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Optimal Selection and Tracking Of Generalized
Nash Equilibria in Monotone Games

Emilio Benenati , Wicak Ananduta , and Sergio Grammatico

Abstract— A fundamental open problem in monotone
game theory is the computation of a specific generalized
Nash equilibrium (GNE) among all the available ones, e.g.,
the optimal equilibrium with respect to a system-level ob-
jective. The existing GNE seeking algorithms have in fact
convergence guarantees toward an arbitrary, possibly in-
efficient, equilibrium. In this article, we solve this open
problem by leveraging results from fixed-point selection
theory and in turn derive distributed algorithms for the com-
putation of an optimal GNE in monotone games. We then
extend the technical results to the time-varying setting and
propose an algorithm that tracks the sequence of optimal
equilibria up to an asymptotic error, whose bound depends
on the local computational capabilities of the agents.

Index Terms—Multiagent systems, Nash equilibrium
seeking, optimization.

I. INTRODUCTION

Motivation: Numerous engineering systems of recent interest,
such as smart electrical grids [1], [2], traffic control systems
[3], and wireless communication systems [4], [5], [6] can be
modeled as a generalized game, i.e., a system of multiple agents
aiming at optimizing their individual, interdependent objectives,
while satisfying some common constraints. A typical operating
point for these systems is the generalized Nash equilibrium
(GNE), where no agent can unilaterally improve their objective
function [7].

The recent literature has witnessed the development of theory
and algorithms for computing a variational GNE (v-GNE) [7],
[8], [9], which exhibits desirable properties of fairness and
stability. Semidecentralized GNE seeking algorithms, where a
reliable central coordinator gathers and broadcasts aggregate in-
formation, have been proposed for strongly monotone [10], [11]
and merely monotone games [12], [13], [14]. A breakthrough
idea in [15], later generalized for nonstrongly monotone games
[16], [17], [18], enables a distributed computation of GNEs by
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exploiting a suitable consensus protocol [19], thus requiring a
peer-to-peer information exchange.

Existing results present, however, two fundamental shortcom-
ings that might limit their practical application. First, unless
strong assumptions are considered (namely, strong monotonic-
ity of the pseudogradient), a game may have infinitely many
v-GNEs and virtually all the existing algorithms provide no
characterization of the equilibrium computed. For instance, a
Nash equilibrium can be arbitrarily inefficient with respect to
system-level efficiency metrics (e.g., overall social cost) [20].
Such uncertainty on the obtained equilibrium is often unaccept-
able. A notable exception is the class of double-layer Tikhonov
regularization algorithms, [12], [21], [22]. While the method
in [12] works for generalized games, it only guarantees conver-
gence to the minimum-norm solution. On the other hand, the
equilibrium selection algorithms in [21] and [22] solve at each
(outer) iteration a regularized subproblem where the objectives
of the agents are augmented with a convex selection function
to be optimized, weighted by a small parameter. However, the
latter are only applicable to nongeneralized games. In addition,
the double-layer method in [23] and [24] seeks the GNE closest
to a desired strategy. It is important to note that double-layer
algorithms require the exact solution of a subproblem at each
(outer) iteration, and thus they would require a virtually infinite
amount of communications per outer iteration in a distributed
setting. Recently, a single-layer algorithm based on a regular-
ized projected-pseudogradient dynamics was proposed in [25],
which however is only suitable for nongeneralized games and
requires nested vanishing stepsizes both on the pseudogradient
and on the regularization. Second, decision-making agents often
operate in a time-dependent environment and, due to the limited
computation capabilities and to the time required to exchange
information, it can be impossible to ensure a time-scale separa-
tion between the environment and the algorithm dynamics. This
results in nonconstant objectives and constraints between the
discrete-time algorithmic iterations, as discussed in [26], and
the references therein, for the particular case of optimization
problems. Only few works, e.g., [27], consider this setting in
the case of game equilibrium problems and only with a strong
monotonicity assumption on the game pseudogradient mapping.

Optimal equilibrium selection and tracking: We can formulate
the first issue, identified in the seminal work [7, Sec. 6], as an
optimal GNE selection problem, i.e., the problem of computing
a GNE of a game (among the potentially infinitely many) that
satisfies a selection criterion. This criterion characterizes the
desired equilibrium and can be formalized as a system-level
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selection function to be optimized over the set of GNEs. For
example, the system-level objective of an electricity market
can be to minimize the deviation from an efficient operating
set-point [26]; for multiple autonomous vehicles, it can be to
minimize the overall travel time of the network. Meanwhile, the
second issue can be cast as an optimal GNE tracking problem,
i.e., the problem of tracking the sequence of optimal GNEs of
a time-varying game, with finite computation time and limited
information on the future instances of the game available. As
the GNE set is in general not a singleton, the tracking objective
should be again chosen by means of a (time-varying) selection
function. These problems, although of high practical interest,
have never been addressed in the literature.

Under mild assumptions on the selection function, the optimal
GNE selection problem in a monotone game is a special case of a
Variational Inequality (VI) [28] defined over the set of v-GNEs.
On the other hand, as shown in [13], [14], and [17], operator split-
ting techniques [29] can be leveraged to characterize v-GNEs as
the zeros of a monotone operator and, in turn, as the fixed-point
set of a suitable operator. Therefore, here we can cast the problem
as that of fixed-point selection [30]. In the literature, e.g., [30],
[31], [32], the latter can be solved by the hybrid steepest descent
method (HSDM), whose iterations depend on the fixed-point
operator (whose definition depends on the primitives of the
game) and the monotone operator that defines the VI, namely
the gradient of the selection function in our setting.

The contributions: In the first part of the article (Sections III
and IV), we propose the first single-layer distributed algorithms
for solving the optimal GNE selection problem. Our method
employs the forward-backward-forward (FBF) operator [17]
combined with the HSDM. We show that the proposed algorithm
guarantees convergence to the optimal v-GNE set in monotone
games. Moreover, for a special class of monotone games, namely
cocoercive games with affine coupling constraints, we also show
that the preconditioned forward-backward (pFB) [13] can be
paired with the HSDM to derive optimal GNE selection algo-
rithms. Technically, our contribution is to show that these oper-
ators fulfill special properties that guarantee the convergence of
the HSDM toward the solution set of the corresponding fixed-
point selection VI. Compared to [12], [23], and [24], our pro-
posed algorithms significantly generalize the class of selection
functions; additionally, our method works for generalized games
and does not require solving an equilibrium problem at each iter-
ation nor a vanishing stepsize on the pseudogradient dynamics.

In the second part of the article (Section V), we formalize the
optimal GNE tracking problem as a time-varying fixed-point se-
lection problem. Thus, as a solution framework, we propose the
restarted HSDM, which adapts its operators when the problem
changes. In line with the results in the time-varying optimization
literature [33], we show convergence up to a tracking error which
depends on the problem data and can be controlled by a suitable
tuning of the algorithm parameters.

II. MATHEMATICAL PRELIMINARIES

Notation: The set of real numbers is denoted by R. The vector
of all 1 (or 0) with dimension n are denoted by 1n (0n). We omit
the subscript when the dimension is clear from the context. The

operator col(·) stacks the arguments column-wise. For a group
of vectors xi, i ∈ I = {1, 2, . . . , N}, we use the bold symbol to
denote their column concatenation, i.e., x := col((xi)i∈I). The
cardinality of a set is denoted by | · |. The operator 〈x, y〉 denotes
the inner product. We denote by ‖ · ‖ the Euclidean norm.
Let P � 0 be symmetric. For x, y ∈ R

n, 〈x, y〉P := 〈x, Py〉
and ‖x‖P :=

√
〈x, x〉P denote theP -weighted Euclidean inner

product and the P -weighted Euclidean norm, respectively. The
graph of an operator A : Rn ⇒ R

n is denoted by gph(A).
zer(A) defines the set of zeros of operator A, i.e.,

zer(A) := {x ∈ dom(A) | 0 ∈ A(x)}

whereas fix(A) is the set of fixed points of A : Rn → R
n, i.e.,

fix(A) := {x ∈ dom(A) | A(x) = x}.

Convex functions: A continuously differentiable function f :
R

n → R is σ-strongly convex with respect to a Ψ-weighted
norm, with σ > 0 and Ψ � 0, if, for all x, x′ ∈ dom f

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉Ψ + σ
2 ‖x

′ − x‖2Ψ.

Additionally, f is convex if the previous inequality holds for
σ = 0. The projection onto a closed convex set C is denoted by
projΨC(x) = argminz∈C ‖x− z‖Ψ, where Ψ � 0. For a convex
function f with subdifferential ∂f and Ψ � 0, we define the
operator [29, Def. 12.23]

proxΨ
∂f (x) := argminz f(z) +

1
2‖z − x‖

2
Ψ.

For example, for the indicator function of a closed convex
set C, ιC , with ∂ιC = NC being the normal cone operator,
proxΨ

ιC
(x) = projΨC(x) [29, Ex. 1.25, 16.13, 12.25].

Operator theoretic definitions: An operator A : Rn ⇒ R
n is

monotone [29, Def. 20.1] if

〈y − y′, x− x′〉 ≥ 0, ∀(x, y), (x′, y′) ∈ gph(A)

and β-strongly monotone if A− βId, where Id is the identity
operator, is monotone. Let C be a nonempty subset of Rn. A
single-valued operator T : C → R

n is Lipschitz continuous [29,
Def. 1.47] if there exists a constant L > 0, such that

‖T (x)− T (x′)‖ ≤ L‖x− x′‖, ∀x, x′ ∈ dom(T ).

In particular, the operator T is
1) nonexpansive if L = 1;
2) attracting nonexpansive if T is nonexpansive with

fix(T ) 
= ∅ and ‖T (x)− z‖ < ‖x− z‖, ∀z ∈ fix(T )
and ∀x /∈ fix(T );

3) quasi-nonexpansive if fix(T ) 
= ∅ and ‖T (x)− z‖ ≤
‖x− z‖, ∀z ∈ fix(T ) and ∀x ∈ R

n.
Moreover, T is α-averaged nonexpansive, for α ∈ (0, 1), if

there exists a nonexpansive operatorR : C → R
n such thatT =

(1− α)Id + αR. If T is averaged nonexpansive with fix(T ) 
=
∅, then T is attracting [30, Sec. 2.A]. Additionally T is β-
cocoercive if

〈T (x)− T (y), x− y〉 ≥ β‖T (x)− T (y)‖.

Now, let C be a nonempty, closed, and convex subset of
R

n, T : Rn → R
n be quasi-nonexpansive under the Ψ-induced

norm ‖ · ‖Ψ for some positive definite matrix Ψ, i.e., ‖T (x)−
Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2023 at 07:47:04 UTC from IEEE Xplore.  Restrictions apply. 
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z‖Ψ ≤ ‖x− z‖Ψ, for all z ∈ fix(T ) 
= ∅ and x ∈ R
n. We de-

fine the distance of a point x ∈ R
n to C by

distΨ(x,C) := infz∈C‖x− z‖Ψ.
For r ≥ 0, we define the set

CΨ
≥r := {x ∈ R

n | distΨ(x,C) ≥ r}. (1)

By considering A := {r ∈ R≥0 | fix(T )Ψ≥r ∩ C 
= ∅}, we de-
fine the the shrinkage function for the operator T under the
norm ‖ · ‖Ψ, which slightly generalizes [Def. 1], as follows:

DΨ(r) := ιA(r) + infx∈fix(T )Ψ≥r∩CdistΨ(x, fix(T ))

− distΨ(T (x), fix(T )). (2)

For Ψ = I , we omit the subscript of D. The function DΨ has
the properties stated next in Proposition 1 (see [34, Prop. 2.6]
for the case Ψ = I).

