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1. Introduction

In this article we study the asymptotic behavior of solutions to the abstract Cauchy 
problem

u′(t) + Au(t) = 0, t ≥ 0,

u(0) = x.
(1.1)

Here −A is the generator of a C0-semigroup (T (t))t≥0 on a Banach space X and x ∈ X. 
The unique solution of (1.1) with initial data x is given by u(t) = T (t)x for t ≥ 0. 
One of the key difficulties in the asymptotic theory for solutions of (1.1) is that the 
classical Lyapunov stability criterion is in general not valid if X is infinite dimensional. 
However, asymptotic behavior can be deduced from the associated resolvent operators 
R(λ, A) = (λ −A)−1 for λ ∈ ρ(A). For example, on a Hilbert space X the Gearhart–Prüss 
theorem [3, Theorem 5.2.1] states that (T (t))t≥0 is exponentially stable if and only if 
σ(A) ⊂ C+ and supRe(λ)<0 ‖R(λ, A)‖ < ∞. A uniform bound for the resolvent is not 
sufficient to ensure exponential stability on general Banach spaces, but it was shown in 
[26,37] (see also [16,32,36,65]) that exponential stability can be characterized in terms of 
Lp Fourier multiplier properties of the resolvent. Outside of Hilbert spaces this multiplier 
condition is a strictly stronger assumption than uniform boundedness, and in applications 
it can be difficult to verify. On the other hand, cf. [47,49,64,65], uniform bounds for 
the resolvent do imply exponential stability for orbits in fractional domains, with the 
fractional domain parameter depending on the geometry of the underlying space. At the 
moment it is not fully understood how the characterization of exponential stability using 
Fourier multipliers is related to such concrete decay results.

In a separate development, over the past decade much attention has been paid to 
polynomial decay of semigroup orbits. The work of Lebeau [39,40] and Burq [13] on 
energy decay for damped wave equations raised the question of what the precise relation 
is between growth rates for the resolvent and decay rates for the semigroup. More pre-
cisely, if one has σ(A) ⊂ C+ in (1.1) but ‖R(iξ, A)‖ → ∞ as |ξ| → ∞, then (T (t))t≥0 is 
not exponentially stable and one typically encounters other asymptotic behavior. Since 
a uniform rate of decay for all solutions to (1.1) implies exponential stability of the semi-
group, one can expect uniform asymptotic behavior only for orbits in suitable subspaces 
such as fractional domains, and in general the smoothness parameter of the fractional 
domain influences the decay behavior. In [4] Bátkai, Engel, Prüss and Schnaubelt proved 
that for uniformly bounded semigroups a polynomial growth rate of the resolvent implies 
a specific polynomial decay rate for classical solutions of (1.1) and vice versa, and they 
showed that this correspondence is optimal up to an arbitrarily small polynomial loss. In 
[8] Batty and Duyckaerts extended this correspondence to the setting of arbitrary resol-
vent growth and they reduced the loss to a logarithmic scale. Then Borichev and Tomilov 
proved in [12] that this logarithmic loss is sharp on general Banach spaces, but that it can 
be removed on Hilbert spaces in the case of polynomial resolvent growth. In particular, 
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on Hilbert spaces this yields a characterization of polynomial stability in terms of the 
growth of the resolvent. This result has been applied extensively in the study of partial 
differential equations (see e.g. [1,2,9,14,24,38,42,57] and references therein) and has been 
extended in [7,15,43,54,60,62,63] to finer scales of resolvent growth and semigroup decay.

Although much work has gone into determining the relation between resolvent growth 
and polynomial rates of decay, it is not clear how such asymptotic behavior relates to 
the Fourier analytic properties of the resolvent which characterize exponential stability. 
Furthermore, the currently available literature on polynomial decay deals almost ex-
clusively with uniformly bounded semigroups. To the best of our knowledge, the only 
previously known result concerning polynomial decay for general semigroups is [4, Propo-
sition 3.4]. There are many natural classes of examples where the generator has spectral 
properties as above but the semigroup is not uniformly bounded, or where it is unknown 
whether the semigroup is bounded. Typical examples of this phenomenon can be found 
in Section 4.7 and include semigroups whose generator is an operator matrix or a multi-
plication operator on a Sobolev space. In turn, such operators can be found in disguise 
in concrete partial differential equations. One example is the standard wave equation 
with periodic boundary conditions; here uniform boundedness fails. Other examples can 
be found in [50] for certain classes of perturbed wave equations and in [61] for delay 
equations. For infinite systems of equations the uniform boundedness condition leads to 
additional assumptions on the coefficients in [51].

In this article we deal with the problems outlined above in three ways. First, we 
characterize polynomial stability on general Banach spaces in terms of Fourier multiplier 
properties of powers of the resolvent, in Theorem 4.6. In doing so we extend the Fourier 
analytic characterization of exponential stability to this more refined setting. Then, using 
the theory of operator-valued (Lp, Lq) Fourier multipliers which was developed in [55,56]
with applications to stability theory in mind, we derive concrete polynomial decay rates 
from this characterization. These results involve only growth bounds for the resolvent 
and are new even on Hilbert spaces. In particular, the following theorem can be found 
in the main text as Corollary 4.11.

Theorem 1.1. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Hilbert space 
X such that σ(A) ⊂ C+ and ‖R(λ, A)‖ ≤ C(1 + |λ|)β for some β > 0, C ≥ 0 and all 
λ ∈ C with Re(λ) ≤ 0. Then for each τ ≥ β there exists a Cτ ≥ 0 such that

‖T (t)A−τ‖ ≤ Cτ t
1−τ/β (t ∈ [1,∞)). (1.2)

Note that we do not assume that the semigroup is uniformly bounded. In fact, we show 
that one can derive polynomial decay behavior for initial values in suitable fractional 
domains given only spectral properties of the generator. In particular, by setting τ = β

in Theorem 1.1 one obtains uniform boundedness of sufficiently smooth solutions. For 
uniformly bounded semigroups the parameter 1 − τ/β in (1.2) can be replaced by −τ/β, 
as was shown in [12], but in Example 4.20 we prove that 1 − τ/β is optimal for general 
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semigroups if τ = β. Our main theorems allow for A to have a singularity at zero, or even 
singularities at both zero and infinity. We also obtain versions of Theorem 1.1 on other 
Banach spaces; the decay rate in (1.2) then depends on the geometry of the underlying 
space.

Finally, as a direct corollary of our results on polynomial stability we recover in a 
unified manner various results on exponential stability from [26,37,47,49,64,65]. We also 
obtain a new stability result for positive semigroups, Theorem 5.8.

To prove our main results we rely on the theory of operator-valued Fourier multipliers 
from Lp(R; X) to Lq(R; Y ), for X and Y Banach spaces. A Fourier multiplier characteri-
zation of exponential stability for general p ∈ [1, ∞) and q ∈ [p, ∞] was known from [37], 
but so far only the case where p = q has been used (see [5,25,26,36,37,65]). Although in 
this setting very powerful multiplier theorems are available, see for example Weis’ version 
of the Mikhlin multiplier theorem in [66] and [17,29,33], the assumptions of these theo-
rems are in general too restrictive for applications to stability theory. Indeed, multiplier 
theorems on Lp(R; X) typically require both a geometric assumption on X, namely the 
UMD condition which excludes spaces of interest such as X = L1, as well as smoothness 
of the multiplier and comparatively fast decay at infinity of its derivative. The latter 
assumption in particular is not satisfied in most applications to stability theory.

In this article we argue that for the study of asymptotic behavior it is more natural to 
consider general p ∈ [1, ∞) and q ∈ [p, ∞]. It was observed in [55,56] that one can derive 
boundedness of Fourier multipliers from Lp(R; X) to Lq(R; Y ) for p < q under different 
geometric assumptions on X and Y than in the case where p = q, and assuming decay of 
the multiplier at infinity but no smoothness. In fact, the parameters p and q depend on 
the geometry of X, and the amount of decay which is required at infinity is proportional 
to 1p−

1
q . Moreover, in Section 3.2 we prove that growth of the resolvent on X corresponds 

to uniform boundedness, and in fact even decay, of the resolvent from suitable fractional 
domain and range spaces to X. Then one can determine for which fractional domain 
and range parameters the conditions of the (Lp, Lq) multiplier theorems are satisfied 
for (powers of) the resolvent, and the Fourier multiplier characterizations of stability 
in Theorems 4.6 and 5.3 yield the corresponding asymptotic behavior. We emphasize 
that, although we use Fourier multiplier techniques for the proofs, our main theorems 
on concrete decay rates involve only growth bounds on the resolvent.

This article is organized as follows. In Section 2 we present some basics on Banach 
space geometry, Fourier multipliers and sectorial operators. In Section 3 we deduce mul-
tiplier properties of the resolvent and we prove Proposition 3.4 and Corollary 3.5. These 
are fundamental in later sections for relating resolvent growth on X to boundedness and 
decay from fractional domain and range spaces to X. In Section 4 we study polynomial 
decay of semigroups. We characterize polynomial stability using Fourier multipliers, and 
from this characterization we deduce concrete polynomial decay rates which depend on 
the geometry of the underlying space. In Section 5 we derive from these results various 
corollaries on exponential decay. We also prove a characterization of exponential stabil-
ity using multipliers on Besov spaces, which in turn is used to obtain a new stability 
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result for positive semigroups. An appendix contains estimates for contour integrals and 
exponential functions.

1.1. Notation

The set of natural numbers is N = {1, 2, . . .}, and N0 := N ∪ {0}. We denote by 
C+ = {λ ∈ C | Re(λ) > 0} and C− = −C+ the open complex right and left half-planes.

Nonzero Banach spaces over the complex numbers are denoted by X and Y . The 
space of bounded linear operators from X to Y is L(X, Y ), and L(X) := L(X, X). The 
identity operator on X is denoted by IX , and we usually write λ for λIX when λ ∈ C. 
The domain of a closed operator A on X is D(A), a Banach space with the norm

‖x‖D(A) := ‖x‖X + ‖Ax‖X (x ∈ D(A)).

For an injective closed operator A we identify the range ran(A) of A with the Banach 
space D(A−1). The spectrum of A is σ(A) and the resolvent set is ρ(A) = C \ σ(A). We 
write R(λ, A) = (λ −A)−1 for the resolvent operator of A at λ ∈ ρ(A).

For p ∈ [1, ∞] and Ω a measure space, Lp(Ω; X) is the Bochner space of equiva-
lence classes of strongly measurable, p-integrable, X-valued functions on Ω. The Hölder 
conjugate of p ∈ [1, ∞] is denoted by p′ and is defined by 1 = 1

p + 1
p′ .

The class of X-valued Schwartz functions on R is denoted by S(R; X), and the space 
of X-valued tempered distributions by S ′(R; X). The Fourier transform of f ∈ S ′(R; X)
is denoted by Ff or f̂ . If f ∈ L1(R; X) then

Ff(ξ) =
∫
R

e−iξtf(t) dt (ξ ∈ R).

We use the convention that 1
0 = ∞ and 0

0 = ∞.
For sets S and Z we occasionally denote a function f : S → Z of a variable s simply 

by f = f(s). We use the notation f(s) � g(s) for functions f, g : S → R to indicate that 
f(s) ≤ Cg(s) for all s ∈ S and a constant C ≥ 0 independent of s, and similarly for 
f(s) � g(s). We write f(s) � g(s) if g(s) � f(s) � g(s) holds.

2. Preliminaries

2.1. Banach space geometry

Here we collect some background on Banach space geometry which is used for our 
results on non-Hilbertian Banach spaces.

A Banach space X has Fourier type p ∈ [1, 2] if the Fourier transform F is bounded 
from Lp(R; X) to Lp′(R; X). We then set Fp,X := ‖F‖L(Lp(R;X),Lp′ (R;X)). To make our 
multiplier theorems more transparent, we say that X has Fourier cotype q ∈ [2, ∞] if X
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has Fourier type q′. Each Banach space has Fourier type 1, and X has Fourier type 2 if 
and only if X is isomorphic to a Hilbert space. For r ∈ [1, ∞] and Ω a measure space, 
Lr(Ω) has Fourier type min(r, r′). For more on Fourier type see [29,52].

A (real) Rademacher variable is a random variable r : Ω → {−1, 1} on a probability 
space (Ω, P) such that P(r = −1) = P(r = 1) = 1

2 . A Rademacher sequence is a sequence 
(rk)k≥1 of independent Rademacher variables on some probability space.

Let (rk)k≥1 be a Rademacher sequence on a probability space (Ω, P). A Banach space 
X has type p ∈ [1, 2] if there exists a constant C ≥ 0 such that for all n ∈ N and all 
x1, . . . , xn ∈ X one has

(
E

∥∥∥ n∑
k=1

rkxk

∥∥∥2)1/2
≤ C

( n∑
k=1

‖xk‖p
)1/p

.

Also, X has cotype q ∈ [2, ∞] if there exists a constant C ≥ 0 such that for all n ∈ N

and all x1, . . . , xn ∈ X one has

( n∑
k=1

‖xk‖q
)1/q

≤ C
(
E

∥∥∥ n∑
k=1

rkxk

∥∥∥2)1/2
,

with the obvious modification for q = ∞. We say that X has nontrivial type if X has 
type p ∈ (1, 2], and finite cotype if X has cotype q ∈ [2, ∞). Each Banach space has 
type p = 1 and cotype q = ∞, and X has type p = 2 and cotype q = 2 if and only if 
X is isomorphic to a Hilbert space, by Kwapień’s theorem [34]. For r ∈ [1, ∞) and Ω
a measure space, Lr(Ω) has type min(r, 2) and cotype max(r, 2). For more on type and 
cotype see [18,30].

Let X be a Banach lattice and p, q ∈ [1, ∞]. We say that X is p-convex if there exists 
a constant C ≥ 0 such that for all n ∈ N and all x1, . . . , xn ∈ X one has

∥∥∥( n∑
k=1

|xk|p
)1/p∥∥∥

X
≤ C

( n∑
k=1

‖xk‖pX
)1/p

,

with the obvious modification for p = ∞. We say that X is q-concave if there exists a 
constant C ≥ 0 such that for all n ∈ N and all x1, . . . , xn ∈ X one has

( n∑
k=1

‖xk‖qX
)1/q

≤ C
∥∥∥( n∑

k=1

|xk|q
)1/q∥∥∥

X
,

with the obvious modification for q = ∞. Each Banach lattice X is 1-convex and 
∞-concave. For r ∈ [1, ∞] and Ω a measure space, Lr(Ω) is r-convex and r-concave. 
For more on p-convexity and q-concavity we refer the reader to [21,41].

Let X and Y be Banach spaces and T ⊆ L(X, Y ). We say that T is R-bounded if 
there exists a constant C ≥ 0 such that for all n ∈ N, T1, . . . , Tn ∈ T and x1, . . . , xn ∈ X

one has
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(
E

∥∥∥ n∑
k=1

rkTkxk

∥∥∥2

Y

)1/2
≤ C

(
E

∥∥∥ n∑
k=1

rkxk

∥∥∥2

X

)1/2
. (2.1)

The smallest such C is the R-bound of T and is denoted by R(T ). If we want to specify 
the underlying spaces X and Y then we write RX,Y (T ) for the R-bound of T , and we 
write RX(T ) = RX,Y (T ) if X = Y . Every R-bounded collection is uniformly bounded 
with supremum bound less than or equal to its R-bound, and the converse holds if and 
only if X has cotype 2 and Y has type 2. For λ ∈ C and an R-bounded collection T ⊆
L(X, Y ), the closed absolutely convex hull aco(λT ) ⊆ L(X, Y ) of λT = {λT | T ∈ T } is 
R-bounded, and

RX,Y (aco(λT )) ≤ 2|λ|RX,Y (T ). (2.2)

In particular, L1-averages of R-bounded collections are again R-bounded, a fact which 
will be used frequently. For more on R-boundedness see [30,33,48].

The following lemma is used in the proof of Corollary 5.5. It can also be deduced from 
a corresponding statement in [31, Theorem 5.1] for the Besov space B1/r

r,1 (R; L(X, Y )). 
Here we give a more direct proof. For r ∈ [1, ∞] and E a Banach space we denote by 
W 1,r(R; E) the Sobolev space of weakly differentiable f : R → E such that f, f ′ ∈
Lr(R; E), with ‖f‖W 1,r(E) := ‖f‖Lr(R;E) + ‖f ′‖Lr(R;E).

