
GymPlanner
Create, share andenjoy gym
exercises with simplicity!
K. van Heel
E. Ilgin
V. Ionescu
J. Ketelaar
Y. Noor
Research Report
Bachelor End Project

Preface

This report concludes the Bachelor project course, which is a compulsory course for obtaining the Bachelor
of Science in Computer Science at the Delft University of Technology. This report contains all the information
related to this 10-week project. The project has been finished in assignment for the start-up company Gym-
planner. Gymplanner aims to create a forum where both teachers and students can create and share sport
exercises. Right now there is no market where either teachers or students can find or create sport exercises.
There are some websites that try to tackle the problem but they all have their own shortcomings. These will
be discussed later in the report. Furthermore, the goal of this report is to inform the reader on the completed
work and the process from idea to product. The report also contains recommendations for future work. The
contactperson for Gymplanner is ir. H.J. Griffioen. The coach for this project was Prof.dr.ir. A. Bozzon and
lastly, the general bachelor project coordinator has been Prof.dr.ir. H. Wang.

iii

Summary

Gymplanner is a small company that offers students and teachers a forum where they can create and share
exercises and training plans meant for any sport or physical education. For example, sports teachers such
as high school teachers or elementary school teachers need to create a new sports plan for every class and
Gymplanner tries to supply them with predefined training courses for every sport. All training courses are
created by users of the system and then can be rated by other users based on a 5-star mark. Users can either
choose to create exercises for exclusive use in a private group, or choose to share them with everyone on pub-
lic pages. In order for exercises to be publicly shared, the content will be checked by verified users or system
administrators. This way the company ensures high quality for all its public content.

The assignment was to build a system from scratch that was both maintainable and extendable. Further-
more, the system had to be straightforward and self-explanatory, in the sense that users should be able to
find what they are looking for in the least amount of clicks possible. For this, we made sure that during design
phases everything was kept as simple and clear as possible. After meeting with our client and hearing the re-
quirements from the client and his stakeholders, we performed research into the system requirements. This
requirement analysis helped us determine what needed to be implemented. In order to measure success,
we set criteria that will help us determine if the project has succeeded or not. During the implementation
process, we stumbled upon some inconsistencies towards the requirements that asked for a refactor of our
designed system and database. At the end of week 6, the code got submitted and reviewed by the Software
Improvement Group. In their feedback we were given a rating of 4.6 out of 5 for maintainability. They noted
that some methods were too long and this hindered us from getting the perfect score. We processed this
feedback and the result is a working, maintainable system.

v

Contents

Preface iii
Summary v
1 Introduction 1
2 Requirements 3

2.1 Constructing the requirements . 3
2.1.1 Must have requirements . 4
2.1.2 Should haves. 4
2.1.3 Could have requirements . 5
2.1.4 Won’t have requirements. 5

2.2 Non-Functional Requirements . 5
2.2.1 Development standards . 5
2.2.2 Access Security. 5
2.2.3 Usability . 5
2.2.4 Accessibility/Availability . 6
2.2.5 Confidentiality . 6
2.2.6 Maintainability . 6
2.2.7 Efficiency . 6
2.2.8 Portability . 6

3 Research 7
3.1 Overview . 7
3.2 Problem definition . 7
3.3 Available Solutions . 7

3.3.1 Gymspiratie . 7
3.3.2 Xpsnetwork . 7

3.4 Problem Analysis . 8
3.4.1 Usage . 8
3.4.2 Privacy and Accessibility . 8
3.4.3 Full text search . 8
3.4.4 Tag recommendation . 8

3.5 Course of action. 9
3.6 Back-end technologies . 9

3.6.1 NodeJS . 9
3.6.2 Express. 9
3.6.3 PassportJS . 10
3.6.4 Testing framework: Jest . 10

3.7 Front-end technologies . 10
3.7.1 JavaScript . 10
3.7.2 TypeScript . 10
3.7.3 React . 10
3.7.4 Redux . 11
3.7.5 Database. 11

4 Design 13
4.1 User. 13
4.2 Exercise . 14
4.3 Training . 14
4.4 Groups . 15

vii

viii Contents

5 Process 17
5.1 Scrum. 17
5.2 Development Driven Development . 17
5.3 Development Resources . 17

5.3.1 Gitlab . 17
5.3.2 WebStorm . 18
5.3.3 PostgreSQL. 18

5.4 Software Improvement Group . 18
5.4.1 Feedback. 19

6 Implementation 21
6.1 Back-end Implementation . 21

6.1.1 Query structure . 21
6.1.2 Exercise . 22
6.1.3 Training . 22
6.1.4 Group . 22
6.1.5 User session . 22

6.2 Front-end implementation . 23
6.2.1 Landing page . 23
6.2.2 Home page. 23
6.2.3 Group page . 23
6.2.4 Creating an exercise . 24
6.2.5 Viewing an exercise . 24
6.2.6 Search implementation . 24
6.2.7 Text-based Tag recommendations . 25

7 Evaluation 27
7.1 Requirements . 27
7.2 Testing . 27
7.3 Load Testing . 28
7.4 Success Criteria . 28

7.4.1 Functional requirements. 28
7.4.2 Non-functional requirements . 28

7.5 User evaluation . 30
7.5.1 Do you need extra information for creating an exercise or group. 30
7.5.2 Are the information cards clear and intuitive? . 30
7.5.3 Is the process of joining a group clear? . 30
7.5.4 Do you understand the difference between public and private groups? 30
7.5.5 What is your opinion on the navigation . 30
7.5.6 Is any functionality missing . 30
7.5.7 What would you like to be able to search on . 30

7.6 Process Evaluation . 31

8 Recommendations 33
8.1 Implementation Recommendations . 33
8.2 General Recommendations . 33

9 Conclusion 35
A Framework Research 37

A.1 Back-end Framework Research . 37
A.1.1 PHP . 37
A.1.2 Java . 37
A.1.3 NodeJS . 37
A.1.4 Testing framework: MochaJS. 38

A.2 Front-end Framework Research. 38
A.2.1 Vue.js . 38
A.2.2 Angular.js . 38
A.2.3 ReactJS. 38

Contents ix

A.3 Integrated Development Research . 38
A.3.1 Microsoft Visual Studio Code . 39
A.3.2 WebStorm . 39

A.4 Type Annotation Framework research. 39
A.4.1 Flow . 39
A.4.2 TypeScript . 39

A.5 Database Management System research . 39
A.5.1 Relational Databases. 39
A.5.2 SQLite . 40
A.5.3 MySQL . 40
A.5.4 PostgreSQL. 40
A.5.5 Non-Relational Databases . 40
A.5.6 MongoDB . 41
A.5.7 Cassandra . 41

B UML 43
B.1 ER-Diagrams . 54

C Coverage 71
D SIG-feedback 73
Bibliography 75

1
Introduction

Gymplanner is a start-up company founded by Harm Griffioen. It is an online platform that aims to realize
a forum for everyone inflicted with sports. The goal of the platform is to offer a medium where people can
create and share exercises with each other to help improve the quality and accessibility of physical education.
The platform’s main focus are teachers and sport coaches that need to create a new sport plan every single
time they are giving a course. The forum should be accessible and cover a wide variety of sport activities.

The motivation for creating such a platform is the research performed by the client, which decided that
there was a large market available for people looking to find quality exercises. In the research, our client also
encountered a couple of different platforms that attempt to fulfill this demand. However, these platforms
lacked some important features in our eyes. Due to the lack of a complete platform that tackles all these is-
sues, there is still a large portion of the market that is not satisfied.
The challenge for us is, thus, to design and implement a system that tackles the issue of not having a high-
quality exercise sharing platform. The problem is not necessarily the internet being void of an exercise plat-
form, but that all the available platforms do not conform to the market’s needs. This is why we created a
platform that takes the needs of the market into account and provides an elegant solution. Our platform is
built on the core fundamentals of simplicity and quality assurance. We have created intelligent systems to
make sure there are no difficult steps in achieving a user’s goal when visiting the website.

The systems that are in place revolve around the smart search feature and text analysis based tag recom-
mendation system. First off, our smart search feature allows users to find what they are looking for without
requiring them to follow strict guidelines on how to search. Secondly, our text analysis-based tag recommen-
dation system allows users to create exercises without having to put effort into coming up with good and
relevant tags. These features ensure the first core fundamental of simplicity. Furthermore, the system is im-
plemented in such a way that performance will not drop if we reach the full potential of the current available
market, and even scaling beyond that should not have a noticeable impact. Finally, we designed the platform
in such a way that quality assurance is done by crowdsourcing part of the task to dedicated users. This allows
us to outperform the other platforms in this aspect as they require very active administration for a big user
base. This design aspect assures the second core fundamental of quality assurance.

In the next chapter, the requirements for the application will be stated. These are needed to give a clear
overview of what functionalities are required from the system and which requirements will not be imple-
mented. The requirements are deduced in such a way that they are compliant with the wishes of our client.
Then, an overview of the technologies and frameworks being used will be given and motivated. Chapter 4 will
shed light on the system design choices. It gives a clear overview of the different components in the system
and how they are constructed. Chapter 5 will give insight into how the project was structured, and how we
made sure every week would contain more functionality. It also describes the development resources that
were used. Furthermore, chapter 5 describes the feedback that was returned by the Software Improvement
Group and how this feedback has been processed and implemented. Chapter 6 will give more insight into
the actual implementation of the system. The project, and whether it has been a success will be evaluated in
chapter 7. Chapter 8 will highlight recommendations and lastly, chapter 9 will contain a conclusion.

1

2
Requirements

The first step in any software project is to make clear what functionality the system requires. Before imple-
menting anything, both the developers and the client needs to be aware of what the system must be able to
do and what the system will not be able to do. This is achieved by creating functional and non-functional
requirements for the application.

2.1 Constructing the requirements
The requirements are determined in such a way that they fit the MoSCoW method [3]. The MoSCoW method
is a technique commonly used in fields such as project management, business analysis and software develop-
ment. Reason for this is because it is a prioritization technique which gives priority to certain requirements
over others. It thus gives a clear distinction between important requirements and less important require-
ments.

Using this method is also convenient for evaluating the system. The success of the system is measured
by means of success metrics. Success metrics can be established by means of the requirements. For all the
must-have requirements it is necessary that they are all implemented. The must-have requirements are the
minimum requirements in order to call it a working system, also called MVP. Without some of these functions,
the system will not operate, thus they all need to be implemented. For the should-have requirements we de-
fine the success metric as at least 75% of all functions implemented. Without the should-have requirements
the system will still operate normally, however, it will miss some core functionality. The could-have require-
ments are requirements that could be added to the system when there is time left. However, they are not part
of the fundamental functions of the system and without them, the users of the system will not experience
missing functions. They are, therefore, not used in defining the success of the system. Lastly, the would-have
requirements, commonly referred to as won’t-have requirements, are requirements or functions that are not
planned into the schedule for this project. Therefore, these will also be occluded in defining the succession
of the system. In summary, the success metrics are defined as;

• All the must-have requirements are implemented and functional

• 75% of the should-have requirements are implemented and functional

• The system is online and functional

• 90% of the non-functional requirements are valid

3

4 2. Requirements

2.1.1 Must have requirements
Most important requirements for the system. Without them, the system is not operational

• A visitor must be able to create an account, and delete this account

• A user must be able to log in and log out

• A user must be able to request a new password

• A user must be able to alter their e-mail address

• A group can be private or public

• A public group can be viewed by users and visitors without an account

• A public group can be joined by any user

• To join a private group, a user must send a request which must be accepted by at least the group mod-
erator

• The contents of a private group is only visible to its members

• A group must be able to be found by searching for the group name

• A user must be able to create a new exercise using a title, image/schematic, description and optional
remarks

• An exercise must be able to be found by searching on title, tags, rating and username

• A public exercise must be checked for quality by a system administrator before it is added

• A user creating an exercise will directly see how the exercise will be exported in PDF format

• A training must be part of a group.

• A user must be able to export a training (group of exercises) in PDF format

• An training must be able to be found by searching on title, tags, rating and creator

• The group administrator must be able to set the group to public/private

• The group administrator must be able to promote group members to group moderator

• The group administrator must be able to modify and delete exercises

• The group administrator must be able to modify and delete a group

• The system administrator must be able to log in and out to an administrator panel

• The system administrator must be able to edit the database through the administrator panel

2.1.2 Should haves
• A user should be able to rate an exercise or a training, based on a 1 to 5 star rating

• A user is able to recommend exercises or training courses in a group

• A training and exercise should contain a list of tags provided by its creator

• A tag should be an existing one or newly created

• A training and exercise should show the average rating it received

• A user should be able to communicate through voice with other users of the same group.

• A user should be able to communicate through text messaging with other users of the same group.

