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Abstract
Background & Objective:
Cardiovascular diseases (CVDs) are the leading cause for death globally nowadays. Pulse
wave velocity (PWV), a marker of arterial stiffness, is an important predictor of CVD risk.
In precedent work, carotid artery data was collected with ultrasound to estimate the PWV
with a digital signal processing (DSP) pipeline. As a potential alternative to the DSP-based
approach, this thesis studies the applicability of machine learning(ML) for the estimation
of carotid artery motion (diameter, distension, etc.) and explores to what extent neural
networks can exploit the ultrasound data to extract relevant biomarker information.
Methods:
This thesis proposes aML pipeline that processes the ultrasound data in a different perspec-
tive than the DSP approach. The ML pipeline consists of four modules (neural networks
post-processing) to: 1) segmentation based on cardiac cycle (CC), 2) detect the region of
interest (ROI) of artery in the ultrasound data, 3) tracking the artery diameter and 4) post
processing to estimate cardiac parameters e.g. pulse arrival time (PAT), an essential part of
PWV estimation. Exploiting the features of the artery-lumen structure and time-evolving
characteristics of collected ultrasound signal, the designedML pipeline can acquire cardiac
markers spatially and temporally with irregular kernels and sliding mechanism, decom-
pose the complicated estimation into compact sub-modules.
Results:
The results show that the ML approach can successfully estimate the artery diameters and
reserve important waveform features (max-slope moment) of the artery diameter, and can
infer the CC markers without ECG data as a segmenting event for heart cycles. Thus, the
PAT can be computed as the time difference of the max-slope moments of inferred artery
diameter and detected CC markers. According to the numerical results, the PAT can be
estimated on the average for an ultrasound data recording (120s), and the correlation coef-
ficient of label PAT (computed from estimated parameters of DSP pipeline and ECG data)
and estimated PAT (ML pipeline) is 0.8250. This indicates a good correlation and hence
proves the effectiveness of the mean PAT estimation.
Conclusion:
In conclusion, the proposed ML pipeline can effectively estimate mean PAT, and demon-
strate the feasibility to estimate PWV as a relevant cardiovascular marker using only ul-
trasound data of carotid arteries. Apart from the PAT, the heart rate can also be possibly
tracked via intermediate results of the ML pipeline (CCmarkers). From the future perspec-
tive, the potential of phase information in the raw ultrasound data and further optimiza-
tion are worth exploring, and the extension to hardware (e.g. chips, embedded system)
can be implemented as a practical application.
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1
Introduction

In this chapter, the background and context of the cardiovascular diseases and the importance
of medical interventions or health assessments are discussed. The pulse arrival time (PAT),
an essential quantity of the pulse wave velocity (PWV) is introduced as one of the main
objective of this work. In the following the ultrasound sound image technology and machine
learning are introduced and the motivation behind their applications. Covering the general
background of this topic, the objective and thesis outline is proposed, together with the research
questions.

1.1 Cardiovascular Disease
1.1.1 Background & Context
As a slow-progressing and rather common disease in the population, Cardiovascular Dis-
ease (CVD) has been already identified as the leading cause of death globally, according to
World Health Organization. It occurs when fatty deposits clog the blood vessels that de-
liver blood to the brain or organs. As an estimation, in 2019 there are 17.9 million people
passed away due to CVD, representing 32% of the global deaths (World Hearth Organi-
zation, 2021), and in EU there are more than 6 million new cases of CVD, with almost
49 million people living with the disease, the cost to the EU economics is high at €210
billion a year [6]. Cardiovascular Disease, as a group of disorders of heart and vessels,
contains different types and symptoms. Common symptoms such as stroke, heart attacks
and sudden numbness happening in different part of the human body. The threat of CVD
to human not only lies in the fatal risks, but also severe consequences such as damage to
the nerve system and the brain also has been seen quite often on the patients after CVD
attacks[7].
Usually identified as a chronic process, the forming of CVD is highly related to the risk
factors such as smoking, diet, stress, alcohol, age etc.. The commonality of such factors
in the population has made the forming of cardiovascular disease more easily, results in
higher risk in the global population, especially in aged groups. Under such circumstances,
approaches that can detect the risk of CVDs and intervenes early are very important to
preventing the symptoms and consequences. Over the decades, the focus of early preven-
tion of CVD is mainly hypertension(high blood pressure, BP), while recent researches has
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shown great interest into the pulse wave velocity (PWV), as a marker of the stiffness of
artery, and an independent predictor of CVD risk complementary to BP. While the BP
is usually regards as the strongest evidence for causations and it has a high prevalence
of exposure [8], the PWV is identified as as an independent predictor of CVD and all-
cause mortality beyond classical risk factors like BP, and is suggested to be one of the best
biomarkers available to calculate the prospective cardiovascular risk and mortality risk of
an individual [9]. Hence, the estimation of PWV becomes very important in monitoring
the situation of artery, and practical approaches that can measure central artery PWV are
studied and developed by researches. Ideally, such techniques would be widely applicable
for both the practitioners and patients[10].

1.1.2 Pulse Wave Velocity
Pulsewave velocity (PWV) is the velocitywith the blood pressure pulse propagates through
the circulation system, usually an artery or a combined length of arteries. In practice, PWV
is measured across two distinct vessel positions over a large arterial trajectory (regional,
or global PWV), and from a single artery site or locally across piecewise segments of indi-
vidual target arteries[11]. It is used clinically as a measure of arterial stiffness and can be
readily measured non-invasively in humans.
In practice, the carotid-femoral pulse wave velocity (cfPWV) is regarded as the gold stan-
dard method for determination of arterial stiffness[12]. The carotid and femoral artery
directly extend from the aorta, as shown in figure 1.1, and the artery distension or diam-
eter waveform (time series signals) can be acquired by a piezoelectric ultrasound probe.
With the measured data, the cfPWV can be computed as follow

𝑃𝑊𝑉 = 𝐿
Δ𝑇 [𝑚/𝑠] (1.1)

Here, 𝐿 is the distance travelled between the arterial sites and Δ𝑇 is the time delay
between the systolic foot (SF) fiducial marker on simultaneously acquired waveforms. Re-
searches indicate that the cfPWV is increasing with grows in age and more risk factors,
meaning the stiffness of artery is positively correlated to overall and long-term cardiovas-
cular risk [13].
In practice, the acquisition of pulse wave velocity needs to compute pulse arrival time
(PAT), it is the time duration of travel time from the hearts to periphery arteries (e.g.
carotid artery, femoral artery, etc.) [5]. It can be measured as the interval from the R-peak
on an electrocardiogram (ECG) to the peripheral arrival of the pulse wave. [5]. Therefore,
two kinds of information are needed: artery movements collected by different sensors
(Ultrasound, PPG, etc.) and time information (ECG R-peak moments). The details of PAT
computation is further introduced in 3.6.
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Figure 1.1: Carotid-femoral Artery, cfPWV and Central Arterial Waveform Assessment. P1: first systolic pres-
sure feet; P2: second systolic pressure feet; PP: pulse pressure[1]

1.2 Ultrasound Imaging
Ultrasound is the acoustic wave that has a frequency higher than 20,000 Hz and it is not
perceivable by the hearing ability of humans. The ultrasound technologies that apply such
acoustic wave to detect and measure things has been developed very well over the past
few decades. It is used in many fields, especially in medical imaging.

1.2.1 Medical Ultrasound Imaging
In practice, the ultrasound sensors are usually piezoelectrical crystals that convert elec-
trical signal into mechanical signal, hence generates the oscillation of ultrasound signals
and vice versa. The acoustic sound wave is applied as a propagating signal to detect in-
formation of the medium by the reflected wave. With its concentrated energy and high
frequency, the ultrasound signal is able to detect fine details in the human organs or tis-
sues with high resolutions in a non-invasive manner. Also, since ultrasound signal can be
captured in real time, it can reveal the movement of blood vessels or internal organs.
The propagation of ultrasound can be seen in the figure 1.2 Without loss of generality, the
ultrasound propagation can be formulated as follows: with its propagation speed deter-
mined 𝑐 by the compressibility 𝜅 and density 𝜌 of a material,

𝑐 =
√

1
𝜅𝜌 (1.2)

the propagation speed 𝑐 in the air is 330 m/s, while it is assumed to be 1540 m/s in soft
tissues. When propagating in the medium, the amplitude of ultrasound signal also atten-
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Figure 1.2: Ultrasound Wave Propagation

uated by a factor (amplitude attenuation factor, units 𝑐𝑚−1) 𝜇𝐴, with axial depth 𝑧, the
amplitude of ultrasound signal can be expressed as

𝐴(𝑧) = 𝐴0𝑒−𝜇𝐴𝑧 (1.3)

As ultrasound signal propagates and reflects back, it is expected to have a decrease in the
average amplitude. The information of certain structure inside the medium is detected
by the pulse echo of transmitted ultrasound signal. At one element of the transmitter, a
short pulse of its characteristic frequency is emitted into the medium. Upon a change in
the acoustic impedance, the circular propagating wavefront would be partly reflected and
partly transmitted. Hence, the distance of an object or surface(acoustic impedance change)
can be calculated by the delay of transmitted signal and reflected signal(time of flight).

𝑑 = Δ𝑡
2 𝑐 (1.4)

Apart from the reflection and attenuation, ultrasound signal generally shares other prop-
erties as waves, e.g. scattering, interference etc.. These properties also have an impact on
the quality of ultrasound signal (noise, interference etc.).

1.3 Machine Learning Approach
Machine learning is the use and development of computer systems that are able to learn
and adapt without following explicit instructions, by using algorithms and statistical mod-
els to analyse and draw inferences from patterns in data. As one of the most progressive
and popular techniques recently, it is broadly applied in statistics, computer vision and dif-
ferent engineering fields. As a very general terminology, it has a broad range of different
algorithms and structure, e.g. neural networks, support vector machines (SVM), decision
trees, random forest, Boltzmann machine, etc.. It has been discovered that the machine
learning approach can be very effective because of its ability to generalize in high dimen-
sion with increasing availability of training data. Based on learning strategies, machine
learning can be categorized into different kinds: supervised learning(with labels), unsuper-
vised learning(without labels) and reinforcement learning(learning by rules). Numerous
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in-depth literature and researches have been conducted to discover different applications
of all these types of machine learning.

1.3.1 Neural Network
Neural networks, also known as artificial neural network (ANNs), is the backbone of ma-
chine learning (deep learning) algorithms that enables the generalizing ability over high
dimensional space. Inspired by the human brain structure, the neural network usually
consists of multiple nodes and layers, with each node representing a neuron in the brain,
the nodes connect each other by a certain weight, a bias and an activation function. With
many of this nodes and connections, the nodes that are in the same depth(same connec-
tion numbers from the beginning) form a layer, such structure gives this model a very
high complexity and hence can be approximate many functions that are not easily approx-
imated by linear equations or polynomials.

Figure 1.3: An Example of Artificial Neural Networks(Multilayer Perceptron)

Without loss of generality, a neural network can be formulated as a linear regression
model on each node, for a j-th neuron in the hidden layer(𝑛𝑒𝑡𝑗 ), its input can be expressed
as

𝑛𝑒𝑡𝑗 =
𝑚
∑
𝑖=1

𝑤𝑖𝑥𝑖 +𝑏 (1.5)

𝑤𝑖 is the weight assigned to the connection, 𝑥𝑖 is the element corresponding to i-th in
the input vector and 𝑏 is the bias. While the output is an outcome of an activation or
threshold(usually non-linear),

𝑦𝑗 = 𝑓 (𝑦𝑗) = 𝑓 (
𝑚
∑
𝑖=1

𝑤𝑖𝑥𝑖 +𝑏𝑖𝑎𝑠) (1.6)

In this way, the connection of neurons can approximate both linear and non-linear func-
tions because the neural network is combined with linear inputs and non-linear activation
functions.
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In the training of neural network, a cost function has to be defined as the objective the
neural network need to learn. Common cost functions such as mean square error (MSE),
cross entropy loss, negative log-likelihood loss (NLL), etc. are designed to be minimized
by an optimizer, using gradient descent method, It backpropagates the loss through the
neurons and update the weights of the neural network. With rapid technical advance in
computational power of computing units (GPUs, CPUs, etc.), the time and difficulties to
train a neural network is reducing over recent years, making it possible to train very deep
and large neural network that can handle highly abstract problems.

1.3.2 Variants and Applications
Based on the basic principles of how the neural network structure is organized, many vari-
ants of the ANNs have been studied and put into practice. These variants share the same
optimization process and part of the architecture.
Convolution Neural Network (CNN): This network alters the first few layers of the
neural network with convolution kernels that only focusing on part of the data at one
time. This architecture is inspired by the natural visual perception mechanism of the liv-
ing creatures[2]. Its framework was established in the 1990s and later advanced rapidly
in 21th century. The structure of CNNs can be illustrated as 1.4 It is obvious that CNNs

Figure 1.4: Example of the Architecture of CNN, Extracted Features in the Convolution Kernels[2].

are powerful with the feature extraction process that can synthesis geometrically-related
information, the original (sub)image information is transform into a lower dimension rep-
resentation, while the fully connected layers will learn the combinations of these low-
dimension image features to regress the objective output.
CNNs are very popular in the visual-pattern-recognition related tasks, like image classi-
fication, object detection and tracking. To increase its capability to learn more abstract,
high-level representations, modifications are made to the CNNs, some of these CNN mod-
els turned out to be very successful in the accuracy and robustness, e.g. ZFNet[14], VGGNet[15],
and ResNet[16]. With very large scale of the parameters and pre-trained model, these neu-
ral networks can easily fit into different image-related tasks.
Recurrent Neural Network (RNN) In recurrent networks, rather than give only the out-
put that corresponding to the current input, the output of the network is the integration
of the inputs over time. Different from the feed forward network, RNN has recurrent con-
nections that allows the history over certain neuron to be integrated.
For each timestep 𝑡 , the activation 𝑎<𝑡> and the output 𝑦<𝑡> can be expressed as follows:

𝑎<𝑡> = 𝑔1(𝑊𝑎𝑎𝑎<𝑡−1> +𝑊𝑎𝑥𝑥<𝑡> +𝑏𝑎)
𝑦<𝑡> = 𝑔2(𝑊𝑦𝑎𝑎<𝑡> +𝑏𝑦)

(1.7)
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where 𝑊𝑎𝑥 , 𝑊𝑎𝑎 , 𝑊𝑦𝑎 are the weights of the connections, 𝑏𝑎 , 𝑏𝑦 is the bias, these are the
coefficients that are shared temporally. 𝑔1, 𝑔2 are activation functions. In this sense, the
RNN can be illustrated as1.5: Such recurrent connections make RNN can possibly process

Figure 1.5: Recurrent Neural Network Architecture

input of any length, and have a fixed size that does not increasing with the size of the in-
put. However, it also turns out to be slow at the computation, especially backpropagation
through time mechanism, and also difficult to accessing information from a long time ago.
As a special neural network that can make time dependency over the input, it has a rela-
tively more complicated control logic over the updating of parameters and memory usage.
Based on the original RNN structure, many new modifications that can solve the disad-
vantages of RNN and some of these networks become successful for their performance.
Gated recurrent unit (GRU)[17] and long short-term memory units (LSTM)[18] are the
most used RNN structure currently. These network structures are widely applied in se-
quential sequence problem, e.g. speech recognition, sequence to sequence translation,
price prediction, etc..