Lemma 2.1. Let X be a Banach space with cotype q ∈ [2, ∞) and Y a Banach space with 
type p ∈ [1, 2], and let r ∈ [1, ∞] be such that 1

r = 1
p − 1

q . Then there exists a constant 
C ∈ [0, ∞) such that for all f ∈ W 1,r(R; L(X, Y )) the set {f(t) | t ∈ R} ⊆ L(X, Y ) is 
R-bounded, with

R({f(t) | t ∈ R}) ≤ C‖f‖W 1,r(R;L(X,Y )).

Proof. Let f ∈ W 1,r(R; L(X, Y )) and for j ∈ Z set Ij := [j, j + 1) and Tj := {f(t) | t ∈
Ij}. Then [33, Example 2.18] and Hölder’s inequality imply

R(Tj) � ‖f‖W 1,1(Ij ;L(X,Y )) � ‖f‖W 1,r(Ij ;L(X,Y ))

for all j ∈ Z. Now [20, Theorem 3.1] (see also [30, Proposition 9.1.10]) shows that 
{f(t) | t ∈ R} =

⋃
j∈Z

Tj is R-bounded, with

R({f(t) | t ∈ R}) � ‖(R
(
Tj)

)
j
‖�r(Z) � ‖

(
‖f‖W 1,r(Ij ;L(X,Y ))

)
j
‖�r(Z)

� ‖f‖W 1,r(R;L(X,Y )). �
By replacing the Rademacher random variables in (2.1) by Gaussian variables, one 

obtains the definition of a γ-bounded collection T ⊆ L(X, Y ). Each R-bounded collec-
tion is γ-bounded, and the converse holds if and only if X has finite cotype (see [35, 
Theorem 1.1]). We choose to work with R-boundedness in this article, both because the 
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notion of R-boundedness is more established and because those stability theorems in this 
article which use R-boundedness are only of interest on spaces with finite cotype.

2.2. Fourier multiplier theorems

To properly define Fourier multipliers for symbols with a singularity at zero, we briefly 
introduce the class of vector-valued homogeneous distributions. For more on these dis-
tributions see [56]. For X a Banach space let

Ṡ(R;X) := {f ∈ S(R;X) | f̂ (k)(0) = 0 for all k ∈ N0},

endowed with the subspace topology, and let Ṡ ′(R; X) be the space of continuous linear 
mappings from Ṡ(R; C) to X. Then Ṡ(R; X) is dense in Lp(R; X) for all p ∈ [1, ∞), and 
Lp(R; X) can be naturally identified with a subspace of Ṡ ′(R; X) for all p ∈ [1, ∞].

Let X and Y be Banach spaces. A function m : R \ {0} → L(X, Y ) is X-strongly 
measurable if ξ �→ m(ξ)x is a strongly measurable Y -valued map for each x ∈ X. We say 
that m is of moderate growth if there exist α ∈ [0, ∞) and g ∈ L1(R) such that

|ξ|α(1 + |ξ|)−2α‖m(ξ)‖L(X,Y ) ≤ g(ξ) (ξ ∈ R).

Let m : R \{0} → L(X, Y ) be an X-strongly measurable map of moderate growth. Then 
Tm : Ṡ(R; X) → Ṡ ′(R; Y ),

Tm(f) := F−1(m · f̂ ) (f ∈ Ṡ(R;X)), (2.3)

is the Fourier multiplier operator associated with m. One calls m the symbol of Tm, and 
we identify symbols which are equal almost everywhere. If ‖m(·)‖L(X,Y ) ∈ L1

loc(R) then 
(2.3) extends to all f ∈ S(R; X) and defines an operator Tm : S(R; X) → S ′(R; X).

For p ∈ [1, ∞) and q ∈ [1, ∞] we let Mp,q(R; L(X, Y )) be the set of all 
X-strongly measurable m : R \ {0} → L(X, Y ) of moderate growth such that 
Tm ∈ L(Lp(R; X), Lq(R; Y )), and

‖m‖Mp,q(R;L(X,Y )) := ‖Tm‖L(Lp(R;X),Lq(R;Y )).

We write ‖ · ‖Mp,q
= ‖ · ‖Mp,q(R;L(X,Y )) when the spaces X and Y are clear from the 

context.
We now recall several (Lp, Lq) Fourier multiplier results from our earlier work. The 

first is [55, Proposition 3.9].

Proposition 2.2. Let X be a Banach space with Fourier type p ∈ [1, 2] and Y a Banach 
space with Fourier cotype q ∈ [2, ∞], and let r ∈ [1, ∞] be such that 1

r = 1
p − 1

q . Let 
m : R \{0} → L(X, Y ) be an X-strongly measurable map such that ‖m(·)‖L(X,Y ) ∈ Lr(R). 
Then m ∈ Mp,q(R; L(X, Y )) and
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‖m‖Mp,q(R;L(X,Y )) ≤
1
2πFp,XFq′,Y

∥∥‖m(·)‖L(X,Y )
∥∥
Lr(R) . (2.4)

Our next result follows from [56, Theorem 4.6 and Remark 4.8] and [55, Theorem 3.21 
and Remark 3.22].

Proposition 2.3. Let X be a Banach space with type p ∈ [1, 2] and Y a Banach space 
with cotype q ∈ [2, ∞], and let r ∈ [1, ∞] be such that 1

r > 1
p − 1

q . Then there exists a 
constant C ∈ [0, ∞) such that the following holds. Let m : R → L(X, Y ) be an X-strongly 
measurable map such that {(1 + |ξ|)rm(ξ) | ξ ∈ R} ⊆ L(X, Y ) is R-bounded. Then 
m ∈ Mp,q(R; L(X, Y )) and

‖m‖Mp,q(R;L(X,Y )) ≤ CRX,Y ({(1 + |ξ|)rm(ξ) | ξ ∈ R}). (2.5)

Moreover, if X is a complemented subspace of a p-convex Banach lattice with finite 
cotype and if Y is a Banach space continuously embedded in a q-concave Banach lattice 
for q ∈ [1, ∞), then (2.5) also holds if 1

r = 1
p − 1

q .

For s ∈ R and p ∈ [1, ∞], the inhomogeneous Bessel potential space Hs
p(R; X) consists 

of all f ∈ S ′(R; X) such that Tms
(f) ∈ Lp(R; X), where ms(ξ) := (1 + |ξ|2)s/2 for ξ ∈ R. 

It is a Banach space endowed with the norm

‖f‖Hs
p(R;X) := ‖Tms

(f)‖Lp(Rd;X) (f ∈ Hs
p(R;X)).

Moreover, Ṡ(Rd; X) ⊆ Hs
p(Rd; X) is densely embedded for p < ∞.

The following proposition is proved in the same way as the corresponding homogeneous 
version in [55, Theorem 3.24]. We note that one can often avoid condition (2) by using 
approximation arguments.

Proposition 2.4. Let p ∈ [1, ∞) and q ∈ [p, ∞). Let X be a p-convex Banach lattice with 
finite cotype and let Y be a q-concave Banach lattice, and let r ∈ (1, ∞] be such that 
1
r = 1

p − 1
q . Then there exists a constant C ∈ [0, ∞) such that the following holds. Let 

m : R → L(X, Y ) be such that there exists a K : R → L(X, Y ) satisfying the following 
conditions:

(1) K(t) ∈ L(X, Y ) is a positive operator for all t ∈ R;
(2) K(·)x ∈ L1(R; Y ) for all x ∈ X;
(3) F(K(·)x)(ξ) = m(ξ)x for all x ∈ X and ξ ∈ R.

Then Tm : H1/r
p (R; X) → Lq(R; Y ) is bounded and

‖Tm‖L(H1/r
p (R;X),Lq(R;Y )) ≤ C‖m(0)‖L(X,Y ) ≤ C sup

ξ∈R

‖m(ξ)‖L(X,Y ).
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2.3. Sectorial operators

For a C0-semigroup (T (t))t≥0 ⊆ L(X) on a Banach space X we let

ω0(T ) := inf{ω ∈ R | ∃M ∈ [0,∞) : ‖T (t)‖L(X) ≤ Meωt for all t ∈ [0,∞)}.

For ϕ ∈ (0, π) set

Sϕ := {z ∈ C \ {0} | |arg(z)| < ϕ},

and let S0 := (0, ∞). Recall that an operator A on a Banach space X is sectorial of angle
ϕ ∈ [0, π) if σ(A) ⊆ Sϕ and if sup{‖λR(λ, A)‖L(X) | λ ∈ C \ Sθ} < ∞ for all θ ∈ (ϕ, π). 
Then we write A ∈ Sect(ϕ, X) and we let ωA := min{ϕ ∈ [0, π) | A ∈ Sect(ϕ, X)}. An 
operator A such that

M(A) := sup{‖λ(λ + A)−1‖L(X) | λ ∈ (0,∞)} < ∞ (2.6)

is sectorial of angle ϕ = π − arcsin(1/M(A)).
For a sectorial operator A on a Banach space X one has N(A) ∩Ran(A) = {0} and, if 

X is reflexive, X = N(A) ⊕Ran(A). If −A generates a C0-semigroup (T (t))t≥0 ⊆ L(X)
then T (t)x = x for all x ∈ N(A) and t ≥ 0. Moreover, the restriction of (T (t))t≥0
to Ran(A) is generated by the part of A in Ran(A), which is injective. Hence for the 
purposes of stability theory it is natural to assume that A is injective, and we will do so 
frequently.

For the definition and various properties of fractional powers of sectorial operators 
we refer to [23,44]. We shall use in particular that, for ϕ ∈ [0, π), A ∈ Sect(ϕ, X) and 
α, β, η ∈ (0, ∞), one has

Aα(η + A)−α−β = 1
2πi

∫
∂Sθ

zα

(η + z)α+β
R(z,A)dz. (2.7)

Here ∂Sθ is the positively oriented boundary of Sθ for θ ∈ (ϕ, π). Note that Aα is injective 
for A injective, and if A is invertible then one may let α = 0 in (2.7).

For A a sectorial operator and α, β ∈ [0, ∞) we set Φα
β (A) := Aα(1 +A)−α−β ∈ L(X). 

We will frequently use that Φα
0 (A) = (A(1 + A)−1)α and that

Φα1
β1

(A)Φα2
β2

(A) = Φα1+α2
β1+β2

(A) (2.8)

for α1, α2, β1, β2 ∈ [0, ∞), by [23, Proposition 3.1.1]. Let Xα
β := Ran(Φα

β(A)), Xα := Xα
0

and Xβ := X0
β . If A is injective then Xα

β is a Banach space with the norm

‖x‖Xα := ‖x‖X + ‖Φα
β(A)−1x‖X = ‖x‖X + ‖(1 + A)α+βA−αx‖X (x ∈ Xα

β ).

β
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It follows from [7, Proposition 3.10(i)] (the restriction α, β ∈ [0, 1] is not needed here) that 
Xα

β = ran(Aα) ∩D(Aβ) with equivalence of norms. Finally, note that Φα
β(A) : X → Xα

β

is an isomorphism. More precisely, there exists a constant C ≥ 0 such that

‖T‖L(Xα
β ,X) ≤ ‖TΦα

β(A)‖L(X) ≤ C‖T‖L(Xα
β ,X) (T ∈ L(Xα

β , X)). (2.9)

3. Resolvent estimates and multipliers

In this section we prove some statements on Fourier multipliers and resolvents which 
will be used in later sections.

3.1. Resolvents and Fourier multipliers

Throughout this subsection −A is the generator of a C0-semigroup (T (t))t≥0 on a 
Banach space X.

For the reader’s convenience we include a proof of the following standard lemma.

Lemma 3.1. Let n ∈ N0, x ∈ X and ξ ∈ R. Suppose that −iξ ∈ ρ(A) and that [t �→
tnT (t)x] ∈ L1([0, ∞); X). Then

F [t �→ tnT (t)x](ξ) = n!(iξ + A)−n−1x, (3.1)

F
( ∞∫

0

tnT (t)g(· − t)x dt
)
(ξ) = ĝ(ξ)n!(iξ + A)−n−1x (g ∈ L1(R)). (3.2)

Proof. It suffices to prove (3.1), as (3.2) follows from (3.1) by standard properties of 
convolutions. Since λ(λ +A)−1x → x as λ → ∞, by the dominated convergence theorem 
we may additionally assume that x ∈ D(A) and that [t �→ tnT (t)Ax] ∈ L1([0, ∞); X). 
Also, [45, Lemma 3.1.9] implies that [t �→ T (t)x] ∈ C0([0, ∞); X). Now the fundamental 
theorem of calculus yields

(iξ + A)
∞∫
0

e−iξtT (t)x dt =
[
− e−iξtT (t)x

]∞
0

= x.

Hence 
∫∞
0 e−iξtT (t)x dt = (iξ + A)−1x and

∞∫
0

e−iξttnT (t)x dt = 1
(−i)n

dn

dξn

∞∫
0

e−iξtT (t)x dt = n!(iξ + A)−n−1x. �

We will often use the following proposition, inspired by [37, Theorem 3.1].
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Proposition 3.2. Let Y be a Banach space that is continuously embedded in X and let 
n ∈ N. Suppose that iR \ {0} ⊆ ρ(A) and that there exist ψ ∈ L∞(R), p ∈ [1, ∞) and 
q ∈ [1, ∞] such that for j ∈ {n − 1, n} ∩ N one has

mj
1(·) := ψ(·)R(i·, A)j ∈ M1,∞(R;L(Y,X)),

mj
2(·) := (1 − ψ(·))R(i·, A)j ∈ Mp,q(R;L(Y,X)).

Then TR(i·,A)n : Lp(R; Y ) ∩L1(R; Y ) → L∞(R; X) is bounded and ‖TR(i·,A)n‖ ≤ 2MCn, 
where M = sup{‖T (t)‖L(X) | t ∈ [0, 2]},

Cn =
n∑

j=n−1
‖mj

1‖M1,∞(R;L(Y,X)) + ‖mj
2‖Mp,q(R;L(Y,X))

for n > 1, and

C1 = ‖m1
1‖M1,∞(R;L(Y,X)) + ‖m1

2‖Mp,q(R;L(Y,X)) + ‖IY ‖L(Y,X).

Proof. Let K ∈ N, f1, . . . , fK ∈ Ṡ(R) and x1, . . . , xK ∈ Y , and set f :=
∑K

k=1 fk ⊗ xk. 
Then Tmn

1 (f) ∈ Cb(R; X) and

sup
t∈R

‖Tmn
1 (f)(t)‖X ≤ ‖mn

1‖M1,∞(R;L(Y,X))‖f‖L1(R;Y ). (3.3)

Also,

‖Tmn
2 (f)‖Lq(R;X) ≤ ‖mn

2‖Mp,q(R;L(Y,X))‖f‖Lp(R;Y ).

The latter inequality implies that for each l ∈ Z there exists a t ∈ [l, l + 1] such that

‖Tmn
2 (f)(t)‖X ≤ 2‖mn

2‖Mp,q(R;L(Y,X))‖f‖Lp(R;Y ). (3.4)

Fix an l ∈ Z and let t ∈ [l, l + 1] be such that (3.4) holds. Then (3.3) implies

‖TR(i·,A)n(f)(t)‖X ≤ 2(‖mn
1‖M1,∞ + ‖mn

2‖Mp,q
)‖f‖L1(R;Y )∩Lp(R;Y ). (3.5)

Let τ ∈ [0, 2] and note that

eiξτT (τ)R(iξ, A)x = R(iξ, A)x +
τ∫

0

eiξrT (r)x dr

for all ξ ∈ R \ {0} and x ∈ X. Hence
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T (τ)TR(i·,A)n(f)(t) = 1
2π

∫
R

eiξ(t−τ)eiξτT (τ)R(iξ, A)nf̂(ξ) dξ

= 1
2π

∫
R

eiξ(t−τ)R(iξ, A)nf̂(ξ) dξ

+ 1
2π

∫
R

τ∫
0

eiξ(t−τ)eiξrT (r)R(iξ, A)n−1f̂(ξ) drdξ

= TR(i·,A)n(f)(t− τ) +
τ∫

0

T (r)TR(i·,A)n−1(f)(t− τ + r) dr.

