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A compressible two-fluid multiphase model for CO, leakage

through a wellbore

Mehdi Musivand Arzanfudi, Rafid Al-Khoury

Faculty of Civil Engineering and Geosciences, Délfiversity of Technology, P.O. Box
5048, 2600 GA Delft, The Netherlands

Abstract

This paper introduces an effectively mesh-indepehdad computationally efficient model for €O
leakage through wellbores. A one dimensional cosgibde two-fluid domain, representing a
homogeneous air gas and a multiphase Wit a jump at the interface between them, is rextle

The physical domain is modeled using the drift-flmedel, and the governing equations are solved
using a mixed finite element discretization scheffee standard Galerkin finite element method, the
partition of unity method and the level-set metlawd integrated to solve the problem. All important
physical phenomena and processes occurring alomgv#ilbore path, including fluid dynamics,
buoyancy, phase change, compressibility, therntaraation, wall friction and slip between phases,
together with the jump in density and enthalpy leetwair and Cg are considered. Two numerical

examples illustrating the computational capabdityl efficiency of the model are presented.

Keywords: CO, sequestration, drift-flux model, computationaidldynamics, partition of unity, level

set

1 Introduction

CO, geo-sequestration is currently utilized as a meansnitigate CQ emission into the earth
atmosphere in an attempt to reduce the likely dreese effect. Selection of an appropriate geolbgica
formation for CQ sequestration requires a good estimate of the anmfuleakage that might take
place in time. Leakage of GQo the ground surface or upper layers containirguigd water is
hazardous and considered as one of the major amo&applying this technology. It is thereforeabit

to develop computational tools capable of modeltheyleakage processes and phenomena. Two kinds

of CG, leakage can be identified: leakage via heterogen&yered domains, for which the theory of

" Corresponding author: Mehdi Musivand Arzanfudi

Faculty of Civil Engineering and Geosciences, Ddlifversity of Technology, P.O. Box 5048, 2600 GAIf)
The Netherlands. Tel.: +31 (0)15 27 88216

E-mail: M.MusivandArzanfudi@tudelft.nl



multiphase flow in porous medium domains is applieaand leakage via faults and abandoned wells,
for which the theory of fluid dynamics is applicabllhe focus in this paper is placed on leakage via
abandoned wellbores.

The physical processes of €l@akage via a wellbore and the involved flow meusias are rather
complicated. They involve movement of multiple @lsicomprising multiple phases which can be
dispersed, mixed and have no distinct interfacésd®n them. Several coupled mechanisms including
buoyancy, heat transfer, phase change, comprdgsibilall friction and slip between phases are
involved. Computational modelling of such a phyksmambination occurring in a wellbore, hundreds
of meters long, is challenging.

Modeling fluid flow in wellbores has been a field wide interest in oil and gas industry. A
detailed review of the relevant physical processesmathematical formulations can be found in Brill
and Mukherjee [1] and Hasaet al. [2]. A review on the earlier wellbore models araties can be
found in Freeston and Hadgu [3] and Praiisal. [4]. An excellent overview of transport phenomena
in multiphase systems is given by Faghri and ZH&hg

As the computational modeling of fluid flow is cleadging and time and capacity demanding,
different models deal with different aspects of itmeolved processes and geometry. Some treat CO
as a single phase and others treat it as a mixtulide many models simulate leakage in the wells
only, and others are coupled with the reservoim&aonsider steady-state flow with no phase change,
whereas several others consider transient flow pithse change. Stoee al. [6] proposed a finite
volume model for coupled wellbore-reservoir transigvo-fluid (oil-water), three-phase flow in the
wellbore with phase change of water only (wateatste Hadguet al.[7] modeled transient two-fluid
flow in a coupled wellbore-reservoir domain withgiase change, using the coupled WFSA-TOUGH
code. Livescuet al. [8] introduced a finite volume model for coupleclibore-reservoir transient
three-fluid, three-phase flow with phase changedibrand gas applications. Hasan and Kabir [9]
presented a steady-state model for single-fluidtd@aflow with phase change (water/steam).
Recently, Pan and Oldenburg [10] developed a teanhdinite volume model for coupled wellbore-
reservoir for compressed air energy storage apjgitathat include a two-fluid domain consisting of
water and air but no phase change.

Regarding CQ@ flow in a wellbore, Cronshaw and Bolling [11] déyged a finite volume
numerical model for transient two-fluid (G@ater), three-phase flow in the wellbore with phas
change of C@only. Lu and Connell [12] and Lindeberg [13] irduaced models based on Runge—
Kutta finite difference method to simulate steathtes two-phase, single-fluid flow of G@ith phase
change in the wellbore. Patersenal. [14] modeled a transient two-phase, single-fluavfof CO,
with phase change in the wellbore. Raml.[15] presented a finite volume model for transiggmi in
wellbores of two-fluid (C@brine) with phase change of GOnly. Remorozeet al. [16] utilized
TOUGH2 to study the coupled wellbore-reservoir dyestate two-fluid flow (C@Qand water) with no

phase change for geothermal heat flow applications.



In these models, while providing very useful bésis developing computational tools for fluid
flow in wellbores, the focus is placed on modelthg physical processes, rather than the numerical
solutions. Mostly, standard numerical discretizatszthemes are utilized. This normally requires the
use of excessively fine meshes (grids) with adeptneshing, or some other appropriate approaches.
As a consequence, these models suffer from two staantcomings: 1. computational inefficiency,
and 2. mesh size dependency. This paper intensadelsesses a solution to these two issues.

The objective of this work is to develop an acaeyratesh-independent and computationally efficient

transient model for CQeakage through wellbores. A detailed modeling-aggh is given hereafter.

2 Modeling approach

Deriving an accurate, mesh-independent and conipogdly efficient transient model for GO
leakage from a geo-sequestration site via an almeadeellbore requires a well-designed formulation
of the mathematical model and the numerical model.

