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Abstract

Delays and complications in different schedules are a common and widely applicable
issue in modern society. These problems, if severe enough can cause a preexisting
schedule to become infeasible, thus creating additional problems with varying levels
of severity. The focus of this work is to showcase a systematic method for modelling
potential disturbances in the execution of a schedule, and to provide algorithms which
can help analyze the maximum bounds in which each constraint of the schedule is
allowed to change without making the schedule infeasible. Presented is a method that
is proven to provide results for the entire schedule with cubic complexity with regard
to the number of jobs, as well as a heuristic method with results that approximate the
correct ones, but runs considerably faster.

1 Introduction
Scheduling problems are ones of great importance for society and have been for thousands
of years. Currently, solutions to different varieties of scheduling are being utilized in a wide
range of areas [12] [15] [14]. While such problems can be fairly trivial for smaller sets of
actions and constraints (for instance if an individual would only have to purchase groceries
then use them to prepare a meal at any arbitrary point during the day, the solution is quite
easy to find), the time it takes to find a solution increases drastically with an increase of
conditions and constraints (due to most scheduling problems being NP-complete[18]). As
such, due to the lack of a catch-all solution that runs in polynomial time, various techniques
that take into account the intricacies of specific scheduling variations have been devised to
generate feasible schedules based on sets of operations and constraints. Presented in this
paper is one such type of problem, as well as a method for analysis of solutions to the
problem and the effect that changing constraints can have in them.

Problem background
The aim of this research is to gain an understanding of how scheduling for an industrial
printer is carried out, and how the constraints of a particular schedule affect performance.
In particular, this research focuses on an abstracted, more theoretical version of a scheduling
problem, making its results more widely applicable. A more generalized abstracted form of
the goal of the research group as a whole is to quantify the extent of change a given schedule
can withstand before requiring revision.

Research Question
The research question assigned in particular is : "How much do constraints have to change
individually to cause a schedule to become infeasible?".

This question of great importance to scheduling for an industrial printer, as well as
numerous other tasks that can be reduced to a scheduling problem. Due to a wide array of
possible issues or changes in an environment depending on the context, scheduling problems
often change with respect to the conditions under which a given schedule holds. Planes can
be delayed due to unexpected weather conditions[2], projects development can fall behind
due to poor assumptions in their underlying planning. Constraints of problems are in a
constant flux. As such, identifying the extent to which constraints can change, while still
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having a schedule be effective is a topic of great interest.
This question can be broken down into three sub-questions:

• Which constraints have great (if any) impact on a schedule’s performance?

• How much does each individual constraint affect performance?

• What would an algorithm that determines this for an entire schedule, as opposed to a
single constraint look like?

2 Related Work
The bulk of the academic work already done on flexible manufacturing systems has focused
on various algorithms and heuristics for creating schedules [6] [11] [10], compliant with the
various constraints of a given scheduling problem or a set of scheduling problems. Often-
times these papers aim to create, or approximate the "optimal" schedule with regard to
some predefined metric (most commonly maximum lateness in execution time of the entire
schedule [17] or minimizing total completion time [8]). Analysis of already existing schedules
has received considerably less attention however, thus warranting this paper. Fortunately,
a lot of work has been put toward creating formal definitions of a flexible manufacturing
system. This work in particular will stick closely to the setup detailed in [19]. Like in that
work, the mapping of operations to machines is assumed, but the flow of operations, and the
sequence of jobs is fixed, however, instead of assuming that a product is processed exactly
twice by exactly one of the machines, we take the considerably broader problem of having
products be processed by an arbitrary amounts of machines an arbitrary amount of times.
This way, a wider variety of models and schedules can be analyzed, though it is worth noting
that one of the methods described works considerably better with the more simplified setup.
Additionally, like in the work referenced [19], due dates are relative to the setup times, and
missing any one of them in a given schedule makes the schedule considered infeasible.

3 Problem Description
The problem solved in this paper relates to flexible manufacturing systems (FMS). An FMS
processes products according to a particular flow through processing stations [19]. A more
complete definition of such a system is given in [19]. In particular, this paper concerns re-
entrant FMSs, where products can pass through the same processing stations twice. Such
FMSs can be modelled as a re-entrant flow-shop according to the procedure described by
van Pinxten, Waqas and Geilen . A re-entrant flow shop with sequence-dependent set-up
times and relative due dates, is a tuple (M,J, r,O, ϕ, P, S, SS,D) [19].