• A user should be able to see dynamically content changing by using synchronization

2.2. Non-Functional Requirements 5

• A group should contain a list of available equipment

• Exercises/training courses that require equipment not present in the group should receive a mark to
indicate it

• A group should contain zero or more templates

• A tag should be an existing one or newly created

• An exercise should contain a list of equipment required for the exercise

• A user should be able to export a training (group of exercises) in PDF format

• A user should be able to use a group’s template when exporting a training course to PDF

• A training should contain a list of equipment required for the exercise

2.1.3 Could have requirements
• The group administrator could be able to assign/revoke permissions to/from the other ranks

• The user could be able to assign a tag to his account which has to be verified

• The user could be able to comment exercises

• The user could change text size of page

• A user could comment on an exercise/training

• The exercise creation tool could integrate the draw tool from gymplanner.nl

• Users could work together on the exercise creation tools by means of a collaboration framework such
as TogetherJS

• Users could be able to communicate through private messages

2.1.4 Won’t have requirements
• The system won’t implement a payment system

2.2 Non-Functional Requirements
Below are the non-functional requirements described of the system that are also being evaluated at the end
of the project in the success metrics. The discussion about these metrics can be found in 7.4.2

2.2.1 Development standards
• The back-end will be developed using NodeJS and TypeScript

• The front-end will be developed using React and TypeScript

• The main IDE used throughout the project will be Jetbrains WebStorm

2.2.2 Access Security
• The password shall never be stored at any given moment in time

• Payment information shall never be stored at any give moment in time

• Access permission for system data can only be modified by server administrators

• Personal information will not be mandatory

2.2.3 Usability
• A visitor shall require no more than 5 actions to access public information

• The main functions should be accessible within 5 actions from any state

• There will not be any functions hidden in the sub menus of drop-down menus

6 2. Requirements

2.2.4 Accessibility/Availability
• The user is able to always create a new account as long as the system is running

• The user is always able to log in

• The system is able to handle 100 users simultaneously without creating server delay

• After creating an exercise/training/group, it will be accessible after at most 5 seconds

• Search results will be accessible within 5 seconds of searching

2.2.5 Confidentiality
• Documents sent for user-label validation will not be stored indefinitely

• Documents sent for user-label validation will not be accessible for non-admins

• Documents will be handled according to GDPR standards

• A user will be able to remove all their personal data from the website

• A user will easily be able to see all the data the website has on them

2.2.6 Maintainability
• The system will be built using an open source end-to-end software development platform with built-in

version control, issue tracking, code review, CI/CD and more

• The code will be well documented to elaborate what functions do

• The code will be properly tested to make sure the functionality is in order

2.2.7 Efficiency
• Any interface between user and automated system will take no longer than 2 seconds

• The application should never be frozen waiting for a response/input

2.2.8 Portability
• The GUI is designed for responsiveness on modern devices supporting generic web browsers

• The application should not function differently between different devices

3
Research

3.1 Overview
This chapter includes the problem analysis and problem definition, as well as our research done for the
project. This includes finding current solutions to our problem definition, a feasibility study and all research
into current technologies needed for implementation. Most of the research has been done in the second week
of the project. After meeting with the client and establishing the requirements for the system, we needed to
verify the feasibility of the requirements given the time and budget. In section 3.3 we show several platforms
in this area that already exist and in section 3.4 we describe how Gymplanner differs from these platforms
and how we solve the main problem.

3.2 Problem definition
Sports club teachers and members, as well as gym school teachers and students, seek the option to share and
retrieve training exercises from a central platform with ease. In the current situation, exercises are shared
between these individuals through various means of communication that lack organization and control. A
platform is required where these people are offered the ability to effortlessly host their exercises and possibly
even offer them to a larger group of people than just those within their organization.

3.3 Available Solutions
To tackle the problem definition in the right way we first checked the currently available options that attempt
to solve this and discuss what they lack. Below, we have listed the two solutions that came closest to achieving
our goal.

3.3.1 Gymspiratie
Gymspiratie is a platform that provides gym exercises for primary- and high school teachers. It tackles a part
of the problem for a very specific group of people. This site lacks the ability for teachers and/or students
to create their own exercises, they only offer exercises made or added by the administrators of the website.
Gymspiratie also does not offer exercises for members of sporting clubs or high school teachers and, thus, is
not usable by the target audience described in the problem definition. Source: https://www.gymspiratie.nl/

3.3.2 Xpsnetwork
XPS Network is a platform on which personal trainers, coaches and athletes can host, create and share train-
ing exercises. It also provides a way to measure results such as body weight, nutrition intake, lap times, etc.
It offers many things Gymplanner also plans to offer. However, it does not provide a fully web-based applica-
tion, but rather a native client for 4 different platforms. The web app only offers limited functionality, which
is a huge bottleneck for the general audience. Furthermore, XPS Network’s user interface is very outdated and
not intuitive. Lastly, training schemes do not have additional constraints such as materials that are required,
which makes it difficult for gym teachers to find content they can use. Source: https://www.xpsnetwork.com/

7

8 3. Research

3.4 Problem Analysis
In this section, we will briefly discuss the features Gymplanner offers that tackles the shortcomings of the
previous stated alternatives.

3.4.1 Usage
Gymplanner aims to improve current solutions by expanding its target audience from organizations and pro-
fessional trainers to include the general public, physical education teachers and smaller organizations. The
platform should be relevant to all of these different groups while using the same user interface. This means
that using the interface should require no prior training, and should not be considered as a time-consuming
process. In other words, we strive for an intuitive design.

3.4.2 Privacy and Accessibility
In order to preserve privacy and accessibility, the user needs a way to select with whom they share their exer-
cises. For example, big companies receive a part of their income from selling training courses and exercises.
They would want to keep their data private, sharing it only with their customers. While non-profit organiza-
tions and individuals usually have no economic reasons to keep their data private. They could have their own
reasons for choosing who they share it with.

3.4.3 Full text search
We want users to be able to find exercises and trainings easily through a simple search bar without having to
follow strict search requirements. For this reason we want to implement an algorithm that allows the user to
fully search based on different attributes of both trainings and exercises. These results are then shown based
on the similarity with the search query.

3.4.4 Tag recommendation
To simplify creating an exercise we want to have a feature that analyzes the description and title of an exer-
cise and suggest tags based on this. This feature allows the user to create an exercise and not have to think
about the tags that might be relevant to their exercises. Secondly this feature also gives us the option to put a
technical challenge inside of our system.

3.5. Course of action 9

3.5 Course of action
When we concluded that the given assignment would be feasible we created a plan of action that aimed at
looking at the big picture. As we had to write everything from scratch we set up some mayor guidelines that
would help us with finishing the system on time. A clear overview of the global planning will be given at
the end of this section. First, we needed to discuss different technologies and which would be better for our
project. These technologies include whether we would want a relational database system which integrates
SQL or non-relational database systems that would have noSQL. Furthermore, we needed to decide on what
coding language to use for both back-end and front-end technologies. Once all of these technologies had
been decided on and the initial system had been set up, we could start working on implementing function-
ality. Deadlines were usually set at the end of each week, marking the end of the sprints. At these deadlines,
we concluded what was finished and what issues had to be pushed to the next week. Because the system was
built from scratch, the end of the week would also mark a point in which we would tag our client such that he
could see for himself what happened that week and whether he was satisfied with our choices. Other mayor
deadlines were the end of week 5 in which we planned to have all must-have requirements, the end of week 6
which marked the point where the Software Improvement Group would evaluate our code. Midweek 7 as we
planned on showing both our client and our coach a demo of the system so far. Week 9 for the second upload
to the Software improvement Group and last but not least, week 10, the week in which the system has to be
finished.

Week Tasks
1 Meet with client and create requirements
2 Feasibility study and research report
3 Set up project, create backlog for first sprint, familiarize with new languages
4 Implement back-end, set-up database, design first pages
5 Integrate back-end to frond-end, design and add components on front-end
6 Front-end implementation and first SIG submission
7 Implement SIG-feedback, first demo deadline
8 Process feedback given by client and coach, deadline draft report
9 Last sprint, second SIG submission, deadline final report
10 Tweak the final product
11 Product demo

3.6 Back-end technologies
This chapter will discuss the technologies that are being used for the back-end of the system. In choosing
a suitable programming language for the server-side development of the system, one must have a clear un-
derstanding of the differences between the alternatives. This chapter only discusses and motivates the tech-
nologies that we are using. The research into other technologies and their results can be found in Appendix
A

3.6.1 NodeJS
The JavaScript run-time environment NodeJS is being used as infrastructure to build and run the web applica-
tion. This open-source and cross-platform environment enabled us to build the server-side of the application
supporting a wide range of packages through the NodeJS package manager (NPM). NodeJS is one of the most
used back-end technologies and there is a wide arrangement of knowledge available on the internet. This was
also the case for the other technologies we researched such as PHP and Java A. However, NodeJS has better
scalability and we liked the idea of having the same syntax for client-side code and server-side code. Also,
a large portion of the group had experience working with NodeJS, whereas no one had experience working
with PHP.

3.6.2 Express
Express is a web application framework that provides features for web and mobile applications. Since we
are building a web platform that is accessible through both web- and mobile- browsers, we chose to use Ex-
press features on top of NodeJS. Express allows us to design our back-end as an API to which our front-end
connects. Express allows for easy set-up regarding HTTP calls that are made by the front-end to acquire in-
formation for the database or perform certain computations. This framework has become the standard for
developing servers on NodeJS, which is also widely accepted by developers using the famous MEAN (Mon-

10 3. Research

goDB, ExpressJS, AngularJS, NodeJS) software stack.

3.6.3 PassportJS
Since we decided in the early stages to use OAuth for authentication purposes, it was logical to use some kind
of middleware since it is a waste of time to reinvent the wheel, so to speak. During our research period we
struck upon PassportJS, an authentication middleware for NodeJS that has a set of strategies that supports au-
thentication through Google, which is what we were aiming for. It also fits perfectly on our application due to
its Express base. We, therefore, used the Google OAuth strategy provided by PassportJS for our authentication
system.

3.6.4 Testing framework: Jest
Jest is a JavaScript testing framework that is included with React by default as it is also the framework Face-
book uses for their code testing. It offers all the functionality that is desired from a good testing framework:
different code coverage, easy mocking, extensive assertions, isolated testing and code coverage reports. These
are basically all the tools we needed in order to test our features, which is why we found it illogical to use an
external framework such as MochaJS. Jest is used in this project for both back-end, as it supports Node, and
front-end testing purposes.

3.7 Front-end technologies
In choosing front-end technologies we again kept scalability and maintainability in mind. We needed a tech-
nology that would still be maintained in the future, thus we chose not to look for a super modern hyped
technology that hasn’t passed the test of time. The foundational languages of web applications being used
widely are HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets). HTML is used to describe
the structure of the web page, whereas CSS describes the presentation of a page.

3.7.1 JavaScript
For dynamically changing the visible content several languages can be used. JavaScript, however, is by far the
most widely used front-end technology for doing this. Some of the other languages just get transpiled into
JavaScript and exist to extend the syntax of JavaScript into a more readable version. Because it is the industry
standard, and everyone had some experience with JavaScript, JavaScript was the go-to language for front-end
development.

3.7.2 TypeScript
TypeScript is a programming language that is developed by Microsoft. It is based on JavaScript but it adds
the ability to specify types and automatically restricts types. TypeScript is compiled to normal JavaScript and
is designed to be used for larger applications. The reason for using TypeScript in our project is that it makes
the code more maintainable. Both for us as project members, but also for future developers. Being enforced
to type variables, functions and classes makes it much easier to understand the code and what is happen-
ing. TypeScript only enables type checking during compilation and so it has no impact on performance post
compilation. It is purely a measure to make sure that there are no type errors in the code and so that the
code-base is more maintainable.

3.7.3 React
React is a JavaScript library that transforms the standard web development process. Normally you would
create HTML files for pages and link JavaScript functionality through script tags. With React, JavaScript and
HTML have been integrated into JSX, which is an XML-like syntax extension for JavaScript. This allows you
to write HTML tags and directly input JavaScript between the tags. Together with React, JSX can be used
to convert the standard web development programming paradigm into object-oriented programming. This
allows for the abstraction of components on pages with their HTML and JavaScript being intertwined. Using
this technology we can not only reduce the number of redundant lines of code but also allow for the entire
project to be more maintainable.

Besides changing the way web development is approached, React also allows developers to make stateful
components. These components hold certain data as a state and upon the state being changed the compo-
nent will automatically be re-rendered without a refresh being required. This functionality makes it possible
to have swift and interactive websites.

3.7. Front-end technologies 11

The way that React accomplishes stateful components is through a virtual Document Object Model (DOM).
React uses an in-memory data structure that represents the DOM, this allows React to compare the current
actual DOM with their virtual version and only re-render the components that need to be updated. This fea-
ture allows React to be very efficient and have a high performance. It is because of features like these, we
decided to choose React over its counterparts Angular or Vue.

3.7.4 Redux
Redux is a state management tool served as a library that works with React, it allows applications to have a
central store in which the state is managed. Any component that has stateful information will need to connect
to the store and get or update data there. This library allows us to share the state between multiple different
components with simplicity. Without this library, any two components that share state data require the state
to live in a shared parent component, which can be extremely difficult to manage as the application grows in
terms of components. In order to do so, we would need to create different callbacks in order to set the state
from the child components. Redux makes this whole thing simple by allowing you to specify a store structure
that you can easily request any component to have access to.

There are a few alternatives to Redux when it comes to state management tools. Most of the alternatives
focus to improve the Redux workflow. However, these are preferred for developers who are already familiar
with Redux and understand all of its inputs and outputs.

However, MobX is one of the alternatives worth to mention which uses an object-oriented programming
approach whereas Redux follows a functional programming paradigm. MobX offers also a lot of abstraction
which makes it easier to learn for the developers to catch on early in the development process. Despite some
useful advantages of MobX over Redux when it comes to abstraction, multiple store, observable data(tracking
changes automatically) and mutability.