Now (3.5) and Hölder’s inequality yield

‖TR(i·,A)n(f)(t− τ)‖X

≤ M
(
‖TR(i·,A)n(f)(t)‖X +

τ∫
0

‖TR(i·,A)n−1(f)(t− τ + r)‖X dr
)

≤ 2M(‖mn
1‖M1,∞ + ‖mn

2‖Mp,q
)‖f‖L1(R;Y )∩Lp(R;Y )

+ M(τ‖Tmn−1
1

(f)‖L∞(R;X) + τ1/q′‖Tmn−1
2

(f)‖Lq(R;X))

≤ 2M
( n∑

j=n−1
‖mj

1‖M1,∞ + ‖mj
2‖Mp,q

)
‖f‖Lp(R;Y )∩L1(R;Y )

for n > 1. For n = 1 the computation is similar, but one can directly estimate

τ∫
0

‖f(t− τ − r)‖X dr ≤ ‖IY ‖L(Y,X)‖f‖L1(R;Y ).

This concludes the proof, since τ ∈ [0, 2] and l ∈ Z are arbitrary and since Ṡ(R) ⊗ Y ⊆
Lp(R; Y ) ∩ L1(R; Y ) is dense. �
Remark 3.3. When applying Proposition 3.2 we will consider ψ with compact support. 
Then one may assume that mj

1 ∈ Mu,v(R; L(Y, X)) for general u ∈ [1, ∞) and v ∈ [1, ∞]. 
For χ ∈ C∞

c (R) such that χ ≡ 1 on supp(ψ) one has mj
1 = χmj

1 ∈ Mu,∞(R; L(Y, X)) by 
Young’s inequality. The same proof now shows that TR(i·,A)n : Lu(R; Y ) ∩ Lp(R; Y ) →
L∞(R; X) is bounded, with

‖TR(i·,A)n‖ ≤ 2M
( n∑

‖mj
1‖Mu,v(R;L(Y,X)) + ‖mj

2‖Mp,q(R;L(Y,X))

)

j=n−1
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for n > 1, and similarly for n = 1. However, Young’s inequality also shows that mj
1 =

χmj
1χ ∈ M1,∞(R; L(Y, X)), so that these assumptions are no more general than those 

in Proposition 3.2.

3.2. Resolvent estimates

We now present two propositions on resolvent growth. The assertions on uniform 
boundedness have for the most part been obtained by different methods in [65, Lemma 
3.3], [28, Lemma 1.1], [37, Lemma 3.2] and [7, Theorem 5.5]. The proof below allows us 
to also deduce the corresponding statements on R-boundedness directly. Note that if A
satisfies (3.6) with α ∈ (0, 1) then one may in fact let α = 0, by elementary properties 
of resolvents.

Proposition 3.4. Let α ∈ {0} ∪ [1, ∞), β ∈ [0, ∞) and β0 ∈ [0, 1], and let A be an injective 
sectorial operator on a Banach space X. Let ϕ ∈ (0, π2 ] and Ω := C+ \ (Sϕ ∪ {0}), and 
suppose that −Ω ⊆ ρ(A). Then the following statements hold:

(1) The collection

{λα(λ + A)−1 | λ ∈ Ω, |λ| ≤ 1} ⊆ L(X) (3.6)

is uniformly bounded if and only if

{(λ + A)−1 | λ ∈ Ω, |λ| ≤ 1} ⊆ L(Xα, X) (3.7)

is uniformly bounded. Moreover, (3.6) is R-bounded if and only if (3.7) is R-bounded.
(2) The collection

{λ−β(λ + A)−1 | λ ∈ Ω, |λ| ≥ 1} ⊆ L(X) (3.8)

is uniformly bounded if and only if

{λβ0(λ + A)−1 | λ ∈ Ω, |λ| ≥ 1} ⊆ L(Xβ+β0 , X) (3.9)

is uniformly bounded. Moreover, (3.8) is R-bounded if and only if (3.9) is R-bounded.
(3) The collection

{
(1 − λ)β0(λ + A)−1Aα(1 + A)−α−β−β0 − (−λ)α

(1 − λ)α+β
(λ + A)−1

∣∣∣λ ∈ Ω
}

is R-bounded in L(X).

Proof. Fix θ ∈ (max(ωA, π−ϕ), π) and let Γ := {reiθ | r ∈ [0, ∞)} ∪{re−iθ | r ∈ [0, ∞)}
be oriented from ∞eiθ to ∞e−iθ.
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For (1) first note that, by the resolvent identity,

(λ + A)−1A(1 + A)−1 = (1 + A)−1 − λ(λ + A)−1(1 + A)−1

= (1 + A)−1 − λ

1 + λ
(λ + A)−1 − λ

1 + λ
(1 + A)−1

= 1
1 + λ

(1 + A)−1 − λ

1 + λ
(λ + A)−1

for all λ ∈ Ω. Now (2.2) and (2.9) yield (1) for α = 1.
Let α > 1. Then

(λ + A)−1Aα(1 + A)−α = (λ + A)−1(1 + A)Aα(1 + A)−α−1

= Aα(1 + A)−α−1 + (1 − λ)(λ + A)−1Aα(1 + A)−α−1
(3.10)

for all λ ∈ Ω. Since the singleton {Aα(1 + A)−α−1} ⊆ L(X) is R-bounded, by (2.9) it 
suffices to show that (3.6) is uniformly bounded (or R-bounded) if and only if

{(1 − λ)(λ + A)−1Aα(1 + A)−α−1 | λ ∈ Ω, |λ| ≤ 1} ⊆ L(X) (3.11)

is uniformly bounded (or R-bounded). The resolvent identity and (2.7) yield

(λ + A)−1Aα(1 + A)−α−1 = 1
2πi

∫
Γ

zα

(1 + z)α+1 (λ + A)−1R(z,A) dz

= 1
2πi

∫
Γ

zα

(1 + z)α+1(z + λ) dz(λ + A)−1

+ 1
2πi

∫
Γ

zα

(1 + z)α+1(z + λ)R(z,A) dz

for λ ∈ Ω. Hence, using (A.1) of Lemma 5.9,

(1 − λ)(λ + A)−1Aα(1 + A)−α−1 = (−λ)α

(1 − λ)α (λ + A)−1 + Sλ, (3.12)

where

Sλ := 1
2πi

∫
Γ

zα

(1 + z)α+1
1 − λ

z + λ
R(z,A) dz.

Now fix ε ∈ (0, min(α− 1, 1)]. Then z �→ zε

(1+z)2εR(z, A) is integrable on Γ, and

sup
{ |z|α−ε

α+1−2ε
|1 − λ| ∣∣∣λ ∈ Ω, z ∈ Γ

}
< ∞
|1 + z| |z + λ|
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by (A.2) in Lemma 5.9. Hence [33, Corollary 2.17] implies that {Sλ | λ ∈ Ω} ⊆ L(X)
is R-bounded. Now (3.12) shows that the uniform boundedness (or R-boundedness) of 
(3.6) and (3.11) are equivalent, thereby proving (1).

For (2) we may suppose that β+β0 > 0. Then (2.7), applied to the invertible sectorial 
operator 1

2 + A, and the resolvent identity imply that

(λ + A)−1(1 + A)−β−β0 = 1
2πi

∫
Γ

1
(1
2 + z)β+β0

(λ + A)−1R(z, 1
2 + A) dz

= 1
2πi

∫
Γ

1
(1
2 + z)β+β0(z + λ− 1

2 )
dz(λ + A)−1

+ 1
2πi

∫
Γ

1
(1
2 + z)β+β0(z + λ− 1

2 )
R(z, 1

2 + A) dz

for λ ∈ Ω. Now (A.1) yields

(1 − λ)β0(λ + A)−1(1 + A)−β−β0 = 1
(1 − λ)β (λ + A)−1 + (1 − λ)β0Tλ, (3.13)

where

Tλ := 1
2πi

∫
Γ

1
(1
2 + z)β+β0(z + λ− 1

2 )
R(z, 1

2 + A) dz.

Fix ε ∈ (0, β + β0). Then z �→ (z + 1
2 )−εR(z, 12 + A) is integrable on Γ, and

sup
{ 1 + |λ|
|12 + z|β+β0−ε|z + λ− 1

2 |

∣∣∣λ ∈ Ω, z ∈ Γ
}
< ∞

by (A.2). Hence [33, Corollary 2.17] implies that {(1 + |λ|)Tλ | λ ∈ Ω} is R-bounded. 
Since |1 − λ|β0 ≤ 1 + |λ| for all λ ∈ Ω, the proof of part (2) is completed using (2.2), 
(3.13) and (2.9).

Finally, for (3) we restrict to the case where α > 1 and β > 0. The other cases follow 
in a similar manner from the proofs of (1) and (2). The operator family in (3) can be 
written as

Aα(1 + A)−α
[
(1 − λ)β0(λ + A)−1(1 + A)−β−β0 − (1 − λ)−β(λ + A)−1

]
+ (1 − λ)−β

[
(λ + A)−1Aα(1 + A)−α − (−λ)α

(1 − λ)α (λ + A)−1
]

=: Aα(1 + A)−αV 1
λ + (1 − λ)−βV 2

λ .



J. Rozendaal, M. Veraar / Journal of Functional Analysis 275 (2018) 2845–2894 2861
Using standard algebraic properties of R-boundedness (see [30, Proposition 8.1.19]), it 
suffices to prove that {V i

λ | λ ∈ Ω} ⊆ L(X) is R-bounded for i ∈ {1, 2}. The proof of (2), 
and in particular (3.13), shows that

R({V 1
λ | λ ∈ Ω}) = R({(1 − λ)β0Tλ | λ ∈ Ω}) < ∞.

For the other term note that, by (3.10) and (3.12), V 2
λ = Aα(1 + A)−α−1 + Sλ. Hence 

the proof of (1) yields

R({V 2
λ | λ ∈ Ω}) ≤ ‖Aα(1 + A)−α−1‖L(X) + R({Sλ | λ ∈ Ω}) < ∞. �

Corollary 3.5. Let α ∈ [0, ∞) and α0 ∈ [0, α]. Let A be an injective sectorial operator on 
a Banach space X such that iR \ {0} ⊆ ρ(A) and

sup{‖λα(λ + A)−1‖L(X) | λ ∈ iR \ {0}, |λ| ≤ 1} < ∞.

Then

sup{‖λα−α0(λ + A)−1‖L(Xα0 ,X) | λ ∈ iR \ {0}, |λ| ≤ 1} < ∞.

Proof. First note that 0 ∈ ρ(A) for α < 1, by elementary properties of resolvents. Hence, 
by Proposition 3.4 (1) it suffices to consider α ≥ 1 and α0 ∈ (0, α). By [23, Propositions 
2.1.1.f and 3.1.9], A(1 + A)−1 is a sectorial operator and Aα0(1 + A)−α0 = (A(1 +
A)−1)α0 . Now the moment inequality [23, Proposition 6.6.4] and another application of 
[23, Proposition 3.1.9] yield

‖λα−α0(λ + A)−1Aα0(1 + A)−α0x‖X
= |λ|α−α0‖(A(1 + A)−1)α0(λ + A)−1x‖X

� |λ|α−α0‖(λ + A)−1(A(1 + A)−1)αx‖α0/α
X ‖(λ + A)−1x‖(α−α0)/α

X

≤ ‖(λ + A)−1Aα(1 + A)−α‖α0/α
L(X)‖λ

α(λ + A)−1‖(α−α0)/α
L(X) ‖x‖X

for all λ ∈ iR \ {0} and x ∈ X. Proposition 3.4 (1) and (2.9) conclude the proof. �
4. Polynomial stability

In this section we study polynomial stability for semigroups using Fourier multipliers. 
We first obtain some results valid on general Banach spaces. Then we establish the 
connection between polynomial stability and Fourier multipliers, and we use this link 
to deduce polynomial stability results under geometric assumptions on the underlying 
space. We also study the necessity of the spectral assumptions which we make, compare 
our theorems with the literature, and give examples to illustrate our results.

The following terminology will be used throughout this section.
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Definition 4.1. Let α, β ∈ [0, ∞). An operator A on a Banach space X has resolvent 
growth (α, β) if the following conditions hold:

(i) −A generates a C0-semigroup (T (t))t≥0 on X;
(ii) C− \ {0} ⊆ ρ(A), and

{ λα

(1 + λ)α+β
(λ + A)−1

∣∣∣λ ∈ C+ \ {0}
}
⊆ L(X)

is uniformly bounded.

An operator A has R-resolvent growth (α, β) if A has resolvent growth (α, β) and

{
λ−β(λ + A)−1

∣∣∣λ ∈ C+, |λ| ≥ 1
}
⊆ L(X)

is R-bounded.

Note that we do not assume in (i) that the semigroup generated by −A is uniformly 
bounded. We will implicitly use throughout that each operator A with resolvent growth 
(α, β), for α ∈ [0, 1) and β ∈ [0, ∞), is invertible and thus has resolvent growth (0, β), 
as follows from the fact that ‖R(λ, A)‖L(X) ≥ dist(λ, σ(A))−1 for all λ ∈ ρ(A).

Recall that we use the convention that 0
0 = ∞, for simplicity of notation.

4.1. Results on general Banach spaces

The following lemma is used to interpolate between decay rates. Related results can 
be found in [4, Proposition 3.1] and [7, Lemma 4.2]. Recall the definition of the space 
Xα

β , for α, β ≥ 0, from Section 2.3.

Lemma 4.2. Let A be an injective sectorial operator on a Banach space X such that −A

generates a C0-semigroup (T (t))t≥0 on X. For j ∈ {1, 2} let αj , βj ∈ [0, ∞) be such that 
α1 ≥ α2 and β1 ≥ β2, and let fj : [0, ∞) → [0, ∞) be such that ‖T (t)‖L(X

αj
βj

,X) ≤ fj(t)
for all t ∈ [0, ∞). Then for each θ ∈ [0, 1] there exists a Cθ ∈ [0, ∞) such that

‖T (t)‖L(Xθα1+(1−θ)α2
θβ1+(1−θ)β2

,X) ≤ Cθ(f1(t))θ(f2(t))1−θ (t ∈ [0,∞)). (4.1)

Moreover, suppose that f1(t) = Ct−μ for some C, μ ∈ [0, ∞) and all t ∈ [1, ∞). Then 
for each θ ∈ [1, ∞) there exists a Cθ ∈ [0, ∞) such that

‖T (t)‖L(Xθα1
θβ1

,X) ≤ Cθt
−μθ (t ∈ [1,∞)). (4.2)
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Proof. Let t ∈ [0, ∞) and note that, by (2.9) and (2.8),

‖T (t)‖L(Xθα1+(1−θ)α2
θβ1+(1−θ)β2

,X) ≤ ‖T (t)Φθα1+(1−θ)α2
θβ1+(1−θ)β2

(A)‖L(X)

= ‖T (t)Φθ(α1−α2)
θ(β1−β2) (A)Φα2

β2
(A)‖L(X).

Let c := α1 − α2 + β1 − β2. Then Φ(α1−α2)/c
(β1−β2)/c (A) = A(α1−α2)/c(1 + A)−1 is sectorial, by 

[7, Proposition 3.10]. Hence [23, Theorem 2.4.2] yields

Φθ(α1−α2)
θ(β1−β2) (A) = Aθ(α1−α2)(1 + A)−θ(α1−α2+β1−β2) = (Φ(α1−α2)/c

(β1−β2)/c (A))cθ.