The objective of the strategies devised for this paper was to create a comprehensive
methodology to determine the maximum change in every one of the constraints for which
a given, previously feasible schedule can still remain feasible. In turn, this way any change
more extreme than the one found can be assumed to make the given schedule infeasible. In
terms of real life applications, a change in a single constraint can be a delay caused by a part
that takes a certain additional amount of time to repair, a change in a deadline, and many
more. Such a change can be represented as an increase of the weight of a single edge in the
graph representation of a flow-shop model schedule graph. Since such a schedule is feasible
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if and only if there are no positive cycles in its graph representation, the problem can be
reduced to finding the individual largest increase of the weight of each edge, for which any
further increase, will make the graph contain at least one positive cycle.

Figure 1: Image representation of the graph of a flow-shop model schedule

4 Algorithm for determining maximum tightening of
single constraints

As discussed earlier, the graph representation of a schedule containing any positive cycle
indicates that the schedule it represents is infeasible given the constraints under which it
is to operate. Therefore, if the change of the value of a single constraint (represented by
the weight of an edge) causes at least one positive cycle to appear in the graph, then it
can be concluded that this change in constraints has made the schedule infeasible, given
that said schedule was feasible prior to the change. Since changing the weight of a single
edge in a graph does not change the structure of the graph, this implies that at least one of
the negative cycles which exist in the graph needs to turn positive. Since the total weight
of a cycle is equal to the sum of all edges it contains[4], this means that in order for a
cycle containing an edge ei to become positive only by changing w(ei), the change in edge
weight ∆w(e) needs to satisfy ∆w(e) >

∑c
n=1 w(en), where c is the number of edges in the

cycle and en is the nth edge in that cycle. Since having at least one negative cycle turn
positive causes a schedule to become infeasible, if, for a particular value of ∆w(e), the above
inequality holds for any cycle containing e, then the schedule would become infeasible for
that value of ∆w(e).
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Base algorithm
Showcased here is an algorithm that, given a weighed, directed graph G, with no positive
cycles, as well as an edge in that graph e, determines the minimal amount ∆w(e), for which
increasing w(e) by any number greater than ∆w(e) would cause the graph to contain a
positive cycle.

The algorithm makes use of Bellman-Ford’s algorithm for finding the shortest path in
a graph[20]. Bellman-Ford’s algorithm requires a graph with no negative cycles in order to
function. Since the G contains no positive cycles, inverting the values of all edge weights
would cause it to contain no negative cycles.

Lemma 4.1. Given a feasible schedule, the maximum value by which a single constraint
represented by the edge e can be increased can be determined using reducing the schedule into
a graph and applying the following algorithm:

Algorithm 1 Algorithm for finding maximum tightening of an individual constraint
Require: g is a graph with no positive cycles and an edge e from node s to node d in g
Ensure: the value returned is the maximum increase of the edge e
i← 0
while i < |E| do

wi ← −wi

i← i+ 1
end while
bf ← BellmanF ord(d)
dist← bf [s]
delta← dist+ w(e)
return delta

Proof. This subsection contains a proof that the algorithm described above correctly deter-
mines ∆w(e). d will refer to the destination of e and s will refer to the source of e. The
length of the path from d to s calculated by Bellman-Ford’s algorithm will be referred to as L

First, we will prove that every cycle containing e can be represented as the edge e and
a path of arbitrary length from d to s. If a cycle contains e, then there must be a way to
traverse e an arbitrary amount of times after it has been traversed once. In order to reach a
state from which e is directly accessible, an agent must be able to reach s. Additionally, after
taking e, a hypothetical agent traversing the graph would always end up at the destination
d. Therefore, in order to complete a cycle containing e, an agent would need to traverse a
path from its destination to its source.

