which / zB N=∂ ∂ . 

Momentum balance 

( ) ( )

( ) � �2 2ˆ

sin
4

q o d

T eh T
m m m m m m m m m

T T T
v m m m m

m mT T T
m m

i

v v d v d

q d v n d v n d

f v
d d g d

r

N Nρ N ρ Nv B Nv

N N N

N B p N Nv N

ρ ρ γ

ρ γ ρ

ρ
ρ θ

Ω Ω

Γ Γ Γ

Ω Ω Ω

+ + Ω− + Ω

+ Γ+ + ⋅ Γ+ ⋅ Γ

=− Ω− Ω− Ω

∫ ∫
∫ ∫ ∫

∫ ∫ ∫

ɺɺ ɶ ɺ

 (32) 

Substituting Eq. (30) into Eq. (28) and applying Green’s theorem yields two equations: one 

representing a continuously weighted field and a discontinuously weighted field, as   

Energy balance 

continuously weighted: 

� � � �

2 2

2 2

2

1 1

2 2

ˆ
2 2q o

T eh eh
m m m m m m m m m m m m m

T T Tm m
m m m e m m m

T m
m m m

h v h v h h v d

v v
h d q d v h n d

v
v h

N Nρ N ρ Nρ N ρ Nv Np

B Nv N N

N

ρ

ρ ρ

ρ

Ω

Ω Γ Γ

       + + + + + + − Ω         
            − + Ω+ Γ+ + ⋅ Γ                 

+ +

∫

∫ ∫ ∫

ɺ ɺɺɺ ɺɶ ɶ ɺ

2
sin

2d

T T
m m

i

Q
n d v g d d

r
N Nρ θ

πΓ Ω Ω

    ⋅ Γ= Ω− Ω      
∫ ∫ ∫

 (33) 

discontinuously weighted: 

( )

( ) ( ) ( ) � � � �

( )

2 2

2 2

1 1

2 2

ˆ
2 2q d

Teh eh eh
m m m m m m m m m m m m m

T T Teh eh ehm m
m m m e m m m

Teh

h v h v h h v d

v v
h d q d v h n d

N Nρ N ρ Nρ N ρ Nv Np

B Nv N N

N

ρ

ρ ρ

Ω

Ω Γ Γ

       + + + + + + − Ω         
            − + Ω+ Γ+ + ⋅ Γ                 

=

∫

∫ ∫ ∫

ɺ ɺɺɺ ɺɶ ɶ ɺ

( ) 2
sin

Teh
m m

i

Q
v g d d

r
Nρ θ

πΩ Ω
Ω− Ω∫ ∫

 (34) 
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where /eh eh zB N=∂ ∂ . Note that, unlike conventional PUM formulation, the integral of Eq. (34) is 

evaluated over + −Ω ∪Ω ≡Ω  because the shifted enrichment function is non-zero over both sides of 

the discontinuity.  

It is worth mentioning that the Neumann boundary conditions appearing in the finite element 

equations are a natural outcome of the Green’s theorem. In other numerical schemes, such as the finite 

difference and finite volume, they have to be imposed a priori. 

6.3 Linearization 

The resulting weak formulations, Eqs. (31)-(34), represent a set of semi-discrete nonlinear equations, 

where the nonlinearity arises due to the constitutive relationships between the pressure and mixture 

density and other thermodynamic variables. Since the nonlinearity is due to scalar coefficients (i.e. mv

, mρ , mh , etc.), and as the constitutive relationships are continuous (within a domain), it is convenient 

to linearize these equations using Taylor series expansions up to the first order (standard Newton-

Raphson scheme).  

The Taylor series expansion of the temperature T  at the current iteration 1r + , gives 

( )
( ) ( )0 01

0 0
0

, ,
,

r r r r
m mr r r

m m
m

T p T p
T T p p

p

ρ ρ
ρ δ δρ

ρ

+
∂ ∂

= + +
∂ ∂

 (35) 

or in a more concise form 

1
0

0

r r
r r

m
m

T T
T T p

p
δ δρ

ρ

+ ∂ ∂
= + +

∂ ∂
 (36) 

with 

1
0 0 0

1

r r

r r
m m m

p p pδ

δρ ρ ρ

+

+

= −

= −
 (37) 

where the superscript r denotes the iteration number and the prefix δ  denotes the increment of the 

state vector. 