1.4 Related Researches
The high demand for reliable and high-resolution algorithms and signals in medical ultra-
sound imaging has encouraged the neural network to play an increasingly important role
in ultrasound imaging. The data-driven neural network approach becomes more andmore
popular because of the increasing data availability and its robustness. Generally, the ML
approaches applied on ultrasound data can be summarized into the following categories.
Classification: One of the most popular scenarios whereML approach is applied on ultra-
sound data is lesion detection & classification. Mostly focus on human organs like breast,
liver and lung, these works usually apply the ML as a classifier or detector for lesions, and
part of the computer-aided disease diagnosis of the whole system. In [19], a computer-
aided diagnosis(CAD) system is developed for breast ultrasound, where different machine
learning algorithms are applied for feature extraction. With deep neural network increas-
ingly involved, in [20], deep convolution neural network (DCNN) is applied to reduce false
positive(FP) based on an automated breast volume scanner. And in [21], transfer learning
is applied with DCNN model (CaffeNet and VGGNet) for classification, supporting the
conclusion that transfer learning with CNN can be used to construct effective classifiers
for abdominal ultrasound images. When fusing hand-crafted features and ones extracted
by deep learning, [22] proposes a methodology that can improve the performance, circum-
vent the need for image pre-processing and also computationally efficient.
Segmentation: In segmentation tasks, the structural boundaries of certain objects are to
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automatically extracted by the ML algorithms. ML-based segmentation usually extract a
structural region by doing pixel-wise classification followed by a smoothing step. Such
procedures are similar in the segmentation task for images by using a fully convolution
neural network[23].
In [24], a segmentation scheme for 2D ultrasound images is proposed, with discretewavelet
transform (DWT) is used to build the input feature space of the network. In [25], a fully
automatic segmentation technique based onML and statistical pattern recognition to mea-
sure Intima-Media Thickness (IMT) from ultrasound Common Carotid Artery (CCA) im-
ages is proposed. The automated US segmentation is regarded as challenging for the speck-
les, shadow, missing boundaries that usually accompany US images.
Other Applications: Some of the works proposed recently focus on the registration of
ultrasound images. In [26], neural network, together with code mutual information are
combined to perform registration of CT and ultrasound images of the spine. Instead of ap-
plying ML approaches for image processing tasks, some work has been proposed to focus
on higher-level problems, in [27], a deep convolution neural network is designed for con-
tent interpretation in ultrasound videos, [28] proposes a framework to process US videos,
accurately acquires fetal ultrasound standard planes by a transferred recurrent neural net-
work.
Within the past few years, deep learning (DL) approaches have been shown to significantly
improve performance when compared with classifiers operating on handcrafted features
in the classical ways[29]. It is predictable that with more available data and in-depth re-
searches over the ML processing US data, ML or DL algorithms can perform interpretable
processing and efficient computation over the ultrasound data, achieving similar progress
as in the computer vision domain.

1.5 Objectives & Thesis Outline
Based on the discussion in section 1.4, there are already many researches over the ML
approaches processing US data, indicating the effectiveness of ML and DL algorithms in
image processing domain, where the classification or segmentation can readily help the
process of computer-aid diagnosis system. Most of these works apply large scale, compli-
cated neural networks that specialize in high-level abstract problem such as lesion detec-
tion, region of interest (ROI) detection on 2D or 3D image level and other similar problems
that involve deep feature extractions and highly non-linear localizations or abstractions.
However, for low-level parameters tracking and estimation, most approaches apply deter-
ministic signal processing techniques that are highly demanding computation and mem-
ory resource for processing. Hence, the discovery of possible ML approaches that process
the ultrasound data to estimate carotid artery parameters in an end-to-end, half-black-box
and low-computation-cost manner can facilitate the development of compact devices that
specialize at monitoring or detecting pulse wave velocity, and hence make contributions
to the research of cardiovascular disease.

1.5.1 Research Problems & Objectives
Following the precedent work[3], where carotid artery parameters are estimated through
a digital signal processing (DSP) pipeline and novel pulse wave velocity methods are pro-
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posed (introduced in section 2.2), this thesis will focus on the ML approaches that can per-
form tracking movement of the carotid artery, estimating parameters through a compact,
effective and computationally efficient process. Hence, in this thesis, following problems
are researched and the objectives are expected:

1. How machine learning algorithms can obtain the same artery motion parameters
through proper training, without heavy computation and processing?

2. Canwe re-intepret the existing DSP pipeline in the perspective of machine learning?
What is the approach to assemble/decompose the subparts in the DSP pipeline in
Machine Learning?

3. Is ultrasound data enough for estimation of pulse arrival time (PAT) without ECG
signal?

1.5.2 Thesis Outline
This thesis in organized in the following way:

• chapter 1 Introduction: Themotivation that focuses on cardiovascular disease, back-
ground context, application of ultrasound and machine learning are discussed, lay-
ing the theoretical foundation of the thesis; A list of research problems and objec-
tives, an outline is given for the organization of the thesis;

• chapter 2 Data Preparation: Analysing ultrasound data and parameters and the DSP
pipeline. Explaining the organization of available ultrasound data for further design
of ML approach.

• chapter 3 Methods: From basic principles to the detailed design of the neural net-
works applied in theML processing pipeline, containing 4 parts (ROI detection, Time
Domain Segmentation and Diameter Tracking, Post-processing)

• chapter 4 Results & Evaluations: Evaluate the result from the ML-based approaches
in different aspects, e.g. losses/errors in the desired parameters, numerical analysis
of the results to quantitatively assess the cardiac parameter estimation

• chapter 5 Conclusions & Discussions: Conclude the thesis with evaluation results,
provide insights for future and possible applications, evaluate the possible exten-
sions with the reference of other applications.
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2
Data Preparation

In this chapter, the details of the collection process and configuration of ultrasound data, ul-
trasound data structure and different modes of displaying ultrasound data are introduced
in section 2.1, followed by the introduction of the prior work, a digital signal process pipeline
(DSP) that lays the foundation and provides available data and labels for themachine learning
approach, in section 2.2. Finally, examples are given for the parameters available extracted
by the DSP pipeline.

2.1 Ultrasound Data
2.1.1 Data Acquisition
The ultrasound data provided for the machine learning task is collected by ultrasound
transducers that record the movement of the common carotid artery (CCA) of 7 different
subjects (healthy humans). These test subjects (38±10 years) were repeatedly measured
in 3 sessions over 3 weeks (interval of 1 week). To include diversity in the ultrasound
waveform of different features, 3 different posture/state the test subjects were asked to
stay: resting condition (2 min), paced breathing (2 min) and hand grip (1 min). In order to
detect the evolution of artery diameters, positions and other parameters, the transducer
is placed horizontally perpendicular to the CCA of the test subjects, resulting the max-
imum detection response in the radial direction. Apart from the ultrasound transducer,
an electrocardiogram (ECG) is also deployed to record subject’s heart activity. The digital
processing pipeline needs both the ECG data and ultrasound data to perform parameters
tracking, covered in section 2.2.
The ultrasound transducer deployed in the data acquisition is the L11-5v, and the ultra-
sound system is a Verasonics Vantage 64 model (Verasonics Inc., USA). The transducer
consists of 128 elements in a linear array, working on a center frequency (𝑓𝑐 ) of 7.8MHz,
acquiring a 19.2 mm wide segment with a custom plane wave sequence of sampling fre-
quency 500Hz from the center 64 transducer elements. Based on the fact that the CCA
diameter increases approximately 0.01 mm per year from about 4 mm in young adults
[30], the above ultrasound processing system should be able to capture all the movement
of the artery in the transverse plane, assuming that the artery of the test subject stays
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approximately in the same place during the measurement process. Furthermore, with the
center frequency of the RF ultrasound signal (7.8 MHz) and the assumed travel speed of
ultrasound (1540 m/s in soft tissue, 1580-1630 m/s in the arterial wall and 1570 m/s in
blood), the wavelength 𝜆 is approximately 0.2 mm for a single pulse and hence, the spatial
resolution (𝜆/2, 0.1 mm) satisfies requirements of artery wall detection in the axial reso-
lution. With further RF data sampling at 31.2MHZ, a spatial sampling distance of 50µm
can fully represent the original signal with sufficient accuracy. The ECG was recorded
simultaneously with the ultrasound data by a Biopac MP-160 base module and ECG100C
module (Biopac Inc., USA) with sampling frequency (𝑓𝑠) 500Hz, which is synchronized
with ultrasound signal through an external trigger signal.

2.1.2 Data Format
The acquired data is organized with 3 dimension: depth, time and scanlines (width). The
depth dimension corresponds to the short interval where a single pulse is transmitted and
received, recording the reflecting pulse wave as depth information, with spatial resolu-
tion as 0.1mm, defined by the RF frequency (7.8 MHz). In time dimension, the ultrasound
pulses emit with temporal sampling frequency 500 Hz, the frames of each reflected pulses
can show the temporal information of the artery, e.g. respiratory movement, distension
movement. The scanlines (width) dimension is the width of the elements in the transducer,
as a linear array, it detects the information on the transverse plane of the artery. In ultra-
sound imaging, these three dimensions also correspond to A-mode, M-mode and B-mode.
A-mode: A-mode is the amplitude mode, it shows the amplitude of the reflected pulse

Figure 2.1: Collected Data Format (3D) and the Collection of Ultrasound Data

wave in a short time interval (depth dimension). As shown in figure figure 2.2, A-mode
ultrasound data only contains depth information over one scanline and one time frame.

From the A-mode data figure (example from the collected ultrasound data), two peaks
at the middle with very low amplitude signal in the middle can be observed, this structure
is the detected artery with artery walls on both sides and lumen in between. As the enve-
lope shows, the features of detected artery can be very well represented by the envelope
of RF ultrasound signal.
M-mode: M-mode is motion mode, it is the sequence of A-mode data frames recorded
for certain duration on a single transducer element (scanline). It is shown on the right of
figure 2.3. From the evolving of the waveform, the distension of the artery walls is clearly
visible.
B-mode: B-mode is brightness mode, it’s a two-dimensional ultrasound image display
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Figure 2.2: An Example of A-mode and Envelope of Ultrasound Data

composed of bright dots representing the ultrasound echoes. It contains spatial infor-
mation on depth and width dimensions. As shown to the left of figure 2.3, the spatial
structure of the artery walls can be seen (the curve of the artery is not obvious as only 8
of 128 scanlines are synthesized and the width of each scanline is scaled for visualization
here). In clinical practice, B-mode ultrasound images are widely used as they can show
the anatomical structure of tissues and organs.
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Figure 2.3: B-mode, M-mode Ultrasound Data

2.2 Digital Signal Processing Pipeline
In this section, the digital signal processing pipeline is discussed in parts, and the model
where these algorithms/heuristics are based is also explained.

2.2.1 Carotid Artery Model for Ultrasound
Like all arteries, the carotid arteries consist of three layers of tissue: intima (the smooth
innermost layer), media (the muscular middle layer), and adventitia (the outer layer)[31].
For simplicity, an assumption can be made on the diameter (5mm) and width of the artery
wall (0.5mm). The following scheme figure 2.4 shows how the ultrasound pulses propagate
in the z axis and have high reflections upon arriving at the adventitia, the outer layer,
while during the transition in the intima (inner layer), low reflectivity is expected due to
a minor negative impedance mismatch, resulting in a blur minor peak slightly after the
major peak of reflection from the outer layer. In between the inner layer of both artery
walls lies the lumen, it is hyperechoic, which means that very few reflections are expected
for the transition of ultrasound pulses in such medium. Based on this characteristic, high
contrast between the transition from the artery wall (mainly adventitia) and the lumen is
expected in the A-mode data and is a very important feature for the DSP pipeline to locate
the artery. In addition to the artery, in ultrasound there are other tissues and organs that
are visible, e.g. veins, tendon, etc., that are considered as noise and can affect the algorithm
to confuse the choice of the actual artery wall.

2.2.2 Design of Digital Signal Processing Pipeline
In precedentwork[3], a Digital Signal Processing(DSP) pipelinewas designed to process ul-
trasound data and obtain desired artery parameters (diameter, wall position, distensions,
etc.). These parameters will further become the ground-truth labels for the neural net-
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Figure 2.4: Carotid Artery Model for Ultrasound [3]

works. A flow diagram of the DSP pipeline can be shown as figure 2.5.