In the algorithm mentioned above, Bellman-Ford’s algorithm is used to find the shortest
amongst all paths from d to s, with the values of all edges inverted. With the inverted value
of w(e) added to complete the cycle, the result that this algorithm returns is guaranteed
to be positive due to the assumption that there are no negative cycles in the initial graph.
It is also the total weight of the shortest cycle in the inverted graph containing e, as the
distance of the path between d and s is minimized, as Bellman-Ford’s algorithm is proven
to determine the shortest path[], w(e) is constant, and every cycle containing e being a
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combination of e and a path from d to s. This means that this algorithm returns the total
weight of the longest cycle in the original graph (since all cycles there are negative, it also
returns the weight of the cycle with lowest absolute value).

Intuitively, it can be seen that increasing the w(e) by the computed value ∆1w(e), the
total weight of the cycle will become 0, as ∆1w(e) is the inverse value of the total weight.
Thus, increasing e by any arbitrary amount more than ∆1w(e) will cause the graph to con-
tain a positive cycle. In order to prove that ∆1w(e) is indeed the minimum possible value
of ∆w(e), a proof by contradiction will be used.

Assume that ∆2w(e) exists, where ∆2w(e) < ∆1w(e) and where incrementing w(e) by
any value greater than ∆2w(e), a positive cycle will appear in G. Then there must be a
path from d to s with length L1, where:

L1 + w(e) + ∆2w(e) >= 0 (1)

However, we know the following:

L > L1 (Bellman-Ford’s algorithm)
∆1w(e) > ∆2w(e) (given from assumption)

Therefore:
L1 + w(e) + ∆2w(e) < L+ w(e) + ∆1w(e) (2)

L+ w(e) + ∆1w(e) = 0 (3)

As ∆1w(e) is the inverse value of L+w(e), thus L1+w(e) +∆2w(e) < 0 creating a contra-
diction.

Therefore ∆1w(e) is the minimal amount, for which increasing w(e) by any number greater
than ∆1w(e) would cause the graph to contain a positive cycle.

Complexity
Since all operations described in the algorithms are done sequentially and are not re-
peated, the total complexity of the algorithm is equal to the highest complexity among
all operations[1].

The complexity of inverting all edges in the graph is linear with respect to the number of
edges, so O(|E|).

The complexity of running Bellman-Ford is O(|V ||E|) in the worst case. [20].

Finally, the complexity of adding w(e)+D(s) then returning the result is constant, so O(1)

Out of all the terms, O(|V ||E|) is clearly the biggest, thus the complexity of the algorithm
described above is equal to that of Bellman-Ford.
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4.1 Running time for entire graph
To run the algorithm for every constraint, one can simply invert all edges in the graph once,
then repeat the entire procedure after that for every edge ei in the graph. This method
has a complexity equal to that of Bellman-Ford multiplied by a factor of |E|. This factor
can instead be substituted by a factor of |V | by maintaining a matrix of the distances from
each node to each other node and calculating the distances starting from each node using
Bellman-Ford. This way, instead of Bellman-Ford being run once for each edge in the graph,
it can be run once for each node. Typically, nodes possess considerably more edges than
they do nodes, up to |V |2 [9]. This optimization comes at the cost of increased memory
usage however, as instead of having to track the distance from one node to each other node,
the program would have to keep track of the distances between each pair of nodes in the
graph. Additionally, from the problem description, it can be determined that each node can
have at most four outgoing edges (one setup time edge, one due date edge, one job edge and
one schedule edge). Thus the following holds:

|E| <= 4 ∗ |V | (4)

This means that time complexity-wise in big-Oh notation[1], |E| is equivalent to |V|.

4.2 Potential improvement of algorithm
Since the problem of finding the cycle with highest total weight (thus lowest absolute value
of that total weight, since every cycle is negative initially) has essentially be reduced to a
shortest path problem, the complexity of the algorithm to solve it is largely determined by
the algorithm for finding the shortest path. Dijkstra’s algorithm was considered, due to
its significantly lower complexity of |E| + |V | ∗ log(|V |) [7], however was concluded to be
inapplicable due to requiring the graph to contain no negative edges. Running a shortest
path algorithm on the inverted graph will always cause it to have some amount of negative
edges, as all job edges, setup time edges and schedule edges are positive.

