
 
 

Delft University of Technology

KANQAS
Kolmogorov-Arnold Network for Quantum Architecture Search
Kundu, Akash; Sarkar, Aritra; Sadhu, Abhishek

DOI
10.1140/epjqt/s40507-024-00289-z
Publication date
2024
Document Version
Final published version
Published in
EPJ Quantum Technology

Citation (APA)
Kundu, A., Sarkar, A., & Sadhu, A. (2024). KANQAS: Kolmogorov-Arnold Network for Quantum Architecture
Search. EPJ Quantum Technology, 11(1), Article 76. https://doi.org/10.1140/epjqt/s40507-024-00289-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1140/epjqt/s40507-024-00289-z
https://doi.org/10.1140/epjqt/s40507-024-00289-z


Kundu et al. EPJ Quantum Technology           (2024) 11:76 
https://doi.org/10.1140/epjqt/s40507-024-00289-z

R E S E A R C H Open Access

KANQAS: Kolmogorov-Arnold Network for
Quantum Architecture Search
Akash Kundu1,2,3,4*, Aritra Sarkar4,5 and Abhishek Sadhu6,7

*Correspondence:
akash.kundu@helsinki.fi
1QTF Centre of Excellence,
Department of Physics, University of
Helsinki, Helsinki, Finland
2Institute of Theoretical and Applied
Informatics, Polish Academy of
Sciences, Gliwice, Poland
Full list of author information is
available at the end of the article

Abstract
Quantum architecture Search (QAS) is a promising direction for optimization and
automated design of quantum circuits towards quantum advantage. Recent
techniques in QAS emphasize Multi-Layer Perceptron (MLP)-based deep Q-networks.
However, their interpretability remains challenging due to the large number of
learnable parameters and the complexities involved in selecting appropriate
activation functions. In this work, to overcome these challenges, we utilize the
Kolmogorov-Arnold Network (KAN) in the QAS algorithm, analyzing their efficiency in
the task of quantum state preparation and quantum chemistry. In quantum state
preparation, our results show that in a noiseless scenario, the probability of success is
2× to 5× higher than MLPs. In noisy environments, KAN outperforms MLPs in fidelity
when approximating these states, showcasing its robustness against noise. In tackling
quantum chemistry problems, we enhance the recently proposed QAS algorithm by
integrating curriculum reinforcement learning with a KAN structure. This facilitates a
more efficient design of parameterized quantum circuits by reducing the number of
required 2-qubit gates and circuit depth. Further investigation reveals that KAN
requires a significantly smaller number of learnable parameters compared to MLPs;
however, the average time of executing each episode for KAN is higher.

Keywords: Kolmogorov-Arnold network; Quantum architecture search; Quantum
state reconstruction; Quantum chemistry

1 Introduction
Recent research has advanced quantum computing concepts and software development,
yet, significant challenges remain before real-world applications are feasible. Automat-
ing quantum algorithm design via machine learning and optimization algorithms offers
promising solutions to enhance quantum hardware and programming capabilities for
complex problems. Strongly inspired by neural architecture search [1], Quantum Archi-
tecture Search (QAS) [2, 3] is introduced.

QAS encompasses techniques to automate the optimization of quantum circuits and it
typically consists of two parts. In the first part, a template of the circuits is built where the
circuit can have parameterized quantum gates, e.g., rotation angles. Then, these parame-
ters are determined via the variational principle using a classical optimizer in a feedback
loop. Algorithms constructed via this technique are called Variational Quantum Algo-
rithms (VQA) [4, 5]. The parameterized circuit design in VQAs is critical, as it directly
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influences the expressivity and efficiency of the quantum solution. Hence to automate the
search for an effective circuit, in the next part, a search algorithm is employed to decide
the quantum gates and the corresponding parameters. Recently, QAS has been utilized to
automate the search for optimal parameterized circuits for VQAs. QAS also finds appli-
cation in determining non-parameterized circuits as an approach for quantum program
synthesis [6] and multi-qubit maximally entangled state preparation [7].

One of the most prominent methods to tackle QAS problems is to use Reinforcement
Learning (RL) (RLQAS) [7–12] as the search algorithm. In this approach, quantum cir-
cuits are defined as a sequence of actions generated by a trainable policy. The cost func-
tion’s value, optimized independently by a classical optimizer, serves as a signal for the
reward function. This reward function guides the policy updates to maximize expected
returns and select optimal actions for subsequent steps. Maximization of the expected
return is achieved by training Neural Networks (NNs). Recently, NNs have shown po-
tential in quantum information tasks [13, 14]. RLQAS with deep NNs can overcome the
trainability issues of VQAs [15, 16] and has demonstrated promising outcomes in NISQ
hardware [10, 11].

In a recent work [17], researchers have introduced Kolmogorov-Arnold Networks
(KANs) as a novel neural network architecture typically poised to replace traditional
Multi-Layer Perceptrons (MLPs). Contrary to the universal approximation theorem-based
MLPs, KAN utilizes the Kolmogorov-Arnold representation theorem to approximate
complicated functions. KAN has linear weights replaced by spline-based univariate func-
tions along the network edges and is structured as learnable activation functions. Such
a design enhances the accuracy and interpretability of the networks, enabling them to
achieve comparable or superior results with smaller network sizes across a range of tasks,
including data fitting and solving partial differential equations. Recently, different vari-
ants of KAN have been introduced [18–23]. KAN has applications in time series analy-
sis [24–26], satellite image classification [27], and improving the robustness of neural net-
work architectures [28]. To understand the full potential and limitations of KANs there
is a need for further investigation towards robustness and compatibility with other deep
learning architectures.

In this article, we evaluate the practicality of KANs in quantum circuit construction,
analyzing their efficiency in terms of the probability of success, frequency of optimal so-
lutions and their dependencies on various degrees of freedom of the network.