Figure 2.5: Flow Diagram of DSP Pipeline, proposed in [3]

The DSP pipeline consists of 3 main parts: Wall position detection, wall tracking (correla-
tion model) and ECG-gated reset mechanism. After obtaining the raw ultrasound data in
the 3D data cube, the data are first processed by Hilbert Transform on the depth dimension
for every single time sample and scanline, where an analytic complex signal is acquired.
Depending on the process, this analytic signal is fed into the following parts to further pro-
cess. The preprocessing (Hilbert Transform) and the processing blocks mentioned above
are explained below.
Hilbert Transform Hilbert transform is a specific linear operator that takes a function
𝑆(𝑡) of a real variable and produces another function of a real variable 𝐻(𝑆)(𝑡). This lin-
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ear operation is a convolution with the function ℎ(𝑡) = 1
𝜋𝑡 , known as Cauchy kernel. The

definition of Hilbert transform is given by

𝐻(𝑆)(𝑡) = 𝑆(𝑡) ∗ 1
𝜋𝑡

= 1
𝜋 𝑝.𝑣.[∫

∞

−∞
𝑆(𝜏)
𝑡 − 𝜏 𝑑𝜏]

(2.1)

where 𝑝.𝑣.[⋅] denotes the Cauchy principle value of the improper integral[32]. Hilbert
transform can turn the original real signal into a complex signal, where the imaginary
part is a version of the original real sequence with a 90∘ phase shift and the real part is the
original signal. Therefore, the energy of the analytic signal (envelope) can be extracted by
taking the magnitude of the analytic signal.
Wall Position Detection: Based on the carotid model introduced in section 2.2, a tem-
plate kernel is designed to match the A-mode signal with the approximate shape of the
artery-lumen structure. By averaging all region of interest(ROI)s of the artery from all
subjects, the kernel represents all generalized features of the artery-lumen structure. In
order to find the ROI in each A-mode frame, dynamic time warping (DTW) is applied to
align the original signal with the kernel by a correlation(i.e. a minimization in Euclidean
distances). After identifying the location of the ROI that contains the CCA, lumen valida-
tion is implemented based on the hyperechoic property(low amplitude and noise levels in
the lumen) to detect whether the lumen lies in the middle of selected ROI. Subsequently,
the algorithm tries to find the peak on both side of the lumen with thresholding. The lo-
cation of the peak is further extended as a window to include the waveform of the artery
wall, which is further processed in the wall tracking correlation model to calculate the
minor phase shift as displacement of the artery wall. The locations of both artery walls
are also directly taken into account in the wall positions when an ECG reset signal is de-
tected(covered in section 2.2.2) to avoid drifts in the estimated parameters.
Wall Tracking(correlationmodel): In this part, a sub-matrix (x = 2 scanlines(0.6mm), y
= 50 depth samples(1.2mm), z = 5 frames(10ms)) is selected from the raw data cube(complex
signal, after Hilbert transform) to estimate the phase shift via complex cross-correlation.
By shifting the sub-matrix one sample in time, and keeping the rest to overlap, the phase
difference can be estimated in the following way[33].
ECG-gated Position Reset In the electrocardiogram, the R wave is the most dominant
wave characteristic of the QRS complex (three graphical deflections seen in a typical ECG),
and the peaks in the R wave could indicate left ventricular hypertrophy. As a reference to
segment each heart cycle in time, such R-peaks are detected as an easy flag event in the
ECG.
The ECG-gated position reset applies another sensor measuring the ECG waveform of
the subject. Provided the ECG data, this algorithm block checks if a new ECG R-peak is
detected; if so, the tracking block stops processing the frame-to-frame phase changes as
movement and the wall position resets to the position of this moment(the continuity in
phase with previous samples is abandoned), this will result in a discontinuity in the esti-
mated parameters(wall positions, distension, diameter, etc.), to prevent the estimated wall
positions gradually drifting from the right ones.
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2.3 Data Processing
In the DSP pipeline, the following parameters are estimated by direct tracking / detec-
tion or calculated as a linear combination of previously acquired parameters: artery wall
positions(anterior, posterior), artery diameter, artery motions (anterior, posterior) and dis-
tension waveform.

2.3.1 Carotid Artery Parameters
The target parameters to be estimated are listed and explained below.
Artery Wall Positions: These are the absolute locations where the anterior (posterior)
artery wall lies in each A-mode frame. Both walls move in the opposite direction to each
other at the same time, representing the distension of the artery. In the anatomic struc-
ture of human’s neck, the artery is positioning in front of multiple neck muscles and the
cervical vertebrae, resulting in a smaller range of movement of the posterior artery wall
than that of anterior artery wall. As essential independent parameters, the positions of
the artery wall (anterior / posterior) are used to derive other parameters.
Artery Wall Motion: The artery wall motion is the relative movement of each wall with
reference to the beginning of one heart cycle. Assuming at time 𝑡0 an ECG R-peak is
detected, in the following heart cycle time 𝑡 , the artery wall motion can be calculated as

𝑀𝑡 = 𝑃𝑡 −𝑃𝑡0 (2.2)

Once the ECG reset event takes place, the motion of the anterior and posterior walls is set
to 0, and the new heart cycle that begins takes this point as a reference. For simplity, the
ECG R-peak will be denoted as cardiac cycle marker (CC markers).
Artery Diameter: This is the diameter of the current A-mode frame of the artery. As one
of the relative quantities, the diameter can be calculated by the difference in wall positions.

𝐷𝑖𝑎𝑚 = 𝑃𝑃𝑜𝑠𝑡. −𝑃𝐴𝑛𝑡𝑒. (2.3)

Since the diameter evolves over time in one heart cycle, it becomes a very important pa-
rameter for estimating the pulse wave velocity (PWV), and hence can provide information
for arterial stiffness assessment. Explanations are given in section 3.6
Artery Distension: Similar to the relation between wall motion and wall position, the
distension parameter is the relative movement of the artery diameter, with reference to
the ECG reset flag (CC markers). By subtracting the reference diameter, the distension
starts at 0 when a new heart cycle begins, and the systolic and diastolic phases are shown
more clearly. Assuming at time 𝑡0 an ECG R-peak is detected, in the following heart cycle
time 𝑡 , the distension can be calculated as

𝐷𝑖𝑠𝑡𝑡 = 𝐷𝑡 −𝐷𝑡0 (2.4)

Due to the ECG resettingmechanism, in all these estimated parameters, a discontinuity
exists in every heart cycle when the ECG R-peak is detected. This is inevitable in the
current DSP approach. While certain averaging over time can improve the signal quality
close to a resetting point, the data prepared for further machine learning algorithm is the
original one.
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Cardiac CycleMarker: These markers are detected ECG R-peaks and synchronized with
the ultrasound data. As the estimation of pulse arrival time (PAT) requires the information
of ECG R-peak, the CC markers are extracted from the ECG signals with only the indices
of R peaks.

2.3.2 Example of the Result of DSP Approach
For the purpose of better illustration, the result of the estimated parameters over time of
a measurement(test subject 2, third session, hand grip condition) in section 2.3.2.

Figure 2.6: Result of DSP Approach: All Parameters

As the parameters set for the RF ultrasound, the scaling factor of the samples-to-SI
units is defined by the ratio of the propagation speed of ultrasound pulses and the RF
sampling frequency (4 times as the RF center frequency).

𝛼 = 𝑐
2𝑓𝑅𝐹 ,𝑠

(2.5)

Such setting gives a scaling factor of 2.4648 × 10−5, in 𝑚, from the example given above
section 2.3.2, diameter usually has around 280-300 samples in the depth dimension, corre-
sponding to 6.9 - 7.4 mm in the actual length. This conclusion is consistent with statistics
where a study implied that the mean diameters of CCA of women are 6.10 ±0.80mm and
in men 6.52 ±0.98 mm [34].
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3
Methods

In this chapter, three parts will be introduced covering the basic theories and principles of the
whole design. First, an overview and formulation on the problem and an explanation of the
challenges, followed by the general design of the whole pipeline, is explained. In the second
part, the foundations and principles of neural network design are provided to theoretically
support the design of neural networks and machine learning (ML) pipeline. In the third part,
a detailed formulation of the ML processing pipeline and post-processing pipeline for pulse
arrival time (PAT) estimation is given; with this, the pulse arrival time can be estimated from
the parameters obtained at the outputs of each module. The ML processing pipeline consists of
three subparts: ROI detection, time domain segmentation and diameter tracking. With these
sub-modules combined, the artery parameters can be estimated similar to the previous intro-
duced digital processing (DSP) pipeline. Furthermore, post-processing is introduced to extract
time-related information from the first derivative of the detected diameter. By identifying the
max slope in the first derivative every heart beat, the PAT can be estimated combined with
cardiac cycle (CC) markers.

3.1 Problem Formulation
The formulation of the ML-based approach has 2 main parts, the decision of the input-
output pair for the ML pipeline (data, labels), and the challenges that need to be solved
and inspiring heuristics that can provide detailed insights.

3.1.1 Input & Output
To decide which form of the ultrasound data is suitable for a machine learning-based ap-
proach, raw ultrasound data, analytical signal (via Hilbert Transform), envelope (magni-
tude of the analytical signal) and phase signal (phase of the analytic signal) are inspected
and compared to select a suitable form for neural network learning, their characteristics
and perspectives from the neural network are listed in table 3.1. Similar to many ultra-
sound data processing tasks, the envelope (image) of ultrasound data is suitable for ma-
chine learning tasks (e.g. [35], [36], etc.); in this work, it is clear that the neural network
should use the envelope of ultrasound data as input based on the reason in the table 3.1.
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Table 3.1: A comparison between different data representations for machine learning-based approach

Data
Representation/Pre-
processing

Characteristics Neural Network Per-
spective

Raw Ultrasound Data
(None)

Oscillating sinusoidal
signal, absolute am-
plitude w.r.t. physic
meaning

Difficult for neural net-
work (hard to extract a
pattern in noisy oscillat-
ing signals), usually pro-
cessed by FFT for later
processing

Analytic Signal
(Hilbert Transform)

Complex signal, a 90∘
shifted imaginary part,
oscillating sinusoidal
signal on real and
imaginary part

Not a conventional sig-
nal form (complex) for
neural network, compli-
cated back-propagation
and gradient computa-
tion, usually processed
by correlation

Envelope (Hilbert
Transform, magnitude
computation)

Positive envelope sig-
nal, smooth transitions

Proper regional feature
for neural network, can
composite image signal,

Phase (Hilbert Trans-
form, phase computa-
tion (argtan))

Phase of the analytic
signal, sawtooth-like
linear signal ranging
from [-𝜋 , 𝜋]

Tiny-scale movement
between depth/time
samples, no posi-
tion/object information,
can only be used as an
augmentation

After several experiments, we conclude that only using envelope data can a neural net-
work successfully converge.
From the available parameters of the DSP pipeline (artery diameters, positions of artery
walls, distension waveforms, CCmarkers), the diameteris chosen for the following reason:
Relative Quantity: Unlike the positions of artery walls (anterior, posterior), the diameter
does not have the absolute position information about the artery walls, with the correct
selection of the artery, this is directly available without inferring the position of each arter
wall.
Direct Estimation: As explained in section 3.6, the diameter is the key parameter that
contains information to estimate PATs, estimating directly from the diameter can avoid
detecting both artery walls, which could introduce more errors and artifacts. Addition-
ally, the diameter waveform has a wider range compared to other parameters.
As the estimation of pulse arrival time (PAT) also requires ECG R-peaks, the CC markers
are required to train the neural networks. In section 3.4, the details of the labeling scheme
of CC markers are introduced.
Therefore, the input-output pair for the ML approach is selected as the envelope of ultra-
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sound data (image) and the diameter of the artery, and modified CC markers.

3.1.2 Challenges & Heuristics
Based on the observation of the envelope of ultrasound data, there are a few challenges
that should be taken care of in the ML processing pipeline.
UnwantedReflection (Noise): Aswe can perceive in the figure 3.1, apart from the region
of interest (ROI) that consists of the artery wall and lumen in between, there are obvious
reflections of tendons or other tissues in the vicinity of the artery, which could cause
problems for the neural network to ‘understand’ what exactly is the artery and its diameter.
It can be expected that without proper pre-processing, it would be very hard for the neural
network to train a ‘black box’ to interpret full-depth signal into a single diameter value.
Therefore, prior to diameter tracking, a selection of the ROI will definitely be necessary.

Figure 3.1: Artery Walls, Lumen and Unwanted Reflection (noise)

Temporal & Spatial Processing: Since in the ML pipeline the diameter (as well as other
carotid arterymovement parameters) and the CCmarkers (temporal event) are expected, it
is necessary that the designedML pipeline has both temporal and spatial (depth dimension)
processing. The spatial information of the artery wall should be computed over each time
frame, while the CC markers should be derived from a time series. Consequently, in the
ML pipeline, there are multiple sub-networks that are specializing these different tasks.

3.1.3 Machine Learning Processing Pipeline Design
To tackle the challenges in the previous problem formulation section 3.1.1, in the ML
pipeline structure, the entire cardiac parameter estimation task would be divided into
3 consecutive parts. The first part is the ROI detection that crops the full-depth input
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data to a part only contains artery walls and lumen. The second part consists of a neural
network or a ML related detection algorithm that segments the input sequence as single
heartbeats, and the third part takes care of the tracking of artery wall movement, has a
structure similar to convolution neural network (CNN) or recurrent neural network (RNN).
This approach is based on the assumption that during one heartbeat the statistics of ultra-
sound data does not vary much, and the low-frequency patterns(e.g. breathing) can also
be cleared out as interference during the tracking process. The following diagram shows
the machine learning processing pipeline. Eventually, the machine learning processing

Figure 3.2: Machine Learning Processing Pipeline

pipeline should be able to identify each heart cycle and infer the artery diameters (artery
wall positions), which can be further processed to estimate cardiac parameters (e.g. pulse
wave velocity).