The Floyd-Warshall algorithm [16] is an algorithm that finds the distance between each pair
of nodes in a given graph with complexity O(|V |3). For an arbitrary graph, this would be an
improvement complexity-wise to the O(|V |2 ∗ |E|) of the Bellman-Ford solution, but since
the number of edges is proven to be at most a constant factor of the number of nodes, with
that constant factor being smaller than 4, the two complexities are effectively equivalent in
terms of big-Oh notation.

A faster, but possibly lacking complete accuracy heuristic approach is also possible. This
heuristic assumes that the weights of job edges, setup edges and relative due date edges are
similar across the graph. If these assumptions hold, it can also be assumed that for vertex v1
and vertex v2, both representing job of the same machine, the overall total weight of a route
between v1 and v2 is, on average lower when going through edges of a different machine,
due to the sum of a setup time edge and its corresponding relative due date edge is always
negative (as otherwise a negative cycle would exist), as well as the previous assumption
about the similarity of edge weights. In order to provide a faster runtime, the algorithm
described in this subsection assumes that a path between two nodes corresponding to jobs
of the same machines, sufficiently close to the shortest path between those two nodes in the
entire graph can be found by using only edges where both nodes of the edge correspond to
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jobs done by that machine. The algorithm runs the same way the main approach does, two
exceptions:

• For edges between two nodes corresponding to different machines, the heuristic ap-
proach immediately returns |Si + Di|, where Si is the weight of the setup time edge
between the two nodes, and Di is the weight of the due date edge.

• For edges between two nodes corresponding to the same machine, the usual approach
is taken, with the difference that instead of running Bellman-Ford for each node in the
entire graph and each edge in the entire graph, Bellman-Ford is only run for all nodes
corresponding to jobs of the machine and all edges between them.

This reduces the worst case complexity to O(|V | ∗ |V ′| ∗ |E′|), where |V ′| and |E′| corre-
spond to the number of vertices in corresponding to the machine with the most jobs assigned
to it, and the number of edges between those vertices respectively. A downside of this ap-
proach is that results from it are not guaranteed to be entirely accurate, as there are cases
which can be described which make it very subpar. Particularly, when the assumptions
stated do not hold. For instance, if the weights of all edges within a particular machine are
considerably higher than the weights of edges within the next one, it may be beneficial to
take an edge to the machine with edges with higher weight, offsetting the "cost" of taking
a due edge.

5 Experimental Setup and Results
The data set used for the experiments consisted of multiple benchmark problems, as well
as a schedule for each problem. The benchmark problems each consisted of three machines
- one taking care of two operations and the other two only taking care of one each. There
were two main sets of problems - ones with 100 jobs and ones with 500. There was also a
smaller set of test problems, which were easier to visualize and debug on. Each schedule
corresponding to a problem was generated using the Gurobi solver [5] with the solver set
to minimize latest finishing time. All numbers in the data were taken from a model for an
industrial printer, and were provided by Canon [3]. Provided in total were 450 schedules
with 1f00 jobs and 450 schedules with 500 jobs.

5.1 Metrics used
In order to evaluate an algorithm’s effectiveness, three metrics were used:

• Factor of overestimation - A metric used to judge algorithms based on the closeness of
their results to those of the proven to be fully correct base algorithm. Calculated by
using the average for running the algorithm on the 100-job schedules and the 500-job
schedules separately. Since all algorithms described in this paper either overestimate
the optimal result or return it, for a single constraint edge, this metric is defined as:

(returned_result− optimal_result)/optimal_result+ 1 (5)

Here, a score of 1 would mean that the returned result exactly matches the optimal
one (thereby overestimating the optimal result by a factor of 1), whereas a higher score
would mean that the result is less close to the optimum.
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• Average time spent - This metric consists of two values - The average amount of time
spent (in seconds) for running the algorithm on the 100-job schedules and the 500-job
schedules. The standard deviation for the running times across the 500-job schedules
is also provided.

5.2 Machine specifications and properties of the testing code
Provided in this subsection is information regarding the specifics of the environment in which
the experiment was conducted. They can be used as a point of reference when attempting
to reproduce the results of this work.

