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Bounded Self-Weights Estimation Method for
Non-Local Means Image Denoising

Using Minimax Estimators
Minh Phuong Nguyen and Se Young Chun, Member, IEEE

Abstract— A non-local means (NLM) filter is a weighted1

average of a large number of non-local pixels with various image2

intensity values. The NLM filters have been shown to have3

powerful denoising performance, excellent detail preservation4

by averaging many noisy pixels, and using appropriate values5

for the weights, respectively. The NLM weights between two6

different pixels are determined based on the similarities between7

two patches that surround these pixels and a smoothing para-8

meter. Another important factor that influences the denoising9

performance is the self-weight values for the same pixel. The10

recently introduced local James-Stein type center pixel weight11

estimation method (LJS) outperforms other existing methods12

when determining the contribution of the center pixels in the13

NLM filter. However, the LJS method may result in excessively14

large self-weight estimates since no upper bound is assumed,15

and the method uses a relatively large local area for estimating16

the self-weights, which may lead to a strong bias. In this17

paper, we investigated these issues in the LJS method, and then18

propose a novel local self-weight estimation methods using direct19

bounds (LMM-DB) and reparametrization (LMM-RP) based on20

the Baranchik’s minimax estimator. Both the LMM-DB and21

LMM-RP methods were evaluated using a wide range of natural22

images and a clinical MRI image together with the various levels23

of additive Gaussian noise. Our proposed parameter selection24

methods yielded an improved bias-variance trade-off, a higher25

peak signal-to-noise (PSNR) ratio, and fewer visual artifacts when26

compared with the results of the classical NLM and LJS methods.27

Our proposed methods also provide a heuristic way to select a28

suitable global smoothing parameters that can yield PSNR values29

that are close to the optimal values.30

Index Terms— James-Stein estimator, minimax estimator,31

non-local means, center pixel weight, bounded self-weight, image32

denoising.33

I. INTRODUCTION34

IMAGE denoising is a fundamental task in image process-35

ing, low-level computer vision, and medical imaging algo-36
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rithms. The goal of denoising is to suppress image noise 37

when restoring desired details using prior information about 38

the images. For example, based on prior information regarding 39

“smooth images”, a simple filter, such as a Gaussian filter, can 40

be designed as a weighted average of the image intensities 41

of the pixels in the local neighborhood with non-adaptive 42

weights. However, this type of filter blurs the edges and 43

details of images because these features are not captured in 44

the assumed prior information. Many edge-preserving denois- 45

ing methods have been proposed, including bilaterial fil- 46

ters [1], [2], anisotropic diffusion [3], non-local means (NLM) 47

filters [4], [5], collaborative filters (BM3D) [6], and total 48

variation filters [7]. Many filters, including bilaterial filters, 49

anisotropic diffusion, and NLM filters (but, not BM3D, 50

see [8]), can be represented as the weighted averages of 51

adaptive weights or adaptive smoothing [9]. It should be noted 52

that it is important to select appropriate weights in these 53

types of filters in order to obtain improved denoised image 54

quality [8]. 55

Classical NLM filters use the similarities between two local 56

patches in a noisy image to determine the weights in non- 57

local adaptive smoothing [4]. The NLM weights are obtained 58

by first calculating the Euclidean distance between the two 59

local patches, which is denoted d , and then by evaluating 60

exp(−d2/h2), where h is a smoothing parameter. This method 61

allows higher weights to be assigned to pixels with similar 62

patches so that edges and details can be preserved through 63

non-local weighted averaging. 64

There are four different factors that determine the output 65

image quality of a NLM filter in terms of weights. 1) The 66

first factor is the similarity measure d . The Euclidean distance 67

is a usual choice [4], but other similarity measures have also 68

been proposed, such as hypothesis testing with adaptive neigh- 69

borhoods [10], principal component analysis (or the subspace 70

based method) [11], [12], blockwise aggregation [13], rotation- 71

invariant measures [14]–[16], shape-adaptive patches [17], and 72

patch-based similarities with adaptive neighborhoods [18]. 73

In multimodal medical imaging, inaccurate weights for noisy 74

molecular images were enhanced by using additional high 75

quality anatomical images [19], [20]. 2) The second factor 76

is the strategy for determining the smoothing parameter h. 77

Optimization strategies have been developed based on Stein’s 78

unbiased risk estimation (SURE) method for NLM with 79

Gaussian noise [21], [22], NLM with Poisson noise [23], and 80

blockwise NLM with Gaussian noise [24]. 3) The third factor 81

is in selecting the function to use to determine the weights, 82

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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such as exp(−x2). Other functions have also been proposed83

to calculate the weights, such as compact support func-84

tions [25], [26] and statistical distance functions [27], [28].85

4) The last factor, which is the focus of this article, is in how86

best to determine the self-weights for the same pixel in the87

input and output images.88

The NLM weights for two different pixels are essentially89

determined by the distance between the two noisy local90

patches around these pixels. However, the weights for the91

same pixel, or the self-weights, are not affected by the92

noise in the patches and the distance is always 0. For an93

extremely noisy image, the self-weights will be relatively too94

large when compared to the other weights, which will cause95

the filter output to be almost the same as the input noisy96

image. Therefore, the use of appropriate self-weight values can97

significantly affect the quality of the denoised image. Many98

researchers have investigated strategies for determining the99

self-weights, which are also known as center pixel weights,100

in order to alleviate the so-called “rare patch effect.” For101

the classical NLM filter proposed by Buades et al., the self-102

weights were set to be either one or the maximum weight103

in a neighborhood [4]. This strategy guaranteed that at least104

one or two of the largest weights would be the same. Doré105

and Cheriet also used the maximum weight in a neighborhood106

as the self-weight, but only if that maximum weight was107

large [29]. Brox and Cremers proposed a method to have108

at least n number of the weights to be the same [30], and109

Zimmer et al. considered the self-weight to be a free para-110

meter during the estimation process [31]. Salmon developed111

a SURE-based method for determining the self-weights that112

accounted for the noise [32].113

Recently, Wu et al. proposed a method to determine the114

self-weights using a James-Stein (JS) type estimator [33].115

The idea of that work was to use a JS estimator to determine116

the reparametrized self-weight in a local neighborhood (called117

the local JS estimator (LJS)). The LJS method yielded the118

best peak signal-to-noise ratio (PSNR) results when compared119

to other existing self-weight selection methods [4], [32].120

However, the method had some limitations. First, the LJS121

could yield self-weights that were theoretically much larger122

than 1 because no upper bound for the self-weights was123

assumed, and this may lead to severe rare patch artifacts. The124

JS estimator does not guarantee its optimality for bounded125

shrinkage parameters. Second, the original LJS method was126

tested with a relatively large local neighborhood when deter-127

mining a self-weight because it was assumed that the self-128

weights were the same in the local neighborhood. However,129

the problem is that the selection of a local neighborhood size130

that is too large may introduce a strong bias into the resulting131

denoised images.132

In this article, we investigate the original LJS method in133

terms of the local neighborhood size for self-weight esti-134

mation and the potential for excessive self-weight estima-135

tion when no upper bound is applied on the self-weight.136

We then propose novel self-weight estimation methods for137

NLM that account for bounded self-weights using Baranchik’s138

minimax estimator [34], called local minimax self-weight esti-139

mation with direct bound (LMM-DB) and with reparametriza-140

tion (LMM-RP). We evaluated our proposed methods using 141

performance criteria including PSNR, the bias-variance trade- 142

off curve and visual quality assessment with a wide range 143

of natural images and a real patient MRI image with various 144

noise levels. We compared the performance of our proposed 145

methods with a classical NLM filter using self-weights of 1 [4] 146

and the state-of-the-art LJS method, which has already been 147

shown to be the best among all other previous self-weight 148

determination methods [33]. 149

This article is an extension of a work that was presented 150

at the 2016 IEEE International Symposium on Biomedical 151

Imaging (ISBI) [35], and goes into more depth regarding the 152

theory of the minimax estimator and provides an evaluation 153

of the methods using a significantly larger image dataset. 154

This paper is organized as follows. Section II reviews the 155

classical NLM filter and revisits the LJS method. Section III 156

investigates the LJS method in terms of the local neighborhood 157

size for self-weight estimation and the potential for exces- 158

sively large self-weight estimates. Then, Section IV proposes 159

novel LMM-DB and LMM-RP methods using Baranchik’s 160

minimax estimator in order to overcome two limitations of 161

the LJS method. Section V illustrates the performance of our 162

proposed methods by providing our simulation results. Lastly, 163

Sections VI and VII discuss and then conclude this paper, 164

respectively. 165

II. REVIEW OF THE LOCAL JAMES-STEIN SELF-WEIGHT 166

ESTIMATION METHOD FOR THE NLM FILTER 167

In this section, we will briefly review both the classical 168

NLM method proposed by Buades et al. [4] and the LJS self- 169

weight selection method proposed by Wu et al. [33]. 170

A. Reviewing the Classical Non-Local Means Filter 171

Let us assume that an image x is contaminated by noise n, 172

which produces a noisy image y: 173

y = x + n (1) 174

where n is zero-mean white Gaussian noise with standard 175

deviation σ . The NLM filtered value at the pixel i is the 176

weighted average of all pixels in a search region �i : 177

x̂i =
∑

j∈�i
wi, j y j

∑
j∈�i

wi, j
(2) 178

where yi is the i th element of y, wi, j is the weight between 179

the i th and j th pixels, and �i is the set of all pixels in an 180

area around the i th pixel, which could be an entire image. 181

The similarity weight of the classical NLM is defined as: 182

wi, j = exp

(
− ∥

∥Pi y − P j y
∥
∥2

2 |P| h2

)

(3) 183

where Pi is an operator used to extract a square-shaped patch 184

centered at the i th pixel, ‖·‖ is an l2 norm, |P| is the number of 185

pixels within a patch, and h is a global smoothing parameter. 186

Equation (3) implies that the self-weights wi,i are always 187

equal to 1. Previous works on self-weights have shown that 188

good strategies for determining the self-weights also affect the 189

image quality of the NLM filtering [4], [29], [32], [33]. 190
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B. Reviewing Local James-Stein Self-Weight Estimation191

