
Railway - Spare Inventory &
Maintenance Scheduling model
development

D. Sommers

De
lft

Un
iv
er
si
ty

of
Te

ch
no

lo
gy





Railway - Spare Inventory &
Maintenance Scheduling model

development
for railway maintenance management

by

D. Sommers
Student number: 4858530

A thesis to fulfill the degree of

Master of Science
in Transport, Infrastructure & Logistics

at the Delft University of Technology,
to be defended publicly on Friday July 23, 2021 at 16:00.

Supervisors: Prof. dr. R.M.P. Goverde, TU Delft CEG
Dr. N. Bešinović, TU Delft CEG
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Summary

Planning of maintenance operations in large systems like a railway network becomes is non-trivial.
To aid in governing the maintenance process, mathematical models have proven very

effective. Statistical methodologies have been developed and applied to analyse failure of
components in technical systems but also to forecast other stochastic processes like lead times of
spare parts or the success of a repair action. Most of these models however favour industrial
settings in which products are produced or on the other end of the spectrum fully disconnected
systems like fleets of trucks.

The research before you adds to the scientific body of modelling maintenance processes by
expanding it towards the railway infrastructure domain. This specificity makes the problem at
hand differ from the traditions of production line analysis because of less dependence of failure
dynamics between parts, moreover the addition of minimal maintenance options in the model are
not a custom in the traditional models. A Monte Carlo simulation is developed which estimates
costs made for maintenance operations in a railway system. This simulation is subsequently
included in a modelling framework where surrogate modelling is used to optimise three decisions:
when to replace parts based on their condition, when to buy spare parts and how many spare parts
to buy each time.

To this end a model should be able to take in data regarding a specific part (i.e. a specific type of
railway switch) which is installed multiple times in the entire system, and produce optimised
values for the three decision variables. The research is governed by a single research question:

How can spare inventory control decisions and maintenance scheduling decisions be modelled for
the application in railway networks to minimise operational cost?

To simulate both spare inventory control and maintenance scheduling, overarching strategies are
chosen to fit the problem situation. For the sake of maintenance scheduling, a highly advanced
level of scheduling should be adhered to. The railway network after all has a high demand of
reliability. The most advanced methods of maintenance scheduling strategies are the condition
based maintenance (CBM) strategies. In which parts are preventively replaced whenever possible.
This involves checking the parts’ condition and replacing that part when its deterioration exceeds a
threshold Lp which is based on knowledge about its failure processes (preventive in-place repair is
not considered as an option as a result of the reality of the railway network operations). The
inspections of the condition of a part are in this research considered to happen periodically, while
some parts in the railway system do have sensor technology allowing for continuous data on their
condition, these are very rare and have less need for the developed model.

Spare inventory control can be steered through strategies that specify how the stock levels are
reviewed as well as how to buy new parts. Because the warehousing of spare parts in these large
systems is often outsourced to specialised third-party operators, continuous review of stock levels
is the most applicable choice. The ordering regime can then take the form of an (s,nQ) system where
n units of quantity Q are ordered each time the stock level falls below s such that the stock level is
restored to above s. Alternatively the (s,S) system can be used, where every time the stock level drops
below s enough spare parts are ordered to replenish the stock level back to S. For the sake of this
research only the more generalised form of (s,S) is considered.
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iv 0. Summary

To fulfill the research goal, the developed model should thus optimise Lp , s & S to suit the
minimisation of the operational cost. The final model consists of two parts: a Monte Carlo type
simulation which predicts an estimated cost based on part data and values for the three decision
variables and an optimisation algorithm which optimises the three decision variable values through
surrogate modelling. Together these form the modelling framework (see figure 1) of the functional
Railway - Spare Inventory & Maintenance Scheduling (R-SIMS) model.

Figure 1: modelling framework of the R-SIMS model

The simulation was developed using a base model from literature. Other than general
alterations of the base simulation which increased accuracy and applicability in railways, the new
simulation was equipped with possibilities for minimal maintenance in a case of stock-out after an
unexpected failure of a part.

To optimise the decision variables, a suitable optimisation technique is found in surrogate
modelling, a discipline of optimisation which deals specifically with derivative free optimisation
(DFO) of expensive black-box functions (functions which have no closed form objective function
available like the simulation in this case). Four surrogate modelling algorithms are identified as
potential fits for the problem at hand. These algorithms are focused on problems with a single
objective and integer decision variables. Moreover they are able to deal with problems which would
have a solution close to the edges of a search space.

To ascertain which of the four candidate surrogate modeling algorithms, experiments are
performed to test each on the measures of performance, speed and stability. Performance being
the quality of the solution found by the algorithm in a certain amount of time, speed being defined
by the time per iteration as well as the time required by an algorithm to reach a certain objective
value and stability being the variations of results found by a single algorithm when running the
same experiment for the same duration multiple times. The propagation of the best found
objective over the 200 iterations performed in this experiment are shown in figure 2.

Results show that for performance, the MVRSM and HyperOpt algorithm score equally well
(average objective values found of 37.42 and 38.20 €/part/period respectively and a pair-wise t-test
significance of 0.6986 over the results of both algorithms). On the speed metric, HyperOpt and
Randomsearch show the lowest time per iteration with averages of 10.72 and 10.87 seconds per
iteration respectively. Moreover HyperOpt requires the least amount of time to reach the objective
value goal of 64.32 €/part/period with 2.68 minutes required on average. In terms of stability
HyperOpt also out-performs MVRSM both in case of the variation in the found objective
(coefficient of variation of the objective of 0.07 for HyperOpt and 0.14 for MVRSM) as well as for the
found values of the decision variables (combined coefficient of variation of 1.55 for HyperOpt
versus 3.63 for MVRSM). This leads to HyperOpt being the most favourable algorithm for
optimisation of the studied problem.
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Figure 2: Performance runs averaged over the 10 repetitions of the experiment with a shaded area indicating one standard
deviation of the results above and below the average.

A test-case is subsequently ran through the entire model to give a practical example of its overall
functioning. The 200 trials of the model resulting from this test-case are visualised in figure ??.
Where the test-case shows that the full model is operational and yields useful results, some caveats
regarding its use can be described. The downtime calculation currently happens in a manner
which is not in line with reality. Because of the time granularity of the simulation, downtime is only
recorded in full time-steps. When a user then uses a larger time-step (i.e. a month or year) to
reduce computational power necessary, downtime becomes increasingly unrealistic. To combat
this problem another method of determining downtime could be used (possibly estimating a
probability distribution for the downtime length within a single time-step). Another problem
which relates to the previous one is the computational effort involved in solving the model. The
use of high-end computation systems would help to solve this but the inherent evaluation of the
problem by the model resists parallelisation of the calculations. This is a result of the sequantiality
of the problem, each time-step has to be processed after the other because decisions made in one
time-step can influence stock levels and possibilities for maintenance actions in the next.
Moreover during each time-step each part installed in the system has to be handled after the other
as well because of the same reason. Finally the data gathering necessary to use the model is quite
significant. A lot of data on operational cost of for instance replacement of parts or inspection are
required as inputs for the model and these costs often have complex underlying financial and
operational foundations. If a user does not poses data sets which fit the required data fully, they
will have to spend much effort on gathering the right data in the right fashion before they would be
able to use the model fully.
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Figure 3: 4D plot of objective and decision variables found by R-SIMS model

To gain a deeper understanding of the newly developed simulation model, a sensitivity analysis
was performed studying the effect of nine of the used parameters on the objective EC , the
operational cost of a part per period. This analysis showed a large influence of the downtime cost
(average correlation = 0.999), the spare part procurement cost (average correlation = 0.999) and the
holding cost (average correlation = 1.000) on the final objective. The lead time shows a significant
correlation (0.863) with the objective only in a low demand setting and inspection interval has a
strong significant correlation (0.970) with the objective in the medium demand setting.

The developed model satisfies the research goal, it optimises estimated costs per part per period
and returns values for the three decision variables which govern both spare inventory control
(reorder level s and order up-to level S) and maintenance scheduling (CBM threshold Lp ). By
choosing proper elements to build the simulation (e.g. the CBM and (s,S) policy and adding
minimal maintenance) this model better suits the railway infrastructure context than the models
available in literature.

Future research on this topic could focus on:

More research could be done to gain insights into best practices when it comes to data selection.
The data required to utilise operational models is often very detailed and widespread throughout
an organisation or over stakeholders. The aggregation of data sources and control of access is an
entire field of data science which would be applicable to this research. Secondly, alterations to
allow the model to include parts which have continuous monitoring capabilities would be helpful.
Because large systems like the railway infrastructure often involve different sets of parts. Some of
these parts in practice have their own dedicated continuous monitoring systems which allow the
owners to implement another maintenance scheduling strategy. Making the model more modular
in such a way that the user could run these parts through as well would be a great increase in value
for the model. Thirdly, including parts which have an (s,nQ) inventory control strategy. Similarly to
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the previous point, some part sets have a different inventory control strategy from the one used in
the R-SIMS model. By again making the model more modular to accommodate for these strategies
it would be more widely applicable in practice. Fourth, better methods for estimating downtime
costs should be developed. In the developed model, because of the granularity of time it is very
difficult to balance computational needs with an accurate estimate of downtime cost. Especially in
infrastructure systems like the railways where downtime is extremely costly this factor is
important. Further work on the implementation of the downtime costs would therefore be a great
contribution to the R-SIMS model in particular. Finally, possible expansion of the application
outside the railway management domain. While one of the biggest contributions of this research is
the development of a combined spare inventory & maintenance scheduling model specifically
suited for railway infrastructure, the literature review showed that in general these models rarely
include functionalities for minimal maintenance. This functionality is particularly valuable in the
railway setting but could also be applied in specified other applications which for instance are hard
to reach with spare parts. Research in this wider application would therefore increase the benefit
industry would be able to gain through the use of the R-SIMS model.





Contents

Summary iii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem at hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Maintenance scheduling strategies . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Spare inventory control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Joint spare inventory and maintenance scheduling models . . . . . . . . . . . . . . . 7
2.2.1 Model requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Available models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Scientific gaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Surrogate modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Problem description 17
3.1 Modelling definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Maintenance operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Spare inventory control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Action sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Methodology 23
4.1 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Surrogate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1 Randomsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 HyperOpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 IDONE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.4 MVRSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Numerical experiments 33
5.1 Experimentation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Build of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



x Contents

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Experiment 1: Algorithm choice. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Experiment 2: Real-life test case. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 Experiment 3: Simulation sensitivity analysis . . . . . . . . . . . . . . . . . . . 35

5.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.1 Experiment 1: Algorithm choice. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Experiment 2: Real-life test case. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Experiment 3: Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Discussion 47
6.1 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Algorithm choice experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 Test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion 55
7.1 Research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Impact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References 59

A Scientific article 63

B Data sources 81

C Experiment data 83

D Derivation of Expected Improvement optimisation formula 89



List of Figures

1 modelling framework of the R-SIMS model . . . . . . . . . . . . . . . . . . . . . . . . . . iv
2 Performance runs averaged over the 10 repetitions of the experiment with a shaded

area indicating one standard deviation of the results above and below the average. . . v
3 4D plot of objective and decision variables found by R-SIMS model . . . . . . . . . . . vi

1.1 Outline of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Representation of different maintenance strategies . . . . . . . . . . . . . . . . . . . . . 6
2.2 Classification of inventory control systems . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Behaviour of part failure and maintenance decisions on stock levels and system
functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Representation of the actions/choices made for each part in each time step in the
proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Overview of elements and interactions in the modelling framework . . . . . . . . . . . 23

5.1 RUTA unit installed in the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Performance runs averaged over the 10 repetitions of the experiment with a shaded

area indicating one standard deviation of the results above and below the average. . . 39
5.3 Iteration time per iteration averaged for all 10 repetitions of the experiment . . . . . . 40
5.4 Best Objective value found per iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Objective value found per iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 4D plot of objective and decision variables found by R-SIMS model . . . . . . . . . . . 43
5.7 4D plots of objective and decision variables found by R-SIMS model . . . . . . . . . . . 43
5.8 Plots of sensitivity analyses for the medium demand setting . . . . . . . . . . . . . . . . 44
5.9 Plots of analyses for low demand setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.10 Plots of analyses for high demand setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi





List of Tables

2.1 Literature review table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Surrogate Modelling algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Nomenclature for simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Algorithm choice experiments parameter levels . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 RUTA test case data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Parameter levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Algorithm choice experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Averages of experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Pair-wise t-test significance values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Time per experiment repetition to reach the goal objective of 64.32 €/part/period for

all algorithms in minutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Coefficients of variation of experiment results . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Pearson and Spearman coefficients of sensitivity analysis experiments . . . . . . . . . 49

B.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.1 Experiments for sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.2 Experiments for sensitivity analysis (continued) . . . . . . . . . . . . . . . . . . . . . . . 84
C.3 Experiments for sensitivity analysis (continued) . . . . . . . . . . . . . . . . . . . . . . . 85
C.4 Experiments for sensitivity analysis (continued) . . . . . . . . . . . . . . . . . . . . . . . 86
C.5 Algorithm choice experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii





1
Introduction

When technical systems like factories, coal mines or a railway network increase in size,
maintenance increases in both complexity and importance exponentially. One of the challenges of
maintaining large technical systems is getting a grip on the failure dynamics of parts. Failure can
be linked to many factors; environmental factors like weather, differences in how users treat
objects and unexpected accidents can all influence the timing of part failure, this makes failure
very hard to predict. Nonetheless, statistic analysis can be used to determine the best courses of
action when maintaining technical systems and installations. The planning of repair operations as
well as the consideration of procurement of spare parts are important functions for a system
maintenance manager. Where smaller systems like a farmer’s tractor can be managed on a more
ad-hoc basis, larger ones like a railway network require standardisation and a logical reasoning for
the choices made. Typical decisions that have to be made in maintenance management are: when
to repair or replace parts in the system, or how many spare parts to keep. These decisions are
usually aided by mathematical modelling and statistics. While modelling these decisions
separately can be appealing from the modellers’ perspective because of its simplicity, an integrated
approach in which both decisions regarding the actual maintenance scheduling strategy and spare
inventory control strategy are modelled generates more value to the user. This research therefore
aims to develop such a modelling framework which is specifically tailored towards the railway
infrastructure domain.

1.1. Problem at hand
Maintenance scheduling and spare inventory control are usually managed using defined strategies.
These strategies dictate what actions to take at what point in the maintenance and warehousing
cycles. A maintenance strategy could contain rules which specify when to replace parts or when
to inspect them. A spare inventory control strategy could contain rules regarding the number of
spares to keep, at which points to check the number of spares left and how many spares to buy in
each order.

Many of the models made to aid in decision making for maintenance operations have mainly
been focused on applications in production operations or single machines. However, for large and
interconnected systems like the railway network operational decisions in maintenance work
differently. This is a result of particularities in larger systems that smaller systems do not share:
firstly the inter-dependence of parts in the system is less influential in larger systems like railways.
When in a production line one part breaks, other parts will quickly be unable to function because
the entire system is only operating on a single product. Therefore, most decision making models in
maintenance management consider parts to be dependent on each other (Van Horenbeek &

1



2 1. Introduction

Pintelon, 2015; J. Wang & Zhu, 2021; Zhang, Liao, Zeng, Shi, & Zhao, 2021). In larger systems this
problem is less prevalent. A railway network handles many products at the same time and when
single parts break there is a lot of opportunity to circumvent the failure.

Secondly smaller systems contain very particular parts which are made with a high degree of
precision. This leaves little room for improvisation when parts have to be replaced but no proper
spare parts are around. For instance, when this happens with a car engine, often the best option
is to refrain from using that engine until the proper spare parts are available. However, when a
support beam for overhead lines in railways is starting to fail, one could still try to install part of an
old (possibly decommissioned) beam or try welding the cracks shut if they do not have the proper
spare part available. This process is called minimal maintenance and is rarely included in decision
support models for maintenance management (Keizer, Teunter, & Veldman, 2017; L. Wang, Chu,
& Mao, 2009; J. Wang & Zhu, 2021). An extensive review study by Van Horenbeek, Buré, Cattrysse,
Pintelon, and Vansteenwegen (2013) found less than 10% of models reviewed considered any type
of maintenance other than perfect repair/replacement.

The modelling framework which is developed in this thesis will address only single types of
parts at a time. Because of unmanageable complexity in the case of multiple part-types being
modelled simultaneously this is common in spare inventory control & maintenance scheduling
models.

Addressing a single type of part at a time means that the model is able to make the studied
decisions for a collection of identical parts which are installed in the system. If the system in this
case would be represented by a chair, a single part type could be a chair leg. There are four legs in
the system but because they are all identical they can share a pool of spares. This makes the legs a
single part type. The model would then be able to determine for instance the number of spare legs
to warehouse or the moment when new spare legs should be procured. The model could do the
same for the two arm rests or the back rest but not for all at once since these are different part
types. When translated to the railway infrastructure domain one could regard a specific type of
railway switch as a part type of which many could be installed in the system. This method reduces
the necessary computing power as well as the detailed data which the user is required to provide.

To fill the need for these types of models which are built specifically for the railway domain, this
research develops such a modelling framework and uses it to address several relevant decisions in
maintenance management of railway networks.

The main contribution of this research is the development of a Monte Carlo simulation which
is capable of estimating operational cost as a result of the maintenance decisions taken. Moreover
this developed simulation is paired with an existing surrogate modelling algorithm to minimise the
estimated costs by finding the best values for three decision variables. The simulation and the
surrogate modelling algorithm together form the developed modelling framework.

An example of a use case of this model would be that of a specific type of railway switch. One
could consider the Dutch railway network in which this type of switch would be installed 200 times,
spread over the system. A user of the developed model would then be able to enter data regarding
that type of switch; cost of procurement of the part, cost of replacement operations but also data
on its failure frequencies and probability of downtime when the part fails unexpectedly. The model
would then process this data and suggest the estimated financially best values for decisions made
in maintenance management of that type of railway switches.

Another example of an industrial need for such a model is presented by the case of ProRail.
ProRail is the Dutch infrastructure manager for all rail infrastructure and the commissioner for this
thesis. ProRail is also responsible for the maintenance of all rail infrastructure in the Netherlands.
These maintenance operations, including spare parts inventory, are outsourced to expert
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contractors. This reduces the understanding ProRail has of the maintenance processes and those
processes’ influence on the service ProRail is supposed to provide. By means of the proposed
model ProRail could get an indication of what the best values are regarding the three studied
decisions. This could then serve as an indication of their contractors’ behaviours in the
maintenance process and subsequently be used to evaluate the relationship with- and division of
responsibilities between ProRail and its contractors. Alternatively the developed model could be
used by the contractors directly to make operational decisions in their maintenance processes.

1.2. Goal
The goal of this thesis is to develop a model which aids in making better decisions in terms of
financial returns regarding spare inventory control and maintenance scheduling. This model is
specifically suited for application in railway systems. The parts which are handled by the model
should be seen as independent, meaning that they do not influence each others’ failure
behaviours. The model takes into account a wide array of costs for maintenance operations as well
as spare part warehousing and procurement. The model also includes options for minimal repair.

This goal is translated into the following research question and sub-questions:

RQ: How can spare inventory control decisions and maintenance scheduling decisions be modelled
for the application in railway networks to minimise operational cost?

1. SQ1: What strategy of maintenance scheduling best suits the railway domain?

2. SQ2: What strategy of spare parts inventory control best suits the railway domain?

3. SQ3: How can costs of spare inventory and maintenance scheduling be modelled?

4. SQ4: How could decision variables in the spare inventory control strategy and maintenance
scheduling strategy be determined to minimise operational cost?

5. SQ5: How could this type of model add value to railway infrastructure management?

1.3. Research outline
To provide a theoretical basis and to develop a starting point for the modelling, a literature review is
performed in section 2. This literature review starts off with describing basic concepts surrounding
maintenance scheduling and inventory control. Further it describes the status quo in literature
regarding the combined modelling of spare inventory and maintenance scheduling. Thereafter it
shortly introduces methods of optimisation of such models and surrogate modelling in particular.
This results the specification of the scientific gap this research aims to fill in an overview of the most
recent models and an estimation of the fit of those models to the railway management context.

Section 3 presents a detailed overview of the complete problem including all relevant concepts
and their interactions. Proper maintenance scheduling and inventory control strategies will also be
presented to fit this problem.

The developed predictive simulation model is presented in section 4. The model uses that
simulation to analyse entered scenarios and predict the estimated cost. A form of surrogate
modelling is used to optimise the three decisions (when to replace parts based on their condition,
when to buy spare parts and how many spare parts to buy) to find the lowest cost prediction.
Figure 1.1 shows a schematic overview of the elements of this research and their interactions.

Finally in section 5 a number of numerical experiments are presented to test the selection of
surrogate modelling algorithms and to motivate a definitive choice for the best fitting one. This
forms a feedback loop towards the development of the model as the experiments determine the
optimisation algorithm used in said model. Moreover some sensitivity analysis is preformed on the
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simulation to provide important feedback on the influence of several parameters in the result of the
simulation. Finally section 7 describes conclusions in terms of answering the research questions
and provides insights regarding the added value of this model to both science and industry.

Figure 1.1: Outline of the research
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Literature Review

This research aims to build a model that aids decision making regarding maintenance scheduling
and spare part inventory control in a railway infrastructure setting. The development of this model
involves the conceptual and mathematical modelling of business processes (i.e. the proper
maintenance and spare inventory control strategies), the consequences of the decisions taken and
theoretical optimisation of costs. These models vary widely in their approaches and techniques.
The objective of most of these types of models is optimisation of values for inspection- or
order-intervals, order quantities and replacement conditions. All to serve the lowest possible
operational cost of a system. This chapter first outlines some background on maintenance
scheduling strategies and inventory control strategies. Thereafter joint spare inventory and
maintenance scheduling models from literature are discussed and a review of optimisation in
general and surrogate modelling in particular is provided. This literature review results in a defined
scientific gap which the research aims to fill.

2.1. Background
2.1.1. Maintenance scheduling strategies
When looking at maintenance operations and scheduling thereof, multiple strategies are used in
practice. Two main types of maintenance strategies are recognised: Reactive and Proactive.
Reactive strategies, also named corrective maintenance, describe the best ways to react to a failure,
action is only taken after a part or machine has already failed. Proactive maintenance strategies on
the other hand, include maintenance actions being undertaken before a part or machine has
failed. Proactive strategies can be dissected further into Preventive and Predictive maintenance.
The former is mainly schedule based. Here one would, often based on historical data, calculate the
optimal periodical time to service or replace the part in question. The most advanced methods of
maintenance are the Predictive or Condition based maintenance strategies. These strategies take
the condition of the part into account when calculating the optimal service or replacement
moment. To determine the condition of the part one has to monitor it, either continuously or
periodically. Continuous monitoring, if not done digitally, is extremely laborious and even if it is
assisted by sensor technology can still come with high costs investment. Condition Based
Maintenance with Periodical inspection is already more manageable, but is accompanied by more
uncertainty and may require more corrective maintenance than a continuous monitoring policy
would. Figure 2.1 shows the structure of this maintenance strategy typology as proposed by Huang,
Chen, Chen, and Jiang (2012).

5
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Figure 2.1: Representation of different maintenance strategies (Huang et al., 2012)

From all strategies displayed in figure 2.1, the most advanced is Condition Based Maintenance
(CBM) with Continuous monitoring. This strategy yields the highest accuracy and the lowest
chance of unpredicted corrective action being necessary. It is also the strategy that includes the
highest investment in monitoring. While better methods are being developed for dealing with the
extreme data production that results from continuous monitoring, many large systems in practice
are still largely governed by periodical monitoring strategies (Jamshidi et al., 2018).

2.1.2. Spare inventory control strategies
To carry out maintenance operations often spare parts are necessary to replace parts when they
have failed or are deteriorating. A part is considered a very broad term. What constitutes a part can
range from nuts and bolts to larger components like a fuse box or entire installations like complex
railroad switches. In order to replace these parts in the system when they have failed or are deemed
unfit to function, spare parts are necessary. Without spare parts failing parts in the system could
lead to costly downtime. The control of this spare part inventory describes the number of spare
parts to keep, when to buy new ones, the number of new spare parts to buy and when to check
the number of parts left in stock. Strategies for spare inventory control are highly influenced by the
surrounding environment. For example, the packaging in which the parts are delivered as well as
the lead times, the review times and the amount of warehousing space available. All these can be of
impact on the spare stocking strategy.

Two important concepts in stock keeping are 1) the stock level, also called the Inventory on
Hand (IOH) and 2) the Inventory Position (IP). The IOH represents the actual physical inventory of
spare parts that are available at a certain moment. This is the quantity that can be checked in the
warehouse. The IP is the total number of spare parts in possession. This includes ordered parts as
well. For example, if a lead time (time between ordering a part and receiving it) is four days, the IP
will be updated as soon as an order is placed while the IOH will only be updated once the ordered
parts actually arrive four days later.