Since we value scalability and maintainability very high in the front-end part of this project, we decided
to choose Redux over MobX. Redux’ functional programming principle and pure functions allow us to debug
easily and maintain the code in a proper way.

3.7.5 Database
We use PostgreSQL for the database to connect to the back-end. It is a relational database management
system supporting SQL. PostgreSQL is very similar to MySQL except for some performance differences and
how easy it is to tweak the source. We researched multiple articles to find which database system to use for
our needs and in most of them, it was said that PostgreSQL is a better out of the box solution. PostgreSQL,
for example, is ACID compliant whereas for MySQL to be ACID compliant you need to run it with InnoDB.
Besides better performance without tweaking and ACID compliance, PostgreSQL also offers more query fea-
tures. Since our predicted database requirements for this system are not very advanced we decided to go for
the most simple and elegant solution and so we came to PostgreSQL. A more extensive research into why we
have chosen a relational database management system and in particular PostgreSQL can be found in A.

4
Design

This chapter will discuss different design choices. It will highlight the major components that make up the
system and how they are constructed. Furthermore, for additional information we refer to Appendix A.5.7
where a detailed scheme for our database is shown.

4.1 User
A user is a big design requirement for this project. We want to give people the option to register as a user and
join/create groups and do other actions that should be persisted to their user account.

MemberInformation is the interface that represents the data required to be a user on the web application.
In figure 4.1 an overview of all the attributes in the interface is shown. When looking at the interface the first
odd thing that stands out is that there is no entry for password. When designing the User component we
discussed everything that was actually required to make a user and what information we might not want to
store. We decided that a user only needed to have an email and a username to be able to join our website, and
that they could upload an image if they wanted to. We left out privacy vulnerable information such as real life
name, address information and a password. Storing sensitive information such as passwords brings mayor
security risks and we wanted to avoid this. In order to do so, we decided to go with OAuth authentication. An
additional advantage of using OAuth is that a user does not need to register and create an account to become
a member. This contributes to the overall user experience in which the user does not have to go through
a tiresome process of creating an account. Lastly, the MemberInformation interface has an email field and
a contact_email field because we want the user to give the option to change their e-mail without having to
change their log-in e-mail.

1 export interface MemberInformation {
2 email: string;
3 image: string;
4 contact_email: string;
5 username: string;
6 }

Listing 4.1: MemberInformation

13

14 4. Design

4.2 Exercise
The exercise is the most essential part of our web application. Everything is built around the data that is held
in the exercise object. A user will visit the website and create a training out of multiple different exercises. A
different user will spend a lot of time in creating a quality exercise.

For this it’s essential to look at the individual aspects that make up an exercise. In the database an exercise
is defined as a table that has an id, a name, a description, duration and lastly an image. These attributes were
chosen based on the requirements that the client gave to us. The ownership of the exercise is stored in a
separate table that links the user id between the exercise id.

1 export interface ExerciseInformation {
2 id: number;
3 image: string;
4 duration: number;
5 name: string;
6 description: string;
7 avg_rating: string;
8 tags: string [];
9 }

10 export interface ExtendedExerciseInformation extends ExerciseInformation{
11 ratings: Rating [];
12 materials: string [];
13 groups: string [];
14 }
15

16 export interface Rating {
17 value: number;
18 user: string;
19 }

Everything related to exercises

This object plays a big role on the web application and thus it should be fleshed out properly with all of its
requirements. We wanted an exercise to have an image that the users can use to display what they mean with
their description. An exercise should have a duration that defines in minutes how long the exercise should
take to complete. A name should also be contained within the exercise object along with the tags/categories
that users give to it. We chose these attributes based on the research phase and discussion with our client,
because users want to have a refined amount of features to be able to add to their exercises.

We do not always require just that information on the web application however. During the exercise
creation process a user should also be able to define the materials and the group the exercise should initially
be placed in. This information is also required on the view exercise page, however it is not required for the
other places on the web application where exercise information should be displayed. This is why we chose
to have an ExtendedExerciseInformation interface where along with the standard information, the client will
receive all the ratings, materials and the groups that this exercise is in. The rating consists of a value and the
user who has given that rating.

4.3 Training
Another major component of the website are the trainings. They represent multiple exercises bundled to-
gether with a name so that other users can view them and follow them. People will go on the website and
want to gather a few exercises to create their own training. We offer them them the feature to export the
training to PDF format and download it easily to be printed out or viewed offline. We decided to give this
feature because we know users will go on the site and want to go from creating/viewing a training to being
able to print out an overview as fast as possible. We designed a training card that shows all the necessary data
available as easily as possible.

To represent the data we have the following interface:

1 export interface TrainingInformation {
2 id: number;
3 image: string;
4 name: string;

4.4. Groups 15

5 description: string;
6 }

Training information

This interface along with some computation methods is used to create the training cards. Exercises are
linked to trainings through the table exercise_training. When requesting training information for the PDF we
just fetch all the entries in this table with the training id required. A training will have its own description and
title as well as an optional image to represent the entire training. These attributes have been chosen after
researching what users would want and discussing with the client what he thought users would want as their
training data.

4.4 Groups
Last but not least are Groups. Groups are an important part of Gymplanner. Groups are a component that
tries to make Gymplanner unique to other current solutions. They are the feature that makes Gymplanner a
forum for sharing exercises. There is a distinction between private groups and public groups. It must be noted
that joining and leaving groups is a feature that is only available for registered users. There is no criteria for
joining public groups. We decided to give groups the ability to be private as we understand from our client’s
wishes that some groups will not want to share their exercises with everyone.

Once joined you can find every exercise and every training that belongs to this group. The idea behind
the public groups is that all content in public groups is of high quality. For this reason a person can’t create
a training and automatically add this to a public group. The system administrator will get a request for the
created exercise and can then choose whether or not to add the content to a group. This system makes sure
that all content publicly available is of high quality.

For private groups there is a different standard. In order to join a private group, a request to the group
administrator is sent. This request asks the administrator whether that particular person may join the group
or not. Once accepted the user can then see all group related content. For creating an exercise in a private
group no additional constraints are given. This creates the idea that all sorts of content can be shared in
private groups and that it is not quality checked. We came to the decision to make a private group for every
user in which their created content is posted. One of the main reasons behind this idea, is that all content
created by one user can always be found in his or her personal group; content created is therefore easily
accessible.

1 export interface ExRequest {
2 id: number;
3 exercise_id: number;
4 group_id: string;
5 status: RequestStatus;
6 time_of_request: string;
7 time_of_review: string;
8 reviewer_id: number;
9 }

10

11

12 export interface GroupInformation {
13 name: string;
14 description: string;
15 image: string;
16 isprivate: boolean;
17 administrator: string;
18 ismember: boolean;
19 grouprequest: GroupRequest | undefined;
20 }
21

22 interface GroupRequest {
23 id: number;
24 user_id: number;
25 group_id: string;
26 }

16 4. Design

As is visible in the interface structure above: A group consists of fields such as name, description, im-
age, isprivate and administrator. When requesting group information from the back-end we will also receive
whether or not the requesting user is a member and if there is an open group request. These attributes were
chosen because the client wanted the groups to have a personal image and we obviously wanted the groups
to be identified by a name.

The Group Request interface simply has a unique identifier with a user- and group id. This way we can
give this data to the group administrator who can accept or deny the request.

Exercises also have a request structure that is similar, but a little more in depth. The ExRequest also has a
status, a request time, a review time and the id of the reviewer. This is done to allow the system administrator
to have more control over the exercises that get posted.

5
Process

This chapter describes the process of the project. It explains the development techniques that are used and
also describes the different kind of tools. Lastly this chapter shows the feedback which was given by the
Software Improvement Group, which can be found in section 5.4

5.1 Scrum
Scrum is a process that increases the probability of successfully developing software [5]. It is a process that
has been used in every development course we’ve had and it seemed only logical to apply the method in this
project as well. Scrum is a method that uses small development cycles that are called sprints to make sure
every week new software is implemented. At the end of every week a plan is devised that will describe all plans
for the upcoming week. Responsibilities are assigned and at the end of the next week a meeting is planned to
see what has been finished and what has to be pushed to the next week.

Reflection
Scrum is a great way for managing projects in an efficient way and we experienced it exactly like this. Task
assignment made it very clear who was responsible for specific requirements. Furthermore, everyone is aware
of what has to be finished by the end of the week. Although our time estimation on specific tasks was not
always accurate and some tasks had to be pushed to the next week, the method overall resulted in good
progress.

5.2 Development Driven Development
Since our project had to be implemented for scratch we chose to take a development driven approach and
focus on the testing of the system in later stages. Even though the entire system had been roughly designed
during the research phase of the project, you still encounter problems or design flaws during development.
When this happens, there’s a good chance classes need to be redesigned, refactored or removed all together.
We felt that for this reason a test driven development approach would not be optimal as this could make some
tests redundant. This doesn’t mean however that the no tests were written, just in a later stage of the project.

Reflection
The approach of focusing mostly on requirements worked out great. Since we had tight deadlines such as the
upload for the Software Improvement Group and the first working demo for our client, a lot of time had to be
spent in creating new functions. If we would have spent more time in creating tests that for some reason may
have became redundant, there is a good chance we would have lost a lot of time that could have been spent
more efficiently.

5.3 Development Resources
5.3.1 Gitlab
Version control is a crucial part for any software project that multiple people work on. Because we have been
encouraged all throughout the bachelor to make use of Github we all agreed that Gitlab, which is a version of

17

18 5. Process

Github, would be used. Gitlab has many advantages for working on projects with multiple people. It shows a
clear history of all the changes that have been made to the code and it has a branching system. That means
that whenever someone starts working on a new feature, a branch from the main code is made and changes
are saved to this branch. When the feature is finished, the branch is then again merged with the main code.
This branching systems eventually leads in less code breakage. However, in the case that the main code is not
operational anymore, you can revert it back to an earlier point in time and see what breaks the code.
Another great feature Gitlab offers is a virtual board on which every feature of the system is visible. These
features are created at the end of each week when features for the next week are discussed. During the week
these features on the board are updated to show the status of every feature. This is extremely useful for
working in groups, since you can see at any moment during the week what issue still needs to be completed
and which ones have already been finished. An example of this virtual board can be seen at the end of this
chapter.

Reflection
Version control has been a great help in managing this project. All of us were already expierenced with the use
of Gitlab as it encouraged in all software courses. It allowed everyone to work on different features without
breaking the master code. However, merging everything at the end of the week or before mayor deadlines
often resulted in code-breakage. Fortunately, most of the times we expected this to happen and time was
reserved to solve the code-breakage. In future projects we should consider merging different features earlier
instead of every feature at the end of the week.

5.3.2 WebStorm
WebStorm is a powerful IDE for modern JavaScript development. WebStorm provides full support for JavaScript,
TypeScript, HTML, CSS as well as for frameworks such as React, Angular, and Vue. It has intelligent code
completion, on-the-fly error detection, powerful navigation and refactoring for JavaScript, TypeScript and all
the most popular frameworks.[2]. Futhermore, WebStorm helps you develop server-side applications with
Node.Js. Since during our research we had already established that we were going to use React and Node the
choice for WebStorm was very straight forward. WebStorm in combination with ESLint would make sure that
every code would be formatted the same way, enhancing readability and maintainability for other contribu-
tors. It also made sure that no unnecessary merge conflicts would occur because indents would not line up,
and Gitlab would mark this as different pieces of code.

Reflection
WebStorm has been a great help throughout this project. If we were to work with JavaScript in future project
we would definitely use WebStorm again as it offered great futures that helped us during development. The
suggestions it provided were of great help since this helped programming in a, to us, new language.

5.3.3 PostgreSQL
As discussed in section 3.7.4 we chose to go for a relational database scheme because this matched our system
design and fulfilled our needs in terms of scalability. Out of all the database options that use the SQL language
we chose to go for PostgreSQL. PostgreSQL is a powerful, open source object-relational database system that
uses and extends the SQL language combined with many features that safely store and scale the most com-
plicated data workloads. [1]. Furthermore, it’s ACID-compliant without additional plugins and seeing as it’s
free it was the perfect fit for this project.

Reflection
PostgreSQL performs well as our DBMS. Thanks to the syntax being almost native SQL it was easy to find
documentation on all the functionalities we required, be it for PostgreSQL, MySQL or any other SQL based
DBMS. Furthermore, PostgreSQL provides an user-friendly GUI named ’pgAdmin’, which made for easy ad-
ministration and debugging of the database.

5.4 Software Improvement Group
The upload from the Software Improvement Group marked a big deadline in this project. The first upload
was set at the end of week 6, and the second upload at the end of week 9. The analysis of the code by the
Software Improvement Group (SIG) was a requirement for the project. The purpose of the evaluation by SIG

5.4. Software Improvement Group 19

is to provide an instrument for developers for guiding improvement of the products they create and enhance
[6]. The evaluation criteria is limited to the internal quality of maintainability and its sub-characteristics of
analyzability, modifiability, testability, modularity and reusability. [6]. These characteristics are assessed on
software product properties such as volume, duplication, unit complexity, unit size, unit interfacing, module
coupling, component balance and component independence.