To the best of our knowledge, the application of Kolmogorov-Arnold Networks in Quan-
tum Architecture Search is still lacking in standard literature. We propose the application
of KAN in QAS by replacing the MLP of Double Deep Q-Network (DDQN) in RLQAS with
KAN to generate the desired quantum state, introducing KANQAS.1 As shown in Fig. 1, the
proposed framework of KANQAS features an RL-agent, which contains the KAN, inter-
acting with a quantum simulator. The agent sequentially generates output actions, which
are candidates for quantum gates on the circuit. The fidelity of the state from the con-
structed circuit is compared to the quantum state fidelity of the circuit and is evaluated to
determine how far it is from the desired goal. The reward, based on fidelity, is sent back
to the RL-agent. This process is repeated iteratively to train the RL-agent. We show that
in a noiseless scenario when constructing Bell and Greenberger–Horne–Zeilinger (GHZ)

1Link to KANQAS code repository.

https://github.com/Aqasch/KANQAS_code/tree/main
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Figure 1 The schematic for KANQAS illustrates how the Kolmogorov-Arnold Network (KAN) replaces the
traditional multi-layer perceptron in the Reinforcement Learning (RL) agent. In this setup, the environment,
which incorporates a quantum algorithm, interacts with the RL-agent powered by a KAN-driven double
deep-Q network, referred to as KAQN. Following an ε-greedy policy, the agent selects its next action based
on the reward function and the RL-state received from the environment. For the details of the reward function
construction and quantum circuit encoding into an RL-state check the Sect. 4 and Appendix A.1 respectively

states, the probability of success and the number of optimal quantum circuit configura-
tions to generate the states are significantly higher than MLPs. In a noisy scenario, we show
that KAN can achieve a better fidelity in approximating GHZ state than MLPs, where the
performance of the MLP significantly depends on the depth of the network and choice
of activation function. We also address quantum chemistry problems, where we find the
ground state of 4-qubit H2 and LiH molecules using recently proposed Curriculum Re-
inforcement Learning for Quantum Architecture Search (CRLQAS) [11]. In our version
of CRLQAS, we replace the MLP structure with KAN in the curriculum reinforcement
learning subroutine. Our results show that KAN demonstrates the ability to provide a
more compact parameterized quantum circuit, in terms of less number of 2 qubit gates
and depth for finding the ground state of the chemical Hamiltonian using VQE, with a
significantly reduced number of learnable parameters.

The structure of the paper is as follows. Section 2 discussed key related developments in
QAS. We present the problem statement in Sect. 3. Section 4 provides the methods used
in this work. Specifically, we introduce the Kolmogorov-Arnold Q Network in Sect. 4.1
and discuss the RL-state, action and reward function in Sect. 4.2. We present our results
in Sect. 5. Specifically, we discuss the results for state preparation using noiseless simula-
tions in Sect. 5.1.1, noisy simulations in Sect. 5.1.2 and for quantum chemistry simulation
in Sect. 5.2. The resource requirements for the simulations in estimated in Sect. 6. We
provide concluding remarks and discuss open problems in Sect. 7.
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2 Related works
In the past few years, several key developments in the field of Quantum Architecture
Search (QAS) have emerged that aim to enhance the efficiency and performance of these
algorithms. The majority of these research works, in a nutshell, tackle the QAS problem by
either developing sophisticated optimization strategies or utilizing well-established meth-
ods from classical machine learning such as Reinforcement Learning (RL).

In [29], the authors introduce a framework that utilizes neural networks to predict the
performance of quantum circuit architectures, significantly enhancing the efficiency of the
architecture search process. In [2], the authors utilize Monte Carlo sampling to search for
Parameterized Quantum Circuits (PQCs) to solve combinatorial optimization problems.
Following this line of research, Ref. [30] utilizes the Gumbel-Softmax sampling technique
to sample quantum circuits and benchmark the QAS on quantum chemistry tasks. In [10],
a QAS method based on supernet and weight sharing strategy was introduced to better
estimate energy for quantum chemistry tasks. In [31], by employing a “SuperCircuit” en-
capsulating various PQCs, QuantumNAS facilitates an efficient search for optimal cir-
cuit architectures and qubit mappings to solve quantum chemistry problems. In [32], the
authors incorporate the information corresponding to the gradient of the PQCs, which
reduces the computational burden associated with evaluating candidate architectures in
QAS, allowing for more effective exploration of the design space in quantum computing
tasks. To bypass the training subroutine of different quantum architectures in [33] the au-
thors propose a proxy-based training-free QAS algorithm. Where among the two proxies,
the first one eliminates the unpromising PQCs and the second proxy, based on the express-
ibility of the PQCs to assess their performance. Moreover, in [34], a framework is proposed
that automates the design of quantum circuit structures for interconnected quantum pro-
cessing units, incorporating innovative methods for nonlocal gate implementation and
qubit assignment to enhance computational efficiency.

Reinforcement Learning (RL) based QAS namely, RLQAS has also been considered to
automate the search for optimal PQCs. Typically, RL approaches employ a carefully de-
signed reward function to train the agent to choose suitable gates. In [8] the authors em-
ployed Double Deep Q-Network (DDQN) to estimate the ground state of chemical Hamil-
tonians. Following this line of approach in [11], the authors tackle QAS problems under
realistic quantum hardware. This is achieved by introducing a tensor-based encoding for
PQCs, a gate-set pruning approach, and a sophisticated second momentum-based classi-
cal optimization method, as well as by minimizing environment-agent interaction. In [9],
by utilizing a novel encoding method for the PQCs, a dense reward function, and an ε-
greedy policy, the authors tackle the quantum state diagonalization problem. Additionally,
in [35], the authors show that by utilizing RL, it is possible to solve the hard instances of
combinatorial optimization problems where state-of-the-art algorithms perform subop-
timally. Finally, in [12], the authors leverage insights from quantum information theory,
which helps the RL-agent to prioritize certain architectural features that are likely to pro-
vide better performance in QAS.

For a more brief overview of QAS approaches we encourage the authors to check the
refs. [36–38].

3 Problem statement
In the previous section, we observed that significant research has focused on leverag-
ing classical neural network architectures to improve the performance of RLQAS meth-
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ods. While Multi-Layer Perceptron (MLP) structures in RL offer advantages, the num-
ber of trainable parameters grows rapidly with problem size, and their performance is
highly sensitive to the choice of activation function. This work addresses the question: Can
Kolmogorov-Arnold Network (KAN) [17] replace the MLP structure in RLQAS to achieve
comparable or better performance while mitigating the issues of parameter growth and ac-
tivation function selection? We demonstrate that the answer is affirmative by tackling two
crucial problems in quantum computation which are described in the following sections.