The LJS method was proposed in order to determine wi,i192

as follows [33]. First, (2) was decomposed into two terms:193

x̂i = Wi

Wi + wi,i
ẑi + wi,i

Wi + wi,i
yi (4)194

where Wi = ∑
j∈�i\{i} wi, j and195

ẑi =
∑

j∈�i\{i}
wi, j y j/Wi . (5)196

The terms ẑi do not contain wi,i . Then, the LJS method197

reparametrized (4) using198

pi = wi,i

Wi + wi,i
(6)199

so that (4) became:200

x̂i = (1 − pi) ẑi + pi yi . (7)201

The problem of estimating the self-weights wi,i became the202

problem of estimating pi . Lastly, the JS estimator [36], [37]203

for pi was proposed:204

pLJS
i = 1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2 (8)205

where Bi is an operator used to extract a square-shaped206

neighborhood centered at the i th pixel, |B| is the number of207

pixels within that neighborhood, and σ is the known noise208

level.209

Equation (8) implies that pLJS
i ∈ (−∞, 1]. Since210

the weights are non-negative, it was proposed to use the211

zero-lower bound for pLJS
i as follows [33]:212

x̂LJS+
i =

(
1 − pLJS+

i

)
ẑi + pLJS+

i yi (9)213

where214

pLJS+
i :=[pLJS

i ]+ =
[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
(10)215

and [s]+ := max (s, 0). Wu et al. also mentioned that a user-216

defined upper bound for pi can be used, but did not investigate217

further [33]. It should be noted that the JS estimator does not218

guarantee its optimality when bounding pLJS
i in (8).219

III. LIMITATIONS OF THE LOCAL JAMES-STEIN220

SELF-WEIGHT ESTIMATION FOR221

THE NLM FILTER222

We now investigate two limitations of the original LJS223

method [33] in terms of the size of local neighborhoods for224

self-weight estimation, and the potential for excessive self-225

weight estimation.226

A. Size of Local Neighborhood for Self-Weight Estimation227

In the method described in [33], there are two implicit steps228

required in order to obtain the LJS self-weight estimator (10).229

The first step is to choose a local set of pixels around the i th230

pixel, referred to as set �B
i , that correspond to the operator Bi ,231

and assume that:232

x̂ j = (1 − pi) ẑ j + pi y j , j ∈ �B
i . (11)233

Fig. 1. Bias-variance curves (cameraman example) for the classical NLM and
LJS methods (LJS+) for different sizes of local neighborhoods (B). The curves
were plotted while varying the smoothing parameter h (log2 h ∈ [1.8, 3.2]).

Based on the works of Stein [36] and James and Stein [37], 234

if |B| ≥ 3, then for a neighborhood �B
i extracted using Bi , 235

x̂ j =
(

1 − pLJS+
i

)
ẑ j + pLJS+

i y j , j ∈ �B
i . (12) 236

is a dominant estimator for x j “locally” in �B
i . The LJS 237

method used the zero lower bound when estimating pi in 238

order to obtain a realistic non-negative self-weight value. This 239

was also a good choice in terms of the estimator perfor- 240

mance since the positive part of the JS estimator is dominant 241

over the original JS estimator, according to the works of 242

Baranchik [34], [38] and Efron and Morris [39]. 243

The second implicit step is to assign the resulting pLJS
i to pi 244

in (7) for only the single pixel i so that: 245

x̂LJS
i =

(
1 − pLJS

i

)
ẑi + pLJS

i yi . (13) 246

Wu et al. evaluated the LJS method with |B| = 15 × 15 [33], 247

which seems relatively large. 248

Based on this implicit two-step interpretation, we can sur- 249

mise that using a smaller size of |B| may be more desirable 250

for obtaining a less biased estimate of pi since the assumption 251

of having the same pi in �B
i is less likely to be true for 252

larger sizes of �B
i . Figure 1 confirms our conjecture. The 253

bias-variance curves of the LJS method yielded better bias- 254

variance trade-offs than those in the classical NLM method for 255

both large local neighborhoods with a half window size B = 7 256

(|B| = 15 × 15) and small local neighborhoods with B = 2 257

(|B| = 5 × 5). However, using larger local neighborhood sizes 258

for estimating pi yielded stronger biases than those estimated 259

using smaller sizes for the same level of variance. 260

B. Excessively Large Self-Weight Estimates 261

In the LJS method for determining the self-weights by 262

estimating values for pi [33], it is theoretically possible that 263

the self-weights have excessively high values. For example, 264

(6) suggests that if pi = 1 and Wi > 0, then wi,i � 1. 265

Slight artifacts were observed in [33] in the background area 266

that were potentially caused by excessive self-weight estimates 267

when a relatively larger neighborhood size |B| = 15 × 15 was 268

used. We observed a significantly higher degree of degradation 269

in the visual image quality in the background area when the 270
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Fig. 2. Denoised image of the cameraman example using the original LJS
method [33] with no upper bound for the self-weights (top left), estimated pi
values (top right), calculated Wi (bottom left), and resulting self-weights (wi,i )
showing excessive self-weights (bottom right). B = 2 and σ = 10.

size of |B| in (8) was small, as shown in the image in the top271

left figure of Fig. 2.272

We investigated this issue using an example of the camera-273

man image that was denoised using the LJS method [33], but274

with a smaller neighborhood size |B| = 5 × 5. For areas with275

more details, such as edges and textures, large pi values were276

estimated and yielded large self-weights, as shown in the top277

right figure of Fig. 2. However, since the values for Wi were278

also very small in these areas, as shown in the bottom left279

image in Fig. 2, the resulting self-weight map yielded values280

close to 1 in the areas with details as shown in the bottom281

right image in Fig. 2.282

In contrast, for areas with almost no details, such as those283

with a flat intensity background, relatively smaller pi values284

were estimated, some of which were much larger than 0285

while the rest were closer to 0, as shown in the top right286

image in Fig. 2. However, since the Wi values for the flat287

areas were relatively large, as shown in the bottom left image288

in Fig. 2, some of the estimated pi values obtained using the289

LJS method (LJS+) were estimated to yield excessively large290

self-weights that were much larger than 1, as shown in the291

bottom right image of Fig. 2. Consequently, these excessively292

large self-weights caused severe rare patch artifacts in the293

filtered image, which resulted in visual quality degradation,294

as observed in the top left image of Fig. 2.295

IV. LOCAL MINIMAX ESTIMATION METHODS FOR UPPER296

BOUNDED SELF-WEIGHTS IN A NLM FILTER297

In this section, we propose two local upper bounded self-298

weight estimation methods that use Baranchik’s minimax299

estimator [34].300

A. Bounded Self-Weights301

It is usually assumed that the self-weights satisfy wi,i ∈302

[0, 1]. However, there are many possible upper bounds for the303

self-weights, including 1 [4] or some positive value that is304

possibly less than 1 based on SURE [32]. In this article, two 305

different upper bound values wmax
i,i for the self-weights were 306

evaluated such that 0 ≤ wi,i ≤ wmax
i,i . One upper bound 307

was: 308

wmax−one
i,i = 1, (14) 309

which is the usual choice for the self-weights in the classical 310

NLM method [4]. The other upper bound was: 311

wmax−stein
i,i = exp

(
−σ 2/h2

)
, (15) 312

which was motivated by the SURE-based NLM 313

self-weights [32]. We assume that σ is known and h is 314

pre-determined, which means that the upper bound for 315

the self-weights can also be determined in advance. 316

Equation (15) takes the noise level into account. As σ is 317

smaller, the maximum self-weight in (15) is closer to one. 318

It should be noted that the difference between (15) and (14) 319

will be greater at higher noise levels. 320

Since pi is estimated instead of wi,i , it is necessary to derive 321

the range of pi that corresponds to 0 ≤ wi,i ≤ wmax
i,i . 322

From (6), the derivative of pi with respect to wi,i is non- 323

negative as follows: 324

d

dwi,i
pi = Wi

(Wi + wi,i )2 ≥ 0 325

since Wi ≥ 0. Therefore, pi is a non-decreasing function of 326

wi,i and for 0 ≤ wi,i ≤ wmax
i,i , the range of pi will be 327

0 ≤ pi ≤ wmax
i,i

Wi + wmax
i,i

=: pmax
i ≤ 1. 328

Note that if Wi = 0, then pmax
i = 1. The estimator 329

pLJS+
i in (10) automatically guarantees that 0 ≤ pi ≤ 1 if 330

|B| ≥ 2. However, since Wi > 0 generally holds for most real 331

images with noise, it is necessary to constrain pi to be less 332

than or equal to the upper bound pmax
i , which is usually less 333

than one. 334

B. Local Minimax Self-Weight Estimation With Direct Bound 335

Enforcing the upper limit pmax
i on the estimated pi in (10) 336

using min(pLJS+
i , pmax

i ) breaks the optimality of the JS estima- 337

tor if pmax
i < 1. In this article, we propose using Baranchik’s 338

minimax estimator [34] to incorporate bounded self-weights 339

into the estimator (see Baranchik [34], Erfon and Morris [39], 340

and Strawderman [40] for more details on this minimax 341

estimator). 342

Theorem 1 (Baranchik): For y ∼ Nr
(
x, σ 2I

)
, r ≥ 3, and 343

loss L(x, x̂) = ∥
∥x − x̂

∥
∥, an estimator of the form x̂ = qy 344

where 345

q =
[

1 − c (‖y‖) σ 2(r − 2)

‖y‖2

]

(16) 346

is the minimax, provided that: 347

(i) 0 ≤ c (‖y‖) ≤ 2 and 348

(ii) the function c(·) is nondecreasing. 349

350

Here y shrinks toward 0 which is the initial estimate of x. 351
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Fig. 3. Graphical illustrations of the original and positive part JS estimators
without upper bounds, and the proposed minimax self-weight estimators with
upper bounds in terms of c (‖s‖) vs. ‖s‖. (a) Original and positive-part JS
estimators. (b) Proposed minimax estimators with bounds.