The moment inequality [23, Proposition 6.6.4] and [23, Theorem 2.4.2] imply that

‖(Φ(α1−α2)/c
(β1−β2)/c (A))cθx‖X � ‖(Φ(α1−α2)/c

(β1−β2)/c (A))cx‖θX‖x‖1−θ
X = ‖Φα1−α2

β1−β2
(A)x‖θX‖x‖1−θ

X

for x ∈ D(Φα1−α2
β1−β2

(A)). Combining all this with (2.8) and (2.9) shows that

‖T (t)‖L(Xθα1+(1−θ)α2
θβ1+(1−θ)β2

,X) ≤ ‖T (t)Φθ(α1−α2)
θ(β1−β2) (A)Φα2

β2
(A)‖L(X)

= ‖(Φ(α1−α2)/c
(β1−β2)/c (A))cθT (t)Φα2

β2
(A)‖L(X)

� ‖Φα1−α2
β1−β2

(A)T (t)Φα2
β2

(A)‖θL(X)‖T (t)Φα2
β2

(A)‖1−θ
L(X)

= ‖T (t)Φα1
β1

(A)‖θL(X)‖T (t)Φα2
β2

(A)‖1−θ
L(X)

� ‖T (t)‖θL(Xα1
β1

,X)‖T (t)‖1−θ
L(Xα2

β2
,X) ≤ (f1(t))θ(f2(t))1−θ,

thereby proving (4.1). As for (4.2), let n ∈ N. Then

‖T (t)‖L(Xnα1
nβ1

,X) ≤ ‖T (t)Φnα1
nβ1

(A)‖L(X) ≤ ‖T ( t
n )Φα1

β1
(A)‖nL(X)

� (f1( t
n ))n = Cnnμnt−μn,

which implies (4.2) for θ ∈ N. Finally, applying (4.1) to interpolate between (nα1, nβ1)
and ((n + 1)α1, (n + 1)β1) yields (4.2) for all θ ∈ [1, ∞). �

The following result for C0-semigroups on general Banach spaces extends [4, Propo-
sition 3.4], where the case α = ρ = 0 was considered.

Proposition 4.3. Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with resol-
vent growth (α, β) on a Banach space X. Let σ, τ ∈ [0, ∞) be such that σ > α − 1 and 
τ > β + 1. Then for each ρ ∈ [0, min(σ+1

α − 1, τ−1
β − 1)) there exists a Cρ ∈ [0, ∞) such 

that

‖T (t)‖L(Xσ
τ ,X) ≤ Cρt

−ρ (t ∈ [1,∞)). (4.3)
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Proof. By elementary calculations the proposition is equivalent to the following state-
ment: for all s ≥ 0 and δ, ε > 0 there exists a Cs,δ,ε ≥ 0 such that

‖T (t)‖L(Xμ
ν ,X) ≤ Cs,δ,εt

−s (t ∈ [1,∞)), (4.4)

where μ = max((s +1)α−1 + δ, 0) and ν = (s +1)β+1 + ε. Furthermore, by Lemma 4.2
it suffices to prove (4.4) for n := s ∈ N0.

Let x ∈ Xμ
ν+1 and set y := Φμ

ν (A)x = A−μ(1 + A)μ+νx ∈ D(A). Then

g(t) := 1
2πi

−i∞∫
i∞

e−λt λμ

(1 + λ)μ+ν
R(λ,A)y dλ

is a well defined element of X for all t ≥ 0. One can check that g is continuously 
differentiable with g′(t) = −Ag(t). Also,

g(0) = 1
2πi

−i∞∫
i∞

λμ

(1 + λ)μ+ν
R(λ,A)y dλ = Aμ(1 + A)−μ−νy = x.

Here we have deformed the path of integration to the curve Γ = {reiθ | r ∈ [0, ∞)} ∪
{re−iθ | r ∈ [0, ∞)} in (2.7), for θ ∈ (ωA, π), which we may do by the assumptions on A. 
Now g(t) = T (t)x, by uniqueness of the Cauchy problem associated with −A. Integration 
by parts yields

tnT (t)x = tn

2πi

∫
iR

e−λt λμ

(1 + λ)μ+ν
R(λ,A)y dλ

= (−1)n

2πi

∫
iR

( dn

dλn
e−λt

) λμ

(1 + λ)μ+ν
R(λ,A)y dλ

= 1
2πi

∫
iR

e−λtp(λ,A)y dλ.

Here p(λ, A) is a finite linear combination of terms of the form

λμ−j

(1 + λ)μ+ν+(k−j)R(λ,A)n−k+1

for 0 ≤ j ≤ k ≤ n, where we let j = 0 if μ = 0. Then

‖tnT (t)x‖X ≤ 1
2π

∫
iR

‖p(λ,A)‖L(X)‖y‖Xd|λ| � ‖(−A)−μ(1 + A)μ+νx‖X ≤ ‖x‖Xμ
ν
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with implicit constants independent of t and x. Since Xμ
ν+1 is dense in Xμ

ν , the proof is 
concluded. �

The following corollary of Proposition 4.3 and Lemma 4.2 takes into account the 
growth behavior of (T (t))t≥0 on X. It also extends Proposition 4.3 by providing stability 
rates on Xσ

τ for σ ∈ [0, α − 1] and τ ∈ [0, β + 1]. The same approach was used in [4, 
Theorem 3.5] for uniformly bounded semigroups and α = 0.

Corollary 4.4. Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with resolvent 
growth (α, β) on a Banach space X. Let σ, τ ∈ [0, ∞). Then for each ρ ∈ [0, min(σ

α , 
τ
β ))

there exists a Cρ ∈ [0, ∞) such that

‖T (t)‖L(Xσ
τ ,X) ≤ Cρ max(1, ‖T (t)‖L(X))t−ρ (t ∈ [1,∞)). (4.5)

Proof. By elementary calculations it suffices to prove the following: for all s ≥ 0 and 
δ, ε > 0 there exists a constant Cs,δ,ε ≥ 0 such that

‖T (t)‖L(Xμ
ν ,X) ≤ Cs,δ,ε max(1, ‖T (t)‖L(X))t−s (t ∈ [1,∞)), (4.6)

where μ = sα + δ and ν = sβ + ε. Let ε̃ > 0 and for θ ∈ (0, 1) set s̃ := s/θ, μ̃ :=
max((s̃ + 1)α− 1 + ε̃, 0) and ν̃ := (s̃ + 1)β + 1 + ε̃. Then, by Lemma 4.2 and (4.4),

‖T (t)‖L(Xμ̃θ
ν̃θ ,X) � ‖T (t)‖1−θ

L(X)‖T (t)‖θL(Xμ̃
ν̃ ,X) � max(1, ‖T (t)‖L(X))t−s

for all t ≥ 1. Next, note that μ̃θ = max(sα+θ(α−1 +ε̃), 0) and ν̃θ = sβ+θ(β+1 +ε̃). Now 
the proof is concluded by letting θ ∈ (0, 1) be such that μ̃θ ≤ sα+ε and ν̃θ ≤ sβ+ε. �
4.2. Polynomial stability and Fourier multipliers

In this subsection we relate polynomial stability of a semigroup to Fourier multiplier 
properties of the resolvent of its generator.

In order to state our abstract result on polynomial stability we introduce a class of 
admissible spaces.

Definition 4.5. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach 
space X, and let n ∈ N0. A Banach space Y which is continuously embedded in X
is (A, n)-admissible if the following conditions hold:

(i) there exists a constant CT ∈ [0, ∞) such that T (t)Y ⊆ Y and

‖T (t)�Y ‖L(Y ) ≤ CT ‖T (t)‖L(X) (t ∈ [0,∞));

(ii) there exists a dense subspace Y0 ⊆ Y such that [t �→ tnT (t)y] ∈ L1([0, ∞); X) for 
all y ∈ Y0.
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Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with resolvent growth 
(α, β). Then Y = Xσ

τ is (A, n)-admissible for all σ, τ ∈ [0, ∞) and n ∈ N0, by Proposi-
tion 4.3.

The following theorem is our main result relating polynomial stability and Fourier 
multipliers. It follows from (4.10) and (4.12) below that one can obtain quantitative 
bounds in each of the implications between (1) and (2).

Theorem 4.6 (Characterization of polynomial stability). Let −A be the generator of a 
C0-semigroup (T (t))t≥0 on a Banach space X, and assume that A has resolvent growth 
(α, β) for some α, β ∈ [0, ∞). Let n ∈ N0 and let Y be an (A, n)-admissible space. Then 
the following statements are equivalent:

(1) sup
t≥0

‖tnT (t)‖L(Y,X) < ∞;

(2) there exist ψ ∈ C∞
c (R), p ∈ [1, ∞) and q ∈ [p, ∞] such that

ψ(·)R(i·, A)k ∈ M1,∞(R;L(Y,X)),

(1 − ψ(·))R(i·, A)k ∈ Mp,q(R;L(Y,X))

for all k ∈ {n − 1, n, n + 1} ∩ N.

Moreover, if (1) or (2) holds then R(i·, A)k ∈ Mp,q(R; L(Y, X)) for:

(i) n ≥ 2, k ∈ {1, . . . , n − 1} and 1 ≤ p ≤ q ≤ ∞;
(ii) k = n ≥ 1 and 1 ≤ p < q ≤ ∞;
(iii) k = n + 1, p = 1 and q = ∞.

Proof. (2) ⇒ (1): Let ω, Mω ≥ 1 be such that ‖T (t)‖L(X) ≤ Mωe
t(ω−1) for all t ≥ 0, and 

set

m(ξ) := n!(iξ + A)−n(IX + ω(iξ + A)−1) ∈ L(Y,X) (ξ ∈ R \ {0}).

Since (i · +A)−1 = −R(−i·, A), it follows from Proposition 3.2 that

Tm : Lp(R;Y ) ∩ L1(R;Y ) → L∞(R;X)

is bounded with

‖Tm‖ ≤ 2Mn!(Cn + ωCn+1). (4.7)

Here M := supt∈[0,2] ‖T (t)‖L(X), Ck is as in Proposition 3.2 for k ∈ N, and C0 :=
‖IY ‖L(Y,X). Now let Y0 ⊆ Y be as in Definition 4.5 and fix x ∈ Y0. Lemma 3.1 yields

F [t �→ tnT (t)x](·) = n!(i · +A)−n−1x. (4.8)



J. Rozendaal, M. Veraar / Journal of Functional Analysis 275 (2018) 2845–2894 2867
Set f(t) := e−ωtT (t)x for t ≥ 0, and f ≡ 0 on (−∞, 0). Then

‖f(t)‖Y ≤ ‖e−ωtT (t)‖L(Y )‖x‖Y ≤ CT ‖e−ωtT (t)‖L(X)‖x‖Y (t ∈ [0,∞)). (4.9)

Hence f ∈ L1(R; Y ) ∩ L∞(R; Y ) and ‖f‖Lr(R;Y ) ≤ CTMω‖x‖Y for all r ∈ [1, ∞]. By 
Lemma 3.1, f̂(·) = (w + i · +A)−1x. Therefore, by the resolvent identity,

m(ξ)f̂(ξ) = n!(iξ + A)−n−1x (ξ ∈ R \ {0}).

Combining (4.8) and (4.9) with (4.7) yields

sup
t≥0

‖tnT (t)x‖X ≤ ‖Tm‖
(
‖f‖Lp(R;Y ) + |f‖L1(R;Y )

)
≤ C‖x‖Y , (4.10)

where C = 4Mn!CTMω(Cn + ωCn+1). The required result now follows since Y0 ⊆ Y is 
dense.

(1) ⇒ (2): Set Kn := supt≥0 ‖tnT (t)x‖X and let Y0 ⊆ Y be as in Definition 4.5. Let 
f ∈ Ṡ(R) ⊗ Y0 and set Sk(f)(s) :=

∫∞
0 tkT (t)f(s − t)dt for s ∈ R and k ∈ {0, 1, . . . , n}. 

Lemma 3.1 yields

Sk(f) = k!F−1((i · +A)−k−1f̂(·)) = k!T(i·+A)−k−1(f). (4.11)

Now, for n ≥ 2, k ∈ {0, . . . , n − 2} and r ∈ [1, ∞],∥∥[t �→ ‖tkT (t)]‖
∥∥
Lr([0,∞);L(Y,X))dt ≤ M + Kn‖[t �→ t−2]‖Lr(1,∞) ≤ M + Kn.

Similarly, for n ≥ 1 and r ∈ (1, ∞],

∥∥[t �→ ‖tn−1T (t)]‖
∥∥
Lr([0,∞);L(Y,X)) ≤ M + Kn

(r − 1)1/r
.

By combining these estimates with (4.11) and with Young’s inequality for operator-
valued kernels in [3, Proposition 1.3.5] one obtains, for p ∈ [1, ∞) and q ∈ [p, ∞],

‖R(i·, A)k‖Mp,q(R;L(Y,X)) ≤ M+Kn

(k−1)! (n ≥ 2, k ∈ {1, . . . , n− 1}),

‖R(i·, A)n‖Mp,q(R;L(Y,X)) ≤ M+(r−1)−1/rKn

(n−1)! (n ≥ 1, p < q),

‖R(i·, A)n+1‖M1,∞(R;L(Y,X)) ≤ Kn

n! .

(4.12)

Now (4.11) and (4.12) yield statements (i)-(iii) for (i ·+A)−1, and by reflection these state-
ments hold for R(i·, A) as well. Finally, for (2) let ψ ∈ C∞

c (R). Then Young’s inequality 
and (4.12) yield ψ(·)R(i·, A)k ∈ M1,∞(R; L(Y, X)) for all k ∈ {1, . . . , n + 1}, and one 
obtains (4.12) for ψ(·)R(i·, A) with an additional multiplicative factor ‖F−1(ψ)‖L1(R). 
Similarly, (4.12) holds with an additional multiplicative factor ‖F−1(1 − ψ)‖L1(R) upon 
replacing R(i·, A) by (1 − ψ(·))R(i·, A). �
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The assumption in Theorem 4.6 that A has resolvent growth (α, β) for some α, β ∈
[0, ∞) is only made to ensure that TR(i·,A) is well-defined, and the specific choice of α
and β is irrelevant here. Inspection of the proof of Theorem 4.6 also shows that one could 
assume in (2) that for each k ∈ {n − 1, n, n + 1} ∩N there exist pk, qk ∈ [1, ∞] such that

(1 − ψ(·))R(i·, A)k ∈ Mpk,qk(R;L(Y,X)).

However, we will not need this generality in the remainder. As was already mentioned 
in Remark 3.3, the assumption

ψ(·)R(i·, A)k ∈ M1,∞(R;L(Y,X))

in (2) is the most general (Lp, Lq) Fourier multiplier condition for ψ(·)R(i·, A)k.

Remark 4.7. The theory of (Lp, Lp) Fourier multipliers alone cannot yield a character-
ization of polynomial stability as in Theorem 4.6, and in general it is necessary to also 
consider the case where p < q in condition (2). To see this, consider a uniformly bounded 
C0-semigroup (T (t))t≥0 ⊆ L(X) with generator −A such that C− ⊆ ρ(A) but A is not 
of type (0, 0). Let n = 0 and Y = X. Then R(i·, A) /∈ Mp,p(R; L(X)) for each p ∈ [1, ∞)
since sup{‖R(iξ, A)‖L(X) | ξ ∈ R \ {0}} = ∞. Nonetheless, (1) holds since (T (t))t≥0 is 
uniformly bounded, and R(i·, A) ∈ M1,∞(R; L(X)). Indeed,

F−1(R(i·, A)f̂(·))(t) =
∞∫
0

T (t− s)f(s)ds (t ∈ R)

defines an element of L∞(R; X) for each f ∈ S(R; X).

A variation of the proof of Theorem 4.6 yields the following result, which will also be 
used in Section 5. In particular, it provides a simple condition for powers of the resolvent 
to be Fourier multipliers.

Proposition 4.8. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach 
space X, and suppose that C− \ {0} ⊆ ρ(A). Let q ∈ [1, ∞), n ∈ N0 and let Y be an 
(A, n)-admissible space. Then the following statements are equivalent:

(1) there exists a constant C ∈ [0, ∞) such that [t �→ tnT (t)x] ∈ Lq([0, ∞); X) for all 
x ∈ Y , and

‖[t �→ tnT (t)x]‖Lq([0,∞);X) ≤ C‖x‖Y (x ∈ Y );

(2) for each k ∈ {n, n + 1} ∩ N one has R(i·, A)k ∈ M1,q(R; L(Y, X));
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(3) there exist ψ ∈ C∞
c (R) and p ∈ [1, q] such that

ψ(·)R(i·, A)k ∈ M1,q(R;L(Y,X)) and (1 − ψ(·))R(i·, A)k ∈ Mp,q(R;L(Y,X))

for k ∈ {n, n + 1} ∩ N.