3.1 Quantum state preparation
To evaluate the efficiency of RL-assisted KANQAS in quantum circuit construction we
check if, in a noiseless and noisy scenario, multi-qubit entanglement can be generated as
expected. To this end, we target the generation of two kinds of quantum states: Bell and
Greenberger–Horne–Zeilinger (GHZ) states. A Bell state is a maximal 2-qubit entangled
state and is given by

|�+〉 =
1√
2

(|00〉 + |11〉) . (1)

The optimal circuit to produce a Bell state is given by

(2)

Meanwhile, a GHZ state is a 3-qubit maximally entangled state given by

|GHZ〉 =
1√
2

(|000〉 + |111〉) , (3)

and the optimal circuit produces a GHZ state given by

(4)

As a measure of the efficiency of the network, we define the probability of success and
the probability of optimal success. The probability of success is given by

Number of times the network finds an admissible circuit
Total number of admissible circuits

, (5)

As the problem statement clarifies, any circuit that generates a Bell state and a GHZ
state is considered an admissible circuit. Meanwhile, Fig. 2 and 4 are optimal admissible
circuits to generate 2- and 3-qubit maximally entangled state.
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3.2 Quantum chemistry
Quantum chemistry [39] utilizes quantum mechanics to understand the behavior of atoms
and molecules. Its main goal is to understand the electronic structure of chemical systems
and dynamics, enabling predictions about their chemical and physical properties. This
involves examining the electronic ground and excited states, reaction pathways, and tran-
sition states, crucial for explaining reactivity and interactions within chemical systems.

The Variational Quantum Eigensolver (VQE) is a quantum-classical algorithm that is
designed to find the ground state energy of quantum systems, making it particularly useful
for studying molecular systems where traditional computational methods may struggle
due to the complexity and the exponentially growing size of the systems.

In VQE, the objective is to find the ground state energy of a chemical Hamiltonian H by
minimizing the energy

C(�θ ) = min
�θ

(
〈ψ(�θ )|H|ψ(�θ)〉

)
. (6)

The trial state |ψ(�θ )〉 is prepared by applying a Parameterized Quantum Circuit (PQC),
U(�θ), to the initial state |ψinitial〉, where �θ specify the rotation angles of the local unitary
operators in the circuit.

The structure of the PQC is one of the crucial factors affecting the performance of the
VQE. Among the recently proposed RLQAS methods for automating the search for PQC
in VQE, Curriculum Reinforcement Learning (CRL) for QAS, i.e., CRLQAS [11] demon-
strates promising outcomes to find the ground state of various chemical Hamiltonian in
the noiseless scenario and under hardware error with short PQCs.

Hence, to evaluate the efficiency of KAN in PQC construction for quantum chemistry
problems we replace the MLP structure utilized in CRLQAS with KAN. Utilizing the CRL-
assisted KANQAS we find the ground state of 4-qubit H2 and LiH molecules. The exact
molecular structures of these molecules are provided in Table 1.

4 Methods
4.1 Kolmogorov-Arnold Q Networks (KAQN)
In a recent work [17], Kolmogorov-Arnold Networks (KAN) was proposed as a promis-
ing alternative to the Multi-Layer Perceptrons (MLP). KAN is based on the Kolmogorov-
Arnold representation theorem [40] instead of the Universal Approximation Theorem [41]
used in MLP. The Kolmogorov-Arnold representation theorem states that a real-valued,
smooth and continuous multivariate function g(t) : [0, 1]n →R can be represented by a
superposition of univariate functions [40]

g(t) =
2n+1∑
j=1

�j

( n∑
k=1

ψjk

)
, (7)

Table 1 List of molecules included in our simulations, with configuration coordinates provided in
angstroms

Molecule Basis Fermion to qubit mapping Geometry Number of qubits

H2 sto3g Jordan-Wigner H (0, 0, –0.35); H (0, 0, 0.35) 4
LiH sto3g Parity Li (0, 0, 0); H (0, 0, 3.4) 4
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where �j :R→R and ψjk : [0, 1] →R. In other words, any multivariate continuous func-
tion on a bounded domain can be expressed as a composition of continuous functions of
one variable. This reduces the task of learning complex multi-variable functions to learn-
ing a polynomial number of single-variable functions. It was noted by the authors of [17]
that the representation of the function in Eq. (7) has two layers of nonlinearity with 2n + 1
terms in the middle layer, and we need to find functions �i and ψij to approximate g(t).
The function ψij may be approximated using B-splines [42].

A spline is a piecewise smooth polynomial function defined by a set of control points.
It is defined by the order l of the polynomial used to interpolate the curve between the
control points. We denote the number of segments between adjacent control points as G.
The data points are connected by the segments to form a smooth curve having G + 1 grid
points. It is observed that Eq. (7) can be represented as a two-layer network having acti-
vation functions at the edges and nodes performing the summation operation. However,
such a network is too restrictive to approximate any arbitrary function. A way to over-
come this was proposed in [17], where the authors propose a general architecture with
wider and deeper KANs.

The authors of [17] define a KAN layer by a matrix � of trainable univariate spline
functions {ψjk(.)} with j = 1, . . . , ni and k = 1, . . . , no, where ni and no denotes the number
of inputs and outputs respectively. The Kolmogorov-Arnold representation theorem can
be expressed as a two-layer KAN. The inner functions constitute a KAN layer with ni = n,
no = 2n + 1 while the outer function is another KAN with ni = 2n + 1, no = n. We define
the shape of a KAN by [n1, . . . , nk] with k denoting the number of layers of the KAN. The
Kolmogorov-Arnold representation theorem can be expressed as a KAN of shape [n, 2n +
1, 1]. A deeper KAN can be expressed by the composition k layers:

z = KAN(t) = (�k ◦ �k–1 ◦ · · · ◦ �1)t. (8)

Since all functions are differentiable, KAN can be trained using backpropagation [43]. For
the sake of simplicity, we describe a 2-depth KAN as [ni, n, no], where the input layer is
not included in the depth count. The output and input layers will be comprised of no, and
ni nodes corresponding to the total amount of time steps while n describes the number of
the hidden layers.

KAN can learn features and compositional structure due to their outer structure resem-
bling MLPs and optimize the learned features by approximating the univariate functions
with high accuracy due to their internal spline structure. It should be noted that increas-
ing the number of layers of the dimension of the grid increases the number of parameters
and, hence, the complexity of the network.

