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Is Stokes-Einstein relation valid for the description of intra-diffusivity of 
hydrogen and oxygen in liquid water? 
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A B S T R A C T   

In this study, all available data from experiments and molecular simulations for the intra-diffusivities of H2 and 
O2 in H2O, and for the self-diffusivity of pure H2O are analyzed to examine the validity of the Stokes-Einstein 
relation. This analysis is motivated by the significant amount of work devoted through the years for 
improving the predictions of intra- and self-diffusivities in binary and multi-component mixtures relevant to 
chemical and environmental processes. Here, we calculate the slopes s and t corresponding to the ln(D) vs. ln

( T
η
)

and ln
( D

T
)

vs. ln
( 1

η
)

plots, respectively, where D is the intra-diffusivity, η the viscosity, and T the temperature of the 
systems. Our results show that s and t deviate from unity no matter if the experimental or simulation data are 
used. This means that the Stokes-Einstein relation is violated for the binary systems of H2 and O2 with H2O, and 
for pure H2O. Although prior studies mainly focused on re-evaluating the parameter A of the SE-based semi- 
theoretical/semi-empirical approaches expressed as D = A T

η, our results indicate that reliable predictions for the 
intra- and self-diffusivities can be achieved by improving the accuracy of the prediction of slopes s and t.   

1. Introduction 

The accurate knowledge of the intra-diffusivity of light gases (e.g., 
H2, O2) in liquid H2O over a wide range of temperatures and pressures is 
important for the design and optimization of fuel cells [1] and electro-
lyzers [2], and for controlling processes such as the air-water gas ex-
change [3]. The three major routes that are followed for the 
measurement/estimation of diffusion coefficients are experiments, 
theoretical/semi-empirical models, and molecular simulations. 

At relatively low pressures (e.g., below 1 MPa), the solubilities of H2 
and O2 in H2O are rather low [4,5]. For example, the solubility of O2 in 
H2O at atmospheric pressure and temperatures in the range 273.15 – 
348.15 K ranges from 3.95 × 10-5 to 1.50 × 10-5 (in mole fractions)[5]. 
Interestingly, at pressures up to 10 MPa and temperatures up to 333 K, 
the solubilities can increase by two orders of magnitude. For high 
pressures (i.e., 100 MPa), the solubilities can increase to a maximum of 
approximately 1.66× 10-2. For a detailed discussion on the effect of 
pressure on the solubility of O2 in H2O the reader is referred to the study 
by Geng and Duan [6]. In that study, an accurate thermodynamic model 
to correlate the available experimental measurements has been also 

presented. A similar behaviour can be observed for the solubilities of H2 
in H2O [4,7]. Therefore, the intra-diffusivity of these gases in H2O 
essentially corresponds to the infinite dilution limit [8]. 

For conditions at which the solubilities of the gases in H2O are 
significantly higher than in the infinite dilution limit, the computation of 
mutual diffusivities (Fick and Maxwell-Stefan) would be of practical 
interest since the mass transport occurs due to gradients in chemical 
potential [9,10]. To this purpose, one can either use Darken 
equation-based models [9,11,12] or can follow the well-established 
methodology of computing the Maxwell-Stefan diffusivities (DMS) from 
the Onsanger coefficients in molecular dynamics (MD) simulations 
[13–15], and the thermodynamic factor (Γ), e.g., from Kirkwood-Buff 
integrals [16,17]. Fick diffusivities follow from DFick = ΓDMS. In this 
study, we limit our attention on the diffusivities of infinite diluted gases 
in H2O (for which the intra-, Maxwell-Stefan, and Fick diffusivities are 
all equal [9]). 

Usually, very limited experimental diffusivity measurements are 
available, which are in most cases at/or close to the atmospheric pres-
sure [18]. A detailed discussion on how to overcome this lack of data 
through the use of semi-empirical approaches is provided elsewhere [10, 
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12]. Namely, semi-empirical correlations have been extensively used for 
obtaining the self- and intra-diffusivity values at conditions outside the 
range of experimental measurements [9–12,19–22]. Such approaches 
are often guided by the hydrodynamic theory of Stokes-Einstein (SE) 
[12]. Additional details on SE are provided in Section 2. The accuracy of 
such semi-empirical methods depends on the extent and quality of the 
experimental measurements that have been used for their development 
(i.e., during model calibration). Although, these methods are relatively 
easy to use and computationally fast, very limited insight into the 
transport mechanisms occurring in the real system can be extracted. In 
sharp contrast, approaches such as MD simulations, although being 
significantly more computationally demanding, can provide detailed 
physical insight [23,24]. As a result of the ample computational power, 
the optimized open-source software [25,26], and the accurate intra- and 
intermolecular potentials available today [27–29], MD has become a 
reliable and widely used approach for obtaining diffusivities of pure 
components and mixtures [7,13,30–36], which in turn can be used to 
devise engineering models and validate the semi-empirical approaches. 
The purpose of this study is threefold: a) To examine the validity of the 
SE relation for the intra-diffusivities of H2 and O2 in liquid H2O by 
utilizing the recent wide collection of MD data [7], b) to perform 
extensive comparisons with available experimental measurements for 
the computed values of the SE-associated exponents. While an analysis 
of the self-diffusion coefficients of pure liquid H2O has been discussed in 
detail in recent studies [37–39], this is not the case for the available 
experimental data regarding the intra-diffusion coefficients of H2 and O2 
in liquid H2O. c) To provide guidance to future devel-
opment/modification of semi-empirical models. 