Proposition 1: Let Ψ be positive definite. For the function
DΨ defined in (2), it holds that

1) DΨ is positive semidefinite and nondecreasing;
2) DΨ(dist(x, fix(T ))) ≤ ‖x− T (x)‖Ψ for all x ∈ C. �

Definition 1 (Quasi-shrinking [30]): A quasi-nonexpansive
operator T : Rn → R

n is quasi-shrinking on a nonempty,
closed, and convex set C ⊆ R

n if fix(T ) ∩ C 
= ∅ andD(r) =
0⇔ r = 0, where D(r) is defined as in (2). �

Remark 1: Suppose that a quasi-nonexpansive operator T
is quasi-shrinking on C, i.e., D(r) = 0⇔ r = 0. Then, it also
holds that DΨ(r) = 0⇔ r = 0, for any Ψ � 0. �

Example 1: The Euclidean projection ontoC, projC is quasi-
shrinking and its shrinkage function (defined in (2)) is

D(r) = inf{u|dist(u,C)≥r}dist(u,C)− dist(projC(u), C)︸ ︷︷ ︸
=0

= r.

�
Finally, we identify a class of quasi-shrinking operators, as

formally stated in Lemma 1, which generalizes the result in [34,
Prop. 2.11] and is useful for our analysis.

Definition 2 (Demiclosed operator [29, Def. 4.26]): LetC ⊆
R

n be a closed set. An operator T : C → R
n is demiclosed at

u ∈ R
n if T (ω∞) = u, for any sequence (ωk)k∈N ∈ C such

that limk−→∞ ωk = ω∞ and limk−→∞ T (ωk) = u. �
Lemma 1: Let T be an operator with fix(T ) 
= ∅. Let T2 be

an operator such that Id− T2 is demiclosed at 0 and such that
fix(T2) ⊆ fix(T ). Assume that for any ω� ∈ fix(T ),
‖T (ω)− ω�‖2Ψ ≤ ‖ω − ω�‖2Ψ − γ‖ω − T2(ω)‖2Ψ (3)

for some γ > 0 and Ψ � 0. Then, T is quasi-shrinking on any
compact convex set C such that C

⋂
fix(T ) 
= ∅. �

III. OPTIMAL SELECTION OF GENERALIZED NASH EQUILIBRIA

A. Generalized Nash Equilibrium Problem

Let us consider N agents, denoted by the set I :=
{1, 2, . . . , N}, with inter-dependent optimization problems:

∀i ∈ I :

⎧⎪⎪⎨
⎪⎪⎩

min
xi∈Xi

Ji(x) := �i(xi)+fi(x) (4a)

s. t.
∑
j∈I

gj(xj) ≤ 0 (4b)

where xi ∈ R
ni is the decision variable of agent i whereas

x := col((xi)i∈I) ∈ R
n, with n =

∑
i∈I ni, is a concatenated

vector of the decision variables of all agents. Let us use x−i =
col((xj)j∈I\{i}) to denote the concatenated decision variables
of all agents except agent i. Let Xi ⊆ R

ni denote the local
feasible set of xi and Ji : Rn → R denote the cost function of
agent i that depends on the decision variables of other agents.
Moreover, (4b) represents a separable coupling constraint where
gj : R

nj → R
m is associated with agent j. We denote the col-

lective feasible set of the game in (4) by

Ω :=
∏
i∈I
Xi ∩

{
x |

∑
j∈I gj(xj) ≤ 0

}
. (5)

Here, we look for equilibrium solutions to (4) where no agent
has the incentive to unilaterally deviate, namely, GNE

Definition 3: A set of strategies x∗ := col((x∗i )i∈I) is a GNE
of the game in (4) if x∗ ∈ Ω and, for each i ∈ I

Ji(x
∗) ≤ Ji(xi,x∗−i) (6)

for any xi ∈ Xi ∩ {y | gi(y) ≤ −
∑

j∈I\{i} gj(x
∗
j)}. �

Furthermore, we focus on the class of jointly convex GNE
problems and hence, consider the following assumptions on
Problem (4) [13, Assumptions 1–2]. We note that [14], [15], [16],
[17], and[18] consider the case of affine constraint functions.

Assumption 1: In (4), for each i ∈ I, the functions fi(·,x−i),
for any x−i, and gi(·) are component-wise convex and continu-
ously differentiable; �i is convex and lower semicontinuous. For
each i ∈ I, the set Xi is nonempty, compact, and convex. The
global feasible set Ω defined in (5) is nonempty and satisfies
Slater’s constraint qualification [29, Eq. (27.50)]. �

Assumption 2: The mapping

F (x) := col((∇xi
fi(x))i∈I) (7)

with (fi)i∈I as in (4a), is monotone. �
As in [13], [14], [15], [16], [17], and [18], we can formulate

the problem of finding a GNE of the game in (4) as that of a
monotone inclusion. To this end, we introduce the dual variable
λi ∈ R

m, for each i ∈ I, to be associated with the coupling
constraint (4b). Furthermore, we focus on a subset of GNEs,
namely variational GNE (v-GNE), indicated by equal optimal
dual variables, λ∗i = λ∗, for all i ∈ I. As discussed in [7] and
[9], a v-GNE enjoys several desirable properties, such as fairness
and larger social stability than nonvariational ones. Under As-
sumptions 1–2, the set of v-GNEs of the game in (4) is nonempty
[35, Prop. 12.11]. The Karush–Kuhn–Tucker (KKT) optimality
conditions of a v-GNE of the game in (4), denoted by x∗, are

∀i ∈ I :

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ NXi
(x∗i ) + ∂xi

Ji(x
∗) + 〈∇gi(x∗i ), λ∗〉, (8a)

0 ∈ NRm
≥0
(λ∗)−

∑
j∈I

gj(x
∗
j). (8b)

To obtain a v-GNE via a fully distributed algorithm, we
incorporate a consensus scheme on the dual variables. In the
full information case, one typically assumes that there exists
a communication network over which the agents exchange in-
formation to update their dual variables. Let us represent this
communication network as an undirected graph Gλ = (I, Eλ)
and assume that Gλ is connected. Furthermore, we denote the

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2023 at 07:47:04 UTC from IEEE Xplore.  Restrictions apply. 
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Laplacian of Gλ by L and the neighbors of agent i in Gλ byN λ
i ,

i.e., N λ
i := {j ∈ I | (i, j) ∈ Eλ}. Additionally, let N J

i denote
the set of agents whose decision variable xj influences the cost
function Ji. For simplicity, we assume that N J

i ⊆ N λ
i .

Now, let us denote νi ∈ R
m as the consensus variable of

agent i, and ω = (x,λ,ν) ∈ R
nω , where λ = col((λi)i∈I),

ν = col((νi)i∈I), and nω = n+ 2Nm. Then, we can define the
operators A,B, C : Rnω → R

nω , as follows:

A(ω) :=
∏
i∈I

(NXi
+∂�i)(xi)×NRNm

≥0
(λ)× {0Nm}, (9)

B(ω) := col(F (x), (L ⊗ Im)λ,0Nm), (10)

C(ω) := col((〈∇gi(xi), λi〉)i∈I ,−(gi(xi))i∈I − (L ⊗ Im)ν,

(L ⊗ Im)λ). (11)

We then cast the GNEP in (4) as the inclusion problem:

find ω such that ω ∈ zer(A+ B + C). (12)

Similarly to [15, Th. 2], we can show that for anyω such that (12)
holds, we obtain the pair (x, λ) that satisfies the KKT conditions
in (8) if Assumptions 1–2 hold (see Appendix B for details).
The zero set of A+ B + C is convex following its maximal
monotonicity (Lemma 4 in Appendix B) and [29, Prop. 23.39].
This result generalizes the known convexity of the solution set
to a convex optimization problem [29, Prop. 11.6], which in our
case is recovered by setting fi ≡ 0 for all i. Additionally, asX is
bounded, the set of solutions of (8) and the set zer(A+ B + C)
are bounded [36, Prop. 3.3].

B. Optimal Equilibrium Selection Problem

The inclusion problem in (12) may have multiple solutions.
In this section, we want to find an equilibrium solution that
minimizes a selection function, denoted by φ : Rnω → R, i.e.,{

argmin
ω

φ(ω)

s. t. ω ∈ zer(A+ B + C).
(13)

For example, we can consider the selection function

φex(ω) = ‖Qω − ωref‖ (14)

for some Q � 0. When Q = I and ωref = 0, the objective is
to find a minimum norm v-GNE. The vector ωref can be any
desired strategy of the agents, and thus the objective is to find
the v-GNE closest to this strategy, as discussed in [23] and [24].
In some engineering applications, such as electrical networks,
(14) can represent system level objectives (see Section VI). In
the remainder of the article, we consider the following technical
assumption on the selection function, which, together with the
convexity of zer(A+ B + C), guarantees that the optimization
problem in (13) is convex.

Assumption 3: The function φ in (13) is continuously
differentiable, convex, and has Lφ-Lipschitz continuous
gradient. �

To compute an optimal variational GNE, we first derive op-
erators with the property

ω ∈ zer(A+ B + C)⇔ ω ∈ fix(T ) (15)

and such that the Banach-Picard iteration of T [29, Sec. 5.2]
guarantees convergence to a solution of the inclusion in (12).
For instance, for cocoercive generalized games, a pFB operator
presents the desired characteristics [15], whereas the forward-
reflected-backward (FRB) operator [37] or the FBF operator [38]
meet these requirements even for general monotone games.
Furthermore, we require that the operator T in (15) can be
evaluated in a distributed manner. By (15) and Assumption 3,
the optimal equilibrium selection problem in (13) can be cast as
a fixed-point selection VI

find ω� s.t. infω∈fix(T ) 〈ω − ω�,∇φ(ω�)〉 ≥ 0. (16)

C. Distributed Optimal Equilibrium Selection Algorithm

With the aim of solving theVI in (16), we consider the HSDM
algorithm [30], which is defined by the following iteration:

ω(k+1) = T (ω(k))− β(k)∇φ(T (ω(k))). (17)

The HSDM can solve Problem (16) when T is quasi-
nonexpansive and quasi-shrinking with bounded fix(T ), as for-
mally stated next.

Assumption 4: The step size β(k) satisfies the following:
1) limk→∞ β

(k) = 0,
∑

k≥1 β
(k) =∞;

2)
∑

k≥1(β
(k))2 <∞. �

Remark 2: The sequence β(k) = β0/k
p, for any β0 > 0 and

p ∈ (1/2, 1], satisfies Assumption 4. �
Assumption 5: T is quasi-shrinking on a nonempty compact

convex set C. �
Lemma 2 (From [30, Th. 5]): Let Assumption 3 hold and Ω�

be the set of solutions of the VI in (16), with nonempty and
bounded fix(T ). Suppose that T satisfies Assumptions 5 with
compact convex set C such that (ω(k))k≥0 ⊂ C. If the step size
β(k) satisfies Assumption 4.i, then the HSDM in (17) generates
a sequence (ω(k))k∈N such that

lim
k→∞

dist(ω(k),Ω�) = 0.
�

Therefore, our main technical task is to find a suitable operator
T that can be evaluated in a distributed manner and that satisfies
both (15) and Assumption 5.