Motivated by the developments in [44], we replace the Multi-Layer Perceptron (MLP)
component of Deep Q-Networks (DQN) with the KAN. Furthermore, we employ the Dou-
ble Deep Q-Network (DDQN) update rule to enhance stability and learning efficiency.
DDQN [45] is a Q-learning algorithm based on standard DQN [46], which features two
neural networks to increase the stability of the prediction of Q-values for each state and
action pair. For more details, see Appendix A.2.

4.2 RL-state, action space and reward function
The RL environment in KANQAS is encoded using the tensor-based one-hot encoding
method described in [11]. However, the tensor’s dimensions vary depending on the size
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of the action space. The RL-state encoding translates a quantum circuit into a tensor of

size = Dmax × N × (N + N1q), (9)

where Dmax is a hyperparameter and is defined as the maximum allowed gates per episode
i.e. the length of an episode, N is the number of qubits and N1q defines the number of 1-
qubit gates. The first N × N encodes the position of the 2-qubit gate and the remaining
N × N1q encodes the position of the 1-qubit gate. For a brief discussion on the quantum
circuit encoding see Appendix A.1.

Meanwhile, the definition of the reward function varies depending on the problem un-
der consideration. These aspects are further elaborated in the following sections.

Quantum state preparation In this problem, we initialize with an empty quantum circuit
(i.e. without any gates). Depending on a fidelity-based reward function of the form

R =

⎧⎨
⎩
R, if F(st) ≥ 0.98

F(st), otherwise
(10)

and by following an ε-greedy policy the RL-agent sets the probability of selecting a random
action. Where F(st) is the fidelity of a state at step t generated by KANQAS and R	 F(st),
is a hyperparameter.

The random action is chosen from a predefined action space (A) which contains non-
parametrized 1- and 2-qubit gates [7]

A = {CX,X,Y,Z,H,T}. (11)

Depending on the action the RL-state, which is encoded into a tensor of dimension
Dmax ×N × (N + 5), is modified in the next step. For further elaboration, check the detailed
discussion of the encoding of PQC provided in Appendix A.1.

Quantum chemistry Following the same principle as discussed in the previous section,
in this problem, we initialize with an empty quantum circuit (i.e. without any gates). How-
ever, for a fair comparison with MLP bases CRLQAS, we utilize a reward function of the
form

R =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

5 if Ct < ξ ,

–5 if t ≥ Dmax and Ct ≥ ξ ,

max
(

Ct–1–Ct
Ct–1–Cmin

, –1
)

otherwise

(12)

where Ct is the VQE cost function (see Eq. (6)) at RL step t and ξ is a hyperparameter, but
for VQE it is the chemical accuracy 0.0016 Hartree. Dmax is a hyperparameter that defines
the maximum number of actions per episode, i.e. length of an RL-episode. The random
action is chosen from a predefined action space (A) which contains parametrized 1- and
non-parameterized 2-qubit gates [8, 9, 11]

A = {CX,RX,RY,RZ}. (13)
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Depending on the action, the RL-state, which is encoded into a tensor of dimension Dmax ×
N × (N + 3), is modified in the next step. An elaborated discussion of the encoding is
provided in Appendix A.1.

Throughout the paper, the configurations of KANs and MLPs are written using the short
notation: KANl+1,nh for a KAN and MLPl+1,nh for an MLP where l number of hidden layers
in the neural network, and nh is the number of neurons per hidden layer. For example, a
KAN with the structure [ni, n(1)

h , n(2)
h , . . . , n(l)

h , no] is written as KANl+1,nh , where the depth
of the network is l + 1 and each hidden layer has nh neurons. ni is calculated using the
Eq. (9), for an example while tackling the 2-qubit (N = 2) state reconstruction problem, we
consider an action space consisting of five 1-qubit gates i.e. N1q = 5 and one 2-qubit gate
with the maximum achievable depth Dmax = 6. Hence, following Eq. (9), we get ni = 84. To
solve the problem, we consider a KAN of depth 2, and the number of neurons per hidden
layer is nh = 3, i.e. [84, 3, 12]. The size of the output is 12 because, for 2-qubit, the CX gate
has two variants CX12 and CX21 where the target in the later is on the first and the former
is in the second qubit. Meanwhile, as the 1-qubit gates can be added on both qubits so, for
five 1-qubit gates, we have 10 actions, hence a total of 12 actions.

5 Results
In this section, we benchmark the performance of KANQAS for quantum state prepara-
tion and quantum chemistry tasks and show that, in many instances, a KAN configuration
outperforms an MLP with a lesser number of trainable parameters. For the quantum state
preparation, we consider the task of finding a 2- and 3-qubit maximally entangled state in
the noiseless and noisy scenario and for quantum chemistry, we use the KAN and MLP
structures to find the ground state of 4-qubit H2 and LiH molecules.

5.1 Quantum state preparation
5.1.1 Noiseless simulation
In the noiseless case, we consider the structure of the KAN and the MLP as presented in
Table 5. One of the prominent advantages of KAN is that its activation function is learn-
able; meanwhile, in the case of MLP, the activation function is a hyperparameter. In the
upcoming sections, we will see that the performance of the MLP is heavily dependent on
the choice of the activation function.

For the construction of Bell state, we run a total of 10,000 episodes where within each
episode, we allow the agent to create a quantum circuit of maximum depth 6, i.e. Dmax = 6.
For a better representation of the results, we divide the total number of episodes into 4 in-
tervals, where each interval contains 2500 episodes. Figure 2(a) investigates the probability
of success in each interval, which is calculated using (5). Meanwhile, in Fig. 2(b), we see
the variation in the number of optimal admissible circuits in each interval. We call a quan-
tum circuit an admissible circuit when the state generated by it obtains a positive reward
based on the reward function in Eq. (10).