Inventory control strategies are described in many different ways in literature. Based on Silver, Pyke,
and Peterson (1998) this research uses the following categorisation of inventory control strategies:
(R,s,nQ), (R,s,S), (s,S) and (s,nQ). The relationship of these strategies is depicted in figure 2.2. In
this notation the R stands for a review cycle, an R of 4 for instance would indicate that every 4th
period (month/week/day) the IOH is checked to see how many spares are left. The s is the reorder
level, this level determines when new spares are ordered. Once the IOH becomes equal to- or lower
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than s, new spares should be ordered. S and nQ then determine the number of spares that are
ordered. The S this is the order up-to level, when ordering one would always order the number of
spares which restores the IP to that level. S is therefore also often called the max stock level. The
nQ refers to the batch-size. Part manufacturers often package their products in multiples making
it hard or impossible to buy single pieces. In this case Q indicates the batch-size (e.g. a box of
50 bolts would have a Q of 50) and n stands for the number of batches to order at every order. The
categorisation used here distinguishes four strategies by having periodic review (including an R) or a
continuous review (without R indicated) policy on the one hand and having a specific pre-specified
order quantity (nQ) or working with an order up-to level (S) on the other hand.

Figure 2.2: Classification of inventory control systems (Donselaar & Broekmeulen, 2017)

In the (R,s,S) strategy, the IOH will be monitored periodically with R time units between each
monitoring. If, at monitoring the IOH is below the value s, an order will be placed immediately
which will be of such value that the IP will be returned to S. Note that this order may in some cases
be larger than S − s as the IOH may have dropped below s between the last two sequential review
periods.

The (s,S) strategy includes no periodic review but a continuous one and will therefore always
order directly at the moment that the IOH falls below the s level. This means that the order size is
always S − s.

In the (s,nQ) strategy, the IOH is also monitored continuously. If at any point the inventory
position falls below s, a new order is placed of nQ units. Q being the standard order size of that
product and n being the minimum integer for which the order size will return back to or above s. In
this case the s therefore functions as both the reorder and order up-to level.

Finally, the (R,s,nQ) strategy functions in a similar way to the (s,nQ) but uses periodic
monitoring. This means that the orders may be larger due to an even lower IOH at the moment of
ordering.

2.2. Joint spare inventory and maintenance scheduling models
Maintenance scheduling and spare inventory control are often seen as separate functions because
they seem like two different sets of operations. Maintenance scheduling deals with maintenance
workers having to inspect and/or service parts in the field, while spare inventory control deals with
warehousing and procurement of materials and equipment. More so, viewing these two aspects as
separate greatly increases the ease of modelling and subsequent decision making. Many models
for maintenance operations scheduling (Lidén, 2015; H. Wang, 2002; Al-Turki, Duffuaa, & Bendaya,
2019) have been developed as well as models detailing spare inventory control strategies (Hu,
Boylan, Chen, & Labib, 2018; Basten & van Houtum, 2014). While these models are widely applied
in practice, some real-world situations require both aspects to be addressed simultaneously. This
holds especially true for components and systems that want to balance uptime with costs. When
the uptime of a system is incredibly important as compared to the costs (e.g. production lines) a
system owner is usually more concerned with maintenance scheduling. After all, when one
component fails in a production line, the entire system shuts down. Spare parts for those facilities
however might be quite cheap to procure and/or warehouse. On the other hand, when regarding a
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large fleet of bicycles the fleet owner may be less concerned with being extremely accurate in
maintenance scheduling. Instead they may concern themselves more with the vast number of
spare parts that might have to be kept to service all those bikes.

To develop a maintenance decision support model for application in railway infrastructure
management, a joint model that takes into account both spare inventory control and maintenance
scheduling would be the most suitable form. A base model was selected from literature to build
upon. This model is extended in order to be better applicable to the railway infrastructure domain
that is being studied in this research. Hwang and Samat (2019) reviewed joint models but focused
on models that included production planning which makes them unsuitable for this research.
Van Horenbeek et al. (2013) have reviewed many spare inventory and maintenance scheduling
models based on several characteristics. While they were very thorough, some extension is
necessary for the current research. Especially because of the developments in these models over
the past decade.

2.2.1. Model requirements
To find a model in literature which is suitable to use as a base for the development of the model
which is the product of this research a preliminary selection of models for further review has to be
made. This selection is performed using three basic requirements regarding 1) the type of
maintenance strategy, 2) the type of inventory control strategy and 3) the system which the model
applies to:

Using the typology of Huang et al. (2012) explained in section 2.1.1, the most advanced
strategies in maintenance are forms of Condition Based Maintenance. Because of the importance
of proper and timely maintenance action in the large systems that railway infrastructure entails,
one would strive for the best possible maintenance strategy. On the other hand these large systems
are hard to monitor. Installing sensors on each and every part of a national railway network would
create a vast web of electronics and an even more unwieldy stream of produced data. Note that the
digitisation of condition monitoring does already occur but only in specific part categories like
electronics. Therefore, for the sake of this research the new model to be developed will be aimed
towards parts which have not already been implemented with means of continuous monitoring. As
a result, condition based monitoring with periodical inspections is deemed the most suitable
strategy for the new model to be developed. Consultation with actual maintenance providers
(MPs) and infrastructure managers (IMs) in the field also showed that this corresponds with the
actual operational strategy in practice.

The next strategic requirement for a model to function as the base for the new model to be
developed, regards the inventory control of spare parts. Ebeling (2004) describes a host of methods
for predicting demand and optimising stock keeping decisions like reorder levels and order
quantities. These decisions can have a large effect on the overall maintenance cost of a part.
Rausch and Liao (2010) implement one of these inventory control strategies in a maintenance
operation. While their research concerned manufacturing equipment, the same conditions
(minimised downtime and production costs while maximising reliability) apply to the rail system.
Rausch and Liao (2010) also studied a CBM based maintenance system and incorporated an (S,s)
inventory policy. Again, consultation with an IM in the field showed that this corresponds with
what is the standard in practice. Because MPs often outsource the warehousing of parts to a third
party, the actual warehousing and keeping track of parts is done very accurately by a specialised
operator. This means that all in- and outgoing stock is recorded which, according to the typology
by Donselaar and Broekmeulen (2017) would indicate that some form of Continuous review policy
is used (either (s,S) or (s,nQ)). Whether a fixed base replenishment quantity is used or not is highly
dependent on the part itself. For the sake of this research both continuous review strategies are
deemed suitable for the railway infrastructure context.
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Finally the base model which is used for the development of the new model has to be
applicable to Multi-unit systems, meaning that the model considers multiple but identical installed
parts, e.g. a specific type of bearing which is used multiple times in a machine (yet, no other parts
than that type of bearing should be considered in a single run of the model). In the railway
infrastructure domain systems grow excessively large, very few items are installed singularly. Most
items are installed multiple times across the system. A single pool of spare units will thus serve
multiple installed units of equipment.

2.2.2. Available models
Based on the three requirements developed in the previous section, the literature is reviewed to
find the models which are potentially suitable as base models for this research. A previous
literature review of joint spare inventory and maintenance scheduling models is utilised as well as
further exploration of literature that was not included in that review. The review by Van Horenbeek
et al. (2013) studied 23 spare inventory control and maintenance scheduling models. Eight of these
used a periodic instead of a continuous review inventory policy. Of the remaining 15, two were
single unit systems and only three of the 13 models left used a condition based maintenance
system (L. Wang, Chu, & Mao, 2008; Xie & Wang, 2008; L. Wang et al., 2009). These three models as
well as four others are explained in some more detail below for the sake of comparison. A special
aspect of all of the models and methods described in this section is that they all involve granulating
time. Meaning that the system is only reviewed, and decisions only being taken, at discrete time
steps. By decreasing the length of these time steps continuous time could be approached but
would also highly increase computational effort in optimising the system. One of the downsides of
granulating time is that no conclusions can be drawn about what happens within a single time
step. This translates into uncertainty regarding downtime and its impact on the system as a whole.
Yet, because of practical constraints to computation time which outweigh the need for certainty
and accuracy, all models considered will make use of granulated time.

The model by L. Wang et al. (2008) considers a system in which multiple identical parts deteriorate
over time using Markov-Chains. This allows for modelling of several different states between an
as-good-as-new part and a failed one. While this method allows for a higher level of
customisability of the model, thereby allowing the users to approach the real-world situation very
closely, a disadvantage is that it requires a large amount of data to base the failure dynamics on.
Moreover, it creates a higher computational requirement which is not applicable or necessary for
railway infrastructure purposes. Another drawback of this model for railway application is that it
does not include options for minimal repairs or consider component inter- dependence.

Xie and Wang (2008) combine elements of condition based and time-based preventive
maintenance. In their proposed model parts are replaced preventively according to a set time
schedule, however, if the parts’ deterioration crosses a certain threshold before that time, it will be
preventively replaced based on that condition. This approach is very unique but their CBM
strategy also includes sensors to continuously monitor the parts’ condition. As described this
would make it unfit as a base model.

L. Wang et al. (2009) use a continuous deterioration process instead of a step-wise one. This
approach is somewhat more accurate to the real-world process and is facilitated by using an
analytical approach to their model. The CBM approach used also includes perfect, instantaneous
replacements and no minimal repairs. Lifetimes of each part, as determined by the failure
threshold of deterioration, is stochastically modelled for each lifetime. An (s,S) inventory policy is
used in which no more than one order of spares can be placed at one time. Because the model only
handles a single component type, no interdependence between the failure behaviour of parts is
taken into account. The simplicity of the model by L. Wang et al. (2009) lends itself well for
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expansion and alteration. The optimisation method being a genetic algorithm however lends itself
only to smaller problems involving only few components installed.

Next to the models reviewed by Van Horenbeek et al. (2013), four more potential base models are
reviewed here.

J. Wang and Zhu (2021) modelled a situation in which parts degrade over time. They include
stochastic degradation but discretised the deterioration into stages to differentiate a failed or
working condition of a part. Components are considered not to self-announce failure, meaning
that a part can be failed without the MP noticing directly. In case of a CBM policy with periodic
review, which is the case here, this would mean that the failure would only be detected upon the
next inspection of the failed part. As a logical carry-through of this un-announced failure aspect,
maintenance is only performed in time-steps which also include an inspection. One big caveat to
the situation studied by J. Wang and Zhu (2021) is that it concerns a ’k-out-of-n:F system’. In which
a system is considered to contain a total of n components and when k out of those are in a failed
state simultaneously at some point, the system will fail. While the step-wise deterioration of each
individual part is not linked to other parts, the subsequent maintenance decisions in this case
obviously are linked by the condition of multiple parts. This part-interdependence is one of the
aspects that in the vast infrastructure systems is less applicable. J. Wang and Zhu (2021) also only
consider replacement of parts as their only maintenance action and thus include no minimal
repairs. To actually model and optimise the maintenance scheduling and inventory control, a
Markov Decision Process (MDP) is used in this model.

Keizer et al. (2017) also consider a multi-unit system. Again, the deterioration of a part is
approached as progressing in discrete states. The first of those states is the as-good-as-new
condition and the last is the failed state. This model, like many others, assumes the repair time
itself to be instantaneous. This because the repair time, which rarely takes longer than a few hours,
often pales in comparison with the lead time and the component’s lifetime, which often
encompass weeks/months and years respectively (Keizer et al., 2017). Repair is not only assumed
to be instantaneous but also perfect, meaning that when a part is repaired/replaced it is always a
successful repair or replacement and the part is immediately as-good-as-new. The step-wise
deterioration for each part is modelled using a Poisson distribution and parts have no influence on
other parts’ deterioration processes, in other words, there is no part interdependence. Notable is
that Keizer et al. (2017) define the cost of operation and replacement as a function of the
deterioration of a part. Thereby representing that a more deteriorated part functions less efficiently
and is harder to replace than a less deteriorated one. They use an (s,S) inventory policy and the
process of operational decision making in each time step is approached with an MDP formulation.

Van Horenbeek and Pintelon (2015) describe a system which includes multiple different
parts. This approach is often seen in production settings where multiple parts depend on each
other and a single machine/function containing a limited number of different parts can be seen as
an isolated system. This however indicates the interdependence of parts. Once the system breaks
down due to a single or a few parts failing, all other parts stop working and the deterioration
patterns are influenced as a result. To optimise their model, Van Horenbeek and Pintelon (2015)
produces a sequential optimisation model. This approach entails the optimisation of the
repair/replacement time for components separately, at first ignoring inter dependencies.
Thereafter, the maintenance actions are compared and grouped to produce an optimal savings on
maintenance costs while minimising the risk produced by deferring from the optimal
repair/replacement time. The spare inventory policy used is rather unorthodox. One influential
constraint is that at most one spare can be held for each non-identical component in the system.
Moreover, they base spare procurement decisions and -timing on information about the predicted
Remaining Useful Life (RUL) of a part.
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Finally, W. Wang (2012) uses an (R,s,nQ) inventory control model. While this disqualifies it as
a potential base model as described earlier in this chapter, the model itself is still valuable to review
in terms of inspiration for possible extensions on another possible base-models. The model does
include a continuous deterioration process, but no component inter dependencies. Also W. Wang
(2012) assumes the duration of repair operations or inspections to be negligible while still
including costs for both. An interesting aspect is the modelling of the failure behaviour of parts.
This model assumes large numbers of parts installed in a system and therefore takes a
Homogeneous Poisson Process to approximate the arrival of defective parts. Rather than
modelling parts separately, this model thereby sees the entire set of identical installed parts as a
queue from which parts stochastically progress to the failed state.

2.2.3. Scientific gaps
The literature review of joint spare inventory and maintenance scheduling models has combined
the work of Van Horenbeek et al. (2013) and a review of the more recent research published in this
field. An overview of the most important aspects of each of the reviewed models as well as the model
developed in this research are displayed in table 2.1.

Table 2.1: Literature review table *: Keizer et al. (2017) used a continuous-review CBM policy, therefore each failure is
noticed immediately without having to be announced between inspection periods. **: J. Wang and Zhu (2021) use a
special form of the (s,S) policy where a variable order up-to level is used which depends on the system condition.

Authors
Staged
deterioration

Self-
announced
failure

(s,S) or
(s,nQ)
Inventory
policy

Markov
Decision
Process

Component
inter-
dependence

Minimal
repairs

L. Wang et al. (2008) x x
Xie and Wang (2008) x
J. Wang and Zhu (2021) x ** x x
Keizer et al. (2017) x * x x
Van Horenbeek and Pintelon (2015) x x
L. Wang et al. (2009) x x
W. Wang (2012) x
This paper x x x

Table 2.1 shows the unique contribution that the new model has to the current literature. The
studied literature has not yet shown an example of a joint model which:

• Employs continuous deterioration process, making it more accurate to the true state of the
part.

• Includes self-announced failure which allows maintenance engineers to perform
maintenance between inspections, increasing desired responsiveness in the infrastructure
setting.

• Uses an analytic decision process, thereby decreasing complexity and increasing use-ability
as compared to ones which employ an MDP.

• Takes into account no component inter-dependence, thereby suiting infrastructure
application better than ones that do.

• Includes minimal repair, again making it more suitable for infrastructure as a system that
remains in a failed state for longer is extremely undesirable in those cases.

Because of the characteristics of the model to be developed and the close resemblance to the model
by L. Wang et al. (2009), this model is chosen as a base model to develop further into the sought after
model in this research.
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2.3. Optimisation
The main function of the previously described joint maintenance scheduling and inventory control
models is to estimate costs for a certain entered scenario. This entered scenario includes data about
for example, inspection intervals, failure behaviours, cost factors and many more. Once the model
is able to accurately estimate a cost as a result of the entered variables, one could try to find the
values for specific variables which produce the most ideal (which in the case of this research means
lowest) cost. This process is called optimisation. The field of mathematical optimisation is very
broad and actively researched. The versatility however indicates many different avenues for ones
research to specify in. To reduce the number of options, some aspects of the studied problem can
be taken as demands for an optimisation technique to satisfy. These characteristics, presented as in
the topology of (Mueller, n.d.):

• Decision variables integer

• Objective function simulation

• Number of objectives single

• Type of constraints simulation

These four aspects make the model computationally expensive to evaluate. Moreover, they make a
closed-form analytic description of the objective function very hard if not impossible to find. This
type of problem lends itself very well to optimisation using Surrogate modelling.

2.3.1. Surrogate modelling
Surrogate modelling is a technique used in optimisation which uses experimental data of decision
variable values and accompanying objective values to estimate a relationship between both. This
estimated relationship is called the surrogate (Jones, 2001).

Figure 2.3: Modelling framework

Figure 2.3 shows the modelling framework for this research. This details the way in which
surrogates are used in optimisation: the center of a surrogate modelling methodology is the
experiment. The experiment represents the central problem which is the subject of optimisation.
This experiment usually takes some input data, part of which is formed by the decision variables.
This input data is subsequently used to output an objective value. The surrogate modelling
method then uses the ’objective value - decision variable value’ pairs as a basis to estimate a
function that connects both elements together mathematically
((ob j ect i ve value) = f (deci si on var i abl e values)). This estimated function is the actual
surrogate. To further improve the accuracy of the surrogate more data is generated through
repeating the experiment. The values of the decision variables to use in the input for the repeated
runs of the experiment can each time be based on the estimated surrogate and the previously
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gathered data through a Design of Experiments (DoE). If the surrogate is deemed satisfactory to the
user or computational resources are depleted, the experimentation cycle can be terminated. The
final surrogate is now a known function which can be optimised using conventional optimisation
techniques which yields the estimated optimal values for the original decision variables.

The specific elements of this process can take many forms to serve different strategies. Each
combination of DoE, types of surrogates fit and methods for fitting those surrogates, together form
a surrogate modelling algorithm. To find the most appropriate algorithm, aspects like the nature of
the problem itself, the resources available and the expertise of the user all have to be taken into
account.

As described in the topology of Bhosekar and Ierapetritou (2018), surrogates can be used for
three purposes: 1) prediction and modelling, 2) derivative-free optimisation (DFO) and 3)
feasibility analysis. In this research the use for surrogates is DFO of an objective function which is
expensive and therefore lacks derivative information necessary for conventional optimisation.
While some other forms of DFO exist that are not based on surrogates (Hooke & Jeeves, 1961;
Nelder & Mead, 1965), these do not suit complex functions well. Surrogate model based derivative
free optimisation (Model-based DFO) is then again subdivided into local and global methods.
Local methods focus on finding local optima with great precision (often assisted by indicating a
small region in which an optimum is likely to be located) while global methods try to indicate the
region in which a global optimum would reside. Because in the studied situation the expensive
function is completely unknown and approached as a black-box no prior indication can be given
regarding the location of the optimum. Moreover because the model will most likely be used
mainly to aid in managerial decisions, a global optimum would be more beneficial than a local
one, even though it would be less precise. The types of surrogate algorithms most suitable for this
research are therefore, according to Bhosekar and Ierapetritou (2018), Model-based global DFO
algorithms.

All the considerations described here were used to find candidate algorithms that might be suitable
for the problem studied. A selection of algorithms available in literature and software were reviewed
to select the ones which were used in experimentation.

Randomsearch is one of the most basic algorithms available (Bergstra, Yamins, & Cox, 2013b).
It randomly selects values for the decision parameters and tests the core problem (the experiment)
to find the value of the objective. It skips fitting a surrogate and its DoE can be described as taking
a random pick for every decision variable from a uniform distribution over each variable’s
respective range. Surprisingly this method has proven quite useful in certain situations. Hence, it is
wise to include this algorithm as a base-line for the performance on one’s surrogate modelling
approach. SMAC uses random forests (Hutter, Hoos, & Leyton-Brown, 2010), an approach which is
deemed very well suited for categorical or discrete variables. HyperOpt (Bergstra et al., 2013b) uses
the Tree Parzen Estimators (TPE) algorithm. In practice SMAC and HyperOpt produce very similar
results. SMAC however is less usable in this instance in terms of software integration. COMBO or
COMmon Bayesian Optimization uses a continuous surrogate (Ueno, Rhone, Hou, Mizoguchi, &
Tsuda, 2016). Similarly, Bayesianopt and pyGPGO (Jiménez & Ginebra, 2017) also use a continuous
surrogate as does DONE (Bliek, Verstraete, Verhaegen, & Wahls, 2016), which has specifically
shown a distortion effect at the edges of the search space, which is advisable to keep in mind when
selecting an algorithm to fit ones specific problem situation. CoCaBo is tailored to combine
categorical and continuous inputs (Ru, Alvi, Nguyen, Osborne, & Roberts, 2020). IDONE which is
an extension on the DONE algorithm, uses a continuous surrogate as well. Though, it is adjusted in
a way that its final optimal solution is always an integer. (Bliek, Verwer, & de Weerdt, 2020a). It
thereby subverts the distortion around the edges of the search space. One of the drawbacks of
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IDONE is that it has a limited exploration parameter. This means that it is more local-leaning.
While none of the algorithms described can fully assure that a global optimum is reached, one
might consider expanding the exploration parameter somewhat to increase the search area of the
IDONE algorithm. This is exactly what is effectively done in the MVRSM algorithm (Bliek, Verwer,
& de Weerdt, 2020b), apart from also accommodating for continuous variables rather than only
integer ones. Finally Submodular Relaxation BOCS (Deshwal, Belakaria, & Doppa, 2020), being an
extension of the better known classical BOCS (Baptista & Poloczek, 2018), might also be suitable for
this problem although practical concerns regarding the computational effort of this method could
be considered in the choice to include it in the roster of algorithms to be tested.

2.3.2. Algorithm comparison
To compare algorithms in terms of their suitability for the studied problem they are scored on four
aspects. All algorithms are described in section 2.3.1 and scores can be found in table 2.2. Scores
can be – (very negative), - (negative), x (neutral, not applicable or unknown), + (positive), or ++ (very
positive).

Table 2.2: Surrogate Modelling algorithm comparison

Level of
computational
complexity

Capacity to work
with discrete
variables

Continuous
surrogate

Local-leaning Overall

Randomsearch ++ ++ x ++ ++
SMAC – + + x x
HyperOpt ++ + - + ++
COMBO x – – x –
Bayesianopt x – – x –
pyGPGO x – – x –
DONE x – – x –
CoCaBo x - x x -
IDONE + ++ x - +
MVRSM + + x ++ ++
BOCS – + x x -
submodular Relaxation BOCS – + x x -

These four aspects represent both theoretical constraints and practical considerations. All of which
are of influence in selecting the algorithms that could be most applicable to the particular problems
studied.

Firstly, the decision variables (order up-to level, reorder level and CBM threshold) are integer
variables. Depending on the type of surrogates used and the method for optimising those
surrogate models, not all algorithms are well capable of performing optimisation tasks for integer
valued decision variables. Secondly, one of the most interesting cases, and the seed for this
research is the ProRail case described in section 3.1. In this case ProRail is interested in finding
those parts for which a contractor might, for financial reasons, decide to keep little or no spare
inventory. If this were the case for a part, the optimal value for the order up-to and reorder levels
would lie close to or on 0. This is also the edge of the search space. Meaning that this is close to the
lower bound of one or more of the decision variables. Depending on the search strategy of an
algorithm, it might be able to better or worse deal with searching at the edge of search-spaces. One
of the most indicative aspects of the algorithms regarding their distortion at the edges of the search
space is whether they use a continuous surrogate. To fit a continuous function as a surrogate, the
algorithm is often required to analyse both sides of a discrete value of the decision variable. If this
has to happen at the edge of the search space, this is impossible, causing the distortion effect.
Thirdly, an algorithm can be more- or less local-leaning. Meaning that it may be more or less
inclined to get stuck analysing a local minimum of the objective value. For the sake of this research,
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a less local-leaning algorithm is considered to be better fitting. This because very little is known
about the actual function between the objective and the decision variables. Finally, the last aspect
is the practical ease of computation. Because all algorithms are intended to be used in practice,
they have to be practical in their application in terms of computational requirements and the
technical expertise necessary to work with them.

The comparison in table 2.2 shows that Randomsearch, HyperOpt, IDONE and MVRSM are the four
most suitable algorithms for the problem being studied and the only algorithms with a positive
overall score.





3
Problem description

To describe the problem, and more specifically the model that represents the problem, first general
explanation and definitions of the model are described in this chapter. Thereafter sets of
assumptions are presented which pertain to parts, maintenance operations and spare inventory
control. The operational consequences of these assumptions and mechanics are visualised in the
action sequence and finally the objective of the entire model is described, the cost.

3.1. Modelling definitions
This research models a railway infrastructure system in which parts are installed, break down over
time, and are replaced by spare parts. This model serves to fill a gap in literature (see chapter 2),
but also a need in practice. As manager of an infrastructure system, ProRail values proper
systematic insight into their processes and the processes of their contractors. Mathematical
models can be helpful to better understand those processes. An example of a use case is finding
parts in the system for which a contractor might, for financial reasons, hold little or no spare
inventory. In this case, ProRail could argue that at least some inventory should be held for the sake
of the reliability of the railroad system. Through running a mathematical model which simulates
the contractors’ maintenance scheduling and spare inventory control decisions, ProRail might be
able to pinpoint those parts that have a high likelihood of being under-served in terms of spare
parts due to financial considerations by the contractor. In this case an accurate spare inventory
control and maintenance scheduling model which is specifically tailored to the railway
infrastructure domain would be very beneficial for ProRail as a company and for all users of the rail
infrastructure system.