Under mere monotonicity of the pseudogradient mapping
(Assumption 2), perhaps the most obvious choice is the FRB
splitting, which, however, is not quasi-nonexpansive1 (and, thus,
it is not quasi-shrinking). Another viable option is the FBF split-
ting method [38], which works for v-GNE seeking in monotone
games satisfying Assumptions 1–2, as shown in [13] and [17].
As our first technical result, we show that the FBF algorithm
satisfies both the desired property in (15) and Assumptions 5.

1FRB iteration does not generate a Fejér monotone sequence [37, Prop. 2.3],
implying that it is not quasi-nonxepansive and violates Definition 1.
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The FBF operator for (12) reads as follows:

TFBF(ω) := ((Id−Ψ−1(B + C))(Id +Ψ−1A)−1

· (Id−Ψ−1(B + C)) + Ψ−1(B + C))(ω) (18)

where Ψ � 0 is a diagonal positive definite matrix. The FBF
requires the forward operator, which is (B + C), to be Lipschitz
continuous. A sufficient condition for this requirement is given
in Assumption 6 (see Lemma 5 in Appendix B).

Assumption 6: The mapping F (x) in (7) is LF -Lipschitz
continuous. Furthermore, for each i ∈ I, the function gi in (4b)
has a bounded and L∇g-Lipschitz continuous gradient. �

Under maximal monotonicity and Lipschitz continuity, it
holds that zer(A+ B + C) = fix(TFBF) (see Lemma 6 in
Appendix C). In addition, we define the step-size matrix

Ψ := diag(ρ−1, τ−1, σ−1) (19)

where ρ = diag((ρiIni
)i∈I), τ = diag((τiIm)i∈I), and σ =

diag((σiIm)i∈I) need to be small enough with respect to the
Lipschitz constant of B + C. A sufficient condition on Ψ for
the fixed-point iteration with TFBF to converge is given in the
following Assumption 7 [17, Assumption 2].

Assumption 7: It holds that |Ψ−1| ≤ 1/LB , whereLB > 0 is
the Lipschitz constant of B + C and Ψ reads as in (19). �

We are now ready to present the distributed FBF for seeking
an optimal variational GNE based on the selection functionφ(ω)
via the HSDM, as shown in Algorithm 1. To have a convergence
guarantee as stated in Lemma 2, the FBF operator must satisfy
Assumption 5. This is shown in the following lemma.

Lemma 3: Let Assumptions 1, 2, 6, and 7 hold. The operator
TFBF in (18), where A, B, and C are defined in (9)–(11) and Ψ
is defined in (19), is quasi-shrinking on any compact convex set
C such that C ∩ fix(TFBF) 
= ∅. �

Thus, Algorithm 1 generates a sequence that converges to the
solution set of the problem in (16), as stated next.

Theorem 1: Let Assumptions 1–4 and 6–7 hold. Let Ω� be
the set of solutions to Problem (16) with T = TFBF defined in
(18), whereA, B, and C are defined in (9)–(11). Let (ω(k))k∈N,
where ω(k) = (x(k),λ(k),ν(k)), be the sequence generated by
Algorithm 1. Then, limk→∞ dist(ω(k),Ω�) = 0, and (x(k))k∈N
converges to an optimal v-GNE of the game in (4). �

Remark 3: A central coordinator and step 5 of Algorithm 1
are not needed if φ is a separable function, i.e., φ(ω) =∑

i∈I φi(ωi). In this case, step 6 can be immediately executed by

using local information (
◦
x
(k)
i ,

◦
λ
(k)
i ,

◦
ν
(k)
i ) only, as long as each

agent i knows the gradient ∇φi. �

IV. OPTIMAL EQUILIBRIUM SELECTION IN COCOERCIVE

GAMES

In this section, we discuss a special class of monotone games,
namely cocoercive games with affine coupling constraints, char-
acterized by the following Assumptions 8 and 9 constraints.
These games arise as a generalization of the widely studied class
of strongly monotone games [15], [11]. Differently from the

Algorithm 1: Optimal v-GNE Selection via FBF and
HSDM.

Initialization: x(0)i ∈ Xi, λ
(0)
i ∈ R

m
≥0, and ν(0)i ∈ R

m,
∀i ∈ I.

Iteration of each agent i ∈ I.
1) Receives x(k)j from agent j ∈ N J

i and λ
(k)
j , ν

(k)
j from

agent j ∈ N λ
i .

2) Updates:

x̃
(k)
i = proxρi

	i+ιXi

(
x
(k)
i − ρi

(
∇xi

fi(x
(k))

+∇gi(x(k)i )�λ
(k)
i

))
,

λ̃
(k)
i = proj≥0

(
λ
(k)
i + τi

(
gi(x

(k)
i )

+
∑

j∈N λ
i

(
ν
(k)
i − ν(k)j − λ

(k)
i + λ

(k)
j

)))
,

ν̃
(k)
i = ν

(k)
i − σi

∑
j∈N λ

i

(
λ
(k)
i − λ

(k)
j

)
.

3) Receives x̃(k)j from agent j ∈ N J
i and λ̃

(k)
j , ν̃

(k)
j from

agent j ∈ N λ
i .

4) Updates:

◦
x
(k)
i = x̃

(k)
i − ρi

(
∇xi

fi(x̃
(k))−∇xi

fi(x
(k))

+∇gi(x̃(k)i )�λ̃
(k)
i −∇gi(x(k)i )�λ

(k)
i

)
,

◦
λ
(k)
i = λ̃

(k)
i + τi

(
gi(x̃

(k)
i )− gi(x(k)i )

+
∑

j∈N λ
i

(
ν̃
(k)
i − ν(k)i − ν̃(k)j + ν

(k)
j

)
−
∑

j∈N λ
i

(
λ̃
(k)
i − λ

(k)
i − λ̃

(k)
j + λ

(k)
j

))
,

◦
ν
(k)
i = ν̃

(k)
i − σi

∑
j∈N λ

i

(
λ̃
(k)
i − λ

(k)
i − λ̃

(k)
j + λ

(k)
j

)
.

5) Sends ( ◦x(k)i ,
◦
λ
(k)
i ,

◦
ν
(k)
i ) to a coordinator and receives

back ∇ωi
φ(

◦
x(k),

◦
λ(k),

◦
ν(k)), where ωi = (xi, λi, νi).

6) Updates:

(x
(k+1)
i , λ

(k+1)
i , ν

(k+1)
i )

= (
◦
x
(k)
i ,

◦
λ
(k)
i ,

◦
ν
(k)
i )− β(k)∇ωi

φ(
◦
x(k),

◦
λ(k),

◦
ν(k)). (20)

strong monotonicity assumption, however, cocoercivity alone
does not guarantee uniqueness of the v-GNE.

Assumption 8 ([14, Assumption 5]): The mapping F in (7) is
η-cocoercive. �

Assumption 9 ([14, Eq. (3)]): For each i ∈ I, the function
gi in (4b) is affine, i.e., gi(xi) := Aixi − bi, for some matrix
Ai ∈ R

m×ni and vector bi ∈ R
m. �

For this particular class of games, the pFB splitting [15] can ef-
ficiently compute a variational GNE. We note that, although [15]
considers games with strongly monotone pseudogradient, the FB
splitting only requires cocoercivity of the forward operator[29,
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Th. 26.14]. Compared with the FBF, the pFB has the advan-
tages of only having one communication round per iteration (as
opposed to two) and larger step size bounds. A numerical per-
formance comparison was provided in [17]. Given the particular
structure of the coupling constraint as stated in Assumption 9,
we can rewrite the operators in (12) as follows:

A(ω) :=
∏
i∈I

(NXi
+∂�i)(xi)×NRNm

≥0
(λ)× {0Nm}, (21)

B(ω) := col(F (x), (L ⊗ Im)λ + b,0Nm), (22)

C(ω) := col(A�λ,−Ax− (L ⊗ Im)ν, (L ⊗ Im)λ) (23)

where A = diag((Ai)i∈I) and b = col((bi)i∈I). Thus, the pFB
operator for the monotone inclusion in (12) based on the opera-
tors A, B, and C in (21)–(23) is given by [15, Eq. (24)]

TpFB(ω) := (Id +Φ−1(A+ C))−1(Id− Φ−1B)(ω) (24)

where Φ � 0 is a preconditioning matrix, defined as

Φ := Ψ +

⎡
⎢⎣ 0 −A� 0

−A 0 −L⊗ Im
0 −L⊗ Im 0

⎤
⎥⎦

whereΨ is as in (19). Then, we can have an extension of the pFB
for the v-GNE optimal selection of cocoercive games, as stated
in Algorithm 2. The step sizes in Ψ need to be small enough
with respect to η and to the matrices defining the constraints,
as highlighted in Assumption 10, which states the sufficient
conditions for the convergence of the pFB (see [15, Eq. (27)
and Th. 3]).

Assumption 10: For all i ∈ I
1) ρi ≤ (maxj=1,...,ni

∑m
k=1 |[A�i ]jk|+ δ)−1;

2) τi ≤ (maxj=1,...,ni

∑m
k=1 |[Ai]jk|+ 2|N λ

i |+ δ)−1;
3) σi≤(2|N λ

i |+δ)−1, where δ>1/(min(η, (2maxi∈I
|N λ

i |)−1)). �
Theorem 2: Let Assumptions 1–4, 6, and 8–10 hold. Let Ω�

be the set of solutions to Problem (16) with T = TpFB defined in
(24), whereA,B, and C are defined in (21)–(23). Let (ω(k))k∈N,
where ω(k) = (x(k),λ(k),ν(k)), be the sequence generated by
Algorithm 2. Then, limk→∞ dist(ω(k),Ω�) = 0, and (x(k))k∈N
converges to an optimal v-GNE of the game in (4). �

V. ONLINE TRACKING OF OPTIMAL GENERALIZED NASH

EQUILIBRIA

A. Online Optimal Equilibrium Tracking Problem

In the second part of this article, we consider the online GNE
selection problem. Specifically, let us introduce the time-varying
game

∀t ∈ N, ∀i ∈ I :

⎧⎪⎪⎨
⎪⎪⎩

min
xi∈Xi,t

Ji,t(x) (26a)

s. t.
∑
j∈I

gj,t(xj) ≤ 0 (26b)

where t denotes the time index. The problem is time-varying
in the sense that the objective functions of the agents, as well
as the constraints, may vary over time. We assume that each
instance of the games in (26) satisfies Assumptions 1 and 2. The

Algorithm 2: Optimal v-GNE Selection via pFB and HDSM
for Linearly Coupled Cocoercive Games.

Initialization: x(0)i ∈ Xi, λ
(0)
i ∈ R

m
≥0, and ν(0)i ∈ R

m,
∀i ∈ I.

Iteration of each agent i ∈ I.
1) Receives x(k)j from agent j ∈ N J

i and λ
(k)
j from agent

j ∈ N λ
i .

2) Updates:

◦
x
(k)
i = proxρi

	i+ιXi

(
x
(k)
i − ρi(∇xi

fi(x
(k)) +A�i λ

(k)
i )

)
,

◦
ν
(k)
i = ν

(k)
i − σi

∑
j∈N λ

i

(
λ
(k)
i − λ

(k)
j

)
.

3) Receives ◦
ν
(k)
j from agent j ∈ N λ

i .
4) Updates:

◦
λ
(k)
i = proj≥0

(
λ
(k)
i + τi

(
Ai(2

◦
x
(k)
i − x(k)i )− bi

+
∑

j∈N λ
i

(
2
◦
ν
(k)
i − 2

◦
ν
(k)
j − ν(k)i + ν

(k)
j

)
−
∑

j∈N λ
i

(
λ
(k)
i − λ

(k)
j

)))
.