3.2 Neural Networks
In the machine learning processing pipeline, the neural networks applied in different
parts are mainly the convolution neural network (1D, 2D) and the artificial neural net-
work(ANN). The working process of neural networks is explained below. Fully Con-
nected Layers: As introduced in chapter 1, the fully connected layer consists of multiple
neurons, and the connections of these neurons form a neural network. When all inputs
from one layer are connected to every activation unit of the next layer, then it is called a
fully connected layer. As an element of neural networks, a neuron is essentially a mathe-
matical function that models the functionality of a biological neuron, illustrated in figure
??. The mathematical expression of a single neuron is given in section 1.3.1. Activation
functions are nonlinear, according to the Universal Approximation Theorem, a two-layer
neural network with a nonlinear activation function can be a universal function approxi-
mator [37]. In practice, activation functions such as sigmoid, Rectified linear unit (ReLU ),
Hyperbolic tangent (tanh), etc. are commonly applied in practice. In this work, ReLU is
applied as the main activation function for neural networks in the machine learning pro-
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Figure 3.3: Illustration of a Neuron in a Neural Network

cessing pipeline. The ReLU is defined as:

𝑅𝑒𝐿𝑈 (𝑛𝑒𝑡) = 𝑚𝑎𝑥(0,𝑛𝑒𝑡) = {0 𝑖𝑓 𝑛𝑒𝑡 ≤ 0
𝑛𝑒𝑡 𝑖𝑓 𝑛𝑒𝑡 > 0 (3.1)

Empirically, different choice for activation function leads to difference performance in
terms of convergence and accuracy. The ReLU and its variants(Leaky ReLU, GeLU ) have
become very popular for many neural network applications.
Convolution Layers: Commonly seen in image processing or pattern recognition, con-
volution layers can spatially correlate pixels or samples of certain topology and geometry.
To ensure the invariance of some degree of shift, scaling, and distortion, convolution neu-
ral networks combine three architectural ideas: local receptive fields, shared weights and
spatial sub-sampling [38]. Following these ideas, convolution kernels that contain shared
weights are applied to extract the features of the image, which results in feature maps in
the next layer, describing how these features, represented by the convolution kernels are
distributed in the space. Generally, the convolution operation can be expressed as

𝑔(𝑥,𝑦) = 𝑤 ∗ 𝑓 (𝑥,𝑦) =
𝑎
∑

𝑑𝑥=−𝑎

𝑏
∑

𝑑𝑦=−𝑏
𝑤(𝑑𝑥,𝑑𝑦)𝑓 (𝑥 −𝑑𝑥,𝑦 −𝑑𝑦) (3.2)

where 𝑔(𝑥,𝑦) is the output of convoluted image(feature maps), 𝑤 is the weighted kernel,
𝑓 (𝑥,𝑦) is the input image. In the context of convolution neural networks, this boils down
to a weight kernel doing pixel-wise product with a moving windowed ROI in the image,
illustrated as figure 3.4. Similarly, in 1D situations, the convolution kernel is aggregating
the features into 1D feature maps.

𝑔(𝑥) = 𝑤 ∗ 𝑓 (𝑥) =
𝑎
∑

𝑑𝑥=−𝑎
𝑤(𝑑𝑥)𝑓 (𝑥 −𝑑𝑥) (3.3)

Due to low computation complexities and compact configurations, 1D convolution neu-
ral networks also widely applied in signal processing without involving images or videos
[39].
To ensure that the extract features are insensitive to the small variance of shift or distor-
tion, pooling layers usually applied after convolution layers, after or before the activation
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Figure 3.4: Illustration of 2D Convolution

function. Max pooling is one that is often applied in CNNs, it calculates the maximum
value for patches of a feature map, creating a downsampled feature map at its output.
Stochastic Gradient Descent & Back-propagation In order to minimize the objective
function(loss function), stochastic gradient descent (SGD) is used to update the weights
and biases of the neural network, given a subset of the training sample. Considering divid-
ing the whole dataset into subsets (batches), a single subset containing𝑚 training samples
[𝑥(1), 𝑥(2), ..., 𝑥(𝑚)] with respective labels [𝑦(1), 𝑦(2), ..., 𝑦(𝑚)], the weights in the neural net-
work can be updated as [40]

𝑊 𝑖+1 = 𝑊 𝑖 −𝛼 1
𝑚

𝑚
∑
𝑖=1

∇𝑤𝐿(𝑥(𝑖), 𝑦(𝑖),𝑊 𝑖) (3.4)

where 𝛼 is the learning rate, it is the step in optimization, controls how quickly the model
is adapted to the problem. ∇ is the gradient and 𝐿 is the loss for a specific sample and its
label.
As stochastic gradient descent only takes a subset of all samples in the datasets, the re-
sult in the loss function will converge with an oscillate and noisy pattern as batches are
trained. While in gradient descent, the weights only update after the whole dataset is
trained. As compared to gradient descent, where model parameters only update when
the entire dataset is fed in, the stochastic gradient descent converges faster and is not as
computationally expensive as gradient descent. In practice, the batch size (the size of the
subset of the dataset) is a tunable hyperparameter that has impacts on convergence and
performance of the neural network.
Back-propagation is a widely used algorithm for training feed-forward neural networks.
It computes the gradient of the loss function with respect to the weights of the network for
a single input-output instance. By calculating the gradient through the neural network,
the influence of each weight and bias towards a certain neuron is determined, allowing
the adjustment of the weights and biases via optimization(gradient descent). Using chain
rule, the partial derivative of the error with respect to a weight 𝑤𝑖𝑗 can be computed as

𝜕𝐸
𝜕𝑤𝑖𝑗

= 𝜕𝐸
𝜕𝑜𝑗

𝜕𝑜𝑗
𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑤𝑖𝑗

(3.5)

where 𝑜𝑗 is the activation function of the output of j-th neuron.
Loss Function In machine learning, the loss function is the mapping of the inference
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decisions with their associated costs. It measures how far an estimated value is from its
true value. For neural networks, loss function is the objective that the network training
process tries to optimize the neural network.
Depending on the application, the choice of the loss function differs from quadratic cost
functions, exponentional cost functions, divergence, etc.. For a neural network to be
trained, the loss function should be able to compute its gradient with respect to its input
term. In regression tasks, quadratic cost like mean square error (MSE) is widely applied,
while in classification tasks, cross-entropy loss is more often used. In this work, MSE and
Huber loss are used to train the neural networks. Given the number of samples 𝑁 , label 𝑦𝑖 ,
and the output of the neural network 𝑥𝑖 , MSE can be expressed as

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 −𝑦𝑖)2 (3.6)

and Huber loss is given below

𝑙𝑖 = {0.5(𝑥𝑖 −𝑦𝑖)
2 𝑖𝑓 |𝑥𝑖 −𝑦𝑖 | < 𝑑𝑒𝑙𝑡𝑎

𝑑𝑒𝑙𝑡𝑎 ⋅ (|𝑥𝑖 −𝑦𝑖 | − 0.5 ⋅ 𝑑𝑒𝑙𝑡𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.7)

𝐿 = 1
𝑁

𝑁
∑
𝑖=1

𝑙𝑖 (3.8)

As a combination of l1 loss and MSE, Huber loss has the advantages of both loss functions,
it is more sensitive to outliers than MSE, and also guarantees the smoothness for the ab-
solute difference smaller than the 𝑑𝑒𝑙𝑡𝑎.
Optimization: As introduced in Stochastic gradient descent, the optimization of the neu-
ral network is done via Stochastic gradient descent and gradient variants algorithms, e.g.
Adagrad [41], RMSprop [42], Adam [43], etc.. As all of these algorithms are iterative, they
differ in the updating steps of calculating and applying the gradient and momentum. The
in-depth discussion of these optimizing algorithms is beyond the scope of this thesis. In
this work, the optimizer chosen for the optimization of neural networks is Adam for its
good performance over large-scale datasets, convergence rate and popularity. The Adam
algorithm is described as follows (Algorithm 1).
Regularization: In machine learning, regularization is a process that is used to calibrate
the models in order to minimize the adjusted loss function, it is often used to obtain results
for ill-posed problems or to prevent overfitting [44]. Regularizations are usually applied
in the loss function as an extra term that tries to constrain the weights of the layers in the
neural network. This can be expressed as

𝐿𝑟 (𝑥̂ , 𝑥,𝑤) = 𝐿(𝑥̂,𝑥) +𝜆𝑅(𝑤) (3.9)

where 𝑥̂ is the output of the neural network, 𝑥 is the respective label, and 𝑤 is the weights
of the neural network. and 𝜆 is the coefficient that determines the importance of the term
of regularization error with respect to the data-dependent error. The term of regularization
error usually applies l1-norm (LASSO problem) or l2-norm. In this work, the regularization
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Algorithm 1 Adam Algorithm
Require: Stepsize 𝛼 , exponential decay rates 𝛽1, 𝛽2, 𝑓 (𝑤)

Initialize: parameter vector 𝑤0, first moment vector 𝑚0 = 0, second moment vector
𝑣0 = 0, timestep 𝑡 = 0
while 𝑤 not converged do

1: Get gradients w.r.t. stochastic objective at timestep 𝑡 :
𝑔𝑡 = ∇𝑤𝑓𝑡 (𝑤𝑡−1)
2: Update biased first moment estimate:
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1−𝛽1)𝑔𝑡
3: Update biased second raw moment estimate 𝐻 :
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1−𝛽2)𝑔𝑡
4: Compute bias-corrected first & second moment estimate:
𝑚̂𝑡 = 𝑚𝑡/(1−𝛽 𝑡1), ̂𝑣𝑡 = 𝑣𝑡 /(1−𝛽 𝑡2)
5: Update parameters
𝑤𝑡 =𝑡−1 −𝛼𝑚̂𝑡 /( √ ̂𝑣𝑡 +𝜖)

end while
Return 𝑤

term for training the neural network is chosen as l2-norm for its good performance in
controlling the weights from ‘memorizing’ the data, which can be expressed as

𝜆𝑅(𝑤) = 𝜆‖w‖2 (3.10)

Apart from the regularization terms added on the loss function, in the neural network,
dropout can be applied on the layer to randomly deactivate some neurons, by a specified
probability. In each update, some of the neurons become deactivated so that the situation
in which only a part of the same neurons contribute to the output can be prevented. In this
work, dropout can also be applied to the first fully connected layer to prevent overfitting.
Figure 3.5 illustrates how dropout works in the fully connected layers.

Figure 3.5: Dropout Mechanism During One Weight Update, Figure by [4]

Normalization: In machine learning, normalization is the process that transfers the nu-
meric range of the data into a new range, without distorting differences in the ranges of
values or losing information. Commonly used normalization approaches are Z Normal-
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ization, Min-Max Normalization, Unit Vector Normalization etc.. In practice, these normal-
ization approaches usually modified for batches or layers, e.g. batch normalization [45],
layer normalization [46], etc.. Applying normalization prior to the training phase is cru-
cial to obtain good results and significantly speed up the calculations towards convergence
[47]. In this work, batch normalization is used in some of the neural networks. In the 1D
scenario, batch normalization can be expressed as

𝑦 = 𝑥 −𝐸[𝑥]
√𝑉𝑎𝑟[𝑥 + 𝜖

∗ 𝛾 +𝛽 (3.11)

where 𝛾 , 𝛽 are trainable parameters that adjust the standard deviation and bias of the
distribution of hidden layers where batch normalization is applied. Empirically, batch nor-
malization is usually chosen for ANNs, CNNs, while layer normalization is usually applied
to RNNs.

3.3 Part 1: ROI Detection
Inspired by the ROI detection in the wall position detection module in the DSP approach
section 2.2.2, ROI detection can also be done in a neural network by training such a ker-
nel to aggregate the ensemble information over a large amount of the data including the
artery-lumen structure. With the neural network, it is expected that every time an enve-
lope data is fed in, the output should be an position representing the lumen center, and
hence the window can be defined with a fixed window length and a lumen center coor-
dinate. This localization problem is similar to many object classification / detection tasks
in which the neural network is trying to regress the bounding box coordinates and size
of targeted objects [48]. Usually such neural network applies deep convolution neural
networks (DCNN) as a feature extractor, followed by fully connected layers to regress the
locations of the target object, for example, in [48] a 5-layer CNN was deployed to extract
the features, and in the extension works [49] and [50] large-scale pre-trained neural net-
work(e.g. 16 layers VGG-16, etc.) are applied as the feature extractor.

3.3.1 Problem Formulation
Considering the complexity of the localization problem for images, it can be expected that
a more simple structure should be sufficient in our task where only one ROI structure is
to detected in 1D data sequence. The problem of detecting the lumen center can be formu-
lated with the following heuristics:
Large-sized 1D Kernel: Based on the hyperechoic property of the lumen (low ampli-
tude or noise levels), the ROI is expected to have a peak-low level-peak structure, roughly
symmetric on two sides. Such simple feature should be able to be well detected by a few
large-size convolution kernels, with approximate the size of larger than the artery-lumen
structure.
Few Convolution Layers: As the convolution kernels are sliding over the envelope of
one A-mode data frame, with well-trained kernels, the output after the convolution should
give a high response at the lumen center position. Since it is in fact a correlation between
a kernel and the signal, there is no necessity to have many layers which will extract many
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and deep features from the envelope data. On the other hand, the feature extraction of a
simple structure over 1D data sequence should be sufficiently tackled by a shallow neural
network without too much parameters, saving computation resources for further process-
ing on the tracking or segmentation task.
Averaging & Post-processing: Instead of applying fully connected layer to regress the
location of lumen center from the extracted feature of convolution layers, averaging pool-
ing and an argmax are applied to reduce the training and computation needed for a highly
non-linear localization problem.
These heuristics break down the detection problem into a convolution neural network to
train the kernels and deterministic post-processing to extract the lumen center (center of
the ROI). The design of these ROI detection network is explained in the following section.