Regarding the mathematical model, it is appareait e model should take into consideration all
important physical phenomena and processes ocguatamg the wellbore. Fluid dynamics, buoyancy,
phase change, compressibility, thermal interactiaradl friction, slip between phases, together with
all relevant thermodynamic relationships must besatered. Initially, the wellbore is filled withrai
and the CQ@in the reservoir is, most probably, in a supeigaitstate. Upon leakage, the £&hanges
phase and starts displacing the air. This givestdaving two fluids in the domain: air and Chhe
air is a homogeneous gas, and the 8@ multiphase fluid constituting supercritidgulid, liquid and
gas, which are, in general, dispersed, mixed amthgano distinct interfaces. The physical processes
of such a domain are governed by the conservads bf transport of mass, momentum and energy
given by the Navier-Stokes equations. As the sizbaengineering system that we are dealing vgith i
huge and the C{phases are dispersed and mixed, relying on aragivey approach is indispensable.
Here, we model the air and the £&5 two separate fluids. The air is modeled asmaogenous gas,
and the C@is modeled as a homogeneous mixture. The jumpitiomdt the interface between the
air and the C@is considered. We utilize the one-dimensional tdhiix model to simulate the
transport of air and CQin the wellbore. This model adopts the area-awestagpproach, where
detailed analysis of the local behavior of the lngd phases are averaged over the cross-sectional
area of the wellbore. Important aspects of fluichatyics such as the inertia force, buoyancy, wall
friction, drift velocity, flow profile are consided in the drift-flux model.

To model two fluids, two sets of governing equasicepresenting the two fluids are needed,
together with a constraint condition at the integfebetween them. In literature, however, many
models utilized for C@flow in a wellbore, or similar applications, coter single phase with no
phase change. The primary state variables usutilized in such models are velocity, pressure and

temperature. For a single phase, such primary Masaare sufficient, as the variation of enthalpy i



directly related to the variations of temperatunel @ressure. However, for a multiphase, the fluid
temperature is not directly related to the enthafmnd additional constitutive equations relating th
variation of enthalpy to the variations of pressuemperature, entropy and molar fraction are
necessary (see Lu and Connell [12]).

Here, we utilize a set of drift-flux model equatsaio represent the two fluids, but impose a jump at
the interface between them. This necessitates iadofite mass density as a primary state variable
instead of the temperature to clearly distinguisbwieen the two fluids. The set of the primary state
variables in this paper is thus: velocity, pressame density. In such a set, there is a fundamental
thermodynamic relationship relating the fluid maknsity to the gas/liquid volume fraction, that
allows for a distinct separation between the ligaidd gas phases, and avoids the additional
constitutive relationships mentioned above. Howgetiis should be supplemented with a proper
numerical scheme capable of modeling the jump bertvilee two fluids.

Regarding the numerical model, it is obvious thatmodel should take into consideration the local
and global conservative nature of the system amdhdinlinear hyperbolic characteristics. Using
standard numerical discretization methods sucthedinite difference, the finite volume or the fai
element necessitate excessively fine grids and|stina¢ steps. Therefore, in order to obtain a
computationally efficient model, adopting an adwahaliscretization procedure is indispensable.
Here, we adopt a mixed discretization scheme. is sbheme, state variables exhibiting different
physical nature are treated using different nunaédéscretization techniques. Techniques suchas th
standard Galerkin finite element method (SG), thetifpon of unity finite element method (PUM), and
the level-set method (LS) are integrated in a simyimerical scheme. SG is utilized to discretize th
diffusive dominant field equations, and PUM, withire framework of the extended finite element
method (XFEM), together with LS are utilized to aiestize the advective dominant field equations.
The level-set method is employed to trace and éota CQ front, and the extended finite element
method is employed to model the associated junthbdmass density field. The use of LS and XFEM
for the advective field leads to a globally andalbc conservative discretization, giving a stabhel a
effectively mesh-independent scheme. The proposieddndiscretization scheme differs from the
well-known mixed FEM such that in the mixed FEMffelient state variables are utilized but adopt a
single discretization technique; whereas in theeaigiscretization scheme, we utilize differentestat
variables and adopt different discretization tegbes, depending on the physical nature of the state
variable and the associated balance equations.

Compressible fluid dynamic equations inevitably dive acoustic waves. Numerically, this
requires fine grids and small time steps. Howefar CO, leakage in a wellbore, the time scale of
interest is dominated by the time scale of thadflaglvection, and hence, the acoustic waves pose no
significance on the analysis. Therefore it is ddd& to remove the acoustic wave from the system of
equations. This is done by decoupling the pressure of the balance momentum equation from the

mass and energy equations.



3 Governing equations

The governing equations of the drift-flux model described in many literature, including Stial.

[17], Ishii and Hibiki [18] and Pan and Oldenbud®]. Here, a listing of the governing equations of
this model and its associated thermodynamic antheagng constitutive relationships is given. We
utilize a set of governing equations to describthpthe air and the CObut impose a jump at the
interface between them. The fluids are allowedxistet any state or mixture composition, depending
on their thermodynamic conditions along the weldbdlowever, no mass exchange at the interface is
allowed. This assumption is justified because, @akage via a wellbore is advection-dominant and
the rate of dissolution and diffusion between the fluids is negligible. This inevitably entailsath

the fluids velocities and pressures at the interfae continuous, but discontinuous in the theissna

density and enthalpy, giving:

Veo, = Vair

Peo, = Pair atl’ (1)
(0] = Peo, = P

[[hm]] = t‘Loz — hy

3.1 Drift-flux balance equations with discontinuity
Based on the drift-flux model, the balance equatiohfluid mixture flow in one dimension with a

jump condition at the interface between two sepditatds (air and C¢) can be described as

Mass balance

Opm | O . N
W+az(pmvm)+|[pm]]vm né(z— z)=0 (2)

Momentum balance

0 0 p  fom |Vl Vin .
g 9 (p\2 Vo )= PolTml Tm 3
at(pme)Jraz(pm )+ o Vi (2 2 > rr pm GiNO (3)
Energy balance
0 1 0 V2
— h +=V|— — h +-™
atpm[m+2 ’“] P+ 52| mVm m+2}
2 (4)
Vi , Q
+[[pm]]vm [[hm]]—i_? -né(z— Zd>:pmvmgm9_7
(b

where § is the Dirac delta function (unita™), Z, is the coordinate of interface between,G0d
air, shown in Fig. 1,n is the unit normal vecton, is the inner radius of the wellbore,, is the

mixture densityV,, is the mixture velocity,p is the pressuref is the wall friction coefficientg is



the gravitational constant] is the inclination angle of the welh, is the specific enthalpy of the
mixture, Q is the heat exchange between the well and it®soding formation, and, describes the

slip between two phases. The definitions of thé flix model parameters are listed in Appendix A.