The two main processes of spare inventory control and maintenance scheduling are modelled with
the aim to determine the cost-optimal values of three decision variables: the order up-to level, the
reorder level and the condition based maintenance threshold. To describe the system, figure 3.1
displays a hypothetical example. This example contains a part (a certain type of fuse box for
instance) which is installed two times in the system (seen in the top two plots of the figure). Each of
these two parts can be seen to deteriorate over time represented by the increasing level of
deterioration on the y-axis. Eventually each part is replaced by a new part which leads to a
deterioration level of 0 or as-good-as-new condition. Meanwhile, every time a part is replaced, the
spare stock level (seen in the third plot in the figure) gets depleted by one part. Once the spare
stock falls below a certain level (the reorder level) a new order is placed for spare parts which arrive
a few periods later (order cycle is displayed in the bottom plot of the figure).
Some basic concepts which seem obvious can sometimes be cause ambiguities later on, some of
these concepts are therefore introduced here.

17
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Figure 3.1: Behaviour of part failure and maintenance decisions on stock levels and system functioning (based on L. Wang
et al., 2009)

Parts can be any field-replaceable sub-section of the system that is being studied. This means
that a part might be a single, non-divisible thing, for example a piece of railroad track. Or a more
complex sub-system like electrical relays.

Deterioration can be interpreted as any form of wear on a part. It can be caused by friction,
heat or other physical abuse. Deterioration can take many different forms, it can be measured in the
number of millimeters of wear on a piece of railroad track or the resistance of a train axle counting
sensor.

Maintenance is the overarching term, used to indicate inspection (to determine the amount of
deterioration of the part), replacement (installing a new or as-good-as-new part) or repair (restoring
a failed part to working condition just before the part failed) actions of a part.

Spare stock describes the amount of spare parts that are available to perform maintenance
actions with. Spare parts are identical to the parts installed in the system but are still as-good-as-
new.

Corrective replacement is performed when a part has already failed. It replaces a failed part by
a new or as-good-as-new part.

Condition Based Maintenance threshold denotes the level of deterioration at or above which a
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preventive maintenance action is desired. The basis of CBM lies in the balance between preventive
and corrective action. By setting the CBM threshold to a certain level one can influence this balance
to fit the objectives of the policy.

Preventive replacement would preferably be performed every time a part’s deterioration is
observed to exceed the CBM threshold, in this case a part which is still operational will be replaced
by a new one. While preventive replacement is operationally similar to corrective replacement (it
takes the same amount of resources and the result, a newly installed part, is the same) the costs
may be vastly different.

More concepts that are included in the studied systems are described in this chapter along with
their accompanying assumptions and interactions. In subsection 3.2 parts and their deterioration
process are explained, subsection 3.3 handles the maintenance actions and subsection 3.4 details
the actions controlling inventory of spare parts.

3.2. Parts
The studied system is modelled for n identical parts. Regarding these parts, the following is
assumed:

• Each part, upon installation, is as-good-as-new, meaning that the deterioration of the part,
described by x(t ) is 0. After installation, the part immediately starts to deteriorate
incrementally over time at a rate of ∆x

∆t . Where ∆x is randomly picked from a pre-determined
probability distribution for every part for every time-step. This indicates that
x(t ) = x(t −1)+∆x. Since ∆x is always positive, the deterioration will only increase linearly
through time.

• Each part gets assigned a failure threshold X f for their lifetime. Once the deterioration of a
part exceeds this threshold, the part is considered failed. This threshold is picked from a pre-
determined probability distribution similarly to the step-wise deterioration. Every time a new
part is installed this threshold is re-picked and this threshold is always positive.

• All parts in the considered system are identical. All failure behaviour therefore is described
by the same distributions throughout the system. This means that local differences in
environmental conditions or different levels of use of a part compared to another is not
taken into account in this model.

• Part failures are assumed to be self-announced. This means that in a period which does not
include an inspection, failed parts are still noticed and replacement decisions can be made as
a result outside the inspection cycle.

3.3. Maintenance operations
Three different maintenance operations are considered: inspection, replacement and minimal
repair. Replacement can be done either in a preventive or corrective fashion. All of these
operations have a certain cost. Where performing inspections is governed by pre-determined time
intervals (T ), both the minimal repair as well as the replacement decisions are based on the
condition of the part (Condition Based Maintenance). The specific condition can either be the
level of deterioration in comparison with a CBM threshold or whether part has failed or not. The
following assumptions apply:

• Inspection is performed on a part every T time steps. Meaning that if the inspection interval
T for instance equals 4, inspections are performed in time step 4, 8, 12, 16, ... until the part
is replaced or failed. After replacement of a part, the cycle restarts, this means that if a part is
replaced at t = 17, the new inspection cycle will look like 21, 25, 29, ...
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• Each inspection is instantaneous and non-invasive, meaning that it does not influence the
deterioration level of the inspected part. Upon inspection the part’s condition is perfectly
determined.

• A part can only be replaced if spare part stock is available.

• Replacement as well as minimal repair are considered to be instantaneous.

• If a part is in a failed state, the system will try to correctively replace said part as soon as
possible.

• If a part is inspected, and the deterioration is shown to exceed the CBM threshold Lp , a part
will be replaced preventively as soon as possible.

• A part that can not be replaced correctively due to stock-out of spare parts will be
immediately subjected to a minimal repair, meaning that the part will exit the failed state
and will be restored to the condition directly before failure. The deterioration level will be
reset to the level before failure and a new failure threshold X f will be picked such that it is
higher than the current deterioration level. The part will subsequently be scheduled to be
replaced correctively as soon as spare stock allows.

• A part that can not be replaced preventively will be scheduled to be replaced preventively as
soon as spare stock allows.

• If a part has failed or exceeded the CBM threshold but can not be replaced due to stock-out the
’no-more-inspection’ clause will come in to effect. Meaning that the part will not be inspected
any more until it is replaced.

3.4. Spare inventory control
Inventory of spare parts is controlled using an (s,S) policy in which s < S. This policy entails
continuous monitoring of the spare IOH. The stock is assumed to always be available for
operations and all stock keeping actions are instantaneous. Further assumptions are:

• Only a single order can be outstanding at any one time. If the order marker OC = 1 no orders
can be placed. Only once those ordered parts are delivered a lead time (ts) later can another
order be placed.

• The spare stock level (the physical amount of spares available) SL can never exceed S or
become lower than 0.

• If spare stock equals reorder level s, new spares will be ordered if no order is outstanding at
that time. Spare orders are always of the quantity S−s in order to bring the Inventory Position
back up to the order up-to level S.

• Every replacement action decreases SL by exactly 1.

• Spares that remain in stock incur a holding cost each period that they are kept in stock. Parts
can be kept in stock indefinitely and will not deteriorate while kept in stock. They have an
infinite shelf-life.

3.5. Action sequence
To illustrate decisions made and subsequent actions during each time-step and for each part, figure
3.2 illustrates a decision tree.
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Figure 3.2: Representation of the actions/choices made for each part in each time step in the proposed model

3.6. Cost
All actions and decisions in the described model result in incurred monetary cost. Included cost
parameters are Cost of inspection Ci [€/inspection], Cost of preventive replacement Cp

[€/preventive replacement], Cost of corrective replacement Cc [€/corrective replacement], Holding
cost per unit per time-step Ch [€/part/period], Cost of procurement of a spare part Cs [€/part], Cost
of downtime per unit per time-step Cd [€/period] and Cost of minimal repair Cm [€/minimal repair
action]. The simulation will simulate time steps to the amount of the time horizon tm [time-steps].
Each time-step the simulation will run cost simulations for each part, n [parts] being the number
of parts considered. If for example the time horizon equals 10 years, the time steps are 1 month in
length and a specific type of railway switch is entered which is installed 20 times in the system, the
simulation will simulate each of the n = 20 parts, for every tm = 120 time steps.

All of these costs combined form the basis for the simulation’s output which is the expected
cost per part per time period EC [€/part/period]. This output is calculated by adding all costs
together and dividing them by the time horizon multiplied by the number of parts included. All
costs are tracked using counters, Ni [inspections] being the counter for the number of performed
inspections, Np [preventive replacements] the counter for the number of preventive replacements,
Nc [corrective replacements] the counter for the number of corrective replacements, Nh

[parts/period] the counter for number of parts held in stock, Ns [parts] the counter for the number
of spare parts procured, Nd [periods] the number of time-steps of downtime and Nm [minimal
repair actions] the number of minimal maintenance actions performed.
This all can be represented using Eq. (3.1):

EC = Ci Ni +Cp Np +Cc Nc +Ch Nh +Cs Ns +Cd Nd +Cm Nm

tm ·n
(3.1)

These costs can thus be calculated and are the objective to be minimised in this research.
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Methodology

To further detail the developed model and its components, this chapter presents the general
framework of the entire model as well as the simulation and optimisation steps in more detail.

4.1. Modelling framework
The Railway - Spare Inventory & Maintenance Scheduling model (R-SIMS) developed in this
research is built using a simulation-optimisation framework. The simulation model is based on the
existing model by L. Wang et al. (2009) and the optimisation is performed using surrogate
modelling. Figure 4.1 shows the overview of the complete modelling framework. The first main
element of the framework is the simulation model (further elaborated in section 4.3). This
simulation model is able to take as input values for all parameters which constitute the part
information (cost parameters, parameters describing lead times and inspection intervals etc.).
Among the required parameters are the three decision variable values (reorder level, order up-to
level and the preventive maintenance threshold). All parameters are described in section 4.2. The
simulation model can then yield an estimate of the objective value, the estimated cost per part per
period. The second main element is the surrogate modelling algorithm, four candidates for which
are described in section 4.4. This algorithm uses three inputs: the simulation itself, the output of
the simulation (the estimated cost) and the search space for each decision variable. It uses these
inputs to estimate optimal values for the decision variables. Each iteration, it can use these values
as inputs for the simulation model to further optimise the solution. Finally, when the algorithm is
finished (cut-off by the user) it outputs the definitive estimated optimal decision variable values.

Figure 4.1: Overview of elements and interactions in the modelling framework

23
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4.2. Parameters
The R-SIMS model is aimed at optimising three decision variables to fit a single objective. The
decision variables are the order up-to level (S), the reorder level (s) and the CBM threshold (Lp )
and the objective is the Expected Cost (EC ). An estimate of the objective considering a single value
for each of the three decision variables is gained through running the simulation part of this
model. Some parameters relate directly to the objective as shown in section 3.6 in equation 3.1.
These cost factors (Ci etc.), the simulation horizon (tm), lead time (ts), inspection interval (T ) and
the number of parts (n) are considered given and constant throughout the simulation. The
counters (of type Ni ) are initialised at 0, are discrete and progressively increase throughout the
simulation duration in accordance with the maintenance decisions taken. Next to these constants
and counters, the model includes the stochastic variables X f and ∆x which determines x(t ), which
are both determined by their probability distributions Pr {∆x = x} = f D (x) and Pr {X f = x} = f F (x).
Further the model contains a set of markers, which are binary variables that indicate important
decision aspects. These markers are F for indicating a failed part, I for indicating whether a part
needs to be inspected in the current period, I N to indicate whether a part needs to be inspected
for the rest of its lifetime, IC R and I PR to indicate whether a part is correctively or preventively
replaced in the current period. I R to indicate a replacement regardless of the type, OC to indicate
whether an order is currently outstanding and I M to indicate minimal repair being performed on a
part. To store the necessary (non binary) values in the model, four memory variables are used as
well: LastOT which takes the value of the last time-step in which spare parts were ordered, N A to
indicate how many spare parts are delivered in the current period, SL to keep track of the inventory
on hand and ST to remember the start of the current lifetime of a part.
To indicate, for each part-specific parameter, which part exactly it refers to, the index j is used. The
failure threshold for component j is described with X f , j , F j indicates failure of component j and
so on. Index j therefore is an index from a set that runs from 1 to n, j ∈ {1, ...,n}.

4.3. Simulation model
The simulation uses the Monte Carlo method to represent the stochasticity that is present in the
real-world. The failure of parts as well as the incremental deterioration are considered to be
stochastic. To simulate the railway parts over a certain period of time, time-steps are used. This
means that the simulation sequentially makes decisions for the system for each time-step after
another. The length of a time-step is abstract and can be assumed any value by the user of the
model. The simulation uses the Monte Carlo method to produce a reliable estimation of the
objective when considering a certain value of the decision variables. The idea behind Monte Carlo
simulation is to run multiple iterations in order to deal with the stochasticity of the model. To
determine the amount of iterations to run the method of Driels and Shin (2004) is used. The
number of iterations is based on the desired accuracy of the outcome (the expected cost EC ).

MC =
(

100zα/2Sx

E x̄

)2

(4.1)

Where MC is the number of iterations, Sx is the estimated standard deviation of the outcome of
the simulation, E is the desired percentile deviation from the mean, x̄ is the estimated mean and
zα/2 is the confidence coefficient. Sx and x̄ are usually gathered through preliminary testing of the
simulation.
If for instance a desired accuracy would be to have the outcome of the simulation not deviate more
than 5% from the mean in 95% of cases (with a sample mean of 50 and standard deviation of 7), the
number of runs would be MC = (100∗1.96∗7

5∗50

)2 ≈ 30
The nomenclature of all used variables and parameters used is given in table 4.1 and pseudo-

code is presented in Algortihm 1.
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Nomenclature

x j (t ) Deterioration level of part j at time-step t
X f , j Failure threshold for deterioration of part j
f F (x) Probability Density Function for the Failure threshold
∆x Incemental deterioration
f D (x) Probability Density Function for the Incremental deterioration
Lp Condition Based Maintenance threshold for deterioration
S Order up-to level
s Reorder level
EC Expected Cost per part per time period over the simulation horizon
ECMC Cumulative Expected Cost per part per time period
n Number of parts installed
T Inspection interval
ts Lead time
I j Marker for whether part j should be inspected in the current time-step
F j Marker for whether part j is in the failed state in the current time-step
I PR Marker for whether part j is replaced preventively in the current time-step
IC R Marker for whether part j is replaced correctively in the current time-step
I R Marker for whether part j is replaced in the current time-step
I M Marker for whether part j is minimally repaired in the current time-step
I N Marker for whether part j requires inspection in the future
OC Marker for whether an order for spare parts is outstanding or not
I MC Counter of number of minimal maintenance actions per period
LastOT The last time a new order was placed for spare parts
N A The number of spare parts that arrive in the current time-step
SL The Inventory On Hand for spare parts
ST j The time-step in which part j was installed (start of new lifetime)
Ci Cost of inspection
Cp Cost of preventive replacement
Cc Cost of corrective replacement
Cd Cost of downtime (per part per period)
Cs Cost of procurement of spare part
Ch Holding cost of spare stock (per part per period)
Cm Cost of minimal maintenance
Ni Number of inspections performed
Np Number of preventive replacements performed
Nc Number of corrective replacements performed
Nd Number of periods of downtime (cumulative)
Ns Number of spares procured
Nh Number of spares in warehouse (cumulative)
Nm Number of minimal maintenance tasks performed
j Index, j = 1,2,...,n
t Current time-step
tm Simulation horizon
MC Number of Monte Carlo iterations

Table 4.1: Nomenclature for simulation model
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Algorithm 1 Simulation Model for finding the objective value (estimated cost)

Require: Ci , Cp , Cc , Ch , Cs , Cd , Cm , ts , T , n, tm , Lp , S, s, MC . Data entry
Ensure: EC

1: Count := 0
2: Cost := 0
3: while Count ≤ MC do
4: LastOT := 0, OC := 0, N A := 0, SL := S, t := 0 . Initialization
5: Ni := 0, Np := 0, Nc := 0, Nm := 0, Ns := 0, Nd := 0, Nh := 0
6: for j = 1 to n do
7: F j := 0, I j := 0, IC R j := 0, I PR j := 0, I R j := 0, I M J := 0, ST j := 0, I N j := 1
8: Failure threshold := X f , j . P [X f , j = x] = f F (x)
9: Deterioration level := x j (t )

10: x j (t ) = X f , j ·U (0,1)
11: end for
12: while t ≤ tm do
13: if t −LastOT = ts and OC = 1 then . Spare order handling
14: N A = S − s
15: OC = 0
16: else
17: N A = 0
18: end if
19: SL := SL+N A
20: q := {1,2, ...,n −1,n}
21: while q 6= { } do
22: j ∈ q
23: q := q − j . Deterioration and failure
24: x j (t ) := x j (t −1)+∆x . P [∆x = x] = f D (x)
25: if x j (t ) ≥ X f , j then
26: F j := 1
27: else
28: F j := 0
29: end if
30: if I N j = 0 then . No-more-inspection clause
31: if F j = 1 and SL > 0 then
32: IC R j := 1
33: else if F j = 0 and SL > 0 then
34: I PR j := 1
35: end if
36: else
37: if F j = 1 and SL > 0 then . Corrective replacement or minimal repair
38: IC R j := 1
39: else if F j = 1 and SL ≤ 0 then
40: I N j := 0
41: if I M j = 0 then
42: I M j := 1
43: I MC := I MC +1
44: F j := 0
45: while x j (t ) > X f , j do
46: X f , j := {X | P [X = x] = f F (x)}
47: end while
48: end if
49: else
50: if ST j 6= t and (t −ST j ) mod T ≡ 0 then . Inspection and preventive replacement
51: I j := 1
52: if x j (t ) ≥ Lp then
53: if SL > 0 then
54: I PR j := 1
55: else
56: I N j := 0
57: end if
58: end if
59: else
60: I j := 0
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Algorithm 1 Simulation Model for finding the objective value (estimated cost) (continued)

61: end if
62: end if
63: end if
64: if I PR j = 1 or IC R j = 1 then . Installation of new part
65: I R j := 1
66: x j (t ) := 0
67: ST j := t
68: X f , j := {X | P [X = x] = f F (x)}
69: I M j := 0
70: I N j := 1
71: SL := SL−1
72: else
73: I R j := 0
74: end if
75: if SL ≤ s and OC = 0 then . Spare ordering decision
76: OC := 1
77: LastOT := t
78: end if
79: end while
80: Ni := Ni +∑n

j=0 I j . Counting, resetting and advancing time

81: Np := Np +∑n
j=0 I PR j

82: Nc := Nc +∑n
j=0 IC R j

83: Ns := Ni +N A
84: Nd := Nd +∑n

j=0 F j

85: Nh := Nh +SL
86: Nm := Nm + I MC
87: for j = 1 to n do
88: F j := 0, I j := 0, IC R j := 0, I PR j := 0, I MC := 0, I R j := 0
89: end for
90: t := t +1
91: end while
92: Cost = Cost +Ci Ni +Cp Np +Cc Nc +Ch Nh +Cs Ns +Cd Nd +Cm Nm . Cost calculation
93: Count = Count + 1
94: ECMC := ECMC + Cost

tm ·n
95: end while
96: EC = ECMC /MC ;

The simulation can be described in several steps which are illustrated in the pseudo-code:
Data entry {Require}
This step entails the entry of all the necessary parameter values by the user. Note that the three
decision variables are also required as the optimisation step lies a level beyond the simulation in
the surrogate modelling algorithm. The output of the simulation is also defined as the estimated
cost.
Initialization {L4 - L11}
All variables that do not pertain to a single part are initiated. As well as all values which are
part-specific. Most notably every part gets assigned a failure threshold for the first lifetime and a
deterioration level which is randomly assigned for a value between 0 and the failure threshold.
Next the first time-step begins, each time-step has the same sequence of actions and these are all
processed in ascending order until the entered time horizon is reached.
Spare order handling {L13 - L19}
At the start of each period newly delivered orders are accepted. If an order was outstanding and the
order has been placed a lead-time ago, this order will arrive and be added to the current inventory
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position. Because of the (s,S) inventory control strategy, orders always amount to S − s parts. If an
order is accepted, the order marker can also be reset to 0.
Next each part is handled separately. The order in which the parts are handled is randomised.
Deterioration and failure {L24 - L29}
The part’s deterioration level is updated by ∆x. This value is picked from its appropriate
probability density function (PDF). This new deterioration level can then be checked against the
failure threshold to determine whether the part has failed or is still operational.
No-inspection clause {L30 - L35}
Instrumental in this model, is the option that parts are no longer inspected after they may have
failed or exceeded the CBM threshold in earlier time-steps. If this is the case (I N j = 0) the part will
have to be replaced if the spare stock allows. The part will then be correctively replaced if it has
failed and preventively be replaced if it is still operational.
Corrective replacement or minimal repair {L37 - L48}
If a part has failed and stock levels allow, it should correctively be replaced. If it has failed and stock
levels are not sufficient, the part will be set to no longer be inspected, after all, the failure is now
known and the part should be replaced as soon as possible. If it indeed has failed and no spare
parts are available to replace, the part can be minimally repaired, but only if it has not been before.
If it is minimally repaired, the marker is adjusted accordingly and its failure status is reset to
operational as well. Finally the part’s failure threshold has to be reset to a value, again picked from
its appropriate PDF but in this case higher than the current deterioration level.
Inspection and preventive replacement {L50 - L63}
If the part has not failed at all, it will be considered to possibly be inspected. This inspection takes
place periodically (with T as inspection interval) so if the current period in the part’s lifetime is a
multiple of T it shall be inspected. If upon inspection the part is found to have a deterioration level
greater than or equal to the CBM threshold and enough spare stock is available, the part will be
preventively replaced. If no stock is available, the part is set not to be inspected any longer and
therefore to be replaced as soon as the spare stock allows.
Installation of new part {L64 - L74}
If a part is replaced, at this point this is recorded. This means that a new part is installed and some
parameters have to be reset. The deterioration is set back to 0, indicating an as-good-as-new part.
The start of the lifetime of the part is set to the current time-step. The failure threshold is renewed
(again from its PDF). The minimal maintenance marker is reset as well as the marker for the
no-inspection clause. Importantly, the spare stock is decreased by 1.
Spare ordering decision {L75 - L78}
Once the IOH of spares is updated, it is compared to the reorder level, if it has dropped to the
reorder level and no order is outstanding, a new order will be placed, thereby resetting the last
order time to the current time-step.
After all parts have been cycled through, each time-step ends with administrative steps.
Counting, resetting and advancing time {L80 - L90}
Every action or cost factor is marked and counted by its respective marker or memory variable.
These values are all added to the values of the counters from the previous time-step. After all these
actions are counted, the necessary markers are reset before the start of the next time-step. Finally
time is advanced and a new time-step can be started.
Cost calculation {L91 - L95}
After the time-horizon has been reached, the final total costs can be calculated through
multiplying all cost counters by their cost factors. The Expected Cost per part per time period over
the simulation horizon is calculated by dividing the total costs by the time horizon multiplied by
the number of parts. Finally the definitive estimate of the cost is calculated through dividing the
cumulative Expected Cost by the number of Monte-Carlo iterations
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4.4. Surrogate Modelling
Section 2 describes the selection of four possible surrogate modelling algorithms with which to
optimise the result of the simulation. These four algorithms are here described in more detail
before they can be thoroughly tested to find a best fitting one in chapter 5.

4.4.1. Randomsearch
Randomsearch is the most basic of the possible methods (Bergstra & Bengio, 2012). Randomsearch
technically does not make use of an entire surrogate modelling algorithm. Every iteration, the
methodology pics a random value for each of the decision variables from their respective ranges. It
thereby assumes a uniform distribution over the entire search space for each of the decision
variables. Rather than storing the values of the decision variables and the objective for each
iteration, the method only stores these values for the best iteration so far.

4.4.2. HyperOpt
HyperOpt itself is a python based library created by Bergstra, Yamins, and Cox (2013a) which in
itself gives options for utilising multiple different algorithms for optimisation of expensive
functions. The algorithm most prominently featured by the creators as a well-performing one is
the Tree-structured Parzen Estimator approach (TPE) (Bergstra, Bardenet, Bengio, & Kégl, 2011).
This algorithm is compared to Randomsearch by Bergstra as: "The TPE algorithm is like taking
Randomsearch and then slowly refining it to not choose values for hyper-parameters that are
strongly correlated with terrible performance" (Enthought, 2013). While the algorithm in this case
is applied directly to parameters of our simulation the same holds true. HyperOpt in this research
therefore indicates the use of the HyperOpt library (Bergstra et al., 2013b) to optimise with the
application of the TPE algorithm.

The TPE algorithm itself functions not through estimating a surrogate model to describe y ,
the objective value, as a result of x, the decision variable values; resulting in a probability of an
objective value given a certain set of decision variable values p(y |x). But by estimating the reverse
(which decision variable values would be probable to fit a certain value of the objective): p(x|y).
It does so by taking the history of observed decision variable values and accompanying objective
values and splitting it over an arbitrarily chosen desired performance y∗ and estimating for each
decision variable a probability density function for y . This results in:

p(x|y) =
{

l (x) if y < y∗

g (x) if y ≥ y∗ (4.2)

The algorithm is then trained to try new parameters which are more likely to have a higher density
in g (x) and a lower density in l (x). This is done through selecting new experiment parameters (the
DOE) based on optimising the Expected Improvement (EI). The EI is defined as the expected
difference between the desired performance and the actual performance given a certain value of
the decision variable:

E Iy∗(x) =
∫ y∗

−∞
(y∗− y)p(y |x)d y =

∫ y∗

−∞
(y∗− y)

p(x|y)p(y)

p(x)
d y (4.3)

The way in which y∗ is determined is through the user choosing the ratio of the observations they
would like to fall above or below the threshold. This ratio can be defined as γ= p(y < y∗). In other
words, say γ= 0.8 then 80% of observations would be determined to be less optimal than the desired
performance. By implementing the expressions for γ, l (x) and g (x) into Eq.(4.3) one gets the final
expression for EI (a more elaborate derivation is available in Appendix D):

E Iy∗(x) = γy∗l (x)− l (x)
∫ y∗
−∞ p(y)d y

γl (x)+ (1−γ)g (x)
∝

(
γ+ g (x)

l (x)
(1−γ)

)−1

(4.4)
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Eq.(4.4) shows that in order to maximise EI, the algorithm will have to propose values of the decision
variables x∗ which have a higher likelihood in l (x) than in g (x). After each iteration the experiment
is ran again with the new values of x∗, the results are taken into the history and used together with
the previously ran experiments to develop new PDFs and new estimated optima.