The original JS estimator and its positive part are special352

cases of Baranchik’s minimax estimator. For the original JS353

estimator (8):354

c (‖s‖) = 1, (17)355

where s = Bi y − Bi ẑ so that both conditions (i, ii) of356

the Baranchik’s theorem are satisfied. In the positive part357

estimator (9), it can be shown that:358

c (‖s‖) =
⎧
⎨

⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, otherwise
(18)359

where Y1 := σ
√

r − 2. The original and positive part360

JS estimators are illustrated in Fig. 3 (a).361

We propose a new local minimax self-weight estimation362

method that uses a direct bound with a specific upper-bound363

value, as follows:364

pLMM−DB
i := min(pLJS+

i , pmax
i ). (19)365

This estimator is minimax under certain conditions that can366

be derived using Baranchik’s minimax estimator theorem.367

According to this theorem, this operation can be interpreted368

as follows:369

c (‖s‖) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, Y1 < ‖s‖ ≤ Y2

‖s‖2 (1 − pmax)

σ 2(r − 2)
, Y2 < ‖s‖

(20)370

where Y2 := σ
√

(r − 2)/(1 − pmax). We call this371

a local minimax self-weight estimator using direct372

bound (LMM-DB), which is illustrated in Fig. 3 (b)373

where Y4 := σ
√

2(r − 2)/(1 − pmax).374

However, note that LMM-DB is not minimax for ‖s‖ > Y4. 375

Fortunately, ‖s‖ = ‖Bi y − Bi ẑ‖ can be limited by adjusting 376

the smoothing parameter h by making it smaller so that all 377

‖s‖ ≤ Y4 and c
(‖Bi y − Bi ẑ‖

) ≤ 2. Then, the LMM-DB 378

becomes “practically” a minimax estimator. Let us denote the 379

maximum h that satisfies ‖s‖ ≤ Y4 as hmax. 380

In this case, a question can be raised: will the optimal value 381

for h fall into the range of h that satisfies ‖s‖ ≤ Y4? Interest- 382

ingly, our simulations with many natural images showed that 383

the optimal smoothing parameter h∗ based on the true images 384

is very close to hmax. This is because the LMM-DB yielded 385

pmax → 1 so that Y2 → ∞, and almost all
∥
∥Bi y − Bi ẑ

∥
∥ were 386

less than or equal to Y4. Therefore, pLMM−DB
i is “practically” 387

a minimax value based on Baranchik’s theorem for many 388

natural images. Moreover, the LMM-DB method may provide 389

a way to choose the optimal global smoothing parameter value 390

h without knowing the underlying true image. We empirically 391

investigate this issue in Section V. 392

C. Local Minimax Self-Weight Estimation With 393

Re-Parametrization 394

The LMM-DB algorithm set p to be the same pmax for a 395

wide range of
∥
∥Bi y − Bi ẑ

∥
∥ values. We now propose another 396

new method, called the local minimax self-weight estimation 397

with reparametrization (LMM-RP) method, that assigns dif- 398

ferent p values for different
∥
∥Bi y − Bi ẑ

∥
∥. 399

We reparametrized pi in (7) in the following way: 400

x̂i = ẑi (pi/pmax
i )pmax

i (yi − ẑi ) 401

= ẑi + pT
i (yT

i − ẑT
i ) (21) 402

= (1 − pmax
i )ẑi + ẑT

i + pT
i (yT

i − ẑT
i ) (22) 403

where ẑT
i = pmax

i ẑi , yT
i = pmax

i yi , and 404

pT
i = 1

pmax
i

wi,i

Wi + wi,i
. (23) 405

Note that for 0 ≤ wi,i ≤ wmax
i,i , pT

i is an increasing function 406

of wi,i and the range of pT
i is 0 ≤ pT

i ≤ 1. We propose 407

to use the positive part of the JS estimator to estimate the 408

reparametrized pT
i , as follows: 409

p
T,LJS+
i =

[

1 − (|B| − 2) (pmax
i )2σ 2

∥
∥Bi yT − Bi ẑT

∥
∥2

]

+
410

=
[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
= pLJS+

i . (24) 411

This method is equivalent to using a multiplicative factor pmax
i 412

for the original JS shrinkage (9): 413

x̂LMM−RP
i = (1 − pLMM−RP

i )ẑi + pLMM−RP
i yi (25) 414

where 415

pLMM−RP
i = pmax

i

[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
. (26) 416

This proposed LMM-RP estimator is not dominant when 417

estimating xi , but rather is dominant when estimating pmax
i xi , 418
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as shown in (22). Thus, the positive part JS estimator does not419

guarantee that the LMM-RP is dominant.420

Baranchik’s minimax estimation theorem can be used to421

analyze the LMM-RP estimator as follows:422

c (‖s‖) =

⎧
⎪⎪⎨

⎪⎪⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

‖s‖2(1 − pmax)

σ 2(r − 2)
+ pmax, Y1 < ‖s‖

(27)423

where if ‖s‖ is Y3 := σ
√

(2 − pmax)(r − 2)/(1 − pmax), then424

c (‖s‖) = 2. The LMM-RP method is also illustrated in Fig. 3425

(b), and is minimax if ‖s‖ ≤ Y3. The global smoothing426

parameter h can be adjusted so that this condition is satisfied427

for different images. As in the case of the LMM-DB, it turns428

out that the optimal global smoothing parameter h∗ and429

the upper bound h that satisfies ‖s‖ ≤ Y3 are also very430

close to each other when the LMM-RP method is applied431

to many natural images. Therefore, the LMM-RP method432

is “practically” a minimax. The following table summarizes433

the LJS self-weight estimation method and our proposed434

LMM-based self-weight estimation methods.435

Summary of Self-Weight Estimation Methods

LJS+ [33] :
pLJS+

i =
[
1 − (|B| − 2) σ 2/

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
x̂LJS+

i = (1 − pLJS+
i )ẑi + pLJS+

i yi

LMM − DB :
pLMM−DB

i = min(pLJS+
i , pmax

i )

x̂LMM−DB
i = (1 − pLMM−DB

i )ẑi + pLMM−DB
i yi

LMM − RP :
pLMM−RP

i = pLJS+
i pmax

i

x̂LMM−RP
i = (1 − pLMM−RP

i )ẑi + pLMM−RP
i yi

V. SIMULATION RESULTS436

A. Simulation Setup437

Ten natural images1 (cameraman, lena, montage, house,438

pepper, barbara, boat, hill, couple, fingerprint) and five images439

from the SUN database2 (abbey, airplane cabin, airport ter-440

minal, alley, amphitheater) were used in our study as noise-441

free images (128 × 128, 256 × 256, or 512 × 512 pixels,442

8 bits). A real patient MRI (512 × 512 pixels, 8 bits) that was443

acquired and processed under institutional review board (IRB)444

approved protocols was also used. White Gaussian noise was445

added to each input image with various standard deviations446

σ ∈ {10, 20, 40, 60}.447

All algorithms were implemented using MATLAB448

R2015b (The Mathworks, Inc., Natick, MA, USA). The patch449

size and search window size of the NLM filter were chosen450

to be 7 × 7 and 31 × 31, respectively, which were the same451

1Available online at: http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_images.
zip as the date of 16 Nov. 2015.

2Available online at: http://vision.princeton.edu/projects/2010/SUN/ as the
date of 16 Sep. 2016.

as those used in [33]. Both the state-of-the-art LJS algorithm 452

and the proposed algorithms were tested using B = 1, · · · , 9 453

where |B| = (2B + 1)2 > 3. 454

The global smoothing parameter h was chosen empirically 455

to yield the best PSNR: 456

PSNR
(
x̂
) = 10 log10

2552

∥
∥x̂ − x

∥
∥2

/N
, (28) 457

where N is the size of the image. In addition to the PSNR, the 458

mean bias vs. the mean variance trade-off curves were used as 459

performance measures for the different smoothing parameter 460

values h: 461

bias2 = 1

N

N∑

i=1

(x̄i − xi )
2, (29) 462

var = 1

N

N∑

i=1

1

k − 1

k∑

j=1

(
x̂i j − x̄i

)2
, (30) 463

where k is the number of realizations (20 in our simulation), 464

x̂i j is the j th estimation at the i th pixel, and x̄i is the mean 465

of x̂i j , as given by: 466

x̄i = 1

k

k∑

j=1

x̂i j . 467

A visual quality assessment was also performed. 468

B. Performance Studies Using the PSNR 469

In order to estimate values of pi for a fixed neighborhood 470

size B , the optimal NLM smoothing parameter h∗ was deter- 471

mined such that the PSNR was maximized. In our proposed 472

methods, the two maximum self-weights in (14) and (15) were 473

used. The LMM-DB and LMM-RP methods given by (14) 474

are denoted LMM − DBone and LMM − RPone, while the 475

LMM-DB and LMM-RP methods given by (15) are denoted 476

LMM − DBstein and LMM − RPstein. Table I summarizes the 477

quantitative PSNR results for the 16 images with 4 different 478

noise levels. When B = 7, our proposed LMM-DB and 479

LMM-RP methods based on Baranchik’s minimax estima- 480

tor yielded much better PSNR results than did setting the 481

self-weight to one in the classical NLM method [4], and 482

comparable PSNR values to the LJS method based on the 483

JS estimator [33]. When B = 2, our proposed LMM-DB 484

and LMM-RP methods yielded better PSNR values than did 485

the LJS. 486

For the five examples of lena, house, peppers, barbara, 487

boat with σ = 20, PSNRs of our proposed methods (global 488

smoothing parameter and fixed neighborhoods, but adaptive 489

self-weight) were 0.72 ∼ 0.97 dB better than classical 490

NLM. In [10], it is reported that for the same five examples 491

with the same level of noise, the work of Kervrann et al. 492

(fixed self-weight, but local smoothing parameters and adap- 493

tive neighborhoods) yielded 0.99 ∼ 1.55 dB better PSNR 494

than classical NLM. Self-weights, local smoothing parameter, 495

neighborhoods size are important factors in the NLM filter to 496

determine output image quality. 497
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TABLE I

PSNR (dB) SUMMARY (MEAN ± STANDARD DEVIATION) FOR VARIOUS NATURAL IMAGES

C. Performance Studies With Bias-Variance Trade-Off498

The bias-variance trade-off was investigated using many499

natural images. As shown in Fig. 1, a neighborhood size B was500

used to estimate pi using the LJS method [33], and this was a501

significant factor when determining the bias. This tendency502

was also observed for the other different natural images,503

as illustrated in Fig. 4. Increasing B in the LJS method moved504

the bias-variance trade-off curves in the bottom right direction,505

meaning that the bias increased and the variance decreased.506

However, the role of the smoothing parameter h changed in507

the LJS method. Unlike in classical NLM method (see the508

NLM bias-variance curve in Fig. 1), increasing the smoothing509

parameter h beyond a certain point in the LJS method did not510

further decrease the variance in any of the natural images that511

we tested. This is because increasing h will also increases the 512

pi values so that the resulting LJS estimator becomes closer 513

to the noisy input image yi due to the lack of bounds for the 514

self-weights. 515

Our proposed methods (LMM-DB, LMM-RP) yielded 516

trade-off curves that have decreased variances for increasing 517

values of the smoothing parameter h. Figure 5 shows the 518

trade-off curves for the cameraman example for different 519

methods (LMM-DB, LMM-RP), different neighborhood sizes 520

(B = 2, 7), and different noise levels (σ = 10, 40). Our 521

proposed methods yielded bias-variance curves that were less 522

than or equal to those in the LJS method for fixed B and σ . 523

This tendency was also observed with other natural images, 524

as illustrated in Fig. 4. It was important to choose appropriate 525
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Fig. 4. Bias-variance curves for natural images using LJS+ [33] and our proposed LMM − DBone and LMM − RPone methods with a noise level of σ = 10.
(a) couple. (b) montage. (c) lena. (d) pepper . (e) house. (f) M R I .

neighborhood sizes B in order for the LJS method to obtain526

a certain level of bias, but our proposed methods were able527

to achieve that same level of bias by adjusting the smoothing528

parameter h, which was the same as in classical NLM. Based529

on our results, it appears that the use of LMM-RP has slightly530

more advantages than using LMM-DB in terms of the PSNR,531

as shown in Table I, and the bias-variance trade-off curves, as532

shown in Fig. 5, for high noise levels.533

D. Performance Studies With Visual Quality Assessment534

The most important improvements in our proposed535

LMM-DB and LMM-RP methods when compared to the536

LJS method were achieved in terms of the visual quality.537

Figure 6 (a) shows the true cameraman image (left) and the538

noisy image (right) with a noise level of σ = 10. Figure 6 (b)539

presents the filtered images using the LJS method [33] with540

B = 2 and B = 7. Severe artifacts were observed in the541

background areas when using B = 2, and these artifacts were542

reduced when using B = 7. However, there were still some543

artifacts near the edges of objects. Our proposed LMM-DB544

and LMM-RP methods exhibited fewer image artifacts than545

were observed in the images processed using the LJS method546

for both B = 2, 7. This tendency was observed in many of the547

natural images, as shown in Fig. 7, especially in the high inten-548

sity flat areas. PSNR improvements in the LJS method were549

achieved with severe (when B = 2) or mild (when B = 7)550

artifacts; however, our proposed methods achieved both a high551

Fig. 5. Bias-variance curves for LMM − DBone and LMM − RPone for
comparison with LJS+ for two neighborhood sizes B = 2, 7 and two noise
levels σ = 10, 40. (a) LMM − DBone(σ = 10). (b) LMM − DBone(σ = 40).
(c) LMM − RPone(σ = 10). (d) LMM − RPone(σ = 40).