Since the background pressure is treated explicitly, as described in Section 5, its increment over a 

time step is set to zero, i.e. 0 0pδ = , and henceforth  

1
r

r r
m

m

T
T T δρ

ρ

+ ∂
= +

∂
 (38) 

Following this, the primary state variables and their time derivatives can be written as 

1r r
m m mρ ρ δρ+ = +    1r r

m m mv v vδ+ = +    1r rp p pδ+ = +  (39) 

1r r
m m mρ ρ δρ+ = +ɺ ɺ ɺ    1r r

m m mv v vδ+ = +ɺ ɺ ɺ    1r rp p pδ+ = +ɺ ɺ ɺ  
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The other variables and their time derivatives can be written as follows: 

Specific enthalpy 

( )
( ) ( )0 01

0 0
0

, ,
,

r r r r
m m m mr r r

m m m m
m

h p h p
h h p p

p

ρ ρ
ρ δ δρ

ρ

+
∂ ∂

= + +
∂ ∂

 (40) 

( ) ( )0 0

0
0

, ,m m m m

m m
m

h p h p
h p

p

ρ ρ
ρ

ρ

∂ ∂
= +

∂ ∂
ɺ ɺ ɺ  (41) 

which after linearization, neglecting the dependency terms, reads 

( )

( )

2 2
1

0 0 02
0 00

2 2

0 2
0

r r r
r rm m m
m m

m

r r r
rm m m

m m m
m m m

h h h
h p p p

p pp

h h h
p

p

δ δρ δ
ρ

δ δρ ρ δρ
ρ ρ ρ

+
 ∂ ∂ ∂  = + + +  ∂ ∂ ∂∂ 

 ∂ ∂ ∂  + + + +  ∂ ∂ ∂ ∂ 

ɺ ɺ ɺ

ɺ ɺ

 (42) 

As for temperature, the increment due to the background pressure is eliminated, yeilding 

( )

1

2
1

2

r
r r rm
m m m

m

r r
r rm m
m m m m

m m

h
h h

h h
h

δρ
ρ

δρ ρ δρ
ρ ρ

+

+

∂
= +

∂

 ∂ ∂  = + +  ∂ ∂ 
ɺ ɺ ɺ

 (43) 

Slip term 

( )
( ) ( ) ( )0 0 01

0 0
0

, , , , , ,
, ,

r r r r r r r r r
m m m m m mr r r r

m m m m
m m

v p v p v p
v p v p

v p

γ ρ γ ρ γ ρ
γ γ ρ δ δ δρ

ρ

+
∂ ∂ ∂

= + + +
∂ ∂ ∂

 (44) 

Similarly, eliminating the background pressure, gives 

1
r r

r r
m m

m m

v
v

γ γ
γ γ δ δρ

ρ

+ ∂ ∂
= + +

∂ ∂
 (45) 

Heat transfer 

( )( )1
0 ,r r r

m

dQ
Q Q T p T

dT
ρ δ+ = +  (46) 

( )( )
( )( ) ( ) ( )0 0 01

0 0
0

, , ,
,

r r r r r r
m m mr r r

m m
m

dQ T p T p T p
Q Q T p p

dT p

ρ ρ ρ
ρ δ δρ

ρ

+
 ∂ ∂   = + +  ∂ ∂  

 (47) 

Eliminating the background pressure, gives 

1
r r

r r
m

m

dQ T
Q Q

dT
δρ

ρ

+ ∂
= +

∂
 (48) 
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Reynolds number 

0
0

Re Re Re
Re

r r r

m m
m m

v p
v p

δ δ δ δρ
ρ

∂ ∂ ∂
= + +
∂ ∂ ∂

 (49) 

Using Eq. (A.2), gives 

( )( ) ( )

( )
( ) ( )

( )
02 2

0

2 2 2sign 2
Re

r r r r rr r r r
m m i m i m m im m i m m

m mr rr r
mm mm m

v r v r v rv r
v p

p

ρ ρρ µ µ
δ δ δ δρ

ρµ µµ µ

 ∂ ∂  = − + −  ∂ ∂  
 (50) 

Eliminating the background pressure, gives 

( )( ) ( ) ( )

( )2
2 2sign 2

Re
r r rr r r
m i m m im m i m

m mr r r
mm m m

v r v rv r
v

ρρ µ
δ δ δρ

ρµ µ µ

  ∂  = + −  ∂  
 (51) 

Wall friction 

1 Re
Re

r
r r f

f f δ+ ∂
= +

∂
 (52) 

Using Eq. (51), gives 

( )( ) ( )

( )
( ) ( )

( )

1
02

0

2

2sign 2

Re Re

2 2

Re

r rr r rr r
m m im m ir r m

mr r
m m

r r r r r
m i m m i m

mr r
mm m

v rv r f f
f f v p

p

v r v r f

ρρ µ
δ δ

µ µ

ρ µ
δρ

ρµ µ

+ ∂∂ ∂
= + −

∂ ∂ ∂

  ∂ ∂ + −  ∂ ∂  

 (53) 