4.4.3. IDONE
IDONE stands for Integer Data-based Online Nonlinear Extremum-seeker (Bliek et al., 2020a),
which is an extension of the DONE algorithm (Bliek et al., 2016). IDONE, different from DONE,
uses a linear combination of Rectified Linear Units (ReLU) as its surrogate. The surrogate model
itself is indicated by g (x) and consists of D basis functions.

g (x) =
D∑

k=1
ck max{0, zk (x)}

zk (x) = wT
k x+bk

(4.5)

Where x ∈ Rd are the d decision variables. By fixing the parameters wk and bk , the model becomes
linear in its parameters ck . The specific choice of the basis functions makes this model have local
minima exactly on its corner points (Bliek et al., 2020a). Each iteration, this model is fit to the
available data. The available data consists of pairs of decision variable values and their
corresponding objective value ((xi , yi ) being the (decision variables, objective value) pairs for
iteration i ). The model fit is performed by solving the regularized linear least squares problem:

min
cN

N∑
n=1

(yn − g (xn ,cN ))2 +λ‖cN − c0‖2
2 (4.6)

To solve this problem the recursive least squares algorithm is used (Madisetti, 1997). This
algorithm uses the optimum of the fitted surrogate as its DOE for the next iteration. This means
that at each iteration the surrogate described in Eq.(4.5) is fit to the data using Eq.(4.6) and
subsequently optimised using the BFGS method described by Wright and Nocedal (1999). This
optimisation yields a single set of decision variable values x∗ which is then used as the new
experiment to run in order to produce new data. However, to avoid getting stuck in a local
minimum, first a small alteration is added to the values: xN+1 = x∗ +δ where δ ∈ {−1,0,1}. This
cycle is repeated for as many iterations as the user desires after which the last optimum calculated
will form the suggested optimum of the original problem.

4.4.4. MVRSM
Where the IDONE algorithm was designed specifically to deal with integer valued decision variables,
the Mixed-Variable ReLUbased Surrogate Modelling (MVRSM) algorithm is an adaptation of IDONE
designed to deal with a mixture of integer and continuous variables (Bliek et al., 2020b). The adapted
surrogate used in MVRSM distinguishes continuous (xc ) and discrete (xd ) decision variables:

g (xc ,xd ) =
D∑

k=1
ck max{0, zk (xc ,xd )}

zk (xc ,xd ) = [
vT

k wT
k

][
xc

xd

]
+bk

(4.7)

By then choosing vk , wk and bk at the start and fixing them the model becomes linear in its
parameters ck again which lends it to be optimised using linear regression. The method of
choosing these parameters influences the ability of the algorithm to deal with both continuous and
integer valued decision variables by having any local minimum be located on intersections of
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decision variables where the integer constraints are respected for those variables which require
them and these constraints are relaxed for the continuous variables. The fitting of the surrogate to
the data happens exactly in the same manner as in IDONE, using the recursive least squares
algorithm. Also similar to IDONE, MVRSM uses the optimum of the fitted surrogate for its DOE for
the experiments in the next iteration. However, the Limited-memory BFGS (L-BFGS) algorithm is
used to optimise the fitted surrogate rather than the BFGS. The L-BFGS, as the name suggests, uses
less memory because it assigns progressively more weight to iterations as it is running (Wright &
Nocedal, 1999). The optimum of the surrogate found by the L-BFGS algorithm (x∗c ,x∗d ) is then used
to construct the seed for the experiment in the next iteration. This requires the final step of adding
a deviation in order to avoid getting stuck in a local minimum through
(xN+1

c ,xN+1
d ) = (x∗c ,x∗d ) + (δc ,δd ) where δc ∈ Rdc and δd ∈ Zdd . Note here that the perturbations

made to the optimal values are real values for the continuous variables and integer values for the
discrete variables. Moreover this method leaves room for the user to choose a mix of possible
values to use as perturbation which exceed the confines of those used in the IDONE algorithm.
This allows MVRSM to use larger exploration parameters.

This chapter described the main contribution of this research, the development of a Monte Carlo
simulation which simulates the expected costs of maintenance operations of parts in a railway
infrastructure. This simulation includes a Condition Based Maintenance strategy with periodic
inspections and an (s,S) inventory control strategy. Moreover this simulation includes options for
minimal maintenance and extended options to prevent unnecessary inspections in the system.

Further this chapter described in more detail the four most suitable existing surrogate
modelling algorithms which could be used to optimise the developed simulation. The next chapter
reports on experimentation which serves the choice for a single most fitting surrogate modelling
algorithm as well as experiments which increase understanding of the simulation and the
complete model (simulation combined with an optimisation algorithm).





5
Numerical experiments

This chapter reports on the experimentation on elements of the developed model. First all
experimental setup is discussed after which the results of those experiments is presented.

5.1. Experimentation strategy
5.1.1. Motivation
First, the simulation has to be accompanied by an optimisation algorithm to finish the whole
model, to that end the four candidate algorithms which are proposed in chapter 4 are tested in
Experiment 1: algorithm choice to see which is the best fit for the developed simulation. Once the
model is completed by the identification of a suitable optimisation algorithm, the full workings of
the model are displayed through Experiment 2: test case. This real world test case also yields
practical insights regarding the use of the model. Finally, to provide more information to the user
about the influence of some of the input parameters on the objective of the developed Monte Carlo
simulation, Experiment 3: simulation sensitivity analysis is performed. The user could utilise this
information to make decisions about the rigidity necessary for their data acquisition for the model.

5.1.2. Build of experiments
To perform all experiments, the simulation algorithm developed in chapter 4 is written in functional
code using Python. This program is able to predict the expected cost for an input set of parameter
values. The simulation is subsequently implemented in the EXPObench benchmark library (Bliek,
Guijt, Karlsson, Verwer, & de Weerdt, 2021). This library, also written in Python, is able to take in
problems with a determined set of parameter values and indicated decision variables such as the
developed simulation. The library provides options for optimisation of the entered problem using
different surrogate modelling algorithms, including the four algorithms studied in this chapter. All
experiments are ran on a Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz with 8 GB of RAM system or
comparable consumer-oriented systems.

5.2. Experimental setup
5.2.1. Experiment 1: Algorithm choice
After the considerations in section 2, literature review, four different algorithms for optimising the
proposed simulation model through surrogate modelling were deemed potentially suitable. To test
these algorithms an experiment is performed, the results of which are analysed based on three
metrics: performance, speed and stability. These metrics are designed to score the algorithms on
user-focused characteristics. Users are assumed to value firstly the final result: the objective value.
The value of that objective should be as low as possible. The measure of Performance is therefore

33
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used, here defined as the magnitude of the objective found by an algorithm in a given amount of
time. All algorithms iterate their parameters in order to reach more and more accurate results.
Through iteration these results (should) grow closer to optimal as the algorithm runs. An algorithm
would then be considered to have a better performance when it reaches a solution of the
underlying problem which is closer to optimal, given a certain amount of time, than another. To
test the performance, algorithms are ran for a certain amount of time after which the progression
of the best found result for each iteration can be compared between algorithms.

Secondly, the Speed of an algorithm may be of interest to a final user. While speed by itself is
not fully indicative of an algorithm’s superiority over others, when combined with the performance
it can be of value in determining the best fitting algorithm to the studied problem. Speed is
determined in two ways, firstly the time per iteration and secondly the time to reach a certain
pre-set goal value for the objective. This pre-set goal value is determined at 150% of the average
final objective value found in the Performance analysis. Both these measurements of speed can
inform the user of which algorithm to choose in cases where computational time is limited and the
best result is sought after in the shortest amount of time.

The final metric is then designed with the practical application of this model in mind. If a
maintenance provider in railway infrastructure is looking for the best values of the three decision
variables to use in their operations, they may want to make sure that these values are stable.
Meaning that they do not vary much when the user runs the model two times using the same data.
Otherwise, upon re-checking their results or re-evaluation of their operational strategy, they may
risk a high likelihood of getting a different result from the same model. For this purpose Stability is
used as a metric. The stability of an algorithm is defined in this research as being the variation in
the definitive result of an algorithm. The nature of the studied problem and the method used for
solving it includes the fact that the end result can never be guaranteed to be the actual optimum.
Also, the inherent randomness in all algorithms subsequently potentially deliver different results
when running the same algorithm twice for the same problem. This difference could be very slight
or it could be very broad, and the magnitude of that difference is what here defines the stability of
an algorithm. The stability of an algorithm is quantified by comparing the coefficients of variation
of the results of each algorithm.

The actual experiment involves a single hypothetical part being ran through all four algorithms for
200 iterations. Preliminary tests showed little to no further improvement of the found objective
after 200 iterations for all algorithms. To aptly compare results, the experiment is ran 10 times for
each algorithm. The problem presented to the algorithms is a fictional part which has parameter
values that are picked randomly from the ranges as conceived in section 5.2.3. Table 5.1 shows the
parameter settings used for the algorithm choice experiments. To determine the amount of Monte
Carlo repetitions to perform in the experiment Eq.(4.1) is used. The values for α and E are set to
0.25 and 15 respectively. Meaning that the result of the simulation would be expected not to deviate
more than 15% from the mean in 75% of cases. This combined with the estimates for the mean
and standard deviation as gathered from a preliminary set of 800 runs of the simulation results in a
number of Monte Carlo iterations of 25. This number of Monte Carlo iterations is used for all runs
in the algorithm choice experiments.

Table 5.1: Algorithm choice experiments parameter levels

Ci Cp Cc Cd Cs Ch Cm ts T f F (x) f D (x) tm n
50 224 140 832140 5500 100.83 448 6 12 Weibull(871.984, 23.406) Gamma(1.667, 0.6) 1690 30
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5.2.2. Experiment 2: Real-life test case

Figure 5.1: RUTA unit
installed in the field

With the best fitting algorithm identified, the model is complete. As a means
of practical testing, the model is subsequently used to optimise the decision
variable values for a specific railway infrastructure part. This part is the
receiver of a track circuit sensor installation called a RUTA. A track circuit
is used for train detection in railway systems. Its basic operation relies on
sending an electrical current through a circuit which uses both rails of the
track. When a train passes that particular piece of track its wheel bases
short the circuit thereby signaling to the system that the track is occupied.
The RUTA unit is the receiver in this system, it receives the current when
a rail block is not occupied and receives no current in case the rail block
is occupied. In both cases the RUTA unit can relay that information and
subsequently all necessary measures in terms of audio-visual signaling as well
as operational measures can be taken.

To run the developed model for this particular part, all parameter values are to be gathered as
accurately as possible. All parameter values for this RUTA are gained from data provided by ProRail
and its contractors. Information about the cost of inspection, replacement and maintenance
actions are gathered by inquiring maintenance engineers about their work. The lead time and cost
of the part were stored in supplier information available at ProRail, the holding costs are calculated
as a percentage of the part costs. the downtime costs were calculated through averaging rail
section values then the average downtime per failure is determined from failure data sets from
ProRail. Finally the inspection interval is provided by the contractor’s FMECA analysis. The final
test data can be found in table 5.2.

Table 5.2: RUTA test case data

Ci Cp Cc Cd Cs Ch Cm ts T f F (x) f D (x) tm n
7.50 12.50 12.50 389,367 - 122.82 146.25 10 24 Weibull(1306.416, 1.764) Gamma(1.667, 0.6) 1774 1009

Parameter values
To serve confidentiality of pricing information, the details of the parameter values are redacted from
this public version of this thesis. Further information can be requested through the author.

5.2.3. Experiment 3: Simulation sensitivity analysis
This sensitivity analysis serves to test the influence of nine parameters on the outcome (the
expected cost EC ) of the Monte Carlo simulation of the developed model. As this simulation is
newly developed in this research, a sensitivity analysis can increase understanding of its
functioning and the effects parameters have on the result of the simulation. The sensitivity analysis
includes 9 of the input parameters (see section 4.2 for all parameters). These parameters are the six
cost parameters (Ci , Cp , Cc , Cd , Ch , Cs , Cm), the lead time (ts) and the inspection interval (T ). The
decision variables are not included because they do not have to be provided by the user in the final
model and therefore would not yield useful information. The number of parts (n) is not included
either because this is assumed to be clearly available to the user and would therefore require little
extra information for the user to determine the input value for. The PDFs for the failure threshold
and the step-wise deterioration ( f F (x) & f D (x)) are not analysed as parameters of influence but
are included to give context to the information gathered. The PDFs together determine the
demand of spare parts in the system, therefore a low- medium and high demand settings are
constructed to see whether the influence of the nine parameters considered, changes over different
demand settings. Finally the simulation horizon (tm) is not included as a parameter to be analysed
because it is the determinant of the accuracy of the model and can be adjusted by the user to
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provide more accuracy at the cost of more computational resources. More testing of the model is
advised to quantify the influence of the simulation horizon on this accuracy and speed of the
model but these test are not included in this research. In this sensitivity analysis the simulation
horizon parameter is set to twice the average lifetime of the parts considered.

The sensitivity analysis is performed using the ’One-at-a-time’ (OAT) approach by Saltelli et al.
(2008). This entails that for each separate selected parameter values are varied over their respective
ranges. This yields information about the relative influence of these parameters on the simulation
output (i.e. the estimated cost).

This is done through determining a realistic range for each of the 9 parameters and dividing
these ranges over 10 values, these values form possible levels of those parameters to choose from.
A collection of 1 level for each of the 9 parameters forms an experiment scenario. To this scenario,
standard values for the excluded parameters are added to form a run of the simulation. Table 5.3
shows the determined levels for each of the included variables.

Table 5.3: Parameter levels

Ci Cp Cc Cd Cs Ch Cm ts T
Level 1 €10 €1 €1 €72,360 €10 €0.18 €2 1 month 3 months
Level 2 €20 €133 €131 €241,200 €11,120 €203.87 €267 2 months 11 months
Level 3 €30 €267 €261 €410,040 €22,230 €407.55 €533 3 months 18 months
Level 4 €40 €399 €389 €578,880 €33,340 €611.23 €798 5 months 26 months
Level 5 €50 €532 €521 €747,720 €44,450 €814.92 €1,063 6 months 34 months
Level 6 €60 €665 €650 €916,560 €55,560 €1,018.60 €1,330 7 months 41 months
Level 7 €70 €798 €780 €1,085,400 €66,670 €1,222.28 €1,595 8 months 49 months
Level 8 €80 €930 €910 €1,254,240 €77,780 €1,425.98 €1,860 10 months 57 months
Level 9 €90 €1,036 €1,040 €1,423,080 €88,890 €1,629.65 €2,127 11 months 64 months
Level 10 €100 €1,196 €1,170 €1,591,920 €100,000 €1,833.33 €2,392 12 months 72 months

These levels represent the range of values each parameter is likely to take in a real-world
setting based on exploratory data gathering in the Dutch railway network. The standard values for
the excluded parameters are based on the same data search:

The Inspection cost range is based on the same hourly rate as used in the test case, multiplied by
two workers. he duration of an inspection could be very quick in case of a visual inspection of a well
reachable part and in some cases somewhat more laborious in case of hard to reach parts which may
include a lot of travel time. Therefore a duration range between 0,2 and 2 hours is included. This
leads to a range of €10 to €100 for the Ci parameter. The Preventive replacement cost range is based
on a data set containing failure and repair time data of 3818 repair operations from ProRail. With
an observed minimum of 1 minute and a maximum of 1435, multiplied by the hourly rate of two
engineers result in the range of €1 to €1,196 used for the Cp parameter. The Corrective replacement
cost range is gained from the same data set as the preventive one. However the set is filtered on
critical repair time which shows a minimum of 1 minute and a maximum of 1404. Leading to a
range of €1 to €1,170 for the Cc parameter. The Downtime cost range, similar to the situation in
the test case, utilises rail section values. The minimum rail section value is €1,500 per hour and
the maximum is €33,000 per hour. With a probability of causing downtime upon failure of 0.067
based on a data set of 150,000 part failures this translates to a range of €72,360 to €1,591,920 per
month for Cd . The Spare part procurement cost range is gained through the assumption that the
most cheap spare parts can be in the category of single euros (nuts and bolts etc.) and the most
complicated spare parts can be over €100,000 (like complex rail switch installations (Nissen, 2009)).
The range used for Cs then is €1 to €100,000. A Holding cost range is calculated through assuming
it as a percentage of the procurement cost. Based on Berling (2008) this percentage is set to 22%
yielding a range of €0.18 to €2,392 per month for Ch . For the Minimal maintenance cost range the
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preventive maintenance cost are doubled. This because a minimal maintenance task would require
much more labour than a regular replacement would. The range used is €2 to €2,392 for Cm .

For the Lead time range the low end will be represented by the lowest value possible, being 1
period. The high end of the range is formed by the term which is usually allotted for producing
specialty units like complex switches or structural elements of bridges. The range results in 1
month to 12 months for ts . The Inspection intervals range is based on information from the
contractors as given in an FMECA analysis. The observed minimum in these analyses is 3 months
and the maximum 72 months, which constitutes the range for T .

The Number of parts is considered not to be influential on the workings of the model and
is determined by practical considerations regarding test time available as well as computational
resources. It is set to 30 parts. The Simulation horizon similarly is considered not to be influential
and is based on the lifetime of the parts. In order to incorporate a full cycle of a part’s lifetime in the
simulation the simulation horizon is set to twice the estimated average lifetime, 1690 months.

All tests are performed for three demand settings: low, medium and high demand. This
demand is determined by Probability density functions for the failure threshold and the step-wise
deterioration. The values for these distributions are based on a data set describing demand for
spare parts of a track circuit installation over a period of 15 years. Following L. Wang et al. (2009)
the PDFs are modelled using a Weibull distribution for the failure threshold and a Gamma
distribution for the step-wise deterioration. Because the Gamma and Weibull distribution together
determine the average lifetime of a part one of the two can be chosen arbitrarily. For ease of use
and to reduce noise in the model the Gamma distribution is chosen to result in an average of 1 unit
of deterioration per time-step, i.e. a shape parameter of 1.667 and a scale parameter of 0.6. This
means that the Weibull distribution should represent the lifetime in periods (here months). This is
done using the Maximum Likelihood Estimators (MLEs). These MLEs resulted in a shape
parameter of 23.406 and a scale parameter of 871.98. These values will be used as the medium
demand scenario. The low and high demand scenarios will be formed by respectively doubling and
halving the lifetimes of the parts used for the MLE estimation of the medium scenario.

The Number of Monte Carlo iterations is calculated according to the method as described in section
4:

n =
(

100zα/2Sx

E x̄

)2

(5.1)

To serve a high level of accuracy for the sensitivity analysis the levels of α and E are set to 0.01 and
7.5 respectively. The sample mean and standard deviation are gathered from a set of 800 individual
runs which resulted in x̄ = 52.742 and Sx = 34.647. These runs are done using the median scenario
in table 5.3. These cause the number of iterations (rounded up to the nearest integer) to be 510 for
the sensitivity analyses.

All experiment setup which was ran for Experiment 1: Algorithm choice and Experiment 3:
Sensitivity analysis are indicated in Appendix C.

5.3. Results
The previous section detailed the experimental setup of three different experiments. This chapter
describes the results of each of these experiments.

5.3.1. Experiment 1: Algorithm choice
As described in section 5.2.1, the algorithms are scored on their performance, speed and stability.
Performance being defined as the magnitude of the objective found by an algorithm in a given
computation budget (here 200 runs). Speed is defined by both the average iteration time and the
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time an algorithm needs to find an objective below a certain threshold (here 1.5 times the average
objective found after 200 iterations). Stability is defined by the variation in the definitive result of
an algorithm. The result of the algorithm choice experiment is reported in table 5.4.

Table 5.4: Algorithm choice experiment results

Run Algorithm
Decision variables
[S, s, Lp]

Best Objective
value

Run Algorithm
Decision variables
[S, s, Lp]

Best Objective
value

1 Randomsearch [6, 2, 670] 39.578 1 HyperOpt [7, 1, 596] 36.092
2 Randomsearch [10, 1, 410] 47.095 2 HyperOpt [6, 1, 674] 41.524
3 Randomsearch [8, 3, 646] 43.334 3 HyperOpt [5, 0, 656] 32.963
4 Randomsearch [13, 1, 409] 54.571 4 HyperOpt [12, 0, 614] 41.689
5 Randomsearch [9, 1, 477] 41.923 5 HyperOpt [9, 0, 652] 38.467
6 Randomsearch [6, 2, 590] 41.839 6 HyperOpt [5, 0, 594] 35.847
7 Randomsearch [15, 0, 596] 46.523 7 HyperOpt [4, 0, 632] 38.623
8 Randomsearch [11, 2, 676] 49.922 8 HyperOpt [7, 1, 644] 38.644
9 Randomsearch [31, 30, 134] 53.517 9 HyperOpt [8, 2, 648] 39.730
10 Randomsearch [9, 4, 527] 52.856 10 HyperOpt [4, 1, 617] 38.418

Run Algorithm
Decision variables
[S, s, Lp]

Best Objective
value

Run Algorithm
Decision variables
[S, s, Lp]

Best Objective
value

1 IDONE [6, 0, 434] 50.161 1 MVRSM [6, 0, 624] 32.257
2 IDONE [15, 0, 323] 51.634 2 MVRSM [7, 0, 350] 43.395
3 IDONE [30, 0, 415] 58.633 3 MVRSM [7, 0, 488] 36.405
4 IDONE [12, 2, 186] 72.487 4 MVRSM [8, 0, 492] 37.880
5 IDONE [9, 3, 623] 44.123 5 MVRSM [4, 0, 659] 31.261
6 IDONE [8, 0, 627] 33.746 6 MVRSM [15, 0, 348] 49.835
7 IDONE [11, 4, 659] 51.348 7 MVRSM [7, 1, 602] 34.815
8 IDONE [7, 1, 480] 38.680 8 MVRSM [7, 0, 669] 32.666
9 IDONE [13, 0, 389] 53.921 9 MVRSM [10, 0, 514] 39.780
10 IDONE [6, 0, 697] 32.962 10 MVRSM [4, 0, 690] 35.903

Each row shows the results of a single run for each algorithm for the scenario described in section
5.2.1. The result, estimated best values for all three decision variables, found in each run are shown
in the third column and the accompanying objective value, estimated costs per part per period, is
shown in the fourth column. The results in table 5.4 show the variety of best found decision
variable values between algorithms and between different runs of the same algorithm. The
objective values found by Randomsearch for instance vary between 41.839 and 54.571 and the
objective values found by MVRSM vary between 31.261 and 49.835. Moreover the results show a
clear preference of all algorithms for a very low reorder level s. With the exception of the ninth run
of Randomsearch. To get a better view of the differences between the algorithms, averages of the
results are displayed in table 5.5. The averages over the 10 runs for each algorithm are shown for
each decision variable as well as for the objective. These averages show that the HyperOpt and
MVRSM algorithms find a more favourable result of the objective than the Randomsearch and
IDONE algorithms. The two algorithms that show the highest average level of the objective
(Randomsearch and IDONE) have in common that their average reorder level and order up-to level
is higher than that of the two algorithms with the lowest average level of the objective (HyperOpt
and MVRSM).

Table 5.5: Averages of experiment results

Algorithm S s Lp Objective
Randomsearch 7.2 4.6 513.50 47.12
HyperOpt 6.1 0.6 632.7 38.20
IDONE 10.7 1.0 483.3 48.77
MVRSM 7.4 0.1 543.6 37.42
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This all indicates that the HyperOpt and MVRSM algorithms score better on the performance metric
than the Randomsearch and IDONE algorithms in these tests.

Figure 5.2: Performance runs averaged over the 10 repetitions of the experiment with a shaded area indicating one
standard deviation of the results above and below the average.

A visual representation of the progression of the best objective value found by each algorithm over
the 200 runs is shown in figure 5.2.

To determine whether these results actually significantly differ between algorithms a pair-wise t-
test is performed between all algorithms over their best objective values found in all 10 runs. The
significance results are shown in table 5.6.

Table 5.6: Pair-wise t-test significance values

Randomsearch HyperOpt IDONE
HyperOpt 0.0001 - -
IDONE 0.6709 0.0184 -
MVRSM 0.0034 0.6986 0.0294

Table 5.6 shows that a significant difference (p < 0.05) can be found between the pairs of HyperOpt
- Randomsearch and HyperOpt - IDONE as well as MVRSM - Randomsearch and MVRSM - IDONE.
But no significant difference is found between the algorithm pairs of HyperOpt - MVRSM and
Randomsearch - IDONE. This further represents the dichotomy seen in the average objective
values in table 5.5.
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To score the algorithms on the Speed metric, Figure 5.3 shows a visual representation of the
iteration time (in seconds) per iteration, averaged over the 10 repetitions of the experiment per
algorithm. The average iteration length for each algorithm is noted in the top right corner of each
graph. The figure clearly shows that the IDONE and MVRSM algorithms both have a very low
iteration time for the first three iterations. This is the result of the algorithms requiring a base set of
data to start actually fitting the surrogate. IDONE and MVRSM therefore perform random picks of
the decision variables for the first three iterations which results in very low iteration times. After
these first iterations the iteration times of IDONE and MVRSM increase to values beyond those of
the HyperOpt or Randomsearch algorithms. This results in average iteration times for IDONE and
MVRSM of 13.87 s and 13.61 s respectively which are both significantly higher than the 10.72 s and
10.87 s average iteration time for HyperOpt and Randomsearch respectively.