5.4.1 Feedback
The first feedback from SIG was received on the 11th of June 2019, and the entire review (in dutch) can be
found in Appendix D. for our first submission we received 4.6 stars on a 5 star scale. The score was excep-
tionally high and we did not expect to score this high on maintainability. The feedback states that we did not
receive the highest score because we had one method which was on average too long and contained too much
functionality. They also said that they couldn’t find any test cases and strongly recommended we should cre-
ate unit tests. At this point we didn’t have any tests yet, since we started writing them at the beginning of week
7. However, all of the feedback was processed and implemented the week after. The method was broken into
smaller pieces and the first tests were written at the beginning of week 7. The feedback from the second up-
load can not be stated in the report as the feedback will not be available before the deadline for this report.
We feel however that we should score equally high or higher on the second upload as all code submitted after
the first upload was written in the same style.

board.PNG

Figure 5.1: Virtual Gitlab board

6
Implementation

The design in chapter 4 is a good description for what the implementation of the application is going to look
like. Most of the features work around the data models that are being described in that chapter. This chapter
will discuss the specifics about implementing the design both on the front-end and the back-end side of the
project.

6.1 Back-end Implementation
The back-end has as a job to listen to the clients for data they are requesting, connect to the database with
queries to fetch the required data and package it all together in an understandable format to send back to the
client. Besides this the back-end also tracks the user session and handles log-in requests.

6.1.1 Query structure
With this in mind we first set-up the database with our initial structure and connected it to the back-end. We
performed some test queries to see if all the things we wanted to work were working.

To keep the back-end organized and structured we decided to create different routes for different pur-
poses. For creating routes in Node.Js we used Express. For example, if we want to request training informa-
tion we put that under the route: db/training. We envisioned this structure throughout the entirety of the
back-end to maintain the concept of maintainability.

We then made functions inside a queries.ts file for the relevant route that would execute certain queries
required to get certain data. An example of such a query is:

1 export async function getPopular (): Promise <Tag[]> {
2 return await query(‘
3 SELECT t.name , COUNT (*) as count
4 FROM tags as t
5 INNER JOIN exercise_tag as e
6 ON e.tag_name = t.name
7 GROUP BY name
8 ORDER BY count DESC
9 LIMIT 10

10 ‘)
11 }

This query is located in the file: db/tags/queries.ts. These functions are exported so that a different file
called db/tags/routes.ts could import the functions and specify the route at which this function should be
accessed. The route will be defined in the following matter:

1 router.get(’/popular ’, simpleGetResponse(getPopular));

When a connection requests the route popular the function getPopular will be returned. We wrote a
function that takes an exported query function and collects all the requirement arguments from the request
body and sends back the result of the query as a response to the connected client.

21

22 6. Implementation

6.1.2 Exercise
For exercises we need the following functions:

1 getFromId(id);
2 searchInGroup(groupName , phrase);
3 search(requestingUser , phrase);
4 getTopFromPublic(amount);
5 getAllPublicExercises ();
6 remove(id);
7 getFromTag(tagID);
8 getFromGroup(groupID);
9 getByUser(email);

10 create(image , hours ,minutes , name , description , name , tags , materials)
;

As mentioned during the design process the Exercise is the most important object throughout the website and
because it is displayed on different pages with varying amounts of data we need multiple different methods
to request exercises in different ways.

These are implemented on the back-end and used for different purposes all over the web application. For
the create exercise page we for example need to have the create method, for the exercise display card we need
to use getFromId and for the group page we need to be able to find all the exercises in a certain group.

6.1.3 Training
For trainings we need the following functions:

1 byGroup(groupID);
2 create(image , name , description , group , exercises []);
3 addExercise(exercise , training);
4 getAllByEmail(requestingUser);
5 getPDF(trainingID);

The different parts of the web application where we need training data are the group page where all the
trainings are displayed, the home page and the pdf export function.

6.1.4 Group
For groups we need the following functions:

1 isGroupPrivate(groupName);
2 checkGroupAdmin(requestingUser , groupName);
3 checkGroupMember(requestingUser , groupName);
4 getAllGroups ();
5 getAllGroupsByEmail(requestingUser);
6 setPrivate(groupName , value);
7 getByName(groupName , requestingUser);
8 addExercise(id , groupName);
9 getGroupByPhrase(phrase);

10 deleteExercise(id , groupName , requestingUser);
11 deleteGroup(groupName , requestingUser);
12 create(name , image , description , requestingUser , isprivate);
13 removeUser(requestingUser , groupName);
14 addUser(requestingUser , groupName);

Groups require quite a few queries to be functional but most of the functionality of the website works
around groups. Exercises need to be hosted in groups and so do training courses.

6.1.5 User session
We use PassportJS to handle the user serializing and deserializing along with OAuth2.0 to connect to Google
Log-in services. We have routes for logging in and logging out.

The route for logging in route will first check the request object to see if the client is already authenticated
and send an error message that the user is already logged in if so. If not, the route will return the URL that
needs to be accessed to log in through Google. Upon going to that route Passport will handle the Google

6.2. Front-end implementation 23

authentication. Upon log in completion Passport will execute a callback in which we check the database for
an already existing user, if this user does not exist we insert them into the database so we have an entry for
the user that we can use to hang to the exercises they create and such.

To log out the client just requests the log out route and the user session is forgotten using Passport.

6.2 Front-end implementation
For the front-end we are mostly using React, JSX and SCSS. The front-end needs to communicate with the
back-end to receive- and upload certain data. This is done by proxying requests starting with the /db/ route
to the correct port on which the back-end is running.

6.2.1 Landing page
The landing page consists of two parts: The search bar with advanced search button and the exercise cards.
The intention is to give users as easy as possible access to content on the website. When a user visits the
landing page we want to give them the option to see the currently most popular exercises and to search for
exercises or training courses.

The search bar uses full-text search to find matching properties on both the training and the exercises
table. The full text search is performed on the back-end when a search query is received and it returns a set
of options that match the full text input well enough.

The exercise cards simply make a database request for the currently most popular exercises based on the
average rating and amount of ratings. These are then displayed on the landing page to allow users to quickly
see what the most popular exercises currently are.

6.2.2 Home page
The home page was designed to be exactly what it’s called; a home where users can find most of the informa-
tion they require. We designed the home page to be made in such a way that upon the average visit, the user
only needs to go to the homepage to see what’s new.

For this we have two sections: The "My Trainings" section and the "My Groups" section.
The "My Trainings" section will contain all the training cards of groups the user is part of. The training

cards will show all valuable information and have a download button. The download button makes a call
to the back-end to download the PDF. The back-end then performs a query on the database containing all
required data to create a training pdf (name, title, exercises, image). After this data is returned a PDF will be
built out of this data and a download link will be sent back to the client.

6.2.3 Group page
The group page is a page where a collection of different data is showed. It consists of different sections that are
navigable using the menu on the right side of the page. We wanted the group page URL to clearly show which
group the user is on in case they wanted to navigate by directly going to the URL. This is why we decided to
make the URL ‘group/:groupName‘.

We used react router to separate the different pages considering users might want to bookmark a certain
section of the group page, for which it needs its own URL.

The components are as follows: Trainings, Members, Exercises and Materials. Each of these elements has
an individual component. The trainings page is a page where all the group’s trainings are displayed using the
TrainingCard component, the members page shows all of the members using PersonCard components and
the exercises page uses the DrillCard component to display all the group’s exercises. Last but not least the
materials are simply displayed as a list in plaintext.

When a user goes to the group page and they are not member of the group yet the content is not visible.
A button is displayed in this situation where, depending on whether the group is public or private, the user
can request access. This access is immediately granted when the group is public since any member should
be able to join such a group. The implementation however is the same. The user will press the button and
a request will be made to the back-end for the user to join a group. If the group is public this request will
automatically be accepted. On the other hand if it is private the request will be put in the request database,
which can be accepted by group administrators.

The group navigation menu also contains a section for the group administrator. The front-end will request
information from the back-end that also has a field that will tell the front-end whether or not the user is the

24 6. Implementation

group administrator. Based on this field a component is shown that allows the administrator to perform
administrative tasks such as accept group join requests or remove certain members.

6.2.4 Creating an exercise
To create an exercise we require multiple different types for input from the user. We want the user to give a
title and description, an exercise could have different materials and tags, it needs to be able to have an image
and it needs to have a time and be assigned to a group.

We wanted to give the users a good overview and non-cluttered page where they could enter this data and
know when they are done.We implemented the exercise creation page using multiple different creation stages
that could all be made individually. These stages are implemented in a generic way such that validation of
whether or not a component is finished can be done without hard-coding.

This way we constructed a list of finished stages on the left side of the page and a list of unfinished stages
on the right side of the page. These lists are automatically updated whenever a stage is completed/uncom-
pleted.For the input fields we created a component that has a limit on the amount of characters that can be
put in. We do this to prevent the user from sending a title/description that goes over the varchar limit of the
database.

The tags/materials stage has a generic input component that, upon pressing space, automatically con-
verts text into tag components. This component is then used for both the materials and tags as they both are
displayed using the same tag styling.

For the image stage we wanted the user to have live feedback on the image they are inputting. That is why
the input box automatically shows the image if it can be loaded and gives an error if the image specified is not
actually an image file. Upon finishing this process the exercise is posted into the database and then the user
is redirected to the view exercise page.

6.2.5 Viewing an exercise
The page to view an exercise on needed to be non cluttered and easy to navigate. We wanted to show the
key aspects required for a user to judge whether or not they liked the exercise. Therefore we made the ti-
tle/description/image/duration largely sized on the center component and made it easy to see the groups
this exercise was posted in.

Besides that we wanted to make it easy for the user to bookmark an exercise and navigate to them. We
decided that a clear URL was important, so we made it in the following format: ’/exercise/view/:id:’. This way
a user can easily see where they are based on the URL.

The exercise component looks at the current path and uses the id to fetch the required data from the
back-end and displays the data in the component.

6.2.6 Search implementation
We wanted to make the search implementation as extensive and advanced as we could. For this reason we
looked for options when performing full-text search on the back-end. There were multiple options available
for making this possible.

The first option was elastic search, a full-text search engine that gives the developer the option to store,
load and search for data. The problem with elastic search was that it’s a standalone database that required
either a complete redesign of our database implementation or an inefficient bridge setup. We decided that
this was not the right option for us.

Then we came across a fuzzy search algorithm. This is an algorithm that does not look for exact matches
in text but instead looks for approximate matches. An example is when there is an exercise requiring the
materials "Dumbell" and the user searches for "Dumbells" the algorithm will still find a match. When looking
for the best way to implement this algorithm we found out that PostgreSQL has a built-in support for fuzzy
queries.

When looking at the built-in support we noticed that PostgreSQL has functions to transform words into
a list of distinct lexemes. We used this feature to build a full-text search support algorithm. To do this we
construct a power-set of the search query that the user has entered. If the user enters "Shoulder Back work-
out" the powerset will be: {{Shoulder}, {Back}, {workout}, {Shoulder workout} {Back workout} {Shoulder Back
Workout}}. This powerset is then passed to the query function to transform them into the search query nota-
tion to transform the query into a set of lexemes. This constructed query set of lexemes is then compared to
the document to see how well they match. This match is given a score and based upon this score we decided
whether or not to show the result.

6.2. Front-end implementation 25

6.2.7 Text-based Tag recommendations
Upon reaching the initial product, we decided to get into adding Quality of Life functionalities. After some
thinking, we stumbled upon the idea to extract tags from the user-created content of an exercise.

First off we defined the content of an exercise as its title and its description. Then we decided that our
recommendation system for tags would be based on text analysis. After some research, we decided to go for
the TF-IDF[4] algorithm. TF stands for Term Frequency and IDF stands for Inverse Document Frequency.

The term frequency, or TF, which is the amount of times the term is used in the selected item, is multiplied
by the inverse document frequency, which is the amount of items in which the term is used. To increase
accuracy, we’ve created a small database of test data which consists of 50 exercises with title and detailed
description, in Dutch. The TF is calculated as follows:

tf(t ,d) = nt ,d∑
k nk,d

The inverse document frequency, or IDF, is a measure of rarity for the terms across documents. The cor-
pus, collection of documents, is analyzed and if the a certain term appears in every single document, it is
considered common. While a term that is frequent in one document and not in others, is a rare, important
term. The IDF is calculated as follows:

idf(t) = log
1+n

1+df(t)
+1

Finally, the TF-IDF is the result of the multiplication of these two values.

tf-idf(t,d) = tf(t,d)× idf(t)

So for each exercise that is being added, as soon as the user finished typing the title and description, our
algorithm starts preprocessing the text by stemming words, which is the normalization of words that are the
same word in different conjugations, and removing Dutch stop words. After this stage, the algorithm starts
extracting the most important terms by calculating both the TF and IDF for the terms in the new exercise and
sorting in order of TF-IDF rank. Finally, the top 5 terms are filled in automatically in the ’tags’ field on the
exercise creation screen.

The algorithm still needs some optimization, it takes a few seconds before results are returned, but this
is mostly masked by the fact that the script is trigger upon finishing the title and description. Which means
that the tags will be loaded in the background, regardless of the step the user is performing on the exercise
creation screen.

7
Evaluation

After 10 weeks the project has to be evaluated to determine whether it has been completed successfully. In
order to determine the success of the project, in Chapter 2 success criteria were established. This chapter
will discuss whether these criteria have been met or not. This chapter will also show the test-results for the
project to support the functionality of the system.