The remainder of this manuscript is organized as follows: In Section 
2, the theoretical background is given. In Section 3 the methodology is 
described. In Section 4, we present the results and discussion for the 
experimental and MD-based data that are available in the literature. 
Finally, in Section 5, the conclusions are presented. 

2. Theory 

The hydrodynamic SE theory directly connects the diffusion coeffi-
cient D of a rigid, spherical, Brownian particle in a stationary viscous 
fluid, to the shear viscosity of the fluid η as follows [40]: 

D =
kT
Crη (1)  

where k is the Boltzmann constant, T is the temperature of the fluid, and 
r is the radius of the macroscopic particle. C is a constant that depends 
on the boundary conditions at the particle/fluid interface. C is equal to 
6π when assuming no-slip conditions, e.g., diffusion of very large 
spherical molecules in solvents of low molecular weight. C is equal to 4π 
when assuming complete slip conditions, i.e., when the solute and the 
solvent are identical [21]. In the latter case, D is the self-diffusion co-
efficient. As pointed out by Poling et al. [12], Eq. (1) strictly applies to 
macroscopic systems. Eq. (1) holds for simple fluids at relatively high 
temperatures (i.e., above the melting point of the species) [41]. 
Although the SE relation is strictly valid only for dilute systems of 
colloidal particles [42], it has been demonstrated that it works 
remarkably well for higher densities and for more complex systems. The 
validity of the SE relation has even been validated for molecular level 
systems, even though the original theory was derived for a sphere of 
supermolecular dimensions suspended in a continuous medium (see for 
example the different systems discussed by Shi et al. [40]). An implied 
assumption, originating from the initial development [43] of the SE 
relation, is that the radius of the Brownian particle r is constant (i.e., it 
does not dependend on T) [44,45]. In this work, we adopt this 
assumption. It should be noted that in an effort to apply the SE relation 
to more complex systems, the use of an effective hydrodynamic radius 
[46] has been proposed [40]. Such an approach, however, could result 

in a variable r. This is an issue discussed recently by Ren and Wang [47]. 
The SE theory has often been used as a guide in developing semi- 

theoretical models to predict the intra-diffusion coefficients [10,12]. 
From Eq. (1) we observe that D∝

( T
η
)
. Various semi-theoretical models 

that have been proposed are often expressed as: 

D = A
T
η (2)  

where A can be a function of various parameters of the system. By taking 
the logarithm of both sides of Eq. (2) 

ln(D) = ln(A) + ln
(

T
η

)

(3)  

the “intercept” of the resulting line, (i.e., ln(A)), is associated with the 
function A, while the “slope” is equal to 1, thus, indicating the validity of 
the SE relation. 

For a detailed discussion on SE-inspired, semi-theoretical models the 
reader is referred to the extensive review papers of Polling et al. [12], 
and Kraft and Vogel [48]. Typical examples of such models are the 
following:  

• Wilke-Chang [19], in which 

A ≡
7.4 × 10− 15 ̅̅̅̅̅̅̅̅

ϕM
√

υ0.6
1

(4)  

where ϕ is the association factor of the solvent (dimensionless), 
which has a value equal to 2.6 for water, M is the molar mass of the 
solvent in g/mol.  

• Scheibel [49], in which 

A ≡
8.2 × 10− 15

υ1/3
1

[

1+
(

3υ2

υ1

)2/3
]

(5)  

when υ1 ≥ 2.5υ2, and 

A ≡
1.75 × 10− 14

υ1/3
1

(6)  

when υ1 < 2.5υ2.  
• Reddy-Doraiswamy [50], in which 

A ≡
Ω

̅̅̅̅̅
M

√

υ1/3
1 υ1/3

2

(7)  

with Ω = 10− 14 when υ2
υ1
≤ 1.5, while Ω = 8.5 × 10− 15 when υ2

υ1
> 1.5.  

• Lusis-Ratcliff [51], in which 

A ≡
8.52 × 10− 15

υ1/3
1

[

1.4
(

υ2

υ1

)1/3

+
υ2

υ1

]

. (8)   

In Eqs. (4)–(8), υ1 and υ2 are the molar volumes of the solute 
(component 1) in the solvent (component 2) at their normal boiling 

Table 1 
Molar mass, normal boiling temperature (at 1 atm), and molar volumes at the 
normal boiling point for H2, O2, and H2O.   