Proof. (2) ⇒ (3) is trivial. For (3) ⇒ (1) one proceeds in an almost identical manner as in 
the proof of Theorem 4.6, except that now it is not necessary to appeal to Proposition 3.2.

(1) ⇒ (2): Let Y0 ⊆ Y be as in Definition 4.5. Then [t �→ tkT (t)x] ∈ Lq(R+; X) for 
all k ∈ {0, . . . , n} and x ∈ Y0. Hence, for f ∈ L1(R) ⊗ Y0, Minkowski’s inequality yields

(∫
R

∥∥∥∫
R

(t− s)nT (t− s)f(s)ds
∥∥∥qdt)1/q

≤
∫
R

( ∞∫
s

‖(t− s)nT (t− s)f(s)‖qdt
)1/q

ds ≤ C

∫
R

‖f(s)‖ds.

Now the proof is concluded using Lemma 3.1. �
4.3. Results under Fourier type assumptions

Here we apply Theorem 4.6 to obtain polynomial stability results under assump-
tions on the Fourier type of the underlying space. The following theorem coincides with 
Proposition 4.3 for p = 1. In the case where α = 0 it was already stated in [4] that an 
improvement of Proposition 4.3 might be possible using ideas from [46, §4.2], but no 
details are given there.

Theorem 4.9. Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with resolvent 
growth (α, β) on a Banach space X with Fourier type p ∈ [1, 2]. Let r ∈ [1, ∞] be such 
that 1

r = 1
p − 1

p′ , and let σ, τ ∈ [0, ∞) be such that σ > α − 1 and τ > β + 1
r . Then for 

each ρ ∈ [0, min(σ+1
α − 1, τ−r−1

β − 1)) there exists a Cρ ∈ [0, ∞) such that

‖T (t)‖L(Xσ
τ ,X) ≤ Cρt

−ρ (t ∈ [1,∞)). (4.13)

If p = 2 then (4.13) also holds for τ ≥ β and ρ ∈ [0, ∞) with ρ < σ+1
α −1 and ρ ≤ τ

β −1.

Proof. We prove the following equivalent statement: for all s ≥ 0 and δ, ε > 0 there 
exists a constant Cs,δ,ε ≥ 0 such that

‖T (t)‖L(Xμ
ν ,X) ≤ Cs,δ,εt

−s (t ∈ [1,∞)), (4.14)

where μ = max((s + 1)α− 1 + δ, 0), ν = (s + 1)β + 1
r + ε for p ∈ [1, 2), and ν = (s + 1)β

for p = 2. By Lemma 4.2 it suffices to consider n := s ∈ N0, and the case where p = 1
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follows from Proposition 4.3. For p ∈ (1, 2) set β0 := 1
r + ε, and for p = 2 we let β0 = 0. 

We may assume that β0 ∈ [0, 1).
By Proposition 3.4 and because R(iξ, A) commutes with Aα(1 + A)−α−β for all ξ ∈

R \ {0}, one has

sup{‖R(iξ, A)k‖L(Xnα
nβ ,X) | ξ ∈ R \ {0}} < ∞ (k ∈ {1, . . . , n}). (4.15)

Now, the part Ã of A in Xnα
nβ satisfies the conditions of Proposition 3.4 and Corollary 3.5, 

and R(iξ, Ã) = R(iξ, A)�Xnα
nβ

for all ξ ∈ R \ {0}. Hence

{ |ξ|1−δ

(1 + |ξ|)1−δ−β0
R(iξ, A)

∣∣∣ξ ∈ R \ {0}
}
⊆ L(Xμ

ν , X
nα
nβ ) (4.16)

is uniformly bounded. Let k ∈ {1, . . . , n + 1}. Then (4.15) and (4.16) show that

{ |ξ|1−δ

(1 + |ξ|)1−δ−β0
R(iξ, A)k

∣∣∣ξ ∈ R \ {0}
}
⊆ L(Xμ

ν , X) (4.17)

is uniformly bounded. Let ψ ∈ C∞
c (R) be such that ψ ≡ 1 on [−1, 1]. Since δ > 0, it 

follows from (4.17) and Proposition 2.2 that

ψ(·)R(i·, A)k ∈ L1(R;L(Xμ
ν , X)) ⊆ M1,∞(R;L(Xμ

ν , X)).

Another application of (4.17) yields ‖(1 −ψ(·))R(i·, A)k‖L(Xμ
ν ,X) ∈ Lr(R). Note that Xμ

ν

has Fourier type p, since Xμ
ν is isomorphic to X. Hence Proposition 2.2 yields

(1 − ψ(·))R(i·, A)k ∈ Mp,p′(R;L(Xμ
ν , X)).

Now Theorem 4.6 concludes the proof. �
Remark 4.10. One can show that the constant Cρ in (4.13) depends only on the following 
variables: α, β, σ, τ , ρ, Fp,X , the sectoriality constant M(A) from (2.6),

Mα,β := sup
{ |ξ|α
|1 + ξ|α+β

‖R(iξ, A)‖L(X)

∣∣∣ξ ∈ iR \ {0}
}

and the semigroup growth constants M , ω and Mω which appear in (4.10).

It is an open question whether (4.13) also holds for ρ = min(σ+1
α − 1, τ−r−1

β − 1) if 
α + β > 0.

A Hilbert space has Fourier type 2 by Plancherel’s identity. Hence we may distill from 
Theorem 4.9 the following important corollary, which in particular implies Theorem 1.1. 
It follows from Example 4.20 and Remark 4.17 that, up to ε loss, the polynomial rate 
of decay in Corollary 4.11 is optimal for α = 0 and τ = β ∈ [0, ∞), and for α = 1 and 
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β = 0. We do not know whether the rate of decay is also optimal for other values of α, 
β, σ and τ .

Corollary 4.11. Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with resol-
vent growth (α, β) on a Hilbert space. Let σ, τ ∈ [0, ∞) be such that σ > α−1 and τ ≥ β. 
Then for each ρ ∈ [0, ∞) such that ρ < σ+1

α − 1 and ρ ≤ τ
β − 1 there exists a Cρ ∈ [0, ∞)

such that

‖T (t)‖L(Xσ
τ ,X) ≤ Cρt

−ρ (t ∈ [1,∞)).

Remark 4.12. Corollary 4.4 yields a faster decay rate than Theorem 4.9 when ‖T (t)‖L(X)
grows slowly as t → ∞. More precisely, with notation as in Theorem 4.9, let μ0 ∈ [0, ∞)
be such that

min
(σ
α
,
τ

β

)
− μ0 = min

(σ + 1
α

− 1, τ − r−1

β
− 1

)
.

If there exists a μ < μ0 such that lim supt→∞ t−μ‖T (t)‖L(X) < ∞ then Corollary 4.4
yields a sharper decay rate than Theorem 4.9, namely

‖T (t)‖L(Xσ
τ ,X) � t−ρ (t ∈ [1,∞))

for each ρ < min(σ
α , 

τ
β ) −μ. Otherwise Theorem 4.9 yields at least as sharp a decay rate 

as Corollary 4.4. In particular, on Hilbert spaces Corollary 4.11 yields faster decay than 
Corollary 4.4 if α = 0 and ‖T (·)‖L(X) grows at least linearly. Note also that in many 
cases (4.27) below yields a faster decay rate than Corollary 4.4.

4.4. Results under type and cotype assumptions

Here we consider polynomial decay rates under type and cotype assumptions on the 
underlying space.

The following result also holds for q = ∞. However, in this case Proposition 4.3 yields 
a more general statement, since each Banach space has type p = 1 and cotype q = ∞
and because a Banach space with nontrivial type also has finite cotype.

Theorem 4.13. Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with 
R-resolvent growth (α, β) on a Banach space X with type p ∈ [1, 2] and cotype q ∈ [2, ∞). 
Let r ∈ [1, ∞] be such that 1

r = 1
p − 1

q , and let σ, τ ∈ [0, ∞) be such that σ > α − 1 and 

τ > β + 1
r . Then for each ρ < min(σ+1

α − 1, τ−r−1

β − 1) there exists a Cρ ∈ [0, ∞) such 
that

‖T (t)‖L(Xσ,X) ≤ Cρt
−ρ (t ∈ [1,∞)).
τ
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If p = q = 2 then (4.13) also holds for τ ≥ β and ρ ∈ [0, ∞) with ρ < σ+1
α − 1 and 

ρ ≤ τ
β − 1.

Proof. The proof is similar to that of Theorem 4.9. The case where p = q = 2 is 
already contained in Corollary 4.11, since each Banach space with type 2 and cotype 2
is isomorphic to a Hilbert space, and because every uniformly bounded collection on a 
Hilbert space is R-bounded. So we may assume that r ∈ (1, ∞) and derive (4.14) for 
n := s ∈ N0. Set β0 := 1

r +ε and let k ∈ {1, . . . , n +1}. We may suppose that β0 ∈ (0, 1). 
As in the proof of Theorem 4.9, using Proposition 3.4 and Corollary 3.5, one sees that

{|ξ|1−δR(iξ, A)k | ξ ∈ R \ {0}, |ξ| ≤ 1} ⊆ L(Xμ, X)

is uniformly bounded and that

{|ξ|β0R(iξ, A)k | ξ ∈ R \ {0}, |ξ| ≥ 1} ⊆ L(Xν , X) (4.18)

is R-bounded. Now let ψ ∈ C∞
c (R) be such that ψ ≡ 1 on [−1/2, 1/2] and such that 

supp(ψ) ⊆ [−1, 1]. Then Proposition 2.2 shows that ψ(·)R(i·, A)k ∈ M1,∞(L(Xμ, X)), 
and (1 − ψ(·)R(i·, A)k ∈ Mp,q(L(Xν , X)) by the first statement in Proposition 2.3. 
Theorem 4.6 concludes the proof. �

A similar dependence on the underlying parameters as in Remark 4.10 holds for the 
constant Cρ in Theorem 4.13.

Using the second statement in Proposition 2.3 we obtain the following improvement 
of Theorem 4.13 on Banach lattices, which allows one to deal with the limit case in the 
fractional domain exponent.

Theorem 4.14. Let α, β ∈ [0, ∞) and let A be an injective sectorial operator with 
R-resolvent growth (α, β) on a Banach lattice X which is p-convex and q-concave for 
p ∈ [1, 2] and q ∈ [2, ∞). Let r ∈ (1, ∞] be such that 1

r = 1
p − 1

q , and let σ, τ ∈ [0, ∞) be 
such that σ > α− 1 and τ ≥ β + 1

r . Then for each ρ ∈ [0, ∞) such that ρ < σ+1
α − 1 and 

ρ ≤ τ−r−1

β − 1 there exists a Cρ ∈ [0, ∞) such that

‖T (t)‖L(Xσ
τ ,X) ≤ Cρt

−ρ (t ∈ [1,∞)).

We do not know whether the R-boundedness assumption in Theorems 4.13 and 4.14
is necessary. This question is relevant even in the case where α = β = 0, cf. the remark 
following Corollary 5.5.

Remark 4.15. Each Banach space X with Fourier type p ∈ [1, 2] has type p and cotype p′, 
but the converse does not hold in general. In particular, if X = Lu(Ω) for u ∈ [1, ∞) and 
for some measure space Ω, then X has Fourier type p̃ = min(u, u′), type p = min(u, 2)
and cotype q = max(u, 2). In this case the parameter 1 in Theorems 4.13 and 4.14 is 
r



J. Rozendaal, M. Veraar / Journal of Functional Analysis 275 (2018) 2845–2894 2873
strictly smaller than in Theorem 4.9 for u ∈ [1, ∞) \ {2}. However, the R-boundedness 
assumption on the resolvent of A is in general stronger than the assumption in Theo-
rem 4.9.

We suspect that the R-boundedness condition in Theorems 4.13 and 4.14 can be 
removed at the cost of a larger parameter 1

r . For α = β = 0 this is indeed the case, with 
1
r = 2( 1

p − 1
q ), as is shown in Corollary 5.5.

4.5. Results for asymptotically analytic semigroups

Here we consider polynomial stability for the asymptotically analytic semigroups from 
[11]. Define the non-analytic growth bound ζ(T ) of a C0-semigroup (T (t))t≥0 on a Banach 
space X as

ζ(T ) := inf
{
ω ∈ R

∣∣∣ sup
t>0

e−ωt‖T (t) − S(t)‖ < ∞ for some S ∈ H(L(X))
}
,

where H(L(X)) is the set of S : (0, ∞) → L(X) having an exponentially bounded analytic 
extension to some sector containing (0, ∞). One says that (T (t))t≥0 is asymptotically 
analytic if ζ(T ) < 0. In this case s∞0 (−A) < 0, where s∞0 (−A) is the infimum over all 
ω ∈ R for which there exists an R > 0 such that

{λ ∈ C | Re(λ) ≥ ω, |Im(λ)| ≥ R} ⊆ ρ(−A)

and

sup{‖(λ + A)−1‖L(X) | Re(λ) ≥ ω, |Im(λ)| ≥ R} < ∞.

The converse implication holds if X is a Hilbert space. More generally, it was shown in 
[10, Theorem 3.6] that ζ(T ) < 0 if and only if s∞0 (−A) < 0 and there exist R > 0 and 
ψ ∈ C∞

c (R) such that i(R \ [−R, R]) ⊆ ρ(A), ψ ≡ 1 on [−R, R] and

(1 − ψ(·))R(i·, A) ∈ Mp,p(R;L(X))

for some (in which case it holds for all) p ∈ [1, ∞).
Note that if (T (t))t≥0 is analytic, and in particular if A is bounded, then trivially 

ζ(T ) = −∞. More generally, if (T (t))t≥0 is eventually differentiable then ζ(T ) = −∞. 
For these facts and for more on the non-analytic growth bound see [6,10,11].

Theorem 4.16. Let α ∈ [0, ∞) and let A be an injective sectorial operator with resolvent 
growth (α, 0) on a Banach space X. Suppose that (T (t))t≥0 is asymptotically analytic, 
and let σ ∈ [0, ∞) be such that σ > α− 1. Then for each ρ ∈ [0, σ+1

α − 1) there exists a 
Cρ ∈ [0, ∞) such that

‖T (t)‖L(Xσ,X) ≤ Cρt
−ρ (t ∈ [1,∞)).
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Proof. It suffices to obtain (4.14) with μ = max((n +1)α−1 +δ, 0) and ν = 0 for n ∈ N0. 
There exist R ∈ (0, ∞), ψ ∈ C∞

c (R) and p ∈ [1, ∞) such that

(1 − ψ(·))R(i·, A)k ∈ Mp,p(R;L(X)) (k ∈ {0, . . . , n + 1}). (4.19)

Since the inclusion Xμ ⊆ X is continuous, (4.19) also holds with L(X) replaced by 
L(Xμ, X). It follows as in the proof of Theorem 4.9 that

ψ(·)R(i·, A)k ∈ L1(R;L(Xμ, X) ⊆ M1,∞(R;L(Xμ, X)) (k ∈ {0, . . . , n + 1}).

Now Theorem 4.6 yields the required estimate. �
Remark 4.17. An injective sectorial operator A of angle ϕ ∈ (0, π/2) has resolvent growth 
(1, 0). The semigroup (T (t))t≥0 generated by −A is analytic and for any σ ≥ 0 one has

‖T (t)‖L(Xσ,X) � t−σ (t ∈ [1,∞)).

This follows from [23, Proposition 2.6.11]. This decay rate is optimal for the multipli-
cation semigroup (T (t))t≥0 on Lp[0, ∞), p ∈ [1, ∞), given by T (t)f(s) = e−tsf(s) for 
f ∈ Lp[0, ∞) and t, s ≥ 0.

4.6. Necessary conditions

In this subsection we study the necessity of the assumptions in our results.

4.6.1. Spectral conditions
The following lemma, an extension of [7, Proposition 6.4], shows that one can deduce 

spectral properties of an operator A given uniform decay on suitable subspaces of the 
associated semigroup. The proof follows that of [7, Proposition 6.4] and uses the Hille–
Phillips functional calculus for semigroup generators. For more on this calculus see [23, 
Section 3.3] or [27, Chapter XV].