— r, _
n :‘i Q+ |_.I’1 Q' ﬁ'i 1

Fig. 1 Definitions of domains, interface, coordinate and unit normal vector to the boundary

3.2 Constitutive equations

A comprehensive treatment of the £€nstitutive equations is given in Musivand Arzatif
and Al-Khoury [19]. The relevant constitutive etjaas for the CQ, together with those for
air, are given in Appendix B.

3.3 Initial and boundary conditions
Initially, the primary state variables might be ci@sed as

G(z0)=G(2 at 0 5)

whereG can bev,,, p, or p,,.

The Dirichlet boundary conditions might be desalibs
G(t)=G(1) onT, (6)

in which ', is the Dirichlet boundary.

The Neumann boundary conditions are defined as

q, Vo
G, =(pn¥h+7)- N onT’ ()

where I'; is the Neumann boundary, and the subsciipté and e refer to mass, momentum and

energy, respectively.

At an outflow boundary, the Neumann boundary caoowfit are defined as

0, = (PnVi)- N
A =(pnVe+7) 1 onl, ®)

qe = pmvm

2

2
Vv
hm+—m] -n




where I' | is the outflow boundary. Note that the primarytestaariables at this boundary are not

known and have to be calculated. Otherwise, thisibary becomes by definition close, or have to be
assigned a typical Dirichlet or Neumann boundarydaions. As it will be shown later, the
discretization of this kind of boundary conditiowdl add up terms to the finite element matrices,

including the left-hand side.

4 Modeling the discontinuity between air and CO,
At the front of the C@plume, a discontinuity in the density field, tdget with other thermodynamic

properties differentiating air from GQexists. This discontinuity is traced using theeleset method.

4.1 Tracing thefront: level-set method

The level-set method is a numerical technique Usudillized to trace a moving interfacd;,,
between two zones, for instanc®, and 2. A level-set function is defined as a signed dista
function, gb(z), which is positive i)", negative inQ2~, and zero at the interface between them. For a
one-dimensional domain, it can be described as

|z—z| zQ"

2o z| o H(2DeR, e 9)

$(2)=

where z, is the coordinate of the interface. The sign iathe different domains, and the magnitude

represents the distance to the interface. The-Eatdlunction is advected by a field motion equatd

the form
0¢ do
ot dz (10)

wherev represents the interface (front) velocity, takenehas the average of the two fluids velocities

at the vicinity of the interface.

4.2 Thermodynamic properties
The thermodynamic properties of the two fluids bkha jump at the interface between them. For

instance, the temperature can be calculated ascéidn of pressure and mixture density as

To, (Ppn) zEQF

co,

T (Ppn) zEQ (11)

T(z pon)=

whereT,, is the CQ temperature if2" zone, andr,, is the air temperature i~ zone. In terms of

the level-set function, Eq. (11) can be descril®d a



To, (Ppn) ¢>0

12
Tair(pipm) ¢§0 ( )

T (o, p,pm)=|

This can be equivalently written as
T (0 Pom)= HO) T, (Powm) + (1 HE) T, ( Pow) (13)

where H(¢) is the Heaviside function, that reads

1 0
OB N (14

Similar equations can be derived for the enthdipy,gas volume fractionf,, gas density,,,

and liquid densityp, .

5 Acoustic filtration

The fully compressible fluid flow equations givelmoae are not exactly suited to the type of flumiafl

in wellbores because of the inevitable generatibacoustic waves. The mean velocity flow of the
CO, plume is much slower than that of the acoustic evakherefore, it is useful to filter out the

unwanted acoustic modes. These modes can be dilteu¢ by decoupling the pressure in the
momentum equation from that arising from the dgrsimperature-pressure equations of state.

An early work in this field was introduced by Relamd Baum [20], for inviscid flow; and Paolucci
[21], for viscous flow. An in-depth analysis of shproblem is given by Principe and Codina [22] and
Reddy and Gartling [23].

The general approach is that the fluid pressude@mposed into two terms: a spatially uniform,

time-dependent background (thermodynamic) presgii(g ; and a dynamical (mechanical) pressure,

p’(z 1); such that

p(zt)=R(0+ P(z} (15)

The background pressurg,(t) , is utilized in the thermodynamic properties fotations, e.g. Eq.

(13), such that

T(¢ Byoom)=H(®) T°( Rpm) + (1= H(9)) T B.om) (16)

Other properties follow suite.
The dynamical pressurp’(z, t) is utilized instead of the total pressue, which appears on the

right-hand side of the momentum balance equatiegs(3).



The common practice of assuming(t) as spatially uniform can be in many cases realisti

especially those dealing with relatively small getry constituting fluids with an insignificant
pressure variation. However, for a €@akage case, which involves long wellbores withuge
pressure variation along its length, this assumpsmot realistic. To circumvent this, we assufis t
pressure to have a linear variation between thespre at the bottom boundary and that at the top

boundary of the wellbore. This is done at everetstep, giving

p(zt)=R(z ¥+ B( 7z} (17)

Following this, and since the background pressara ifunction of space as well, the original
momentum balance equation, Eqg. (3), can be utiliZée use of acoustic filtration allows for using
larger time step sizes while preserving the acguofthe results [23], which will obviously resiitt a

more efficient computational model.

6 Mixed discretization finite element scheme (PUM-SG)

The governing drift-flux equations, together wittetinitial and boundary conditions, form an initial
and boundary value problem that is dynamic, advegcthonlinear and involves a jump condition.
Solving such a problem using standard finite elaémpencedures entails utilization of excessivelyefin
and adaptive meshes and small time steps, buttheless, the model can be unstable and the results
are very likely mesh-dependent. Above all, standarite element discretization procedure is not
locally convergent, a feature necessary to modejump condition at the interface between the two
fluids. To tackle this, we solve the problem usingixed finite element discretization scheme. This

scheme entails solving different balance equatiggisg different discretization schemes, which are
tailored to accurately describe the nature of tivelved primary state variables,, p, and g,,. The

discontinuity at the interface is modeled using linel-set method to trace the interface; and the

partition of unity to discretize the mass density.

6.1 L evel-set discretization
Applying the weighted residual finite element détczation procedure to Eq. (10) gives

¢ do
QwﬁdQJrfﬁva =0 (18)

Approximatinggas ¢ = N(2)®(t), with N(z) a vector of shape functions ade{t) a vector of nodal

values of the level-set function at tirheand assumingv= N yields

fNTN dQ+f NTv—cde 0 (19)



Utilizing the level-set method to trace a movingnir requires re-distancing (re-initialization) at
every time step. This is necessary because otreettvsdistance property of the level-set funct®n i
no longer maintained after advection. We utilize tirect distancing approach proposed by €hal.
[24] for this purpose. In this approach, the rdatising is performed by geometrical updating of the

advective front instead of solving a re-initialipat equation.