Molar mass (g/mol) Tb (K) V (cm3/mol) Reference 

H2 2.016 20.369 14.3 Wilke and Chang [19] 
H2 2.016 20.369 28.45 NIST [52] 
O2 31.199 90.188 25.6 Wilke and Chang [19] 
O2 31.199 90.188 28.04 NIST [52] 
H2O 18.015 373.12 18.9 Wilke and Chang [19] 
H2O 18.015 373.12 18.8 NIST [52]  

I.N. Tsimpanogiannis and O.A. Moultos                                                                                                                                                                                                   



Fluid Phase Equilibria 563 (2022) 113568

3

points at 1 atm. Both molar volumes are in units of cm3/mol. Table (1) 
shows the corresponding υ1 and υ2 obtained from NIST [52], as well as 
the values reported by Wilke and Chang [19] for the three components 
of interest to this study (i.e., H2, O2 and H2O). 

It is evident that these semi-empirical models are based on the 
assumption that the SE dependency is valid, while a re-evaluation of the 
function A is performed to improve the performance in predicting the 
intra-diffusion coefficients. However, this assumption is not always 
valid. Instead, both model and real fluids have been found to be corre-
lated accurately by the fractional Stokes–Einstein (FSE) relation. This is 
clearly shown by the extended list of examples discussed by Magalhaes 
et al. [53] who reviewed the experimental diffusivities of 539 binary 
systems that contained 8219 data points. According to Harris [54], there 
are two forms of the FSE encountered in the literature that are of interest 
to this study: 

D
T

∝
(

1
η

)t

(9)  

D∝
(

T
η

)s

(10)  

where the exponents t and s can be determined from the slope of the 
corresponding log–log plot. When t or s are equal to 1, the SE relation is 
valid. When t ∕= 1 (or s ∕= 1), SE relation is violated and, thus, the FSE is 
valid. The non-universal fractional exponents are an indication of the 
decoupling between D and η. In that case, D and η are determined by 
different time scales. This decoupling is associated with the develop-
ment of mesoscopic structured regions which have slower dynamics 
with respect to the system average. On the other hand, when the SE 
relation is valid (i.e., the exponents are equal to one) they are deter-
mined by the same time scale [41,55], and therefore, D and η are 
coupled (especially at higher temperatures). The inherent assumption 
behind both of the aforementioned variants of the SE relation is that the 
radius of the diffusing particle r is constant [56]. Zhao and Zhao [56] 
reported examples of systems that violate the SE relation, such as 
supercooled or glass-forming liquids, dense complex media, and 
low-density gases. In the same study [56], the size and mass dependence 
of the SE relation was computationally investigated by decomposing the 
kinetic and hydrodynamic contributions to D. Additional discussion and 
related references can be also found in our earlier studies [38,39]. 

A characteristic example of the validity of FSE is the self-diffusivity of 
pure water. Harris [54] reported the following absolute values for the 
exponent t, based on available experimental measurements: 0.9429 for 
623 ≥ T ≥ 274, and 0.6684 for 273 ≥ T ≥ 238 (where T is in units of K). 

Tsimpanogianis et al. [39] pointed out the importance of 
self-consistency in the experimental measurements or data computed in 
MD simulations when examining the validity (or violation) of the SE 
relation. In particular, diffusivity (intra- or self-) and shear viscosity 
should be both either measured experimentally, or both be computed in 
MD simulations using the same force fields. When MD simulations are 
performed, systems having more than 1000 molecules should be used, or 
a Yeh-Hummer [57,58] type correction should be implemented in order 
to account for system size effects (SSE). As discussed in detail in a 
number of studies (e.g., Dünweg and Kremer [59], Yeh and Hummer 
[57], Jamali et al. [15,60], Celebi et al. [58], Erdős et al. [61]) the 
magnitude of the required correction to mitigate the SSE strongly de-
pends on the type of system and the thermodynamic conditions. The 
computation of η using MD simulations does not depend on the system 
size [57,62,63]. 

3. Methodology - data selection 

In the current study no new experimental measurement or MD 
simulation is performed. Instead, recent literature-reported data are 
utilized for the analysis. The extensive experimental data reviewed by 

Tsimpanogiannis et al. [7] are used in the this study to examine the 
validity of the SE relation for the diffusivity of H2 or O2 in H2O. Since the 
experimentally measured self-diffusivities of H2O have been discussed in 
detail in a number of studies [54,64], no further discussion is presented 
here. The analysis for the MD simulations is based primarily on the 
recent, new simulations reported by Tsimpanogiannis et al.  [7], which 
span a wide temperature (275.15–975.15 K) and pressure (0.1–200 
MPa) range. 

For both experimental and MD data, the two forms of the FSE are 
examined (i.e., Eqs. (9)–(10)). The exponents t or s are determined from 
the slope of the corresponding log–log plot. Namely,  

• ln
( D

T
)

vs. ln
( 1

η
)
, and  

• ln(D) vs. ln
( T

η
)

are used for the calculation of the exponents t or s, respectively. Tables 3 
and 4 list all calculated values (experimental/MD) for the case of the 
intra-diffusivities of H2 and O2 in H2O, respectively, while Table 5 lists 
the corresponding values for the case of the self-diffusivities of pure 
H2O. 