PSNR and significantly reduced visual artifacts. This ability 552

to reduce the number of visual artifacts in a denoised image 553

is important in some applications, such as diagnostic medical 554

imaging. 555
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Fig. 6. True, noisy (σ = 10), and filtered images using LJS+ [33] ,
and the proposed LMM − DBone and LMM − RPone. (a) True and noisy
images (σ = 10). (b) LJS+ [33]. (c) Proposed LMM − DBone. (d) Proposed
LMM − RPone.

E. Maximum Self-Weights: One vs. Stein’s556

Two maximum self-weights were proposed for use: the557

value one in (14) that was proposed in [4], and Stein’s558

in (15) that was proposed in [32]. Figure 8 shows that the559

LMM − DBone method yielded an improved bias-variance560

curve and PSNR than did the LMM − DBstein method when561

the noise levels were low. For high noise levels σ = 40,562

the LMM − DBstein method yielded an improved PSNR and563

bias-variance curve than did the LMM − DBone method.564

However, these differences were not significant, as also illus-565

trated in terms of the PSNR in Table I. In terms of the visual566

quality, no significant differences were observed between the567

two methods.568

TABLE II

PERCENTAGE (%) OF c(‖s‖) THAT EXCEED 2 USING LMM − DB
AND LMM − RP METHODS, σ = 10, B = 2

F. “Practical” Minimax Estimator 569

The proposed LMM-DB and LMM-RP methods are min- 570

imax with respect to ‖s‖ ≤ Y4 and ‖s‖ ≤ Y3, respectively, 571

as shown in Fig. 3. However, these conditions impose upper 572

bounds for the smoothing parameters h and the optimal 573

h∗, which means that the smoothing parameter values that 574

yield the best PSNR may not be achievable. We empirically 575

investigated this issue using many natural images. 576

Table II shows the ratio (percentage unit) of the number of 577

pixels for which c(‖s‖) > 2 to the total number of pixels 578

in the cameraman, fingerprint, and MRI images when the 579

optimal h∗ for the highest PSNR was chosen based on the true 580

images for the proposed LMM-DB and LMM-RP methods. 581

For most of the pixels, the LMM-DB and LMM-RP values 582

were minimax. The relationship between the percentage of pix- 583

els with c(‖s‖) > 2 and the root mean squared error (RMSE) 584

is illustrated in Fig. 9 for the cameraman and MRI images. 585

Surprisingly, the optimal global smoothing parameters h for 586

the lowest RMSE point (or the highest PSNR) of the LMM- 587

DB and LMM-RP methods are very close to the smoothing 588

parameters h such that the percentage of c(‖s‖) > 2 is 0.1%. 589

This phenomenon was not only observed in these two images. 590

As shown in Table III, the pixel percentage of c(‖s‖) > 2 that 591

do not require knowledge of the true image can still determine 592

smoothing parameters that are able to yield comparable PSNR 593

values to the best PSNR values obtained by using the optimal 594

smoothing parameters calculated based on knowledge of the 595

true image. This was observed in all of the natural images 596

used in our simulations, with different noise levels, and when 597

B = 2 was used. However, the criteria of using the pixel 598

percentage of c(‖s‖) > 2 did not work very well for B = 7 in 599

our simulations. These criteria can be potentially used when 600

choosing a global smoothing parameter with our proposed 601

methods as a heuristic approach without knowing the true 602

image. 603

G. Computation Time for Algorithms 604

Table IV reports the computation time of the proposed 605

methods in comparison with the classical NLM and LJS+. 606
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Fig. 7. Filtered results using LJS+ [33] and the proposed LJS − RPone method with a noise level of σ = 10 and neighborhood size B = 2. (a) couple.
(b) montage. (c) lena. (d) pepper . (e) house. (f) M R I .

Fig. 8. Bias-variance curves and PSNR vs. varying neighborhood sizes (B)
using classical NLM (only in the PSNR figure), LJS, and the proposed
LMM − DBstein vs. LMM − DBone for the cameraman example.

We used 8 threads (Intel Core i7 2.8 GHz) when computing607

the patch distances for all methods. The local block size was608

B = 2, the patch size was 7 × 7, and the window size609

was 31 × 31. All parameters were fixed for all of results pre- 610

sented in this section. Adjusting these parameters can greatly 611

reduce the running time. For example, setting B = 4, the patch 612

size to 5 × 5, and the window size to 13 × 13 reduces the 613

computation time of the proposed methods to 0.60, 1.12, and 614

2.91 seconds (s) for 1282, 2562, and 5122 images, respectively. 615

However, analytically, the classical NLM requires 3|P||�| + 616

4|�| − 1 operations per pixel where |�| is the number of 617

elements in �i and LJS+ requires 3|P||�| + 4|�| + 3|B| + 5 618

operations per pixel. It is reported in [33] that the additional 619

operations for LJS+ (3|B| + 6 operations) were negligible 620

compared to the NLM filtering computation (3|P||�|+4|�|− 621

1 operations). Analytically, the additional computation for 622

LMM − DB and LMM − RP is 3|B| + 7 operations, which 623

is almost the same as the additional computation for LJS+. 624

Therefore, further implementation optimization is possible by 625

exploiting the redundant computation of the patch distances 626

for the minimax estimator and NLM weights. 627

VI. DISCUSSION 628

The classical NLM method was a significant work in image 629

denoising [4], and required the determination of two important 630

parameters for good denoising performance: a smoothing 631

parameter and a self-weight value. The LJS method proposed 632
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TABLE III

THE PSNR VALUES (dB) OF THE PROPOSED METHODS WITH B = 2
WHEN CHOOSING THE SMOOTHING PARAMETER SO AS TO YIELD

THE HIGHEST PSNR USING THE TRUE IMAGE (TRUE),
AND WHEN CHOOSING THE SMOOTHING PARAMETER

SO AS TO YIELD THE PERCENTAGE OF c(‖s‖) > 2
TO BE 0.1% (ESTIMATED) FOR

DIFFERENT NOISE LEVELS

by Wu et al. [33] developed a state-of-the-art method for self-633

weight determination using JS estimation [37] and yielded634

superior results in terms of the PSNR compared to the other635

existing methods. However, since the LJS method did not636

impose an upper bound for self-weight estimation, the bias637

could no longer be controlled by the smoothing parameter,638

which resulted in visual quality degradation. Our proposed639

methods based on the Baranchik’s minimax theorem [34]640

yielded comparable PSNR results to the state-of-the-art LJS641

method. By imposing upper bounds for the self-weights,642

Fig. 9. Comparison plots of the RMSE vs. the smoothing parameter h
and the percentage of c(‖s‖) > 2 vs. the same smoothing parameter when
using LMM-DB and LMM-RP with B = 2 and σ = 10. (a) cameraman
LMM − DBone. (b) MRI LMM − DBone. (c) cameraman LMM − RPone.
(d) MRI LMM − RPone.

TABLE IV

EXECUTION TIME (S) COMPARISON. THIS WILL VARY
WITH PARAMETER SELECTION

the bias-variance trade-off was able to be controlled by a 643

smoothing parameter, and substantial visual artifact reduction 644

was achieved. 645

The focus of this article was self-weight parameter selec- 646

tion in the classical NLM filter with theoretical justification. 647

As discussed in the Introduction, there are other factors that 648

affect the performance of NLM based filters, and we expect 649

that our proposed methods would not be able to achieve 650

state-of-the-art denoising performance if there were no other 651

optimizations performed except the self-weights. Indeed, our 652

proposed methods with one patch size (non-adaptive neighbor- 653

hood) and one global smoothing parameter were not able to 654

achieve the level of denoising performance of the state-of-the- 655

art denoising methods such as BM3D [6]. However, when our 656

proposed methods have incorporated some of the other factors 657

into the NLM filters, such as local smoothing parameters 658

and adaptive neighborhoods [10], they have great potential to 659

achieve significantly improved denoising performance. 660

The minimax property of our proposed methods depends on 661

the choice of smoothing parameters. When using sufficiently 662

small smoothing parameters, the LMM-DB and LMM-RP 663

methods are “practically” minimax according to Baranchik’s 664
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theorem [34]. However, when large smoothing parameters are665

used, there may be some pixels that are not minimax for self-666

weight estimation. More empirical investigation showed that667

the optimal global smoothing parameter h that yielded the668

best PSNR only resulted in a very small portion of the pixels669

that did not have minimax self-weight estimators. In fact,670

this can be used as a useful heuristic when choosing a good671

smoothing parameter since testing the minimax properties of672

our proposed methods does not require the true image. More673

theoretical analysis for this observation, or a statistical analysis674

using many natural images as shown in [41], are potential675

extensions of this work. Therefore, our proposed methods do676

not only provide an optimal way to determine self-weights, but677

also provide a heuristic way to determine a good smoothing678

parameter.679

VII. CONCLUSION680

We proposed two methods, LMM-DB, LMM-RP, to deter-681

mine the self-weights of NLM filters that are “practically”682

minimax, and this methods yielded a comparable PSNR, better683

bias-variance trade-offs, and reduced visual quality artifacts684

when compared to the results obtained using the state-of-the-685

art LJS method. Our methods also provide a potentially useful686

heuristic way to determine a global smoothing parameter687

without knowledge of the original image.688
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Bounded Self-Weights Estimation Method for
Non-Local Means Image Denoising