3.3.2 ROI Detection Network Design
Based on the heuristics, the ROI detection network should consist following parts: convo-
lution layers, averaging pooling and an argmax operation that return the argument of the
maximum value. The core of the ROI detection are the settings for the convolution layers:
convolution kernels and response vector, they are explained as below:
Convolution Kernels: To detect the artery-lumen structure and produce an easily inter-
preted result for post-processing modules, the convolution kernel is expected to penalize
locations which are not lumen center, this will result in a kernel that has a similar shape
to the artery-lumen structure, with larger values on both sides, and low/negative values
in the middle of the kernel, so as to have a high response at the center of lumen, with great
penalty on the amplitudes that occur in the middle.
Apart from the kernel size, kernels should be few andmultiple to tackle the variation of the
artery-lumen structure of different test subjects. Biologically, the diameter of the artery,
the width of the media, and the impedance mismatch are unique in different individuals,
and such variation can be averaged in multiple kernels to have a better generalization than
just using one kernel.
Hence, in ROI detection, the convolution part consists 2 layers, with the first layer: 3 ker-
nels of size 1 ∗ 501 (include the entire structure of artery and lumen), and the second layer
of 1 kernel of size 1 (synthesis over 3 outputs of 3 convolution kernels).
Training Labels: Response Vector (Convolution Layer Output): As the target output
is representing the response of convolution layers, one of the straight way is to take the
lumen center and its neighboring positions to have higher response, and the response de-
creases as the distance to the lumen center increases. At the same time, this output vector
should be constrained to have very low or no response as the position close to artery walls
and other positions. It resembles the probability of the occurrence of lumen center across
all depth, while different in the specific value settings.
As the label of the training process, the response vector of an frame of envelope data can
be calculated as the following:
The lumen center positions are not directly available from the DSP approach, however, a
good estimation can be the midpoint between the estimated wall positions. Hence, the
lumen center can be calculated as

𝐿𝑢𝑚𝑒𝑛𝑐 = (𝑃𝐴𝑛𝑡𝑒. +𝑃𝑃𝑜𝑠𝑡.)/2 (3.12)
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With the lumen center available, the response vector can be constructed by the distance
from the lumen center to the current depth position. Apart from the artery wall positions
and lumen center, the midpoints of the lumen center and both wall positions are defined
as cut-off points, the response becomes zero with current depth position lying further than
the cut-off points. The presence of the cut-off points ensures the output of convolution
layers to have high response only when the kernels are at the vicinity of lumen center,
while it also keeps a relatively smooth profile similar to the probability density function
(PDF) to avoid imbalance distribution in the latent space in the output. The cut-off points
are defined below

𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 (𝑎) = (𝐿𝑢𝑚𝑒𝑛𝑐 +𝑃𝐴𝑛𝑡𝑒.𝑟 )/2
𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 (𝑝) = (𝐿𝑢𝑚𝑒𝑛𝑐 +𝑃𝑃𝑜𝑠𝑡.)/2

(3.13)

With the cut-off points defined, the maximum distance before set to 0 is the distance be-
tween cut-off points and the lumen center. By setting up the labels for corresponding
ultrasound envelope for every sample, the convolution layers of the ROI detection should
be able to approximate the kernels for outputting large values at around the lumen center
location. Denote the Euclidean distance of the lumen center and current point 𝑑 , current
position at 𝑖-th depth as 𝑝𝑖 , we have

𝑑𝑖 = (𝑝𝑖 −𝐿𝑢𝑚𝑒𝑛𝑐)2, 𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 (𝑎) < 𝑖 < 𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 (𝑏) (3.14)

Normalize the distance to scale 0-1 and flip, the response vector 𝑅𝑖 can be expressed as

𝑅𝑖 = {1−
𝑑𝑖

(𝐿𝑢𝑚𝑒𝑛𝑐−𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 )2
𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 (𝑎) < 𝑖 < 𝑃𝑐𝑢𝑡−𝑜𝑓 𝑓 (𝑏)

0 Other
(3.15)

The images below are to illustrate how the response vectors are generated, the width of
the non-zero indices on the depth dimension controls the penalty of the deviation from
the correct lumen center position. The hyperparameters and settings of the ROI detection

Figure 3.6: Response Vector(Labels for ROI Detection). The left figure shows the original envelope of A-mode
data, the right figure shows the response vector calculated by the artery wall positions

network are listed in table 3.2.
The neural network structure of ROI detection can be illustrated as figure 3.7.
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Setting Symbol Type or Value
Network Structure - 1D Convolution, Feed forward
Activation Function 𝑔 LeakyReLU

Loss Function 𝐿 MSE
Optimizer - Adam

Learning rate 𝛼 10−7 −10−6
Regularization 𝑅 dropout, l2-norm

Dropout probability 𝑃𝐷𝑟𝑜𝑝𝑜𝑢𝑡 0.05
Weight decay 𝜆 1−4

Training epochs 𝑁 >10
Number of inputs 𝑥 1020
Number of outputs 𝑦 1

Table 3.2: Hyperparameters and Settings of the ROI Detection Network
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Figure 3.7: ROI Detection Neural Network Structure
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3.4 Part 2: Time Domain Segmentation
In the segmentation part, a neural network is expected to segment a long sequence of
ultrasound signal recording by the marking event, the cardiac cycle marker (CC marker),
which is the same as the moment of ECG R-peak. Consequently, each segment is a heart
cycle (heart beat) that starts from the detected CC marker, ends when a new heart cycle is
detected. These segmented sections contain full information happened inside the artery
(wall movements, distension, etc.). In the whole ML pipeline, the ECG marker can be used
to determine the relative movement of the artery wall, the diameter with respect to a ref-
erence point, it is also a key feature in estimating the pulse arrival time (PAT). In the DSP
pipeline, the PAT estimation and the parameters like artery wall motion are computed
over two modalities, ultrasound and ECG, while here it is assumed that the characteristics
of the movement revealed by ultrasound image where a CC marker is detected, should
be able to be captured by the neural networks; hence the estimation of PAT or artery pa-
rameters can be completed only using one modality, ultrasound. As CC markers give the
moment when an ECG R-peak arrives, such neural networks should be trained by match-
ing the CC markers on the ultrasound data.
Observing the ultrasound image of onemeasurement, with a temporal sampling frequency
of 500 Hz, one heart cycle that is approximately 0.6 - 1.0 s on average, will result in 300 -
500 time samples in the ultrasound data. The illustration of the detected CC marker and
ultrasound image is shown in figure 3.8. It can be observed that in every heart cycle, an
upstroke of the artery distension takes place in the middle of one heart beat, following
the relatively slow motion of the artery contracting and shrinking in diameter. These
characteristics represent the systolic and diastolic phase of one heart cycle, and impor-
tant biological features can be extracted in the arrival time and waveform of them (e.g.,
blood pressure, CVD risk etc. [51]). Also, the anterior and posterior walls of the artery
moves in the opposite direction (towards or back to the transducer), this results in some
roughly symmetric patterns along the lumen center on depth dimension of the both walls.
Since ROI detection has made it possible to detect the lumen center, the identification of
CC markers can be carried out on the cropped data that mostly contain the artery. On

Figure 3.8: Example of Detected CC Marker on the Ultrasound Image (White Vertical Line implies Detected CC
Markers)
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the basis of these observations of the CC Marker and ultrasound data, the heuristics and
requirements for such a segmentation neural network are discussed in the next section.

3.4.1 Problem Formulation
Unlike many image segmentation tasks [23], where pixel-wise labels are assigned for im-
ages, the segmentation based on CC markers can be reduced to the detection of certain
features in images, and further segment the heart cycles according to these detected mo-
ments, since only one dimension segmentation is needed. In order to solve this problem in
the image perspective, the data format fed into the neural network should be images, con-
taining a window of time samples at a given time point. Following this philosophy, sliding
window of a certain length is set as the input of the neural network. Consequently, two
different strategies are proposed to train such a neural network.
The first is to treat every heartbeat data as one input image, and by feeding the neural net-
work with numerous heartbeat data, the distribution of intensity, temporal features, and
statistics should be ‘learned’ by the neural network, such that a representation in latent
space is given in the output of the neural network. The training process is similar to an
‘averaging’ process that integrates all heart beat data in the training dataset. To satisfy
these requirements, an autoencoder that is trying to reconstruct the image itself, with 2D
convolution layers extracting geometric features, is needed. In the end, it is expected that
with the input of the entire measurement of ultrasound data, this network outputs the dis-
tance to the ‘learned’, averaged heartbeat in the latent space representation, such that the
local minimum in latent space distance is regarded as the occurrence of one CC marker.
However, due to the variability of the heart rate of different people, different situations,
the length of one heartbeat does not have a fixed value.
The second is to input the ultrasound image with a fixed length of frames, with labels
specifying the probability (or distances to) a CC marker occurs.
To formulate this problem, following heuristics are come up with as either requirements
or properties of the desired segmentation neural network:
Difference Processing over Depth and Time: From the example of the recorded CC
markers in ultrasound data 3.8, it is obvious that depth information occurs only on a few
samples, while each sample on the time axis would be informative in inferring the probabil-
ity of the occurrence of the CC marker. As the data are arranged in images, it is important
that depth and time be treated discriminatively. Since the information on depth dimension
is more sparse, compression, convolution, down-sampling or integration may be useful to
synthesis the original image into a time sequence. Also, along the time dimension, less
processing should be applied, which reduces the length of one window, to keep the tempo-
ral information as intact as possible. This will require the neural network to either equip
nonsquare kernels in the convolution layers or process in depth and time dimension se-
quentially.
Sliding Mechanism: As every heart cycle differs in length slightly, it is very difficult to
determine a fixed window length that divides the long sequence into short intervals of
the same length and, meanwhile, have the CC marker occur in every heart cycle. Also,
dividing the measured ultrasound image into subimages without overlapping will result
in much fewer images for training, and the prediction of the probability (distance) of an
occurrence of an CCmarker in the current subimage will not be coherent and the accuracy



3.4 Part 2: Time Domain Segmentation

3

33

will be greatly decreased. Therefore, a sliding window is constructed over the measured
ultrasound image with a step size much smaller than the window length (a large part of the
image overlapping with neighboring images). In this way, the number of images available
in a measurement is

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = ⌊(𝐿0 −𝐿𝑤𝑖𝑛)/𝑙𝑠𝑡𝑒𝑝⌋ + 1 (3.16)

where𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the number of samples available, 𝐿0 is the length of the entire ultrasound
image in time, 𝐿𝑤𝑖𝑛 is the window length, 𝑙𝑠𝑡𝑒𝑝 is the step size. The division is floored to
the nearest integer before adding one.
Shift Sensitive: Observation of ultrasound images reveals that the CC marker occurs
prior to the upstroke in the artery diameter (approximately 80 - 110 time samples), when
the artery is in the systole phase. As above, the sliding window is applied to the ultrasound
recording, the regional feature of the image is expected to shift in the consecutivewindows.
To correctly infer the probability or distance of the occurrence of the CC marker, the
neural network should be shift sensitive to certain spatial features, unlike the translation-
invariant conventional CNNs where only the combination of such features is interested in
classification or regression. An illustration of the difference between shift-sensitive and
translation-invariant is given in figure 3.9.

Figure 3.9: Example of Shift-sensitive Network and Translation-invariant Network

Proper Labeling: Unlike dense prediction where each pixel in an image is labeled with a
certain class or value in computer vision [52], in the available data here, only the CCmark-
ers (ECG R-peak arrival time) are provided; hence, the segmentation of different phases
(diastole, systole, etc.) of the ultrasound image in time is not very likely. Since only a flag
event is defined for segmentation, instead of an area or continuous for a certain duration,
the distribution of the classes will be extremely unbalanced if the CC markers and non
CC-marked moments are treated as two parallel classes. Such a binary classification prob-
lem turns out to fail as the CC markers are regarded as noise and outliers by the neural
network due to the unbalance in the dataset. To handle this problem, a multi-class classi-
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fication or a regression with a well-designed, evenly distributed mapping from dataset to
labels will be more likely to succeed.

3.4.2 Segmentation Network Design
Following the heuristics discussed in the previous section, a 2D convolution neural net-
work is designed to segment the long ultrasound image into individual heart cycles, based
on CC markers. The input size of the subimages is set to 500 ∗300 (depth ∗time), which can
include the full range of movements of both arteries and almost in time dimension, and
contains almost one heart cycle to include as many temporal features as possible, while
keeping only one CC marker in the current frame at most. Unlike the small-sized, square
convolution kernels (3 ∗3, 5 ∗5, etc.) applied in convention computer vision tasks, non-
square, large-sized kernels are used to better integrate the information on the depth axis
and compress it into a sequence similar to a time series. In the choice of specific size for
the depth and the time dimension, it is decided that the size in depth dimension should
cover at least half of the diameter of the lumen (central dark region) plus the width of the
artery, and without padding, a few convolution operations in the depth dimension should
be able to compress the ultrasound image into a sequence with only a few variables for
every time sample. For the time dimension, the kernel size is expected to include the
regional movement of the artery (to be able to identify whether the artery wall is going
inwards or outwards), while after the convolution layers, the resulting sequence is simi-
lar in the length of the original time samples. In this way, the features in the images are
extracted by the convolution layers into a time series efficiently without sequential pro-
cessing of data in time and depth dimension. To make the neural network shift-sensitive,
max pooling is not applied after each convolution layers to preserve the location property
of the extracted features, hence the compression (downsampling) of the image data into
the feature map is only achieved by the large kernels without padding. In this way, the
feature map after each convolution layer is expected to decrease in size, and the width and
height of the feature maps can be expressed as the following equations.