3.1. MD simulations 

To compute the intra-diffusivities of H2 and O2 in H2O, Tsimpano-
giannis et al. [7] examined the combination of six H2 and six O2 force 
fields with the TIP4P/2005 H2O force field [27]. These combinations 
were evaluated based on the performance in predicting the density, 
self-diffusion coefficients and viscosities of the pure gases, and the 
self-diffusion coefficients of the gases in H2O at low pressures. It was 
concluded that the Buch [65] - TIP4P/2005 and the Bohn et al. [66] - 
TIP4P/2005 force field combinations were the most accurate. Subse-
quently, these force fields were used to compute the intra-diffusion co-
efficients of H2 and O2 in H2O for a wide temperature and pressure range 
spanning vapor, liquid and supercritical conditions. In this study, the 
MD data [7] corresponding to H2 and O2 diffusion in liquid H2O are 
further analyzed. 

3.2. Experimental data 

3.2.1. H2 in H2O 
Himmelblau [18] and Winkelmann [67] presented detailed reviews 

on the available experimental data for the H2 intra-diffusion coefficients 
in H2O as a function of temperature at 0.1 MPa. Moreover, Tsimpano-
giannis et al. [7] analysed the experimental data reported by Gertz and 
Loeschcke [68], Baird and Davidson [69], Wise and Houghton [70], 
Akgerman and Gainer [71], de Blok and Fortuin [72], Verhallen et al. 
[73] and Jähne et al. [3] and identified that the majority fell onto two 
distinct Arrhenius-type curves (denoted in the current study as “high 
curve” and “low curve”), with some experimental data falling 
in-between the two curves. The two curves differed by approximately 
70%. The Arrhenius-type curves were described using an equation [9, 
12] of the type: 

D = Do exp
(α

T

)
(11)  

where Do and α were fitting parameters. The reported values of the 
parameters for the two curves are listed in Table 2. It is common to 

Table 2 
Parameters of the Arrhenius fit (Eq. (11)) to the experimental data of H2 in H2O 
at 1 atm.   

ln(Do) α 

“High Curve” -12.22 ± 0.48 (-0.199 ± 0.014)× 104 

“Low Curve” -13.29 ± 0.37 (-0.181 ± 0.011)× 104  
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express α as − Ea
R , where Ea is the activation energy for diffusion and R is 

the universal gas constant. Tsimpanogiannis et al. [7] recommended the 
adoption of the experimental data falling on the “low curve” curve since 
they exhibited the least deviation from the MD results using the most 
accurate force field combination for the system H2 - H2O (i.e., Buch [65] 
- TIP4P/2005 [27]). 

3.2.2. O2 in H2O 
Similarly, for the case of O2 diffusing in H2O, Himmelblau [18] 

presented an earlier review, while Tsimpanogiannis et al. [7] used the 
following additional experimental data, reported by Gertz and 
Loeschcke [68], Baird and Davidson [69], Wise and Houghton [70], 
Ferrell and Himmelblau [74], Akgerman and Gainer [71], and Han and 
Bartels [75]. A similar pattern to the H2 - H2O system was identified by 
Tsimpanogiannis et al. [7]. Namely, that the majority of the experi-
mental data fell onto two distinct curves (“high curve” and “low curve”). 
Essentially, the “low curve” consisted primarily only of the data from the 
experimental study by Han and Bartels [75]. The two curves differed by 

approximately 25%. Tsimpanogiannis et al. [7] recommended the 
adoption of the experimental data falling on the “high curve” since they 
exhibited the least deviation from the MD results using the most accu-
rate force field combination for the system O2 - H2O (i.e., Bohn [66] - 
TIP4P/2005 [27]). 

4. Results and discussion 

4.1. MD simulations 

Figure 1 shows the validity test of the Stokes–Einstein relation, 
D∝

( T
η
)
, for the intra-diffusivities of H2 in H2O (Fig. 1a), O2 in H2O 

(Fig. 1b), and the self-diffusivities of pure H2O (Fig. 1c) based on the MD 
data reported by Tsimpanogiannis et al. [7]. The data used in Fig. 1 
include all the MD simulations in the temperature range 275.15–637.15 
K and pressure range 0.1–200 MPa, and correspond to conditions where 
the solvent (i.e., H2O) is in the liquid state. Although the experimentally 
measured critical temperature Tc and pressure Pc of H2O are 647.096 K 

Table 3 
Collective results for the slopes and intercepts of the SE theory calculated for the case of the intra-diffusion of H2 in H2O. The numbers in the parentheses are the 
standard deviations.   

ln(D) as function of ln(T/η) ln(D/T) as function of ln(1/η)  

slope (s) intercept (s) slope (t) intercept (t) 