5) Sends ( ◦x(k)i ,
◦
λ
(k)
i ,

◦
ν
(k)
i ) to a coordinator and receives

back ∇ωi
φ(

◦
x(k),

◦
λ(k),

◦
ν(k)), where ωi = (xi, λi, νi).

6) Updates:

(x
(k+1)
i , λ

(k+1)
i , ν

(k+1)
i )

= (
◦
x
(k)
i ,

◦
λ
(k)
i ,

◦
ν
(k)
i )− β(k)∇ωi

φ(
◦
x(k),

◦
λ(k),

◦
ν(k)). (25)

time-varying GNE selection problem thus concerns the tracking
of the sequence (ω�

t )t∈N

∀t ∈ N : ω�
t :=

⎧⎨
⎩

argmin
ω

φt(ω) (27a)

s. t. ω ∈ zer(At + Bt + Ct). (27b)

The problems in (26) and (27) are a sequence in time of instances
of (4) and (13), respectively. The operators At, Bt, and Ct are
defined in (9)–(11), for the game in (26) at time step t. The agents
need to compute the actionωt+1, having only access to the game
formulation up to time t. This setup describes the case in which
the agents act in a variable environment with limited computa-
tion capabilities, so that they cannot compute the exact optimal
selection before changes in the problem (either in the selection
function or in the game) occur. The problem in (27) reduces
to an online optimization problem for |I| = 1, see, e.g., [33]
and the references therein. Inspired by the online optimization
literature, we propose to track the solution sequence (ω�

t )t∈N
by computing at each time step t an approximate solution of
the problem at time t− 1. Such a solution principle is based on
the assumption that ω�

t−1 contains information on ω�
t , which

is a standard assumption in online optimization, see e.g. [26,
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Assumption 1], and [39, Assumption 3] and it is introduced
next.

Assumption 11: There exist δ ≥ 0 such that

sup
t∈N
‖ω�

t+1 − ω�
t ‖ ≤ δ. �

For every t∈ N, and by choosing Tt such that

ω ∈ zer(At + Bt + Ct)⇔ ω ∈ fix(Tt)

ω�
t in (27) can be equivalently found as the solution of the time-

varying fixed-point selection problem

infω∈fix(Tt)〈ω − ω�
t ,∇φt(ω�

t )〉 ≥ 0. (28)

The sequence (ω�
t )t∈N is well defined when, for each t, the

solution of (27) is unique. Let us then introduce the following
assumption, which guarantees uniqueness iffix(Tt) is closed and
convex for all t [28, Thm. 2.3.3]. This is the case, for example,
when Tt is quasi-nonexpansive [30, Prop. 1a]

Assumption 12: The selection functionφt : Rnω → R in (28)
is continuously differentiable, σ-strongly convex, and has Lφ-
Lipschitz continuous gradient for all t ∈ N. �

Remark 4: Under Assumption 12, if Tt = T , for all t ∈ N,
and the selection function at time t is the sampling of a function
that varies continuously over time, that is,φt(ω) = φ(ω, t), then
an estimate for δ in Assumption 11 can be found. In fact, if
φ(ω, t) is continuously differentiable, we find by [40, Thm. 2F.7]
that the mapping from t to the solution of (28) is locally Lipschitz
continuous with Lipschitz constant σ−1|∇tφ(ω

�
t , t)|. Thus, if

the time variation between two consecutive time steps t1 and t2 is
small enough, δ can be estimated asσ−1|∇tφ(ω

�
t1
, t1)|(t2 − t1).

The solution mapping is in general discontinuous when Tt is
time-varying; thus, a similar estimate cannot be found in the
general case. �

B. Online fixed point tracking via the restarted HSDM

The existing results on the HSDM algorithm study the asymp-
totic behavior with vanishing step size (β(k))k∈N (see Assump-
tion 4). However, in online scenarios, decision makers may
not have the computational capability to exactly compute the
fixed point of the algorithm, since that would require an infi-
nite amount of iterations in a limited time span before a new
instance of the problem becomes available. Thus, we propose
an algorithm that only performs a finite number of HSDM
iterations per time step. Consequently, the sequence of step sizes
becomes truncated and a sequence of vanishing step sizes, which
is required for the convergence of the HSDM, cannot be defined.
We therefore simplify the analysis by considering a constant
sequence of step sizes.

Let us introduce the restarted HSDM algorithm. Given an
initial state ω1, for each t ∈ N, we propose the following:

y(k+1) :=

{
ωt, for k = 1,

Tt(y(k))− β∇φt(Tt(y(k))), for k = 2, . . .,K,

ωt+1 := y(K+1). (29)

In words, at each time step t the auxiliary variable y(k), with
k = 1, . . .K, is updated with K iterations of the HSDM. Then,

the decision variable at time step t+ 1 is obtained as ωt+1 =
y(K+1). The algorithm is then restarted when the information
on the problem for the next time step becomes available. Next,
let us postulate the following technical assumptions:

Assumption 13: There exists a compact set Y such that
ω�

t ∈ Y for all t ∈ N. �
Assumption 14: There exists U ≥ 0 such that

supω∈
⋃

τ∈N Im(Tτ ),t∈N ‖∇φt(ω)‖ ≤ U. �
The set Y introduced in Assumption 13 is only used in the

analysis and its existence is practically reasonable, since we can
assume that we do not aim at tracking a divergent sequence.
Assumption 14 is in line with the online optimization literature
(see [41, Assumption 5], [39, Assumption 5], among others).

As shown in Section III-C, the HSDM method converges to
the solution of a selection problem over the fixed point set of
a quasi-shrinking operator. In the online scenario, assuming the
operator Tt to be quasi-shrinking for all t is not enough, as the
quasi-shrinking property might not hold asymptotically. Thus,
we also postulate the technical Assumption 15.

Assumption 15: (Uniformly quasi-shrinking operator) For
any closed convex setC such thatC ∩ fix(Tt) 
= ∅, there exists
D : R≥0 → R positive semidefinite such thatDt(r) ≥ D(r) for
all t∈ N and for all r ≥ 0, whereDt(·) is the shrinkage function
of Tt defined as in (2). �

Remark 5: Assumptions 13–15 are satisfied for example
when at every time step t, the feasible set of Problem (27)
is selected among the GNE sets of finitely many monotone
games with a compact decision space. In fact, let (T h

FBF)
H
h=1

be the set of FBF operators such that, for all t ∈ N, there exists
h ∈ {1, . . ., H} such that zer(At + Bt + Ct) = fix(T h

FBF). The
operators (T h

FBF)
H
h=1 are quasi-shrinking. Let us denote with

Dh(·) the shrinkage function of T h
FBF. As the minimum among a

finite number of positive semidefinite functions is such, Assump-
tion 15 is then satisfied withD(r) = minh∈{1,...,H}D

h(r). Fur-
thermore, Assumption 13 holds withY = ∪Hh=1Im(T h

FBF), which
is compact, and Assumption 14 holds as ∇φt is Lφ−Lipschitz
continuous for all t on a compact set. �

We find that the restarted HSDM (29) asymptotically tracks
the solution trajectory of the online fixed point selection problem
in (28), with an asymptotic error that can be controlled up to the
variability of the problem, δ, via an appropriate choice of β and
K, as shown in Theorem 3.

Theorem 3: Let Assumptions 11–15 hold. Let the sequence
(ωt)t∈N be generated by the restarted HSDM in (29). For any
γ > 0, there exist β ∈ (0, 2σ

L2
φ
) and K̄, such that, for allK ≥ K̄,

the sequence (ωt)t∈N is bounded and

lim sup
t→∞

‖ωt − ω�
t ‖2 ≤

(γ + δ2)

1/2− α (30)

where α = (1 − τ(β))K < 1
2 and τ(β) := 1−√

1− β(2σ − βL2
φ) ∈ (0, 1). �

Remark 6: As it emerges from the proof of Theorem 3 (see
Remark 10 in the Appendix), to control the approximation error
in (30), β must be chosen small so to obtain small values of γ.
However, the value τ(β) tends to 0 for small values of β. This
leads the denominator in (30) to be small for small stepsizes,
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unless the number of iterations K is increased. Therefore, a
smaller step size leads to a better approximation error only if it
is shouldered by an increase in the number of iterations of the
algorithm per time step. �

In the next section, we use the restarted HSDM to solve the
online GNE tracking problem in (27).

C. Distributed Optimal Equilibrium Tracking Algorithm for
Monotone Games

We recall from Section III-C that the set of v-GNEs for a
monotone game can be characterized as the set of fixed points
of the operator TFBF defined in (18). Thus, for the time-varying
game in (26) at time t, let TFBF,t be the FBF operator defined as

TFBF,t(ω) := ((Id−Ψ−1(Bt + Ct))(Id +Ψ−1At)
−1

· (Id−Ψ−1(Bt + Ct)) + Ψ−1(Bt + Ct))(ω) (31)

where At, Bt, and Ct are those in Problem (27) and associated
with the game in (26) at time t. The solutions of the time-varying
GNE selection problem in (27) are equivalent to the solutions of
(28), with Tt = TFBF,t for all t. By Lemma 3, TFBF,t, for each t, is
a quasi-nonexpansive, quasi-shrinking operator. Therefore, the
restarted HSDM algorithm in (29) can be employed for tracking
the solution trajectory, with an asymptotic tracking error given
by Theorem 3. We can then bound the asymptotic optimal GNE
tracking error of Algorithm 3 by using Theorem 3, as formally
stated next.

Corollary 1: Let us consider the online GNE tracking prob-
lem in (27) for the time-varying game in (26) that satisfies
Assumptions 1, 2, 6, for each t ∈ N. Suppose that Assumptions
11–14 hold and let Tt = TFBF,t satisfy Assumption 15. Then,
for any γ > 0 there exist β ∈ (0, 2σ

L2
φ
) and K̄ such that, for any

K ≥ K̄, the asymptotic tracking error of Algorithm 3 is given
by (30). �

Remark 7: The solution sequence computed by Algorithm 3,
(ωt)t∈N, can violate the constraints of the game in (26). Such
violation can be estimated using the Lipschitz continuity of gi,t
for all i ∈ I (which follows from Assumption 1) and Theorem 3.
Let us denote with Lg the maximum Lipschitz constant of gi,t,
for all i ∈ I and t ∈ N, and by (xi,t)i∈I the primal variables
associated to ωt. Then

lim sup
t→∞

∑
i∈I

gi,t(xi,t) ≤ Lg

√
γ + δ2

1/2− α. �

Remark 8: The result of this section holds similarly if we
substitute the FBF operator with the pFB operator in (24), which
is quasi-shrinking (see the proof of Theorem 2), for cocoercive
games with affine coupling constraints. �

VI. ILLUSTRATIVE EXAMPLE

We consider a peer-to-peer electricity market clearing prob-
lem with operational constraints of the electrical network,
adapted from [2]. We assume that each bus of a distribution
network consists of one agent that has access to either a storage
unit or a dispatchable generation unit. Each agent i ∈ I has
decision authority on the power generated pg

i,h, the power bought

Algorithm 3: Optimal v-GNE Tracking via FBF and
HSDM.

Initialization: xi,0 ∈ Xi, λi,0 ∈ R
m
≥0, and νi,0 ∈ R

m,
∀i ∈ I.

Iteration at time t ∈ N0 of each agent i ∈ I:
1) Receives Ji,t(·), gi,t(·), and Xi,t.

2) Assigns x̂(1)i ← xi,t, λ̂
(1)
i ← λi,t, and ν̂(1)i ← νi,t.