7.1 Requirements
In this section we will go over all the requirements we have designed for the system during the research phase
and the features that were actually added to the system. There may be some features that were added during
development that did not come up during the research phase of the project. First off we look at the must-have
requirements, these can be separated into several categories. That is, users, groups, exercises and modera-
tors. When looking at the system we can easily see that all of the must-have requirements are implemented
with the exception of one: A user must be able to request a new password. During the design phase we did
not extensively look in to ways of logging in yet. As we are using Google OAuth, we do not actually save
passwords anywhere. Requesting a new password means a previous password has to be stored and verified
somewhere, however this brings security issues which we wanted to avoid. Hence the requirement was not
a must-have requirement after all. When looking at the should-have requirements we can see that most of
the requirements are implemented as well. Requirements that were not needed anymore were requirements
such as, using voice-chat to create an exercise or users recommending exercises to other users. Voice-chat
was not needed as we did not implement an image-tool, making voice-chat completely redundant. Users
recommending exercises to other users was simply not a feature that warranted the effort that would be re-
quired.

7.2 Testing
Our back-end can be summarized as a set of queries, routes and an authentication strategy implemented
using OAuth2. To test these functionalities, we have written unit tests for every method/query that is available
in the back-end triggered by Express’ routes. Due to prioritization, we have been mainly testing good code
smells and have ignored some alternative branches that catch errors. This can also been seen in Appendix C
When looking over the table for the back-end we see very high coverage percentages for every route except
src/routes/db. This route is only tested for 21.2% since it contains also the PDF generating methods which
forms a greater part of the file being tested. We did not find it interesting to test these methods as the input
to these methods are separately tested and the process of generating the PDF uses a well known npm library
called pdfkit. All in all, including this route we have an average of 89% covered.

The unit tests are written and executed using the Jest library. Jest allowed us to run some tests in parallel
and some in sequence. This paved the way for more complex tests that depended on multiple mutations,
almost like integration tests. Also using the beforeAll and afterAll methods we were able to start with an
empty database and end with an empty database, leaving no traces of the tests. Finally, Jest also allowed for
testing of async methods using promises which fit very well on the structure of our queries which are also
asynchronous methods that return promises.

27

28 7. Evaluation

For the front-end we decided to test the components that interact with data received from the back-end
using sagas. All components making use of Redux are tested and this can also be seen in the Appendix C. In
total we have a coverage for 99% for all Redux states. All components making use of Redux, exist to trigger
events using action types; describing only what happened, whereas reducers describe how the application’s
state changes by fetching and setting the data as desired. By doing this, we made sure that the state of each
component interacting with data correctly receives the data from the back-end and sets the state of each
React component to the desired output. More information about code coverage of the front-end part can be
found in Appendix C.

7.3 Load Testing
We used our own Selenium script written in Java to load test the system with 50 concurrent users. Our non-
functional requirement stated that we needed to test 100 different users, but the script we created was not
able to find enough available ports to perform this. We increased the amount of concurrent users from 10 to
50 in increments of 10. This was done to check if the system would perform worse, the bigger it scaled, which
was not the case. Below are the graphs generated from our script:

7.4 Success Criteria
To measure the success of the project the success criteria have been defined in Chapter 2. These success
criteria were:

• All the must have requirements are implemented and functional

• 75% of the should have requirements are implemented and functional

• The system is online and functional

• 90% of the non-functional requirements are valid.

7.4.1 Functional requirements
As stated in section 7.1 all of the must-have requirements have been implemented. Regarding the should-
have requirements we can see that 3 out of the 16 should-have requirements have not been fulfilled. This
results in 81.5% of the other should-have requirements. In addition we added technical features such as full-
text search and text-analysis based tag recommendation. Hence we can conclude that we fulfill the success
criteria and the project can be seen as successful.

7.4.2 Non-functional requirements
In this section we will highlight some of the non-functional requirements such as availability and efficiency by
means of according figures. We will not discuss every non-functional requirement as some are clear enough

7.4. Success Criteria 29

to state they have been successful. When looking at the non functional requirements stated in 7.4.2 we can
see that all requirements from the section Development Standards and Access Security have been fulfilled.
Most of the points have been discussed throughout the report and hence can be concluded as successful. In
the section Availability we state that the system should be able to handle 100 concurrent users. We were not
able to test a 100 simultaneous users as stated above, but we tested for 50 users and this was no problem.
Furthermore, we state that search results should be accessible within 5 seconds of searching. 5 seconds can
be regarded as very large, and we can easily fulfil this. The results for search time queries are depicted in
Figure 7.1 and Figure 7.2

Figure 7.1: Response times for exercise search

Figure 7.2: Response times for group search

Lastly, there is one section of the non-functional requirements that we did not complete. The section of
Confidentiality. We stated that documents should not be stored indefinitely, a user should be able to see all
data the application has stored and that documents should be handled according to GDPR standards. Not
enough research has been concluded to state we handle our documents according to GDPR standards so
we can’t conclude this non-functional requirement. Furthermore, the system does not automatically remove
content after it hasn’t been seen or opened for some amount of time. Lastly, we did not create an automatic
option where a user could see all the data the website has saved from that user. The user is however able

30 7. Evaluation

to contact a system-administrator who in turn is able to see what data on the user has been collected. The
other 2 non-functional requirements we did complete. In numbers this would mean we fulfill 24 out of the 27
non-functional requirements. Fulfilling 88.8 % of all the requirements. We feel this is close enough to 90 % to
say it is succesful.

7.5 User evaluation
For a complete evaluation we asked our client to show the system to people who would eventually become
users of the platform. This evaluation is particular important as it shows what other people are thinking of
the system. Whereas we may feel everything is intuitive en simple, this may not always be the case for people
not familiar with the system. The client asked a series of a question and we will summarize and comment
their reactions below.

7.5.1 Do you need extra information for creating an exercise or group
Overall the feedback on this question was very good. Everyone stated that once you were on the right page
that everything was intuitive. However, one person noted that it is not self-explanatory that you need to
navigate to the home page in order to start creating content. For this reason we adjusted the landing page a
little bit such that it shows an extra button for navigating to the home page.

7.5.2 Are the information cards clear and intuitive?
Feedback here was that they liked our designs for the information card and the information depicted was
sufficient and clear. However, they noted that the ratings were given in too many decimals and redirects were
not fully working. This seemed to be bugs in our code and we adjusted this accordingly.

7.5.3 Is the process of joining a group clear?
The general feedback on this question was positive. Certain testers found it a little difficult to find a group
because the group page showed so many groups. We feel this difficulty might be because it was not clear
enough in the search bar that any feature can be used for searching purposes. To fix this issue we added a
more clarifying placeholder that explains what features the user can search on and makes it easier to find the
group they want.

7.5.4 Do you understand the difference between public and private groups?
Everyone stated that they understood what the difference was, however as both groups are visible on the
group page we do not know which groups are public and which ones are private. For this we adjusted the
design for the group cards such that private groups show a lock to the name. This indicates the privacy of a
group.

7.5.5 What is your opinion on the navigation
The general consensus was that the navigation for the most part was clear but some users said the distinction
between home page and landing page was not clear enough. Besides that a complaint was that the search
button did not work, this demo was before the search bar was completed and therefore after this feedback
the search bar is now functional.

7.5.6 Is any functionality missing
The feedback here was very useful as it shows the needs of the market. The feedback stated that certain
buttons such as the search bar on the landing page was not working. That materials and tags were not saved
when creating an exercise and searching in general was difficult or tiresome. We took all of these comments
into advice and solved them accordingly. We feel most of the remarks have been solved.

7.5.7 What would you like to be able to search on
The users wanted to be able to search on all exercise features. They also said they found the search bar on the
landing page enough functionality to be able to navigate through the website. The feedback was primarily
positive with the exception that the search bar was currently not functional, however as said in a previous
subsection this has now been fixed.

7.6. Process Evaluation 31

7.6 Process Evaluation
In order to make future projects run more smoothly, project evaluation is essential. This gives a clear overview
of all the things that went well, and which things are worth reconsidering in future projects.

As stated in Chapter 5, this project made use of the Scrum methodology. The organization of the project
by means of the Scrum methodology has been very helpful. It gives room for a lot of flexibility and ensures
that in every week new software is developed. In addition, the Gitlab board tool discussed in Chapter 5 was
a great way of keeping track of the issues. However in future projects we should work with this tool more
organized. All of the issues were made at the beginning of the project, some were added during the sprint
backlogs and this caused the board to become cluttered. Some issues were duplicated and some issues were
never changed from status. This is definitely something that should be reconsidered for future projects.

Secondly, although a planning was made every week for the required features, we experienced that we were
sometimes too optimistic in this planning. We planned for the end of week 4, the second week of develop-
ment, that every must-have requirement should be finished and we could show the first demo to our client.
In reality this was too optimistic and we experienced that not enough must-haves were finished for the demo.
In the future we should think in more depth what the must-have requirements are, and what they all consist
of. Some of the must-have requirements were made up out of several other components that were not yet
implemented, and hence difficult to complete all at once. The idea for next projects is that must-have re-
quirements are constructed in a more detailed manner.

Lastly, communication between different parts of the project is something which should be considered for
next projects. Even though we had a very good distinction between who would work on what part of the
project, we experienced that communication between two parts (i.e. back-end and front-end) was not al-
ways optimal. This resulted in a lot of functional code in the back-end and in the front-end with no real
connection between them. We’ve experienced this ourselves during the project and took it upon ourselves to
communicate better. Overall we feel as if we eventually fixed this communication problem.

8
Recommendations

Since the project is now finished and will be handed over to the client, this chapter will discuss future work
and general recommendations. We’ll divide the chapter in two sections, recommendation on the implemen-
tations and general recommendations for Gymplanner.

8.1 Implementation Recommendations
All of the code has been written in such a way that it should be easily scalable and maintainable. This gives
room to add additional functionality. Unfortunately not all of our initial ideas for the website could be im-
plemented, because of time constraints. This does however not mean that they shouldn’t be added anymore.
The biggest recommendation is, when the website starts to grow, to implement a payment system. This was
a requirement which was beyond the scope of this project but is essential in order to make the website prof-
itable. Obviously you need to give paying members advantages over those of non-paying members otherwise
there is no incentive to become a paying member. Some of these advantages could be the maximum amount
of groups you can join, or the maximum amount of training courses you can save and export to PDF for-
mat. These constraints would have to be implemented in the code, as there are currently no such constraints.
Other recommendations would include expansion of the create exercises functionality. The system would
benefit from an image editing tool, in which users can make illustrations for the description. Eventually pair-
ing this with a collaboration framework from React would give users to option to work on exercises together.
This could greatly help in providing high quality exercises

8.2 General Recommendations
In order to get Gymplanner really off the ground it might be a good idea to think about marketing. First start
by test-casing the website to a close group of friends or a small group of the targeted audience. Make note
of their recommendations for the website and consider changing them accordingly. After that promoting
the website might be a good idea. An example is buying targeted advertisements on Facebook. For a last
recommendation, it could be beneficial to hire a graphical designer. Although we are very satisfied with the
design choices we made, they may not be compliant with the wishes of the targeted users. In designing every
component we kept simplicity and clarity in mind and we feel this is strongly reflected in the end design.
However, as the design has never been tested by actual users, we can’t guarantee that it is what users of the
system might want or expect. In the end, user experience if the most import aspect of a website.

33

9
Conclusion

The project has been done for the start-up company Gymplanner. The web application it had did not fulfill
any of the actual wishes of the client. It also wasn’t very attractive to sign up for the platform as most of the
content seemed to be absent. Our job was to create a new system that would fulfill the basic functionality the
client expected the website to have. The result we have delivered is a system that offers all basic functionality
and has a much more attractive look for new users.

Furthermore, the system is well documented and well tested which ensures that most of the functionality
does what it is supposed to be doing. Of course, this is not a guarantee that the system is without bugs, but it
should definitely make it more maintainable and scalable. Most of the code has been written in small chunks
of data to keep functionality as separated as possible, which in turn also helps preserve the maintainability.
The company should experience no issues if it chooses to add extra functionality.

This project was not the most technical challenging project regarding our skill-set. Most of the system was
designing the database, and developing functionality in a new language. One of the project members had al-
ready worked with the react language and thus had some experience in web-development. The other group
members had little to no experience with the react language and this made some of the features challenging.
In order to make sure the web application would have features the competition did not have we looked for
technical challenging features that would be more compliant with our skill-set. This is when we started look-
ing in to text-based recommendations and full text search functionality. These were technically challenging
aspects of the system, as they required certain algorithms to work. With these features we are satisfied as they
add a little extra technical prowess to the system.

Overall, we as a group are very satisfied with the final product. The code is clean, well-tested, scalable and
open for adding new functionality. The system itself is launch ready and we are hoping to see it successfully
launch. We feel that there is definitely an application that is able to compete with the other solutions and has
features that seem to be missing in the competition

35

A
Framework Research

This section will contain all the research we’ve conducted during the research phase of the project. Most of
the research has also been included in the research rapport.