Lemma 4.18. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space 
X. Suppose that there exist α, β ∈ N0, η ∈ ρ(−A), and a sequence (tn)n∈N ⊆ [0, ∞) such 
that

lim
n→∞

‖T (tn)Aα(η + A)−α−β‖L(X) = 0. (4.20)

Then C− \ {0} ⊆ ρ(A).

Proof. Without loss of generality we may consider β ∈ N and η > ω0(T ). Let t ≥ 0 and 
set ft(λ) := e−tλλα(η + λ)−α−β for λ ∈ C with Re(λ) > −η. Let
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k(s) :=
{

1
(α+β−1)!

dα

dsα (sα+β−1e−ηs), s ∈ (0,∞),
0, s ∈ (−∞, 0].

Then ft is the Laplace transform of δt∗k, where δt is the Dirac point mass at t. Moreover, 
ft(A) is defined through the Hille–Phillips functional calculus for A and

ft(A) = T (t)Aα(η + A)−α−β .

By the spectral inclusion theorem for the Hille–Phillips functional calculus in [27, The-
orem 16.3.5] one obtains ft(σ(A)) ⊆ σ(ft(A)). Let λ ∈ σ(A) \ {0} and n ∈ N. Then 
ftn(λ) ∈ σ(ftn(A)), so [19, Corollary IV.1.4] shows that

e− Re(λ)tn |λ|α
|η + λ|α+β

= |ftn(λ)| ≤ ‖ftn(A)‖ = ‖T (tn)Aα(η + A)−α−β‖.

This concludes the proof since the right-hand side tends to zero as n → ∞. �
If η + A is a sectorial operator in Lemma 4.18, then one may consider β ∈ [0, ∞) in 

(4.20). Similarly, if A is a sectorial operator then one may let α ∈ [0, ∞).
A similar statement as in the following proposition can be obtained for more general 

subspaces. It follows from Example 4.22 that the conclusion is sharp.

Proposition 4.19. Let A be an injective sectorial operator such that −A generates a 
C0-semigroup (T (t))t≥0 on X. Suppose that there exist α ∈ {0} ∪ [1, ∞), β ∈ [0, ∞)
and a g ∈ L1(R+) such that ‖T (t)‖L(Xα

β ,X) ≤ g(t) for t ≥ 0. Then C− \ {0} ⊆ ρ(A) and

{λα(1 + λ)−α−β(λ + A)−1 | λ ∈ C+ \ {0}} ⊆ L(X) (4.21)

is R-bounded. In particular, A has R-resolvent growth (α, β). Furthermore, if α = 0 then 
also 0 ∈ ρ(A).

Proof. Lemma 4.18 and the remark following it show that C− \{0} ⊆ ρ(A). By assump-
tion, T (·)Aα(1 + A)−α−βx ∈ L1(R+; X) for all x ∈ X, with

∞∫
0

‖T (t)Aα(1 + A)−α−βx‖Xdt ≤ ‖g‖L1(R+)‖x‖X .

Moreover, for each λ ∈ C+ one has [t �→ e−λt] ∈ L∞(R+). Set

F (λ)x :=
∞∫
e−λtT (t)Aα(1 + A)−α−βx dt
0
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for λ ∈ C+ and x ∈ X. By [33, Corollary 2.17], {F (λ) | λ ∈ C+ \ {0}} ⊆ L(X) is 
R-bounded. Lemma 3.1, applied to the semigroup (e−λtT (t))t≥0 generated by −(λ +A), 
shows that F (λ) = (λ +A)−1Aα(1 +A)−α−β for λ ∈ C+ \ {0}. Now Proposition 3.4 (3)
implies that

{λα(1 + λ)−α−β(λ + A)−1 | λ ∈ C \ {0}, | arg(λ)| ∈ [ϕ, π/2]} ⊆ L(X) (4.22)

is R-bounded for each ϕ ∈ (0, π/2). In particular, since A is a sectorial operator, the 
collection in (4.21) is uniformly bounded. Now a standard argument, considering a con-
volution with the Poisson kernel (see e.g. [30, Proposition 8.5.8]), shows that (4.21) is 
R-bounded.

For the second statement suppose that α = 0. To show that 0 ∈ ρ(A) we may consider 
β ∈ N, since (1 + A)−(�β	−β) ∈ L(X). Note that F (0) ∈ L(X, D(A)), with

AF (0)x = − lim
h↓0

T (h) − IX
h

F (0) = lim
h↓0

1
h

h∫
0

T (t)(1 + A)−βx dt = (1 + A)−βx

for all x ∈ X. Similarly, F (0)Ay = (1 + A)−βy for y ∈ D(A). By iteration one obtains 
that F (0) ∈ L(X, Xβ). This shows that the part of A in Xβ is invertible, with inverse 
F (0)(1 + A)β |Xβ

. Using the similarity transform (1 + A)−β : X → Xβ one obtains 
0 ∈ ρ(A), which concludes the proof. �
4.6.2. Operators which are not sectorial

In several of the results up to this point we have considered operators A with re-
solvent growth (α, β), for α, β ∈ [0, ∞), which are in addition assumed to be sectorial. 
Here we discuss which results are still valid when one drops the sectoriality assumption. 
A complicating factor is then that Aα is not well defined through the sectorial functional 
calculus, and we only consider α ∈ N0.

Let A be an injective operator, not necessarily sectorial, with resolvent growth (α, β)
on a Banach space X. First note that ε + A is a sectorial operator for each ε > 0, since 
−A generates a C0-semigroup and C− ⊆ ρ(ε + A). Hence the fractional domains

Xβ = D((1 + A)−β) = D((1 − ε + ε + A)−β)

are well defined via the sectorial functional calculus for ε +A, ε ∈ (0, 1), and up to norm 
equivalence they do not depend on the choice of ε.

If α1 = α2 ∈ N0 in Lemma 4.2, then (4.1) still holds and (4.2) is replaced by

‖T (t)‖L(X�να1�
νβ1

,X) ≤ Cνt
−μν (t ∈ [1,∞)). (4.23)

The proofs are identical except that one obtains (4.23) for ν /∈ N by applying (4.1) to 
the pairs (�ν�α1, �ν�β1) and (�ν�α1, �ν�β1). One can also show that for each τ ∈ [0, ∞)
there exists a σ ∈ N such that (4.5) holds for all ρ ∈ [0, min(σ , τ )).
α β
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Suppose that X has Fourier type p ∈ [1, 2] and let r ∈ [1, ∞] be such that 1
r = 1

p −
1
p′ . 

Then for all s ≥ 0 and ε > 0 there exists a Cs,ε ≥ 0 such that

‖T (t)‖L(Xμ
ν ,X) ≤ Cs,εt

−s (t ∈ [1,∞)), (4.24)

where μ = �(�s� + 1)α� ∈ N0, ν = (s + 1)β + 1
r + ε for p ∈ [1, 2), and ν = (s + 1)β for 

p = 2. Versions of (4.24) in the settings of Theorems 4.13, 4.14 and 4.16 also hold. In 
particular, if (T (t))t≥0 is asymptotically analytic then (4.24) holds with μ := �(s + 1)α�
and ν = 0 for each s ∈ N0.

4.7. Comparison and examples

In this subsection we compare the decay rates which we have obtained to what can 
be found in the literature, and we present examples to illustrate our results.

4.7.1. Comparison
Let α, β ≥ 0 and let A be an injective sectorial operator with resolvent growth (α, β)

on a Banach space X. The decay rates which we have obtained so far are in general 
not optimal when (T (t))t≥0 ⊆ L(X) is uniformly bounded. Indeed, for σ, τ ≥ 0 and 
N := sup{‖T (t)‖L(X) | t ∈ [0, ∞)} < ∞ it follows from [8,15] that there exists a Cρ ≥ 0
such that

‖T (t)‖L(Xσ
τ ,X) ≤ CρN(1 + log(t))ρt−ρ (t ∈ [1,∞)), (4.25)

where ρ = σ
α if β = 0, ρ = τ

β if α = 0, and ρ = min(σ, τ) · min( 1
α , 

1
β ) if αβ > 0. It was 

shown in [12] that (4.25) is optimal on general Banach spaces if α = 0, but on Hilbert 
spaces (4.25) can be improved to

‖T (t)‖L(Xσ
τ ,X) ≤ CρN

2t−ρ (t ∈ [1,∞)), (4.26)

cf. [7,12]. Moreover, (4.26) is optimal, in the sense that for σ, τ ∈ {0, 1} (4.26) implies 
that A has resolvent growth (α, β) (see [7,8]).

For unbounded semigroups (4.25) and (4.26) do not hold in general. Indeed, [45, 
Example 4.2.9] gives an example of an operator A with R-resolvent growth (0, 0) on X :=
Lp(1, ∞) ∩ Lp′(1, ∞), p ∈ [1, 2), such that ‖T (·)‖L(X) grows exponentially. Moreover, 
Example 4.20 shows that on Hilbert spaces (4.26) can fail for α = 0 and β > 0, and 
Corollary 4.11 is optimal for this example when τ = β.

Note that (4.25) need not be optimal for uniformly bounded semigroups when αβ > 0, 
and that Corollary 4.4 yields a sharper decay rate if e.g. α = σ = 1/ε and β = τ = ε for 
ε ∈ (0, 1). On Hilbert spaces one can use [7, Theorem 4.7], Proposition 3.4 and Lemma 4.2
to let ρ = min(σ

α , 
τ
β ) in (4.26), but a similar improvement of (4.25) on Banach spaces 

using the methods of [8,15] is not immediate.
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The characterization of polynomial stability in Theorem 4.6 is new even for uniformly 
bounded semigroups.

A scaling argument can be used to apply (4.25) to polynomially growing semigroups, 
leading to sharper decay rates than those in Corollary 4.4. Suppose α = 0, β > 0 and 
that ‖T (t)‖L(X) � tμ for all t ≥ 1 and some μ ≥ 0. For a > 0 one has

sup{‖e−atT (t)‖L(X) | t ∈ [0,∞)} � a−μ.

Now (4.25) yields

‖e−atT (t)‖L(Xτ ,X) � a−μ(1 + log(t))τ/βt−τ/β (t ∈ [1,∞)).

For t ≥ 1 set a := 1/t. Then

‖T (t)‖L(Xσ,X) � (1 + log(t))τ/βtμ−τ/β , (4.27)

which improves the rates from Corollary 4.4. However, other results in this section yield 
faster decay rates than (4.27) for large μ, such as Corollary 4.11 for μ ≥ 1.

In this article we make polynomial growth assumptions on the resolvent, whereas in 
[7,8,15,54] more general resolvent growth is allowed. The scaling argument from above 
can be used in certain cases to obtain decay estimates corresponding to more general 
resolvent growth, but this depends on the growth behavior of the semigroup on X. We 
do not know whether the techniques from this article can be used to obtain nontrivial de-
cay estimates for unbounded semigroups under, for example, exponential or logarithmic 
growth conditions on the resolvent.

4.7.2. An exponentially unstable semigroup with polynomial resolvent
We now apply our theorems to an operator from [68, Example 4.1], which in turn 

is a variation of a classical example in stability theory from [69] (see also [45, Example 
1.2.4]). This example shows that Corollary 4.11 is optimal in the case where α = 0 and 
τ = β.

Example 4.20. We show that for all β ∈ (0, ∞) and ε ∈ (0, 1) there exists an operator A
with resolvent growth (0, β) on a Hilbert space X such that ‖T (·)‖L(Xτ ,X) is unbounded 
for τ ∈ [0, (1 − ε)β). In fact, ‖T (t)‖L(Xτ ,X) grows exponentially in t for τ ∈ [0, (1 − ε)β). 
By Corollary 4.11 ‖T (·)‖L(Xβ ,X) is uniformly bounded, and therefore the exponent τ in 
Corollary 4.11 is optimal.

It suffices to show that for all γ, δ ∈ (0, 1) there exists an operator A with resolvent 
growth 

(
0, log(1/γ)

log(1/δ)
)

on a Hilbert space X such that ‖T (·)‖L(Xτ ,X) is unbounded for all 
τ ∈ [0, 1−γ

log(1/δ) ), as follows from the fact that 1 −γ is the first order Taylor approximation 

of log(1/γ) near γ = 1. Set β0 := log(1/γ)
log(1/δ) , and for n ∈ N let the n × n matrix Bn be 

given by



J. Rozendaal, M. Veraar / Journal of Functional Analysis 275 (2018) 2845–2894 2879
Bn(k, l) :=
{

1 for l = k + 1,
0 otherwise.

Let m(n) :=
⌊ log(n)

log(1/δ)
⌋
∈ N0 and let n0 ∈ N be such that m(n0) ≥ 2. Next, let X =⊕

n≥n0

�2m(n) be the �2 direct sum of the m(n)-dimensional �2m(n) spaces for n ≥ n0, and 

consider the operator A := (−in +γ−Bm(n))n≥n0 on X. As shown in [68, Example 4.1], 
−A generates a C0-semigroup (T (t))t≥0 ⊆ L(X) such that ω0(T ) = 1 −γ. We claim that 
C− ⊆ ρ(A) and that there exists a C ≥ 0 such that

‖(η + iξ + A)−1‖L(X) ≤ C(|ξ|β0 + 1) (η ∈ [0,∞), ξ ∈ R), (4.28)

which implies that A has resolvent growth (0, β0).
To prove the claim let z := η + iξ and note that Bm(n)

m(n) = 0 ∈ L(�2m(n)) and 
‖Bm(n)‖L(�2m(n)) = 1 for all n ≥ n0. Hence

‖(z − in + γ −Bm(n))−1‖L(�2m(n)) ≤
m(n)−1∑
k=0

‖Bk
m(n)‖L(�2m(n))

|z − in + γ|k+1 ≤
m(n)−1∑
k=0

1
|z − in + γ|k+1 .

Fix ξ ∈ R, and let n1 ∈ N be such that n1 ≥ n0 and |n1 − ξ| = min{|n − ξ| | n ∈ N, n ≥
n0}. Note that |z − in + γ| ≥ γ for all n ∈ N. Hence for ξ ≥ 0 and n ∈ {n0, . . . , n1 + 1}
one has

‖(z − in + γ −Bm(n))−1‖L(�2m(n)) ≤
m(n)−1∑
k=0

1
γk+1 = γ−m(n) − 1

1 − γ

≤ (1 − γ)−1γ−m(n1+1) ≤ (1 − γ)−1(n1 + 1)β0 � ξβ0 + 1,

where we used that n1 ≤ ξ+2. If ξ < 0 or n ≥ n1+2 then |z−in +γ| ≥ cγ :=
√

1 + γ2 > 1. 
Therefore

‖(z − in + γ −Bm(n))−1‖L(�2m(n)) ≤
∞∑
k=0

1
ck+1
γ

< ∞,

and now (4.28) follows. In fact, (4.28) is optimal for η = 0 (see [68, Example 4.1]).
We now show that ‖T (·)‖L(Xτ ,X) is unbounded for τ ∈ [0, 1−γ

log(1/δ) ). First note that 
‖T (t)‖L(Xτ ,X) ≥ ‖T (t)x‖X

‖(1+A)τx‖X
for each x ∈ Xτ with 1 = ‖x‖Xτ

� ‖(1 + A)τx‖X . Let 
n ≥ n0 and let x = (x(k))k≥n0 ∈ X be such that x(k) = 0 for all k �= m(n) and 
x(m(n)) = (0, . . . , 0, 1). Then, for τ ∈ N0, Newton’s binomial formula yields

‖(1 + A)τx‖X = ‖(−in + 1 + γ −Bm(n))τx(m(n))‖�2 � nτ . (4.29)

m(n)
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The moment inequality [23, Proposition 6.6.4] extends (4.29) to all τ ∈ [0, ∞). Now set 
t := m(n) − 1 ∈ [1, ∞). Lemma 5.10 yields

‖T (t)x‖X = e−γt‖etBm(n)x(n)‖�2m(n)
= e−γt

(m(n)−1∑
k=0

( tk
k!

)2)1/2

� e(1−γ)m(n)

(m(n))1/4
� n

1−γ
log(1/δ)

log(n)1/4
.