𝐻𝑜𝑢𝑡 = ⌊𝐻𝑖𝑛 +2×𝑝𝑎𝑑𝑑𝑖𝑛𝑔[0]−𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛[0]× (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒[0]−1)−1
𝑠𝑡𝑟𝑖𝑑𝑒[0] +1⌋ (3.17)

𝑊𝑜𝑢𝑡 = ⌊𝑊𝑖𝑛 +2×𝑝𝑎𝑑𝑑𝑖𝑛𝑔[1]−𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛[1]× (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒[1]−1)−1
𝑠𝑡𝑟𝑖𝑑𝑒[1] +1⌋ (3.18)

where input would be a batch of (multi-channel) image samples (matrices), denoted as
(𝑁 ,𝐶𝑖𝑛 ,𝐻𝑖𝑛 ,𝑊𝑖𝑛), and output would be (𝑁 ,𝐶𝑜𝑢𝑡 ,𝐻𝑜𝑢𝑡 ,𝑊𝑜𝑢𝑡 ). 𝐻 is the height of the image,
𝑊 is the width, they can be both considered the two dimensions of a matrix.
To properly design the label for the CC markers, it is decided that a distance metric is a
good representation related to the probability of the occurrence of the CC marker. Start-
ing from the first frame of one window, the label is set to be the distance to the nearest
ECG marker. The labeling scheme can be shown in figure 3.10. To have more continu-
ous and a large range, the label is chosen to be l1 distance, without normalization to 0-1
range because of the max distance is not constant in different positions on time dimension.
Apart from the regression of l1 distance, a classification scheme of quantized distance of
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Figure 3.10: An Illustration of the l1 distance Labeling

the starting frame and the succeeding ECG marker is also designed. It turns out that
the regression scheme has a better accuracy since the quantization is downsampling the
time samples and quantized distance in classification only relates ECGmarker and current
frame in one direction.
After the convolution layers, fully-connected layers are applied to readout the output of
the feature maps like most of the CNNs. Depending on the label, the number of output
neurons on the last layer can be altered (1 output neuron for regression, number of classes
for classification). The complete structure of this neural network and the evolution of
the size of the feature map is illustrated in the figure 3.11. This neural network consists
of 5 convolution layers and 3 fully-connected layers. The hyperparameters and training
settings are listed in Table 3.3.

3.4.3 Post-processing for Time Domain Segmentation
The segmentation neural network is a one-to-one relation for input and output: for every
subimage located on a time sample, an inferred distance is outputted. Inputting a long
ultrasound data sequence will result in a sequence that infers the distance to the nearest
CC marker from the current frame. To decide where the CC markers are, it is important
to include the neighboring distance information of the current frame, as there is no guar-
antee that an ECG marker always results in an ‘0’ in the output of the neural network.
Hence, a local minimum detector is applied to the output sequence to find the ECG mark-
ers. In order to obtain the desired CC markers, the regressed sequence is firstly flipped
down to convert the local minimum into local maximum; then a peak-finding algorithm
specifying minimal peak distance is applied to find the exact locations of CC markers.
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Figure 3.11: Convolution Neural Network for Heartbeat Segmentation

Post-processing is implemented in Matlab and the peak-finding is performed by using
close-source function findpeaks. The result of the regressed sequence outputted by the
neural network and the result after post-processing are given in the chapter 4.
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Setting Symbol Type or Value
Network Structure - 2D Convolution, Feed forward
Activation Function 𝑔 ReLU

Loss Function 𝐿 MSE
Initialization 𝑤 Xavier Uniform
Optimizer - Adam

Learning rate 𝛼 10−7 −10−4
Regularization 𝑅 l2-norm
Weight decay 𝜆 10−4

Training epochs 𝑁 >20
Number of inputs 𝑥 500
Number of outputs 𝑦 1

Table 3.3: Hyperparameters and Settings of the Segmentation Network

3.5 Part 3: Diameter Tracking
In the tracking part, the neural network is designed as a regression task over the diameters
and the wall positions. From the previous part figure 2.5, the artery diameter(distension)
tracking is done via frame-to-frame phase shift estimation and wall position detection in
every heart cycle, segmented by the ECG R-peak. Eventually, the diameter (distension) is
inferred for every time instance; the variation in time reveals the pattern of movement of
the artery within a heart cycle (illustrated in figure 3.12).
Given the current availability of the data(raw RF ultrasound data, analytic signal (after

Hilbert Transform) and envelope of the analytic signal), the artery diameter or artery wall
positions should be extracted by one or combination of these signals. Since the tracking
task only outputs a target parameter after it processes the current time frame, the input
for the neural network should be organized in time domain (single sample or window of
samples) with complete signal (in depth dimension) at every time sample. Based on the fact
that the envelope of signal can provide a very obvious peak-low intensity-peak structure
to indicate the locations of artery walls and lumen, the detection of artery walls is hence
taking the envelope data (selected region by the ROI detection network. The phase of the
signal only implies subsamplemovement between consecutive frames, it does not have the
position information of the artery wall, and hence the use of the phase information should
not be prior to the envelope (magnitude of the analytic signal). To find the method that
is capable of regressing the wall position, a few experiments are carried out to see which
kind of data can yield the correct and desired result. It turns out that with similar neural
network structure and complexity, the raw data input fails to converge in the learning and
cannot have a reasonable output. However, the envelope (acquired by Hilbert Transform)
can converge fast and output better waveforms as the loss decreases. As a result, the
envelope of the data (magnitude of the analytic signal) is used as the main input of the
tracking neural network.
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Figure 3.12: Illustration of the Motion of Artery Wall Movement

3.5.1 Problem Formulation
In order to detect the position of the artery wall in a very long time sequence, the tracking
problem can be seen as either a time series or a one-to-one detection problem. The differ-
ent perspectives result in different approaches: neural network for time series (Recurrent
Neural Network, RNN) or a time-invariant problem (CNN or ANN structure). Similar to
the DSP approach where the time relevance of neighboring samples is the phase shift, it
is expected that the neural network can somehow also establish a short time correlation
between samples. While the RNN has the recurrent connection that can feed the output
of the network (hidden states in RNN) back to the input, the current output will relate
to the past samples as far as the back propagation allows (backpropagation through time,
BPTT). Such a mechanism enables backpropagation to compute the influence of past in-
put on current output, making current output correlates with past input with long enough
intervals. For such reasons, RNNs are very useful when handling the task with contextual
data, e.g., speech recognition [53], translation, etc. The time-invariant problem, however,
treats all the samples as individual and perform detection and regression over each sin-
gle sample, while the correlation in time is not explicitly implemented, it is expected that
with a well trained model, the gradual and slight difference lied in the progression of the
ultrasound signal will result in similarly slight and gradual changes in the output of the
neural network. On the other hand, this time-invariant ANN (CNN) structure does not
need to trace back the gradient in time, which is more efficient in computation. In theory,
both structures can be suitable for this tracking task; the choice is made and explained in
the following section 3.5.2.
Based on the heuristics discussed above, the neural network designed for tracking should
have the following features:
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Low Complexity: As mentioned in the DSP approach figure 2.5, the backbone of the
tracking is the complex cross-correlation between the submatrices of the analytic signal.
Such a computation is costly in terms of computation sources and time. As in the neu-
ral network, without correlation operation, it is expected that the neural network should
regress over each time sample (or window) without very deep and complicated neural
network structure. On the other hand, since the ROI for the artery can be detected in the
previous section, the selection on the ROI can further reduce the input size for the tracking
task, and also remove the part containing noise, interference, etc..
Smooth Output Waveform: The smoothness of the output waveform for diameters, dis-
tensions is significant for the further pulse arrival time (PAT) estimate, which employs
derivatives to detect peaks or maximum. Also, the physic movement of the artery is an-
alytic, continuous as time goes, requiring the smoothness in the wall motions, diameters
without oscillations in short time intervals. Since in the DSP approach the motion of the
artery walls is detected via phase shift, the smoothness is guaranteed inside one heart
cycle. Given that the neural network inputs the samples without correlation or any differ-
ential operations between the samples and its discrete nature, to preserve the smoothness
in the output, the labels should not be altered with different scales or downsampled, and
operations should be deployed that average the latent representation for each time sample
or the output of the neural network.

3.5.2 Tracking Network Design

Based on the heuristics mentioned above section 3.5.1, the tracking neural network should
be compact, efficient and have averaging mechanisms either in the layers of the network
or the output of the network. In order to find out the better model, a few experiments with
different parameter settings are carried out to investigate which neural network structure
performs better (RNN or ANN (CNN)), where the averaging should take place (inside the
network or after the output). As the result shows, the CNN structure that employs a few
1D convolution layers, with individual sample input and averaging after the output has a
better performance over other settings. It is observed that the CNN structurewith only one
sample in time as input can converge and is relatively more accurate compared to other
schemes. The output of the RNN structure network has obvious discontinuities every
time the back propagation is truncated, and the windowed input over time, or averaging
inside the network does not yield a better result than one time sample input. This results
in the tracking network being designed as a 1D convolution neural network, with a few
convolution layers followed by fully connected layers as read-out layers, which means
that such a tracking network works as a position detector for the artery walls without
explicitly correlating the current sample with the past ones.
The neural network structure for tracking the anterior wall is illustrated as figure 3.13.

Similar to the ROI detection section 3.3, the tracking neural network takes the envelope
of the data processed by the ROI detection every time sample, passes through a few 1D
convolution layers and fully connected layers to output the result. The hyperparameters
and the settings to train are listed in the table 3.4.
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Figure 3.13: Artery Wall Diameter Tracking Neural Network Structure

3.5.3 Post-processing
Based on the design of the tracking neural network, the diameter of the artery is directly
regressed by positional information of the artery walls, not the phase shift between con-
secutive frames. Due to the discrete nature of neural networks, this position-detection
based approach does not have a mechanism that can guarantee the smoothness in the out-
put sequence. Since in the later stage the biological features (PAT) need to be extracted via
the derivatives of the diameter waveform, a smoothing process should be applied after the
diameter sequence is produced by the neural network. Here a Savitzky-Golay filter is ap-
plied to smooth the data. Based on least-squares smoothing of signals, the Savitzky-Golay
filter applies convolution coefficients on data sub-sets consecutively. Proposed in [54],
this filter can increase the precision of the data without distorting signal tendency, and is
widely used in many numerical tasks. By altering the order and frame length, this filter
can give different smoothing effect of the processed data. Generally, the Savitzky-Golay
filter can be written as

𝑌𝑗 =
𝑚−1
2
∑
𝑖= 1−𝑚

2

𝐶𝑖𝑦𝑖+1,
𝑚 +1
2 ≤ 𝑗 ≤ 𝑛 − 𝑚−1

2 (3.19)

where 𝑦𝑗 is the observed value in the dataset, 𝑚 is the order of the polynomial and 𝑖 spec-
ifies which data point in the frame. The exact effect of different choices for frame length
and order on the data is beyond the scope of this thesis, while the details of the derivation
and application are discussed in [55]. The results of the diameter output sequence from
the neural network and the corresponding smoothed data are given in chapter 4.
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Setting Symbol Type or Value
Network Structure - 1D Convolution, Feed forward
Activation Function 𝑔 ReLU

Loss Function 𝐿 HuberLoss
Initialization 𝑤 Xavier Uniform
Optimizer - Adam

Learning rate 𝛼 10−8 −10−4
Regularization 𝑅 dropout, l2-norm

Dropout probability 𝑃𝐷𝑟𝑜𝑝𝑜𝑢𝑡 0.08
Normalization - Batchnorm1d
Weight decay 𝜆 5 ∗10−5

Training epochs 𝑁 >50
Number of inputs 𝑥 500
Number of outputs 𝑦 1

Table 3.4: Hyperparameters and Settings of the Tracking Network

3.6 Cardiac Parameter Estimation: Pulse Arrival Time
As the other major part to estimate the cardiac parameter, after acquiring the CC markers
(stands for the delayed ECG R-peak moments) and artery diameter (motion), the pulse ar-
rival time (PAT) can be estimated by the time difference between the ECG R-peak collected
at the heart and the reference point in the movement of the periphery artery (e.g., carotid
artery, femoral artery, etc.) [5]. At the periphery artery, there are a few different reference
points that can be use to compute PAT, e.g. foot, peak or the slope on the diameter of the
artery [56], shown in figure 3.14. In post-processing to estimate the PAT, the maximum

Figure 3.14: An Illustration Reference Points on the Artery Diameter for PAT Computation, Partly Adapted from
[5]

slope in the artery diameter is chosen as the reference point to compute the PAT. Due to
the discrete nature of the output diameter, the foot and the peak will be relatively hard
to identify, while the max slope can be easily extracted in the first derivative by finding
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the first maximum after the CC markers. The computation of the PAT can be illustrated
in the figure 3.15. When the PAT is available, the pulse wave velocity (PWV) can then be

Figure 3.15: An Illustration of PAT Computation

computed to aid in the assessment of the health situation of the subjects, after acquiring
the biological distance from the artery to the heart.
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4
Results & Evaluation

In this chapter, the results from themachine learning (ML) pipeline in each part (ROI detection,
segmentation, and tracking) are presented, including intermediate results, and subsequently
measured in different metrics for evaluation. To prove the effectiveness of the ML approach
pipeline, these results will be given both in visualization (with original ultrasound images)
and tables containing the numbers of errors, in qualitative and quantitative measures.

4.0.1 Validation Scheme
To assess how the results of the machine learning model generalize to an independent
dataset, validation schemes that applied different splits of train and test dataset are often
used in machine learning. In this work, a non-exhaustive cross-validation scheme is used
to test the generalizability of the ML pipeline 4.1. Out of the 7 available subjects, each
including different interventions and sections (pace breathing, hand gripping, and resting),
the validation is carried out in different subjects to evaluate the generalization of themodel
when given different personal characteristics in the arteries. Due to the large size of the
entire dataset, the validation scheme does not test on all sessions of a subject and does not
train on all the remaining datasets. If this limited training and validation scheme has a
good generalization performance, it can be safely deduced that a model trained on larger
size training dataset also has a good generalization ability.

Figure 4.1: Validation Scheme
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Data MSE(Response vector) MAE(Lumen center)
Split 1 0.01039 6.0514
Split 2 0.00821 10.1607
Split 3 0.01196 5.9619
Split 4 0.00714 4.5126
Split 5 0.01028 6.8277
Split 6 0.00862 5.3201

Table 4.1: Error in ROI Detection (response vector and lumen center)

4.1 Intermediate Results & Analysis
The obtained results of the ML pipeline of different parts (ROI Detection, Segmentation
and Tracking, including intermediate results) are given in each subsection, followed by
the analysis.