3) For k = 1, . . .,K:
1) Receives x̂(k)j from agent j ∈ N J

i and λ̂
(k)
j , ν̂

(k)
j from

agent j ∈ N λ
i .

2) Updates:

x̃
(k)
i = proxρi

	i,t+ιXi,t

(
x̂
(k)
i −ρi(∇xi

fi,t(x̂
(k))

+∇gi,t(x̂(k)i )�λ̂
(k)
i )

)
,

λ̃
(k)
i = proj≥0

(
λ̂
(k)
i + τi

(
gi,t(x̂

(k)
i )

+
∑

j∈N λ
i

(
ν̂
(k)
i − ν̂(k)j − λ̂

(k)
i + λ̂

(k)
j

)))
,

ν̃
(k)
i = ν̂

(k)
i − σi

∑
j∈N λ

i

(
λ̂
(k)
i − λ̂

(k)
j

)
.

3) Receives x̃(k)j from agent j ∈ N J
i and λ̃

(k)
j , ν̃

(k)
j from

agent j ∈ N λ
i .

4) Updates:

◦
x
(k)
i = x̃

(k)
i − ρi

(
∇xi

fi,t(x̃
(k))−∇xi

fi,t(x̂
(k))+

∇gi,t(x̃(k)i )�λ̃
(k)
i −∇gi,t(x̂(k)i )�λ̂

(k)
i

)
,

◦
λ
(k)
i = λ̃

(k)
i + τi

(
gi,t(x̃

(k)
i )− gi,t(x̂(k)i )+

∑
j∈N λ

i

(
ν̃
(k)
i − ν̂(k)i − ν̃(k)j + ν̂

(k)
j

)
−

∑
j∈N λ

i

(
λ̃
(k)
i − λ̂

(k)
i − λ̃

(k)
j + λ̂

(k)
j

))
,

◦
ν
(k)
i = ν̃

(k)
i − σi

∑
j∈N λ

i

(
λ̃
(k)
i − λ̂

(k)
i − λ̃

(k)
j + λ̂

(k)
j

)
.

5) Sends ( ◦x(k)i ,
◦
λ
(k)
i ,

◦
ν
(k)
i ) to a coordinator and receives

∇ωi
φt(

◦
x
(k)
i ,

◦
λ
(k)
i ,

◦
ν
(k)
i ), where ωi = (xi, λi, νi).

6) Updates:

(x̂
(k+1)
i , λ̂

(k+1)
i , ν̂

(k+1)
i )

= (
◦
x
(k)
i ,

◦
λ
(k)
i ,

◦
ν
(k)
i )− β∇ωi

φt(
◦
x
(k)
i ,

◦
λ
(k)
i ,

◦
ν
(k)
i ).

End For
4) Sets xi,t+1←x̂

(K+1)
i , λi,t+1←λ̂

(K+1)
i , νi,t+1← ν̂

(K+1)
i .

from the main grid pmg
i,h, the power drawn from the storage unit

pst
i,h, the power traded with the trading partners ptr

(i,j),h, j ∈ Ni,
and the phase at the bus θi,h over the horizon h = 1, . . ., H . Let
us denote xi,h = col(pg

i,h, p
mg
i,h, p

st
i,h, (p

tr
(i,j),h)j∈Ni

, θi,h), for all
i ∈ I and h = 1, . . ., H , and denote xi := col((xi,h)h=1,...,H),
x := col((xi)i∈I). Each agent aims at minimizing its local cost
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function [2, Eq. (17)]

Ji(x) =
∑H

h=1 f
g
i,h(p

g
i,h) + f tr

i,h((p
tr
(i,j),h)j∈Ni

)

+ fmg
i,h(p

mg
i,h, p

mg
−i,h)

(32)

where f tr
i,h encodes the cost or revenue of the trading with

other agents and fmg
i,h encodes the cost of purchasing energy

from the main grid as in [2, Eq. (11)], while f g
i,h is a linear

function which encodes the cost of power generation. The
local feasible sets Xi, i = 1, . . ., N include the satisfaction of
the power demand at the bus, as well as the operating con-
straints of the generators and storage units. The shared con-
straints are of the form g(x) ≤ 0nc

, with g affine. They in-
clude the operating limits of the grid, the trading reciprocity
{ptr

(i,j),h = −ptr
(j,i),h, ∀ i ∈ N , ∀ j ∈ Ni}, and the linearized

power flow equations with dc approximation {pg
i,h + pst

i,h +

ιmg
i

∑
j∈N p

mg
j,h +

∑
j∈Bi Bij(θi,h − θj,h) = 0}, where ιmg

i ∈
{0, 1} is 1, if and only if i is connected to the main grid, Bi
is the set of buses that are connected to bus i on the electric grid,
andB is the susceptance matrix. We note that the game satisfies
Assumptions 1 and 2. We consider the IEEE 13-bus distribution
feeder for our numerical simulations, performed in MATLAB.

We first simulate the day-ahead market clearing (with 24
hourly time steps) via the standard FBF-based algorithm, which
can obtain a v-GNE, and Algorithm 1, which solves the optimal
selection problem of this game. Specifically, we consider the
GNE selection function

φ(x) =
∑H

h=1{‖p
g
h − p̄g‖2Qd

+ ‖pmg
h ‖2Qmg

+ ‖θh − θ̄‖2Qθ

+ ‖Gθh‖2Qpf
+ ‖ptr

h‖2Qtr
+ ‖pst

h‖2Qst
}+ ‖λ‖2Qλ

+ ‖ν‖2Qν

(33)

where we denoted in bold the column stack of the respective
variables for each agent and the matrices Q� are diagonal
positive definite. We choose p̄g to be the column vector of
the maximum generation production for each agent, in order
to maximize the renewable energy production, and θ̄ to be a
vector which elements are all equal to the phase of the node
connected to the main grid, in order to reduce the grid imbal-
ances. The cost factors related to pmg,pst,ptr aim at reducing
the burden on the transmission grid, increasing the lifespan of
the storage units, and reducing the load of the trading platform,
respectively. The terms in λ and ν act as regularization of the
dual variables. Finally, G is a matrix that maps the phase of
the nodes to the power flowing through the lines. In this test,
we aim at maximizing the lifespan of the grid lines by setting
the nonzero elements of Qpf to be large. We observe that, as
expected, the solution obtained by Algorithm 1 achieves a 10.8%
lower value of the selection function defined in (33) compared
with the one achieved by the standard FBF, since the v-GNE
computed by Algorithm 1 minimizes (33). In Fig. 1, we observe
that Algorithm 1 generates solutions with less congestion (power
flow) than that of the standard FBF, as intended by the term of
the selection function in (33) weighted by Qpf.

Second, we test Algorithm 3 on a real-time market scenario,
formulated as a time-varying game. Because of the variability
along the day of the power demand, the local power balance

Fig. 1. Total power flow achieved by the proposed algorithm compared
to standard FBF in the day-ahead market scenario.

Fig. 2. Algorithm performance for several restarted HSDM param-
eters. (a) Average residual with respect to the baseline sequence
Rt+1(ωt)

Rt+1(ω
FBF
t

)
(percentage). (b) Average cost improvement with respect

to the baseline sequence
φt+1(ωt)−φt+1(ω

FBF
t )

φt+1(ω
FBF)
t

(percentage).

constraint defined in [2, Eq. (6)] depends on t. The constraints
of the game are therefore time-varying. We aim at computing a
v-GNE that minimizes the power flowing on the line connecting
buses 632 and 671 during peak hours. Thus, we consider (33) as
the selection function at each twhere the element ofQpf related
to this line is time-varying, i.e., it is set high between the peak
hours, i.e., 8 A.M. and 4 P.M. We note that this setup falls into
the case considered in Remark 5, as only a finite umber of game
instances are considered, whilst (φt)t satisfies Assumption 12.
The problem is solved every 15 min using the power balance
constraints and selection function formulated at time-step t.
After the computation is performed, the system implements the
computed v-GNE at time t+ 1. The simulation is run over a 24 h
span, thus resulting in 96 consecutive instances of GNE selection
problems. Due to the relatively short sampling time, the demand
is not expected to vary a lot between two consecutive game
instances. We can then consider Assumption 11 to be satisfied.
We run the simulation for different values of the parameters K
and β and we compare the results with the baseline solution
(ωFBF

t ) obtained by running at each time-step the standard FBF
algorithm for a limited (9 · 104, that is, the largest K on which
we tested the restarted HSDM) number of iterations. Fig. 2(a)
illustrates the relative average residual obtained by restarted
HSDM with respect to the baseline solution, where the residual
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is computed as

Rt+1(ωt) = ‖TFBF,t+1(ωt)− ωt‖.

The residual provides a measure of the constraint satisfaction for
the problem in (27) and we observe a comparable performance.
However, our algorithm achieves a significant improvement on
the selection function values, as shown in Fig. 2(b). Furthermore,
increasing K might lead to a reduction in cost advantage, as
outlined by Fig. 2(b), because for low values of K the solution
approaches the unconstrained minimizer of φt, while for high
values of K it approaches the minimizer within the v-GNE set.
We also observe that a diminishing β implies a slower reduction
of the cost function, which results in a higher cost as shown
in Fig. 2(b). Each iteration of the algorithm is computed in
approximately 15 ms, thus in the considered 15 min timestep
an agent is able to compute circa 6 · 104 iterations. In the
simulations, we consider larger values of K to show the benefit
of the iterations on tracking precision.

VII. CONCLUSION

The optimal generalized Nash equilibrium selection problem
in monotone games can be solved distributively by combin-
ing the hybrid steepest descent method with an appropriate
fixed-point operator. The key requirement to guarantee con-
vergence to the set of optimal generalized Nash equilibria is
the quasi-shrinking property, which holds true for certain fixed-
point operators. The hybrid steepest descent method can also
be modified to track a time-varying optimal generalized Nash
equilibria. The resulting approach is suitable for real-time deci-
sion making in multi-agent dynamic environments. Future works
include: 1) improving the convergence rate of the proposed
method via second-order information of the selection function
and/or inertial terms; 2) developing distributed Tikhonov-based
methods for generalized Nash equilibrium selection problems
as benchmarks for the proposed method.

APPENDIX A
PROOF OF LEMMA 1

We prove by contradiction. We assume that there exists r > 0
such thatDΨ(r) = 0. Thus, by the definition ofDΨ in (2), there
exists a sequence (ωk)k∈N ∈ (fix(T )Ψ≥r)

⋂
C such that

lim
k−→∞ distΨ(ωk, fix(T ))− distΨ(T (ωk), fix(T )) = 0.

By the definition of projection, we have

distΨ(T (ωk), fix(T )) = ‖T (ωk)− projΨfix(T )(T (ωk))‖Ψ

≤ ‖T (ωk)− projΨfix(T )(ωk)‖Ψ. (34)

By the quasi-nonexpansiveness of T (implied by (3)) and the
latter inequality

0 ≤ ‖ωk − projΨfix(T )(ωk)‖Ψ︸ ︷︷ ︸
=distΨ(ωk,fix(T ))

−‖T (ωk)− projΨfix(T )(ωk)‖Ψ

≤ distΨ(ωk, fix(T ))− distΨ(T (ωk), fix(T )) k−→∞−−−−→ 0.

It follows that

lim
k−→∞‖ωk − projΨfix(T )(ωk)‖Ψ − ‖T (ωk)

− projΨfix(T )(ωk)‖Ψ = 0.