Combining this with (4.29) shows that, with v := 1−γ
log(1/δ) − τ ,

‖T (t)‖L(Xτ ,X) �
nv

log(n)1/4
�

etv

t1/4

for an implicit constant independent of n ≥ n0 and t ≥ 1. The latter is bounded as 
n → ∞ if and only if τ ≥ 1−γ

log(1/δ) holds, and otherwise it grows exponentially.

4.7.3. Operator matrices
We now give an example of an operator A with resolvent growth (n, 0), for n ∈

N \ {1}, such that ‖T (·)‖L(Xm,X) is unbounded for all m ∈ {0, . . . , n − 2}. Moreover, 
‖T (t)‖L(Xn−1,X) does not tend to zero as t → ∞. Hence the example would show that 
the exponent σ+1

α − 1 in Theorem 4.16 is sharp, if A were a sectorial operator. However, 
it turns out that this is not the case. As noted in Section 4.6.2, our theory also applies 
to operators which are not sectorial.

Example 4.21. Fix n ∈ N \ {1}. We give an example of an injective bounded operator A
with dense range on a Hilbert space X such that σ(A) = [0, 1],

sup
{ |λ|n

(1 + |λ|)n ‖(λ + A)−1‖L(X)

∣∣∣λ ∈ C+ \ {0}
}
< ∞, (4.30)

and

‖T (t)Am‖L(X) � tn−1−m (t ∈ [1,∞)) (4.31)

for all m ∈ {0, . . . , n − 1}, where (T (t))t≥0 is the C0-semigroup generated by −A. More-
over, A is not sectorial.

We construct A using operator matrices. Let A ∈ L(L2(0, 1)) be the multiplication 
operator given by Af(x) := xf(x) for f ∈ L2(0, 1) and x ∈ (0, 1). Set X := (L2(0, 1))n
and let N ∈ L(X) be the nilpotent operator matrix with Nk,k+1 = IL2(0,1) for k ∈
{1, . . . , n − 1), and Nk,l = 0 ∈ L(L2(0, 1)) for k, l ∈ {1, . . . , n} with l �= k + 1. Set 
A := AIX − N . Then A is bounded and has dense range. Let (T (t))t≥0 ⊆ L(X) and 
(S(t))t≥0 ⊆ L(X) be the C0-semigroups generated by −A and −AIX . Then T (t) =
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S(t)etN for all t ∈ [0, ∞), where we use that AIX and N commute. Since Nk �= 0 if and 
only if k ≤ n − 1, one has ‖T (t)‖L(X) � tn−1 for t ≥ 0. Also, σ(A) = [0, 1] and, using 
the Neumann series for the resolvent,

R(λ,A) = R(λ,A)(IX + R(λ,A)N)−1 =
n−1∑
k=0

R(λ,A)k+1(−N)k

for λ ∈ C \ [0, 1]. This implies (4.30).
Fix m ∈ {0, . . . , n − 1}. Then Am =

∑m
k=0

(
m
k

)
(−1)kAm−kNk and

T (t)Am =
m∑

k=0

(
m

k

)
(−1)kS(t)Am−ketNNk (t ∈ [0,∞)). (4.32)

Let k ∈ {0, . . . , m} and t ≥ m. Then

‖S(t)�L2(0,1)(−A)m−k‖L(L2(0,1)) = sup
s∈(0,1)

e−tssm−k
� tk−m.

The dominating matrix element of etNNk is tn−k−1

(n−k−1)!IL2(0,1). Hence

‖S(t)An−1−ketNNk‖L(X) � tk−mtn−k−1

for an implicit constant independent of t. Now (4.31) follows from (4.32).

4.7.4. Multiplication operators on Sobolev spaces
We now consider another typical setting where one encounters generators of un-

bounded semigroups with polynomial growth of the resolvent. It is included to show that 
even straightforward multiplication operators can generate unbounded C0-semigroups 
when the underlying space is a Sobolev space. The example also shows that Proposi-
tion 4.19 is sharp.

Example 4.22. Fix a ∈ (0, ∞) and b ∈ (0, 1) with a + b ≥ 1. Set ϕ(s) := s−a + isb for s ∈
(1, ∞). Let X := W 1,2(1, ∞) and let A be the multiplication operator on X associated 
with ϕ. Then σ(A) ⊆ C+ and −A generates the C0-semigroup (T (t))t≥0 ⊆ L(X) given 
by T (t)f(s) = e−tϕ(s)f(s) for t ∈ [0, ∞), f ∈ X and s ∈ (1, ∞). We prove that A has 
resolvent growth (0, b−1+2a

b ), by showing that ‖(η − iξ + A)−1‖L(X) � g(ξ) := |ξ| b−1+2a
b

for each η ∈ [0, ∞) and ξ ∈ R.
First note that the operator (η − iξ + A)−1 is the multiplication operator on X

associated with s �→ −(η + s−a + i(sb − ξ))−1. Furthermore,

sup{‖(η − iξ + A)−1‖L(X) | η ∈ [0,∞), ξ ∈ [−(a/b)b/(a+b), (a/b)b/(a+b)]} < ∞,
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where we use that −A is a semigroup generator and that σ(A) ⊆ C+. For ξ ∈ R

with |ξ| > (a/b)b/(a+b) we bound ‖(η − iξ + A)−1‖L(X), using the supremum norm of 
s �→ −(η + s−a + i(sb − ξ))−1 and its derivative, by

sup
s∈(1,∞)

1
|η + s−a + i(sb − ξ)| + sup

s∈(1,∞)

| − as−a−1 + ibsb−1|
|η + s−a + i(sb − ξ)|2

≤
√

2 sup
s∈(1,∞)

1
s−a + |sb − ξ| + sup

s∈(1,∞)

as−a−1 + bsb−1

s−2a + (sb − ξ)2 .
(4.33)

For the first term in (4.33) note that

sup
{ 1
s−a + |sb − ξ|

∣∣∣x ∈ [1, |ξ|1/b]
}
≤ ξa/b ≤ g(ξ)

and that s �→ (s−a+ |sb−ξ|)−1 is decreasing for s > |ξ|1/b > (a/b)1/(a+b). For the second 
term and for |ξ| > (a/b)b/(a+b) > 1 and s ∈ (1, (|ξ| + 1

2 )1/b), write

as−a−1 + bsb−1

s−2a + (sb − ξ)2 ≤ asa−1 + bsb−1

s−2a � g(ξ).

We conclude that A indeed has resolvent growth (0, b−1+2a
b ).

Let t ∈ [1, ∞) and write

‖T (t)‖L(X) � sup
k∈{0,1}

sup
s∈(1,∞)

∣∣∣ dk

dsk [e−tφ(s)]
∣∣∣

� sup
s∈(1,∞)

|ibsb−1te−ts−a − as−a−1te−ts−a | � sup
s∈(1,∞)

sb−1te−ts−a

� t1−
1−b
a

for implicit constants independent of t. It follows from Corollary 4.4 that

‖T (t)‖L(Xτ ,X) � t1−
1−b
a −ρ (t ∈ [1,∞))

for each τ ∈ [0, ∞) and ρ ∈ [0, τb/(b −1 +2a)). On the other hand, explicit computations 
yield

‖T (t)‖L(Xτ ,X) � sup
k∈{0,1}

sup
s∈(1,∞)

∣∣∣ dk

dsk [e−tφ(s)φ(s)−τ ]
∣∣∣

� sup
s∈(1,∞)

sb−1−bτ te−ts−a

� t1−
1−b+bτ

a .

(4.34)

Thus ‖T (·)‖L(Xτ ,X) decays faster than Corollary 4.4 would imply. We also obtain from 
(4.34) that ‖T (t)‖L(Xτ ,X) ∈ L1[0, ∞) if and only if τ > b−1+2a

b . Therefore Proposi-
tion 4.19 yields that A has resolvent growth (0, β) for each β > b−1+2a . Since the 
b



J. Rozendaal, M. Veraar / Journal of Functional Analysis 275 (2018) 2845–2894 2883
notions of uniform boundedness and R-boundedness coincide on the Hilbert space X, 
this shows that the parameters in Proposition 4.19 cannot be improved.

5. Exponential stability

In this section we use the theory from the previous sections to derive in a unified 
manner various corollaries on exponential stability.

Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X. Set 
s(−A) := sup{Re(λ) | λ ∈ σ(−A)}, and for β ∈ [0, ∞) let

sβ(−A) := inf{ω > s(−A) | sup{(1 + |λ|)−β‖(λ + A)−1‖L(X) | Re(λ) ≥ ω} < ∞},
sR(−A) := inf{ω > s(−A) | RX({(λ + A)−1 | Re(λ) ≥ ω}) < ∞}.

Then Proposition 4.19 yields

s0(−A) ≤ sR(−A) ≤ ω0(T ).

In particular, for each η ∈ (ω0(T ), ∞) the operator A +η is sectorial. Hence for β ∈ [0, ∞)
the fractional domain Xβ = D((η + A)β) is defined as in Section 2.3, and up to norm 
equivalence Xβ does not depend on the choice of η ∈ (ω0(T ), ∞). Throughout this section 
we fix a choice of η ∈ (ω0(T ), ∞) and the associated spaces Xβ for β ∈ [0, ∞). For x ∈ X

let

ω(x) := inf{ω ∈ R | lim
t→∞

‖e−ωtT (t)x‖X = 0},

and for a Banach space Y continuously embedded in X set

ωY (T ) := sup{ω(x) | x ∈ Y }.

For β ∈ (0, ∞) we write ωβ(T ) := ωXβ
(T ). The uniform boundedness principle implies 

that for all ω > ωY (T ) there exists an M ∈ (0, ∞) such that

‖T (t)‖L(Y,X) ≤ Meωt (t ∈ [0,∞)). (5.1)

We need two preparatory lemmas. The first is [65, Lemma 3.5], and it follows directly 
from Lemma 4.2 and from basic properties of convex functions.

Lemma 5.1. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X. 
Then the function (0, ∞) → [−∞, ∞), β �→ ωβ(T ), is continuous on open subintervals 
of {β ∈ R | ωβ(T ) ∈ (−∞, ∞)}.

The following lemma is [65, Theorem 3.1] (see also [67, Theorem 3.2]). We show that 
it follows directly from Lemma 5.1 and Proposition 4.3.
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Lemma 5.2. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X. 
Then ωβ+1(T ) ≤ sβ(−A) for all β ∈ [0, ∞).

Proof. First note that by Lemma 5.1 it suffices to show that ωβ+1+ε(T ) ≤ sβ(−A) for 
all β ≥ 0 and ε ∈ (0, 1). Also, by a scaling argument we may suppose that sβ(−A) < 0
and prove that ωβ+1+ε(T ) ≤ 0. But in this case A has resolvent growth (0, β), and 
Proposition 4.3 then shows that supt≥0 ‖T (t)‖L(Xβ+1+ε,X) < ∞. �
5.1. The resolvent as an (Lp, Lq) Fourier multiplier

The following theorem is the main link between exponential stability and (Lp, Lq)-
Fourier multipliers. This result appeared in [26] and in full generality in [37, Theorem 3.6]. 
Here we give a proof using Theorem 4.6.

Theorem 5.3. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space 
X, and let β ∈ [0, ∞). Then, for all p ∈ [1, ∞) and q ∈ [p, ∞],

ωβ(T ) = inf{ω > sβ(−A) | (ω + i · +A)−1 ∈ Mp,q(R;L(Xβ , X))}. (5.2)

In fact, (ω + i · +A)−1 ∈ Mp,q(R; L(Xβ , X)) for all ω > ωβ(T ).

Proof. Fix p ∈ [1, ∞) and q ∈ [p, ∞], and denote the right-hand side of (5.2) by μp,q,β(A). 
We first show that ωβ(T ) ≥ μp,q,β(A). Let ω > ωβ(T ), and apply Proposition 4.19 to 
(e−ωtT (t))t≥0 to obtain ω > sβ(−A). Now (ω + i · +A)−1 ∈ Mp,q(R; L(Xβ , X)) follows 
from Lemma 3.1 and Young’s inequality for convolutions. Hence ω ≥ μp,q,β(A), and the 
statement follows by letting ω ↓ ωβ(T ).

To prove the reverse inequality it suffices to assume that μp,q,β(A) < 0 and show 
that ωβ(A) ≤ 0. Note that R(i·, A) ∈ Mp,q,β(R; L(Xβ , X)). Indeed, this follows by us-
ing Proposition 3.4 and [53, Theorem 5.18] to express (i · +A)−1 ∈ L∞(R; L(Xβ , X))
as a convolution of the Poisson kernel with (ω + i · +A)−1 for sβ(−A) < ω < 0, 
and by applying Young’s inequality. From Theorem 4.6 with ψ ≡ 0 one now obtains 
supt≥0 ‖T (t)‖L(Xβ ,X) < ∞ and ωβ(T ) ≤ 0. Here one may use Lemma 5.2 to see that Xβ

satisfies the assumptions of Theorem 4.6. �
The first part of the following theorem is [65, Theorem 3.2] (see also [49, Theorem 

4.4] and [67, Remark 3.3]). The proof avoids the use of Mikhlin’s multiplier theorem on 
Besov spaces (see [65, Theorem 2.1]) and instead relies on the elementary Proposition 2.2. 
Part (2) is the main result of [47].

Theorem 5.4. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X. 
Then the following assertions hold:

(1) If X has Fourier type p ∈ [1, 2] then ω 1
p− 1

p′
(T ) ≤ s0(−A).

(2) If X has type p ∈ [1, 2] and cotype q ∈ [2, ∞] then ω 1− 1 (T ) ≤ sR(−A).

p q
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Proof. By Lemma 5.1 and a scaling argument, for (1) we may assume that s0(−A) < 0
and show that ω 1

p− 1
p′ +ε(T ) ≤ 0 for any ε > 0. The latter follows directly from The-

orem 4.9. In the same way (2) follows from Theorem 4.13. Alternatively, one can give 
direct proofs by combining Theorem 5.3 with Proposition 3.4 and the multiplier results 
in Propositions 2.2 and 2.3. �

The geometry of X and regularity of the resolvent can be used to obtain R-bounds 
from uniform bounds, leading to the following corollary.

Corollary 5.5. Let −A be the generator of a C0-semigroup on a Banach space X with 
type p ∈ [1, 2] and cotype q ∈ [2, ∞]. Then ω 2

p− 2
q
(T ) ≤ s0(−A).

Proof. Let 1r = 1
p−

1
q and β > 1

p−
1
q . By Lemma 5.2 we may suppose that β ∈ (0, 1/2). By 

Lemma 5.1, Theorem 5.3 and Proposition 2.3 it suffices to show that for each ω > s0(A)
the set {(1 +|ξ|)β(ω+iξ+A)−1 | ξ ∈ R} ⊆ L(X2β , X) is R-bounded. Let E := L(X2β , X)
and define f : R → E by f(ξ) := (1 + |ξ|)β(ω + iξ + A)−1 for ξ ∈ R. Then ‖f(ξ)‖E ≤
C(1 + |ξ|)−β by Proposition 3.4, so that f ∈ Lr(R; E). Moreover,

‖f ′(ξ)‖L(E) ≤ β(1 + |ξ|)β−1‖(ω + iξ + A)−1‖E + (1 + |ξ|)β‖(ω + iξ + A)−2‖E
� (1 + |ξ|)−β−1 + (1 + |ξ|)−β .

So f ∈ W 1,r(R; E), and Lemma 2.1 shows that the range of f is R-bounded. �
For X = Lr(Ω) with r ∈ [1, ∞), Corollary 5.5 and part (1) of Theorem 5.4 yield the 

same conclusion. It is an open question whether in this case the index |2r − 1| can be 
improved.

Remark 5.6. In Theorem 5.4 and Corollary 5.5 one can add a parameter β ∈ [0, ∞), as 
in Lemma 5.2. Then Theorem 5.4 (1) says that ωβ+ 1

p− 1
p′

(T ) ≤ sβ(−A), and (2) that 
ωβ+ 1

p− 1
q
(T ) ≤ sR,β(−A). Here

sR,β(−A) := inf{ω > s(−A) | RX({(1 + |λ|)−β(λ + A)−1 | Re(λ) ≥ ω}) < ∞}.