A.1 Back-end Framework Research
A.1.1 PHP
PHP is a sever-side scripting language. Created in 1994 and primarily meant for web development. PHP is
processed by an interpreter, and can be embedded into HTML markup. It’s very flexible and this contributed
a lot in the popularity of the language. It has great support for relational databases and database management
systems such as MySQL and PostgreSQL. However, PHP has major security issues and does not score as well
on maintainability and readability as the alternatives

• + Efficient working with relational database

• + Large community with a lot of support

• - Not designed for many concurrent users

• - Outdated for the current web model

A.1.2 Java
Java is an object-oriented programming language developed by Oracle. It uses static type-checking at compil-
ing and at runtime which makes it a highly secure language. It is platform independent and this contributes
a lot to portability. Just as it’s competitors also provides a lot of open-source libraries

• + Platform independence

• + High performance for CPU-intesive applications

• - Less scalable

A.1.3 NodeJS
NodeJS is an open-source cross-platform environment that enables building the server-side of the appli-
cation by providing a wide range of packages. These packages can be easily installed through the NodeJS
package manager(NPM). NodeJS supports multi-threading and this makes it very scalable. By providing sin-
gle syntax for client and server side it also contributes to re-usability of code. Furthermore, NodeJS can be
integrated with TypeScript and type safety contributes to maintainability.

• + Better scalability because of multi-threading support

• + Simultaneous request handling by means of a non-blocking IO system.

• - Relatively young

37

38 A. Framework Research

A.1.4 Testing framework: MochaJS
The most obvious and used choice when it comes to JavaScript testing seems to be MochaJS, due to its flexi-
bility and possibilities to allow developers to choose third party options as to which assertion, mocking and
spy libraries they want to use. It is the most popular framework supporting both back-and and front-end
testing.

• + NodeJS debugger support

• + Providing a clean base to develop tests

• + Object mocking

A.2 Front-end Framework Research
A.2.1 Vue.js
Vue.js is a JavaScript framework, launched in 2013, which perfectly fits for creating highly adaptable user
interfaces and sophisticated Single-page applications. However, since it’s market share is relatively small it
does not have the resources angular or react have, it is not desirable for bigger applications that require more
external resources.

• + Large scaling and very lightweight

• + Great for single page applications

• - Lack of resources

A.2.2 Angular.js
Angular is a JavaScript MVVM framework, which is great for building highly interactive web applications. It is
mostly maintained by Google and thus can be expected to be around for a long time. Angular is a complete
MVC framework which means it has by default a lot of functionality. This also makes it a more heavyweight
framework with functionality you eventually may not need.

• + Exceptional support for Typescript

• + Detailed documented and a lot of support

• - Heavyweight framework with functionality you may not use

• - Entry level slightly higher

A.2.3 ReactJS
ReactJS is a JavaScript library, open sourced by Facebook and can be used for building any modern appli-
cation regardless of size and scale. Since it’s developed and maintained by Facebook this framework can
be expected to be around for a long time. Furthermore, React makes use of a virtual DOM which makes it
incredibly fast in performance.

• + High performace

• + Well documented with a lot of support

• + Easy to learn due to simple design

• - React moves away from class-based components, which may be barrier for Object Oriented Program-
mers

A.3 Integrated Development Research
Once we established what languages we were going to use, we had to decide on an Integrated Development
Environment (IDE). This section contains the research we’ve done into different IDE options

A.4. Type Annotation Framework research 39

A.3.1 Microsoft Visual Studio Code
VS code is not really an IDE, but more of an editor. It is considerably faster, more lightweight and highly
customizable. However some quick research showed that the learning curve is considerably higher if you’re
programming in languages you are not yet familiar with and it strongly recommended that you install plu-
gins such as Code Spell Checker, prettier goto-last-edit-location and TODO highlights. These are all already
integrated in WebStorm

• + faster

• + lightweight

• - requires more plugins to make code maintainable

A.3.2 WebStorm
Stated by JetBrains as the smartest JavaScript IDE. WebStorm has a lot of predefined functionality which helps
you keep your code maintainable. It is perfectly equipped for building complex client and server-side devel-
opment with NodeJS. Furthermore it offers great support to some type annotation frameworks and testing
frameworks.

• + type annotation framework support

• + test framework support

• - heavier than VS code

A.4 Type Annotation Framework research
When researching for Type Annotation Frameworks that would comply with our previous stated choices, two
options came up.

A.4.1 Flow
Flow is a static type checker designed for JavaScript. It is specialized in finding errors in JavaScript appli-
cations. Just like Typescript it is compiled to plain JavaScript. However, since it only became available for
Windows in 2016, the support community for it is considerably smaller

A.4.2 TypeScript
TypeScript is a super-set of JavaScript which provides static typing, classes and interfaces. It provides a rich
environment and may help you find errors in large pieces of code. TypeScript has great build in support for
WebStorm and React. Because the support for it is considerably larger, and the integration into WebStorm is
already there, we decided to work with TypeScript.

A.5 Database Management System research
A.5.1 Relational Databases
Relational databases are databases based on the relational model of data. The data is stored in tables in which
each row is an entry and each column represents information. Relations between tables are represented by
Primary Keys and Foreign Keys. The SQL systems discussed below compose is by no means an exhaustive list
of those available.

Advantages
Due to its consistency in model, relational databases allow for complex queries, transactions and routine
analysis of data. It also supports the so called ACID properties:

• Atomic, a transaction is either performed completely or not at all.

• Consistent, the database is always in a correct state, both before and after a transaction.

• Isolated, concurrent transactions do not influence each other directly.

40 A. Framework Research

• Durable, a transaction cannot be undone in the future.

Disadvantages
Relational databases are not ideal for the storage of large images, numbers and other types of multimedia.

A.5.2 SQLite
SQLite is a decentralized file-based database that does not require a central server for the database usage. All
reads and writes are performed locally on the file and the transactions adhere to the ACID property.

Advantages
SQLite requires very little disk-space, its size is easily under 600 KB. It is best used for low-traffic websites with
little data or IoT devices due to its small size and RDBMS nature. It can also be used as an addition to other
RDBMS to cache data client-side. This would increase the speed of queries significantly.

Disadvantages
As stated above, due to its local nature, SQLite lacks multi-user capabilities which are requires by most sys-
tems regarding the sharing and mutation of data. Another disadvantage is that the write operations are seri-
alized, which creates a bottleneck during concurrent writes.

A.5.3 MySQL
Unlike SQLite, MySQL has serves client/server architecture that consists of an SQL server with multiple threads.
MySQL stands for scalability, security and replication.

Advantages
Due to its multi-threaded nature, MySQL can easily be run across multiple CPU’s, hence it’s very scalable.
Unlike SQLite, MySQL supports multi-user transactions. And it is well optimized for read-heavy instructions,
better than PostgreSQL in throughput and performance.

Disadvantages
The performance of MySQL degrades quickly on concurrent write instructions and heavy select operations.
Also on concurrent read-write operations it lacks performance.

A.5.4 PostgreSQL
PostgreSQL is an open source project heavily focused on SQL compliance and extensibility. The architecture
of PostgreSQL is also of a client/server type. The server is called ’postgres’.

Advantages
Because PostgreSQL processes a lot in parallel, it outperforms MySQL in select operations and concurrent
write instructions. Furthermore, it carries the same avantages as MySQL.

Disadvantages
PostgreSQL is power hungry, a lot more than MySQL. For every client connection it forks of for up to 10MB of
memory.

A.5.5 Non-Relational Databases
Non-relational databases are databases that come in any other shape than that of the tabular relation de-
scribed in A.5.1. Non-relational databases are also called NoSQL databases. The NoSQL systems discussed
below compose by no means an exhaustive list of those available.

Advantages
NoSQL databases work on structured, semi-structured, and unstructured data. The architecture is also effi-
cient as it scales with your database rather than being predefined from the start.

Disadvantages
There is not a lot of documentation on NoSQL systems compared to SQL systems, since they are not that
mature and they mostly are open-source. Thus, it requires more skill and time to get into a certain type of

A.5. Database Management System research 41

NoSQL.

A.5.6 MongoDB
MongoDB is an open source platform written in C++ and is easy to set up. It stands for high performance,
high availability and auto scaling. It is also described best as a cross-platform, document-oriented NoSQL
database.

Advantages
MongoDB is a schema-less database and is, therefore, very flexible. It also supports sharding, which is a
mechanism that divides and replicates the database on different servers to ensure resilience. Besides, it also
has very fast query responses due to the accessing of documents by indexing.

Disadvantages
MongoDB has no join operations, in contrary to relational database systems. It is possible to write such an
operation in code, but it will not be as optimal as the SQL join operations. Due to the lack of joins, there is
data redundancy which leads to increased memory usage without usage.

A.5.7 Cassandra
Cassandra is a key-value based DBMS. It is similar to MongoDB but it stores single rows instead of documents.
And these rows don’t follow the same pattern as they must in SQL databases.

Advantages
Cassandra is open source, which means it is free to use and this increased the community over time. There
is a lot of documentation and information available. Besides, unlike the master-slave architectures of most
SQL systems, Cassandra uses a peer-to-peer architecture. Meaning that there is no single point of error, every
node can take over the job of a failing node.

Disadvantages
Transitions from any other DBMS to Cassandra does not work well, it is better to either use Cassandra from
the start or not at all. Besides, it is not very good in handling many-to-many requests.

B
UML

The first diagram is that of the back-end. It spans two pages and is best viewed if those pages are set side by
side. It is a class diagram that shows the two main components of the back-end. A group of interfaces and
their specifications for our custom objects and a group of classes that contain the methods for querying the
database. The classes are divided according to the objects they perform queries on.

The second diagram is an ER diagram of the Postgres database. It is displayed in landscape for best visibil-
ity. The notation used for relations is the crow-foot notation. Default styling is used for the boxes, including
the identifiers PK for primary keys and FK for foreign keys.

The third and last diagram is that of the front end. It consists of 7 pages and is viewed best as follows. The
first 4 pages are set side by side from left to right and the final 3 pages are set in the same order below the first
3 of the first 4. It is again a class diagram, this time displayed as a hierarchy according to their relations.

43

Interfaces

<<Interface>>
User

+ email: String
+ image: String
+ contactEmail: String
+ username: String

<<Interface>>
Exercise

+ id: Integer
+ image: String
+ duration: Integer
+ name: String
+ description: String

<<Interface>>
Training

+ id: Integer
+ image: String
+ name: String
+ username: String

<<Interface>>
Material

+ id: Integer
+ material_string: String

<<Interface>>
Tag

+ name: String
<<Interface>>
ExRequest

+ id: Integer
+ exercise_id: Integer
+ group_id: String
+ status: RequestStatus
+ time_of_request: DateTime
+ time_of_review: DateTime
+ reviewer_id: String

Database

exercise/queries

+ searchInGroup({groupName, phrase}): [Exercise

+ search({requestingUser, phrase}): [Exercise, av

+ getTopFromPublic({amount}): [Exercise, avg_ra

+ getAllPublicExercises(): [Exercise, avg_rating, t

+ getTopFromPublic({amount}): [Exercise, avg_ra

+ getFromTag({tagID}): Exercise[]

+ getByUser({userEmail}): Exercise[]

+ getWithRating({value}): Exercise[]

+ getWithTagAndRating({tagID, value}): Exercise[

+ getFromId({id, requestingUser}): [Exercise, Tag[

+ getPublicAndByMail({requestingUser}): [Exercis

+ create({image, duration, exercise_name, exercis

+ createAdvanced({requestingUser, image, hours
exercise_description, group_name, tags, material

+ remove({id}): Void

user/queries

+ getAllUsers(): User[]

+ getAllInGroup({groupName}): User[]

+ getUserByPhrase({phrase}): User[]

+ getByEmail({requestingUser}): User

+ isAdmin({requestingUser}): Boolean

+ setUserName({email, userName}): Void

+ setContactEmail({email, contactEmail}): Void

+ insertUser({email, image, contactEmail, usernam

+ deleteUser(email): Void

tag/queries

+ getAll(): Tag[]

+ getPopular(): Tag[]

+ createTag(name): Void

+ addToExercise(exerciseID, name): Void

e, avg_rating, tags[]]

g_rating, tags[]]

ating, tags[]]

ags[]]

ating, tags[]]

[]

[], Rating[], Material[], Group[]

se.id, Exercise.name]

se_description}): Void

, minutes, exercise_name,
s}): Void

me}): String

group/queries

+ getAllGroups(): Group[]

+ getAllGroupsByEmail({requestingUser}): Group[]

+ getGroupByPhrase({phrase}): Group[]

+ getByName({groupName, requestingUser}): Group

+ isGroupPrivate(groupName): Boolean

+ checkGroupAdmin(requestingUser, groupName): Boolean

+ checkGroupMember(requestingUser, groupName): Boolean

+ setPrivate({groupName, value}): Void

+ addExercise(id, groupName): Void

+ deleteExercise({id, groupName, requestingUser}): Void

+ create({name, image, description, requestingUser, isPrivate}): Void

+ deleteGroup({groupName, requestingUser}): Void

+ addUser({requestingUser, groupName}): Void

+ removeUser({requestingUser, groupName}): Void

training/queries

+ byGroup({groupID}): Training[]

+ getAllByEmail({requestingUser}): [Training, amountExercises]

+ getPDF({training_id}): {Training, Group, Exercise[]}

+ create({image, name, description, groupToAddTraining,
exercisesToAddTraining}): Integer