By (3), we then have that

‖ωk − T2(ωk)‖2Ψ ≤
1
γ (‖ωk− projΨfix(T )(ωk)‖2Ψ−‖T (ωk)− projΨfix(T )(ωk)‖2Ψ)≤
2d
γ (‖ωk− projΨfix(T )(ωk)‖Ψ−‖T (ωk)− projΨfix(T )(ωk)‖Ψ)

where the latter inequality follows from a2 − b2 = (a− b)(a+
b) for a, b ∈ R and where we substituted d := supω∈C ‖ωk−
ω‖Ψ, which is finite since the set C is compact. We conclude

lim
k−→∞‖ωk − T2(ωk)‖2Ψ = 0. (35)

By the Bolzano–Weierstrass theorem and the boundedness of
ωk, there exists a convergent subsequence (ωkl

)l∈N with accu-
mulation point ω∞. By (35), liml−→∞ T2(ωkl

) = ω∞.
By the demiclosedness of Id− T2 and by fix(T2) ⊂ fix(T ),

ω∞ − T2(ω∞) = 0⇒ ω∞ ∈ fix(T2)⇒ ω∞ ∈ fix(T ). How-
ever, since (fix(T )Ψ≥r)

⋂
C is a closed set, then ω∞ ∈ fix(T )Ψ≥r,

which is in contradiction with ω∞ ∈ fix(T ). �

APPENDIX B
PROPERTIES OF OPERATORS A, B, AND C IN (9)–(11)

Lemma 4: Let Assumption 1 hold. Then, the operatorsA, B,
and C in (9)–(11) are maximally monotone. Thus,A+ B + C is
also maximally monotone. �

Proof: By Assumption 1, NXi
and ∂�i are maximally mono-

tone [29, Thm. 20.25 & Example 20.26]. The operatorA is thus
maximally monotone by [29, Prop. 20.23 & Cor. 25.5]. The oper-
atorF is maximally monotone by Assumption 2 and by continu-
ity in Assumption 6. Meanwhile L is a linear positive semidef-
inite operator and, therefore, it is maximally monotone; thus,
the operator B is maximally monotone. We can write C = C1 +
C2, where C1 = col((〈∇xi

gi(xi), λi〉)i∈I ,−(gi(xi))i∈I ,0Nm)
and C2 = col(0n,−(L ⊗ Im)ν, (L ⊗ Im)λ). The operator C1
is maximally monotone by continuity and by noting that, for
any ω,ω′ ∈ R

n × R
Nm
≥0 × R

Nm

〈C1(ω)− C1(ω′),ω − ω′〉

=
∑

i∈I〈gi(x′i)− gi(xi)−∇xi
gi(xi)

�(x′i − xi), λi〉

+
∑

i∈I〈gi(xi)− gi(x′i)−∇xi
gi(x

′
i)
�(xi − x′i), λ′i〉 ≥ 0

where the inequality follows by the convexity of gi. As C2 is a
linear skew-symmetric operator, it is maximally monotone [29,
Ex. 20.35]. By invoking [29, Cor. 25.5], the result follows.

Lemma 5: Let Assumptions 1 and 6 hold. Then the operators
B, C,and B + C, defined in (10)–(11), are Lipschitz continuous.

Proof: Due to Assumption 6, the operator B is LF -Lipschitz
continuous. Lipschitz continuity of C can be evaluated as fol-
lows. Similarly to the proof of Lemma 4, let us splitC = C1 + C2.
The operator C2 is Lipschitz continuous by linearity, while
Lipschitz continuity of C1 is shown as follows. Let us denote
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the bound of ∇xi
gi(xi) by b∇gi , i.e., ‖∇xi

gi(xi)‖ ≤ b∇gi (c.f.
Assumption 6) and the bound of λi by bλi

, for all i ∈ I, which
exists due to [36, Prop. 3.3]. For any ω,ω′ ∈ R

n+2Nm

‖C1(ω)− C1(ω′)‖2

{1}
≤

∑
i∈I

(
2‖∇xi

gi(xi)
�(λi − λ′i)‖2 + ‖gi(xi)− gi(x′i)‖2

+2‖(∇xi
gi(xi)−∇xi

gi(x
′
i))
�λ′i‖2

)
{2}
≤

∑
i∈I

(
2‖∇xi

gi(xi)
�‖2‖λi − λ′i‖2 + b2∇gi‖xi − x

′
i‖2

+2‖λ′i‖2‖∇xi
gi(xi)−∇xi

gi(x
′
i)‖2

)
{3}
≤

∑
i∈I

(
2b2∇gi‖λi−λ′i‖2+(2b2λi

L2
∇g + b2∇gi)‖xi−x

′
i‖2

)
≤

∑
i∈I max(2b2∇gi , 2b

2
λi
L2
∇g + b2∇gi)‖ωi − ω′i‖2

where {1} follows by adding and subtracting the term
∇xi

gi(xi)
�λ′i and by the bound ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2;

{2} is obtained by the Cauchy–Schwartz inequality and
by the fact that gi is Lipschitz since it has a bounded
gradient; {3} is obtained by the Lipschitz continuity of
∇xi

gi. Hence, C1 is LC1 -Lipschitz continuous, where LC1 =

maxi∈I(max(2b∇gi ,
√

2b2λi
L2
∇g + b2∇gi)). Since the sum of

Lipschitz continuous operators is Lipschitz continuous, the re-
sult follows. �

APPENDIX C
RESULTS AND PROOFS OF SECTION III

The following lemma shows the equivalence between
zer(A+ B + C) and fix(TFBF).

Lemma 6: Let Assumptions 1, 2, 6, and 7 hold. Furthermore,
let TFBF be defined by (18) while A, B, and C be defined in
(9)–(11). Then, fix(TFBF) = zer(A+ B + C). �

Proof: The proof is analogous to that of [17, Prop. 1]. �
The following lemma is used to prove the quasi-shrinking

property of the FBF operator (18).
Lemma 7: Let A and B maximally monotone and B contin-

uous. Let

T = (Id +Ψ−1A)−1(Id−Ψ−1B).

Then, Id− T is demiclosed at 0. �
Proof: Let us consider a sequence (vk)k∈N such that

lim
k−→∞ vk = v, lim

k−→∞ (Id− T )(vk) = 0.

We want to prove that v − T (v) = 0 or, equivalently, v ∈
fix(T ). Let us define uk := (Id− T )(vk). Then,

vk − uk = (Id +Ψ−1A)−1(Id−Ψ−1B)(vk)

⇔ (Id−Ψ−1B)(vk) ∈ (Id +Ψ−1A)(vk − uk)

⇔ vk −Ψ−1B(vk) + uk − vk ∈ Ψ−1A(vk − uk)
⇔ −B(vk) + Ψuk ∈ A(vk − uk).

By the continuity of B and [29, Fact 1.19], we conclude
that limk−→∞−B(vk) + Ψuk = −B(v). By [29, Prop. 20.37]
and the monotonicity of A, gph(A) is closed. Therefore,

since limk−→∞ vk − uk = v, we conclude that −B(v) ∈ A(v).
By [29, Prop. 26.1(iv)], we obtain v ∈ fix(T ). �

A. Proof of Lemma 3

By Lemmas 4 and 5, the operator A is maximally mono-
tone whereas the operator B + C is maximally monotone and
Lipschitz continuous with Lipschitz constant denoted by LB .
Then, [17, Cor. 1] shows that TFBF is quasi-nonexpansive under
Assumption 7. Specifically, it holds that [17, Prop. 2]

‖TFBF(ω)− ω�‖2Ψ ≤ ‖ω − ω�‖2Ψ −
L2

B

μmin(Ψ)2 ‖ω̃ − ω‖2Ψ
(36)

where ω� ∈ fix(TFBF), μmin(Ψ) is the smallest eigenvalue of
Ψ and ω̃ = (Id +Ψ−1A)−1(Id−Ψ−1(B + C))(ω). Finally, we
prove that TFBF is quasi-shrinking by invoking Lemma 1.
Specifically, we choose T2 = (Id +Ψ−1A)−1(Id−Ψ−1(B +
C)). By [29, Prop. 26.1(iv)] and Lemma 6, fix(T2) = zer(A+
B + C) = fix(TFBF). Moreover, Lemma 7 shows that Id− T2
is demiclosed at 0 and (36) is indeed the inequality in (3) for
TFBF. �

Remark 9: Although [17, Cor. 1] shows quasi-non-
expansiveness of TFBF and [17, Prop. 2] shows the inequality
in (36) for Problem (4) with a linear coupling constraint, these
results also holds for nonlinear functions gi(xi), for all i ∈ I, as
long as Assumption 6 holds, since the operator C in (11) remains
Lipschitz continuous. �

B. Proof of Theorem 1

Let us introduce the following preliminary lemma.
Lemma 8: Let Assumptions 1–4 and 6–7 hold. Then, the

sequence (ω(k))k∈N generated by the HSDM method in (17)
with T = TFBF in (18), whereA,B, and C are defined in (9)–(11)
and Ψ is defined in (19), is bounded, i.e., for any arbitrary
ω� ∈ fix(TFBF), it holds that ‖ω(k) − ω�‖ ≤ R(ω�), for some
positive finite R(ω�). �

Proof: First, we show that, for an arbitrary ω� ∈ fix(TFBF),

‖TFBF(ω)− ω�‖2Ψ < ‖ω − ω�‖2Ψ (37)

for all ω /∈ fix(TFBF). To this end, let us recall the inequality
(36) in the proof of Lemma 3, which holds under the considered
assumptions

‖TFBF(ω)−ω�‖2Ψ ≤ ‖ω −ω�‖2Ψ−(LB/μmin(Ψ))2‖ω̃−ω‖2Ψ
where ω̃ = (Id+Ψ−1A)−1(Id−Ψ−1(B+C)))(ω) =: T2(ω).
By [29, Prop. 26.1(iv)] and Lemma 6, fix(T2) = zer(A+
B + C) = fix(TFBF). Hence, ω̃ 
= ω if ω /∈ fix(TFBF). We ob-
serve from the preceding inequality that when ω̃ 
= ω, (37)
holds.