In each interval, the probability is averaged over 20 random seeds, where each seed
corresponds to the random initialization of the network. We observe that the probability of
success with an MLP and KAN is comparable in the first 3 intervals, but in the 4th interval,
i.e., in the episode range of 7500 – 10,000, the probability of success achieved by KAN is
higher. With MLP, the best probability of success achievable in the 4th interval is 35.36%

whereas with KAN, we can achieve a success probability 36.31%, whereas the number of
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Figure 2 In (a) the probability of successful circuits and in (b) the probability of optimal successful circuits in
finding a 2-qubit maximally entangled state is slightly higher with KAN than MLP. A total of 10,000 episodes
are divided into 4 separate intervals where each interval contains 2500 episodes. In (a), each point in an
interval corresponds to the probability of occurrence of a successful episode (see Eq. (5)). Similarly, (b)
corresponds to the number of occurrences of an optimal successful episode. The results are averaged over 20
random seeds (i.e. initialization) of the networks

optimal admissible ansatz achievable by both networks is the same. This indicates that
KANs have the potential to generate more diverse solutions to the same problem than
MLPs.

Meanwhile, the difference in performance between KAN and MLP becomes significant
in the task of constructing the GHZ state. Here we consider a depth 2 (containing a single
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hidden layer) MLP with 3 neurons (MLP2,3) and depth 4 (containing 3 hidden layers) MLP
with 30 neurons (MLP4,30) and compare its performance with a depth 2 KAN containing
3 neurons (KAN2,3). We run a total of 8000 episodes where in each episode, the RL-agent
is allowed to make a quantum circuit of maximum depth Dmax = 12. Just like the previous
2-qubit experiment, we divide the total number of episodes into 4 intervals where each
interval contains 2000 episodes.

In Fig. 3(a) we observe that the average probability of success with KAN2,3 is higher than
both MLP2,3 and MLP4,30 over 15 random initialization of the networks. This difference
becomes truly significant when we consider the best performance at the 4th interval. With
KAN2,3 we can achieve a probability of success in the final interval 48.41% whereas with
MLP2,3 and MLP4,30 we get 38.23% and 38.61% respectively, indicating a 10.18 – 9.8%

performance enhancement with KAN.
In Fig. 3(b), we observe that on average (over 15 random initialization of the networks),

one can achieve a higher number of optimal admissible ansatz using KAN2,3 than the
MLPs. Meanwhile, when we consider the best performance in the 4th interval the num-
ber of optimal admissible ansatz achievable by KAN is 1.84× to 5.16× higher than MLP2,3

and MLP4,30 respectively. Noticing the significant improvement of RLQAS with KAN in
the noiseless scenario, in the following section, we focus on a more realistic setting where
quantum gates are subject to noise.

5.1.2 Noisy simulation
For the noisy simulation of Bell state preparation, we consider two forms of gate errors.
The gate error refers to the imperfection in any quantum operation we perform. For the
1-qubit gate error, we consider random X noise where with probability px an X gate is
applied to the circuit and with 1 – px it applies an I. Meanwhile, for 2-qubit gate error,
we apply depolarizing noise which replaces the state of any qubit with a random state of
probability pdep. Under these noisy scenarios, we utilize different configurations of MLP
and KAN (summarized in Table 2) to reconstruct the Bell state.

At the first stage, we consider noise levels px = 0.1 and pdep = 0.01, under these circum-
stances the MLP4,30 (i.e. an MLP of depth 4 and 30 neurons) can achieve a fidelity 99.25%

whereas the same fidelity can be achieved with KAN with just depth 2 and 2 neurons. Now
to elevate the hardness of the problem, in the second experiment, we consider the follow-
ing noise levels: px = 0.3 and pdep = 0.2. With KAN configuration presented in Table 2 we
can achieve a fidelity of 73.28% which MLP4,30 with ReLU and LeakyReLU activation func-
tions cannot achieve. Even when the number of neurons is increased tenfold compared to
KAN, MLP4,100 (i.e., MLP with depth 4 and 100 neurons) still fails to surpass KAN’s fi-
delity using ELU and ReLU activation functions. However, with LeakyReLU activation, it
achieves a higher fidelity of 85%.

This leads to the conclusion that to achieve competitive/better performance with an MLP,
it is necessary to fine-tune not just the network’s depth and width but also the activation
function. However, with KAN, this process becomes much more straightforward, as the ac-
tivation functions are learnable.

One can argue that KAN has two additional parameters: splines (k) and grid (G), and
tuning these hyperparameters can heavily affect its performance. In Fig. 4, for constructing
GHZ state, we show that to achieve better performance in terms of the depth and number
of gates variation in the number of splines (i.e. k) is more effective and stable for the network
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Figure 3 In (a) the probability of successful circuits and in (b) the total number of optimal successful circuits
in finding a 3-qubit maximally entangled state are noticeably higher with KAN than MLP. A total of 8000
episodes are divided into 4 separate intervals, where each interval contains 2000 episodes. In (a), each point in
an interval corresponds to the probability of occurrence of a successful episode (see Eq. (5)). The results are
averaged over 15 random seeds (i.e. initialization) of the networks. The range defines the best performance of
each interval for both networks. The range defines the region between the best and the worst performance in
each interval for both networks

than variation in G. Whence, in ref. [26], the authors show that achieving a better mini-
mization of the loss function grid size within the splines of KANs has a notable impact.
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Table 2 KAN outperforms most of the configurations of MLPs except when MLP4,100 is operated
with LeakyReLU activation function for noisy Bell state preparation with px = 0.3 and pdep = 0.2. This
helps us conclude that to achieve competitive/better performance with an MLP, it is necessary to
fine-tune not just the network’s depth and width but also the activation function In configuration
[84, 10, 10, 12] the KAN takes 84 inputs that encode the quantum circuit, calculated using Eq. (9) for
Dmax = 6, N = 2 and N1q = 5 and outputs 12 actions after passing through 2 hidden layers containing
10 neurons

Network Configuration Spline and grid Activation func. Fidelity

KAN3,10 [84, 10, 10, 12] B-spline, k = 4, G = 5 learnable 0.7328
MLP4,30 [84, 30, 30, 30, 12] NA ReLU 0.5005

NA LeakyReLU 0.7300
MLP4,100 [84, 100, 100, 100, 12] NA ELU 0.6830

ReLU 0.7300
LeakyReLU 0.8500

Figure 4 The number of splines (k) has more impact in improving and stabilizing the performance of the
KAN than the grid size (G). Here we measure the improvement of the KAN while constructing the GHZ state
by calculating the average number of gates and depth in each setting. Each point is marked as (a,b) where a
is the total number of successful episodes and b total optimal successful episodes

Meanwhile, loss function minimization is crucial for Variational Quantum Algorithms
(VQAs), so it is much needed to fine-tune the grid size while optimizing parameterized
gates within Parameterized Quantum Circuits (PQCs) of many VQAs. Following these
developments in the upcoming section, we tackle the construction of a PQC that can con-
struct the ground state of chemical Hamiltonians with a very small number of 2-qubit
gates and trainable parameters.