Figure 5.3: Iteration time per iteration averaged for all 10 repetitions of the experiment

The other method of determining speed was to determine the time required for each algorithm to
find a certain objective. This objective was determined at 1.5 times the average result found after
200 iterations. The results in table 5.5 show that this average result is 42.88 €/part/period. Which
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would make the objective to test for speed 1.5 * 42.88 = 64.32 €/part/period.

Table 5.7: Time per experiment repetition to reach the goal objective of 64.32 €/part/period for all algorithms in minutes

Experiment
repetition

HyperOpt IDONE MVRSM Randomsearch

1 3.22 15.67 6.25 5.47
2 0.97 17.85 0.85 2.61
3 3.16 1.35 9.89 4.80
4 1.33 - 10.29 5.08
5 4.56 3.10 3.20 7.34
6 2.15 5.25 9.04 4.91
7 5.08 9.75 0.33 4.25
8 2.15 7.50 0.67 1.34
9 1.33 7.49 1.27 12.82
10 2.81 2.15 3.84 11.92

Average 2.68 7.79 4.56 6.05

Table 5.7 details the time each algorithm took to reach the objective of 64.32 in minutes for each of
the 10 experiment repetitions as well as the average over these 10 repetitions. The IDONE
algorithm was not able to find an objective below 64.32 within the 200 iterations for which it was
run. The average for IDONE therefore is taken over the other nine repetitions but should be
interpreted as a skewed representation of the "real" average for this algorithm which is likely to be
slightly higher. Further, the averages show that in general terms HyperOpt is the quickest algorithm
to reach the goal objective with an average of 2.68 minutes.

Stability of an algorithm is defined in this research as being the variation in the definitive result
of an algorithm. The nature of the studied problem and the method used for solving it includes
the fact that the end result can never be guaranteed to be the actual optimum. Also, the inherent
randomness in all algorithms subsequently potentially deliver different results when running the
same algorithm twice for the same problem. This difference could be very slight or could be larger
depending on the algorithm and the problem under consideration.

Table 5.8: Coefficients of variation of experiment results

Algorithm CV(S) CV(s) CV(Lp )
Cumulative
CV(DV’s)

CV(Obj)

Randomsearch 0.55 1.86 0.31 2.72 0.11
HyperOpt 0.40 1.11 0.04 1.55 0.07
IDONE 0.66 1.41 0.33 2.4 0.23
MVRSM 0.41 3.00 0.22 3.63 0.14

The variations of the found decision variables and the objective value are represented in table 5.8
by their respective coefficients of variation (CV). Table 5.8 also shows the cumulative coefficient
of variation over all decision variables. This reveals HyperOpt to have the lowest CV for the found
objective value. Moreover the sum of the CV’s for the decision variables is lowest for HyperOpt as
well (1.55), followed by IDONE (2.40) then Randomsearch (2.72) and the largest CV for the decision
variables is produced by MVRSM (3.65). This means that HyperOpt can in this test be regarded as
the most stable algorithm of the four.
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5.3.2. Experiment 2: Real-life test case
The result of the 200 runs of the HyperOpt algorithm with the parameter values as determined for
the RUTA unit yielded the a result which estimated the optimum at a reorder level of 15 units, an
order up-to level of 398 units and a preventive maintenance threshold of 140 units of deterioration.
The objective value of the expected cost that accompany these decision variable values is €138.84
per part per period. Before finding this final result in the 155th iteration, the HyperOpt algorithm
found 5 previous best objective values. This results in a graph of best results found which is rather
simple as seen in figure 5.4.

Figure 5.4: Best Objective value found per iteration

To illustrate the search process the values for the objective found in each iteration are presented in
figure 5.5. For visibility the 6 values with an objective higher than €1,000 are filtered out in this
visualisation (iteration 3 - €108,431.90, iteration 125 - €100,779.70, iteration 192 - €30,276.22,
iteration 38 - €11,009.18, iteration 35 - €8,942.75 and iteration 68 - €1,730.19). The algorithm can be
seen to explore the full range of values between €526 and €139 in no apparent pattern, with an
average of €314.13.

Figure 5.5: Objective value found per iteration
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For further analysis a 4D plot is made of all values tested by the R-SIMS model. The colour gradient
indicates the objective value. Figure 5.7 shows the different perspectives on the 4D visual.

Figure 5.6: 4D plot of objective and decision variables found by R-SIMS model

Figure 5.7: 4D plots of objective and decision variables found by R-SIMS model



44 5. Numerical experiments

5.3.3. Experiment 3: Sensitivity analysis
All analyses are performed using a full factorial design. Meaning that for each parameter all possible
levels are tested while keeping the other parameters at a fixed level. These fixed levels are those
of the median values. Meaning that in the value schema presented in table 5.3 the base scenario
would have the following values: {Ci , €55 ; Cp , €598.50 ; Cc , €585.50 ; Cd , €832,140 ; Cs , €50,005 ; Ch ,
€916.76 ; Cm , €1,196.50 ; ts , 7 ; T , 37}. The developed levels of parameters yields 90 single-parameter
experiments to be performed per demand setting. Figure 5.8 shows the plots for all analyses for the
medium demand setting.

Figure 5.8: Plots of sensitivity analyses for the medium demand setting

The plots in figure 5.8 show a clear connection between the downtime cost, part cost and holding
cost parameters and the objective. These show a linearly increasing connection. The inspection
interval also resembles an early curve an later linear connection. Other parameters show little to
no clear influence on the objective. Figures 5.9 and 5.10 show the same plots for the low and high
demand settings. The cost parameters in both settings seem to produce a similar result to that of the
medium demand setting. The lead time and inspection interval parameters however differ slightly.
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Figure 5.9: Plots of analyses for low demand setting Figure 5.10: Plots of analyses for high demand setting
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Discussion

This chapter serves as reflection on the research performed. It describes interpretations of the
produced results, explaining what these results entail and what new questions may arise from
them. The methodology used for the research in general and the experimentation in particular is
critically reviewed.

6.1. Results
The produced results are separated into the algorithm choice experiment results, the results of the
test case and the sensitivity analysis results.

6.1.1. Algorithm choice experiment
The three metrics that are developed to rate the applicability of the surrogate modelling algorithms
in this research are performance, speed and stability.

Performance; the determination of performance in this context happened through
examining the results gained from 10 runs of 200 iterations for each of the four algorithms. These
results showed a clear distinction between two algorithms performing better than the two others.
MVRSM and HyperOpt being the better performing algorithms in this case. This performance can
be seen both in the graphical (figure 5.2) and in the numerical representation (table 5.5). The
development of the objective over the iterations of the algorithms in figure 5.2 shows that even
before the 10th iteration both MVRSM and HyperOpt have a better objective value which stays that
way for the entire rest of the run. A further pair-wise t-test analysis of the speed results show that
no significant difference is found between the pair of better performing algorithms, nor between
the pair of worse performing algorithms. This indicates that from the speed-tests alone, no single
algorithm can be advised to be best applicable to the simulation problem studied in this research.

Speed; two different analyses were performed to rank the four algorithms on speed: iteration
time and time required for an algorithm to reach a certain goal in terms of an objective value. The
iteration time for IDONE and MVRSM showed an odd but expected pattern (see figure 5.3). The
first three iterations of both algorithms structurally had a significantly lower run time than the rest
of the iterations. This could be explained by both algorithms using three random iterations before
actually using the gathered data to estimate a surrogate. Further no clear patterns could be detected
in the data. Averages showed that HyperOpt and Randomsearch both scored better than MVRSM
and IDONE in terms of iteration time. The second analysis pertained the time required by each
algorithm to reach the goal of 64.32 €/part/period for the objective. Again HyperOpt used the least
amount of time on average to reach this goal, followed by MVRSM, then Randomsearch and finally
IDONE which was even unable to reach the goal within the 200 iterations of the experiments in one

47
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of the experiment repetitions. The two speed analyses indicated HyperOpt and Randomsearch as
best algorithms in terms of the iteration time and HyperOpt as the algorithm also performing best
in terms of time required to reach a preset objective goal. This would lead to the conclusion that
when regarding speed, HyperOpt could be considered the best applicable algorithm.

Stability; to further specify the final choice for the best fitting optimisation algorithm, stability
is tested. The stability of an algorithm is in this research determined by the variation in the outcome
of the same runs as used in the speed tests. This variation is calculated for all decision variable
outcomes as well as the resulting objective value. When taking into account all of those variations,
in terms of coefficient of variation (σ/µ) the HyperOpt algorithm is clearly the most stable. Another
interesting observation is that the MVRSM algorithm, which performed equally as well in the speed
tests, is second to worst in terms of its stability over the objective and even the worst performing
algorithm in terms of its stability over the decision variables.

The algorithm choice experiments were undertaken in order to motivate a choice for a single,
best fitting, algorithm for optimising the studied simulation problem. Notably, the tests were only
ran for a single problem seed (a single set of parameter values). This leads to uncertainty about the
universality of the outcomes of these test. Yet, for the purposes of the current research, HyperOpt
is deemed the best performing, and therefore best suitable optimisation algorithm for the Railway -
Spare Inventory & Maintenance Scheduling model.

6.1.2. Test case
The test case results are a good representation of a real-world case. It predicts that the party
responsible for maintaining this particular part would, from a financial perspective, be best off to
adhere to a maintenance and spare part policy of holding 15 spare RUTA units as reorder level,
ordering 398 units each time an order is placed and to preventively replace the units when their
relative deterioration is at 140 units.

The use of the model, while functional, is not very well adjusted to the information sources
available in this case. ProRail has a limited amount of data available regarding failure behaviours
which leads to a lot of assumptions and generalisations. This leads to a case of ’garbage in -
garbage out’, meaning that the final result is only as reliable as the failure data input into the
model. Moreover six different data sources were consulted to gather all the parameter values used
for this test case (an overview of data sources used can be found in appendix B). This not only takes
a lot of time and resources but could also lead to contradicting data or different parameter values
that counteract one another. An advice would therefore be that any user would first spend time
gathering the right data sources and integrating them into a single large data set which is reliable
and straight-forward in its use for this model.

The performance of the R-SIMS model in this test case can be regarded as highly satisfactory.
By exploring the search space in an efficient way it found the final result in 155 iterations. This may
not always be the case due to the stochasticity inherent to both the simulation and the optimisation
algorithm but still indicates that shorter run times could be used in practice than is done in this
research.

6.1.3. Sensitivity analysis
The sensitivity analysis serves to inform users of the developed model about the influence of the
nine studied parameters on the outcome of the newly developed Monte Carlo simulation. This can
help focus data gathering efforts and thereby increase the added value of the model as a whole for
the user.

To further analyse the influence of each of the studied parameters on the objective value,
table 6.1 shows the Pearson and Spearman correlation coefficients calculated for each parameter’s
relationship with the objective found in the sensitivity analysis experiments. Coefficients are
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calculated for all three demand settings.

Table 6.1: Pearson and Spearman coefficients of sensitivity analysis experiments

Ci Cp Cc Cd Cs Ch Cm ts T
Demand Coefficient
Low Pearon 0.510 0.636 -0.710 0.992 1.000 1.000 -0.110 0.847 0.383
Low Spearman 0.358 0.673 -0.745 1.000 1.000 1.000 -0.091 0.879 0.382
Medium Pearon 0.362 0.787 -0.040 0.999 1.000 1.000 0.436 0.375 0.975
Medium Spearman 0.394 0.721 -0.079 1.000 1.000 1.000 0.455 0.297 0.964
High Pearon 0.388 0.004 0.009 1.000 0.997 0.998 0.237 0.571 -0.724
High Spearman 0.248 0.018 0.018 1.000 1.000 1.000 0.152 0.394 -0.704

While reflecting on the results of the sensitivity analysis one should keep in mind that in these
experiments only a single parameter is altered in value. This means that in the case of the results
regarding the inspection cost parameter Ci , only that parameter was changed over the different
runs, no other changes in for instance, the number of inspections performed or the number of
parts have taken place. The only additional variation between experiments within a single demand
setting is caused by the inherent stochasticity of the simulations which should, in part, be
counteracted by the Monte Carlo repetitions.

Both the graphical (figures 5.8, 5.9 & 5.10) and the numerical (table 6.1) analysis show a clear
influence of some parameters on the objective. The cost parameters for downtime, part
procurement and holding have a clear linear correlation with the objective value. This holds for all
three demand settings as well.

The cost of minimal maintenance on the other hand, seems to have little to no effect on the
objective. Both correlation coefficients fall within the (-0.5, 0.5) range for all three demand settings.
Similarly the cost of inspection has no clear correlation with the objective.

The costs for preventive- and corrective replacement differ over the demand settings. For the
low setting both seem to have some effect. The preventive replacement cost have a slight positive
correlation with the objective and the corrective replacement cost a slight negative one. Upon
closer inspection of the objective values displayed in the plots in figure 5.9 however, both effects
seem insignificant when compared to the effects of the three strongly correlated cost parameters.
For comparison, Cc shows a maximum influence on the objective of roughly 5 €/part/period over
its total range and the Cp a maximum influence of 3.5 €/part/period while the Cd , Cs and Ch

parameters have an influence of roughly 25, 160 and 200 €/part/period over their respective ranges.
For the medium demand scenario the cost of corrective replacement indicates no correlation.
While the correlation between the preventive replacement and the objective is stronger than in the
low demand setting, the same small effect relative to the effect of the three cost functions of
downtime, procurement and holding can be seen.
Finally for the high demand setting, neither Cp or Cc show any influence on, or correlation with the
objective.

The two time parameters, lead time ts and inspection interval T show complex results.
The lead time, according to its correlation coefficients does have quite a strong correlation with the
objective in the low demand setting. The total effect on the objective over its range (15
€/part/period) is comparable to that of the downtime cost (25 €/part/period). In the other demand
settings this correlation is not present. The inspection interval has a very strong correlation in the
medium demand setting. It is very comparable to the cost of downtime in both its correlation
coefficients (>0.95) and its influence on the objective over its range (>70 €/part/period). This all
indicates that the inspection interval has a strong positive correlation with the objective. The high
demand setting however, shows a negative correlation with the objective value. Though both the
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correlation coefficients and the value of its influence is less extreme than in the medium demand
setting. In the low demand setting the inspection interval seems to have little effect at all.

Cost parameters; all of the observations regarding the cost parameter correlations can be
linked simply to the magnitude of the parameter values used combined with logical reasoning on
their occurrence (see table 5.1 for the values used).

When looking at the four cost parameters with the highest median value, three are also the
three with the largest correlations and influence on the objective. The median values of Cd and Cs

are the absolute highest of all cost parameter values. While the third, Ch is ranked fourth in terms
of the value of its median, the value of its predecessor Cm is less impactful because costs of minimal
maintenance are rarely incurred while holding costs are incurred every period. Note that the highest
costs, those of downtime, occur in a similar frequency as minimal maintenance, yet the downtime
cost are two orders of magnitude higher than those of minimal maintenance which could explain
the difference in their effect on the objective.

Ci has the lowest median value by a large margin which explains its lack of observed influence
on the objective.

Cp and Cc have similar magnitudes and also similar observed effects. The reason that these
cost parameters seem to differ very much in their effect on the objective over different demand
settings is likely to stem from their inherent connection to that demand. Because of the
full-factorial design of the sensitivity analysis all other parameters were kept stationary while the
parameter under study was varied in its value. When the demand then rises and all parameters
stay the same, the logical expectation would be that the number of corrective maintenance actions
necessary would increase.

Time parameters; the lead time and inspection interval showed more complicated
relationships with the objective.
The only significant correlation seen between the lead time and the objective is presented in the
low demand setting. One could theorise that this results from the decreased inventory on hand
which would be present because of the longer lead time in that setting. If the demand is low a
longer lead time is unlikely to cause any stock-outs, especially when compared to a medium or
high demand setting. On the other hand it would cause less stock to be on hand and thus will
decrease the holding cost. In higher demand settings this effect would thus be counter-acted by
possible stock-outs and the resulting minimal maintenance costs and possible downtime costs.

The effects of the inspection interval are even more erratic than that of the lead time. The
strong positive correlation in the medium demand setting clearly indicates that when the
inspection interval becomes too large, costs increase. The implication here is that, when not
enough inspections are performed, some parts may fail before they can be preventively serviced.
This could then incur costs for preventive replacement, minimal repair or downtime. On the other
hand, in the high demand setting the connection is negative. While the influence of the parameter
over its range is small (approximately 28 €/part/period) and the correlation is less strong, it could
mean that a turning point has been reached in terms of the demand. When demand gets to be too
high, failures might become so abundant that inspection may have little to no effect any longer.
Moreover, more failures cause more accompanying costs for downtime and maintenance which
subsequently decrease the impact made by inspection costs or even by cost savings as a result of
inspection causing the weaker correlation.

Overall results from the sensitivity analysis indicate that users of the developed model should
take care in dividing their energy and attention over the different parameters when determining
values to use in their rendition of the simulation. If only limited resources are available the advice
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would be to first focus on accurately determining the values for the holding costs Ch , the part
procurement costs Cs and the downtime costs Cd . Thereafter, depending on the demand setting to
be studied, one should take care to accurately determine the costs of both preventive replacement
Cp and corrective replacement Cc as well as the time parameters for lead time ts and inspection
interval T . Only if time and resources allow should one invest in determining accurate values for
the cost of minimal maintenance Cm or the inspection costs Ci .

6.2. Methodology
The developed simulation is heavily based on previous research by L. Wang et al. (2009). Their
model is the basis for the R-SIMS model developed here. The main difference between the models
is the addition of the possibility for minimal maintenance. This mechanism allows a new choice in
the model for the maintenance provider to not fully replace a part immediately but to repair it only
to the "as-bad-as-old" condition. This means that in case of a stock-out of spare parts, downtime
will not necessarily occur as a consequence. This mechanism directly affects the choices made for
stock levels and replacement decisions as the risk of parts failing is slightly mediated in some cases.

Though, more alterations have been made to the base simulation:

• During initialisation of the model, all parts’ deterioration level is distributed randomly
beneath their individual failure thresholds. Where the base model assumed all parts on
initialisation of the model had a deterioration level of 0 (as-good-as-new). The new method
of initialisation better suits a system which is already in place an in which parts have not
been installed all at the same time. This makes the developed model better suited to analyse
currently installed components instead of components which are still to be installed.

• Each time-step, the R-SIMS model handles parts in a random order. As a result of the
modeling techniques and language, each part is given an index to keep track of its
characteristics during the modelling process. If then the part with index 1 is always handled
before the part with index 2, this first part will have a higher chance of being serviced upon
its failure than the second. After all, if in any time-step there is only a single spare part
available and it is used to replace the failed instance of part 1, it will no longer be available to
replace part 2. Especially in systems where parts are installed hundreds of times over this
may have large effects on the distribution of maintenance operations and spare parts.
Therefore the developed model picks the order of parts to handle randomly every time-step.

• The R-SIMS model implements the no-more-inspection clause to failed parts as well as parts
which have been observed to exceed the CBM threshold. The base model stated only that
this mechanic was invoked for parts that exceed the CBM threshold. However, after a part
has been seen to have failed it will no longer benefit from further inspection, after all, it has
already failed. By not inspecting failed parts some inspection costs can be saved which may
influence the outcome of the decision variables.

However, one of the inaccuracies of the original model is also carried through to the R-SIMS model:

• Downtime is recorded in full time-steps. This is a result of the time granularity used in the
modelling and is not in line with the real world. Especially when taking a large time-step (e.g.
months/years) one would quickly over-estimate the downtime costs. While a part may fail,
causing downtime in the beginning of a time-step, the entire time-step worth of time is
counted as downtime and accompanying costs. A mediating effort would be to only count
half a period worth of downtime, theoretically averaging out the actual moment the
downtime occurred over the length of a time-step. Even more advanced would be to model
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the start of downtime as a function of the condition of the part. While failure thresholds are
stochastic, the model calculates this threshold upon installation of the part and therefore
knows this beforehand. By assuming that the step-wise deterioration occurs linearly over the
time-step, one would be able to estimate at what point during the time-step the part actually
failed, causing the downtime.
This would however cause even higher computational costs at little extra accuracy.

Other practical aspects of the method used in this research could also be regarded as points of
interest:

• The method of coding in this model is very sequential, each time period is handled after
another and within each time-step, all parts are handled in order. This makes it very hard to
increase computation speed especially at scale. The HyperOpt library does support some
parallelisation through the use of MongoDB (Bergstra, Yamins, & Cox, 2013c) but this does
not include parallelisation of the internal problem (here the simulation). A more critical
review of the functional code may therefore be in order to develop a more efficient program
thereby decreasing computational resources necessary.

• The method used in this research cuts off the optimisation algorithm at a certain number of
iterations. While this is a standard used often in industry, a more sophisticated measure of
stopping the algorithm may be applicable to any particular situation. In cases where multiple
parts in a system have to be ran through the model, different speeds of finding a solution will
occur. No method is right for every situation here. Every application calls for re-evaluation of
which cut-off condition is used.

6.2.1. Experimentation
The experiments performed in this research were three-fold: an algorithm choice experiment, a test
case and a sensitivity analysis. All these can also be generally regarded as practical use-cases of the
model and revealed several shortcomings and difficulties in use:

• The algorithm choice experiments are only based on experiments ran using only one
particular seed. This means that the best performing algorithm can only be presented as the
best algorithm for that specific part. It could very well be the case that the HyperOpt
algorithm, which was selected as the best fitting one, performs significantly worse on other
seeds. For instance seeds which describe specific parts which have very high failure rates or
specifically low downtime cost.

• Moreover the algorithms are only graded on their performance, speed and stability. In some
cases an application may call for another metric or may find one of these more important than
another. If one is not at all interested in the stability of a part (maybe from the perspective of
the contractor this could be the case) but only interested in the performance metric of an
algorithm one could better choose for the MVRSM algorithm than the HyperOpt one. Again,
this highlights that any application requires a critical look at the outcomes of this research
and their validity for that specific situation.

• The sensitivity analysis required actual real values to be assigned to the parameters in the
model. This has proven to be difficult when data is not readily available. The levels used
for the experimentation in this case were constructed by estimating a range (min-max) for
each parameter based on real data. A shortcoming of this method is the lack of real data
available, as demonstrated in the test-case experiment which showed the RUTA unit to have
a cost of inspection which was lower than the lower bound of the range determined for that
parameter. This range was subsequently divided into ten different levels uniformly. In truth
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however, few parameters are actually likely to be distributed uniformly over its entire range in
practice. For example, the full range of downtime costs are based on rail section values but
not all rail section values occur with the same frequency. The rail sections with a value of 22
are very rare and the average rail section value most likely lies closer to 15 than 11. This does
not have very large implications on the validity of the sensitivity analysis but if users would
like more detailed knowledge of influence of several parameters in the most relevant regions,
extra experiments are advised.

• One of the parameters not included in the sensitivity analysis was the simulation horizon.
The reasoning behind excluding this parameter was that the simulation horizon increases
accuracy as well as computational demands when it grows in magnitude. The implication is
that a user should always adhere a simulation horizon which is as large as their computational
resources allows. However, it might still be informative to quantify the relationships between
the simulation horizon, the accuracy of the result of the simulation and the computational
demands. As multiple decisions already have to be taken to match constraints of the use of
the model, this information could facilitate better practical implementation of the simulation.

• Probability density functions have not been extensively studied in the experimentation phase
of this research. All experiments use the method of fixing the step-wise deterioration at an
average of 1 and subsequently using the MLE method to describe the lifetime in terms of
time-steps with the failure threshold PDF. This methodology was a result of a lack of proper
data available for the research. Yet in practice it is highly advisable to gather data both on
daily/monthly deterioration and link it to a real-world metric (i.e. number of particulates in
oil or resistance in electrical components). This would increase reliability of the model and
give the user more freedom in choosing the time-step to fit their computational and accuracy
needs.





7
Conclusion

In this chapter, the research questions are answered. The connection between these answers and
the research goal is discussed. The impact is discussed which these answers and this research as a
whole can have on the practice of railway maintenance management as well as the alignment wit
theory in this field. Finally future research directions are also presented in line with the
shortcomings and opportunities as described in chapter 6.

7.1. Research questions
This research encompassed a single research question and six sub-questions. First all six
sub-questions are answered separately after which the central research question is answered.

SQ1: What strategy of maintenance scheduling best suits the railway domain?

The strategy of maintenance scheduling used in this research is Condition Based Maintenance
with Periodical inspection. As described in section 2.2.1, railway infrastructure is highly dependent
on a reliable maintenance scheduling strategy. Out of the strategies reviewed, condition based
maintenance was the most advanced one. Within CBM a last choice can be made for continuous
versus periodic review of the parts’ condition. While the continuous review strategy yields even
more reliable results, it is harder to implement in practice especially in large systems like the
railways. Therefore, for this research, the periodic review strategy is deemed most suitable.