Eliminating the background pressure, gives 

( )( ) ( ) ( )

( )
1

2

2 2sign 2

Re Re

r r rr r rr r
m i m m im m ir r m

m mr r r
mm m m

v r v rv r f f
f f v

ρρ µ
δ δρ

ρµ µ µ

+

  ∂∂ ∂ = + + −  ∂ ∂ ∂  
 (54) 
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6.4 Finite element equations 

Inserting Eqs. (38)-(54) into Eqs. (31)-(34) and using Eq. (1), after rearrangements, gives: 

Mass field equations 

2 2co co

air

d d d

d

T r T T eh r T eh
m m m m

T r r T r T r eh T r
m m m m m m m m

T r r T r T r r
m m m m

T r eh T r
m m m

d d d d

d v d v d d

n d n d v n d

v n d

N Nρ N N ρ N N ρ N N ρ

B Nv B N ρ B N ρ B N v

N Nv N N v N N ρ

N N ρ N Nv

δ δ

ρ δ δ ρ δ

ρ ρ δ δ

δ ρ

Ω Ω Ω Ω

Ω Ω Ω Ω

Γ Γ Γ

+

Γ

Ω+ Ω+ Ω+ Ω

− Ω− Ω− Ω− Ω

+ ⋅ Γ+ ⋅ Γ+ ⋅ Γ

+ ⋅ Γ−

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫
∫ ∫ ∫

∫

ɺ ɺɺ ɺ ɶ ɶ

ɶ

ɶ air

ˆ 0

d d

d d

o o o

o q

r T r
m

T r T r eh
m m m m

T r r T r T r
m m m m m m

T r eh T
m m

n d n d

v n d v n d

n d n d v n d

v n d q d

N N v

N N ρ N N ρ

N Nv N N v N N ρ

N N ρ N ρ

ρ δ

δ δ

ρ ρ δ δ

δ

Γ Γ

−

Γ Γ

Γ Γ Γ

Γ Γ

⋅ Γ− ⋅ Γ

− ⋅ Γ− ⋅ Γ

+ ⋅ Γ+ ⋅ Γ+ ⋅ Γ

+ ⋅ Γ+ Γ=

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

ɶ

ɶ

 (55) 

in which 
2co

rρ   and air
rρ  are the CO2 and air mass densities at the vicinity of the interface between them, 

known from the previous iteration, r.  

Similar discretization can be made for the momentum and energy field equations, that upon putting 

them together in a concise form, leads to    

Mass field equations 

( )0 0 0
11 13 14 13 14 1 11 13 14

r r r
m m m m m m m mK v K ρ K ρ C ρ C ρ f K v C ρ C ρδ δ δ δ δ+ + + + = − + +ɺ ɺɺ ɺɶ ɶ ɶ  (56) 

Momentum field equations 

( )
21 22 23 24 21 23 24

0 0 0 0 0 0 0
2 21 22 23 24 21 23 24

m m m m m m

r r r r r r r
m m m m m m

K v K p K ρ K ρ C v C ρ C ρ

f K v K p K ρ K ρ C v C ρ C ρ

δ δ δ δ δ δ δ+ + + + + +

= − + + + + + +

ɺɺɶ ɺ ɶ

ɺɺɶ ɺ ɶ
 (57) 

Energy field equations 

( )
31 33 34 31 32 33 34

0 0 0 0 0 0 0
3 31 33 34 31 32 33 34

m m m m m m

r r r r r r r
m m m m m m

K v K ρ K ρ C v C p C ρ C ρ

f K v K ρ K ρ C v C p C ρ C ρ

δ δ δ δ δ δ δ+ + + + + +

= − + + + + + +

ɺɺ ɺɶ ɺ ɶ

ɺɺ ɺɶ ɺ ɶ
 (58) 

( )
41 43 44 41 42 43 44

0 0 0 0 0 0 0
4 41 43 44 41 42 43 44

m m m m m m

r r r r r r r
m m m m m m

K v K ρ K ρ C v C p C ρ C ρ

f K v K ρ K ρ C v C p C ρ C ρ

δ δ δ δ δ δ δ+ + + + + +

= − + + + + + +

ɺɺ ɺɶ ɺ ɶ

ɺɺ ɺɶ ɺ ɶ
 (59) 

In a matrix form, these equations can be described as 
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11 13 14 13 14