4.1.1 ROI Detection
In the ROI detection part section 3.3, a neural network consists only of convolution layers
and a deterministic postprocessing to identify the lumen center given the envelope data
of the raw ultrasound data. The training scheme applies a response vector as the label
to let the neural network learn the peak-low intensity-peak structure through large-size
kernels. The original ultrasound image, compared to the image of the response vectors
(labels), and the output of the convolution layers are shown in figure 4.2.
It can be observed that the response vectors represent the region where the lumen center
will occur with high change. From the output of the convolution layers, the large kernels
successfully absorbed the features of the artery wall-lumen structure. The output image
of response vectors shares the same moving pattern as in the label response vectors. As
the lumen center in both images, the movement of the lumen center can reveal the low-
frequency motion of the artery, for example, respiratory. To quantitatively assess the
performance of ROI detection, the MSE is computed for the output/label response vector
to directly evaluate the performance of the neural network, for the extracted lumen center,
since the ROI detection only regresses a location index indicating lumen center position,
the mean absolute error (MAE) is computed to assess the overall accuracy of ROI detec-
tion. The table 4.1 shows the result of the error of MSE (response vector) and MAE (mean
absolute error) of the lumen centers.

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑
𝑖=1

|𝑦𝑖 −𝑥𝑖 | (4.1)

where 𝑦𝑖 is the inferred lumen center, 𝑥𝑖 is the label lumen center. The results are given in
Table 4.1. According to the table above, it is clear that ROI detection can find the lumen
center with a tolerable error (compared to the typical artery diameter 300-450 [samples])
that ensures that the ROI (artery wall-lumen-artery wall) structure is still present for fur-
ther time domain segmentation or diameter tracking.
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Data MAE[Sample]
Split 1 10.7258
Split 2 9.1979
Split 3 19.7692
Split 4 32.2438
Split 5 8.5000
Split 6 27.4827

Table 4.2: Error in Time Segmentation: The Detection of CC Markers

4.1.2 Time Domain Segmentation
For every inputted window of the ultrasound image, the segmentation neural network
regresses a value to infer the distance from the starting frame of this window to the nearest
cardiac cycle (CC) markers. Since there is no normalization for both the distance label
and the output of the regression neural network, the moment of occurrence of the CC
marker should be determined by looking for the local minimum of the output sequence.
For illustration, the result after the neural network is demonstrated in figure 4.3.
Since the output of the segmentation neural network represents how close (likely) a

possible CCmarker is, the local minimum in a short time interval can reveal the CCmarker,
as introduced in section 3.4.3. By fixing a minimum local minimum distance (number of
samples of approximately 0.6-0.8 heart cycle on average), the CC markers can be derived
by filtering out unwanted local minimum. To investigate the performance, the MAEs of
their positions are computed, given in Table 4.2 The result shows that the post-processing
(local minimum detection) can effectively find the CCmarkers, however, themisalignment
between detected CC markers and label CC markers can cause large absolute errors. The
MAE is expected to be greatly reduced after filtering out the outliers. Compared to the
typical duration of a heart beat (300-500 samples), these MAEs are still safe to estimate CC
markers.

4.1.3 Diameter Tracking
The tracking neural network tracks the evolution of the artery diameter in ultrasound data
and returns an inferred sequence of the artery diameter. The direct result from the neural
network is given in the figure 4.4. As explained in section 3.5.3, a Savitzky-Golay filter is
applied to smooth the output sequence in order to reserve important information in the
first derivative. For each split in the validation scheme, the errors of Diameter Tracking
are given in the table 4.3. As it turns out that the regression on the diameter of the artery
does not have very good accuracy in tracking the actual artery diameters, the important
feature for further processing, the upstroke of diameter (max slope in the first derivative)
can still be preserved.
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Data Huber Loss MSE
Split 1 7.0987 82.45
Split 2 6.5784 80.24
Split 3 7.3044 92.75
Split 4 8.6217 204.57
Split 5 3.3608 17.87
Split 6 9.1812 114.72

Table 4.3: Error in Diameter Tracking

(a) Original Ultrasound Image

(b) Label Response Vectors & Lumen Center

(c) Output Response Vectors & Lumen Center

Figure 4.2: Comparison of the Original Ultrasound Image, Response Vectors and Lumen Centers (Label, output).
The Images Display the Intensities in Gray Scale
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Figure 4.3: Time Domain Segmentation: Result (excerpt). In the Label/Output image, the label is plotted in red
line, the regressed distance to a CC marker is plotted in blue

Figure 4.4: Diameter Tracking: Result (excerpt)
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4.2 Numerical Results & Analysis
In this section, the errors in estimating the reference point from the first derivative and
the CC markers are shown numerically, and the estimation of the pulse arrival time (PAT)
from the original data (label) and from the ML processing pipeline in intra-subject and
inter-subject perspective.

4.2.1 Intra-subject Results
Since the pulse arrival time (PAT) calculation has to involve two estimated values (CC
markers, tracked diameter), the estimated CC marker moments and max slope moments
detected from the first derivative of diameter (introduced in section 3.6) will have their
own error distribution. Here, a histogram on the error distribution of the mentioned de-
tected moments is given in figure 4.5. The histogram shows that for both CC markers

Figure 4.5: Histogram of Error from CC Markers, Regressed Diameter, Split 1

and maximum slope moments extracted from the diameter and a mean error (MAE) can
be computed. The deviation of the mean error can directly demonstrate how good the
estimation is.
The PATs are also estimated in every heart beat, and the reference PATs computed from
the labels (derived from the DSP pipeline) are used as ground truth to evaluate the perfor-
mance of the ML-based processing pipeline (figure 4.6). It can be observed that although
the estimate PAT is very noisy and oscillating for every heart cycle, the average of these es-
timates is very close to the average PAT of the ground truth. Therefore, it can be concluded
that the ML-based pipeline can better estimate the PAT given a long enough measurement
(consists of multiple heart beats), while it cannot effectively estimate instantaneous PAT
for each heart cycle.
To discover whether the estimated CC markers can follow the heart rate variation, the du-
ration of each heart cycle is computed by subtracting neighboring CC markers from the
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Figure 4.6: Estimated, Ground Truth PAT, Split 1 (Mean Label PAT: 129.9106, Mean Estimated PAT: 127.0579)

Data/Metric [samples] Split 1 Split 2 Split 3 Split 4 Split 5 Split 6
Mean Label PAT 129.9106 143.5053 114.2586 120.8154 121.3401 122.3334

Mean Estimated PAT 127.0579 145.8438 107.0345 127.4250 120.3673 136.4865
Mean Absolute Error 11.3659 17.1158 14.8966 34.2914 6.5102 26.1883

Table 4.4: Estimated & Label Mean PAT

estimated one and the ground truth. Figure 4.7 shows the result of the possible correla-
tion of the variation of heart rate. In this subject, it can be observed that the time domain
segmentation in the ML processing pipeline can follow the trend of heart variation, with
some noise and outliers.
With only the results of Split 1 are shown here, the rest are given in the Appendix.

4.2.2 Inter-Subject Results
To evaluate the generalizability and effectiveness of the estimation of the mean PAT of the
ML processing pipeline, the mean PAT of the measurements are calculated for all subjects
on the detected heartbeat (CC markers). With 6 splits of testing, their results are shown
in table 4.4 and figure 4.8. The correlation between the estimated PAT and ground truth
PAT can be evaluated by the correlation coefficient 𝜌 as

𝜌(𝑥,𝑦) = 1
𝑁 −1

𝑁
∑
𝑖=1

(𝑥𝑖 −𝜇𝑥𝜎𝑥
)(𝑦 −𝜇𝑦𝜎𝑦

) (4.2)

where 𝑥 , 𝑦 are the variables (mean estimated, ground truth PAT), 𝜇 is the mean and 𝜎 is the
stand deviation of the variable. The non-diagonal element in the result correlation coeffi-
cient (matrix) represents the correlation between the two variables; for the 6 test subjects,
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Figure 4.7: Duration of Heart Cycle from Detected & Ground Truth CC Markers, Split 1

the correlation coefficient is 𝜌(𝑥,𝑦)(2,1) = 0.8250, indicating that there is a strong correla-
tion between the mean estimated and the label PAT, and hence proves the effectiveness of
the mean PAT estimated by the proposed ML processing pipeline.

Figure 4.8: Correlation between Estimated & Ground Truth PAT

4.3 Concluding Remarks
From the results in this chapter, it can be observed that the results from the neural net-
works (subparts of theML processing pipeline) generally functionwell with good accuracy
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in their objectives (identify ROI region, locate CC markers and max-slope moments). The
performance of the neural networks themselves (loss, convergence) is not evaluated di-
rectly, and the final neural networks on the ML processing pipeline may not be optimal.
On the other hand, the combination of these neural networks (subparts) also may not
reach the optimal point for a minimal loss in general.
Since the label PATs are calculated from the labels of the DSP pipeline from the recorded
ECG signal and the computed diameters, the fidelity (correctness) in the label PAT depends
on the (fixed) ECG data and estimated diameter. Since the ECG data itself is a measure-
ment directly to the heart activity, and due to the complex cross correlation mechanism
in the DSP approach, the smoothness of output diameter is well preserved and has high
quality waveform, it can be safely concluded that the label PATs in different heart cycles
has very good accuracy of the actual PAT.
The estimation of PAT is the direct outcome from the previous results from the neural
networks in the ML pipeline. As errors accumulate in the processing of the ML pipeline
(it can be observed in the Appendix), several error sources will negatively affect the result
of the PAT estimation. As a result, PAT estimation is not effective for instantaneous heart
beats, but it is good enough for an average PAT over a few heart cycles. The possibility of
improving accuracy by optimizing the current pipeline is discussed in the chapter 5.
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5
Conclusion & Discussion

In this chapter, the entire proposed machine learning processing pipeline is reviewed for its
special characteristics and its disadvantages and limitations. The research questions are an-
swered based on the design and the results of the ML pipeline. On the perspective of further
improvements, recommendations are proposed as suggestions for further research in this topic
or extension of this work in a more general picture. Finally, we draw the conclusion of the
work in this thesis and summarize its significance. And future perspective is given to possibly
extend this work into practice applications.

5.1 Discussion
In this section, from a more general and extensive perspective, the significance and limi-
tations of the research in this work will be discussed, and consequently the recommenda-
tions on possible improvements are given. At last, the future perspective that could turn
the current work into practice is proposed.

5.1.1 Research Questions
With the detailed explanation of proposed machine learning processing pipeline and the
results, the proposed research questions can be answered

1. How machine learning algorithms can obtain the same artery motion parameters
through proper training, without heavy computation and processing?
By constraining the size of neural networks and utilzing the heuritics, the ML pipeline
can produce the most important cardiac parameters: artery diameter and CC marker
without involving opearions on complex numbers, correlation, etc. And meanwhile, the
ML pipeline can utilize the advantage of parallel processing in the GPUs, potentially
increasing computation efficiency

2. Canwe re-intepret the existing DSP pipeline in the perspective of machine learning?
What is the approach to assemble/decompose the subparts in the DSP pipeline in
Machine Learning?
Yes. The existing DSP pipeline is re-intepreted into an ML processing pipeline with 3
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subparts of neural networks and one part of postprocessing. The decomposition of the
functionality facilitates the design and training of the ML pipeline.

3. Is ultrasound data enough for estimation of pulse arrival time (PAT) and without
ECG signal?
With a good correlation in the mean PAT per subject (mean estimate and label PAT),
using ultrasound along is enough for the estimation of pulse arrival time (PAT) without
ECG signal.

5.1.2 Limitation
From a more general point of view, the limitations of the current design of ML processing
can be listed as follows.

• Cascading Structure: The pulse arrival time (PAT) is estimated by a sequence of
neural networks and post-processing. As it is not derived directly and uniquely
from the neural network, it is difficult to quantitatively analysis the error originated
from the sub-parts, and it is not easy to carry out an overall optimization over the
full process. Since the optimization/pruning of the neural networks is left for fur-
ther exploration, it remains unknown how much can the models in the pipeline be
improved.

• Sequential Processing: Unlike many popular image/video processing pipelines,
the proposed ML pipeline works in a sequential way, instead of parallel processing,
it is very hard for the current ML processing pipeline to estimate PAT in real time.
The read-write operation, the memory use of ultrasound data is not emphasized in
the design, causing redundant memory use, and computation in the intermediate
variables.

• Limited information from raw ultrasound data: In the full processing pipeline,
only the magnitude of the ultrasound signal (envelope) is fed into the neural net-
works, while the phase of the signal is discarded. Without the subsample movement
information in the phase, the result of the diameter tracking is not guaranteed with
smoothness, leading to the errors/difficulties in the later post-processing stage. The
possibilities of interpreting phase information inmachine learning perspective with-
out deterministic processing are worth exploring, which certainly requires a proper
processing for heterogeneous data.

The recommendation for extensive improvements of the work will focus on these limita-
tions and other practical considerations.

5.1.3 Recommendation
Here, a few suggestions on how to further improve the performance of the current ML-
based pipeline and possible research directions for related projects are listed as follows.

• Phase-awareNeural Network: Unlike the DSP-based approach, machine learning
tries to model the problem only according to the statistics of the data, whereas the
physical information and relation between variables are not fully exploited. With
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the powerful ability of approximating any functions, it is certain that the diameter
tracking can be improved by feeding neural networks with proper phase-encoded
inputs. The question of how to design an encoding scheme and implement it in a
neural network is definitely a worthy topic to explore.

• Pruning&Quantization of theNeuralNetwork: The process of pruning& quan-
tization is a trade-off between accuracy and computation efficiency. It is widely used
in the hardware-related neural network designing where the chip/embedded system
should be able to run the algorithms within its power consumption and memory. By
restricting bits of data (data types, e.g. float64, float32, int16, etc.), less computation
resource is needed for a single operation. The purpose of pruning is to find inactive
connections between layers and delete them. The neural network is more likely to
integrate into the chip with these two techniques.

• Different Architectures, Generative Models: As the desired parameters (pulse
arrival time, max slope moments, etc.) and the intermediate result (artery diameter,
CC markers) are related to each other, a generative model that is able to ‘learn’ the
connection (joint distribution) between these parameters could be intriguing. In this
way, it is expected that the pulse arrival time or other biomedical-related features
can be directly acquired from the neural network, without post-processing.