5.2.1 Hardware

• CPU: Intel Core i7-8750H @ 2.20GHz

• RAM: 16 GB

5.2.2 Software

• Programming language: Python 3.9

• implementation of Bellman-Ford: Networkx library [13]

5.3 Performance of base algorithm
• Factor of overestimation: 1(100 jobs), 1 (500 jobs)

• Average time spent: 1.68s(100 jobs) 153.41s (500 jobs)

• stdev of time spent: 45.48s (500 jobs)

(a) 100 jobs (b) 500 jobs

Figure 2: Distribution of time taken by the optimal solution algorithm to calculate optimal
δw(e) for every node in the graph (in seconds)
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5.4 Performance of heuristic algorithm
• Average factor of overestimation: 3.02(100 jobs), 2.06 (500 jobs)

• Median factor of overestimation: 2.105 (500 jobs)

• Average time spent: 0.28s(100 jobs) 11.24s (500 jobs)

• stdev of time spent: 8.18s (500 jobs)

(a) 100 jobs (b) 500 jobs

Figure 3: Distribution of time taken by the heuristic algorithm to calculate optimal δw(e)
for every node in the graph (in seconds)

6 Discussion
As showcased in the previous section, the time it takes to complete an analysis of a sched-
ule using the base approach increases drastically with an increase of jobs. More precisely,
going from 100 jobs to 500, caused an average computation time increase by a factor of
more than 90. As such it can be concluded that the base algorithm would not be a suitable
choice for computing significantly larger varieties of the problem. In comparison, due to
its approximate nature, computation times for the heuristic approach increased by the still
large, but significantly less so factor of 40. This was coupled with overall significantly better
performance time-wise. The obvious downside was the decrease in accuracy with regard to
finding the optimal bound. A median factor of overestimation of 2.105 means that for more
than half of the 500-job schedules, the average value found for δw(e) is more than double
its true value. Additionally, since the values found using the heuristic are always equal to or
greater than the true values of maximum changes in constraints, this means that an actual
change of constraint equal to a value computed using the heuristic is more likely than not
to make the schedule infeasible. A positive way to make use of the computed value could
be to run a small number of schedules and/or individual constraints through the optimal
algorithm then to determine the average factor of overestimation and then to counteract
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the increase with a division by some predetermined multiple of the factor of overestimation.
This way, a sort of confidence interval for the true value of δw(e) could be created.
Finally, it is worth noting that the dataset used had large differences of the values of setup
edges between different machines. As detailed in the section describing the heuristic ap-
proach, this type of setup significantly deteriorates its performance with regard to accuracy.
It is possible (although mostly author speculation) that the method works considerably
better with datasets with more consistent setup times between machines.

7 Responsible Research
The ethical issues concerning this work mostly revolve around the ways in which results
produced from the methods described are used. An infeasible schedule can have serious
ramifications for thousands if not millions around the world if on a large enough scale. The
base algorithm finds the exact bounds at which a schedule becomes infeasible, so some buffer
should be considered, in order to never actually reach near points of infeasibility. This holds
doubly so if an entity decides to use the heuristic solution, as that one specifically always
overestimates how much constraints can be changed at a non-constant rate. Furthermore, it
is worth noting that this study performed testing on a limited set of data with very specific
characteristics. As such, if one decides to use this research to achieve a related goal, they
must consider the context in which the methods detailed here will be used.
To make this research reproducible, theoretical implementations of the algorithms used
for experiments have been explained in great detail. Furthermore, the test problems and
schedules used in experiments are uploaded in the repository containing this paper. Finally,
specifications of the hardware used to run experiments as well as the programming language
and library used for Bellman-Ford have been detailed.

8 Conclusion and future work
This paper studied the problem of analyzing schedules for flexible manufacturing systems
with regard to constraints. A method to find maximum tightening of individual constraints
was introduced. The algorithm described has the advantage of being relatively easy to
implement. Additionally, this paper presented a significantly faster approximation of it.
The base approach was proven to function correctly, but its O(|V |2 ∗ |E|) complexity when
run for every constraint in a problem proved to be an issue, due to the fast growth in required
execution time. Since the bottleneck of the current algorithm is the shortest path algorithm
used, the way research into this topic can be continued could be to find a more appropriate
shortest path algorithm given the unique set of constraints the model graph possesses.
Another future direction would be an improved heuristic approach which sacrifices complete
accuracy in exchange for shorter execution time.
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