21 22 23 24 21 23 24

31 33 34 31 32 33 34

41 43 44 41 42 43 44

0 0 0

0

0

0

m m

m m

m m

K K K C Cv v
K K K K C C Cp p
K K K C C C Cρ ρ

K K K C C C Cρ ρ

δ δ

δ δ

δ δ

δ δ

                        +                        

ɺ

ɺ

ɺ

ɺɶ ɶ

0 0 0
1 11 13 14

0 0 0 0
2 21 22 23 24 21

0 0 0
3 31 33 34

0 0 0
4 41 43 44

0 0 0 0 0

0

0

r
m
r

r
m
r
m

f K v C C
f K K K K p C
f K K K ρ

f K K K ρ

            
                          = − −                         ɶ

0 0 0
23 24

0 0 0 0
31 32 33 34
0 0 0 0
41 42 43 44

0

r
m
r

r
m
r
m

v

C C p

C C C C ρ

C C C C ρ

                            

ɺ

ɺ

ɺ

ɺɶ

 (60) 

The matrix entries of this equation are given in Appendix C.  

Eq. (60) contains an extra degree of freedom as compared to that if the standard Galerkin method is 

utilized to discretize all variables. This entails that the system of equations that needs to be solved is 

larger. However, this increase is minor, as the extra degree of freedom is only added to the nodes 

where the element is intersected by the interface between air and CO2. Moreover, this increase in the 

system size is compensated by the advantages of the partition of unity method, which is effectively 

mesh-independent that allows for the utilization of relatively coarse meshes. 

Eq. (60) is solved using fully implicit time integration scheme.   

7 Numerical examples 

Two numerical examples simulating CO2 leakage through an abandoned wellbores are solved using 

the proposed PUM-SG model. The first numerical example is designed to simulate initial and 

boundary conditions normally existing in typical CO2 geosequestration sites, and the second numerical 

example is designed to simulate an extreme boundary condition that results to phase changes and a 

complicated mixture of fluids through the wellbore. The computational efficiency of the model and its 

capability to simulate phase changes are highlighted. 

7.1 CO2 leakage: normal boundary conditions 

This example simulates CO2 leakage through an abandoned wellbore subjected to initial and 

boundary conditions typically existing in CO2 geosequestration sites. Fig. 2 shows the wellbore 

geometry and its boundary conditions, and Table 1 shows its properties, together with the properties of 

the surrounding formation. The objective of this example is to examine the model computational 

efficiency and its mesh-independency.  
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Fig. 2 Geometry and boundary conditions for the CO2 blowout example. 

Table 1 Wellbore and formation data. 
 Well Data  
Deviation angle [degree] 90 
Well inner radius [m] 0.1 
Well casing thickness [m] 0.02 
Casing thermal conductivity [W m-1 K-1] 0.6 
Roughness of the wellbore [-] 5.0×10-6 

Formation Data  
Surface temperature [K] 275.15 
Geothermal Gradient [K/m] 0.058 

 

Initially, the wellbore is filled with air, which is under mechanical equilibrium with the atmosphere 

on the top, and in thermal equilibrium with the surrounding formation. The thermodynamic state of 

CO2 in the reservoir is supercritical with 7.5 MPap= and 3250 kg/mρ= . The CO2 leakage rate at 

the bottom-hole is a function of the reservoir pressure, as 

( )
2co

b

p

m R z z

k
v p p

µ =
= −  (61) 

where Rp  is the local reservoir pressure, and bz  is the coordinate of the bottom-hole, and pk  is the 

effective permeability of the defective cement plug, assumed 13 24 10  m−× .  

This problem is solved using four mesh sizes: 4, 10, 20 and 100, 1D linear finite elements.  

Fig. 3 shows the computational results of the mixture density at four different points of time before 

the CO2 front reaches the top of the wellbore. Apparently, the results are very close to each other, 

especially those of the 20 elements mesh and the 100 elements mesh. Additionally, the model is 

capable of capturing the sharp front between the CO2 and air, even with relatively coarse meshes. This 

clearly implies that the model is computationally efficient and effectively mesh-independent. 
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(a) (b) 

  

(c) (d) 
Fig. 3 Mixture density at four different points of time: (a) 4 elements, (b) 10 elements, (c) 20 elements, (d) 

100 elements. 