Using Minimax Estimators
Minh Phuong Nguyen and Se Young Chun, Member, IEEE

Abstract— A non-local means (NLM) filter is a weighted1

average of a large number of non-local pixels with various image2

intensity values. The NLM filters have been shown to have3

powerful denoising performance, excellent detail preservation4

by averaging many noisy pixels, and using appropriate values5

for the weights, respectively. The NLM weights between two6

different pixels are determined based on the similarities between7

two patches that surround these pixels and a smoothing para-8

meter. Another important factor that influences the denoising9

performance is the self-weight values for the same pixel. The10

recently introduced local James-Stein type center pixel weight11

estimation method (LJS) outperforms other existing methods12

when determining the contribution of the center pixels in the13

NLM filter. However, the LJS method may result in excessively14

large self-weight estimates since no upper bound is assumed,15

and the method uses a relatively large local area for estimating16

the self-weights, which may lead to a strong bias. In this17

paper, we investigated these issues in the LJS method, and then18

propose a novel local self-weight estimation methods using direct19

bounds (LMM-DB) and reparametrization (LMM-RP) based on20

the Baranchik’s minimax estimator. Both the LMM-DB and21

LMM-RP methods were evaluated using a wide range of natural22

images and a clinical MRI image together with the various levels23

of additive Gaussian noise. Our proposed parameter selection24

methods yielded an improved bias-variance trade-off, a higher25

peak signal-to-noise (PSNR) ratio, and fewer visual artifacts when26

compared with the results of the classical NLM and LJS methods.27

Our proposed methods also provide a heuristic way to select a28

suitable global smoothing parameters that can yield PSNR values29

that are close to the optimal values.30

Index Terms— James-Stein estimator, minimax estimator,31

non-local means, center pixel weight, bounded self-weight, image32

denoising.33

I. INTRODUCTION34

IMAGE denoising is a fundamental task in image process-35

ing, low-level computer vision, and medical imaging algo-36
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rithms. The goal of denoising is to suppress image noise 37

when restoring desired details using prior information about 38

the images. For example, based on prior information regarding 39

“smooth images”, a simple filter, such as a Gaussian filter, can 40

be designed as a weighted average of the image intensities 41

of the pixels in the local neighborhood with non-adaptive 42

weights. However, this type of filter blurs the edges and 43

details of images because these features are not captured in 44

the assumed prior information. Many edge-preserving denois- 45

ing methods have been proposed, including bilaterial fil- 46

ters [1], [2], anisotropic diffusion [3], non-local means (NLM) 47

filters [4], [5], collaborative filters (BM3D) [6], and total 48

variation filters [7]. Many filters, including bilaterial filters, 49

anisotropic diffusion, and NLM filters (but, not BM3D, 50

see [8]), can be represented as the weighted averages of 51

adaptive weights or adaptive smoothing [9]. It should be noted 52

that it is important to select appropriate weights in these 53

types of filters in order to obtain improved denoised image 54

quality [8]. 55

Classical NLM filters use the similarities between two local 56

patches in a noisy image to determine the weights in non- 57

local adaptive smoothing [4]. The NLM weights are obtained 58

by first calculating the Euclidean distance between the two 59

local patches, which is denoted d , and then by evaluating 60

exp(−d2/h2), where h is a smoothing parameter. This method 61

allows higher weights to be assigned to pixels with similar 62

patches so that edges and details can be preserved through 63

non-local weighted averaging. 64

There are four different factors that determine the output 65

image quality of a NLM filter in terms of weights. 1) The 66

first factor is the similarity measure d . The Euclidean distance 67

is a usual choice [4], but other similarity measures have also 68

been proposed, such as hypothesis testing with adaptive neigh- 69

borhoods [10], principal component analysis (or the subspace 70

based method) [11], [12], blockwise aggregation [13], rotation- 71

invariant measures [14]–[16], shape-adaptive patches [17], and 72

patch-based similarities with adaptive neighborhoods [18]. 73

In multimodal medical imaging, inaccurate weights for noisy 74

molecular images were enhanced by using additional high 75

quality anatomical images [19], [20]. 2) The second factor 76

is the strategy for determining the smoothing parameter h. 77

Optimization strategies have been developed based on Stein’s 78

unbiased risk estimation (SURE) method for NLM with 79

Gaussian noise [21], [22], NLM with Poisson noise [23], and 80

blockwise NLM with Gaussian noise [24]. 3) The third factor 81

is in selecting the function to use to determine the weights, 82

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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such as exp(−x2). Other functions have also been proposed83

to calculate the weights, such as compact support func-84

tions [25], [26] and statistical distance functions [27], [28].85

4) The last factor, which is the focus of this article, is in how86

best to determine the self-weights for the same pixel in the87

input and output images.88

The NLM weights for two different pixels are essentially89

determined by the distance between the two noisy local90

patches around these pixels. However, the weights for the91

same pixel, or the self-weights, are not affected by the92

noise in the patches and the distance is always 0. For an93

extremely noisy image, the self-weights will be relatively too94

large when compared to the other weights, which will cause95

the filter output to be almost the same as the input noisy96

image. Therefore, the use of appropriate self-weight values can97

significantly affect the quality of the denoised image. Many98

researchers have investigated strategies for determining the99

self-weights, which are also known as center pixel weights,100

in order to alleviate the so-called “rare patch effect.” For101

the classical NLM filter proposed by Buades et al., the self-102

weights were set to be either one or the maximum weight103

in a neighborhood [4]. This strategy guaranteed that at least104

one or two of the largest weights would be the same. Doré105

and Cheriet also used the maximum weight in a neighborhood106

as the self-weight, but only if that maximum weight was107

large [29]. Brox and Cremers proposed a method to have108

at least n number of the weights to be the same [30], and109

Zimmer et al. considered the self-weight to be a free para-110

meter during the estimation process [31]. Salmon developed111

a SURE-based method for determining the self-weights that112

accounted for the noise [32].113

Recently, Wu et al. proposed a method to determine the114

self-weights using a James-Stein (JS) type estimator [33].115

The idea of that work was to use a JS estimator to determine116

the reparametrized self-weight in a local neighborhood (called117

the local JS estimator (LJS)). The LJS method yielded the118

best peak signal-to-noise ratio (PSNR) results when compared119

to other existing self-weight selection methods [4], [32].120

However, the method had some limitations. First, the LJS121

could yield self-weights that were theoretically much larger122

than 1 because no upper bound for the self-weights was123

assumed, and this may lead to severe rare patch artifacts. The124

JS estimator does not guarantee its optimality for bounded125

shrinkage parameters. Second, the original LJS method was126

tested with a relatively large local neighborhood when deter-127

mining a self-weight because it was assumed that the self-128

weights were the same in the local neighborhood. However,129

the problem is that the selection of a local neighborhood size130

that is too large may introduce a strong bias into the resulting131

denoised images.132

In this article, we investigate the original LJS method in133

terms of the local neighborhood size for self-weight esti-134

mation and the potential for excessive self-weight estima-135

tion when no upper bound is applied on the self-weight.136

We then propose novel self-weight estimation methods for137

NLM that account for bounded self-weights using Baranchik’s138

minimax estimator [34], called local minimax self-weight esti-139

mation with direct bound (LMM-DB) and with reparametriza-140

tion (LMM-RP). We evaluated our proposed methods using 141

performance criteria including PSNR, the bias-variance trade- 142

off curve and visual quality assessment with a wide range 143

of natural images and a real patient MRI image with various 144

noise levels. We compared the performance of our proposed 145

methods with a classical NLM filter using self-weights of 1 [4] 146

and the state-of-the-art LJS method, which has already been 147

shown to be the best among all other previous self-weight 148

determination methods [33]. 149

This article is an extension of a work that was presented 150

at the 2016 IEEE International Symposium on Biomedical 151

Imaging (ISBI) [35], and goes into more depth regarding the 152

theory of the minimax estimator and provides an evaluation 153

of the methods using a significantly larger image dataset. 154

This paper is organized as follows. Section II reviews the 155

classical NLM filter and revisits the LJS method. Section III 156

investigates the LJS method in terms of the local neighborhood 157

size for self-weight estimation and the potential for exces- 158

sively large self-weight estimates. Then, Section IV proposes 159

novel LMM-DB and LMM-RP methods using Baranchik’s 160

minimax estimator in order to overcome two limitations of 161

the LJS method. Section V illustrates the performance of our 162

proposed methods by providing our simulation results. Lastly, 163

Sections VI and VII discuss and then conclude this paper, 164

respectively. 165

II. REVIEW OF THE LOCAL JAMES-STEIN SELF-WEIGHT 166

ESTIMATION METHOD FOR THE NLM FILTER 167

In this section, we will briefly review both the classical 168

NLM method proposed by Buades et al. [4] and the LJS self- 169

weight selection method proposed by Wu et al. [33]. 170

A. Reviewing the Classical Non-Local Means Filter 171

Let us assume that an image x is contaminated by noise n, 172

which produces a noisy image y: 173

y = x + n (1) 174

where n is zero-mean white Gaussian noise with standard 175

deviation σ . The NLM filtered value at the pixel i is the 176

weighted average of all pixels in a search region �i : 177

x̂i =
∑

j∈�i
wi, j y j

∑
j∈�i

wi, j
(2) 178

where yi is the i th element of y, wi, j is the weight between 179

the i th and j th pixels, and �i is the set of all pixels in an 180

area around the i th pixel, which could be an entire image. 181

The similarity weight of the classical NLM is defined as: 182

wi, j = exp

(
− ∥

∥Pi y − P j y
∥
∥2

2 |P| h2

)

(3) 183

where Pi is an operator used to extract a square-shaped patch 184

centered at the i th pixel, ‖·‖ is an l2 norm, |P| is the number of 185

pixels within a patch, and h is a global smoothing parameter. 186

Equation (3) implies that the self-weights wi,i are always 187

equal to 1. Previous works on self-weights have shown that 188

good strategies for determining the self-weights also affect the 189

image quality of the NLM filtering [4], [29], [32], [33]. 190
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B. Reviewing Local James-Stein Self-Weight Estimation191