SQ2: What strategy of spare parts inventory control best suits the railway domain?

The governance of spare parts in railway infrastructure (and large systems like infrastructure in
general) is outsourced. This entails a third party managing the actual warehousing operations.
System and part owners do still hold responsibility over setting operational parameters like
procurement timing and quantities but the reporting of stock levels and shipping of parts is
outsourced to the third party. This immediately implicates that the dedicated function of this third
party also includes highly sophisticated measurements of stock levels. In terms of the spare parts
inventory control strategies reviewed in section 2 this translates to the two continuous review
policies ((s,S) and (s,nQ)) being most applicable.

SQ3: How can costs of spare inventory and maintenance scheduling be modelled?

Costs are modelled using the simulation described in section 3 and 4. It based on L. Wang et al.
(2009) but is altered to include possibilities for minimal maintenance to better reflect the real-world
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operations going on in railway infrastructure maintenance management. This simulation is a Monte
Carlo type simulation which takes into account stochastic step-wise deterioration of parts as well as
a stochastic failure threshold for the deterioration of parts. It also accounts for downtime, preventive
as well as corrective maintenance, inspection costs, holding costs and minimal maintenance costs.

SQ4: How could decision variable in the spare inventory control strategy and the maintenance
scheduling strategy be determined to minimise operational cost?

The complexity of the simulation model causes a closed form objective function, the objective
being the estimated costs, impossible to formulate. Optimisation therefore has to be
derivative-free. Moreover the evaluation of this function is computationally costly. A particular
method which is developed for optimisation expensive black-box functions is called Surrogate
Modelling. Several surrogate modelling algorithms were reviewed (see chapter 2) and four were
tested in chapter 5. The results of the numerical experiments showed that the algorithm used in
the HyperOpt library, Tree-structured Parzen Estimators, is most suitable for this specific problem.

SQ5: How could this type of model add value to railway infrastructure management?

This model can be used by infrastructure managers and maintenance providers alike. Most directly
in railway infrastructure but also in other infrastructure domains like highways or waterways.

Moreover it yields scientific/theoretical insights in the form of a new simulation model and a
thorough comparison of surrogate modelling algorithms in a practical application.

Finally for the main research question:

RQ: How can spare inventory control decisions and maintenance scheduling decisions be
modelled for the application in railway networks to minimise operational cost?

This can be done using the developed model.

The developed model calculates the estimated costs using a novel Monte Carlo simulation which
simulates multiple identical parts installed in the system which share a common pool of spares.
These parts are modelled as independent and their deterioration is stochastic. Moreover the
simulation includes the option for minimal repair.

The simulation incorporates a condition based maintenance strategy with periodical
inspection and a spare inventory control policy which uses continuous monitoring and an order
up-to level (the (s,S) policy). This simulation is optimised through a surrogate modelling algorithm
from the HyperOpt library and optimises the objective of estimated costs based on the decision
variables of reorder level s, order up-to level S and CBM threshold Lp . The result of this model is
the optimised values for these three decision variables and the accompanying value for the
objective: the maintenance operations cost per part per period (€/part/period). Because of the
stochasticity in the simulation as well as the surrogate modelling algorithm these results can not be
guaranteed to be the absolute optimum. Yet, the results are deemed useful in practice and can
contribute to a more resilient railway network through better maintenance management.
As stated in chapter 1, the goal of this thesis is to develop a model which optimises financial costs
and returns the associated values for decision variables which govern maintenance scheduling and
control of inventory of spare parts. This model should be specifically suited for application in
railway systems.

The developed model satisfies this goal, it optimises estimated costs per part per period and
returns values for the three decision variables which govern both spare inventory control (reorder
level s and order up-to level S) and maintenance scheduling (CBM threshold Lp ). By choosing
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proper elements to build the simulation (e.g. the CBM and (s,S) policy and adding minimal
maintenance) this model better suits the railway infrastructure context than the models available
in literature (see table 2.1

7.2. Impact
Overall this research, as all scientific research, should be interpreted by users for their own specific
demands and situations. No research can be unilaterally used in the same way. It should always be
handled with care and criticism and never taken for granted as being the ground truth.
Nonetheless, practitioners in the railway maintenance management field could use the developed
model to inform some of their practices. Moreover this model and the testing thereof have some
interesting similarities as well as disparities with existing literature and may even spur some future
research endeavors.

7.2.1. Practice
The practical implications of this research are focused on the application in industry.

• Infrastructure managers can use the developed model to make decisions regarding their own
spare inventory and maintenance scheduling. This is the most straight forward use of the
R-SIMS model. The three decisions which are optimised can be implemented directly in a
maintenance provider’s operations and thereby hopefully improve their financial
performance.

• In the case of ProRail this model can guide negotiations with both current and future
contractors. In this case the R-SIMS model would not necessarily be used to directly
influence operational decisions, but to gain insight into what decisions may be taken in a
situation which the user (ProRail) has no direct access to. This would make the model
function more like a predictive model than an optimisation.

• The simulation separately can be used as a starting point for evaluating ones own entire
supply chain, by getting an estimate of the costs of spare inventory and repair/replacement
actions one can support decision making throughout the procurement and operational
process of an infrastructure system.

7.2.2. Theory
• The literature (see chapter 2) showed no previous combined model which describes

maintenance scheduling as well as spare inventory control that also include minimal
maintenance. This contribution is significant only in specific situations (moreover specified
by the fact that periodic monitoring is assumed for the inspection strategy) but for those
specific situations this model can yield a large added value when compared to models that
do not include minimal maintenance.

• This research includes a relatively large comparison of several surrogate modeling algorithms.
Since the field of surrogate modelling is rather young, all extra practical applications as well
as comparison upon a new problem can increase overall understanding of these algorithms.

7.3. Future research directions
This research, while conclusive in its own right, revealed some more questions which have not been
answered. These form opportunities for future research.

• More research could be done to gain insights into best practices when it comes to data
selection. The data required to utilise operational models is often very detailed and
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widespread throughout an organisation or over stakeholders. The aggregation of data
sources and control of access is an entire field of data science which would be applicable to
this research.

• The sensitivity analysis presented in chapter 5 only analyses the effects of parameter changes
on the outcome of the Monte Carlo simulation. This analysis was performed only on this part
of the model because it is the newly developed part. A full sensitivity analysis of the entire
modelling framework including the optimisation algorithm would be highly advised as this
would yield valuable insights into the actual effects of the parameter deviations on the final
product of the model rather than only on the simulation.

• This research modelled only a single spare inventory control and maintenance scheduling
strategy. Further development of the R-SIMS model presented here could include other
strategies as well. Parts could then be included which have continuous monitoring
capabilities. Because large systems like the railway infrastructure often involve different sets
of parts. Some of these parts in practice have their own dedicated continuous monitoring
systems which allow the owners to implement another maintenance scheduling strategy.
Making the model more modular in such a way that the user could run these parts through
as well would be a great increase in value for the model. Moreover, including parts which
have an (s,nQ) inventory control strategy would be beneficial. Some part sets have a different
inventory control strategy from the one used in the R-SIMS model. By again making the
model more modular to accommodate for these strategies it would be more widely
applicable in practice.

• Better methods for estimating downtime costs should be developed. In the developed
model, because of the granularity of time it is very difficult to balance computational needs
with an accurate estimate of downtime cost. Especially in infrastructure systems like the
railways where downtime is extremely costly this factor is important. Further work on the
implementation of the downtime costs would therefore be a great contribution to the
R-SIMS model in particular.

• Possible expansion of the application outside the railway management domain. While one of
the biggest contributions of this research is the development of a combined spare inventory
& maintenance scheduling model specifically suited for railway infrastructure, the literature
review showed that in general these models rarely include functionalities for minimal
maintenance. This functionality is particularly valuable in the railway setting but could also
be applied in specified other applications which for instance are hard to reach with spare
parts. Research in this wider application would therefore increase the benefit industry would
be able to gain through the use of the R-SIMS model.
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Abstract—To better govern inventory control of spare parts in
tandem with scheduling of maintenance operations in a railway
setting, a Railway - Spare Inventory & Maintenance Scheduling
(R-SIMS) model is developed. To suit the railway industry setting
the model includes an inventory control strategy which envokes
continuous monitoring and a reorder level (s) as well as an
order up-to level (S). Moreover a condition based maintenance
(CBM) strategy is used with periodical inspections, again to fit the
railway domain. These strategies are combined in a simulation
model which assumes stochastic step-wise deterioration of parts
as well as stochastic lifetime lengths to predict the expected
cost per part per period. The three maintenance scheduling and
spare inventory decisions to be optimised then are 1) when to
replace parts based on their condition, 2) when to buy new spare
parts and 3) how many spare parts to procure at each order.
These decisions are represented by values of the three decision
variables: the CBM threshold Lp, the reorder level s and the
order up-to level S. The optimisation of the simulation happens
through surrogate modelling. A Python library called HyperOpt
is used with a Tree-structured Parzen Estimator algorithm to
optimise the three decision variables and minimise the estimated
cost. This research contributes to the existing theory by creating a
modelling framework for the joint optimisation of spare inventory
and maintenance scheduling decisions which is specifically tai-
lored to the railway context and includes possibilities for minimal
maintenance. In practice this model can be used by maintenance
providers to increase the financial success of their maintenance
operations and by infrastructure managers to increase insight
into their maintenance providers’ operations.

Index Terms—Spare inventory control, Maintenance schedul-
ing, Surrogate modelling, Simulation, Operations research, Rail-
way, Optimisation

1. INTRODUCTION

Planning of maintenance operations is hard. Especially in
large systems this becomes highly complex quickly.

To aid in governing the maintenance process, mathematical
models have proven very effective. Statistical methodologies
have been developed and applied to analyse failure of
components in technical systems but also to forecast other
stochastic processes like lead times of spare parts or the
success of a repair action. These models to aid in decision
making for maintenance operations have mainly been focused
on production operations or single machines. For large and
interconnected systems like the railway network operational
decisions in maintenance work differently. If one regards
a railway network as a production facility they might
overestimate the level component interactions, after all the
components in a railway network are far more dispersed. Or
if the same maintenance rules are applied to railways as there
are to a car engine the possibilities for improvised or minimal
repairs may get overlooked.

This research addresses how spare inventory and maintenance
scheduling decisions can be optimised from a financial point
of view for the application in railway networks.

The specific relevant decisions in maintenance management
of railway networks being optimised are: when to replace
parts based on their condition, when to buy spare parts and
how many spare parts to buy. These decisions often have far-
reaching influence on the proper functioning of a system and
a model to support these decisions which in this research is
specifically designed for the railway domain could prove very
beneficial to the industry. An example of a use case of this
model would be that of a specific type of railway switch. If
one would consider the Dutch railway network in which this
type of switch would be installed 200 times, spread over the
system. A user of the developed model would then be able to



enter data regarding that type of switch; cost of procurement
of the part, cost of replacement operations but also data on its
failure frequencies and probability of downtime when the part
fails unexpectedly. The model would then process this data
and suggest the estimated financially best values for the three
decisions: when to replace these types of switches based on
their condition, when to buy spare switches and how many
spare switches to buy each time.

The contribution of this research is the development of a
Monte Carlo simulation which simulates the expected costs of
maintenance operations of parts in a railway infrastructure.
This simulation includes a Condition Based Maintenance
strategy with periodic inspections and an (s, S) inventory
control strategy. Moreover this simulation includes options
for minimal maintenance and extended options to prevent
unnecessary inspections in the system.

Further a modelling framework is developed to optimise
financial costs as predicted by the simulation and return the
associated values for decision variables which govern mainte-
nance scheduling and control of inventory of spare parts. This
optimisation is performed using surrogate modelling.

The model calculates these optimal values of the decision
variables for multiple identical parts installed in the system
which share a common pool of spares. These parts are
regarded as independent, meaning that they do not influence
each others’ failure behaviours and their failure should is
based on stochastic deterioration rather than time. The model
takes into account costs for maintenance operations, spare
part warehousing and procurement.

This paper details first the literature research to find a
base model for the simulation development and to find the
potential optimisation algorithms which may be applicable.
Thereafter the problem definition and methodology describe
the development of the simulation. To determine the most
suitable optimisation algorithm numerical experiments are
performed. Also the a real world test-case is analysed to
demonstrate the full modelling framework in action. Finally
conclusions are drawn regarding the main outcomes and
recommendations for further research are described.

2. LITERATURE

To model both spare inventory control and maintenance
scheduling, overarching strategies are chosen to fit the problem
situation. For the sake of maintenance scheduling, a highly
advanced level of scheduling should be adhered to. The
railway network after all has a high demand of reliability. The
most advanced methods of maintenance scheduling strategies
in the typology by [1] are the condition based maintenance
(CBM) strategies. In which parts are preventively replaced
whenever possible. This involves checking the parts’ condi-
tion and replacing that part when its deterioration exceeds a
threshold Lp which is based on knowledge about its failure
processes (preventive in-place repair is not considered as
an option as a result of the reality of the railway network

operations). The inspections of the condition of a part are in
this research considered to happen periodically, while some
parts in the railway system do have sensor technology allowing
for continuous data on their condition, these are very rare [2]
and have less need for the developed model.

Spare inventory control can be steered through strategies
that specify how the stock levels are reviewed as well as
how to buy new parts. A comprehensive categorisation is
developed by [3]. The review regime can be either periodical,
checking the stock levels every R periods, or continuous,
updating the stock levels every time a part is added or used.
The procurement of spare parts can then take the form of
an (s,nQ) system where n units of quantity Q are ordered
each time the stock level falls below s such that the stock
level is restored to above s. Alternatively the (s,S) system
can be used, where every time the stock level drops below
s enough spare parts are ordered to replenish the stock level
back to S. Warehousing of spare parts in large systems like a
railway network is often outsourced to specialised third-party
operators. These operators use advanced dedicated systems to
keep track of their stock levels. Therefore, continuous review
of stock levels is the most applicable method of governing
spare inventory for the developed model.

To fulfill the research goal, the developed model should thus
optimise Lp, s & S to suit the minimisation of the operational
cost. For the operational modelling a base model is sought
in literature. When considering the joint spare inventory and
maintenance scheduling modelling literature a few require-
ments are kept in mind for a base model to be applicable to
the studied situation: as stated above, the base model should
contain a condition based maintenance strategy with periodic
inspections and a spare inventory control regime described by
[3] as (s,S) or (s,nQ). Moreover the a potential base model
should be applicable to Multi-unit systems, meaning that it
considers more than one single installed part or machine.
Finally the model should consider components to not be inter-
dependent. While components influence each other heavily in
smaller systems or machines, the railway network is of such
scale that this inter-dependence is negligible and the model
should represent that.

[6] developed such a model. They modelled deterioration of
parts using Markov-Chains, allowing for modelling different
states of deterioration of parts which also creates opportunities
for the user to assign characteristics to each state. This how-
ever requires quite a lot of data to use. [7] use a very interesting
approach to their CBM strategy. Their model includes the
replacement of parts based on their condition but also has
a preventive maintenance threshold based on operational time.
While this strategy may be less prone to unexpected failure,
it is too complex for the railway domain. [8] use a continuous
deterioration process which is stochastic. This method closely
resembles the reality while requiring little data from the user.
Their (s,S) inventory strategy allows only for a maximum of a
single order to be outstanding at all times. It also only assumes
perfect instantaneous repairs or replacements and no minimal
repairs. [5] also used stochastic step-wise deterioration but



TABLE I
LITERATURE REVIEW TABLE *: [4] USED A CONTINUOUS-REVIEW CBM POLICY, THEREFORE EACH FAILURE IS NOTICED IMMEDIATELY WITHOUT

HAVING TO BE ANNOUNCED BETWEEN INSPECTION PERIODS. **: [5] USE A SPECIAL FORM OF THE (S,S) POLICY WHERE A VARIABLE ORDER UP-TO
LEVEL IS USED WHICH DEPENDS ON THE SYSTEM CONDITION.

Authors Staged
deterioration

Self-
announced
failure

(s,S) or
(s,nQ)
Inventory
policy

Markov
Decision
Process

Component
inter-
dependence

Minimal
repairs

L. Wang, Chu and Mao (2008) x x
Xie and Wang (2008) x
J. Wang and Zhu (2021) x ** x x
Keizer et al. (2017) x * x x
Van Horenbeek and Pintelon (2015) x x
L. Wang, Chu, and Mao (2009) x x
W. Wang (2012) x
This paper x x x

discretised parts’ deterioration levels to, similarly to [6], allow
for operational characteristics to be added to a parts condition.
While they do not directly model component inter-dependence,
they do consider a k-out-of-n:F system. Which considers a sys-
tem to contain a total of n components and when k out of those
are in a failed state simultaneously at some point, the system
will fail. While the step-wise deterioration of each individual
part is not linked to other parts, the subsequent maintenance
decisions in this case obviously are linked by the condition
of multiple parts. [4] again discretise the deterioration levels
of parts. The step-wise deterioration for each part is modelled
using a Poisson distribution and parts have no influence on
other parts’ deterioration processes, in other words, there is no
part interdependence. Notable is that [4] define the cost of op-
eration and replacement as a function of a part’s deterioration.
Thereby representing that a more deteriorated part functions
less efficiently and is harder to replace than a less deteriorated
one. [9] model multiple different parts instead of multiple
parts which are the same. This is very useful and common
in the machine or production setting but less applicable in the
railway infrastructure domain. Their optimisation technique is
also interesting as they perform their optimisation sequentially,
first finding the best value of the repair/replacement time and
thereafter determining the best maintenance actions to perform
at those times to produce the least amount of costs. Finally,
[10] uses an (R,s,nQ) inventory control model. While this
disqualifies it as a potential base model as described earlier in
this chapter, the model itself is still valuable to review in terms
of inspiration for possible extensions on another possible base-
models. One of the interesting peculiarities of this model is
that the failure of parts is modelled by using a Homogeneous
Poisson Process to approximate the arrival of defective parts.
Rather than modelling parts separately, this model sees the
entire set of identical installed parts as a queue from which
parts stochastically progress to the failed state.

This review of joint spare inventory and maintenance schedul-
ing models has combined the work of [11] and a review of
the more recent research published in this field. An overview

of the most important aspects of each of the reviewed models
as well as the model developed in this research are displayed
in table I.
Because of the characteristics of the model to be developed
and the close resemblance to the model by [8], this model
is chosen as a base model to develop further into the new
simulation in this research.

Optimisation

All these models use different methods of optimisation,
ranging from analytical solutions to Markov Decision Pro-
cesses (MDP) [5]. For the developed model, an MDP was
considered too cumbersome for the user and analytical options
or other options containing derivative information were not ap-
plicable as the developed model sees the determination of the
objective value as a black-box as a result of its stochastisity.
Therefore derivative free global surrogate modelling is con-
sidered to be the best suitable method of optimisation here.

Surrogate modelling is a technique used in optimisation
which uses experimental data of decision variable values
and accompanying objective values to estimate a relationship
between both. This estimated relationship is called the sur-
rogate [12]. The way in which these surrogates are used in
optimisation is schematically displayed in figure 1.
The experiment in figure 1 in this research takes the form
of the simulation part of the railway spare inventory and
maintenance scheduling model. This model will take data
(inspection times, costs etc.) as an input and produces an
expected cost (the objective) as the output. Several different
surrogate modelling algorithms have been developed and each
has its own peculiarities to account for.

Randomsearch is one of the most basic algorithms available
[13]. It randomly selects values for the decision parameters
and tests the core problem (the experiment) to find the value
of the objective. It skips fitting a surrogate and its DoE can
be described as taking a random pick for every decision
variable from a uniform distribution over each variable’s
respective range. Surprisingly this method has proven quite
useful in certain situations, therefore it is always wise to



Fig. 1. Basic structure of surrogates used in optimisation

include this algorithm as a base-line for the performance
on one’s surrogate modelling approach. SMAC uses random
forests [14], an approach which is deemed very well suited
for categorical or discrete variables. HyperOpt [13] uses
the Tree Parzen Estimators (TPE) algorithm. In practice
SMAC and HyperOpt produce very similar results. SMAC
however is less usable in this instance in terms of software
integration. COMBO or COMmon Bayesian Optimization
uses a continuous surrogate [15]. Similarly, Bayesianopt and
pyGPGO [16] also use a continuous surrogate as does DONE
[17], which has specifically shown a distortion effect at the
edges of the search space, which is advisable to keep in mind
when selecting an algorithm to fit ones specific problem
situation. CoCaBo is tailored to combine categorical and
continuous inputs [18]. IDONE being an extension on the
DONE algorithm does use a continuous surrogate as well,
but is adjusted in such a way that the final optimal solution
is always an integer valued one [19] thereby subverting the
distortion around the edges of the search space. One of the
drawbacks of IDONE is that it has a limited exploration
parameter. This means that it is more local-leaning. While
none of the algorithms described can fully assure that a
global optimum is reached, one might consider expanding the
exploration parameter somewhat to increase the search area of
the IDONE algorithm. This is exactly what is effectively done
in the MVRSM algorithm [20], apart from also accommodating
for continuous variables rather than only integer ones. Finally
Submodular Relaxation BOCS [21], being an extension of
the better known classical BOCS [22], might also be suitable
for this problem although practical concerns regarding the
computational effort of this method could be considered in
the choice to include it in the roster of algorithms to be tested.

The final modelling framework thus consists of two parts:
the developed Monte Carlo simulation which predicts an
estimated cost based on part data and values for the three
decision variables and an optimisation algorithm which
optimises the three decision variable values through surrogate
modelling. Together these form the functional Railway -
Spare Inventory & Maintenance Scheduling (R-SIMS) model.

3. PROBLEM DEFINITION

The simulation was developed using a base model from
literature [8]. Other than general alterations of the base
simulation which increased accuracy and applicability in
railways, the new simulation was equipped with possibilities
for minimal maintenance in a case of stock-out after an
unexpected failure of a part. The possible failure dynamics
and subsequent maintenance actions are visually represented
in figure 2.

To model these processes, several categories of assumptions
can be defined:

Parts

The studied system is modelled for n identical parts.
Regarding these parts, the following is assumed:

Each part, upon installation, is as-good-as-new, meaning that
the deterioration of the part, described by x(t) is 0. After
installation, the part immediately starts to deteriorate incre-
mentally over time at a rate of ∆x

∆t . Where ∆x is randomly
picked from a pre-determined probability distribution for every
part for every time-step. This indicates that x(t) = x(t −
1) + ∆x. Since ∆x is always positive, the deterioration will
only increase through time. Further, each part gets assigned a
failure threshold Xf for their lifetime. Once the deterioration
of a part exceeds this threshold, the part is considered failed.
This threshold is picked from a pre-determined probability
distribution similarly to the step-wise deterioration. Every time
a new part is installed this threshold is re-picked and this
threshold is always positive. Because all parts in the consid-
ered system are identical, all failure behaviour is described
by the same distributions throughout the system. This means
that local differences in environmental conditions or different
levels of use of a part compared to another is not taken into
account in this model. Part failures are also assumed to be self-
announced. This means that in a period which does not include
an inspection, failed parts are still noticed and replacement
decisions can be made as a result outside the inspection cycle.



Fig. 2. Behaviour of part failure and maintenance decisions on stock levels
and system functioning (based on [8])

Maintenance operations

Three different maintenance operations are considered:
inspection, replacement and minimal repair. Replacement
can be done either in a preventive or corrective fashion. All
of these operations have a certain cost. Where performing
inspections is governed by pre-determined time intervals (T ),
both the minimal repair as well as the replacement decisions
are based on the condition of the part (Condition Based
Maintenance). The specific condition can either be the level
of deterioration in comparison with a CBM threshold or
whether part has failed or not. The following assumptions
apply:

Inspection is performed on a part every T time steps. Meaning
that if the inspection interval T for instance equals 4, inspec-
tions are performed in time step 4, 8, 12, 16, ... until the part
is replaced or failed. After replacement of a part, the cycle
restarts, this means that if a part is replaced at t = 17, the

new inspection cycle will look like 21, 25, 29, ... Each of
these inspections is assumed instantaneous and non-invasive,
meaning that it does not influence the deterioration level of the
inspected part. Upon inspection the part’s condition is perfectly
determined. Replacement as well as minimal repair are also
considered to be instantaneous.

If a part is in a failed state, the system will try to correctively
replace said part as soon as possible. Yet, a part can only be
replaced if spare part stock is available. A part that can not
be replaced correctively due to stock-out of spare parts will
be immediately subjected to a minimal repair, meaning that
the part will exit the failed state and will be restored to the
condition directly before failure. The deterioration level will
be reset to the level before failure and a new failure threshold
Xf will be picked such that it is higher than the current
deterioration level. The part will subsequently be scheduled
to be replaced correctively as soon as spare stock allows.

If a part is inspected, and the deterioration is shown to
exceed the CBM threshold Lp, a part will be replaced pre-
ventively as soon as possible. A part that can not be replaced
preventively will be scheduled to be replaced preventively as
soon as spare stock allows. In both cases where a part has
failed or exceeded the CBM threshold but can not be replaced
due to stock-out the ’no-more-inspection’ clause will come in
to effect. Meaning that the part will not be inspected any more
until it is replaced.