Fig. 4 shows the  velocity, pressure and temperature distributions along the wellbore for the 20 

elements mesh. The figure clearly shows that the velocity and pressure fields are continuous over the 

domain, as stated in Eq. (1), but the temperature field is discontinues due its direct relationship to the 

fluid density, as stated in Section 4.2. The plot of temperature shows that the temperature drops as low 

as 271 K (-2.15 ºC) which is 62.15 degrees less than the reservoir temperature. This drop in 

temperature is attributed to that, upon leaking of a supercritical CO2, an immediate expansion of CO2 

takes place, giving rise to a sudden reduction of temperature due to the Joule–Thomson effect. 
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(a) (b) 

 

 

(c)  
Fig. 4 Computational results using 20 elements: (a) mixture velocity, (b) pressure, (c) temperature. 

7.2 CO2 leakage: extreme boundary conditions 

This example simulates CO2 leakage through an abandoned wellbore subjected to extreme 

boundary conditions. Fig. 5 shows the wellbore geometry and its boundary conditions. The properties 

of the wellbore and the surrounding formation are as those given in Table 1. The initial conditions are 

similar to that of the previous numerical example. The objective of this example is to examine the 

model computational capability to simulate extreme boundary conditions, which lead to phase changes 

and complicated flow pattern along the wellbore.  

The CO2 leakage rate at the bottom-hole is assumed to have a constant velocity, but exhibiting an 

increasing pressure and density, as 

ˆ 1 m/smv =  (62) 

5 3

6

1.114575 10 4.44427125 10 2000 s
ˆ      Pa

9 10 2000 s

t t
p

t

 × + × <= × ≥
 (63) 



21 
 

310 0.27 2000 s
ˆ    kg/m

550 2000 sm

t t

t
ρ

 + <= ≥
 (64) 

 

Fig. 5 Geometry and boundary conditions for the CO2 leakage problem with extreme boundary 
conditions. 

This problem is solved using 100, 1D linear elements.  

Fig. 6 shows the CO2 gas/liquid phase distribution along the wellbore versus time. The figure 

shows that, immediately, after the start of leakage, the CO2 gas displaces the air and a gas/liquid 

mixture starts to form at the bottom of the wellbore. Until approximately 750 s, the wellbore is 

occupied by air, gas CO2 and gas/liquid mixture CO2. After 1500 s, a liquid CO2 starts to form at the 

wellbore bottom, shortly followed by a supercritical CO2. After approximately 2000 s, the pure gas 

state disappears and the wellbore becomes occupied by CO2 liquid/gas mixture, liquid CO2 and 

supercritical CO2.   

Fig. 7 shows the projection of the CO2 states on the CO2 phase diagram over the length of wellbore 

at four different times marked by dashed-lines in Fig. 6. The phase diagram is plotted using Eq. (B.1). 

At times t = 1000 s and t = 1500 s, the computed p ρ−  curve goes through liquid/gas mixture to pure 

gas zone. At t = 1750 s, the p-ρ curve goes through supercritical CO2, liquid CO2, liquid/gas mixture 

and pure gas zones. At t = 4500 s, the p ρ− curve goes through supercritical CO2, liquid CO2 and 

liquid/gas CO2 zones. The pure gas in this interval has already disappeared.  
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Fig. 6 Fluid and phase distribution over time. 

 

Fig. 7 Projections of the CO2 state into the phase diagram of CO2 over the length of wellbore. 

8 Conclusions 

Leakage of CO2 to the ground surface via abandoned wellbores is hazardous and considered as one of 

the main concerns of applying CO2 geosequestration technology. It is therefore vital to develop 

accurate computational tools capable of modelling this kind of leakage. As the problem occurs at a 

regional level, it is also vital that the tool be computationally efficient and mesh-independent. Solving 

this problem constitutes the focal point of this paper.  

Developing an accurate, mesh-independent and computationally efficient transient model for such a 

problem is challenging due to the presence of fluid dynamics, buoyancy, phase change, 

compressibility, thermal interactions, wall friction and slip between phases along the wellbore. In this 
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paper, we show that solving this problem requires an innovative coupling between the theoretical 

formulation and the numerical procedure. Both, averaging techniques and tailored numerical 

discretization procedures are necessary. The drift-flux model is utilized to formulate the problem, and 

a mixed discretization scheme, integrating the standard Galerkin finite element method, the partition 

of unity method, and the level-set method, is utilized to solve the problem. A one dimensional 

compressible two-fluid domain, representing a homogeneous air gas and a mixture CO2 with a jump at 

the interface between them, is modeled. All important physical phenomena and processes are 

considered.   