The LJS method was proposed in order to determine wi,i192

as follows [33]. First, (2) was decomposed into two terms:193

x̂i = Wi

Wi + wi,i
ẑi + wi,i

Wi + wi,i
yi (4)194

where Wi = ∑
j∈�i\{i} wi, j and195

ẑi =
∑

j∈�i\{i}
wi, j y j/Wi . (5)196

The terms ẑi do not contain wi,i . Then, the LJS method197

reparametrized (4) using198

pi = wi,i

Wi + wi,i
(6)199

so that (4) became:200

x̂i = (1 − pi) ẑi + pi yi . (7)201

The problem of estimating the self-weights wi,i became the202

problem of estimating pi . Lastly, the JS estimator [36], [37]203

for pi was proposed:204

pLJS
i = 1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2 (8)205

where Bi is an operator used to extract a square-shaped206

neighborhood centered at the i th pixel, |B| is the number of207

pixels within that neighborhood, and σ is the known noise208

level.209

Equation (8) implies that pLJS
i ∈ (−∞, 1]. Since210

the weights are non-negative, it was proposed to use the211

zero-lower bound for pLJS
i as follows [33]:212

x̂LJS+
i =

(
1 − pLJS+

i

)
ẑi + pLJS+

i yi (9)213

where214

pLJS+
i :=[pLJS

i ]+ =
[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
(10)215

and [s]+ := max (s, 0). Wu et al. also mentioned that a user-216

defined upper bound for pi can be used, but did not investigate217

further [33]. It should be noted that the JS estimator does not218

guarantee its optimality when bounding pLJS
i in (8).219

III. LIMITATIONS OF THE LOCAL JAMES-STEIN220

SELF-WEIGHT ESTIMATION FOR221

THE NLM FILTER222

We now investigate two limitations of the original LJS223

method [33] in terms of the size of local neighborhoods for224

self-weight estimation, and the potential for excessive self-225

weight estimation.226

A. Size of Local Neighborhood for Self-Weight Estimation227

In the method described in [33], there are two implicit steps228

required in order to obtain the LJS self-weight estimator (10).229

The first step is to choose a local set of pixels around the i th230

pixel, referred to as set �B
i , that correspond to the operator Bi ,231

and assume that:232

x̂ j = (1 − pi) ẑ j + pi y j , j ∈ �B
i . (11)233

Fig. 1. Bias-variance curves (cameraman example) for the classical NLM and
LJS methods (LJS+) for different sizes of local neighborhoods (B). The curves
were plotted while varying the smoothing parameter h (log2 h ∈ [1.8, 3.2]).

Based on the works of Stein [36] and James and Stein [37], 234

if |B| ≥ 3, then for a neighborhood �B
i extracted using Bi , 235

x̂ j =
(

1 − pLJS+
i

)
ẑ j + pLJS+

i y j , j ∈ �B
i . (12) 236

is a dominant estimator for x j “locally” in �B
i . The LJS 237

method used the zero lower bound when estimating pi in 238

order to obtain a realistic non-negative self-weight value. This 239

was also a good choice in terms of the estimator perfor- 240

mance since the positive part of the JS estimator is dominant 241

over the original JS estimator, according to the works of 242

Baranchik [34], [38] and Efron and Morris [39]. 243

The second implicit step is to assign the resulting pLJS
i to pi 244

in (7) for only the single pixel i so that: 245

x̂LJS
i =

(
1 − pLJS

i

)
ẑi + pLJS

i yi . (13) 246

Wu et al. evaluated the LJS method with |B| = 15 × 15 [33], 247

which seems relatively large. 248

Based on this implicit two-step interpretation, we can sur- 249

mise that using a smaller size of |B| may be more desirable 250

for obtaining a less biased estimate of pi since the assumption 251

of having the same pi in �B
i is less likely to be true for 252

larger sizes of �B
i . Figure 1 confirms our conjecture. The 253

bias-variance curves of the LJS method yielded better bias- 254

variance trade-offs than those in the classical NLM method for 255

both large local neighborhoods with a half window size B = 7 256

(|B| = 15 × 15) and small local neighborhoods with B = 2 257

(|B| = 5 × 5). However, using larger local neighborhood sizes 258

for estimating pi yielded stronger biases than those estimated 259

using smaller sizes for the same level of variance. 260

B. Excessively Large Self-Weight Estimates 261

In the LJS method for determining the self-weights by 262

estimating values for pi [33], it is theoretically possible that 263

the self-weights have excessively high values. For example, 264

(6) suggests that if pi = 1 and Wi > 0, then wi,i � 1. 265

Slight artifacts were observed in [33] in the background area 266

that were potentially caused by excessive self-weight estimates 267

when a relatively larger neighborhood size |B| = 15 × 15 was 268

used. We observed a significantly higher degree of degradation 269

in the visual image quality in the background area when the 270
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Fig. 2. Denoised image of the cameraman example using the original LJS
method [33] with no upper bound for the self-weights (top left), estimated pi
values (top right), calculated Wi (bottom left), and resulting self-weights (wi,i )
showing excessive self-weights (bottom right). B = 2 and σ = 10.

size of |B| in (8) was small, as shown in the image in the top271

left figure of Fig. 2.272

We investigated this issue using an example of the camera-273

man image that was denoised using the LJS method [33], but274

with a smaller neighborhood size |B| = 5 × 5. For areas with275

more details, such as edges and textures, large pi values were276

estimated and yielded large self-weights, as shown in the top277

right figure of Fig. 2. However, since the values for Wi were278

also very small in these areas, as shown in the bottom left279

image in Fig. 2, the resulting self-weight map yielded values280

close to 1 in the areas with details as shown in the bottom281

right image in Fig. 2.282

In contrast, for areas with almost no details, such as those283

with a flat intensity background, relatively smaller pi values284

were estimated, some of which were much larger than 0285

while the rest were closer to 0, as shown in the top right286

image in Fig. 2. However, since the Wi values for the flat287

areas were relatively large, as shown in the bottom left image288

in Fig. 2, some of the estimated pi values obtained using the289

LJS method (LJS+) were estimated to yield excessively large290

self-weights that were much larger than 1, as shown in the291

bottom right image of Fig. 2. Consequently, these excessively292

large self-weights caused severe rare patch artifacts in the293

filtered image, which resulted in visual quality degradation,294

as observed in the top left image of Fig. 2.295

IV. LOCAL MINIMAX ESTIMATION METHODS FOR UPPER296

BOUNDED SELF-WEIGHTS IN A NLM FILTER297

In this section, we propose two local upper bounded self-298

weight estimation methods that use Baranchik’s minimax299

estimator [34].300

A. Bounded Self-Weights301

It is usually assumed that the self-weights satisfy wi,i ∈302

[0, 1]. However, there are many possible upper bounds for the303

self-weights, including 1 [4] or some positive value that is304

possibly less than 1 based on SURE [32]. In this article, two 305

different upper bound values wmax
i,i for the self-weights were 306

evaluated such that 0 ≤ wi,i ≤ wmax
i,i . One upper bound 307

was: 308

wmax−one
i,i = 1, (14) 309

which is the usual choice for the self-weights in the classical 310

NLM method [4]. The other upper bound was: 311

wmax−stein
i,i = exp

(
−σ 2/h2

)
, (15) 312

which was motivated by the SURE-based NLM 313

self-weights [32]. We assume that σ is known and h is 314

pre-determined, which means that the upper bound for 315

the self-weights can also be determined in advance. 316

Equation (15) takes the noise level into account. As σ is 317

smaller, the maximum self-weight in (15) is closer to one. 318

It should be noted that the difference between (15) and (14) 319

will be greater at higher noise levels. 320

Since pi is estimated instead of wi,i , it is necessary to derive 321

the range of pi that corresponds to 0 ≤ wi,i ≤ wmax
i,i . 322

From (6), the derivative of pi with respect to wi,i is non- 323

negative as follows: 324

d

dwi,i
pi = Wi

(Wi + wi,i )2 ≥ 0 325

since Wi ≥ 0. Therefore, pi is a non-decreasing function of 326

wi,i and for 0 ≤ wi,i ≤ wmax
i,i , the range of pi will be 327

0 ≤ pi ≤ wmax
i,i

Wi + wmax
i,i

=: pmax
i ≤ 1. 328

Note that if Wi = 0, then pmax
i = 1. The estimator 329

pLJS+
i in (10) automatically guarantees that 0 ≤ pi ≤ 1 if 330

|B| ≥ 2. However, since Wi > 0 generally holds for most real 331

images with noise, it is necessary to constrain pi to be less 332

than or equal to the upper bound pmax
i , which is usually less 333

than one. 334

B. Local Minimax Self-Weight Estimation With Direct Bound 335

Enforcing the upper limit pmax
i on the estimated pi in (10) 336

using min(pLJS+
i , pmax

i ) breaks the optimality of the JS estima- 337

tor if pmax
i < 1. In this article, we propose using Baranchik’s 338

minimax estimator [34] to incorporate bounded self-weights 339

into the estimator (see Baranchik [34], Erfon and Morris [39], 340

and Strawderman [40] for more details on this minimax 341

estimator). 342

Theorem 1 (Baranchik): For y ∼ Nr
(
x, σ 2I

)
, r ≥ 3, and 343

loss L(x, x̂) = ∥
∥x − x̂

∥
∥, an estimator of the form x̂ = qy 344

where 345

q =
[

1 − c (‖y‖) σ 2(r − 2)

‖y‖2

]

(16) 346

is the minimax, provided that: 347

(i) 0 ≤ c (‖y‖) ≤ 2 and 348

(ii) the function c(·) is nondecreasing. 349

350

Here y shrinks toward 0 which is the initial estimate of x. 351
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Fig. 3. Graphical illustrations of the original and positive part JS estimators
without upper bounds, and the proposed minimax self-weight estimators with
upper bounds in terms of c (‖s‖) vs. ‖s‖. (a) Original and positive-part JS
estimators. (b) Proposed minimax estimators with bounds.