We now show that for any arbitrary fixed point ω� ∈
fix(TFBF), there exists R > 0 such that

inf‖ω−ω�‖≥R(‖ω − ω�‖ − ‖TFBF(ω)− ω�‖) > 0. (38)

We proceed to prove (38) by contradiction. By the nonexpansive-
ness of TFBF, (38) can only be false if for allR > 0 there exists a
sequence (ωk)k∈N converging to ω̄ such that ‖ωk − ω�‖ ≥ R
and

lim
k−→∞‖ωk − ω�‖ − ‖TFBF(ωk)− ω�‖ = 0.
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In particular, the latter holds true for R > supy∈fix(TFBF) ‖y −
ω�‖+ ε, which implies ω̄ /∈ fix(TFBF). Then, by (36),
limk−→∞ ‖T2(ωk)− ωk‖ = 0. As Id− T2 is demiclosed at zero
by Lemma 7, this implies the contradiction ω̄ ∈ fix(T2)⇒ ω̄ ∈
fix(TFBF). The inequality in (38) is used in[42, Th. 2] to prove
the boundedness of the HSDM sequence with a nonexpansive
operator T that satisfies (37). As (38) holds also for TFBF, the
same proof holds under the remaining assumptions: (i) ∇φ
is monotone and Lipschitz continuous (Assumption 3), and
(ii) the step size β(k) is nonsummable but square summable
(Assumption 4). �

We are now ready to proceed with the proof of Theorem 1.
Proof: Let ω̃(k) = (x̃(k), λ̃(k), ν̃(k)) and ◦

ω(k) = (
◦
x(k),

◦
λ(k),

◦
ν(k)), where x̃(k) = col((x̃i)i∈I) and the other variables

are defined similarly. The updates of ω̃(k) in Step 2 of Algo-
rithm 1 can be compactly written as

ω̃(k) = (Id +Ψ−1A)−1(Id−Ψ−1(B + C))(ω(k))

whereas the updates of ◦
ω(k) in Step 4 of Algorithm 1 can

be compactly written as ◦
ω(k) = ω̃(k) −Ψ−1(B + C)(ω̃(k) −

ω(k)), implying that ◦
ω(k) = TFBF(ω

(k)) and the updates in (20)
is compactly written as

ω(k+1) = TFBF(ω
(k))− β(k)∇φ(TFBF(ω

(k))) (39)

which is the HSDM applied to TFBF. We can then invoke
Lemma 2 to claim the hypothesis. By Lemma 6, fix(TFBF) =
zer(A+ B + C); therefore fix(TFBF) is nonempty and bounded.
Moreover, by Assumption 4, the step size β(k) meets the
conditions in Lemma 2. Lemma 3 shows that TFBF is quasi-
nonexpansive and quasi-shrinking on any bounded closed con-
vex set, C such that C ∩ fix(TFBF) 
= ∅. On the other hand,
Lemma 8 shows that the FBF-HSDM sequence (ω(k))k∈N
obtained by the iterations in (39) is bounded, i.e., for any
ω� ∈ fix(TFBF), there exists a positive finite R(ω�) such
that ‖ω(k) − ω�‖ ≤ R(ω�). Therefore, for an arbitrarily cho-
sen ω� ∈ fix(TFBF), we can construct the following bounded
closed set B(ω�) := {x ∈ dom(TFBF) | ‖x− ω�‖ ≤ R(ω�)},
on which the sequence (ω(k))k∈N lies. Moreover, we can observe
that indeed B ∩ fix(TFBF) 
= ∅, since ω� ∈ B is a fixed point
of TFBF. Hence, TFBF is quasi-shrinking on B. �

APPENDIX D
PROOFS OF SECTION IV

A. Proof of Theorem 2

First, we observe that in Algorithm 2, ◦
ω(k) = (

◦
x(k),

◦
λ(k),

◦
ν(k)) is updated by using TpFB in (24), i.e., ◦

ω(k) =
TpFB(ω

(k)) [15, Section 4, Algorithm 1]. Hence, we can see
that ω(k) is updated via the HSDM method, i.e.,

ω(k+1) = TpFB(ω
(k))− β(k)∇φ(TpFB(ω

(k))). (40)

Similarly to the proof of Theorem 1, due to the boundedness
of fix(TpFB) = zer(A+ B + C) 
= ∅ and the step size rule of
β(k) in Assumption 4, we can invoke Lemma 2. Specifically,
the operator TpFB is averaged nonexpansive when Assumptions
1, 2, 6, and 8–10 hold [15, Th. 3]. Therefore, TpFB is also

quasi-nonexpansive [29, Sec. 4.1]. By [29, Prop. 4.35 (iii)],
the condition in (3) holds with T = T2 = TpFB. By [29, Thm.
4.27], Id− TpFB is demiclosed at 0. Therefore, by Lemma 1,
TpFB is quasi-shrinking on any closed bounded convex set whose
intersection withfix(TpFB) is nonempty. Furthermore, sinceTpFB

is averaged nonexpansive, TpFB is attracting. Therefore, by [42,
Th. 2] and due to the choice of the step sizeβ(k) in Assumption 4,
the sequence generated by (40) is bounded. Following the steps
in the proof of Theorem 1, we can find a bounded set B such
that ω(k) ∈ B and TpFB is quasi-shrinking on B. �

APPENDIX E
PROOFS OF SECTION V

A. Preliminary Results

First, we show a series of preliminary results in Lemmas 9–12
that lead to the proof of Theorem 3. The proofs of this section are
provided in the standard Euclidean norm for ease of notation.
However, the case for anyΨ-induced norm, withΨ � 0, follows
verbatim.

Lemma 9: Let ψ : R≥0 → R≥0 be nondecreasing and non-
negative. Let a sequence (b(k))k∈N be nonincreasing, non nega-
tive. Let (a(k))k∈N ⊂ [0,∞) satisfy

a(k+1) ≤ a(k) − ψ(a(k)) + b(k+1). (41)

Let K ∈ N. If there exists ξ > 0 such that ψ(ξ) ≥
max{2b(1), 2

K−1a
(1)}, then

a(k) ≤ ξ + b(k), ∀ k ≥ K. (42)

�
Proof: Let us first show that there exists anM ∈ N,M ≤ K

such that a(M) ≤ ξ. We proceed by contradiction, assuming that
a(k) > ξ ∀k = 1, . . .,K. Then, by noting that ψ(·) is nonde-
creasing and that ψ(ξ) ≥ 2b(k) for all k ∈ N, we have

a(k+1) ≤ a(k) − ψ(a(k)) + b(k+1)

≤ a(k) − ψ(ξ) + 1
2ψ(ξ) = a(k) − 1

2ψ(ξ).

By iterating the latter relation and recalling that ψ(ξ) ≥
2

K−1a
(1), we find that

a(k+1) ≤ a(1) − k
2ψ(ξ) ≤ a

(1) − k
K−1a

(1).

For k = K, we then obtain the contradiction a(K+1) < 0. Thus,
there exists M ≤ K such that a(M) ≤ ξ. We then proceed by
induction to prove (42). Let us prove that, if a(k) ≤ ξ + b(k)

then a(k+1) ≤ ξ + b(k+1) for all k ≥M . We distinguish the
following two cases.

1) Case a(k) < ξ. Then, by (41) and by the nonnegativity of
ψ(·), a(k+1)≤a(k) + b(k+1)<ξ + b(k+1).

2) Case ξ ≤ a(k) ≤ ξ + b(k). Then, by the nondecreasing
property of ψ, a(k) ≥ ξ ⇒ ψ(a(k)) ≥ ψ(ξ). By the as-
sumptions, ψ(ξ) ≥ 2b(1) and by the nonincreasing prop-
erty of (bk)k∈N, 2b(1) ≥ b(k) + b(k+1). We thus obtain
ψ(a(k)) ≥ b(k) + b(k+1). Substituting into (41) leads to

a(k+1) ≤ a(k) − b(k) ≤ ξ.
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We conclude by induction that a(k) ≤ ξ + b(k) for all k ≥M
and, since M ≤ K, the claim in (42) immediately follows. �

Lemma 10: Let T be quasi-nonexpansive and F be strongly
monotone, such that ‖F(ω)‖ ≤ U , for all ω ∈ im(T ). Let
(ω(k))k∈N be generated from (17) with β(k) = β > 0 for all k.
LetK ∈ N and let ω� be the solution of VI(F , fix(T )). If there
exists ξ such that the shrinkage function D(·) of T , defined

in (2), satisfies D(ξ) ≥ max{2βU, 2 dist(ω(1),fix(T ))
K−1 }, then the

following inequalities hold:

sup
k≥K

dist(ω(k), fix(T )) ≤ ξ + βU, (43)

sup
k≥K
‖T (ω(k))− ω(k)‖ ≤ 2(ξ + βU), (44)

sup
k≥K
〈T (ω(k))− ω�,−F(ω�)〉 ≤ 3(ξ + βU)‖F(ω�)‖.

(45)

�
Proof: (i.) For all k, it holds by the definition of distance and

by the algorithm definition in (17) that

dist(ω(k+1), fix(T ))≤‖ω(k+1)− projfix(T )(T (ω(k)))‖=

‖T (ω(k))− βF(T (ω(k)))− projfix(T )(T (ω(k)))‖ ≤

‖T (ω(k))− projfix(T )(T (ω(k)))‖︸ ︷︷ ︸
=dist(T (ω(k)),fix(T ))

+β‖F(T (ω(k)))‖ ≤

dist(T (ω(k)), fix(T )) + βU. (46)

Let us define a(k) := dist(ω(k), fix(T )). Then, from (46) we
find immediatelya(k+1) − βU ≤ dist(T (ω(k)), fix(T )). By the
definition of shrinkage function in (2) and the latter inequality,
we can write

D(a(k)) ≤ a(k) − dist(T (ω(k)), fix(T )) ≤

a(k) − a(k+1) + βU ⇒ a(k+1)≤a(k) + βU −D(a(k))

which defines a sequence of the kind in (41) with ψ(·) = D(·)
and b(k) = βU for all k. By Lemma 9, then dist(ω(k), fix(T )) ≤
ξ + βU for all k ≥ K.

(ii.) By the triangle inequality, we can write
‖T (ω(k))− ω(k)‖ ≤ ‖T (ω(k))− projfix(T )(ω

(k))‖+
‖projfix(T )(ω(k))− ω(k)‖. By quasi-nonexpansiveness of
T , we obtain, for all k ≥ K

‖T (ω(k))− projfix(T )(ω
(k))‖ ≤

‖ω(k) − projfix(T )(ω
(k))‖ = dist(ω(k), fix(T ))

⇒ ‖T (ω(k))− ω(k)‖ ≤ 2dist(ω(k), fix(T )).

Finally, combining the last inequality and (43) yields (44).
(iii) By the Cauchy–Schwarz inequality, we can write

〈T (ω(k))− ω�,−F(ω�)〉 =

〈T (ω(k))− ω(k),−F(ω�)〉+ 〈ω(k) − ω�,−F(ω�)〉 ≤

‖T (ω(k))− ω(k)‖‖F(ω�)‖+ 〈ω(k) − ω�,−F(ω�)〉. (47)

Based on (44), for all k ≥ K, we can bound the first term on
the right-hand side of (47) by ‖T (ω(k))− ω(k)‖‖F(ω�)‖ ≤

2(ξ + βU)‖F(ω�)‖ and rewrite the second term as

〈ω(k) − ω�,−F(ω�)〉 = 〈ω(k)− projfix(T )(ω
(k)), −F(ω�)〉

+〈projfix(T )(ω(k))− ω�,−F(ω�)〉.

We observe that the second addend is nonpositive by the defini-
tion of VI solution. By applying the Cauchy–Schwarz inequality,
the definition of projection, and (44), we obtain

〈T (ω(k))− ω�,−F(ω�)〉

≤ 2(ξ + βU)‖F(ω�)‖+ ‖ω(k) − projfix(T )(ω
(k))‖‖F(ω�)‖

= 2(ξ + λU)‖F(ω�)‖+ dist(ω(k), fix(T ))‖F(ω�)‖
≤ 3(ξ + λU)‖F(ω�)‖. �

Lemma 11: Let Assumptions 12–14 hold. For any t ∈ N, let
ωt+1 be generated from the step at time t of the restarted HSDM
algorithm in (29). Let Dt(·) be the shrinkage function of Tt as
defined in (2). If there exists ξ > 0 such that

Dt(ξ) ≥ max
{
2βU, 2 dist(ωt,fix(Tt))

K−1

}
(48)

then

‖ωt+1 − ω�
t ‖2 ≤ (1− τ(β))K ‖ωt − ω�

t ‖2 + γ (49)

with

γ = β
τ(β)U(6ξ + 11βU). (50)

�
Proof: Let us define the operator T β

t (ω) := Tt(ω)−
β∇φt(Tt(ω)). By Tt(ω�

t ) = ω�
t and by the definition of the

algorithm in (29), ‖ωt+1 − ω�
t ‖2 = ‖T β

t (y(K))− Tt(ω�
t )‖2.