Spare inventory control

Inventory of spare parts is controlled using an (s,S) policy in
which s < S. This policy entails continuous monitoring of
the spare IOH. The stock is assumed to always be available
for operations and all stock keeping actions are instantaneous.
Further assumptions are:

If spare stock equals reorder level s, new spares will be ordered
if no order is outstanding at that time. Only a single order can
be outstanding at any one time. If the order marker OC = 1
no orders can be placed. Only once those ordered parts are
delivered a lead time (ts) later can another order be placed.
Spare orders are always of the quantity S − s in order to
bring the Inventory Position back up to the order up-to level
S. Moreover the spare stock level (the physical amount of
spares available) SL can never exceed S or become lower
than 0. Spares that remain in stock incur a holding cost each
period that they are kept in stock. Parts can be kept in stock
indefinitely and will not deteriorate while kept in stock. They
have an infinite shelf-life. Finally, every replacement action
decreases SL by exactly 1.

4. METHODOLOGY

All of these assumptions lead to a Monte Carlo simulation
which is further represented in Supplement A. The decision
tree which results from all the assumptions made is depicted
in figure 3.



Fig. 3. Representation of the actions/choices made for each part in each time step in the proposed model

All actions and decisions in the described model result in in-
curred monetary cost. Cost factors are included for inspection
and maintenance actions but also for holding costs, costs of
downtime and cost of part procurement. All of these costs
combined form the basis for the simulation’s output which is
the expected cost per part per time period EC [C/part/period].
This output is calculated by adding all costs together and
dividing them by the time horizon multiplied by the number
of parts included. This cost function can be represented using:

EC =
CiNi+CpNp+CcNc+ChNh+CsNs+CdNd+CmNm

tm·n
The full simulation algorithm is described in Supplement A
in pseudo-code. The separate steps of that algorithm are:

Data entry {Require}
This step entails the entry of all the necessary parameter
values by the user. Note that the three decision variables are
also required as the optimisation step lies a level beyond the
simulation in the surrogate modelling algorithm. The output
of the simulation is also defined as the estimated cost.
Initialization {L4 - L11}

All variables that do not pertain to a single part are initiated.
As well as all values which are part-specific. Most notably
every part gets assigned a failure threshold for the first lifetime
and a deterioration level which is randomly assigned for a
value between 0 and the failure threshold.
Next the first time-step begins, each time-step has the same
sequence of actions and these are all processed in ascending
order until the entered time horizon is reached.
Spare order handling {L13 - L19}
At the start of each period newly delivered orders are accepted.
If an order was outstanding and the order has been placed a
lead-time ago, this order will arrive and be added to the current
inventory position. Because of the (s,S) inventory control
strategy, orders always amount to S − s parts. If an order
is accepted, the order marker can also be reset to 0.
Next each part is handled separately. The order in which the
parts are handled is randomised.
Deterioration and failure {L24 - L29}
The part’s deterioration level is updated by ∆x. This value is
picked from its appropriate probability density function (PDF).
This new deterioration level can then be checked against the



failure threshold to determine whether the part has failed or
is still operational.
No-inspection clause {L30 - L35}
Instrumental in this model, is the option that parts are no
longer inspected after they may have failed or exceeded
the CBM threshold in earlier time-steps. If this is the case
(INj = 0) the part will have to be replaced if the spare stock
allows. The part will then be correctively replaced if it has
failed and preventively be replaced if it is still operational.
Corrective replacement or minimal repair {L37 - L48}
If a part has failed and stock levels allow, it should correctively
be replaced. If it has failed and stock levels are not sufficient,
the part will be set to no longer be inspected, after all, the
failure is now known and the part should be replaced as soon
as possible. If it indeed has failed and no spare parts are
available to replace, the part can be minimally repaired, but
only if it has not been before. If it is minimally repaired, the
marker is adjusted accordingly and its failure status is reset to
operational as well. Finally the part’s failure threshold has to
be reset to a value, again picked from its appropriate PDF but
in this case higher than the current deterioration level.
Inspection and preventive replacement {L50 - L63}
If the part has not failed at all, it will be considered to possibly
be inspected. This inspection takes place periodically (with T
as inspection interval) so if the current period in the part’s
lifetime is a multiple of T it shall be inspected. If upon
inspection the part is found to have a deterioration level greater
than or equal to the CBM threshold and enough spare stock
is available, the part will be preventively replaced. If no stock
is available, the part is set not to be inspected any longer and
therefore to be replaced as soon as the spare stock allows.
Installation of new part {L64 - L74}
If a part is replaced, at this point this is recorded. This means
that a new part is installed and some parameters have to be
reset. The deterioration is set back to 0, indicating an as-good-
as-new part. The start of the lifetime of the part is set to the
current time-step. The failure threshold is renewed (again from
its PDF). The minimal maintenance marker is reset as well as
the marker for the no-inspection clause. Importantly, the spare
stock is decreased by 1.
Spare ordering decision {L75 - L78}
Once the IOH of spares is updated, it is compared to the
reorder level, if it has dropped to the reorder level and no order
is outstanding, a new order will be placed, thereby resetting
the last order time to the current time-step.
After all parts have been cycled through, each time-step ends
with administrative steps.
Counting, resetting and advancing time {L80 - L90}
Every action or cost factor is marked and counted by its
respective marker or memory variable. These values are all
added to the values of the counters from the previous time-
step. After all these actions are counted, the necessary markers
are reset before the start of the next time-step. Finally time is
advanced and a new time-step can be started.
Cost calculation {L91 - L95}
After the time-horizon is reached, the final total costs can

be calculated through multiplying all cost counters by their
cost factors. The Expected Cost over the simulation horizon
is calculated by dividing the total costs by the time horizon
multiplied by the number of parts. Finally the definitive esti-
mate of the cost is calculated through dividing the cumulative
Expected Cost by the number of Monte-Carlo iterations.

Optimisation

To optimise the decision variables, a suitable optimisation
technique is found in surrogate modelling. Four surrogate
modelling algorithms are identified as potential fits for the
problem at hand. These algorithms are focused on problems
with a single objective and integer decision variables.
Moreover they are able to deal with problems which would
have a solution close to the edges of a search space. The four
candidate algorithms are: Randomsearch [23], HyperOpt [24],
IDONE [19] and MVRSM [20]. These four algorithms are
tested on the developed simulation to reveal which functions
best on the given problem.

Randomsearch is the most basic of the possible methods
[23]. Randomsearch technically does not make use of an
entire surrogate modelling algorithm. Every iteration, the
methodology pics a random value for each of the decision
variables from their respective ranges. It thereby assumes a
uniform distribution over the entire search space for each
of the decision variables. Rather than storing the values of
the decision variables and the objective for each iteration,
the method only stores these values for the best iteration so far.

HyperOpt itself is a python based library created by [24]
which in itself gives options for utilising multiple differ-
ent algorithms for optimisation of expensive functions. The
algorithm most prominently featured by the creators as a
well-performing one is the Tree-structured Parzen Estimator
approach (TPE) [25]. This algorithm is compared to Ran-
domsearch by Bergstra as: ”The TPE algorithm is like taking
Randomsearch and then slowly refining it to not choose values
for hyper-parameters that are strongly correlated with terrible
performance” [26]. While the algorithm in this case is applied
directly to parameters of our simulation the same holds true.
HyperOpt in this research therefore indicates the use of the
HyperOpt library [13] to optimise with the application of the
TPE algorithm.

The TPE algorithm itself functions not through estimating a
surrogate model to describe y, the objective value, as a result
of x, the decision variable values; resulting in a probability
of an objective value given a certain set of decision variable
values p(y|x). But by estimating the reverse (which decision
variable values would be probable to fit a certain value of the
objective): p(x|y). It does so by taking the history of observed
decision variable values and accompanying objective values
and splitting it over an arbitrarily chosen desired performance
y∗ and estimating for each decision variable a probability



density function for y. This results in:

p(x|y) =

{
l(x) if y < y∗

g(x) if y ≥ y∗ (1)

The algorithm is then trained to try new parameters which
are more likely to have a higher density in g(x) and a
lower density in l(x). This is done through selecting new
experiment parameters (the DOE) based on optimising the
Expected Improvement (EI). The EI is defined as the expected
difference between the desired performance and the actual
performance given a certain value of the decision variable:

EIy∗(x) =
∫ y∗
−∞(y∗ − y)p(y|x)dy =

∫ y∗
−∞(y∗ − y)p(x|y)p(y)

p(x) dy
(2)

The way in which y∗ is determined is through the user
choosing the ratio of the observations they would like to fall
above or below the threshold. This ratio can be defined as
γ = p(y < y∗). In other words, say γ = 0.8 then 80% of
observations would be determined to be less optimal than the
desired performance. By implementing the expressions for γ,
l(x) and g(x) into Eq.(2) one gets the final expression for EI:

EIy∗(x) =
γy∗l(x)−l(x)

∫ y∗
−∞ p(y)dy

γl(x)+(1−γ)g(x) ∝
(
γ + g(x)

l(x) (1− γ)
)−1

(3)
Eq.(3) shows that in order to maximise EI, the algorithm will
have to propose values of the decision variables x∗ which
have a higher likelihood in l(x) than in g(x). After each
iteration the experiment is ran again with the new values of
x∗, the results are taken into the history and used together
with the previously ran experiments to develop new PDFs
and new estimated optima.

IDONE stands for Integer Data-based Online Nonlinear
Extremum-seeker [19], which is an extension of the DONE
algorithm [17]. IDONE, different from DONE, uses a linear
combination of Rectified Linear Units (ReLU) as its surrogate.
The surrogate model itself is indicated by g(x) and consists
of D basis functions.

g(x) =
D∑

k=1

ck max {0, zk(x)}

zk(x) = wTk x + bk

(4)

Where x ∈ Rd are the d decision variables. By fixing
the parameters wk and bk, the model becomes linear in its
parameters ck. The specific choice of the basis functions makes
this model have local minima exactly on its corner points
[19]. Each iteration, this model is fit to the available data.
The available data consists of pairs of decision variable values
and their corresponding objective value ((xi, yi) being the
(decision variables, objective value) pairs for iteration i). The
model fit is performed by solving the regularized linear least
squares problem:

min
cN

N∑

n=1

(yn − g(xn, cN ))2 + λ ‖cN − c0‖22 (5)

To solve this problem the recursive least squares algorithm
is used [27]. This algorithm uses the optimum of the fitted
surrogate as its DOE for the next iteration. This means that
at each iteration the surrogate described in Eq.(4) is fit to
the data using Eq.(5) and subsequently optimised using the
BFGS method described by [28]. This optimisation yields a
single set of decision variable values x∗ which is then used
as the new experiment to run in order to produce new data.
However, to avoid getting stuck in a local minimum, first a
small alteration is added to the values: xN+1 = x∗ + δ where
δ ∈ {−1, 0, 1}. This cycle is repeated for as many iterations
as the user desires after which the last optimum calculated
will form the suggested optimum of the original problem.

MVRSM, the Mixed-Variable ReLUbased Surrogate Mod-
elling algorithm, is an adaptation of IDONE. Where IDONE
was designed specifically to deal with integer valued decision
variables, MVRSM was designed to deal with a mixture of
integer and continuous variables [20]. The adapted surrogate
used in MVRSM distinguishes continuous (xc) and discrete
(xd) decision variables:

g(xc, xd) =

D∑

k=1

ck max {0, zk(xc, xd)}

zk(xc, xd) =
[
vTk wTk

] [xc
xd

]
+ bk

(6)

By then choosing vk, wk and bk at the start and fixing
them the model becomes linear in its parameters ck again
which lends it to be optimised using linear regression. The
method of choosing these parameters influences the ability
of the algorithm to deal with both continuous and integer
valued decision variables by locating any local minimum
on intersections of decision variables where the integer
constraints are respected for those variables which require
them and these constraints are relaxed for the continuous
variables. The fitting of the surrogate happens exactly in
the same manner as in IDONE, using the recursive least
squares algorithm. Also similar to IDONE, MVRSM uses
the optimum of the fitted surrogate for its DOE for the
experiments in the next iteration. However, the Limited-
memory BFGS (L-BFGS) algorithm is used to optimise the
fitted surrogate as it uses less memory than BFGS [28]. The
optimum of the surrogate found by the L-BFGS algorithm
(x∗c , x∗d) is then used to construct the seed for the experiment
in the next iteration. This requires the final step of adding a
deviation in order to avoid getting stuck in a local minimum
through (xN+1

c , xN+1
d ) = (x∗c , x∗d) + (δc, δd) where δc ∈ Rdc

and δd ∈ Zdd . Note here that the perturbations made to the
optimal values are real values for the continuous variables
and integer values for the discrete variables. Moreover this
method leaves room for the user to choose a mix of possible
values to use as perturbation which exceed the confines of
those used in the IDONE algorithm. This allows MVRSM to
use larger exploration parameters.



TABLE II
ALGORITHM CHOICE EXPERIMENTS PARAMETER LEVELS (SEE SUPPLEMENT A FOR NOMENCLATURE)

Ci Cp Cc Cd Cs Ch Cm ts T fF (x) fD(x) tm n
50 224 140 832140 5500 100.83 448 6 12 Weibull(871.984, 23.406) Gamma(1.667, 0.6) 1690 30

Now that the developed simulation is described and the
potential surrogate modelling algorithms are detailed, exper-
imentation can further inform about the use and fit of these
parts in the final modelling framework.

5. NUMERICAL EXPERIMENTS

Two experiments are performed, the first to choose the best
fitting algorithm and a second to gain demonstrate the full
model. To perform these experiments, the simulation algorithm
is written in functional code in Python. That simulation is
subsequently implemented in the EXPOBench benchmark
library [29]. This library, also written in Python, provides
options for optimisation of the entered problem using different
surrogate modelling algorithms, including the four candidate
algorithms in this research. All experiments are ran on a

Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz with 8 GB of
RAM system or comparable consumer-oriented systems. More
extensive results and analyses are presented in [30]

Algorithm choice

First, to finish off the model development itself, an al-
gorithm choice experiment is performed. To test the fit of
the algorithms, three metrics are designed: Performance, here
defined as the objective value produced by an algorithm in
a given amount of time, Speed, measured using the time per
iteration as well as with the time required by an algorithm to
reach a certain threshold in terms of the objective value and
Stability, defined by the variation in the definitive result of an
algorithm. The experiments encompass a single problem seed
being ran through all four candidate algorithms for a total of

Fig. 4. Performance runs averaged over the 10 repetitions of the experiment with a shaded area indicating one standard deviation of the results above and
below the average.



200 iterations to produce an estimated optimal result, this is
repeated 10 times. The parameter values in the seed are shown
in table II.

The number of Monte Carlo iterations for these experiments
is set to 25 to facilitate the production of proper quantities of
data. The objective value threshold for the speed experiment
is set to 150% of the average objective value found by all
algorithms in 200 iterations, this value amounts to 64.32
C/part/period. Figure 4 shows the progression of the best
objective found by each algorithm over the 200 iterations.

Results show that for performance, the MVRSM and Hyper-
Opt algorithm perform equally well with an average objective
value found of 37.42 and 38.20 C/part/period respectively
versus an average of 47.12 and 48.77 C/part/period for Ran-
domsearch and IDONE respectively. A pair-wise t-test showed
no significant difference between HyperOpt and MVRSM
(p = 0.6986) nor between Randomsearch and IDONE (p =
0.6709). Other pairings of the algorithms did show significant
differences (p < 0.025) leading to HyperOpt and MVRSM
scoring equally well on performance. To test speed however

HyperOpt out-performs MVRSM for the objective value found
(coefficient of variation of the objective of 0.07 for HyperOpt
and 0.14 for MVRSM) as well as for the found values of the
decision variables (combined coefficient of variation of 1.55
for HyperOpt versus 3.63 for MVRSM). This leads to Hyper-
Opt being the most favourable algorithm for optimisation of
the studied problem.

The propagation of the iteration time per iteration over
the 200 iterations of each algorithm is shown in figure 5.
Interestingly, IDONE and MVRSM algorithms both have a
very low iteration time for the first three iterations. This
is the result of the algorithms requiring a base set of data
to start actually fitting the surrogate. IDONE and MVRSM
therefore perform random picks of the decision variables for
the first three iterations which results in very low iteration
times [19] [20]. After these first iterations the iteration times
of IDONE and MVRSM increase to values beyond those of the
HyperOpt or Randomsearch algorithms. This results in average
iteration times for IDONE and MVRSM of 13.87 s and 13.61
s respectively which are both significantly higher than the

Fig. 5. Iteration time per iteration averaged for all 10 repetitions of the experiment



10.72 s and 10.87 s average iteration time for HyperOpt and
Randomsearch respectively.

For the time required by each algorithm to reach the goal
of 64.32 C/part/period for the objective results are shown
in table IV. Again HyperOpt used the least amount of time
on average to reach this goal (2.68 minutes), followed by
MVRSM (4.56 minutes), then Randomsearch (6.05 minutes)
and finally IDONE (7.79 minutes) which was even unable to
reach the goal within the 200 iterations of the experiments in
one of the experiment repetitions.

Both of these analyses showed HyperOpt to be (one of) the
best performing algorithms in terms of Speed. Which would
make it the most suitable for the developed Monte Carlo
simulation in that regard.

TABLE IV
TIME PER EXPERIMENT REPETITION TO REACH THE GOAL OBJECTIVE OF

64.32 C/PART/PERIOD FOR ALL ALGORITHMS IN MINUTES

Experiment
repetition HyperOpt IDONE MVRSM Randomsearch

1 3.22 15.67 6.25 5.47
2 0.97 17.85 0.85 2.61
3 3.16 1.35 9.89 4.80
4 1.33 - 10.29 5.08
5 4.56 3.10 3.20 7.34
6 2.15 5.25 9.04 4.91
7 5.08 9.75 0.33 4.25
8 2.15 7.50 0.67 1.34
9 1.33 7.49 1.27 12.82
10 2.81 2.15 3.84 11.92

Average 2.68 7.79 4.56 6.05

To score the algorithms on their Stability, the variation of
their results is calculated for all decision variable outcomes as
well as the resulting objective value (see table V). When taking
into account all of those variations, in terms of coefficient
of variation (σ/µ) the HyperOpt algorithm is clearly the
most stable. which supports the choice for HyperOpt as the
algorithm from a Stability perspective.

TABLE V
COEFFICIENTS OF VARIATION OF EXPERIMENT RESULTS

Algorithm CV(S) CV(s) CV(Lp) Cumulative
CV(DV’s) CV(Obj)

Randomsearch 0.55 1.86 0.31 2.72 0.11
HyperOpt 0.40 1.11 0.04 1.55 0.07
IDONE 0.66 1.41 0.33 2.4 0.23
MVRSM 0.41 3.00 0.22 3.63 0.14

Test-case

With the best fitting algorithm identified, as a means of
practical testing, the model is used to optimise the decision

variable values for a specific railway infrastructure part. This
part is a sub-assembly of a track circuit sensor called a RUTA.

To run the developed model for this particular part, all
parameter values are to be gathered as accurately as possible.
All parameter values for this RUTA are gained from data
provided by ProRail and its contractors. ProRail is the largest
Dutch railway infrastructure manager. Information about the
cost of inspection, replacement and maintenance actions are
gathered by inquiring maintenance engineers about their work.
The lead time and cost of the part were stored in supplier
information available, the holding costs are calculated as a
percentage of the part costs. the downtime costs were calcu-
lated through averaging rail section values then the average
downtime per failure is determined from failure data sets.
Finally the inspection interval is provided by the contractor’s
FMECA analysis. The final test data can be found in table III.

The results of this test-case show an estimated optimum
at a reorder level (s) of 15 units, an order up-to level (S)
of 398 units and a preventive maintenance threshold (Lp) of
140 units of deterioration. The objective value of the expected
cost that accompany these decision variable values is C138.84
per part per period. Before finding this final result in the
155th iteration, the HyperOpt algorithm found 5 previous best
objective values. This results in a graph of best results found
which is rather simple as seen in figure 6.

All objective values found during the 200 iterations of
searching are visualised in figure 7.

The use of the model, while functional, is not very well ad-
justed to the information sources available in this case. Limited
amounts of data were available regarding failure behaviours
which leads to a lot of assumptions and generalisations. This
leads to a case of ’garbage in - garbage out’, meaning that the
final result is only as reliable as the failure data input into the
model. Moreover six different data sources were consulted to
gather all the parameter values used for this test case. This not
only takes a lot of time and resources but could also lead to
contradicting data or different parameter values that counteract
one another. An advice would therefore be that any user would
first spend time gathering the right data sources and integrating
them into a single large data set which is reliable and straight-
forward in its use for this model.

TABLE III
RUTA TEST CASE DATA

Ci Cp Cc Cd Cs Ch Cm ts T fF (x) fD(x) tm n
7.50 12.50 12.50 389,367 7,026.62 122.82 146.25 10 24 Weibull(1306.416, 1.764) Gamma(1.667, 0.6) 1774 1009



Fig. 6. Best Objective value found per iteration

Regardless, the performance of the R-SIMS model in this
test case can be regarded as highly satisfactory. By exploring
the search space in an efficient way it found the final result
in 155 iterations. This may not always be the case due
to the stochasticity inherent to both the simulation and the
optimisation algorithm but still indicates that shorter run times
could be used in practice than is done in this research.

Fig. 7. All points tested in the search space during test-case run (for visibility
the 6 values with an objective higher than C1,000 are cencored)

6. CONCLUSION

The developed model satisfies the research goal, it optimises
estimated costs per part per period and returns values
for the three decision variables which govern both spare
inventory control (reorder level s and order up-to level S) and

maintenance scheduling (CBM threshold Lp). By choosing
proper elements to build the simulation (e.g. the CBM and
(s,S) policy and adding minimal maintenance) this model
better suits the railway infrastructure context than the models
available in literature.