The original JS estimator and its positive part are special352

cases of Baranchik’s minimax estimator. For the original JS353

estimator (8):354

c (‖s‖) = 1, (17)355

where s = Bi y − Bi ẑ so that both conditions (i, ii) of356

the Baranchik’s theorem are satisfied. In the positive part357

estimator (9), it can be shown that:358

c (‖s‖) =
⎧
⎨

⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, otherwise
(18)359

where Y1 := σ
√

r − 2. The original and positive part360

JS estimators are illustrated in Fig. 3 (a).361

We propose a new local minimax self-weight estimation362

method that uses a direct bound with a specific upper-bound363

value, as follows:364

pLMM−DB
i := min(pLJS+

i , pmax
i ). (19)365

This estimator is minimax under certain conditions that can366

be derived using Baranchik’s minimax estimator theorem.367

According to this theorem, this operation can be interpreted368

as follows:369

c (‖s‖) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, Y1 < ‖s‖ ≤ Y2

‖s‖2 (1 − pmax)

σ 2(r − 2)
, Y2 < ‖s‖

(20)370

where Y2 := σ
√

(r − 2)/(1 − pmax). We call this371

a local minimax self-weight estimator using direct372

bound (LMM-DB), which is illustrated in Fig. 3 (b)373

where Y4 := σ
√

2(r − 2)/(1 − pmax).374

However, note that LMM-DB is not minimax for ‖s‖ > Y4. 375

Fortunately, ‖s‖ = ‖Bi y − Bi ẑ‖ can be limited by adjusting 376

the smoothing parameter h by making it smaller so that all 377

‖s‖ ≤ Y4 and c
(‖Bi y − Bi ẑ‖

) ≤ 2. Then, the LMM-DB 378

becomes “practically” a minimax estimator. Let us denote the 379

maximum h that satisfies ‖s‖ ≤ Y4 as hmax. 380

In this case, a question can be raised: will the optimal value 381

for h fall into the range of h that satisfies ‖s‖ ≤ Y4? Interest- 382

ingly, our simulations with many natural images showed that 383

the optimal smoothing parameter h∗ based on the true images 384

is very close to hmax. This is because the LMM-DB yielded 385

pmax → 1 so that Y2 → ∞, and almost all
∥
∥Bi y − Bi ẑ

∥
∥ were 386

less than or equal to Y4. Therefore, pLMM−DB
i is “practically” 387

a minimax value based on Baranchik’s theorem for many 388

natural images. Moreover, the LMM-DB method may provide 389

a way to choose the optimal global smoothing parameter value 390

h without knowing the underlying true image. We empirically 391

investigate this issue in Section V. 392

C. Local Minimax Self-Weight Estimation With 393

Re-Parametrization 394

The LMM-DB algorithm set p to be the same pmax for a 395

wide range of
∥
∥Bi y − Bi ẑ

∥
∥ values. We now propose another 396

new method, called the local minimax self-weight estimation 397

with reparametrization (LMM-RP) method, that assigns dif- 398

ferent p values for different
∥
∥Bi y − Bi ẑ

∥
∥. 399

We reparametrized pi in (7) in the following way: 400

x̂i = ẑi (pi/pmax
i )pmax

i (yi − ẑi ) 401

= ẑi + pT
i (yT

i − ẑT
i ) (21) 402

= (1 − pmax
i )ẑi + ẑT

i + pT
i (yT

i − ẑT
i ) (22) 403

where ẑT
i = pmax

i ẑi , yT
i = pmax

i yi , and 404

pT
i = 1

pmax
i

wi,i

Wi + wi,i
. (23) 405

Note that for 0 ≤ wi,i ≤ wmax
i,i , pT

i is an increasing function 406

of wi,i and the range of pT
i is 0 ≤ pT

i ≤ 1. We propose 407

to use the positive part of the JS estimator to estimate the 408

reparametrized pT
i , as follows: 409

p
T,LJS+
i =

[

1 − (|B| − 2) (pmax
i )2σ 2

∥
∥Bi yT − Bi ẑT

∥
∥2

]

+
410

=
[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
= pLJS+

i . (24) 411

This method is equivalent to using a multiplicative factor pmax
i 412

for the original JS shrinkage (9): 413

x̂LMM−RP
i = (1 − pLMM−RP

i )ẑi + pLMM−RP
i yi (25) 414

where 415

pLMM−RP
i = pmax

i

[

1 − (|B| − 2) σ 2

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
. (26) 416

This proposed LMM-RP estimator is not dominant when 417

estimating xi , but rather is dominant when estimating pmax
i xi , 418
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as shown in (22). Thus, the positive part JS estimator does not419

guarantee that the LMM-RP is dominant.420

Baranchik’s minimax estimation theorem can be used to421

analyze the LMM-RP estimator as follows:422

c (‖s‖) =

⎧
⎪⎪⎨

⎪⎪⎩

‖s‖2

σ 2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

‖s‖2(1 − pmax)

σ 2(r − 2)
+ pmax, Y1 < ‖s‖

(27)423

where if ‖s‖ is Y3 := σ
√

(2 − pmax)(r − 2)/(1 − pmax), then424

c (‖s‖) = 2. The LMM-RP method is also illustrated in Fig. 3425

(b), and is minimax if ‖s‖ ≤ Y3. The global smoothing426

parameter h can be adjusted so that this condition is satisfied427

for different images. As in the case of the LMM-DB, it turns428

out that the optimal global smoothing parameter h∗ and429

the upper bound h that satisfies ‖s‖ ≤ Y3 are also very430

close to each other when the LMM-RP method is applied431

to many natural images. Therefore, the LMM-RP method432

is “practically” a minimax. The following table summarizes433

the LJS self-weight estimation method and our proposed434

LMM-based self-weight estimation methods.435

Summary of Self-Weight Estimation Methods

LJS+ [33] :
pLJS+

i =
[
1 − (|B| − 2) σ 2/

∥
∥Bi y − Bi ẑ

∥
∥2

]

+
x̂LJS+

i = (1 − pLJS+
i )ẑi + pLJS+

i yi

LMM − DB :
pLMM−DB

i = min(pLJS+
i , pmax

i )

x̂LMM−DB
i = (1 − pLMM−DB

i )ẑi + pLMM−DB
i yi

LMM − RP :
pLMM−RP

i = pLJS+
i pmax

i

x̂LMM−RP
i = (1 − pLMM−RP

i )ẑi + pLMM−RP
i yi

V. SIMULATION RESULTS436

A. Simulation Setup437

Ten natural images1 (cameraman, lena, montage, house,438

pepper, barbara, boat, hill, couple, fingerprint) and five images439

from the SUN database2 (abbey, airplane cabin, airport ter-440

minal, alley, amphitheater) were used in our study as noise-441

free images (128 × 128, 256 × 256, or 512 × 512 pixels,442

8 bits). A real patient MRI (512 × 512 pixels, 8 bits) that was443

acquired and processed under institutional review board (IRB)444

approved protocols was also used. White Gaussian noise was445

added to each input image with various standard deviations446

σ ∈ {10, 20, 40, 60}.447

All algorithms were implemented using MATLAB448

R2015b (The Mathworks, Inc., Natick, MA, USA). The patch449

size and search window size of the NLM filter were chosen450

to be 7 × 7 and 31 × 31, respectively, which were the same451

1Available online at: http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_images.
zip as the date of 16 Nov. 2015.

2Available online at: http://vision.princeton.edu/projects/2010/SUN/ as the
date of 16 Sep. 2016.

as those used in [33]. Both the state-of-the-art LJS algorithm 452

and the proposed algorithms were tested using B = 1, · · · , 9 453

where |B| = (2B + 1)2 > 3. 454

The global smoothing parameter h was chosen empirically 455

to yield the best PSNR: 456

PSNR
(
x̂
) = 10 log10

2552

∥
∥x̂ − x

∥
∥2

/N
, (28) 457

where N is the size of the image. In addition to the PSNR, the 458

mean bias vs. the mean variance trade-off curves were used as 459

performance measures for the different smoothing parameter 460

values h: 461

bias2 = 1

N

N∑

i=1

(x̄i − xi )
2, (29) 462

var = 1

N

N∑

i=1

1

k − 1

k∑

j=1

(
x̂i j − x̄i

)2
, (30) 463

where k is the number of realizations (20 in our simulation), 464

x̂i j is the j th estimation at the i th pixel, and x̄i is the mean 465

of x̂i j , as given by: 466

x̄i = 1

k

k∑

j=1

x̂i j . 467

A visual quality assessment was also performed. 468

B. Performance Studies Using the PSNR 469

In order to estimate values of pi for a fixed neighborhood 470

size B , the optimal NLM smoothing parameter h∗ was deter- 471

mined such that the PSNR was maximized. In our proposed 472

methods, the two maximum self-weights in (14) and (15) were 473

used. The LMM-DB and LMM-RP methods given by (14) 474

are denoted LMM − DBone and LMM − RPone, while the 475

LMM-DB and LMM-RP methods given by (15) are denoted 476

LMM − DBstein and LMM − RPstein. Table I summarizes the 477

quantitative PSNR results for the 16 images with 4 different 478

noise levels. When B = 7, our proposed LMM-DB and 479

LMM-RP methods based on Baranchik’s minimax estima- 480

tor yielded much better PSNR results than did setting the 481

self-weight to one in the classical NLM method [4], and 482

comparable PSNR values to the LJS method based on the 483

JS estimator [33]. When B = 2, our proposed LMM-DB 484

and LMM-RP methods yielded better PSNR values than did 485

the LJS. 486

For the five examples of lena, house, peppers, barbara, 487

boat with σ = 20, PSNRs of our proposed methods (global 488

smoothing parameter and fixed neighborhoods, but adaptive 489

self-weight) were 0.72 ∼ 0.97 dB better than classical 490

NLM. In [10], it is reported that for the same five examples 491

with the same level of noise, the work of Kervrann et al. 492

(fixed self-weight, but local smoothing parameters and adap- 493

tive neighborhoods) yielded 0.99 ∼ 1.55 dB better PSNR 494

than classical NLM. Self-weights, local smoothing parameter, 495

neighborhoods size are important factors in the NLM filter to 496

determine output image quality. 497
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TABLE I

PSNR (dB) SUMMARY (MEAN ± STANDARD DEVIATION) FOR VARIOUS NATURAL IMAGES

C. Performance Studies With Bias-Variance Trade-Off498

The bias-variance trade-off was investigated using many499

natural images. As shown in Fig. 1, a neighborhood size B was500

used to estimate pi using the LJS method [33], and this was a501

significant factor when determining the bias. This tendency502

was also observed for the other different natural images,503

as illustrated in Fig. 4. Increasing B in the LJS method moved504

the bias-variance trade-off curves in the bottom right direction,505

meaning that the bias increased and the variance decreased.506

However, the role of the smoothing parameter h changed in507

the LJS method. Unlike in classical NLM method (see the508

NLM bias-variance curve in Fig. 1), increasing the smoothing509

parameter h beyond a certain point in the LJS method did not510

further decrease the variance in any of the natural images that511

we tested. This is because increasing h will also increases the 512

pi values so that the resulting LJS estimator becomes closer 513

to the noisy input image yi due to the lack of bounds for the 514

self-weights. 515

Our proposed methods (LMM-DB, LMM-RP) yielded 516

trade-off curves that have decreased variances for increasing 517

values of the smoothing parameter h. Figure 5 shows the 518

trade-off curves for the cameraman example for different 519

methods (LMM-DB, LMM-RP), different neighborhood sizes 520

(B = 2, 7), and different noise levels (σ = 10, 40). Our 521

proposed methods yielded bias-variance curves that were less 522

than or equal to those in the LJS method for fixed B and σ . 523

This tendency was also observed with other natural images, 524

as illustrated in Fig. 4. It was important to choose appropriate 525
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Fig. 4. Bias-variance curves for natural images using LJS+ [33] and our proposed LMM − DBone and LMM − RPone methods with a noise level of σ = 10.
(a) couple. (b) montage. (c) lena. (d) pepper . (e) house. (f) M R I .

neighborhood sizes B in order for the LJS method to obtain526

a certain level of bias, but our proposed methods were able527

to achieve that same level of bias by adjusting the smoothing528

parameter h, which was the same as in classical NLM. Based529

on our results, it appears that the use of LMM-RP has slightly530

more advantages than using LMM-DB in terms of the PSNR,531

as shown in Table I, and the bias-variance trade-off curves, as532

shown in Fig. 5, for high noise levels.533

D. Performance Studies With Visual Quality Assessment534

The most important improvements in our proposed535

LMM-DB and LMM-RP methods when compared to the536

LJS method were achieved in terms of the visual quality.537

Figure 6 (a) shows the true cameraman image (left) and the538

noisy image (right) with a noise level of σ = 10. Figure 6 (b)539

presents the filtered images using the LJS method [33] with540

B = 2 and B = 7. Severe artifacts were observed in the541

background areas when using B = 2, and these artifacts were542

reduced when using B = 7. However, there were still some543

artifacts near the edges of objects. Our proposed LMM-DB544

and LMM-RP methods exhibited fewer image artifacts than545

were observed in the images processed using the LJS method546

for both B = 2, 7. This tendency was observed in many of the547

natural images, as shown in Fig. 7, especially in the high inten-548

sity flat areas. PSNR improvements in the LJS method were549

achieved with severe (when B = 2) or mild (when B = 7)550

artifacts; however, our proposed methods achieved both a high551

Fig. 5. Bias-variance curves for LMM − DBone and LMM − RPone for
comparison with LJS+ for two neighborhood sizes B = 2, 7 and two noise
levels σ = 10, 40. (a) LMM − DBone(σ = 10). (b) LMM − DBone(σ = 40).
(c) LMM − RPone(σ = 10). (d) LMM − RPone(σ = 40).

