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Abstract—In multi-agent settings, game theory is a natural
framework for describing the strategic interactions of agents
whose objectives depend upon one another’s behavior. Trajectory
games capture these complex effects by design. In competitive
settings, this makes them a more faithful interaction model than
traditional “predict then plan” approaches. However, current
game-theoretic planning methods have important limitations. In
this work, we propose two main contributions. First, we introduce
an offline training phase which reduces the online computational
burden of solving trajectory games. Second, we formulate a
lifted game which allows players to optimize multiple candidate
trajectories in unison and thereby construct more competitive
“mixed” strategies. We validate our approach on a number of
experiments using the pursuit-evasion game “tag.”

I. INTRODUCTION

Trajectory optimization techniques have become increas-
ingly common in motion planning. So long as vehicle dy-
namics, design objectives, and safety constraints satisfy mild
regularity conditions, a motion planning problem may be
encoded as a nonlinear program and solved efficiently to a
locally-optimal solution. The widespread successes of trajec-
tory optimization have sparked growing interest in similar
techniques for multi-agent, noncooperative decision-making
and motion planning. In this context, game theory offers an
elegant mathematical framework for modeling the strategic
interactions of rational agents with distinct interests. By rea-
soning about interactions with others as a trajectory game, an
autonomous agent can plan future decisions while accounting
for the strategic reactions of others.

Since they involve multiple players with distinct, potentially
competing objectives, trajectory games can be far more com-
plex to solve than single-agent trajectory optimization prob-
lems. Recent algorithmic advances make solving trajectory
games tractable in some instances [10, 15]. Still, they remain
fundamentally more challenging to solve than single-agent
problems, and consequently, trajectory games have not been
widely adopted in the robotics community.

Perhaps more importantly, however, equilibrium solutions
to trajectory games do not always exist. Nonexistence arises
even in extremely simple static games such as rock-paper-
scissors, in which neither player wishes to commit to a
fixed, deterministic action which could be exploited by its
opponent. Unsurprisingly, the same phenomenon can arise
in more complex trajectory games. For example, consider

(a) Pure strategies (b) Mixed strategies

Fig. 1: A zero-sum game of tag played between two agents
with planer point-mass dynamics in a pentagonal environment.
(a) In pure strategies, players are bound to deterministic behav-
ior, and the evader is quickly captured. (b) Our approach lifts
the strategy space to learn more competitive, mixed strategies,
i.e., distributions over multiple trajectory candidates per player.
The opacity of each trajectory in (b) encodes probability of
selecting that learned candidate.

the game of tag shown in Figure 1, where the red pursuer
wishes to catch the blue evader. Here, if the evader chooses a
single, deterministic trajectory, it will certainly be caught by a
rational pursuer. In the context of small, discrete games such as
rock-paper-scissors, these non-existence issues are commonly
avoided by allowing players to “mix” their actions, i.e., to
choose an action at random from a distribution of their choice.
This distribution is called a “mixed strategy,” in contrast to
the choice of a single deterministic action or “pure strategy.”
However, for continuous trajectory games it can be difficult to
represent mixed strategies. Hence, it is common to regularize
players’ objectives in order to encourage the existence of pure
solutions.1 For example, in Figure 1(a) each player is penalized
for large accelerations, leading to an equilibrium in which the
evader is cornered by the pursuer.

With these issues in mind, this paper introduces the follow-
ing key contributions:

1Regularizing players’ control inputs to ensure the existence of equilibria is
well-established in the literature on dynamic games and robust control [5], [4].
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1) a principled method for reducing the online computation
needed to solve trajectory games via the introduction of
an offline training phase, and

2) a formulation of lifted games over multiple trajec-
tory candidates, which admit a natural class of high-
performance mixed strategies.

Together, these contributions enable efficient and reliable on-
line trajectory planning for autonomous agents in noncoopera-
tive settings, such as the tag example of Figure 1. We validate
our methods in a suite of Monte Carlo studies, in which we
demonstrate that lifting gives rise to mixed strategies as shown
in Figure 1(b), providing a significant competitive advantage
in both open-loop and receding-horizon play. Our method’s
reliable convergence and its ability to explicitly account for
constraints enables training from scratch within only a few
minutes of simulated self-play. Once fully trained, learning
can be disabled and our method generates mixed strategies
within 2ms for the tag example in Figure 1.

II. RELATED WORK

Our contributions build upon recent work in trajectory
optimization and game-theoretic planning, and bear a close
relationship with work in learning motion primitives and im-
plicit differentiation. We discuss these relationships in further
detail below.