5.2 Conclusion
In this thesis, a machine learning (ML)-based processing pipeline is proposed as an alterna-
tive to the existing digital signal processing (DSP) pipeline to estimate pulse arrival time
(PAT) from the ultrasound data. Following the heuristics from the DSP pipeline or the
observation of the data itself, the design of neural networks in the ML pipeline has a dif-
ferent structure than the convention neural networks in the sense of kernels, processing
orders, etc.. The entire ML processing pipeline consists of 4 parts, ROI Detection, Time
Domain Segmentation, Diameter tracking and post-processing. Through training, the car-
diac cycle markers (CC Markers), artery diameters can be inferred by the model to further
estimate the PAT. By choosing the max slope moments in the diameter waveform as the
reference point, the PAT can be successfully estimated as a average quantity over multi-
ple heart beats in one measurement. Further, the correlation of the estimated mean PAT
and label mean PAT of different test subjects is studied and the conclusion is proved by a
correlation coefficient of 0.8250, which implies a strong correlation between the two PATs.
As a data-driven approach, theML-based approach has been successful in solving a biomed-
ical problem without involving explicit physical-related transformation/interpretation on
the ultrasound data. The difference in the processing also leads to the discrete nature
output of the ML-based approach, against to the continuous one in DSP-based pipeline.
Nonetheless, without fully preserving the features in the ultrasound data, the most impor-
tant moment of upstroke of artery and CC markers can still be detected for the PAT esti-
mation. It can be expected that with more data and further optimization, the data-driven
approach can greatly improve the performance in accuracy of regression and estimation.
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5.3 Future Perspective
Given the functionality of the ML processing pipeline, the possibilities of the proposed ML
pipeline application are discussed.
Hardware Implementation: The integration of neural networks on the integrated cir-
cuits/chips for portable devices and embedded systems has been in trends recently, with
proper mapping and quantization, the circuit integrated neural networks turn out to be
very powerful and effective at their specialized fields. Following this philosophy, a pos-
sible application of the proposed ML pipeline is to be integrated into an embedded sys-
tem that is part of medical devices. The valuable information extracted by the ML-based
pipeline is expected to help in the assessment of the heart of the test subjects, combined
with other biological characteristics.

Figure 5.1: On-chip Neural Network Applications

Integration with Other ModalitiesThe booming industry of communications and com-
putations has greatly pushed forward the developments of the Cloud, Internet of Things
(IoT), etc., which is making it possible for multiple sensors (modalities) to connect each
other and compute meaningful results. As a trending technology, multi-modal sensors
and sensing technologies have gained increased popularity on various application scenar-
ios. For the proposed ML processing pipeline, it can be further improved and integrated
into a larger pipeline that takes multiple kinds of sensor data for a more powerful and
robust model.



57

Bibliography
URLs in this thesis have been archived on Archive.org. Their link target in digital editions
refers to this timestamped version.

References
[1] Thais Coutinho. Arterial stiffness and its clinical implications in women. Canadian

Journal of Cardiology, 30, 07 2014.

[2] Jiuxiang Gu, ZhenhuaWang, Jason Kuen, LianyangMa, Amir Shahroudy, Bing Shuai,
Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, and Tsuhan Chen. Recent ad-
vances in convolutional neural networks. Pattern Recognition, 77:354–377, 2018.

[3] Fabian Beutel. Advancing pulse wave velocity methods - from novel ultrasonic con-
cepts to ambulatory monitoring, 2021.

[4] Deepak Battini. Implementing drop out regularization in neural networks, 2018.

[5] Yong-Seok Park, Sung-Hoon Kim, Yoon Se Lee, Seung-Ho Choi, Seung-Woo Ku, and
Gyu-Sam Hwang. Real-time monitoring of blood pressure using digitalized pulse
arrival time calculation technology for prompt detection of sudden hypertensive
episodes during laryngeal microsurgery: Retrospective observational study. J Med
Internet Res, 22(5):e13156, May 2020.

[6] Elizabeth Wilkins, L Wilson, Kremlin Wickramasinghe, Prachi Bhatnagar, Jose Leal,
Ramon Luengo-Fernandez, R Burns, Mike Rayner, and Nick Townsend. European
Cardiovascular Disease Statistics 2017. European Heart Network, Belgium, February
2017.

[7] NHS. Cardiovascular disease, 2022.

[8] Flávio D. Fuchs and Paul K.Whelton. High blood pressure and cardiovascular disease.
Hypertension, 75(2):285–292, 2020.

[9] Stephane Laurent, Pierre Boutouyrie, Pedro Guimarães Cunha, Patrick Lacolley, and
PeterM. Nilsson. Concept of extremes in vascular aging. Hypertension, 74(2):218–228,
2019.

[10] Pierre Boutouyrie and Rosa-Maria Bruno. The Clinical Significance and Application
of Vascular Stiffness Measurements. American Journal of Hypertension, 32(1):4–11,
10 2018.



58 Bibliography

[11] P. M. Nabeel, V. Raj Kiran, Jayaraj Joseph, V. V. Abhidev, and Mohanasankar
Sivaprakasam. Local pulse wave velocity: Theory, methods, advancements, and clin-
ical applications. IEEE Reviews in Biomedical Engineering, 13:74–112, 2020.

[12] Sofie Huybrechts, Daniel Devos, Sebastian Vermeersch, Dries Mahieu, Eric Achten,
Tine Backer, Patrick Segers, and Luc Bortel. Carotid to femoral pulse wave velocity:
A comparison of real travelled aortic path lengths determined by mri and superficial
measurements. Journal of hypertension, 29:1577–82, 06 2011.

[13] Michel E. Safar, Roland Asmar, Athanase Benetos, Jacques Blacher, Pierre
Boutouyrie, Patrick Lacolley, Stéphane Laurent, Gérard London, Bruno Pannier,
Athanase Protogerou, Véronique Regnault, and null null. Interaction between hy-
pertension and arterial stiffness. Hypertension, 72(4):796–805, 2018.

[14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International
Publishing.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2014.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[17] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches, 2014.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9:1735–80, 12 1997.

[19] Juan Shan, S. Kaisar Alam, Brian S. Garra, Yingtao Zhang, and Tahira Ahmed.
Computer-aided diagnosis for breast ultrasound using computerized bi-rads features
and machine learning methods. Ultrasound in medicine & biology, 42 4:980–8, 2016.

[20] Yuya Hiramatsu, Chisako Muramatsu, Hironobu Kobayashi, Takeshi Hara, and Hi-
roshi Fujita. Automated detection of masses on whole breast volume ultrasound
scanner: false positive reduction using deep convolutional neural network. In Samuel
G. Armato III and Nicholas A. Petrick, editors,Medical Imaging 2017: Computer-Aided
Diagnosis, volume 10134, page 101342S. International Society for Optics and Photon-
ics, SPIE, 2017.

[21] Phillip M. Cheng and Harshawn S. Malhi. Transfer learning with convolutional neu-
ral networks for classification of abdominal ultrasound images. J. Digit. Imaging,
30(2):234–243, 2017.

[22] Natalia Antropova, Benjamin Q. Huynh, and Maryellen L. Giger. A deep feature fu-
sion methodology for breast cancer diagnosis demonstrated on three imaging modal-
ity datasets. Medical Physics, 44(10):5162–5171, 2017.



References 59

[23] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation, 2014.

[24] Nima Torbati, AhmadAyatollahi, andAli Kermani. An efficient neural network based
method for medical image segmentation. Computers in biology and medicine, 44:76–
87, 01 2014.

[25] Rosa-María Menchón-Lara and José-Luis Sancho-Gómez. Fully automatic segmenta-
tion of ultrasound common carotid artery images based on machine learning. Neu-
rocomputing, 151(Part 1):161–167, 2015.

[26] Fang Chen, Dan Wu, and Hongen Liao. Registration of ct and ultrasound images of
the spine with neural network and orientation code mutual information. In Guoyan
Zheng, Hongen Liao, Pierre Jannin, Philippe Cattin, and Su-Lin Lee, editors, Medical
Imaging and Augmented Reality, pages 292–301, Cham, 2016. Springer International
Publishing.

[27] Y. Gao, M. A. Maraci, and J. A. Noble. Describing ultrasound video content using
deep convolutional neural networks. In 2016 IEEE 13th International Symposium on
Biomedical Imaging (ISBI), pages 787–790, 2016.

[28] Hao Chen, Qi Dou, Dong Ni, Jie-Zhi Cheng, Jing Qin, Shengli Li, and Pheng-
Ann Heng. Automatic fetal ultrasound standard plane detection using knowl-
edge transferred recurrent neural networks. In Nassir Navab, Joachim Horneg-
ger, William M. Wells, and Alejandro Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, pages 507–514, Cham, 2015. Springer
International Publishing.

[29] Laura Brattain, Brian Telfer, Manish Dhyani, Joseph Grajo, and Anthony Samir. Ma-
chine learning for medical ultrasound: status, methods, and future opportunities.
Abdominal Radiology, 43, 04 2018.

[30] Peter J. Brands, Arnold P.G. Hoeks, Jean Willigers, Christine Willekes, and Robert S.
Reneman. An integrated system for the non-invasive assessment of vessel wall and
hemodynamic properties of large arteries by means of ultrasound. European Journal
of Ultrasound, 9(3):257–266, 1999.

[31] LLC. WebMD. Picture of the carotid artery, 2014.

[32] Chapter 1 - time-frequency and instantaneous frequency concepts0. In Boualem
Boashash, editor, Time-Frequency Signal Analysis and Processing (Second Edition),
pages 31–63. Academic Press, Oxford, second edition edition, 2016.

[33] Peter J. Brands, Arnold P.G. Hoeks, LéonA.F. Ledoux, and Robert S. Reneman. A radio
frequency domain complex cross-correlation model to estimate blood flow velocity
and tissuemotion bymeans of ultrasound. Ultrasound inMedicine Biology, 23(6):911–
920, 1997.



60 Bibliography

[34] Jaroslaw Krejza, Michal Arkuszewski, Scott E. Kasner, John Weigele, Andrzej Usty-
mowicz, Robert W. Hurst, Brett L. Cucchiara, and Steven R. Messe. Carotid artery di-
ameter in men and women and the relation to body and neck size. Stroke, 37(4):1103–
1105, 2006.

[35] Qinghua Huang, Fan Zhang, and Xuelong Li. Machine learning in ultrasound
computer-aided diagnostic systems: A survey. BioMed Research International,
2018:5137904, Mar 2018.

[36] Tong Wu, Laith R. Sultan, Jiawei Tian, Theodore W. Cary, and Chandra M. Sehgal.
Machine learning for diagnostic ultrasound of triple-negative breast cancer. Breast
Cancer Research and Treatment, 173(2):365–373, Jan 2019.

[37] George V. Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems, 2:303–314, 1989.

[38] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object Recognition
with Gradient-Based Learning, pages 319–345. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999.

[39] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and
Daniel J. Inman. 1d convolutional neural networks and applications: A survey. Me-
chanical Systems and Signal Processing, 151:107398, 2021.

[40] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[41] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(61):2121–2159, 2011.

[42] Geoffrey Hinton. Neural network for machine learning, 2018.

[43] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[44] Peter. Bühlmann. Statistics for High-Dimensional Data Methods, Theory and Applica-
tions. Springer Series in Statistics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1st
ed. 2011. edition, 2011.

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015.

[46] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[47] J. Sola and J. Sevilla. Importance of input data normalization for the application
of neural networks to complex industrial problems. IEEE Transactions on Nuclear
Science, 44(3):1464–1468, 1997.

[48] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation, 2013.

http://www.deeplearningbook.org


References 61

[49] Ross Girshick. Fast r-cnn, 2015.

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks, 2015.

[51] Alexander C. Flint, Carol Conell, Xiushui Ren, Nader M. Banki, Sheila L. Chan,
Vivek A. Rao, Ronald B. Melles, and Deepak L. Bhatt. Effect of systolic and dias-
tolic blood pressure on cardiovascular outcomes. New England Journal of Medicine,
381(3):243–251, 2019. PMID: 31314968.

[52] Tom Sercu and Vaibhava Goel. Dense prediction on sequences with time-dilated
convolutions for speech recognition, 2016.

[53] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 6645–6649, 2013.

[54] Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, 36(8):1627–1639, 1964.

[55] Ronald W. Schafer. What is a savitzky-golay filter? [lecture notes]. IEEE Signal
Processing Magazine, 28(4):111–117, 2011.

[56] Federico Cattivelli and Harinath Garudadri. Noninvasive cuffless estimation of blood
pressure from pulse arrival time and heart rate with adaptive calibration. pages 114–
119, 06 2009.





63

Appendix
In the appendix, the intermediate results (from section 4.2.1) are given from the rest test
splits (2, 3, 4, 5, 6). The histograms of the errors from the max slope moments and CC
markers are

Figure 2: Histogram of Error from CC Markers, Regressed Diameter, Split 2

Figure 3: Histogram of Error from CC Markers, Regressed Diameter, Split 3

The visualization of estimated, ground-truth PAT from every heart beat in the ultra-
sound recording is given below.

The variation of the heart rates on the rest test subjects are displayed as follows
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Figure 4: Histogram of Error from CC Markers, Regressed Diameter, Split 4

Figure 5: Histogram of Error from CC Markers, Regressed Diameter, Split 5

Figure 6: Histogram of Error from CC Markers, Regressed Diameter, Split 6
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Figure 7: Estimated, Ground Truth PAT, Split 2

Figure 8: Estimated, Ground Truth PAT, Split 3

Figure 9: Estimated, Ground Truth PAT, Split 4
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Figure 10: Estimated, Ground Truth PAT, Split 5

Figure 11: Estimated, Ground Truth PAT, Split 6

Figure 12: Duration of Heart Cycle from Detected & Ground Truth CC Markers, Split 2
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Figure 13: Duration of Heart Cycle from Detected & Ground Truth CC Markers, Split 3

Figure 14: Duration of Heart Cycle from Detected & Ground Truth CC Markers, Split 4

Figure 15: Duration of Heart Cycle from Detected & Ground Truth CC Markers, Split 5
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Figure 16: Duration of Heart Cycle from Detected & Ground Truth CC Markers, Split 6