The computational model is tested by solving two numerical examples with different boundary 

conditions. The computational results clearly exhibit the occurrence of phase change along the 

wellbore, the extent of which depends on the boundary conditions and the thermodynamic properties 

of CO2. The paper shows that the proposed computational model is computationally efficient and 

effectively mesh-independent. 
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Appendix A: Drift flux model parameters 

The drift flux model parameters are defined as follows:  

The wall friction coefficient can be defined as [1]: 

2

16
Re 2400

Re

1 5.02 13
log log Re 2400

16 3.7 Re 3.7 Rei i

f

r r

ε ε
−

 <=         − + ≥           

 (A.1) 

where ε  is the roughness of the wellbore, and Re is the Reynolds number given by 

( )2
Re m m i

m

v rρ

µ
=  (A.2) 

The heat exchange between the well and the surrounding formation can be described as 

( )( )2 w eQ r U T T zπ= −  (A.3) 

in which ( )eT z  is the formation temperature, and U is the overall thermal interaction coefficient of the 

wellbore, which can be described as [27]:
 

conv cond

1
U

R R
=

+
 (A.4) 

where convR  and condR  are the thermal resistances of the fluid and casing material, respectively, 

described as 

( )conv o wR r r h=  (A.5) 

( )cond lno o w pR r r r λ=  (A.6) 

in which or  is the outer radius of the wellbore, pλ  is the thermal conductivity of the casing material, 

and h  is the convective heat transfer coefficient, described as  

( )Nu 2m ih rλ=  (A.7) 

where Nu is the Nusselt number, defined as 

1/2 1/3

0.8 0.4

0.664 Re Pr Re 2000
Nu

0.023Re Pr Re 2000

 ≤= >
 (A.8) 

in which Pr is the Prandtl number given by 
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( )
Pr m pmm m

mm m pm

c

c

µµ ρν

α λλ ρ
= = =  (A.9) 

where pmc  and mλ  are the specific isobaric heat capacity and thermal conductivity of the mixture, 

respectively. 

The slip parameter γ  is defined as [28] 

( ) ( )
2

02
, , 1

1
G G L m

m m m d
G m

f
v p C v v

f

ρ ρ ρ
γ ρ

ρ∗
 = − + −

 (A.10) 

in which Gf  is the gas volume fraction,  Gρ  is the gas density, Lρ  is the liquid density, dv  is the drift 

velocity, and 

( )0 01m G G G Lf C f Cρ ρ ρ∗ = + −  (A.11) 

The drift velocity describes the variance in velocities between phases of a mixture. It can be 

described as [17]: 

( )
( ) ( ) ( )0 0

0 0

1 , ,
, ,

1

G c G u
d m m

G G L G

C f v K f K C m
v v p

C f C f

θ
ρ

ρ ρ

−
=

+ −
 (A.12) 

where: 

• ( )m θ  is an inclination adjusting function, described as 

( ) ( ) ( )1 2

0 cos 1 sin
n n

m mθ θ θ= +  (A.13) 

in which 0m , 1n , and 2n  are fitting parameters.  

• uK is the Kutateladze number, described as 

1

2

2
1 1ku B

u

ku wB

C N
K

C CN

   = + −      
 (A.14) 

in which 0.008wC =  and 142kuC =  [10], and BN  is the Bond number, defined as 

( )24 L G
B i

GL

g
N r

ρ ρ

σ

 − =    
 (A.15) 

where GLσ  is the gas-liquid surface tension. 

• cv  is the characteristic velocity, given by 



26 
 

( )
1

4

2

GL L G
c

L

g
v

σ ρ ρ

ρ

 − =    
 (A.16) 

• K  is a smooth transition function, introduced to make a smooth transition of the drift velocity 

between the bubble rise and the film flooding flow regimes, described as [10]: 

 

1

0 1
1 2

2 1

0 2

1.53

1.53
1.53 1 cos

2

G

u G
G

u G

f a

C K f a
K a f a

a a

C K f a

π

 ≤    − −   = + − ≤ ≤    −     ≥

 (A.17) 

in which 1a  and 2a  are two transitional gas volume fractions corresponding to the bubble rise and the 

film flooding flow regimes, respectively. 

• 0C  is a profile parameter, calculated as [17]: 

( )
max

0 2
max1 1

C
C

C η
=
+ −

 (A.18) 

in which maxC  is the profile parameter for low gas fraction and η  is a parameter reflecting the effect of 

the flow status on the profile parameter, given by: 

1

B

B

β
η

−
=

−
 (A.19) 

where B is the threshold parameter above which 0C  starts to drop below maxC , described as [10]: 

max

2
1.0667B

C
= −  (A.20) 

and β  is calculated as 

max , , 0 1G m
G V

sgf

f v
f F

v
β β

  = ≤ ≤  
 (A.21) 

in which VF  is a multiplier to adjust the sensitivity of the profile flattening to the gas velocity, and 

sgfv  is a gas superficial velocity at which flooding occurs. VF  is equal to 1, according to Shi et al. 