6.2 PUM-SG formulation

The standard Galerkin finite element method (S@)the partition of unity method (PUM), within the
framework of the extended finite element method,iategrated to discretize the problem. The fast i
in general, accurate and computationally efficii@ntsolving continuous problems, and the second is
accurate and effective in solving discontinuouspms.

As stated above, the mixture velocity and pressweecontinuous at the interface between, @ad

air, and thus SG sulffices, entailing

Vo (Z=D" N(2 V% (3=N( v, (} (20)

iel

P=>_N (2 p(9=N(2p(} (21)

il
in which | is the set of all nodes in the domai;(2) is the shape function of node v,,,i(t) and
pi (t) are the nodal values of the mixture velocity anespure for node, respectively, andN(z) ,

Vi (t), andp(t) are the associated nodal vectors.

On the other hand, the mixture mass density isodifituous at the interface between £nd air,

and for this PUM suffices, entailing

pm(Z,t):Z Nl(Z)Pm|(D+Z '\fh( a[)mi( 1
icl iel” (22)
N (Z)pn (9N (25, (Y
where |* is the subset of enriched nodes, (t) and j,, (t) are the conventional and additional

(extended) nodal values of the mixture densityaateri , and Nieh(z) is an enriched shape function at

nodei, andp,(t), p,(t) andN®(z) are the associated nodal vectax"(2) is defined as

N (2)= N(2¢(¢) (23)

in which «; (¢) is the shifted enrichment function [25] at nddedefined as

%(9)=H(¢)-H(a) (24)

10



where ¢ is the value of level-set function at nodeUsing the shifted PUM leads to the existence of a

non-zero enriched shape function over both sidethefdiscontinuity. Consequently, the density of

each fluid across the discontinuity is calculated a

Peo, (240 =N(2)p () + N (2)p (3

(25)
Pair (Z ) =N(Z )P (O +N"(Z)p o b

in which N** and N°™ are the enriched shape functions at the neighloord the discontinuity on

Q" and €, respectively. Note that we utilized the shiftettiehment approximation because the
conventional un-shifted PUM does not, in generalyehthe Kronecked- property of the standard
FEM, rendering the imposition of essential boundaogditions difficult. A comprehensive treatment
of this issue is given by Fries and Belytschko [26]

Using the weighted residual method, the finite edatformulation of the governing equations;
Egs. (2), (3) and (4); can be described as

Mass balance

0P 0 _
[ w . dQ+j;w5(pmvm)on+frd wWp,] v nd=0 (26)

Momentum balance

) 0 9
fﬂw a(pmvm)dQJrfQ V\/E(pm\ferv) dH_fru Wp o % nd

_ ,8de W fom |Vm|vm €0 p ino d) @7
Energy balance
0 1 9 V2
w’ — h +=V|[— pd wW — @
I at[pm[ nt > ] % oo B -

+ | W [pn]Va

Ty

V2
h _m
[n,]+

[ w ino @— [ W
.ndF_vax/pmyngsm@m fﬂwﬂiz [s)

in which w, W and W' are the weighting functions of the mass, momené&ma energy balance
equations respectively.

As the discontinuity occurs in one primary statdalde, only one balance equation is needed to be
partitioned. For this, we chose the energy balametion since its jump term contains the specific
enthalpy term, which is a function of density, amccordingly exhibiting a discontinuity at the
interface between air and GOThus, for the mass and momentum balance equationsntinuous
weighting function is utilized; whereas for the emebalance equation, a discontinuous weighting

function is utilized, i.e.

11



w=w =N (29)
w’ =N+ N (30)

where the dependency on the spatial coordinategmoeed for simplicity of notation.

Substituting Eq. (29) into Egs. (26) and (27), apglying Green'’s theorem, yields

Mass balance

fQNTNpmdSH—fQNTNEhLmdQ—fQBTVmNp mdQ—fQBTvnN b A

(31)
+ [ NG dr+ [ N (pv)- nd+ [ NT[p,] v, nd'=0
inwhichB=0N/0z.
Momentum balance
JONT (VN o+ VNP o+ p NV 2= [(BT (o Wy NV ) &2
Ta T T
+f N qur+f N" (ppV+7)- ndF+deN [pn] % nd (32)

—— [ N"Bpd - fNT pm' fomlVal 22— [ NTp,,gsing a2

Substituting Eqg. (30) into Eq. (28) and applyinge@r's theorem yields two equations: one

representing a continuously weighted field andsaatitinuously weighted field, as

Energy balance

continuously weighted:

JN

[hﬂ +%\/2,]1]N;')m+[hm+—;\IZ,T]]N‘*“~ hNp .+ hNp +p YNV mNp] d

2
vh+
,”{ -

_ N - (NS
.ndF_j;N P Vi 9SING A2 J;N 2 d2

2

h+ Nv nd
2

dQ+f NqudFJrf N

2

Vm
+de N' [[pm]]vm |[hm]]+7

(33)

discontinuously weighted:
el T
J,(N7)
o Q(Beh)

:fQ(Neh>T pmvmgSiHHdQ_j;(Neh)T%dQ

7l

[hm +%vfn]Npm+

hﬁ%\"‘m]NEh~ hNp .+ hN“D p YNV mND] @

2
h+ Nv - nd
2

dQ+f (N*") qu+f (N

I llod v ni+ 5

(34)

12



where B®" = 9N*®"/ 9z. Note that, unlike conventional PUM formulatiohgtintegral of Eq. (34) is

evaluated ovef)” U~ = because the shifted enrichment function is non-pser both sides of
the discontinuity.

It is worth mentioning that the Neumann boundarynditions appearing in the finite element
equations are a natural outcome of the Green’s¢hedn other numerical schemes, such as the finite

difference and finite volume, they have to be inguba priori.

6.3 Linearization
The resulting weak formulations, Egs. (31)-(34present a set of semi-discrete nonlinear equations,
where the nonlinearity arises due to the constgutelationships between the pressure and mixture

density and other thermodynamic variables. Sineentinlinearity is due to scalar coefficients (ig.
. Pm» hm, €tc.), and as the constitutive relationshipscarginuous (within a domain), it is convenient

to linearize these equations using Taylor seriggesions up to the first order (standard Newton-
Raphson scheme).