Experimental (this work, all temperatures) 0.784 (0.045) -29.338 (0.576) 0.753 (0.511) -30.345 (0.366) 
Experimental (this work, 273.15 – 298.65 K) 0.787 (0.097) -29.371 (1.221) 0.761 (0.110) -30.400 (0.756) 
Experimental (this work, 302.15 – 333.15 K) 0.766 (0.081) -29.099 (1.048) 0.725 (0.094) -30.145 (0.688) 
Expt. fit (“high curve”, all temperatures) 0.920 (0.007) -30.581 (0.095) 0.905 (0.008) -30.935 (0.061) 
Expt. fit (“high curve”, 274 – 298 K) 0.781 (0.007) -28.842 (0.081) 0.753 (0.007) -29.896 (0.047) 
Expt. fit (“high curve”, 300 – 372 K) 0.984 (0.005) -31.451 (0.064) 0.980 (0.006) -31.518 (0.043) 
Expt. fit (“low curve”, all temperatures) 0.838 (0.007) -30.006 (0.087) 0.809 (0.007) -30.728 (0.054) 
Expt. fit (“low curve”, 274 – 298 K) 0.711 (0.006) -28.421 (0.074) 0.675 (0.006) -29.811 (0.042) 
Expt. fit (“low curve”, 300 – 372 K) 0.896 (0.004) -30.798 (0.058) 0.875 (0.005) -31.242 (0.038) 
MD (this work, 275.15 – 637.15 K) 0.869 (0.014) -30.339 (0.199) 0.828 (0.017) -30.786 (0.142) 
MD (this work, 298.15 – 637.15 K) 0.915 (0.014) -31.012 (0.195) 0.886 (0.018) -31.288 (0.148)  

Table 4 
Collective results for the slopes and intercepts of the SE theory calculated for the case of the intra-diffusion of O2 in H2O. The numbers in the parentheses are the 
standard deviations.   

ln(D) as function of ln(T/η) ln(D/T) as function of ln(1/η)  

slope (s) intercept (s) slope (t) intercept (t) 

Experimental (this work, all temperatures) 0.982 (0.045) -32.308 (0.575) 0.978 (0.052) -32.389 (0.370) 
Experimental (this work, 283.15 – 298.65 K) 0.914 (0.171) -31.454 (2.140) 0.903 (0.194) -31.868 (1.329) 
Experimental (this work, 302.15 – 333.15 K) 1.029 (0.083) -32.923 (1.082) 1.033 (0.097) -32.792 (0.713) 
Exp. Fit (“high curve”, all temperatures) 0.899 (0.003) -31.206 (0.044) 0.882 (0.004) -31.662 (0.031) 
Exp. Fit (“high curve”, 275 – 299 K) 0.926 (0.002) -31.546 (0.024) 0.916 (0.002) -31.903 (0.014) 
Exp. Fit (“high curve”, 301 – 373 K) 0.871 (0.004) -30.826 (0.058) 0.846 (0.006) -31.382 (0.042) 
MD (this work, 275.15 – 637.15 K) 0.917 (0.010) -31.603 (0.147) 0.893 (0.013) -31.902 (0.111) 
MD (this work, 298.15 – 637.15 K) 0.911 (0.115) -31.511 (0.166) 0.884 (0.015) -31.821 (0.127)  

Table 5 
Collective results for the slopes and intercepts of the SE theory calculated for the case of the self-diffusion of pure H2O. The numbers in the parentheses are the standard 
deviations.   

ln(D) as function of ln(T/η) ln(D/T) as function of ln(1/η)  

slope (s) intercept (s) slope (t) intercept (t) 

Experimental (Dehaoui et al. [64], 274 – 373 K) 0.95 -31.968 0.941 -32.192 
Experimental (Harris [54], 274 – 623 K) - - 0.943 -4.977 
MD (Moultos et al. [8], 298 – 623 K) 0.977 -32.493 0.968 -32.509 
MD (Tsimpanogiannis et al. [38], 280 – 623 K) 0.934 -31.793 0.913 -32.017 
MD (this work, 275.15 – 637.15 K) 0.920 (0.076) -31.549 (0.108) 0.895 (0.009) -31.823 (0.077) 
MD (this work, 298.15 – 637.15 K) 0.947 (0.007) -31.940 (0.095) 0.929 (0.009) -32.115 (0.073)  
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and 22.064 MPa [76], respectively, in order for our analysis to be 
self-consistent, it is based on the critical point of the TIP4P/2005 H2O 
force field which corresponds to a temperature of 640 K and a pressure 
of 14.6 MPa [77]. The values for the slopes, s and t, corresponding to the 
MD simulations for all systems in this study, are reported in Tables 3 (H2 
in H2O), 4 (O2 in H2O) and 5 (pure H2O). The exponent s can be 
extracted from the slopes of the fitted lines for the three cases shown in 
Fig. 1. The coefficients of determination, R2, for the fits are equal to 
0.991, 0.996, and 0.998 for the cases of H2 in H2O, O2 in H2O, and pure 
H2O, respectively. These values indicate an excellent fit. We observe 
that for the case of the intra-diffusivity of H2 in H2O the calculated slope 
is s = 0.915 ± 0.014, while for the case of O2 in H2O the slope is s =

0.911 ± 0.115 The corresponding values for the slope t can be calculated 
from ln

( D
T
)

vs ln
( 1

η
)

plots, and the resulting values can be found in Ta-
bles 3 and 4. The calculated values of s and t remain practically insen-
sitive for all the fitted temperature ranges considered. Tables 3, 4 and 5 
show the results for two different temperature ranges; namely, 
275.15–637.15 K and 298.15–637.15 K. Other temperature ranges that 
have been considered, resulted in similar values for the slopes (i.e., 
having an absolute deviation of less than 4% for both cases of O2 or H2 
diffusing in H2O). 