In Corollary 5.5 the more general inequality is ω2β+ 2
p− 2

p′
(T ) ≤ sβ(−A). The proofs are 

the same, using Proposition 3.4.

5.2. The resolvent as a Fourier multiplier on Besov spaces

In this subsection we give an alternative characterization of ωβ(T ), β > 0, using 
Fourier multipliers on Besov spaces. We then use this characterization to obtain a new 
stability result for positive semigroups.

For the definition and basic properties of vector-valued Sobolev and Besov spaces 
which are used below we refer to [58,59].
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Theorem 5.7. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X, 
and let β ∈ (0, ∞). Then for all p ∈ [1, ∞) and q ∈ [p, ∞],

ωβ(T ) = inf{ω > sβ(−A) | Tmω
∈ L(Bβ

p,1(R;X), Lq(R;X))},

where mω(·) := (ω + i · +A)−1 for ω > sβ(−A).

Proof. Denote the right-hand side of (5.2) by νp,q,β(A). We first show that ωβ(T ) ≤
νp,q,β(A). By shifting A and using Lemma 5.1 we may assume that νp,q,β(A) < 0 and 
prove that ωβ+ε(T ) ≤ 0 for any ε > 0. Without loss of generality we may suppose that 
(β, β + ε] ∩N = ∅. Let n := �β + ε�, α ∈ (β, β + ε) and let DA(α, 1) = (X, D(An))α/n,1
be the appropriate real interpolation space. Set m(ξ) := (iξ + A)−1 for ξ ∈ R. As 
in Theorem 5.3 one sees that Tm ∈ L(Bα

p,1(R; X), Lq(R; X)), where we also use that 
Bα

p,1(R; X) ⊆ Bβ
p,1(R; X) continuously.

Let ω > ω0(T ) and let F ∈ L(X, Lp(R; X)) be given by Fx(t) := tne−ωtT (t)x for 
t ∈ R and x ∈ X, where we extend the semigroup by zero to all of R. Then F : Xn →
Wn,p(R; X) is bounded and, by real interpolation,

F : DA(α, 1) → (Lp(R;X),Wn,p(R;X))α/n,1 = Bα
p,1(R;X)

is bounded. Now fix x ∈ Xα+1 and let f := Fx. Then

‖Tm(f)‖Lq(R;X) � ‖f‖Bα
p,1(R;X) � ‖x‖DA(α,1) � ‖x‖Xβ+ε

, (5.3)

where we have also used that Xβ+ε ↪→ XDA(α,1). By Lemmas 3.1 and 5.2 one has

T ∗ f(t) :=
t∫

0

T (t− s)f(s)ds = Tm(f)(t) (t ∈ [0,∞)) (5.4)

and Tm(f)(t) = 0 for t ∈ (−∞, 0). On the other hand, T (t − s)f(s) = sne−ωsT (t)x for 
s ∈ [0, t]. Hence, for t ≥ 1,

‖T (t)x‖X � ‖T (t)x‖X
t∫

0

sne−ωsds = ‖T ∗ f(t)‖X .

Now, using that supt∈[0,1] ‖T (t)‖L(X) < ∞, it follows from (5.3) and (5.4) that

( ∞∫
‖T (t)x‖qXdt

) 1
q � ‖x‖X + ‖T ∗ f‖Lq([1,∞);X) � ‖x‖Xβ+ε

.

0
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Therefore Proposition 4.8 implies that R(i·, A) ∈ M1,q(R; L(Xβ+ε, X)). Here one may 
again use Lemma 5.2 to see that Xβ+ε satisfies the conditions of Proposition 4.8. Finally, 
Theorem 5.3 shows that ωβ+ε(A) ≤ 0.

Next, we prove that ωβ(T ) ≥ νp,q,β(A). To do so it suffices by Lemma 5.1 to show that 
for all α ∈ (0, β) and ω > ωα(T ) one has Tmω

∈ L(Bβ
p,1(R; X), Lq(R; X)). Moreover, we 

may suppose that α /∈ N. Let n ∈ N be such that α, β ∈ (n − 1, n]. By (5.1) there exist 
M, ε ∈ (0, ∞) such that e−ωt‖T (t)‖L(Xα,X) ≤ Me−εt for all t ≥ 0. For f ∈ S(R; X) set 
Sαf := (ω + A)−αTmω

f . Then Sα ∈ L(Lp(R; X), Lq(R; X)) by Theorem 5.3. We claim 
that Sα ∈ L(W k,p(R; X), Lq(R; Xk)) for each k ∈ [1, . . . , n}. Indeed, let f ∈ Ck

c (R) ⊗X

and t ∈ [0, ∞). Lemma 3.1 and integration by parts yield

(ω + A)kSαf(t) =
t∫

−∞

(ω + A)ke−ω(t−s)T (t− s)(ω + A)−αf(s)ds

= −
t∫

−∞

d

ds
[(ω + A)k−1e−ω(t−s)T (t− s)](ω + A)−αf(s)ds

= −(ω + A)k−1−αf(t) +
t∫

−∞

(ω + A)k−1eω(t−s)T (t− s)(ω + A)−αf ′(s)ds

= −(ω + A)k−1−αf(t) + (ω + A)k−1Sαf
′(t).

By iterating this procedure one obtains

(ω + A)kSαf(t) = −
k∑

j=1
(ω + A)k−j−αf (j−1)(t) + Sαf

(k)(t).

Since k − 1 − α < 0 this yields

‖(ω + A)kSαf‖Lq(R;X) ≤
k∑

j=1
‖(ω + A)k−j−αf (j−1)‖Lq(R;X) + ‖Sαf

(k)‖Lq(R;X)

� ‖f‖Wk−1,q(R;X) + ‖f (k)‖Lp(R;X) � ‖f‖Wk,p(R;X),

and the claim follows since (ω + A)−k : X → Xk is an isomorphism.
Now, if β = n then Bβ

p,1(R; X) ⊆ Wn,p(R; X) continuously so Sα : Bβ
p,1(R; X) →

Lq(R; Xβ) is bounded. On the other hand, if β < n then real interpolation for the 
exponents k = n − 1 and k = n shows that Sα ∈ L(Bβ

p,1(R; X), Lq(R; DA(β, 1))). Since 

α < β, in both cases we obtain that Tmω
: Bβ

p,1(R; X) → Lq(R; X) is bounded, which 
concludes the proof. �
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The following theorem unifies [64, Theorem 1] and [47, Corollary 1.3] and is new for 
1 ≤ p < q < 2 and 2 < p < q < ∞. Here there is no use in adding an additional 
parameter β as in Lemma 5.2 and Remark 5.6, since s0(−A) = s(−A).

Theorem 5.8. Let −A be the generator of a positive C0-semigroup (T (t))t≥0 on a Ba-
nach lattice X which is p-convex and q-concave for p ∈ [1, ∞) and q ∈ [p, ∞). Then 
ω 1

p− 1
q
(T ) ≤ s(−A).

Proof. First note that s0(−A) = s(−A) (see [3, Theorem 5.3.1]). Let r ∈ (1, ∞] sat-
isfy 1

r = 1
p − 1

q and let ω > s0(−A). By Theorem 5.7 it suffices to show that Tm ∈
L(B1/r

p,1 (R; X), Lq(R; X)) for m(ξ) := (ω + iξ + A)−1, ξ ∈ R. For n ∈ N with n > ω0(T )
set Kn(t) := e−ωtT (t)n(n +A)−1, t ≥ 0, and let Kn ≡ 0 on (−∞, 0). Then Kn(t) ∈ L(X)
is positive for all t ∈ R, and Kn(·)x ∈ L1(R; X) for all x ∈ X by Lemma 5.2. Further-
more, F(Knx)(ξ) = mn(ξ)x for ξ ∈ R, where mn(ξ) := (ω + iξ +A)−1n(n +A)−1. Note 
that supξ∈R ‖mn(ξ)‖L(X) < ∞. Now, since X has cotype q < ∞ (see [18, p. 332]), it 
follows from Proposition 2.4 and the continuous embedding B1/r

p,1 (R; X) ⊆ H
1/r
p (R; X)

that

C := sup
n

‖Tmn
‖L(B1/r

p,1 (R;X),Lq(R;X)) < ∞.

Now fix f ∈ S(R; X). Then ‖Tmn
(f)‖Lq(R;Y ) ≤ C‖f‖

B
1/r
p,1 (R;X) for all n. Moreover, for 

ξ ∈ R and x ∈ X one has limn→∞ mn(ξ)x = m(ξ)x by [19, Lemma 3.4]. Now [55, 
Lemma 3.1] implies that Tm ∈ L(B1/r

p,1 (R; X), Lq(R; X)), as required. �
Using Theorem 5.8 and [22, Example 5.5b] one can modify an example due to Arendt 

(see [3, Example 5.1.11], [67, Section 4] and [47, Example 1.4]) to construct for all 
1 ≤ p ≤ q < ∞ a positive C0-semigroup (T (t))t≥0 on X = Lp(1, ∞) ∩ Lq(1, ∞) with 
generator −A such that ω0(T ) = − 1

p ,

ω 1
p− 1

q
(T ) = sR(−A) = s0(−A) = −1

q
,

and such that α �→ ωα(T ) is linear on [0, 1p − 1
q ]. This shows that the index 1

p − 1
q in 

part (2) of Theorem 5.4 and in Theorem 5.8 is optimal, which shows in turn that [55, 
Theorem 3.24] is optimal. Moreover, it follows from [65, Example 4.4] that the positivity 
assumption in Theorem 5.8 cannot be omitted.
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Appendix A. Technical estimates

In this section we provide the proofs of a few technical results which are used in the 
main text.

A.1. Contour integrals

We start with a lemma which is needed when dealing with certain contour integrals 
in Proposition 3.4.

Lemma 5.9. Let ϕ ∈ (0, π2 ] and θ ∈ (π − ϕ, π). Set Ω := C+ \ (Sϕ ∪ {0}) and let 
Γ := {reiθ | r ∈ [0, ∞)} ∪{re−iθ | r ∈ [0, ∞)} be oriented from ∞eiθ to ∞e−iθ. Then for 
all α ∈ [0, ∞), β ∈ (0, ∞), η ∈ (0, 1] and λ ∈ Ω one has

1
2πi

∫
Γ

zα

(η + z)α+β(z + λ + η − 1)dz = (1 − η − λ)α

(1 − λ)α+β
. (A.1)

Furthermore, for all γ ∈ [1, ∞) and δ ∈ [0, ∞) there exists a constant C ∈ [0, ∞) such 
that

|z|γ
|1 + z|γ+δ

|1 − λ|
|z + λ| ≤ C and 1 + |λ|

|12 + z|δ|z + λ− 1
2 |

≤ C (A.2)

for all z ∈ Γ and λ ∈ Ω.

Proof. Let α ∈ [0, ∞), β ∈ (0, ∞), η ∈ (0, 1] and λ ∈ Ω. For r ∈ (0, Im(λ)/2] and 
R ≥ 2|λ| + 2 set Γ+ := {seiθ | s ∈ [r, R]}, Γ− := {se−iθ | s ∈ [r, R]}, Γr := {reiν | ν ∈
[−θ, θ]} and ΓR := {Reiν | ν ∈ [−θ, θ]}, and let Γr,R := Γ+ ∪ Γr ∪ Γ− ∪ ΓR be oriented 
counterclockwise. Then

∫
ΓR

|z|α
|η + z|α+β |z + λ + η − 1|d|z| =

θ∫
−θ

R1+α

|η + Reiν |α+β |Reiν + λ + η − 1|dν

= R−β

θ∫
−θ

1
| ηR + eiν |α+β |eiν + λ+η−1

R |
dν

≤ 22+α+βθR−β ,

and the latter tends to zero as R → ∞. Similarly, one sees that
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∫
Γr

|z|α
|η + z|α+β |z + λ + η − 1|d|z|

tends to zero as r → 0. Now Cauchy’s integral theorem yields

1
2πi

∫
Γ

zα

(η + z)α+β(z + λ + η − 1)dz

= lim
r→0,R→∞

1
2πi

∫
Γr,R

zα

(η + z)α+β(z + λ + η − 1)dz = (1 − η − λ)α

(1 − λ)α+β
,

which proves (A.1).
Next, let γ ∈ [1, ∞), δ ∈ (0, ∞), z ∈ Γ and λ ∈ Ω. Note that |z + λ| = |z| |e±iθ + λ′|

for some λ′ ∈ Ω. Since the distance from e±iθ to −Ω is nonzero, there exists a constant 
C1 ∈ (0, ∞) such that |z + λ| ≥ C1|z|. Hence

|z|γ
|1 + z|γ+δ

|1 − λ|
|z + λ| ≤

|z|γ
|1 + z|γ+δ

( |1 + z|
|z + λ| + 1

)
≤ |z|γ

|1 + z|γ+δ

(C−1
1
|z| + C−1

1 + 1
)
,

and the latter is uniformly bounded in z ∈ Γ.
For the second term in (A.2) first note that the distances from z − 1

2 to Γ, and hence 
to −Ω, and from z + 1

2 to 0 are bounded uniformly from below by a constant C2 > 0. 
Hence |z + λ − 1

2 | ≥ C2 and |12 + z| ≥ C2 for all z ∈ Γ and λ ∈ Ω. Therefore, for the 

second term in (A.2) it suffices to bound |λ|
|z+λ− 1

2 |
uniformly. Let ν ∈ [π2 , 

π
2 ] be such that 

λ = |λ|eiν , and set w := z
|λ| ∈ Γ. Then

|λ|
|z + λ− 1

2 |
= 1

|w + eiν − 1
2|λ| |

.

Now the required results follows, since by geometric inspection one sees that

|(w − 1
2|λ| ) − (−eiν)| ≥ dist(Γ,−eiν) ≥ dist(Γ,−eiϕ). �

A.2. Estimates for exponential functions

The following lemma provides a two-sided exponential estimate, one part of which is 
used in Example 4.20.

Lemma 5.10. Let m ∈ N. Then

em

m1/4e2 ≤
( m∑

j=0

(mj

j!

)2)1/2
≤ em

m1/4 . (A.3)



J. Rozendaal, M. Veraar / Journal of Functional Analysis 275 (2018) 2845–2894 2891
Proof. Both estimates are clear for m = 1, so we may consider m ≥ 2 throughout. Let 
k ∈ N ∩ [1, �√m�] and note that

log
( mm−k

(m− k)!

)
= (m− k) log(m) − log((m− k)!)

≥ (m− k) log(m) − (m− k + 1
2 ) log(m− k) + m− k − 1,

where we used Stirling’s formula. Moreover,

log(m− k) = log(m) + log(1 − k
m ) ≤ log(m) − k

m ,

where we used that log(1 − s) ≤ −s for s ∈ (0, 1). Hence

log
( mm−k

(m− k)!

)
≥ (m− k) log(m) − (m− k + 1

2 )(log(m) − k
m ) + m− k − 1

≥ −1
2 log(m) − k2

m
+ m− 1 ≥ −1

2 log(m) + m− 2,

where in the last step we used that k2 ≤ m holds. We now see that m
m−k

(m−k)! ≥ m−1/2e−2em, 
from which we deduce the first inequality in (A.3):

m∑
j=0

(mj

j!

)2
≥

�√m�∑
k=0

( mm−k

(m− k)!

)2
≥ m

1
2m−1e−4e2m = m−1/2e−4e2m.

For the second inequality let aj := mj

j! for j ∈ {0, . . . , m}. Then another application 
of Stirling’s formula yields

am−1 ≤ mm−1
√

2π(m− 1)m− 1
2 e−(m−1)

= em

e
√

2π
√
m

(
1 + 1

m− 1

)m− 1
2 ≤ em√

m
.

Also, aj ≤ am−1 for each j ∈ {0, . . . , m − 1}, where we use that aj+1/aj ≥ 1 for each 
j ∈ {0, . . . , m − 1} and that am

am−1
= 1. Since 

∑m
j=0 aj ≤ em, the upper estimate in (A.3)

follows from

m∑
j=0

a2
j ≤ am−1

m∑
j=0

aj ≤
e2m
√
m
. �
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