The Taylor series expansion of the temperaiurat the current iteration+1, gives

OT(P6pn) OT(Hh.rh)
T =T(0, o)+ op+ 8prm (35)
( ) apo apm
or in a more concise form
oT' oT'
TH=T + o +—=—0pm (36)
8po 8pm
with
om ="~ an
8pm =P — P

where the superscriptdenotes the iteration number and the prefixdenotes the increment of the
state vector.

Since the background pressure is treated expli@ydescribed in Section 5, its increment over a
time step is set to zero, i.&py = 0, and henceforth

oT'

-I-r+1 — Tr +
dp

0P (38)

m

Following this, the primary state variables andrttime derivatives can be written as

r+1

P =P+ Vo =Vt oV, p=p +6p (39)
- r+1

PR =t 8p V= Uk 6, = P 46D
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The other variables and their time derivatives loamvritten as follows:
Specific enthal py

oh, (9. ) oh,( 1.0
~op oR +—8p 6Pm

m

W = hy (6. o) +

N (Borw) O Repn)
P, Ro¥ 0Py,

m

which after linearization, neglecting the depengdecms, reads

+ op + 0P,

(0N, O°H, My Ve
g _[Bpo op3 PPy, (#+op)

2
+ h;n pO + Hmépm

[8pm PP dpz, (P00

(40)

(41)

(42)

As for temperature, the increment due to the bakut pressure is eliminated, yeilding

b =h, +ghf” op'
oh, p"(;z 43)
W= [apm ap Zmé (Pt 8 )
Slip term
0(Viy, 150 07 (Vs B2 1) 0V R4 )
o~ (Vo) Sv. + op +——=6 44
ol Y (Vs B+ o n on, R o0 P (44)
Similarly, eliminating the background pressure ggiv
o' o'
M= bV +—6 45
Y=y v o (45)
Heat transfer
dQ
1 o(T( d. o hah s 46
Q" =Q(T(8,6h))+ = (46)
AQ(T(H.#h)) (9T (Phorh) . OT(Hh.rh)
r+1 _ T , r m ) m ) 47
QT =Q(T( B oh))+— 7 on Rt (47)
Eliminating the background pressure, gives
dqQ oT
r+1 5 48
=Q +—— aT oy (48)
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Reynolds number

sre — ORE 6vm+8Ré6g,+8 Rbépm
Ny, oy 0P

Using Eq. (A.2), gives

O A P A LN [ AN 2 Gl
[ () 9P i (1) OPm
Eliminating the background pressure, gives
SRe — P;]Signbr’rm)(zi)(svm N ‘Vrrn‘(rZr P : 8,um 5.
:um Nm (,u,m) 8pm
Wall friction
r+1 _ ¢r 8fr
fro=1f"+ 8Re6 Re
Using Eq. (51), gives
o +pﬁnsign(vrm)(Zn) o 5 P Vi (217) ot Orty
e JRe (Mm>2 d Redp,
| (r2f pm\\f\z Oy | 08"
L (Mm> Jp,, |ORe
Eliminating the background pressure, gives
o +p{nsit:Jr1(V“m)(2n) oA g Vo (2r) o V| (2r) apg | ot -
Ly JRe s (Nrrn)z Jp, |0 Re

15

0P,

(49)

(50)

(51)

(52)

(53)

(54)



6.4 Finite element equations
Inserting Egs. (38)-(54) into Egs. (31)-(34) anthg<kq. (1), after rearrangements, gives:

Mass field equations
TNLAT T . Tpnpehsr TNy ehex
fQN NpmdQJerN NépmdQJerN N pmdQJerN N sp .
_ T r r _ T _ T eh ¢~ _ T 1
_BTouNvi,d2— [ BTV, N6p 0 J;B V.N"Sp fQB p"NoV
T r r T r T \1 r
+frdN pCOZNvm-ndr+frdN pCOZNévm.ndr+deN VNSp' - nd’
VAN Y _ T 1 ro, _ T r .
+frdN VINT8p - ndl frdN piNV' .ndl frdN pr N6V, - ndl (55)
— [ N"V;Nép,-ndl — [ NTVN8p - nd’
Ty Ty
T 1 r T r T I
+frDN pvam-ndF+froN ,omNcSvm-ndF+fFON VNSp - nd’

T,,f njehgx TA _
+fruN ViN 6pm-nd1“+quN gd=0

in which pf, andp;, are the C@and air mass densities at the vicinity of therfatee between them,

known from the previous iteration,
Similar discretization can be made for the momenamah energy field equations, that upon putting

them together in a concise form, leads to

Mass field equations
KlléVm + Klsépm + K 145|~)m+ Clép m+ C 1555 m:f 1 (Kolyrm+ CO .rm+ CO]ér r; (56)
Momentum field equations

K8V +K 0P +K 199 +K 50 +C o9V, +C 8p . +C p ,

=f, = (KW + KOp' +K Ol + K+ COY o+ Cof o+ C % ) 7
Energy field equations
K0V, +K.0p, +K.0p +C.pV, +C.0p +C p.+C 4p .
=fy — (KSVp, + K3, + K3+ CO¥  + Co4ff +Co% +C°% ) (58)
K0V, +K . 0p, +K . 0p, +C Vv, +Cp +C,8p . +C .&p ., (59

=1, —(KSVh + Kol + KO+ CW o+ COff +C% ,+C°F )

In a matrix form, these equations can be descrilsed
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Ky 0 Ky Kyllév, 0 0 Cy Culov,
Ka Ky Ko Koylldp _I_C21 0 Cp Coyop
Ka 0 Kg Kglldp, Ca Cqu Cy Coffdpn
Kiu 0 Ku Ku)épn, Cyu Cu Cu Culopn

f, K, O 0 0 ||vy, 0 0 cC cCllv.

_ fa _ Ka K% K% K%||p' _ C% 0 Cy Coullp

fs Ka 0 Kz Kg|en Cs C% C3% Chl|pnm

f] KL 0 K& KeJpn] (Ch CL Ch CLJIp,

(60)

The matrix entries of this equation are given irpApdix C.

Eq. (60) contains an extra degree of freedom agaozd to that if the standard Galerkin method is
utilized to discretize all variables. This entahst the system of equations that needs to be dadve
larger. However, this increase is minor, as theaegegree of freedom is only added to the nodes
where the element is intersected by the interfatevden air and COMoreover, this increase in the
system size is compensated by the advantages @fatttidion of unity method, which is effectively
mesh-independent that allows for the utilizatiomedétively coarse meshes.