As far as the self-diffusivity of pure H2O is concerned, the calculated 
slopes (i.e., s = 0.947 ± 0.007 and t = 0.929 ± 0.009) are in very good 
agreement with the values reported previously in the studies by Moultos 
et al. [8] and Tsimpanogiannis et al. [39] (see Table 5). For the slope s, 
we observe an absolute deviation equal to 1.34% between this study and 
Tsimpanogiannis et al. [39], and 3.17% between this study and Moultos 
et al. [8]. The respective values for the slope t are 1.73% and 4.19%. As 
also shown in Table 5, an excellent agreement is observed between the 
slope values resulting from the MD simulations and those reported for 
the experimental measurements by Dehaoui et al. [64] and Harris [54] 
(i.e., absolute deviation equal to less than 1.5%). 

Our analysis clearly indicates that the reported MD simulations for 
the three systems considered [i.e., the intra-diffusion of H2 (Buch [65]) 
or O2 (Bohn et al. [66]) in liquid H2O (TIP4P/2005 [27]), and the 
self-diffusion of pure H2O (TIP4P/2005 [27])] violate the SE equation. 
Additional discussion and comparisons are provided in the following 
Sections. 

4.2. Experimental data 

Figure 2 shows the validity test of the Stokes–Einstein relation, given 
by Eq. (10), D∝

( T
η
)
, for the available experimentally measured intra- 

diffusivities of H2 in H2O at a pressure of 1 atm and temperatures in 
the range 273.15–333.15 K. For all the experimental data-sets shown in 
Fig. 2, the respective values of the slopes and intercepts are listed in 
Table 6. The values of slope s vary in the range 0.719–1.289. Fig. 3 
shows the validity test of the Stokes–Einstein relation for all available 
experimental data of the intra-diffusivities of O2 in H2O at a pressure of 
1 atm and temperatures in the range 283.15–333.15 K. The corre-
sponding calculated values for the slopes and intercepts are listed in 
Table 7. For this system, the values for the slope s vary from 0.803 to 
1.334. 

Fig. 1. Validity test of the SE theory for the MD simulations reported by 
Tsimpanogiannis et al. [7] for the cases of: a) H2 intra-diffusion coefficient in 
H2O, b) O2 intra-diffusion coefficient in H2O, and c) pure H2O self-diffusion 
coefficient. The Buch [65], Bohn [66] and TIP4P/2005 [27] force fields were 
used for the H2, O2 and H2O, respectively. Symbols denote the MD simulations, 
while the solid lines denote the linear fit used for the calculation of the slope s. 
The error bars are comparable or smaller than the symbol size. The statistical 
uncertainties of the computed diffusivities can be found in Ref. [7]. 

Fig. 2. Validity test of the SE theory for the experimental data of H2 intra- 
diffusion coefficient in H2O. Sources of experimental data: Gertz and 
Loeschcke [68], Baird and Davidson [69], Wise and Houghton [70], Akgerman 
and Gainer [71], de Blok and Fortuin [72], Winkelmann [67], Himmelblau 
[18], Verhallen et al. [73] and Jähne et al. [3]. The dashed lines indicate the 
different slopes of interest: s = 1.000 – red; s = 0.915 – blue; s = 0.784 – green. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 4 shows the corresponding validity test of the SE relation for the 
case of the intra-diffusivities of H2 in H2O using only the experimental 
data-sets that follow closely the “low curve” discussed in Section 4.1. 
The red solid line indicates a fit to the selected experimental data with 
an overall slope of s = 0.784 ± 0.045. Similarly, Fig. 5 shows the cor-
responding validity test of the SE relation for the case of the intra- 
diffusivities of O2 in H2O using only the experimental data-sets that 
follow closely the “high curve” discussed in Section 4.1. The red solid 
line is a fit to the selected experimental data withn an overall slope of s =

0.982 ± 0.045. 
From our analysis it is observed that there is some disagreement 

between the values for the slopes, s, that are calculated from the MD data 
and those using the experimental data for the cases of the intra- 
diffusivities of H2 or O2 in H2O (see also Tables 3 and 4). The absolute 

Table 6 
Calculated slopes s and t for the case of the experimental intra-diffusion of H2 in 
H2O. The numbers in the parentheses are the standard deviations.   

ln(D) as function of ln(T/η) ln(D/T) as function of ln(1/ 
η)  

slope (s) intercept (s) slope (t) intercept (t) 

Gertz and Loeschcke 
[68] 

0.719 
(0.023) 

-28.459 
(0.289) 

0.676 
(0.025) 

-29.758 
(0.181) 

Baird and Davidson 
(a) [69] 

0.920 
(0.123) 

-30.985 
(1.543) 

0.909 
(0.140) 

-31.361 
(0.963) 

Baird and Davidson 
(b)[69] 

1.289 
(0.055) 

-35.462 
(1.289) 