+ addExercise({exercise_id, training_id}): Void

material/queries

+ createMaterial(name): Void

+ getID(name): Integer

exRequest/queries

+ getAll(): ExRequest[]

+ getByStatus({status}): ExRequest[]

+ create({exercise_id, group_id, time_of_review, reviewer_id}): Void

+ remove({id}): Void

+ approveExRequest({exRequest}): Void

+ rejectExRequest({exRequest}): Void

train
in

g
s

idim
age

nam
e

descrip
tion

serial
text
varchar(30)
varchar(100

)

P
K

NNN

exercises

idim
age

duratio
n

nam
e

descrip
tion

serial
text
integer
varchar(30)
varchar(100

)

P
K

N

u
sers

em
ail

im
age

contact_em
a

il
userna

m
e

varchar(60)
text
varchar(60)
varchar(40)

P
K

NN

ratin
g
s

idvalue
user_e

m
ail

serial
integer
varchar(60)

P
K

F
K

tag
s

nam
e

varchar(10)
P

K

g
ro

u
p
s

nam
e

im
age

descrip
tion

adm
in

istrator
isP

rivate

varchar(50)
text
varchar(100

)
varchar(60)
boolea

n

P
K

NNF
K

m
aterials

idm
aterial_strin

g
serial
varchar(20)

P
K

exreq
u
es

ts

idexercise
group

_i
status
tim

e_of_
tim

e_of_
review

e

serial
integer
varchar(50)
enum

('in afw
ach

ting', 'goed
gekeurd', 'afgekeurd')

tim
estam

p
tim

estam
p

varchar(60)

P
K

F
K

F
K

NN
 F

K

g
rp

req
u
ests

iduser_i
group
status
tim

e_o
tim

e_o
review

serial
varchar(60)
varchar(50)
enum

('in afw
ach

ting', 'goed
gekeurd', 'afgekeurd')

tim
estam

p
tim

estam
p

varchar(60)

P
K

F
K

F
K

NN
 F

K

co
m

m
en

ts

iddescrip
tion

author
tim

e_of_co
m

m
en

serial
varchar(100

)
varchar(60)
tim

estam
p

tz

P
K

NF
K

co
m

m
en

t_e
xercise

com
m

e
nt_id

exercise
_id

integer
integer

P
K

 F
K

P
K

 F
K

co
m

m
en

t_train
in

g

com
m

e
nt_id

trainin
g_id

integer
integer

P
K

 F
K

P
K

 F
K

co
m

m
en

t_g
ro

u
p

com
m

e
nt_

group
_id

integer
varchar(50)

P
K

 F
K

P
K

 F
K

co
m

m
en

t_ratin
g

com
m

e
nt_id

rating_
id

integer
integer

P
K

 F
K

P
K

 F
K

exercise_tag

exercise
_i

tag_nam
e

integer
varchar(10)

P
K

 F
K

P
K

 F
K

exercise_m
aterial

exercise
_id

m
aterial_id

integer
integer

P
K

 F
K

P
K

 F
K

u
ser_m

ate
rial

user_id
m

aterial_
varchar(60)
integer

P
K

 F
K

P
K

 F
K

exercise_g
ro

u
p

exercise
_id

group
_id

integer
varchar(50)

P
K

 F
K

P
K

 F
K

exercise_u
ser

exercise
user_id

integer
varchar(60)

P
K

 F
K

P
K

 F
K

train
in

g
_g

ro
u
p

trainin
g_id

group
_id

integer
varchar(50)

P
K

 F
K

P
K

 F
K

train
in

g
_tag

trainin
g_id

tag_nam
e

integer
varchar(10)

P
K

 F
K

P
K

 F
K

exercise_train
in

g

exercise
_id

trainin
g_id

integer
integer

P
K

 F
K

P
K

 F
K

exercise_ratin
g

exercise
_id

rating_
id

integer
integer

P
K

 F
K

P
K

 F
K

train
in

g
_ratin

g

trainin
g_id

rating_
id

integer
integer

P
K

 F
K

P
K

 F
K

u
ser_g

ro
u
p

user_id
group

_id
varchar(60)
varchar(50)

P
K

 F
K

P
K

 F
K

g
ro

u
p
_m

o
d
e
rato

r

user_id
group

_id
varchar(60)
varchar(50)

P
K

 F
K

P
K

 F
K

g
ro

u
p
_m

aterial

group
_id

m
aterial_i

varchar(50)
integer

P
K

 F
K

P
K

 F
K

Landing

+ Route = "/"
+ exercises[]

+fetchExercises
+drillCard

Home

+ Route = "/home"
+ trainings[]
+ groups[]
+ User

+fetchTraining
+fetchGroups
+trainingCard
+groupCard

PublicGroup

+ Route = "/groups"
+ groups []

+ fetchGroups
+ groupSearch

App

+ fetchUser()
+ header()

+ Route : "/"
+ Route : "/home"
+ Route : "admin"
+ Route : "group"
+ Route : "exercise/create"
+ Route: : "exercises/view"
+ Route : "groups"

GroupPage

+ Route = "/group"
+ groupInformation
+ isMember

+ fetchGroup
+ Route: "trainingen"
+ Route: "leden"
+ Route: "materialen"
+ Route: "oefeningen"
+ Route: "verzoeken"
+ Route: "comments"

ViewExercise

+ Route = "/exercise/view"
+ exercise

PublicGroup

+ Route = "/groups"
+ groups []

+ fetchGroups
+ groupSearch

Members

-Groupname
-Members:
PostgresUses[]

+
fetchMembers

Materials

-Groupname
- Materials[]

+ fetchMaterials

GroupRequests

-Groupname
- users[]

+
handleClick()

GroupCreator

+
GroupInformation

+
CreateGroup

NavigationMenu

+ Material
+ Members
+ oefeningen
+ trainingen
+ comments
+ verzoeken

+Navlink(Component)

Exercise

-Groupname
-
ExerciseInformation[]

+ Exercises

<<interface>>
Header

- handeLogin
- Link (Home)
- Link (exercises)
- Link (groups)
- Link (admin)

CreateExercise

+ Route =
"/exercise/create"
+ Stage

+ ImageUploadStage
+ TitledescriptionStage
+ TagsStage
+ GroupStage

Comments

-Groupname
- comments[]
+
commentCreatror

+
fetchComments()

NavigationMenu

+ Material
+ Members
+ oefeningen
+ trainingen
+ comments
+ verzoeken

+Navlink(Component)

Training

-Groupname
-
TrainingInformation[]
+ TrainingCreator

+ fetchtrainingen

Exercise

-Groupname
-
ExerciseInformation[]

+ Exercises

Group

+ groups:
GroupInformation
+ toggle: boolean

+ selectGroup

Time

- minutes
- hours

+ setTime

AdminPanel

+ User

+ Route: "admin/users"
+ Route:
"admin/exerciseRequest"

Users

+
UserInformation[]

+ fetchUsers()
+ selectUser()

ExerciseRequest

+ Exercise
+ Group

+
ApproveRequest
+
RejectRequest

CreateExercise

+ Route =
"/exercise/create"
+ Stage

+ ImageUploadStage
+ TitledescriptionStage
+ TagsStage
+ GroupStage

Time

- minutes
- hours

+ setTime

ImageUpload

+ setImage

Tags

+
updateTags

Title

+
UpdateTitle

<<interface>>
DrillCard

- ExerciseInformation

<<interface>>
groupInformation

+ name: string
+ description: string
+ image: string
+ isPrivate: boolean
+ adminstrator : string

<<interface>>
ExerciseInformation

id: number;
image: string;
duration: number;
name: string;
description: string;
avg_rating: string;
tags: string[];

GroupCard

-groupInformation
-Exercises[]
-Trainingen[]

+fetchExercises
+fetchTrainingen

<<interface>>
AdderCard

- onClick(): Void
- title

<<interface>>
TrainingCard

- TrainingInformation

<<interface>>
PersonCard

- PostgresUser

<<interface>>
CommentCard

- CommentInformation

<<interface>>
trainingInformation

+ id: number;
+ image: string;
+ duration: number;
+ name: string;
+ description: string;
+ amountofexercises:
number;

<<interface>>
PostgreUser

+ email: string;
+ image: string;
+ contact_email: string;
+ username: string; <<interface>>

CommentInformation

+ id: number;
+ description: string;
+ author: string;
+ time_of_comment: string;

Members

-Groupname
-Members:
PostgresUses[]

+
fetchMembers

Materials

-Groupname
- Materials[]

+ fetchMaterials

GroupRequests

-Groupname
- users[]

+
handleClick()

Exercise

-Groupname
-
ExerciseInformation[]

+ Exercises

ExerciseCreator

-Groupname
- User

+ Route to
create/exercise

<<interface>>
CommentCard

- CommentInformation

<<interface>>
CommentInformation

+ id: number;
+ description: string;
+ author: string;
+ time_of_comment: string;

Comments

-Groupname
- comments[]
+
commentCreatror

+
fetchComments()

Training

-Groupname
-
TrainingInformation[]
+ TrainingCreator

+ fetchtrainingen

Exercise

-Groupname
-
ExerciseInformation[]

+ Exercises

CommentCreator

-Groupname
- User

+ createComment()

TrainingCreator

-Groupname
- User

+
createTraining()

ExerciseCreator

-Groupname
- User

+ Route to
create/exercise

54 B. UML

B.1 ER-Diagrams

Gymplanner DB ER diagram
Database model documentation

1

Database model: Gymplanner DB ER diagram, postgresql

1.
2.

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12.
1.13.
1.14.
1.15.
1.16.
1.17.
1.18.
1.19.
1.20.
1.21.
1.22.
1.23.
1.24.
1.25.
1.26.
1.27.

3.
2.1.
2.2.
2.3.
2.4.
2.5.

Table of contents

Model details 4
Tables 5

Table trainings 5
Table exercises 5
Table users 5
Table ratings 5
Table tags 6
Table groups 6
Table materials 6
Table exrequests 6
Table grprequests 7
Table comments 7
Table comment_exercise 7
Table comment_training 7
Table comment_group 8
Table comment_rating 8
Table exercise_tag 8
Table exercise_material 8
Table user_material 8
Table exercise_group 8
Table exercise_user 9
Table training_group 9
Table training_tag 9
Table exercise_training 9
Table exercise_rating 9
Table training_rating 10
Table user_group 10
Table group_moderator 10
Table group_material 10

References 11
Reference FK_0 11
Reference FK_1 11
Reference FK_2 11
Reference FK_3 11
Reference FK_4 11

2

Database model: Gymplanner DB ER diagram, postgresql

2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
2.21.
2.22.
2.23.
2.24.
2.25.
2.26.
2.27.
2.28.
2.29.
2.30.
2.31.
2.32.
2.33.
2.34.
2.35.
2.36.
2.37.
2.38.
2.39.
2.40.
2.41.
2.42.
2.43.

Reference FK_5 11
Reference FK_6 11
Reference FK_7 11
Reference FK_8 12
Reference FK_9 12
Reference FK_10 12
Reference FK_11 12
Reference FK_12 12
Reference FK_13 12
Reference FK_14 12
Reference FK_15 13
Reference FK_16 13
Reference FK_17 13
Reference FK_18 13
Reference FK_19 13
Reference FK_20 13
Reference FK_21 13
Reference FK_22 13
Reference FK_23 14
Reference FK_24 14
Reference FK_25 14
Reference FK_26 14
Reference FK_27 14
Reference FK_28 14
Reference FK_29 14
Reference FK_30 14
Reference FK_31 15
Reference FK_32 15
Reference FK_33 15
Reference FK_34 15
Reference FK_35 15
Reference FK_36 15
Reference FK_37 15
Reference FK_38 15
Reference FK_39 16
Reference FK_40 16
Reference exrequests_users 16
Reference grprequests_users 16

3

Database model: Gymplanner DB ER diagram, postgresql

1. Model details

Model name:
Gymplanner DB ER diagram

Version:
2.3

Database engine:
 PostgreSQL

Description:

4

Database model: Gymplanner DB ER diagram, postgresql

2. Tables
2.1. Table trainings
2.1.1. Columns

2.2. Table exercises
2.2.1. Columns

2.3. Table users
2.3.1. Columns

2.4. Table ratings
2.4.1. Columns

Column name Type Properties Description

id serial PK

image text null

name varchar(30) null

description varchar(100) null

Column name Type Properties Description

id serial PK

image text null

duration integer

name varchar(30)

description varchar(100)

Column name Type Properties Description

email varchar(60) PK

image text null

contact_email varchar(60) null

username varchar(40)

Column name Type Properties Description

id serial PK

value integer

5

Database model: Gymplanner DB ER diagram, postgresql

2.5. Table tags
2.5.1. Columns

2.6. Table groups
2.6.1. Columns

2.7. Table materials
2.7.1. Columns

2.8. Table exrequests
2.8.1. Columns

user_email varchar(60)

Column name Type Properties Description

name varchar(10) PK

Column name Type Properties Description

name varchar(50) PK

image text null

description varchar(100) null

administrator varchar(60)

isPrivate boolean

Column name Type Properties Description

id serial PK

material_string varchar(20)