Eq. (60) is solved using fully implicit time inteagion scheme.

7 Numerical examples

Two numerical examples simulating €@akage through an abandoned wellbores are sakied
the proposed PUM-SG model. The first numerical gdams designed to simulate initial and
boundary conditions normally existing in typical £g2osequestration sites, and the second numerical
example is designed to simulate an extreme boundamgition that results to phase changes and a
complicated mixture of fluids through the wellbofdne computational efficiency of the model and its

capability to simulate phase changes are highligghte

7.1 CO; leakage: normal boundary conditions

This example simulates GQeakage through an abandoned wellbore subjecteiitial and
boundary conditions typically existing in G@eosequestration sites. Fig. 2 shows the wellbore
geometry and its boundary conditions, and Tabledivs its properties, together with the properties o
the surrounding formation. The objective of thisamwple is to examine the model computational

efficiency and its mesh-independency.
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_ I',: p=1.01325x10° Pa(l atm)
Mixed boundary: ]
[,: g, excluded; g, and g, included

o

4

1000 m

velr, 4,.4, .4,

.

Fig. 2 Geometry and boundary conditionsfor the CO, blowout example.

Table 1 Wellbor e and for mation data.

Well Data

Deviation angle [degree] 90
Well inner radius [m] 0.1
Well casing thickness [m] 0.02
Casing thermal conductivity [W K] 0.6
Roughness of the wellbore [-] 5.0x10°
Formation Data

Surface temperature [K] 275.15
Geothermal Gradient [K/m] 0.058

Initially, the wellbore is filled with air, whichsiunder mechanical equilibrium with the atmosphere

on the top, and in thermal equilibrium with thersunding formation. The thermodynamic state of

CGO; in the reservoir is supercritical witp= 7.5 MPaand p =250 kg/ni. The CQ leakage rate at

the bottom-hole is a function of the reservoir ptee, as

Vi Z:TZ(DR— plzzzb) (61)

where py, is the local reservoir pressure, agdis the coordinate of the bottom-hole, akg is the

effective permeability of the defective cement plagsumedtx 10 *° nt.

This problem is solved using four mesh sizes: 4200and 100, 1D linear finite elements.

Fig. 3 shows the computational results of the mxtlensity at four different points of time before
the CQ front reaches the top of the wellbore. Apparenthg results are very close to each other,
especially those of the 20 elements mesh and tBeeldments mesh. Additionally, the model is
capable of capturing the sharp front between the &1 air, even with relatively coarse meshes. This

clearly implies that the model is computationallijaient and effectively mesh-independent.
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Density (kg/m3) Density (kg/m3)
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0 . 0 L
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- - —t=105s W\ - = -t=105s '\‘\‘
t=120s -\ t=120s -\
-1000 L -1000 —
(@ (b)
Density (kg/m3) Density (kg/m3)
0 5 10 0 5 10
0 L 0 1
E E
'*E_ -500 - "E_ -500 -
[ [
) o
- = =t=105s WY
t=120s -\
-1000 -1000 L
_ _ _ © _ _ (d)
Fig. 3 Mixturedensity at four different points of time: (a) 4 elements, (b) 10 elements, (c) 20 elements, (d)
100 elements.

Fig. 4 shows the velocity, pressure and tempezatistributions along the wellbore for the 20
elements mesh. The figure clearly shows that thecitg and pressure fields are continuous over the
domain, as stated in Eq. (1), but the temperaietd is discontinues due its direct relationshigphe
fluid density, as stated in Section 4.2. The pfdemperature shows that the temperature dropsvas |
as 271 K (-2.15 °C) which is 62.15 degrees less e reservoir temperature. This drop in
temperature is attributed to that, upon leaking slupercritical Cg an immediate expansion of €O

takes place, giving rise to a sudden reductiormiperature due to the Joule—Thomson effect.
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Velocity (m/s)

Pressure (Pa)

5 7.5 10 0.00E+00 1.00E+05 2.00E+05
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@ (b)
Temperature (K)
200 250 300 350
O 1 1

E - .= t=45s

:g_ 500 + —-me- t=75s

o - - =t=105s

Q ——1t=120s

------- Geothermal
-1000

Fig. 4 Computational r(ecs)ults using 20 elements: (a) mixture velocity, (b) pressure, (c) temperature.
7.2 CO; leakage: extreme boundary conditions

This example simulates GOeakage through an abandoned wellbore subjecteéxteeme
boundary conditions. Fig. 5 shows the wellbore gefoynand its boundary conditions. The properties
of the wellbore and the surrounding formation aé¢hmse given in Table 1. The initial conditions ar
similar to that of the previous numerical examglbe objective of this example is to examine the
model computational capability to simulate extrdmendary conditions, which lead to phase changes
and complicated flow pattern along the wellbore.

The CQ leakage rate at the bottom-hole is assumed to Aaanstant velocity, but exhibiting an
increasing pressure and density, as

v,=1m/s (62)
- 1.114575< 10+ 4.44427125 10 t<

2000 SP
9x 1@

(63)
t> 2000 s
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10+ 0.2% t< 2000 s
Pm =

550 t> 2000 s

(64)

I',:q,.49 .4,

1000 m

T

Fig. 5 Geometry and boundary conditionsfor the CO, leakage problem with extreme boundary
conditions.

This problem is solved using 100, 1D linear elersent

Fig. 6 shows the CfQgas/liquid phase distribution along the wellboersus time. The figure
shows that, immediately, after the start of leakage CQ gas displaces the air and a gas/liquid
mixture starts to form at the bottom of the weldbobntil approximately 750 s, the wellbore is
occupied by air, gas G@nd gas/liquid mixture COAfter 1500 s, a liquid Cstarts to form at the
wellbore bottom, shortly followed by a supercriti€20,. After approximately 2000 s, the pure gas
state disappears and the wellbore becomes occupie@0, liquid/gas mixture, liquid C®and
supercritical CQ.

Fig. 7 shows the projection of the g&ates on the C{phase diagram over the length of wellbore
at four different times marked by dashed-linesio B. The phase diagram is plotted using Eq. (B.1)
At timest= 1000 s and = 1500 s, the computed — p curve goes through liquid/gas mixture to pure

gas zone. At = 1750 s, the-p curve goes through supercritical £Oquid CGO;, liquid/gas mixture
and pure gas zones. At 4500 s, thep — p curve goes through supercritical ¢@iquid CG, and

liquid/gas CQ zones. The pure gas in this interval has alreé&hpgeared.
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Fig. 6 Fluid and phase distribution over time.
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Fig. 7 Projections of the CO, stateinto the phase diagram of CO, over thelength of wellbore.