[17], and sgfv  is calculated as: 

1

2
L

sgf u c
G

v K v
ρ

ρ

  =    
 (A.22) 
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Since there is no experimental data to determine the fitting parameters maxC , 0m , 1n , 2n , 1a  and 

2a , the available values for water-gas mixture is used instead, that read: max 1C = , 0 1.85m =

1 0.21n = , 2 0.95n = , 1 0.06a = , and 2 0.21a =  [17]. 
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Appendix B: Constitutive equations 

B.1 CO2 constitutive equations  

Sequestrated CO2 in a geological formation most likely exists in a supercritical state. When the CO2 

plume reaches an abandoned wellbore and leaks into it, the CO2 phase can change from its initial 

supercritical state to liquid, liquid/gas mixture or gas, depending on the pressure and temperature 

conditions at any certain level in the wellbore. Fig. B.1 shows the phase diagram of CO2. According to 

this diagram, if the temperature and pressure drop below the critical values,
 

2co 304.1 KCT =  and 

2co 7.38 MPa (73.8 bar)Cp = , the CO2 phase changes to liquid, gas or a liquid/gas mixture. The 

liquid/gas mixture is formed when the pressure equals to the “saturated vapor pressure”; i.e. the 

pressure at which the gas (vapor) phase and the liquid phase are in thermodynamic equilibrium (along 

the solid line between the liquid and gas phases in the phase diagram).  

 

 

Fig. B.1 CO2 pressure-temperature phase diagram. 

Thus, the CO2 constitutive properties must cover all phases that might be formed along the 

wellbore, including supercritical, liquid, gas and liquid/gas mixture (saturated vapor region). 

Equation of state 

We use the Redlich and Kwong [29] equation of state, given as 

( )
2

2 2

co

0.5
co co

aRT
p

V b T V V b
= −

− +
 (B.1) 

where V  is the molar volume of the CO2 phase, R is the universal gas constant (

8.314462  J/(mol K)= ), and 
2coa  and 

2cob are the intermolecular attraction and repulsion, respectively. 

Spycher et al. [30] utilized experimental data to evaluate these parameters, giving 

2

2

3 6 0.5 2
co

6 3
co

7.54 4.13 10    Pa m  K  mol

27.8 10    m /mol

a T

b

− −

−

= − ×

= ×
 (B.2) 
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The molar volume - density relationship is defined as   

2coM

V
ρ=  (B.3) 

where 
2coM  is the molar mass of CO2 (

-344 10   kg/mol= × ). 

Substituting Eq. (B.3) into Equation (B.1), after rearrangement, yields 

2 2 2 2

2 2 2 2

co co co co3 2 2 2 3
co co co co0.5 0.5

0
a b RTb a RT

M b M M
p ppT pT

ρ ρ ρ
          + − + + − =               

 (B.4) 

Using this equation, any of the three thermodynamic variables of CO2; temperature, density and 

pressure; can be calculated as a function of the other two. For the liquid/vapor mixture, the averaged 

mixture density is used in this equation. Fig. B.2 shows three isothermal curves for CO2. The figure 

clearly shows the supercritical behavior of CO2 for temperatures: T = 50°C and T = 70°C, where the 

gas and the fluid are combined to form a single fluid. For T = 30°C, there is a sharp transition between 

the vapor phase and the saturated liquid phase. 

 

Fig. B.2 Isothermal curves of CO2 in density-pressure phase diagram. 

Specific enthalpy 

The CO2 specific enthalpy presented by Span and Wagner [31] is utilized. It reads   

0

1
r rf f f

h RT τ δ
τ τ δ

  ∂ ∂ ∂   = + + +     ∂ ∂ ∂  
 (B.5) 

with 0f  representing the Helmholtz energy of an ideal gas, and rf  representing the residual part of 

the Helmholtz energy. They are functions of temperature and density, as 

( ) ( ) ( ) ( )
8

0
1 2 3

4

, ln ln ln 1 expi i
i

f a a a aδ τ δ τ τ τθ
=

 = + + + + − −  ∑� � � � �  (B.6) 
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and 

( ) ( ) ( )

( ) ( )

2 2

2 2

7 34 39

1 8 35

42
1 1

40

,
ci

i i i ii i i i i i

i ii

d t d t d tr
i i i

i i i

C Db
i

i

f n n e n e

n e

α δ ε β τ γδ

δ τ

δ τ δ τ δ τ δ τ

δ

− − − −−

= = =

− − − −

=

= + +

+ ∆

∑ ∑ ∑

∑
 (B.7) 

with 

( ) ( )
( ){ } ( )