PSNR and significantly reduced visual artifacts. This ability 552

to reduce the number of visual artifacts in a denoised image 553

is important in some applications, such as diagnostic medical 554

imaging. 555
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Fig. 6. True, noisy (σ = 10), and filtered images using LJS+ [33] ,
and the proposed LMM − DBone and LMM − RPone. (a) True and noisy
images (σ = 10). (b) LJS+ [33]. (c) Proposed LMM − DBone. (d) Proposed
LMM − RPone.

E. Maximum Self-Weights: One vs. Stein’s556

Two maximum self-weights were proposed for use: the557

value one in (14) that was proposed in [4], and Stein’s558

in (15) that was proposed in [32]. Figure 8 shows that the559

LMM − DBone method yielded an improved bias-variance560

curve and PSNR than did the LMM − DBstein method when561

the noise levels were low. For high noise levels σ = 40,562

the LMM − DBstein method yielded an improved PSNR and563

bias-variance curve than did the LMM − DBone method.564

However, these differences were not significant, as also illus-565

trated in terms of the PSNR in Table I. In terms of the visual566

quality, no significant differences were observed between the567

two methods.568

TABLE II

PERCENTAGE (%) OF c(‖s‖) THAT EXCEED 2 USING LMM − DB
AND LMM − RP METHODS, σ = 10, B = 2

F. “Practical” Minimax Estimator 569

The proposed LMM-DB and LMM-RP methods are min- 570

imax with respect to ‖s‖ ≤ Y4 and ‖s‖ ≤ Y3, respectively, 571

as shown in Fig. 3. However, these conditions impose upper 572

bounds for the smoothing parameters h and the optimal 573

h∗, which means that the smoothing parameter values that 574

yield the best PSNR may not be achievable. We empirically 575

investigated this issue using many natural images. 576

Table II shows the ratio (percentage unit) of the number of 577

pixels for which c(‖s‖) > 2 to the total number of pixels 578

in the cameraman, fingerprint, and MRI images when the 579

optimal h∗ for the highest PSNR was chosen based on the true 580

images for the proposed LMM-DB and LMM-RP methods. 581

For most of the pixels, the LMM-DB and LMM-RP values 582

were minimax. The relationship between the percentage of pix- 583

els with c(‖s‖) > 2 and the root mean squared error (RMSE) 584

is illustrated in Fig. 9 for the cameraman and MRI images. 585

Surprisingly, the optimal global smoothing parameters h for 586

the lowest RMSE point (or the highest PSNR) of the LMM- 587

DB and LMM-RP methods are very close to the smoothing 588

parameters h such that the percentage of c(‖s‖) > 2 is 0.1%. 589

This phenomenon was not only observed in these two images. 590

As shown in Table III, the pixel percentage of c(‖s‖) > 2 that 591

do not require knowledge of the true image can still determine 592

smoothing parameters that are able to yield comparable PSNR 593

values to the best PSNR values obtained by using the optimal 594

smoothing parameters calculated based on knowledge of the 595

true image. This was observed in all of the natural images 596

used in our simulations, with different noise levels, and when 597

B = 2 was used. However, the criteria of using the pixel 598

percentage of c(‖s‖) > 2 did not work very well for B = 7 in 599

our simulations. These criteria can be potentially used when 600

choosing a global smoothing parameter with our proposed 601

methods as a heuristic approach without knowing the true 602

image. 603

G. Computation Time for Algorithms 604

Table IV reports the computation time of the proposed 605

methods in comparison with the classical NLM and LJS+. 606



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 7. Filtered results using LJS+ [33] and the proposed LJS − RPone method with a noise level of σ = 10 and neighborhood size B = 2. (a) couple.
(b) montage. (c) lena. (d) pepper . (e) house. (f) M R I .

Fig. 8. Bias-variance curves and PSNR vs. varying neighborhood sizes (B)
using classical NLM (only in the PSNR figure), LJS, and the proposed
LMM − DBstein vs. LMM − DBone for the cameraman example.

We used 8 threads (Intel Core i7 2.8 GHz) when computing607

the patch distances for all methods. The local block size was608

B = 2, the patch size was 7 × 7, and the window size609

was 31 × 31. All parameters were fixed for all of results pre- 610

sented in this section. Adjusting these parameters can greatly 611

reduce the running time. For example, setting B = 4, the patch 612

size to 5 × 5, and the window size to 13 × 13 reduces the 613

computation time of the proposed methods to 0.60, 1.12, and 614

2.91 seconds (s) for 1282, 2562, and 5122 images, respectively. 615

However, analytically, the classical NLM requires 3|P||�| + 616

4|�| − 1 operations per pixel where |�| is the number of 617

elements in �i and LJS+ requires 3|P||�| + 4|�| + 3|B| + 5 618

operations per pixel. It is reported in [33] that the additional 619

operations for LJS+ (3|B| + 6 operations) were negligible 620

compared to the NLM filtering computation (3|P||�|+4|�|− 621

1 operations). Analytically, the additional computation for 622

LMM − DB and LMM − RP is 3|B| + 7 operations, which 623

is almost the same as the additional computation for LJS+. 624

Therefore, further implementation optimization is possible by 625

exploiting the redundant computation of the patch distances 626

for the minimax estimator and NLM weights. 627

VI. DISCUSSION 628

The classical NLM method was a significant work in image 629

denoising [4], and required the determination of two important 630

parameters for good denoising performance: a smoothing 631

parameter and a self-weight value. The LJS method proposed 632
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TABLE III

THE PSNR VALUES (dB) OF THE PROPOSED METHODS WITH B = 2
WHEN CHOOSING THE SMOOTHING PARAMETER SO AS TO YIELD

THE HIGHEST PSNR USING THE TRUE IMAGE (TRUE),
AND WHEN CHOOSING THE SMOOTHING PARAMETER

SO AS TO YIELD THE PERCENTAGE OF c(‖s‖) > 2
TO BE 0.1% (ESTIMATED) FOR

DIFFERENT NOISE LEVELS

by Wu et al. [33] developed a state-of-the-art method for self-633

weight determination using JS estimation [37] and yielded634

superior results in terms of the PSNR compared to the other635

existing methods. However, since the LJS method did not636

impose an upper bound for self-weight estimation, the bias637

could no longer be controlled by the smoothing parameter,638

which resulted in visual quality degradation. Our proposed639

methods based on the Baranchik’s minimax theorem [34]640

yielded comparable PSNR results to the state-of-the-art LJS641

method. By imposing upper bounds for the self-weights,642

Fig. 9. Comparison plots of the RMSE vs. the smoothing parameter h
and the percentage of c(‖s‖) > 2 vs. the same smoothing parameter when
using LMM-DB and LMM-RP with B = 2 and σ = 10. (a) cameraman
LMM − DBone. (b) MRI LMM − DBone. (c) cameraman LMM − RPone.
(d) MRI LMM − RPone.

TABLE IV

EXECUTION TIME (S) COMPARISON. THIS WILL VARY
WITH PARAMETER SELECTION

the bias-variance trade-off was able to be controlled by a 643

smoothing parameter, and substantial visual artifact reduction 644

was achieved. 645

The focus of this article was self-weight parameter selec- 646

tion in the classical NLM filter with theoretical justification. 647

As discussed in the Introduction, there are other factors that 648

affect the performance of NLM based filters, and we expect 649

that our proposed methods would not be able to achieve 650

state-of-the-art denoising performance if there were no other 651

optimizations performed except the self-weights. Indeed, our 652

proposed methods with one patch size (non-adaptive neighbor- 653

hood) and one global smoothing parameter were not able to 654

achieve the level of denoising performance of the state-of-the- 655

art denoising methods such as BM3D [6]. However, when our 656

proposed methods have incorporated some of the other factors 657

into the NLM filters, such as local smoothing parameters 658

and adaptive neighborhoods [10], they have great potential to 659

achieve significantly improved denoising performance. 660

The minimax property of our proposed methods depends on 661

the choice of smoothing parameters. When using sufficiently 662

small smoothing parameters, the LMM-DB and LMM-RP 663

methods are “practically” minimax according to Baranchik’s 664
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theorem [34]. However, when large smoothing parameters are665

used, there may be some pixels that are not minimax for self-666

weight estimation. More empirical investigation showed that667

the optimal global smoothing parameter h that yielded the668

best PSNR only resulted in a very small portion of the pixels669

that did not have minimax self-weight estimators. In fact,670

this can be used as a useful heuristic when choosing a good671

smoothing parameter since testing the minimax properties of672

our proposed methods does not require the true image. More673

theoretical analysis for this observation, or a statistical analysis674

using many natural images as shown in [41], are potential675

extensions of this work. Therefore, our proposed methods do676

not only provide an optimal way to determine self-weights, but677

also provide a heuristic way to determine a good smoothing678

parameter.679

VII. CONCLUSION680

We proposed two methods, LMM-DB, LMM-RP, to deter-681

mine the self-weights of NLM filters that are “practically”682

minimax, and this methods yielded a comparable PSNR, better683

bias-variance trade-offs, and reduced visual quality artifacts684

when compared to the results obtained using the state-of-the-685

art LJS method. Our methods also provide a potentially useful686

heuristic way to determine a global smoothing parameter687

without knowledge of the original image.688
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