8 Conclusions
Leakage of C@to the ground surface via abandoned wellboreszaitious and considered as one of
the main concerns of applying G@eosequestration technology. It is therefore \italdevelop
accurate computational tools capable of modelllnig kind of leakage. As the problem occurs at a
regional level, it is also vital that the tool bengputationally efficient and mesh-independent. Bojv
this problem constitutes the focal point of thipg@a

Developing an accurate, mesh-independent and catiqnally efficient transient model for such a
problem is challenging due to the presence of fleighamics, buoyancy, phase change,

compressibility, thermal interactions, wall friati@nd slip between phases along the wellbore.ign th
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paper, we show that solving this problem requinesirmovative coupling between the theoretical
formulation and the numerical procedure. Both, agsrg techniques and tailored numerical
discretization procedures are necessary. Theftiriftmodel is utilized to formulate the problem,dan

a mixed discretization scheme, integrating the dsdech Galerkin finite element method, the partition
of unity method, and the level-set method, is z#ili to solve the problem. A one dimensional
compressible two-fluid domain, representing a hoemegus air gas and a mixture 8@th a jump at

the interface between them, is modeled. All impurtahysical phenomena and processes are
considered.

The computational model is tested by solving twaonatical examples with different boundary
conditions. The computational results clearly eiththe occurrence of phase change along the
wellbore, the extent of which depends on the bopndanditions and the thermodynamic properties
of CO,. The paper shows that the proposed computatiomalemis computationally efficient and

effectively mesh-independent.
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Appendix A: Drift flux model parameters
The drift flux model parameters are defined afol:

The wall friction coefficient can be defined as:[1]

16 Re< 240(
Re
=14 5.02 13| Ay
=~ log|—= — 2og| S 4 =5 Re> 240(
16| °|3% Re °| 37 R

where ¢ is the roughness of the wellbore, and Re is thenB®lds number given by

_ pm |Vm| (Zri>
o

Re (A.2)

The heat exchange between the well and the surioyifarmation can be described as
Q=2mrU(T-T,(2) (A.3)

in which T, (2) is the formation temperature, abldis the overall thermal interaction coefficient bét

wellbore, which can be described as [27]:

1

U=s——"— A4
F'itonv + I:iond ( )

where R, and R, are the thermal resistances of the fluid and gasmaterial, respectively,

described as
Ronv = 1/(10) (A5)
I:%ond = I’o ln ( I’o/rw)/A p (A6)

in which 1, is the outer radius of the WeIIbone}p is the thermal conductivity of the casing material

and h is the convective heat transfer coefficient, dibsct as
h=Nux,/(2r) (A7)
where Nu is the Nusselt number, defined as

0.664R&? P Re 20C(

u= A.8
0.023R&% P¥* Re 20( (A.8)

in which Pr is the Prandtl number given by
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Pr:K: Mm/pm — Mmcpm (Ag)
@ Ao/(PuCon)  Am

where ¢, and )\ are the specific isobaric heat capacity and thewoaductivity of the mixture,

respectively.

The slip parametey is defined as [28]

f
Y (Vs Pr ) = 1_Gf %[(Q} -1y, + \4,]2 (A.10)
G m

in which f; is the gas volume fractionp, is the gas densityp, is the liquid densityy, is the drift

velocity, and
P = FCope+(1— 1C) oL (A.11)

The drift velocity describes the variance in veliesi between phases of a mixture. It can be
described as [17]:

Vv (V p,p )_(1_CofG)VcK(vaKqu0> n(9>
d m! MM m)
G fG\/pG/pL +1-GC, fg

where:

(A.12)

« m(6) is an inclination adjusting function, described as
m(#)= m(cosd)™ ( 1+ sirg)™ (A.13)
in which my, n,, andn, are fitting parameters.

* K, is the Kutateladze number, described as

Cku

n

in which C, =0.008 andC,, =142 [10], and N; is the Bond number, defined as

K =

u

N 2
14+ 21 (A.14)
C2C

w

g(p,_ _pe)

OaL

Ng = 4r°

(A.15)

where o, is the gas-liquid surface tension.

* v, is the characteristic velocity, given by
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(A.16)

N

gog. (pL - pe)

V. =
c 2
PL

K is a smooth transition functiomtroduced to make a smooth transition of the drétocity

between the bubble rise and the film flooding flegimes, described as [10]:

1.53 fo <a
K—L%+&ﬁlﬂgkm%w£;ﬂ}qggg% (A.17)
QH—a
COKu fGZaZ

in which a_and a, are two transitional gas volume fractions corresiag to the bubble rise and the

film flooding flow regimes, respectively.

* C, is a profile parameter, calculated as [17]:

< (A.18)

max

1+ (Cra — In?

G =

in which C,__, is the profile parameter for low gas fraction anpds a parameter reflecting the effect of

the flow status on the profile parameter, given by:

(A.19)

where Bis the threshold parameter above whighstarts to drop below, ., , described as [10]:

B:i—1.0667 (A.20)
and ¢ is calculated as
e [Vin|
B=max| f; R, , K< (A.22)
sgof

in which F, is a multiplier to adjust the sensitivity of theofile flattening to the gas velocity, and

Vo IS @ gas superficial velocity at which floodingcacs. F, is equal to 1, according to Sét al.

S

[17], andVyy is calculated as:

1

’ (A.22)

Pty

Pe

Vg

f:Ku

C
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Since there is no experimental data to determiedfiting parameter<,__., m,, N, n,, a and

a,, the available values for water-gas mixture isdusestead, that readC,, =1, m, =1.85

n, =0.21, n,=0.95, a =0.06, anda, = 0.21 [17].
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Appendix B: Constitutive equations

B.1 CO; constitutive equations

Sequestrated CGOn a geological formation most likely exists irsapercritical state. When the €O
plume reaches an abandoned wellbore and leakstjntee CQ phase can change from its initial
supercritical state to liquid, liquid/gas mixture gas, depending on the pressure and temperature

conditions at any certain level in the wellboreg.F8.1 shows the phase diagram of ,C&ccording to

this diagram, if the temperature and pressure drelpw the critical valuesT: > =304.1K and

pc> =7.38MPa (73.8 ba, the CQ phase changes to liquid, gas or a liquid/gas mextThe

liquid/gas mixture is formed when the pressure Equa the “saturated vapor pressure”; i.e. the
pressure at which the gas (vapor) phase and thigl lfghase are in thermodynamic equilibrium (along

the solid line between the liquid and gas phaséisdrphase diagram).