5.2 Quantum chemistry
In this section, we utilize the recently introduced Curriculum Reinforcement Learning for
Quantum Architecture Search (CRLQAS) [11] algorithm to automate the search for PQCs
for quantum chemistry problems. Replacing the MLP in the curriculum reinforcement
learning algorithm by KAN, we evaluate the performance of the neural network compared
to an MLP. These neural networks are utilized to find the ground state of 4-qubit H2 and
LiH molecules. The molecular structures are discussed in detail in Appendix A.3 in the
Table 1.

In finding the ground state of H2 molecule, we consider an MLP of depth 6 (equiva-
lently containing 5 hidden layers) with each layer containing 1000 neurons, i.e. MLP6,1000,
which is compared with a KAN of depth 4 (equivalently 3 hidden layers) with 3 neurons
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Figure 5 KAN outperforms MLP in finding a parameterized quantum circuit that solves the 4-qubit LiH and
H2 molecule. We solve a molecule when its energy goes below the chemical accuracy, i.e., 1.6× 10–3 Hartree.
In the plot, the average corresponds to the average performance of the neural networks over three distinct
initializations, and the minimum is the best-performing seed among the three. We consider KAN4,3 that
corresponds to a KAN of depth 4 and 3 neurons, whereas MLP6,1000 and MLP4,100 defines MLP of depth 6 with
1000 neurons and MLP of depth 4 with 100 neurons respectively. It should be noted that an MLP of
configuration MLP6,1000 outperforms KAN in the number of 2-qubit gates, depth, and the total number of
parameters, but the number of trainable parameters required for the MLP is 5.15× 106 which is very large
compared to 5.52× 104 parameters of KAN

i.e. MLP4,3. Meanwhile, to find the ground state of LiH molecule we consider MLP4,100

and compare its performance with KAN4,3. For more details on the configuration of the
neural networks see Table 6.

In Fig. 5, we benchmark the results by calculating the total number of 2-qubit gates,
the depth, and the total number of gates in the PQC. These parameters are labelled as
2-qubit gate, Depth, and Numb. gate on the x-axis of Fig. 5. In both cases, we observe that
KAN4,3 outperforms various MLP configurations in terms of average (as well as minimum)
depth and 2-qubit gate count. This indicates that KAN4,3 can find more compact PQCs for
solving the H2 and LiH molecules compared to MLP6,1000 and MLP4,100. However, the total
number of gates required to solve these problems is smaller with MLP, suggesting that for
a parameterized quantum circuit with fewer 1-qubit gates, it is preferable to choose MLP
over KAN in CRLQAS.

In Appendix A.4, we further investigate two different configurations of KAN and MLP
to find the ground state of the 4-qubit LiH. The results reveal that while larger config-
urations, such as MLP6,1000, outperform KAN, they require 5× to 100× more learnable
parameters. However, when considering a comparable number of learnable parameters, for
instance, MLP4,500 and KAN4,50, KAN achieves the ground state with a shallower PQC and
fewer 2-qubit gates. Although MLP results in a lower error in estimating the ground state,
our objective in quantum chemistry is to attain chemical accuracy, defined as 1.6 × 10–3

Hartree2 [47]. Given that the noise in 2-qubit gates is significantly higher than in 1-qubit
gates [48], KAN demonstrates considerable promise for solving quantum chemistry prob-
lems on real quantum hardware.

2The chemical accuracy is often defined as being within 1 kcal/mol, which is an experimental value, as 1 Hartree =
627.5095 kcal/mol, therefore 1 kcal/mol is equal to approximately 0.0015934 ≈ 0.0016 Hartree.
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Table 3 KAN requires 2-3× less learnable parameters in the task of quantum state preparation.
Meanwhile, in finding the ground state of LiH and H2 KAN takes 2.4-93× fewer parameters
respectively and still solves the problems with smaller parameterized quantum circuits than MLP. To
simplify, we denote the networks by their depth and number of neurons. For instance, a KAN with
configuration [288, 3, 21] is abbreviated as KAN2,3, where 2 represents the network depth (excluding
the input layer) and 3 denotes the number of neurons in the hidden layer. Meanwhile, 288 is the size
of the input calculated using the Eq. (9) for Dmax = 12, N = 3, and N1q = 5, and 21 is the number of
actions. The same shorthand notation is applied to MLP networks

Problem Network Configuration Spline and grid Parameter count

Bell state prep. (noiseless) KAN KAN2,2 B-spline, k = 3, G = 5 1728
MLP MLP4,30 NA 4782

GHZ state prep. (noiseless) KAN KAN2,3 B-spline, k = 3, G = 5 5562
MLP MLP4,30 NA 11,181

Bell state prep. (noisy) KAN KAN3,10 B-spline, k = 4, G = 5 9540
MLP MLP4,100 NA 29,912

H2 ground state KAN KAN4,3 B-spline, k = 4, G = 5 5.525 × 104

MLP MLP6,1000 NA 5.150× 106

LiH ground state KAN KAN4,3 B-spline, k = 4, G = 5 5.525 × 104

MLP MLP4,100 NA 1.348× 105

Table 4 A new version of KAN [49] is approximately 3.46× slower than MLPs, which is far better than
the older version, which was 120× slower for quantum state preparation. Meanwhile, KAN is 2.92×
and 2.787× slower than MLP in finding the ground state of 4-qubit H2 and LiHmolecule
respectively

Problem Network Configuration Avg. time per episode

GHZ state prep. KAN KAN2,3 0.2049
MLP MLP4,30 0.0592

H2 ground state KAN KAN4,3 2.2103
MLP MLP6,1000 0.7552

LiH ground state KAN KAN4,3 3.3737
MLP MLP4,100 1.2102

6 Resource details
Here we quantify the resources such as (1) the total number of learnable parameters and
(2) the time of execution of each episode with the two networks required by KAN and
MLP for the simulations presented in the previous section.