1.330 
(0.062) 

-34.097 
(0.429) 

Wise and Houghton  
[70] 

0.881 
(0.082) 

-30.101 
(1.056) 

0.861 
(0.094) 

-30.640 
(0.678) 

Akgerman and 
Gainer [71] 

1.267 
(0.162) 

-34.910 
(2.055) 

1.305 
(0.185) 

-33.656 
(1.290) 

de Blok and Fortuin  
[72] 

0.916 
(0.030) 

-31.104 
(0.392) 

0.901 
(0.035) 

-31.483 
(0.255) 

Verhallen et al. [73] 0.993 
(0.005) 

-31.782 
(0.060) 

0.992 
(0.005) 

-31.814 
(0.039) 

Jähne et al. [3] 0.796 
(0.002) 

-29.218 
(0.019) 

0.768 
(0.002) 

-30.184 
(0.015)  

Fig. 3. Validity test of the SE relation for the experimental data of O2 intra- 
diffusion coefficient in H2O. Sources of experimental data: Han and Bartels 
[75], Gertz and Loeschcke [68], Baird and Davidson [69], Wise and Houghton 
[70], Akgerman and Gainer [71], Ferrell and Himmelblau [74] and Himmel-
blau [18]. The dashed lines indicate the different slopes of interest: s = 1.000 – 
red; s = 0.917 – blue; s = 0.899 – green. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 7 
Calculated slopes s and t for the case of the experimental intra-diffusion of O2 in 
H2O. The numbers in the parentheses are the standard deviations.   

ln(D) as function of ln(T/η) ln(D/T) as function of ln(1/ 
η)  

slope (s) intercept (s) slope (t) intercept (t) 

Gertz and Loeschcke  
[68] 

0.803 
(0.024) 

-30.018 
(0.303) 

0.773 
(0.027) 

-30.926 
(0.191) 

Wise and Houghton  
[70] 

0.980 
(0.052) 

-32.242 
(0.674) 

0.976 
(0.060) 

-32.311 
(0.434) 

Ferrell and 
Himmelblau [74] 

0.989 
(0.049) 

-32.469 
(0.627) 

0.987 
(0.056) 

-32.516 
(0.402) 

Baird and Davidson 
(a) [69] 

1.059 
(0.001) 

-33.490 
(0.011) 

1.067 
(0.001) 

-33.211 
(0.006) 

Baird and Davidson 
(b) [69] 

1.290 
(0.145) 

-36.180 
(1.822) 

1.330 
(0.164) 

-34.815 
(1.134) 

Akgerman and 
Gainer [71] 

1.334 
(0.006) 

-36.818 
(0.074) 

1.381 
(0.007) 

-35.240 
(0.051) 

Han and Bartels [75] 0.910 
(0.006) 

-31.611 
(0.076) 

0.895 
(0.007) 

-32.017 
(0.051)  

Fig. 4. Comparison of the experimental data (denoted with red triangles) of H2 

intra-diffusion coefficient in H2O, recommended by Tsimpanogiannis et al. [7]. 
The red solid line indicates the fitted line with slope equal to s = 0.784 ± 0.045. 
The dashed lines indicate the calculations with four semi-theoretical models 
(Wilke and Chang [19] - dashed blue line; Scheibel [49] - dashed green line; 
Reddy and Doraiswamy [50] - dashed magenta line; and Lussis and Ratcliff [51] 
- dashed black line). The error bars are comparable or smaller than the symbol 
size. The statistical uncertainties of the computed diffusivities can be found in 
Ref.[7]. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 5. Comparison of the experimental data (denoted with red triangles) of O2 

intra-diffusion coefficient in H2O, recommended by Tsimpanogiannis et al. [7]. 
The red solid line indicates the fitted line with slope equal to s = 0.982 ± 0.045. 
The dashed lines indicate the calculations with four semi-theoretical models 
(Wilke and Chang [19] - dashed blue line; Scheibel [49] - dashed green line; 
Reddy and Doraiswamy [50] - dashed magenta line; and Lussis and Ratcliff [51] 
- dashed black line). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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deviation for s, for the diffusivity of H2 in H2O is 9.78%, while for O2 in 
H2O is 7.09%. The corresponding absolute deviations for the slopes, t, 
are 9.06% and 9.52%, respectively. To further investigate the origins of 
this disagreement, the slopes t and s are recalculated using values for the 
intra-diffusivites from the reported correlations (i.e., lnD vs. T), instead 
of using all the experimental data. As can be seen in Tsimpanogiannis 
et al. [7], the experimental data are not evenly distributed for the 
various temperatures, with a higher number of scattered data being 
around or lower than the temperature of 298 K (see also Figs. 2 and 3). 
After the re-evaluation we observe that for the case of O2 intra-diffusion 
in H2O, the absolute deviation of the slope s between the MD simulations 
and the experimental data fit drops to 1.96%. An improved, yet more 
complex behavior, is observed for H2 intra-diffusion in H2O; The re-
ported MD data follow more closely the “high curve” for temperatures 
up to 298 K, while they follow more closely the “low curve” for all 
temperatures that are higher than 298 K. This was the main reason that 
ref [7] recommended the adoption of the data following the “low curve”. 