./

Solid

Log Pressure

Supercritical

Liquid

7.38 MPa | Py

Critical point

Triple point

T
3041 K Temperature

Fig. B.1 CO, pressure-temper atur e phase diagram.

Thus, the C@ constitutive properties must cover all phases thajht be formed along the

wellbore, including supercritical, liquid, gas aiglid/gas mixture (saturated vapor region).
Equation of state

We use the Redlich and Kwong [29] equation of stgiteen as

RT A,
Voh, T(viD,)

p= (B.1)

where V is the molar volume of the GOphase, R is the universal gas constant (

=8.314462 J/(mol K), and&,, and bCOZ are the intermolecular attraction and repulsiogpeetively.

Spycheret al.[30] utilized experimental data to evaluate theaemeters, giving

8, =7.54— 413 10°T Paf ¥ mol

(B.2)
b, =27.8x10° mi /mol
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The molar volume - density relationship is defitasd

MCOZ (B 3)
iy :
where M, is the molar mass of GQ= 44x 10° kg/mo).
Substituting Eq. (B.3) into Equation (B.1), aftearrangement, yields
30,000, | 5 RTR, 2 2| 2 o[ RT :
pT0‘5 P+ Mcoz 0 — p_l_05 + bcg p-+ MCQ _p p— M co =0 (B4)

Using this equation, any of the three thermodynawaicables of CQ temperature, density and
pressure; can be calculated as a function of therdtwo. For the liquid/vapor mixture, the averaged
mixture density is used in this equation. Fig. Btibws three isothermal curves for LOThe figure
clearly shows the supercritical behavior of {J0r temperaturest = 5C°C andT = 70°C, where the
gas and the fluid are combined to form a singl&flkor T = 30°C, there is a sharp transition between

the vapor phase and the saturated liquid phase.

1000

500

peoa(kg/m3)

— T=30°C
---- T=50°C
---- T=70°C

0 100 200
p(x10%Pa)

Fig. B.2 Isothermal curves of CO, in density-pressure phase diagram.

Specific enthal py
The CQ specific enthalpy presented by Span and Wagnéiig3tilized. It reads
of°  off

_|_
T or

of'

h=RT +6 ] (B.5)

1+7

06

with f° representing the Helmholtz energy of an ideal gas, f* representing the residual part of

the Helmholtz energy. They are functions of tempegeand density, as

8

£0(6,7)=In(6)+& +ar+&In(7)+ 3 & In[1— exp(—r6 ) (B.6)
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and

7 34 39 2
fr(8,7)=>"ns%r" +5 nstrte™ £33 potrt enll A
Ijz i=8 i=35 (B?)
+Z nA"se (6-2°-D (r-1°

i=40

with
A:{(l—T) +A [(5—1)2}”(23”}2 + 86— (B.8)

where 7=T.% /T and 6=p/pc* are the inverse reduced temperature and reducasdityle

respectively; andp:* is the CQ density at the critical condition. The readeraerred to Span and

Wagner [31] to obtain the values of the coefficseat, 6", n, d,t, ¢, o, ¢, 5., 7,C, D, A,
B anda.

Fig. B.3 shows the CQOspecific enthalpy versus pressure for differemygeratures. As for the
density-pressure phase diagram, it shows the stfpeatbehavior of pure COatT = 45C andT =
60°C, while forT = 3C°C, there is a clear distinction between the gas@lznd the saturated liquid

phase.
150
— T=30°C
i ---- T=45C
RE ---- T=60°C
2
2 -50
-250
0 100 200
p(x10%Pa)
Fig. B.3 CO, specific enthalpy versus pressurefor different temperatures
Viscosity

The CQ viscosity can be determined following Fenghetal.[32], as:
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uzl.ooegxﬁ/[ 0.235156 0.491266#1+ 5.211155 210 'l

+5.347906< 10° ( |n*)3— 1537102 19 m)“h 0.4071149 40
0.241169% 10 )°

=

B.9
+0.719803% 10 p? + (B-9)

+ 0.29710%2 18)°

8
—0.1627888& 107”2

-
in which 7" =T/ 251.196is a reduced temperature, whdres in Kelvin; p is the density of CQIin
kg/m*; and . isin pPa.s

Fig. B.4 depicts CQviscosity versus pressure for three different terafures. A similar trend in

phase change as that for the &@nsity, Fig. B.2, can be observed.

0.1

0.05

xe2(mPa.s)

<~ T=30°C
s ---- T=45C
---- T'=60°C

0 100 200
p(x105Pa)

Fig. B.4 CO, viscosity versus pressure for three different temperatures.

B.2 Air constitutive equations
The air is assumed to be always in a gaseous phake wellbore, and hence the ideal gas law is

utilized to establish its constitutive equations.

Equation of state
Based on the ideal gas theory, the relationshiwdxt density, pressure and temperature of air ean b
described as

_pRT

P=

(B.10)

air

where M, is the molar mass of ai(28.97x 10°  kg/ma).

r
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Specific enthal py
The enthalpy of air as an ideal gas is given by

h= c;”T (B.11)
in which c3 is the specific isobaric heat capacity 1006 J/(kg K).

Viscosity
The viscosity of air is given by Sutherland’s redat[33], as

p=1 46( L j (8.12)
A T+112 '

whereT is in Kelvin andy is in pPa.s.
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Appendix C. Components of the finite element matrices
Kn:—fQBTprrnNdQ—i-de NTpCrOZN~ndF—deNTpa"N ndr+f N'p'N-nd (C.1)

—quTvr;NdQJrf NTV.N- ndl (C.2)

Ty

_ T,,r nj€h Ty,r N\ eht ek T eh
~—[ BTN dQ+deN VNS . ndl— [ NTYN n<f+fFDN YN & ndr

Ty

(C.3)
Cp= fﬂ NTNd$ (C.4)
C.= fﬂ NRNRTS) (C.5)
Kflz—fQBTp;‘NdQJrj;d NTpC'OZN-ndeL/LdNTpa"N ndF+fI N"p'N- nd"  (C.6)
Co, = fﬂ NTNd© (C.7)
C, = fﬂ NENRTS) (C.8)
f :—f N'q, dr (C.9)
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