6.1 Parameter count
With depth L and width N , an MLP only requires O(N2L) parameters whereas a KAN
requires O(N2L(G + k)) parameters. In Table 3 for the quantum state preparation and
in Table 7 for quantum chemistry problems, we calculate the total number of learnable
parameters required for KANs and MLPs in noisy and noiseless scenarios. We observe
that in all cases KAN requires a lesser number of parameters than MLP.

6.2 Time of executing each episode
Although KAN requires fewer learnable parameters than MLPs, the average time of exe-
cuting each episode for KAN is 120× higher. A recently released version of KAN, named
MultKAN [49], executes an episode approximately 3.46× slower than MLPs. The time re-
quired for KAN to solve state preparation and quantum chemistry problems are summa-
rized in Table 4.
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7 Discussion and future work
This work analyses the practicality of the question: Can Kolmogorov-Arnold Network
(KAN) replace the Multi-Layer Perceptron (MLP) structure in Quantum Architecture
Search (QAS) to achieve comparable or better performance while mitigating the issues of
parameter growth and activation function selection? We demonstrate that the answer is
affirmative by tackling the quantum state preparation task and finding the ground state of
chemical Hamiltonians. To this end, we propose KAN for QAS, namely KANQAS, which
replaces the MLP in the reinforcement learning-assisted quantum architecture search of
the double deep Q-network with the KAN.

Our experiments reveal that KANQAS can increase the probability of success of the RL-
agent in finding optimal quantum circuits compared to MLPs in constructing multi-qubit
maximally entangled states with non-parameterized gates. Moreover, when noise is present
in the quantum device, achieving similar or better outcomes with an MLP necessitates a
deeper and wider network compared to KAN, as well as a careful selection of the appro-
priate activation function. Since finding the optimal activation function for deep learning
remains an ongoing challenge [50, 51], KAN has an advantage, as its activation functions
are inherently learnable.

In addressing quantum chemistry problems, KAN demonstrates the ability to provide a
more compact parameterized quantum circuit, with less number of 2 qubit gate and depth
for finding the ground state of the chemical Hamiltonian using VQE, with a significantly
reduced number of learnable parameters. It is important to note that for larger configu-
rations, such as MLP6,1000, MLP outperforms KAN configurations but requires 5-100×
more learnable parameters. When considering a comparable number of learnable param-
eters, for example, MLP4,500 and KAN4,50, KAN achieves the ground state with a parame-
terized quantum circuit of smaller depth and fewer 2-qubit gates. Although MLP results in
a lower error in estimating the ground state, our objective in quantum chemistry is to attain
chemical accuracy, defined as 1.6 × 10–3 Hartree. Given that the noise in 2-qubit gates is
significantly higher than in 1-qubit gates [48], KAN demonstrates considerable promise for
solving quantum chemistry problems on real quantum hardware.

Although the number of learnable parameters in KAN is on average 2-100× lesser than
in MLPs, one of the biggest disadvantages of KAN is that it requires 2-3× more execution
time per episode as compared to MLPs. However, due to their effectiveness and efficiency
in finding solutions in noiseless and noisy quantum devices, KAN thus appears to be a rea-
sonable alternative to traditional MLPs in solving quantum architecture search problems.
In the following, we discuss the future research directions as a follow-up to our research.

• KAN for VQAs: A primary direction for future research is addressing the quantum
architecture search problem within variational quantum algorithms, in this paper we
just show the simulation of 4-qubit H2 and LiH molecules, this study should be
expanded to bigger molecules such as H2O 8-qubits. These KAN-assisted algorithms
could have significant applications in quantum chemistry and combinatorial
optimization problems.

• Optimizing computational time of KAN : Another important goal is to explore the use
of specialized accelerators, such as tensor processing units or digital signal processors,
to reduce the computation time of KAN.

• Interpretability of KAN : Focusing on the interpretability of KAN, future research
should investigate its applicability to similar but scalable problems to enhance
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understanding. This can, for example, include the investigation of subclasses of
families of the activation function after training KAN towards concept discovery [52].
We invite readers to explore our Git repository [53] for inspiration and further
motivation in this direction.

Appendix
A.1 Tensor-based binary encoding of parametric quantum circuit
We use a binary encoding scheme [9, 11] that captures the structure of the Parametric
Quantum Circuit (PQC), specifically the order of gates, to provide the agent with a full
circuit description. To maintain a constant input size, the tensor is prepared for the deep-
est possible quantum circuit.

Figure 6 (a) For quantum state reconstruction the number of 1-qubit gates is one 5 so we encode the
quantum circuit into a tensor of dimension

[
Dmax × ((N + 5)× N)

]
(b) whereas, for the quantum chemistry

problem, the PQC is encoded into a tensor of dimension
[
Dmax × ((N + 3)× N)

]
due to the presence of 3

1-qubit gates

To construct the tensor, we first set the hyperparameter Dmax, which limits the maxi-
mum number of allowed gates (actions) in all episodes. A moment in a PQC refers to all
gates that can be executed simultaneously, defining the circuit’s depth.

We represent PQCs as 3D tensors where, at each episode, we initialize an empty cir-
cuit of depth Dmax, defined by a

[
Dmax × (

(N + N1q) × N
)]

tensor of zeros, where N is
the number of qubits, and N1q is the number of 1-qubit gates. Each matrix in the tensor
has N rows for control and target qubit positions in CNOT gates, followed by either 3 (for
quantum chemistry problems) or 5 (for quantum state reconstruction problems) rows in-
dicating the positions of 1-qubit gates as represented in Fig. 6.
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A.2 Double Deep Q-Network (DDQN)
Deep Reinforcement Learning (RL) techniques utilize Neural Networks (NNs) to adapt
the agent’s policy to optimize the return:

Gt =
∞∑

k=0

γ krt+k+1, (14)

where γ ∈ [0, 1) is the discount factor. For each state-action pair (s, a), an action value is
assigned, quantifying the expected return from state s at step t when taking action a under
policy π :

qπ (s, a) =Eπ [Gt|st = s, at = a]. (15)

The goal is to determine the optimal policy that maximizes the expected return, which
can be derived from the optimal action-value function q∗, defined by the Bellman opti-
mality equation:

q∗(s, a) =E
[

rt+1 + max
a′ q∗(st+1, a′)|st = s, at = a

]
. (16)