Future research on this topic could focus on:

More research could be done to gain insights into best
practices when it comes to data selection. The data re-
quired to utilise operational models is often very detailed and
widespread throughout an organisation or over stakeholders.
The aggregation of data sources and control of access is
an entire field of data science which would be applicable
to this research. Secondly, alterations to allow the model to
include parts which have continuous monitoring capabilities
would be helpful. Because large systems like the railway
infrastructure often involve different sets of parts. Some of
these parts in practice have their own dedicated continuous
monitoring systems which allow the owners to implement
another maintenance scheduling strategy. Making the model
more modular in such a way that the user could run these
parts through as well would be a great increase in value
for the model. Thirdly, including parts which have an (s,nQ)
inventory control strategy. Similarly to the previous point,
some part sets have a different inventory control strategy from
the one used in the R-SIMS model. By again making the
model more modular to accommodate for these strategies it
would be more widely applicable in practice. Fourth, better
methods for estimating downtime costs should be developed.
In the developed model, because of the granularity of time it is
very difficult to balance computational needs with an accurate
estimate of downtime cost. Especially in infrastructure systems
like the railways where downtime is extremely costly this
factor is important. Further work on the implementation of
the downtime costs would therefore be a great contribution to
the R-SIMS model in particular. Finally, possible expansion



of the application outside the railway management domain.
While one of the biggest contributions of this research is the
development of a combined spare inventory & maintenance
scheduling model specifically suited for railway infrastructure,
the literature review showed that in general these models
rarely include functionalities for minimal maintenance. This
functionality is particularly valuable in the railway setting but
could also be applied in specified other applications which for
instance are hard to reach with spare parts. Research in this
wider application would therefore increase the benefit industry
would be able to gain through the use of the R-SIMS model.
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A - SIMULATION MODEL

Nomenclature

xj(t) Deterioration level of part j at time-step t
Xf,j Failure threshold for deterioration of part j
fF (x) Probability Density Function for the Failure threshold
∆x Incemental deterioration
fD(x) Probability Density Function for the Incremental deterioration
Lp Condition Based Maintenance threshold for deterioration
S Order up-to level
s Reorder level
EC Expected Cost per part per time period over the simulation horizon
ECMC Cumulative Expected Cost per part per time period
n Number of parts installed
T Inspection interval
ts Lead time
Ij Marker for whether part j should be inspected in the current time-step
Fj Marker for whether part j is in the failed state in the current time-step
IPR Marker for whether part j is replaced preventively in the current time-step
ICR Marker for whether part j is replaced correctively in the current time-step
IR Marker for whether part j is replaced in the current time-step
IM Marker for whether part j is minimally repaired in the current time-step
IN Marker for whether part j requires inspection in the future
OC Marker for whether an order for spare parts is outstanding or not
IMC Counter of number of minimal maintenance actions per period
LastOT The last time a new order was placed for spare parts
NA The number of spare parts that arrive in the current time-step
SL The Inventory On Hand for spare parts
STj The time-step in which part j was installed (start of new lifetime)
Ci Cost of inspection
Cp Cost of preventive replacement
Cc Cost of corrective replacement
Cd Cost of downtime (per part per period)
Cs Cost of procurement of spare part
Ch Holding cost of spare stock (per part per period)
Cm Cost of minimal maintenance
Ni Number of inspections performed
Np Number of preventive replacements performed
Nc Number of corrective replacements performed
Nd Number of periods of downtime (cumulative)
Ns Number of spares procured
Nh Number of spares in warehouse (cumulative)
Nm Number of minimal maintenance tasks performed
j Index, j = 1,2,...,n
t Current time-step
tm Simulation horizon
MC Number of Monte Carlo iterations

TABLE VI
NOMENCLATURE FOR SIMULATION MODEL



Algorithm 1 Simulation Model for finding the objective value (estimated cost)
Require: Ci, Cp, Cc, Ch, Cs, Cd, Cm, ts, T , n, tm, Lp, S, s, MC . Data entry
Ensure: EC

1: Count := 0
2: Cost := 0
3: while Count ≤MC do
4: LastOT := 0, OC := 0, NA := 0, SL := S, t := 0 . Initialization
5: Ni := 0, Np := 0, Nc := 0, Nm := 0, Ns := 0, Nd := 0, Nh := 0
6: for j = 1 to n do
7: Fj := 0, Ij := 0, ICRj := 0, IPRj := 0, IRj := 0, IMJ := 0, STj := 0, INj := 1
8: Failure threshold := Xf,j . P [Xf,j = x] = fF (x)
9: Deterioration level := xj(t)

10: xj(t) = Xf,j · U(0, 1)
11: end for
12: while t ≤ tm do
13: if t− LastOT = ts and OC = 1 then . Spare order handling
14: NA = S − s
15: OC = 0
16: else
17: NA = 0
18: end if
19: SL := SL + NA
20: q := {1, 2, ..., n− 1, n}
21: while q 6= { } do
22: j ∈ q
23: q := q − j . Deterioration and failure
24: xj(t) := xj(t− 1) + ∆x . P [∆x = x] = fD(x)
25: if xj(t) ≥ Xf,j then
26: Fj := 1
27: else
28: Fj := 0
29: end if
30: if INj = 0 then . No-more-inspection clause
31: if Fj = 1 and SL > 0 then
32: ICRj := 1
33: else if Fj = 0 and SL > 0 then
34: IPRj := 1
35: end if
36: else
37: if Fj = 1 and SL > 0 then . Corrective replacement or minimal repair
38: ICRj := 1
39: else if Fj = 1 and SL ≤ 0 then
40: INj := 0
41: if IMj = 0 then
42: IMj := 1
43: IMC := IMC + 1
44: Fj := 0
45: while xj(t) > Xf,j do
46: Xf,j := {X | P [X = x] = fF (x)}
47: end while
48: end if
49: else
50: if STj 6= t and (t− STj) mod T ≡ 0 then . Inspection and preventive replacement
51: Ij := 1
52: if xj(t) ≥ Lp then
53: if SL > 0 then
54: IPRj := 1
55: else
56: INj := 0
57: end if
58: end if
59: else
60: Ij := 0



Algorithm 2 Simulation Model for finding the objective value (estimated cost) (continued)
61: end if
62: end if
63: end if
64: if IPRj = 1 or ICRj = 1 then . Installation of new part
65: IRj := 1
66: xj(t) := 0
67: STj := t
68: Xf,j := {X | P [X = x] = fF (x)}
69: IMj := 0
70: INj := 1
71: SL := SL− 1
72: else
73: IRj := 0
74: end if
75: if SL ≤ s and OC = 0 then . Spare ordering decision
76: OC := 1
77: LastOT := t
78: end if
79: end while
80: Ni := Ni +

∑n
j=0 Ij . Counting, resetting and advancing time

81: Np := Np +
∑n

j=0 IPRj

82: Nc := Nc +
∑n

j=0 ICRj

83: Ns := Ni + NA
84: Nd := Nd +

∑n
j=0 Fj

85: Nh := Nh + SL
86: Nm := Nm + IMC
87: for j = 1 to n do
88: Fj := 0, Ij := 0, ICRj := 0, IPRj := 0, IMC := 0, IRj := 0
89: end for
90: t := t + 1
91: end while
92: Cost = Cost +CiNi + CpNp + CcNc + ChNh + CsNs + CdNd + CmNm . Cost calculation
93: Count = Count + 1
94: ECMC := ECMC + Cost

tm·n
95: end while
96: EC = ECMC/MC;





B
Data sources

A multitude of data sources has been used during this research, most pertaining to failure data or
historic figures on demand. While some of this data is confidential, all data sources are listed with a
contact of the owner for the sake of reproducibility of this research.

Table B.1: Data sources

Data used Data source Contact

1
Failure data;
Repair times & traffic hinderance probability

Storingen Rapportage
Mark Grashoff
(mark.grashoff@prorail.nl)

2
Demand data;
Monthly demand, part costs & lead times

PSSSL componenten
Mark Grashoff
(mark.grashoff@prorail.nl)

3 Inspection intervals FMECA analyse
Boy van den Ende
(boy.vandenende@prorail.nl

4 Rail section values Baanvakwaardes
Mark Grashoff
(mark.grashoff@prorail.nl

5 Failure repair times Storingen Rapportage
Mark Grashoff
(mark.grashoff@prorail.nl)
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C
Experiment data

Sensitivity analysis

Table C.1: Experiments for sensitivity analysis

Test Ci Cp Cc Cd Cs Ch Cm ts T Lp S s n
Weibull
(scale)

Weibull
(shape)

Gamma
(shape)

Gamma
(scale)

t_m
Average costrate
(Objective)

C_i 10 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.70
C_i 20 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.87
C_i 30 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 198.11
C_i 40 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.55
C_i 50 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.78
C_i 60 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 202.43
C_i 70 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.81
C_i 80 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 202.36
C_i 90 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.23
C_i 100 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.67
C_p 55 1 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 198.56
C_p 55 133 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.74
C_p 55 267 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 198.83
C_p 55 399 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.63
C_p 55 532 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 202.93
C_p 55 665 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 198.79
C_p 55 798 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.94
C_p 55 930 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.42
C_p 55 1036 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.71
C_p 55 1196 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.24
C_c 55 598.5 1 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 202.62
C_c 55 598.5 131 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.70
C_c 55 598.5 261 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 202.14
C_c 55 598.5 389 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.35
C_c 55 598.5 521 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.29
C_c 55 598.5 650 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.44
C_c 55 598.5 780 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.94
C_c 55 598.5 910 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.62
C_c 55 598.5 1040 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.19
C_c 55 598.5 1170 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.33
C_d 55 598.5 585.5 72360 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 186.56
C_d 55 598.5 585.5 241200 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 191.19
C_d 55 598.5 585.5 410040 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 192.01
C_d 55 598.5 585.5 578880 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 196.21
C_d 55 598.5 585.5 747720 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.06
C_d 55 598.5 585.5 916560 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.34
C_d 55 598.5 585.5 1085400 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 208.30
C_d 55 598.5 585.5 1254240 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 211.28
C_d 55 598.5 585.5 1423080 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 212.08
C_d 55 598.5 585.5 1591920 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 214.28
C_s 55 598.5 585.5 832140 10 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 114.39
C_s 55 598.5 585.5 832140 11120 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 135.04
C_s 55 598.5 585.5 832140 22230 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 152.52
C_s 55 598.5 585.5 832140 33340 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 173.00
C_s 55 598.5 585.5 832140 44450 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 191.06
C_s 55 598.5 585.5 832140 55560 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 210.91
C_s 55 598.5 585.5 832140 66670 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 227.84
C_s 55 598.5 585.5 832140 77780 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 251.36
C_s 55 598.5 585.5 832140 88890 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 269.22
C_s 55 598.5 585.5 832140 100000 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 285.41
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84 C. Experiment data

Table C.2: Experiments for sensitivity analysis (continued)

Test Ci Cp Cc Cd Cs Ch Cm ts T Lp S s n
Weibull
(scale)

Weibull
(shape)

Gamma
(shape)

Gamma
(scale)

t_m
Average costrate
(Objective)

C_h 55 598.5 585.5 832140 50005 0.18 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 104.14
C_h 55 598.5 585.5 832140 50005 203.87 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 126.42
C_h 55 598.5 585.5 832140 50005 407.55 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 149.21
C_h 55 598.5 585.5 832140 50005 611.23 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 168.12
C_h 55 598.5 585.5 832140 50005 814.92 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 194.12
C_h 55 598.5 585.5 832140 50005 1018.6 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 210.06
C_h 55 598.5 585.5 832140 50005 1222.28 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 232.04
C_h 55 598.5 585.5 832140 50005 1425.98 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 255.10
C_h 55 598.5 585.5 832140 50005 1629.65 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 276.73
C_h 55 598.5 585.5 832140 50005 1833.33 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 300.32
C_m 55 598.5 585.5 832140 50005 916.76 2 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.09
C_m 55 598.5 585.5 832140 50005 916.76 267 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.99
C_m 55 598.5 585.5 832140 50005 916.76 533 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 204.33
C_m 55 598.5 585.5 832140 50005 916.76 798 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.31
C_m 55 598.5 585.5 832140 50005 916.76 1036 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 206.10
C_m 55 598.5 585.5 832140 50005 916.76 1330 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.51
C_m 55 598.5 585.5 832140 50005 916.76 1595 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.44
C_m 55 598.5 585.5 832140 50005 916.76 1860 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 204.63
C_m 55 598.5 585.5 832140 50005 916.76 2127 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.71
C_m 55 598.5 585.5 832140 50005 916.76 2392 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.45
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 1 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.19
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 2 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.36
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 3 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 198.50
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 5 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.30
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 6 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.93
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.90
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 8 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.64
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 10 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 204.46
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 11 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 212.50
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 12 37 693 6 0 30 1743.979 23.403 0.6 1.667 3395 215.22
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 3 693 6 0 30 1743.979 23.403 0.6 1.667 3395 210.01
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 11 693 6 0 30 1743.979 23.403 0.6 1.667 3395 196.36
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 18 693 6 0 30 1743.979 23.403 0.6 1.667 3395 199.36
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 26 693 6 0 30 1743.979 23.403 0.6 1.667 3395 200.49
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 34 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.41
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 41 693 6 0 30 1743.979 23.403 0.6 1.667 3395 201.57
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 49 693 6 0 30 1743.979 23.403 0.6 1.667 3395 203.14
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 57 693 6 0 30 1743.979 23.403 0.6 1.667 3395 207.23
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 64 693 6 0 30 1743.979 23.403 0.6 1.667 3395 206.12
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 72 693 6 0 30 1743.979 23.403 0.6 1.667 3395 207.02

C_i 10 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 228.95
C_i 20 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.79
C_i 30 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.16
C_i 40 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.95
C_i 50 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.49
C_i 60 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.06
C_i 70 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.28
C_i 80 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.93
C_i 90 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 233.93
C_i 100 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.94
C_p 55 1 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.64
C_p 55 133 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 228.82
C_p 55 267 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.39
C_p 55 399 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.62
C_p 55 532 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.58
C_p 55 665 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.02
C_p 55 798 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.70
C_p 55 930 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.45
C_p 55 1036 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 233.58
C_p 55 1196 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 234.77
C_c 55 598.5 1 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.75
C_c 55 598.5 131 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.47
C_c 55 598.5 261 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 233.51
C_c 55 598.5 389 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.30
C_c 55 598.5 521 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.81
C_c 55 598.5 650 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.19
C_c 55 598.5 780 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.86
C_c 55 598.5 910 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.84
C_c 55 598.5 1040 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 233.99
C_c 55 598.5 1170 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.15
C_d 55 598.5 585.5 72360 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 187.46
C_d 55 598.5 585.5 241200 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 197.80
C_d 55 598.5 585.5 410040 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 206.66
C_d 55 598.5 585.5 578880 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 217.00
C_d 55 598.5 585.5 747720 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 225.50
C_d 55 598.5 585.5 916560 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 235.18
C_d 55 598.5 585.5 1085400 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 248.01
C_d 55 598.5 585.5 1254240 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 253.52
C_d 55 598.5 585.5 1423080 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 267.15
C_d 55 598.5 585.5 1591920 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 274.47
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Table C.3: Experiments for sensitivity analysis (continued)

Test Ci Cp Cc Cd Cs Ch Cm ts T Lp S s n
Weibull
(scale)

Weibull
(shape)

Gamma
(shape)

Gamma
(scale)

t_m
Average costrate
(Objective)

C_s 55 598.5 585.5 832140 10 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 148.85
C_s 55 598.5 585.5 832140 11120 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 168.20
C_s 55 598.5 585.5 832140 22230 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 184.07
C_s 55 598.5 585.5 832140 33340 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 204.23
C_s 55 598.5 585.5 832140 44450 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 225.04
C_s 55 598.5 585.5 832140 55560 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 240.56
C_s 55 598.5 585.5 832140 66670 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 257.00
C_s 55 598.5 585.5 832140 77780 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 275.43
C_s 55 598.5 585.5 832140 88890 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 294.76
C_s 55 598.5 585.5 832140 100000 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 313.39
C_h 55 598.5 585.5 832140 50005 0.18 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 132.92
C_h 55 598.5 585.5 832140 50005 203.87 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 154.85
C_h 55 598.5 585.5 832140 50005 407.55 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 173.49
C_h 55 598.5 585.5 832140 50005 611.23 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 198.01
C_h 55 598.5 585.5 832140 50005 814.92 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 224.53
C_h 55 598.5 585.5 832140 50005 1018.6 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 244.36
C_h 55 598.5 585.5 832140 50005 1222.28 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 262.87
C_h 55 598.5 585.5 832140 50005 1425.98 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 284.32
C_h 55 598.5 585.5 832140 50005 1629.65 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 306.78
C_h 55 598.5 585.5 832140 50005 1833.33 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 330.58
C_m 55 598.5 585.5 832140 50005 916.76 2 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.63
C_m 55 598.5 585.5 832140 50005 916.76 267 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.48
C_m 55 598.5 585.5 832140 50005 916.76 533 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 227.86
C_m 55 598.5 585.5 832140 50005 916.76 798 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.87
C_m 55 598.5 585.5 832140 50005 916.76 1036 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.80
C_m 55 598.5 585.5 832140 50005 916.76 1330 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.80
C_m 55 598.5 585.5 832140 50005 916.76 1595 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.94
C_m 55 598.5 585.5 832140 50005 916.76 1860 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.27
C_m 55 598.5 585.5 832140 50005 916.76 2127 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.53
C_m 55 598.5 585.5 832140 50005 916.76 2392 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.29
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 1 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 235.08
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 2 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.13
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 3 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 232.07
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 5 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 228.79
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 6 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 229.18
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 231.69
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 8 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 230.54
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 10 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 236.48
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 11 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 234.97
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 12 37 693 6 0 30 871.984 23.406 0.6 1.667 1690 235.68
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 3 693 6 0 30 871.984 23.406 0.6 1.667 1690 211.09
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 11 693 6 0 30 871.984 23.406 0.6 1.667 1690 206.31
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 18 693 6 0 30 871.984 23.406 0.6 1.667 1690 209.70
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 26 693 6 0 30 871.984 23.406 0.6 1.667 1690 220.45
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 34 693 6 0 30 871.984 23.406 0.6 1.667 1690 228.86
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 41 693 6 0 30 871.984 23.406 0.6 1.667 1690 237.13
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 49 693 6 0 30 871.984 23.406 0.6 1.667 1690 245.81
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 57 693 6 0 30 871.984 23.406 0.6 1.667 1690 257.18
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 64 693 6 0 30 871.984 23.406 0.6 1.667 1690 265.79
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 72 693 6 0 30 871.984 23.406 0.6 1.667 1690 282.53

C_i 10 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2494.46
C_i 20 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2489.85
C_i 30 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2483.84
C_i 40 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2491.49
C_i 50 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2501.69
C_i 60 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2493.12
C_i 70 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2499.07
C_i 80 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2491.42
C_i 90 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2489.75
C_i 100 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2502.51
C_p 55 1 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2483.59
C_p 55 133 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2483.57
C_p 55 267 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2497.22
C_p 55 399 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2491.51
C_p 55 532 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2492.00
C_p 55 665 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2497.86
C_p 55 798 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2478.30
C_p 55 930 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2483.21
C_p 55 1036 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2485.86
C_p 55 1196 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2493.51
C_c 55 598.5 1 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2491.21
C_c 55 598.5 131 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2510.91
C_c 55 598.5 261 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2488.39
C_c 55 598.5 389 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2484.50
C_c 55 598.5 521 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2490.28
C_c 55 598.5 650 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2485.66
C_c 55 598.5 780 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2502.61
C_c 55 598.5 910 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2480.93
C_c 55 598.5 1040 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2505.85
C_c 55 598.5 1170 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2494.27
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Table C.4: Experiments for sensitivity analysis (continued)

Test Ci Cp Cc Cd Cs Ch Cm ts T Lp S s n
Weibull
(scale)

Weibull
(shape)

Gamma
(shape)

Gamma
(scale)

t_m
Average costrate
(Objective)

C_d 55 598.5 585.5 72360 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 426.89
C_d 55 598.5 585.5 241200 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 889.75
C_d 55 598.5 585.5 410040 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 1341.45
C_d 55 598.5 585.5 578880 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 1808.24
C_d 55 598.5 585.5 747720 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2252.80
C_d 55 598.5 585.5 916560 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2718.87
C_d 55 598.5 585.5 1085400 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 3190.74
C_d 55 598.5 585.5 1254240 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 3633.97
C_d 55 598.5 585.5 1423080 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 4117.53
C_d 55 598.5 585.5 1591920 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 4568.09
C_s 55 598.5 585.5 832140 10 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2364.45
C_s 55 598.5 585.5 832140 11120 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2380.01
C_s 55 598.5 585.5 832140 22230 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2418.00
C_s 55 598.5 585.5 832140 33340 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2445.86
C_s 55 598.5 585.5 832140 44450 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2489.79
C_s 55 598.5 585.5 832140 55560 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2515.46
C_s 55 598.5 585.5 832140 66670 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2550.56
C_s 55 598.5 585.5 832140 77780 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2563.57
C_s 55 598.5 585.5 832140 88890 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2598.74
C_s 55 598.5 585.5 832140 100000 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2635.99
C_h 55 598.5 585.5 832140 50005 0.18 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2404.92
C_h 55 598.5 585.5 832140 50005 203.87 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2417.05
C_h 55 598.5 585.5 832140 50005 407.55 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2449.42
C_h 55 598.5 585.5 832140 50005 611.23 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2468.61
C_h 55 598.5 585.5 832140 50005 814.92 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2484.89
C_h 55 598.5 585.5 832140 50005 1018.6 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2503.46
C_h 55 598.5 585.5 832140 50005 1222.28 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2525.69
C_h 55 598.5 585.5 832140 50005 1425.98 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2542.01
C_h 55 598.5 585.5 832140 50005 1629.65 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2563.28
C_h 55 598.5 585.5 832140 50005 1833.33 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2581.53
C_m 55 598.5 585.5 832140 50005 916.76 2 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2499.26
C_m 55 598.5 585.5 832140 50005 916.76 267 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2486.80
C_m 55 598.5 585.5 832140 50005 916.76 533 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2483.53
C_m 55 598.5 585.5 832140 50005 916.76 798 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2491.97
C_m 55 598.5 585.5 832140 50005 916.76 1036 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2496.55
C_m 55 598.5 585.5 832140 50005 916.76 1330 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2492.35
C_m 55 598.5 585.5 832140 50005 916.76 1595 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2492.52
C_m 55 598.5 585.5 832140 50005 916.76 1860 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2496.80
C_m 55 598.5 585.5 832140 50005 916.76 2127 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2496.87
C_m 55 598.5 585.5 832140 50005 916.76 2392 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2491.38
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 1 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2575.45
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 2 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2545.70
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 3 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2520.01
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 5 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2498.18
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 6 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2484.95
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 7 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2484.52
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 8 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2516.26
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 10 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2591.98
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 11 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2633.68
t_s 55 598.5 585.5 832140 50005 916.76 1196.5 12 37 693 6 0 30 435.996 23.409 0.6 1.667 849 2725.93
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 3 693 6 0 30 435.996 23.409 0.6 1.667 849 2511.99
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 11 693 6 0 30 435.996 23.409 0.6 1.667 849 2498.66
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 18 693 6 0 30 435.996 23.409 0.6 1.667 849 2495.62
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 26 693 6 0 30 435.996 23.409 0.6 1.667 849 2493.16
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 34 693 6 0 30 435.996 23.409 0.6 1.667 849 2487.37
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 41 693 6 0 30 435.996 23.409 0.6 1.667 849 2496.95
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 49 693 6 0 30 435.996 23.409 0.6 1.667 849 2488.56
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 57 693 6 0 30 435.996 23.409 0.6 1.667 849 2492.60
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 64 693 6 0 30 435.996 23.409 0.6 1.667 849 2494.72
T 55 598.5 585.5 832140 50005 916.76 1196.5 7 72 693 6 0 30 435.996 23.409 0.6 1.667 849 2482.82
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Table C.5: Algorithm choice experiments

Algorithm Ci Cp Cc Cd Cs Ch Cm ts T Weibull Gamma tm n Decision variables Objective
(scale) (shape) (scale) (shape) S s Lp

Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 4 2 670 39.578
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 9 1 410 47.095
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 5 3 646 43.334
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 12 1 409 54.571
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 8 1 477 41.923
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 4 2 590 41.839
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 15 0 596 46.523
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 9 2 676 49.922
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 1 30 134 53.517
Randomsearch 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 5 4 527 52.856

HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 1 596 36.092
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 5 1 674 41.524
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 5 0 656 32.963
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 12 0 614 41.689
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 9 0 652 38.467
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 5 0 594 35.847
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 4 0 632 38.623
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 1 644 38.644
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 2 648 39.730
HyperOpt 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 3 1 617 38.418

IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 0 434 50.161
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 15 0 323 51.634
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 30 0 415 58.633
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 10 2 186 72.487
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 3 623 44.123
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 8 0 627 33.746
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 7 4 659 51.348
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 1 480 38.680
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 13 0 389 53.921
IDONE 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 0 697 32.962

MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 0 624 32.257
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 7 0 350 43.395
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 7 0 488 36.405
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 8 0 492 37.880
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 4 0 659 31.261
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 15 0 348 49.835
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 6 1 602 34.815
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 7 0 669 32.666
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 10 0 514 39.780
MVRSM 50 224 140 832140 5500 100.83 448 6 12 871.984 23.406 1.667 0.6 1690 30 4 0 690 35.903
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Derivation of Expected Improvement

optimisation formula

This appendix details the derivation of the Expected Improvement formulas which is used in the
Tree-structured Parzen Estimator algorithm described by Bergstra, Bardenet, Bengio, and Kégl
(2011).

As stated in chapter 4, by splitting the data available to the TPE algorithm into two sections by
choosing a desired performance for the objective value y∗, the probability of the decision variables
having a certain value given a value of the objective can be formulated (see Eq. (4.2)):

p(x|y) =
{

l (x) if y < y∗

g (x) if y ≥ y∗ (D.1)

This desired performance y∗ can be chosen by determining the ratio of data which the user would
like to fall above or below this desired performance. In other words, by choosing γ where

γ= p(y < y∗) (D.2)

By construction, using Eq.(D.1) the probabilities for the decision variables x can be described by

p(x) =
∫

p(x|y)p(y)d y = γl (x)+ (1−γ)g (x) (D.3)

Then Eq.(4.3) can be re-written using Eq.(D.3) as follows:

E Iy∗(x) =
∫ y∗

−∞
(y∗− y)

p(x|y)p(y)

p(x)
d y

= 1

p(x)

∫ y∗

−∞
(y∗− y)p(x|y)p(y)d y

= 1

γl (x)+ (1−γ)g (x)

∫ y∗

−∞
(y∗− y)p(x|y)p(y)d y

(D.4)

Then because the limits of the integral in Eq.(D.4) do not reach beyond y∗ the expression p(x|y)
within the integral only takes the value of the case where y < y∗ (see Eq.(D.1) which leads to:
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E Iy∗(x) = 1

γl (x)+ (1−γ)g (x)

∫ y∗

−∞
(y∗− y)l (x)p(y)d y

= l (x)

γl (x)+ (1−γ)g (x)

∫ y∗

−∞
(y∗− y)p(y)d y

= l (x)

γl (x)+ (1−γ)g (x)

(∫ y∗

−∞
y∗p(y)d y −

∫ y∗

−∞
y p(y)d y

)

= l (x)

γl (x)+ (1−γ)g (x)

(
y∗

∫ y∗

−∞
p(y)d y −

∫ y∗

−∞
y p(y)d y

)
(D.5)

Since the definition in Eq.(D.2) γ= p(y < y∗) = ∫ y∗
−∞ p(y)d y :

E Iy∗(x) = l (x)

γl (x)+ (1−γ)g (x)

(
γy∗−

∫ y∗

−∞
y p(y)d y

)

= γy∗l (x)− l (x)
∫ y∗
−∞ y p(y)d y

γl (x)+ (1−γ)g (x)

= γy∗−∫ y∗
−∞ y p(y)d y

γ+ (1−γ) g (x)
l (x)

=
(
γy∗−

∫ y∗

−∞
y p(y)d y

)(
γ+ (1−γ)

g (x)

l (x)

)−1

(D.6)

Because the values of y∗ and therebyγ are chosen by the user and will not change during an iteration
of the algorithm, the algorithm can only influence this expression by changing the values it chooses
for the decision variables which in turn influence g (x) and l (x). This means that:

E Iy∗(x) ∝
(
γ+ (1−γ)

g (x)

l (x)

)−1

(D.7)

And in order to optimise (max) E Iy∗(x) the algorithm will aim to choose decision variable values
which have a higher likelihood to fall within l (x) than g (x).
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