21/ 22 2
1 1 1

i ia

i iA B
β

τ δ δ   ∆= − + − + −        (B.8) 

where 2co /CT Tτ =
 

and 2co/ Cδ ρ ρ=  are the inverse reduced temperature and reduced density, 

respectively; and 2co
Cρ  is the CO2 density at the critical condition. The reader is referred to Span and 

Wagner [31] to obtain the values of the coefficients ia� , iθ
� , in , id , it , ic , iα , iε , iβ , iγ , iC , iD , iA , 

iB  and ia .  

Fig. B.3 shows the CO2 specific enthalpy versus pressure for different temperatures. As for the 

density-pressure phase diagram, it shows the supercritical behavior of pure CO2 at T = 45°C and T = 

60°C, while for T = 30°C, there is a clear distinction between the gas phase and the saturated liquid 

phase.  

 

Fig. B.3 CO2 specific enthalpy versus pressure for different temperatures 

Viscosity 

The CO2 viscosity can be determined following Fenghour et al. [32], as: 
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( )

( ) ( )

( )

2* 2 *

3 42 * 2 * 2

16 6
4 2 22 8

3*

8
22

*

1.00697 0.235156 0.491266 ln 5.211155 10 ln

5.347906 10 ln 1.537102 10 ln 0.4071119 10

0.2411697 10
0.7198037 10 0.2971072 10

0.1627888 10

Tµ τ τ

τ τ ρ

ρ
ρ ρ

τ

ρ

τ

−

− − −

−
− −

−

= − + ×
+ × − × + ×

×
+ × + + ×

− ×

 (B.9) 

in which * / 251.196Tτ =  is a reduced temperature, where T  is in Kelvin; ρ  is the density of CO2 in 

3kg/m ; and µ is in µ Pa.s.  

Fig. B.4 depicts CO2 viscosity versus pressure for three different temperatures. A similar trend in 

phase change as that for the CO2 density, Fig. B.2, can be observed.  

 

Fig. B.4 CO2 viscosity versus pressure for three different temperatures. 

 

B.2 Air constitutive equations 

The air is assumed to be always in a gaseous phase in the wellbore, and hence the ideal gas law is 

utilized to establish its constitutive equations.  

Equation  of state 

Based on the ideal gas theory, the relationship between density, pressure and temperature of air can be 

described as 

air

RT
p

M

ρ
=  (B.10) 

where airM  is the molar mass of air ( -328.97 10   kg/mol= × ). 
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Specific enthalpy 

The enthalpy of air as an ideal gas is given by 

air
ph c T=  (B.11) 

in which air
pc  is the specific isobaric heat capacity (1006  J/(kg K)= ). 

Viscosity 

The viscosity of air is given by Sutherland’s relation [33], as 

3/2

1.46
111

T

T
µ  =  + 

 (B.12) 

where T  is in Kelvin and µ is in µPa.s. 
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Appendix C. Components of the finite element matrices 

211 co air
d d o

T r T r T r T r
m md n d n d n dK B N N N N N N Nρ ρ ρ ρ

Ω Γ Γ Γ
=− Ω+ ⋅ Γ− ⋅ Γ + ⋅ Γ∫ ∫ ∫ ∫  (C.1) 

13
o

T r T r
m mv d v n dK B N N N

Ω Γ
=− Ω+ ⋅ Γ∫ ∫  (C.2) 

14
d d o

T r eh T r eh T r eh T r eh
m m m mv d v n d v n d v n dK B N N N N N N N+ −

Ω Γ Γ Γ
=− Ω+ ⋅ Γ− ⋅ Γ + ⋅ Γ∫ ∫ ∫ ∫

 (C.3) 

13
T dC N N

Ω
= Ω∫  (C.4) 

14
T ehdC N N

Ω
= Ω∫  (C.5) 

2

0
11 co air

d d o

T r T r T r T r
m md n d n d n dK B N N N N N N Nρ ρ ρ ρ

Ω Γ Γ Γ
=− Ω+ ⋅ Γ− ⋅ Γ + ⋅ Γ∫ ∫ ∫ ∫  (C.6) 

0
13

T dC N N
Ω

= Ω∫  (C.7) 

0
14

T ehdC N N
Ω

= Ω∫  (C.8) 

1 ˆ
q

T q df N ρ
Γ

=− Γ∫  (C.9) 
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 (C.10) 

22
T dK N B

Ω
= Ω∫  (C.11) 
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