Instead of solving the Bellman optimality equation directly, value-based RL aims to learn
the optimal action-value function from data samples. Q-learning is a prominent value-
based RL algorithm, where each state-action pair (s, a) is assigned a Q-value Q(s, a), which
is updated to approximate q∗. Starting from randomly initialized values, the Q-values are
updated according to the rule:

Q(st , at) ← Q(st , at) + α

(
rt+1 + γ max

a′ Q(st+1, a′) – Q(st , at)

)
, (17)

where α is the learning rate, rt+1 is the reward at time t +1, and st+1 is the state encountered
after taking action at in state st . This update rule is proven to converge to the optimal
Q-values in the tabular case if all (s, a) pairs are visited infinitely often [54]. To ensure
sufficient exploration in a Q-learning setting, an ε-greedy policy is used. Formally, the
policy is defined as:

π(a|s) :=

⎧⎨
⎩

1 – εt if a = maxa′ Q(s, a′),

εt otherwise.
(18)

The ε-greedy policy introduces randomness to the actions during training, but after
training, a deterministic policy is used.

We employ NN ad function approximations to extend Q-learning to large state and ac-
tion spaces. NN training typically requires independently and identically distributed data.
This problem is circumvented by experience replay. This method divides experiences into
single-episode updates and creates batches which are randomly sampled from memory.
For stabilizing training, two NNs are used: a policy network, which is continuously up-
dated, and a target network, which is an earlier copy of the policy network. The current
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value is estimated by the policy network, while the target network provides a more stable
target value Y given by:

YDQN = rt+1 + γ max
a′ Qtarget(st+1, a′). (19)

In the DDQN algorithm, we sample the action for the target value from the policy net-
work to reduce the overestimation bias present in standard DQN. The corresponding tar-
get is defined as:

YDDQN = rt+1 + γ Qtarget

(
st+1, arg max

a′ Qpolicy(st+1, a′)
)

. (20)

This target value is approximated via a loss function. In this work, we consider the loss
function as the smooth L1-norm.

A.3 Configuration of neural networks
The detailed configurations of the KANs and the MLPs utilized in the main text to tackle
quantum state preparation and quantum chemistry problems are provided in Table 5 and
Table 6

Table 5 Configuration for noiseless GHZ and Bell state preparation. In the case of MLP, the activation
function is fixed whereas it is learned during the network training for KAN. For the sake of simplicity,
we represent the networks by their depth and number of neurons for example, for a KAN of
configuration [288, 3, 21] we use the shorthand notation KAN2,3 as the KAN is of depth 2 (i.e. 1 hidden
layer) and contains 3 neurons in the hidden layer. The KAN takes 288 size input which is the size of
the tensor that encodes the quantum state calculated using Eq. (9) for Dmax = 12, N = 3, and N1q = 5,
and returns 21 actions

Network Problem Configuration Spline and grid Activation func.

KAN Bell state prep. KAN2,2 B-spline, k = 3, G = 5 learnable
GHZ state prep. KAN2,3 B-spline, k = 4, G = 5 learnable

MLP Bell state prep. MLP4,30 NA LeakyReLU
GHZ state prep. KAN2,3

GHZ state prep. KAN4,30

Table 6 The configuration of KAN and MLP utilized in tackling quantum chemistry problems
specifically for finding the ground state of 4-qubit H2 and LiHmolecule. A detailed configuration of
these molecules is in Tab. 1. As discussed in the caption of Tab. 5, we represent the networks by their
depth and number of neurons for example, for an MLP of configuration [1121, 500, 500, 500, 24], we
use the shorthand notation MLP4,500 as the MLP of depth 4 (excluding the input layer) and of 500
neurons in the hidden layer

Network Molecule Network configuration Spline and grid Activation func.

KAN H2 KAN4,3 B-spline, k = 10, G = 5 learnable
LiH KAN2,3

KAN4,30

KAN4,50

MLP H2 MLP6,1000 NA LeakyReLU
LiH MLP4,100

MLP4,500
MLP6,1000
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Table 7 We observe that although MLP6,1000 gives the best results in all benchmarking variables, it
requires 10× more learnable parameters than KAN4,30, making it significantly more expensive in
terms of training time. For a fair comparison, KAN4,50 and MLP4,500 show a tradeoff between the
number of parameterized 1-qubit gates and 2-qubit gates, with MLP4,500 having 1.078 times more
parameters than KAN4,50. Despite having fewer parameters, KAN provides a competitive
approximation of the ground state with a shorter parameterized quantum circuit, fewer 2-qubit
gates, and smaller depth than MLP

Molecule Network
configuration

Min. 2-qubit gate Min. depth Min. 1-qubit gate Error Parameter count

4-qubit
LiH

KAN4,30 11 18 15 1.129× 10–4 5.784 × 105

KAN4,50 8 17 24 2.265× 10–4 9.960× 105

MLP4,500 13 18 13 1.100× 10–4 1.074× 106

MLP6,1000 6 11 13 3.606 × 10–5 5.152× 106

A.4 Quantum chemistry with different configurations of KAN and MLP
In this section, we further explore the different configurations of KAN and MLP in finding
the ground state of the 4-qubit LiH molecule. We use the following variables to bench-
mark the performance of the different neural networks: the minimum number of 1-qubit
gates (Min. 1-qubit gate), the minimum number of 2-qubit gates (Min 2-qubit gate), the
error in estimating the ground state energy (error), and the number of learnable parame-
ters in the network (Parameter count). The results are presented in detail in the Table 7.

From the Table 7 we observe although the MLP6,1000 provides us with the best result in
terms of all the benchmarking variables, the number of learnable parameters it requires to
achieve this outcome is 10× higher than KAN4,30, which is far more expensive in terms of
training time. Meanwhile, for the sake of fair comparison, if we observe the performance
of KAN4,50 and MLP4,500 where the number of parameters in MLP is 1.078× more than
KAN, we notice a tradeoff between the number of parameterized 1-qubit gates and the
number of 2-qubit gates. The KAN provides us with a competitive approximation of the
ground state with a shorter parameterized quantum circuit, containing less 2-qubit gate
and smaller depth than MLP despite having a smaller number of parameters. Considering
that the noise in 2-qubit gates in real quantum hardware is many scales higher than 1-qubit
gates, KAN with a comparable number of parameters, shows a large potential in quantum
architecture search in quantum hardware.
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