To further investigate the source of the observed disagreement be-
tween the slopes s obtained using the MD data and the experiments, the 
slopes t and s are recalculated using values for the intra-diffusivites from 
the reported correlations using two different temperature ranges; 
namely, 274–298 K and 300–372 K. We observe that the calculated slope 
from the “low curve” in the temperature range 300–372 K is equal to s =
0.896 ± 0.004 which is in a very good agreement (absolute deviation 
equal to 2.08%) with the MD-based value (i.e., s = 0.915 ± 0.014) that 
was calculated here using the MD data reported by Tsimpanogiannis 
et al. [7]. 

4.3. Comparison with other literature values 

Two types of comparisons are considered here. First, we compare the 
four semi-empirical models (i.e., Wilke and Chang [19], Scheibel [49], 
Reddy and Doraiswamy [50], and Lusis and Ratcliff [51]) with the 
selected experimental data. Figure 4 shows the comparison for H2 
intra-diffusion in H2O, while Fig. 5 shows the comparison for O2 
intra-diffusion in H2O. From Fig. 4 we observe that the Wilke and Chang 
model gives essentially identical predictions with the Lusis and Ratcliff 
model. The predictions of both models are in very good agreement with 
the experimental data at higher temperatures, while the agreement 
decreases at lower temperatures as a result of the semi-empirical models 
having a different slope s from the experimental data. The predictions 
from the Scheibel and the Reddy and Doraiswamy models have a higher 
deviation, with the latter model being the least accurate. From Fig. 5 we 
observe that the Wilke and Chang model goes through the experimental 
data for the entire temperature range, having a slope s equal to 1 
(obeying the SE relation), while the experimental data have a slope 
equal to 0.899 ± 0.003. The predictions of the other three models are 
almost identical, deviating from the experimental data. 

Second, we compare the calculated s and t with other reported values 
from the literature. Magalhães et al. [53] reported an extensive collec-
tion of intra-diffusion coefficients for various binary systems, including 
the two binary systems discussed here. The authors correlated the 
experimental data with nine different relations, including the two forms 
of the FSE (i.e., Eqs. (9) and (10)) that are considered here. For the 
intra-diffusivity of H2 in H2O, Magalhães et al. [53] used only the 
experimental data of Jähne et al. [3] and reported the values of 
0.81581 ± 0.02468 and 0.78958 ± 0.02669 for the slopes s and t, 
respectively. These values are in very good agreement with the ones 
listed in Table 6. For intra-diffusivity of O2 in H2O, Magalhães et al. [53] 
used the data of Han and Bartels [75] (i.e., 36 experimental data points) 
and Wise and Houghton (i.e., 4 experimental data points) and reported 
the values of 0.90980 ± 0.01337 and 0.89400 ± 0.01591 for the slopes s 
and t, respectively. These are essentially identical with the values for 
Han and Bartels [75] experimental data that are shown in Table 7. This 
outcome is expected since the experimental data from Han and Bartels 
consist 90% of all the experimental data used for the slope calculations 

by Magalhães et al. [53]. It is also interesting to observe that the 
calculated slopes from the experimental data from Han and Bartels are in 
excellent agreement with the slopes from the MD simulations. However, 
the Han and Bartels values for the diffusion coefficient are shifted to 
lower values by 25%. 

5. Conclusions 

Significant effort has been devoted in the literature for creating 
models that can accurately predict the experimentally measured intra- 
diffusion coefficients of numerous binary mixtures encountered in in-
dustrial applications. The primary focus of earlier studies has been on 
the re-evaluation of the parameter A that is encountered in SE-based 
semi-theoretical/semi-empirical approaches expressed as D = A⋅Tη. By 
plotting ln(D) as a function of ln

( T
η
)
, or ln

( D
T
)

as a function of ln
( 1

η
)

the 
respective slopes s and t can be calculated. Slope values equal to one 
indicate the validity of the SE relation. As clearly shown in this study for 
the intra-diffusivities of H2 and O2 in H2O, and for the self-diffusivity of 
pure H2O, to enhance the accuracy of the prediction of intra-diffusivities 
it is essential to shift the focus from parameter A to describing the slope s 
(or t) more accurately. Here, we use all the available data from experi-
ments and MD simulations. Our analysis clearly indicates that the SE 
relation is violated for both the MD simulation data and the experi-
mental measurements. A good agreement is found for the newly- 
calculated slopes s and t, between the MD simulations and the experi-
mental data. Here, we focused on the analysis of intra-diffusivities of 
infinite diluted gases in H2O. A thorough investigation of the validity of 
SE in systems where collective diffusivities (Maxwell-Stefan and Fick) 
are relevant (e.g., for high gas compositions, multi-component mixtures, 
electrolyte solutions) can be a natural extension of this work [78–82]. 
Finally, a study of the implications of our findings for fluids confined 
into nano- and meso-porous materials [83–86], where models such as 
the Maxwell-Stefan have been applied, would be an interesting future 
outlook. 
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