Column name Type Properties Description

id serial PK

exercise_id integer

group_id varchar(50)

status
enum('in
afwachting',
'goedgekeurd',
'afgekeurd')

time_of_request timestamp

time_of_review timestamp null

6

Database model: Gymplanner DB ER diagram, postgresql

2.9. Table grprequests
2.9.1. Columns

2.10. Table comments
2.10.1. Columns

2.11. Table comment_exercise
2.11.1. Columns

2.12. Table comment_training
2.12.1. Columns

reviewer_id varchar(60) null

Column name Type Properties Description

id serial PK

user_id varchar(60)

group_id varchar(50)

status
enum('in
afwachting',
'goedgekeurd',
'afgekeurd')

time_of_request timestamp

time_of_review timestamp null

reviewer_id varchar(60) null

Column name Type Properties Description

id serial PK

description varchar(100) null

author varchar(60)

time_of_comment timestamptz

Column name Type Properties Description

comment_id integer PK

exercise_id integer PK

Column name Type Properties Description

comment_id integer PK

7

Database model: Gymplanner DB ER diagram, postgresql

2.13. Table comment_group
2.13.1. Columns

2.14. Table comment_rating
2.14.1. Columns

2.15. Table exercise_tag
2.15.1. Columns

2.16. Table exercise_material
2.16.1. Columns

2.17. Table user_material
2.17.1. Columns

training_id integer PK

Column name Type Properties Description

comment_id integer PK

group_id varchar(50) PK

Column name Type Properties Description

comment_id integer PK

rating_id integer PK

Column name Type Properties Description

exercise_id integer PK

tag_name varchar(10) PK

Column name Type Properties Description

exercise_id integer PK

material_id integer PK

Column name Type Properties Description

user_id varchar(60) PK

material_id integer PK

8

Database model: Gymplanner DB ER diagram, postgresql

2.18. Table exercise_group
2.18.1. Columns

2.19. Table exercise_user
2.19.1. Columns

2.20. Table training_group
2.20.1. Columns

2.21. Table training_tag
2.21.1. Columns

2.22. Table exercise_training
2.22.1. Columns

2.23. Table exercise_rating

Column name Type Properties Description

exercise_id integer PK

group_id varchar(50) PK

Column name Type Properties Description

exercise_id integer PK

user_id varchar(60) PK

Column name Type Properties Description

training_id integer PK

group_id varchar(50) PK

Column name Type Properties Description

training_id integer PK

tag_name varchar(10) PK

Column name Type Properties Description

exercise_id integer PK

training_id integer PK

9

Database model: Gymplanner DB ER diagram, postgresql

2.23.1. Columns

2.24. Table training_rating
2.24.1. Columns

2.25. Table user_group
2.25.1. Columns

2.26. Table group_moderator
2.26.1. Columns

2.27. Table group_material
2.27.1. Columns

Column name Type Properties Description

exercise_id integer PK

rating_id integer PK

Column name Type Properties Description

training_id integer PK

rating_id integer PK

Column name Type Properties Description

user_id varchar(60) PK

group_id varchar(50) PK

Column name Type Properties Description

user_id varchar(60) PK

group_id varchar(50) PK

Column name Type Properties Description

group_id varchar(50) PK

material_id integer PK

10

Database model: Gymplanner DB ER diagram, postgresql

3. References
3.1. Reference FK_0

3.2. Reference FK_1

3.3. Reference FK_2

3.4. Reference FK_3

3.5. Reference FK_4

3.6. Reference FK_5

3.7. Reference FK_6

3.8. Reference FK_7

users 0..* ratings

email <-> user_email

users 0..* groups

email <-> administrator

exercises 0..* exrequests

id <-> exercise_id

groups 0..* exrequests

name <-> group_id

users 0..* grprequests

email <-> user_id

groups 0..* grprequests

name <-> group_id

users 0..* comments

email <-> author

11

Database model: Gymplanner DB ER diagram, postgresql

3.9. Reference FK_8

3.10. Reference FK_9

3.11. Reference FK_10

3.12. Reference FK_11

3.13. Reference FK_12

3.14. Reference FK_13

3.15. Reference FK_14

comments 0..* comment_exercise

id <-> comment_id

exercises 0..* comment_exercise

id <-> exercise_id

comments 0..* comment_training

id <-> comment_id

trainings 0..* comment_training

id <-> training_id

comments 0..* comment_group

id <-> comment_id

groups 0..* comment_group

name <-> group_id

comments 0..* comment_rating

id <-> comment_id

ratings 0..* comment_rating

id <-> rating_id

12

Database model: Gymplanner DB ER diagram, postgresql

3.16. Reference FK_15

3.17. Reference FK_16

3.18. Reference FK_17

3.19. Reference FK_18

3.20. Reference FK_19

3.21. Reference FK_20

3.22. Reference FK_21

3.23. Reference FK_22

exercises 0..* exercise_tag

id <-> exercise_id

tags 0..* exercise_tag

name <-> tag_name

exercises 0..* exercise_material

id <-> exercise_id

materials 0..* exercise_material

id <-> material_id

users 0..* user_material

email <-> user_id

materials 0..* user_material

id <-> material_id

exercises 0..* exercise_group

id <-> exercise_id

groups 0..* exercise_group

name <-> group_id

13

Database model: Gymplanner DB ER diagram, postgresql

3.24. Reference FK_23

3.25. Reference FK_24

3.26. Reference FK_25

3.27. Reference FK_26

3.28. Reference FK_27

3.29. Reference FK_28

3.30. Reference FK_29

3.31. Reference FK_30

exercises 0..* exercise_user

id <-> exercise_id

users 0..* exercise_user

email <-> user_id

trainings 0..* training_group

id <-> training_id

groups 0..* training_group

name <-> group_id

trainings 0..* training_tag

id <-> training_id

tags 0..* training_tag

name <-> tag_name

exercises 0..* exercise_training

id <-> exercise_id

trainings 0..* exercise_training

id <-> training_id

14

Database model: Gymplanner DB ER diagram, postgresql

3.32. Reference FK_31

3.33. Reference FK_32

3.34. Reference FK_33

3.35. Reference FK_34

3.36. Reference FK_35

3.37. Reference FK_36

3.38. Reference FK_37

3.39. Reference FK_38

exercises 0..* exercise_rating

id <-> exercise_id

ratings 0..* exercise_rating

id <-> rating_id

trainings 0..* training_rating

id <-> training_id

ratings 0..* training_rating

id <-> rating_id

users 0..* user_group

email <-> user_id

groups 0..* user_group

name <-> group_id

users 0..* group_moderator

email <-> user_id

groups 0..* group_moderator

name <-> group_id

15

Database model: Gymplanner DB ER diagram, postgresql

3.40. Reference FK_39

3.41. Reference FK_40

3.42. Reference exrequests_users

3.43. Reference grprequests_users

groups 0..* group_material

name <-> group_id

materials 0..* group_material

id <-> material_id

users 0..* exrequests

email <-> reviewer_id

users 0..* grprequests

email <-> reviewer_id

16

Database model: Gymplanner DB ER diagram, postgresql

C
Coverage

coverage.png

Figure C.1: Back-end test coverage

coverage.png

Figure C.2: Front-end test coverage

71

D
SIG-feedback

Beste,

Hierbij ontvang je onze evaluatie van de door jou opgestuurde code. De evaluatie bevat een aantal aan-
bevelingen die meegenomen kunnen worden tijdens het vervolg van het project. Bij de evaluatie van de
tweede upload kijken we in hoeverre de onderhoudbaarheid is verbeterd, en of de feedback is geaddresseerd.
Deze evaluatie heeft als doel om studenten bewuster te maken van de onderhoudbaarheid van hun code, en
dient niet gebruikt te worden voor andere doeleinden.
Let tijdens het bekijken van de feedback op het volgende: - Het is belangrijk om de feedback in de context
van de huidige onderhoudbaarheid te zien. Als een project al relatief hoog scoort zijn de genoemde punten
niet ’fout’, maar aankopingspunten om een nog hogere score te behalen. In veel gevallen zullen dit marginale
verbeteringen zijn, grote verbeteringen zijn immers moeilijk te behalen als de code al goed onderhoudbaar
is. - Voor de herkenning van testcode maken we gebruik van geautomatiseerde detectie. Dit werkt voor de
gangbare technologieën en frameworks, maar het zou kunnen dat we jullie testcode hebben gemist. Laat het
in dat geval vooral weten, maar we vragen hier ook om begrip dat het voor ons niet te doen is om voor elk
groepje handmatig te kijken of er nog ergens testcode zit. - Hetzelfde geldt voor libraries: als er voldaan wordt
aan gangbare conventies worden die automatisch niet meegenomen tijdens de analyse, maar ook hier is het
mogelijk dat we iets gemist hebben.
Mochten er nog vragen of opmerkingen zijn dan horen we dat graag.
Met vriendelijke groet, Dennis Bijlsma

[Feedback]
De code van het systeem scoort 4.6 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor Unit Size.
Bij Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Dit kan verschillende
redenen hebben, maar de meest voorkomende is dat een methode te veel functionaliteit bevat. Vaak was de
methode oorspronkelijk kleiner, maar is deze in de loop van tijd steeds verder uitgebreid. De aanwezigheid
van commentaar die stukken code van elkaar scheiden is meestal een indicator dat de methode meerdere
verantwoordelijkheden bevat. Het opsplitsen van dit soort methodes zorgt er voor dat elke methode een
duidelijke en specifieke functionele scope heeft. Daarnaast wordt de functionaliteit op deze manier vanzelf
gedocumenteerd via methodenamen.
Voorbeelden in jullie project: - simpleResponses.ts.pdfPostResponse
Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk aan te
raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische tests gedefinieerd
te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst gedrag zorgen. Op lange
termijn maakt de aanwezigheid van unit tests je code ook flexibeler, omdat aanpassingen kunnen worden
doorgevoerd zonder de stabiliteit in gevaar te brengen.
Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden tijdens
de rest van de ontwikkelfase.

73

74 D. SIG-feedback

Bibliography

[1] The PostgreSQL Global Development Group. PostgreSQL global development group, 1996. URL https:
//www.postgresql.org/about/.

[2] Jetbrains. WebStorm, 2000. URL https://www.jetbrains.com/help/webstorm/
getting-started-with-webstorm.html.

[3] Agile Project. The dsdm agile project framework (2014 onwards), Jun 2017. URL https://www.
agilebusiness.org/content/moscow-prioritisation.

[4] SAX-VSM. TF-IDF, 2016. URL https://jmotif.github.io/sax-vsm_site/morea/algorithm/
TFIDF.html.

[5] Ken Schwaber. Agile project management with Scrum. Microsoft press, 2004.

[6] Joost Visser. Sig/tÜvit evaluation criteria trusted product maintainability, 2016. URL https://www.
softwareimprovementgroup.com/news-knowledge/sig-models/.

75

https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.jetbrains.com/help/webstorm/getting-started-with-webstorm.html
https://www.jetbrains.com/help/webstorm/getting-started-with-webstorm.html
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation
https://jmotif.github.io/sax-vsm_site/morea/algorithm/TFIDF.html
https://jmotif.github.io/sax-vsm_site/morea/algorithm/TFIDF.html
https://www.softwareimprovementgroup.com/news-knowledge/sig-models/
https://www.softwareimprovementgroup.com/news-knowledge/sig-models/

	Preface
	Summary
	Introduction
	Requirements
	Constructing the requirements
	Must have requirements
	Should haves
	Could have requirements
	Won't have requirements

	Non-Functional Requirements
	Development standards
	Access Security
	Usability
	Accessibility/Availability
	Confidentiality
	Maintainability
	Efficiency
	Portability

	Research
	Overview
	Problem definition
	Available Solutions
	Gymspiratie
	Xpsnetwork

	Problem Analysis
	Usage
	Privacy and Accessibility
	Full text search
	Tag recommendation

	Course of action
	Back-end technologies
	NodeJS
	Express
	PassportJS
	Testing framework: Jest

	Front-end technologies
	JavaScript
	TypeScript
	React
	Redux
	Database

	Design
	User
	Exercise
	Training
	Groups

	Process
	Scrum
	Development Driven Development
	Development Resources
	Gitlab
	WebStorm
	PostgreSQL

	Software Improvement Group
	Feedback

	Implementation
	Back-end Implementation
	Query structure
	Exercise
	Training
	Group
	User session

	Front-end implementation
	Landing page
	Home page
	Group page
	Creating an exercise
	Viewing an exercise
	Search implementation
	Text-based Tag recommendations

	Evaluation
	Requirements
	Testing
	Load Testing
	Success Criteria
	Functional requirements
	Non-functional requirements

	User evaluation
	Do you need extra information for creating an exercise or group
	Are the information cards clear and intuitive?
	Is the process of joining a group clear?
	Do you understand the difference between public and private groups?
	What is your opinion on the navigation
	Is any functionality missing
	What would you like to be able to search on

	Process Evaluation

	Recommendations
	Implementation Recommendations
	General Recommendations

	Conclusion
	Framework Research
	Back-end Framework Research
	PHP
	Java
	NodeJS
	Testing framework: MochaJS

	Front-end Framework Research
	Vue.js
	Angular.js
	ReactJS

	Integrated Development Research
	Microsoft Visual Studio Code
	WebStorm

	Type Annotation Framework research
	Flow
	TypeScript

	Database Management System research
	Relational Databases
	SQLite
	MySQL
	PostgreSQL
	Non-Relational Databases
	MongoDB
	Cassandra

	UML
	ER-Diagrams

	Coverage
	SIG-feedback
	Bibliography