We sum and subtract β∇φt(ω�
t ) and substitute T β

t to obtain

‖ωt+1 − ω�
t ‖2

= ‖T β
t (y(K))− Tt(ω�

t ) + β∇φt(ω�
t )− β∇φt(ω�

t )‖2

= ‖T β
t (y(K))− T β

t (ω�
t )− β∇φt(ω�

t )‖2.

Expanding the square {1}, expanding T β
t {2}, and regrouping

{3} leads to

‖ωt+1 − ω�
t ‖2

{1}
= ‖T β

t (y(K))− T β
t (ω�

t )‖2 + β2‖∇φt(ω�
t )‖2

+ 2〈T β
t (y(K))− T β

t (ω�
t ),−β∇φt(ω�

t )〉
{2}
= ‖T β

t (y(K))− T β
t (ω�

t )‖2 + β2‖∇φt(ω�
t )‖2−

2β〈Tt(y(K))−β∇φt(Tt(y(K)))−
Tt(ω�

t )+β∇φt(Tt(ω�
t )),∇φt(ω�

t )〉
{3}
= ‖T β

t (y(K))− T β
t (ω�

t )‖2 + β2‖∇φt(ω�
t )‖2

+ 2β〈Tt(y(K))− ω�
t ,−∇φt(ω�

t )〉

+ 2β2〈∇φt(Tt(y(K)))−∇φt(ω�
t ),∇φt(ω�

t )〉. (51)
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We note that, by applying the Cauchy–Schwarz, the trian-
gle inequalities and Assumption 14, we have 〈∇φt(Tt(y(K)))
−∇φt(ω�

t ), ∇φt(ω�
t )〉 ≤ ‖∇φt(Tt(y(K))) − ∇φt(ω�

t )‖
‖∇φt(ω�

t )‖ ≤ (U + ‖∇φt(ω�
t )‖)‖∇φt(ω�

t )‖. By (48) and
Lemma 10, we can substitute in (51) the latter relation and the
bound in (45) to obtain

‖ωt+1 − ω�
t ‖2 ≤ ‖T β

t (y(K))− T β
t (ω�

t )‖2+

6β(ξ+βU)‖∇φt(ω�
t )‖+β2(2U + 3‖∇φt(ω�

t )‖)‖∇φt(ω�
t )‖.

Applying Assumption 14 and rearranging the terms leads to

‖ωt+1 − ω�
t ‖2 ≤ ‖T β

t (y(K))− T β
t (ω�

t )‖2+

6β(ξ + βU)‖∇φt(ω�
t )‖+ β25U‖∇φt(ω�

t )‖

≤ ‖T β
t (y(K))− T β

t (ω�
t )‖2 + β(6ξ + 11βU)U

≤ ‖T β
t (y(K))− T β

t (ω�
t )‖2 + τ(β)γ. (52)

By quasi-nonexpansiveness of Tt as well as strong monotonicity
and Lipschitz continuity of∇φt, we can apply [30, Lem. 4a] to
obtain ‖T β

t (ω)− T β
t (ω̄)‖ ≤ (1− τ(β))‖ω − ω̄‖, for all ω ∈

dom(T β
t ), ω̄ ∈ fix(Tt), which we substitute in (52) to obtain

‖ωt+1 − ω�
t ‖2 ≤ (1− τ(β))2 ‖y(K) − ω�

t ‖2 + τ(β)γ

≤ (1− τ(β)) ‖y(K) − ω�
t ‖2 + τ(β)γ.

By iterating, we obtain

‖ωt+1 − ω�
t ‖2 ≤

(1− τ(β))2 ‖y(K−1) − ω�
t ‖2 + (1− τ(β)) τ(β)γ + τ(β)γ

≤ · · · ≤(1− τ(β))K‖y(1) − ω�
t ‖2+

K−1∑
j=0

(1− τ(β))j τ(β)γ

≤ (1− τ(β))K ‖y(1) − ω�
t ‖2 +

∞∑
j=0

(1− τ(β))j τ(β)γ.

Applying the geometric series convergence and recalling from
(29) that y(1) = ωt leads to (49). �

The next lemma outlines a contraction property of the
restarted HSDM to the solution sequence of Problem (28) up
to an additive error, which can be controlled by an appropriate
choice of the step size β and the number of iterations K.

Lemma 12: Let Assumptions 12–15 hold. For any t ∈ N, let
ωt+1 be generated by the restarted HSDM algorithm in (29).
For any γ > 0, there exist K,β > 0, such that (49) holds. �

Proof: Let us consider ξ := γσ
12U . Since Tt is quasi-shrinking,

the shrinkage functionDt of Tt satisfiesDt(ξ) > 0. Thus, there
exist β̄ ∈ (0, 2σ

L2
φ
) andK such that, for anyβ ∈ (0, β̄], (48) holds.

It can be verified that limβ→0+
β

τ(β) =
1
σ . Then

lim
β→0+

β
τ(β) (6ξ + 11βU)U = 6ξU

σ = 1
2γ. (53)

We thus find β ∈ (0, β̄] small enough, such that
β

τ(β) (6ξ + 11βU)U ≤ γ. (54)

Hence, the hypothesis holds by invoking Lemma 11. �
Remark 10: From the proof of Lemma 12, as ξ (and thus

Dt(ξ)) decreases with γ, it can be seen from (48) that for smaller
values of γ a smaller stepsize β and a largerK are necessary. �

B. Proof of Theorem 3

We first construct a suitable stepsize β̄ and number of itera-
tions K̄. We then proceed with proving that the statement holds
for the chosen variables. Let us first define the auxiliary variable
ξ = γσ

12U . Following the steps in the proof of Lemma 12, we can

choose a small enough β̄ ∈ (0,min{ 2σ
L2

φ
, D(ξ)

2U }), where D(·) is

defined in Assumption 15, such that

β̄
τ(β̄)

(6ξ + 11β̄U)U ≤ γ. (55)

We now defineα(K) := (1− τ(β̄))K .Since τ(β̄) ∈ (0, 1),α is
decreasing withK. We can then chooseK1, such that α(K1) <
1
2 . Then, we define the mapping a : N≥K1

→ R

a(K) = max

{
‖ω1‖+ sup

ω∈Y
‖ω‖,

√
2α(K)δ2+γ
1−2α(K)

}
(56)

We can verify that a(·) is nonincreasing. Consequently, the
sequence ( 2(a(K)+δ)

K−1 )K≥K1
is decreasing. We can then choose

any sufficiently large K̄ ≥ K1, such that

D(ξ) ≥ 2(ā+δ)
K̄−1 (57)

where ā := a(K̄). We also define ᾱ := α(K̄). We now prove
by induction that

‖ωt − ω�
t−1‖ ≤ ā for all t > 1. (58)

To that end, we first show that

‖ωt − ω�
t−1‖ ≤ ā⇒ ‖ωt+1 − ω�

t ‖ ≤ ā. (59)

Let us then write

dist(ωt, fix(Tt))
{1}
≤ ‖ωt − projfix (Tt)(ω

�
t−1)‖

{2}
≤ ‖ωt − ω�

t−1‖+ ‖ω�
t−1 − projfix (Tt)(ω

�
t−1)‖

{3}
≤ ‖ωt − ω�

t−1‖+ δ ≤ ā+ δ (60)

where {1} follows from the definition of distance, {2} from
the triangle inequality and {3} from Assumption 11 and ω�

t ∈
fix(Tt). Then, by Assumption 15, by the choice β̄ ≤ D(ξ)

2U and
(57), it holds that

Dt(ξ)≥max
{
2β̄U, 2(ā+δ)

K̄−1

} (60)

≥ max
{
2β̄U, 2dist(ωt,fix(Tt))

K̄−1

}
.

(61)

By Lemma 11 and (55), we then have

‖ωt+1 − ω�
t ‖2 ≤ ᾱ‖ωt − ω�

t ‖2 + γ. (62)

Applying on (62) the triangle inequality, the fact (a+ b)2 ≤
2a2 + 2b2 and Assumption 11 leads to

‖ωt+1 − ω�
t ‖2 ≤ 2ᾱ(‖ωt − ω�

t−1‖2 + ‖ω�
t−1 − ω�

t ‖2) + γ

≤ 2ᾱ(‖ωt − ω�
t−1‖2 + δ2) + γ

≤ 2ᾱ(ā2 + δ2) + γ. (63)

Finally, by (56), it holds ā2 ≥ 2ᾱδ2+γ
1−2ᾱ , which implies

2ᾱ(ā2 + δ2) + γ ≤ ā2. (64)
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Thus, we obtain ‖ωt+1 − ω�
t ‖2 ≤ ā2. We now continue the

induction argument by proving

‖ω2 − ω�
1‖2 ≤ ā2. (65)

From the triangle inequality and from (56), ‖ω1 − ω�
1‖ ≤

‖ω1‖+ ‖ω�
1‖ ≤ ā. From the definition of distance, we obtain

dist(ω1, fix(T1)) ≤ ‖ω1 − ω�
1‖ ≤ ā ≤ ā+ δ. (66)

Then, by (57) and the choice β̄ ≤ D(ξ)
2U , we have

Dt(ξ) ≥ D(ξ) ≥ max
{
2βU, 2(ā+δ)

K̄−1

}
≥ max

{
2βU, 2dist(ω1,fix(T1))

K̄−1

}
.

By Lemma 11 and (55), we find

‖ω2 − ω�
1‖2 ≤ ᾱ‖ω1 − ω�

1‖2 + γ.

We then upper bound the right-hand side of the last inequality:

‖ω2 − ω�
1‖2

(66)

≤ ᾱā2 + γ≤ᾱ(2ā2 + 2δ2) + γ
(64)

≤ ā2.

Therefore, combining (59) and (65) leads to supt>1 ‖ωt −
ω�

t−1‖ ≤ ā.Recalling that, from Assumption 13, ω�
t ∈ Y for all

t, this immediately implies dist(ωt,Y) ≤ ā for all t > 1,which
proves that the sequence is bounded.

We now proceed with proving (30). We note that the relation
in (62) holds for all t. We then observe that, by the triangle
inequality, by (a+ b)2 ≤ 2a+ 2b, and by Assumption 11

‖ωt+1 − ω�
t+1‖2 ≤ 2‖ωt+1 − ω�

t ‖2 + 2‖ω�
t+1 − ω�

t ‖2

≤ 2‖ωt+1 − ω�
t ‖2 + 2δ2.

By using (62) to upper bound ‖ωt+1 − ω�
t ‖2 and iterating, we

find

‖ωt+1 − ω�
t+1‖2 ≤ 2ᾱ‖ωt − ω�

t ‖2 + 2(γ + δ2)

≤ (2ᾱ)2‖ωt−1 − ω�
t−1‖2 + 2(γ + δ2) + 2ᾱ(2γ + 2δ2)

≤ · · · ≤ (2ᾱ)t‖ω1 − ω�
1‖2 +

∑t−1
j=0(2ᾱ)

j(2γ + 2δ2).

By taking the limit for t→∞ and by applying the convergence
of the geometric sequence, we obtain (30). �

C. Proof of Corollary 1

Steps i–vi of Algorithm 3 are analogous to Steps 1–6 of
Algorithm 1. Analogously to the proof of Theorem 1, we see
that the variable y(k) := (x̂

(k)
i , λ̂

(k)
i , ν̂

(k)
i ) is updated at each

time step by K iterations of the HSDM

y(k+1) = TFBF,t(y
(k))− β∇φt(TFBF,t(y

(k))), k = 1, . . .,K.

Then, the variable ωt+1 is updated as ωt+1 = y(K+1). Thus,
Algorithm 3 is a particular instance of the restarted HSDM
algorithm (29). By Theorem 3, the tracking error is given by
(30). �
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