A. Trajectory Optimization

Trajectory optimization refers to a finite-horizon optimal
control problem in which a robot seeks a sequence of control
inputs which minimize a performance criterion [30]. It is
common to use trajectory optimization for model predictive
control (MPC), whereby a robot quickly re-optimizes a new
sequence of control inputs as new sensor data becomes avail-
able [8]. While a host of trajectory optimization techniques
have been proposed in recent years, most common algorithms
build upon the iterative linear-quadratic regulator [28, 29, 42]
and differential dynamic programming [21, 41, 46]. In turn,
these may be understood as specific approximations to stan-
dard algorithms in nonlinear programming (NLP), such as
sequential quadratic programming [6, 33]. As discussed below,
this fundamental NLP representation underlies the proposed
approach for multi-agent trajectory games.

B. Trajectory Games

Recent work has sought to generalize the aforementioned
trajectory optimization techniques to address multi-agent,
competitive planning. Here, each player seeks to minimize an
individual performance criterion subject to constraints arising
from, e.g., dynamics and actuator limits. The objectives and
constraints for different players may, in general, depend upon
the trajectories of others. Solutions to these problems are
characterized by equilibrium points at which all players’
strategies are unilaterally optimal.

The theoretical underpinnings of dynamic games were es-
tablished in the context of state feedback [5, 20, 36, 37].
However, computational methods were historically limited

to highly-structured problems such as those found in linear
robust control [4, 18]. Recent work on iterative linear-quadratic
methods [15, 24, 25] extends these ideas to more general
games such as those found in noncooperative robotic planning.

Closely related problems have also been studied in the
context of static games. Here, equilibrium points are found
by treating the trajectory of each player as a single action,
and assuming the players choose these actions simultane-
ously [5]. This results in a Generalized Nash Equilibrium
Problem (GNEP), for which general-purpose solution methods
exist [11, 12, 13]. Several domain-specific solvers have been
developed to exploit the structure of trajectory games, ranging
from augmented Lagrangian [26] to iterated best response
methods [43, 44]. Still, these methods can have a high com-
putational burden in challenging settings.

Regardless of the equilibrium definition (dynamic or static),
solving trajectory games is fundamentally harder than solving
single-agent trajectory optimization problems, if for nothing
else but the increased problem dimension. The number of
decision variables scales linearly with the number of players
involved, and even with proper handling of sparsity, computa-
tion generally scales cubicly with the number of players [15].
In Section IV-A, we introduce an offline training phase for
trajectory games which effectively reduces the online com-
putational burden to that of solving a trajectory optimization
problem for each player in parallel.

C. Motion Primitives

In this work, we introduce a trajectory lifting technique,
which may be understood in the context of motion primi-
tives [22]. As we discuss in Section IV, this reformulation
endows each player with a distribution over finitely many
trajectory candidates, which may be learned. However, learn-
ing trajectories, or motion primitives, is also meaningful in
the context of a single agent, and recent work has proposed
this concept in the contexts of quadcopter navigation [9]
and robot manipulation [40]. In this light, the present pa-
per may be viewed as a multi-agent generalization of these
techniques. Additionally, our work constitutes an adaptive,
learning-enabled generalization of the multi-agent motion
primitive games formulated for autonomous racing in [31].
In Section IV-B, we show that these trajectory primitives may
be learned efficiently with first-order optimization.

D. Differentiable Optimization

To improve learning efficiency, we employ implicit differ-
entiation to propagate derivative information through all steps
of our proposed trajectory lifting approach. Recent works in
end-to-end neural architectures for autonomous driving have
developed specialized network layers that embed optimization
problems [1, 2, 3]. Like these methods, we obtain derivatives
of players’ game values with respect to learnable parameters
by implicitly differentiating through the first order optimality
conditions for all players in a lifted trajectory game.



III. FORMULATION

We develop our approach in the context of games played
between two2 agents over time, in which each agent’s motion
is characterized by a smooth discrete-time dynamical system.
That is, we model agent i’s motion as the temporal evolution of
its state x̄i(t) ∈ Rn and control input ūi(t) ∈ Rm over discrete
time-steps t ∈ {1, . . . , T} with x̄i(t+1) = F

(
x̄i(t), ūi(t)

)
for

differentiable vector field F (·, ·).
Taking an egocentric approach, we investigate using model-

predictive game play (MPGP) [15, 26, 44] as a method by
which each player can plan strategically while accounting
for the predicted reactions of its opponent. MPGP constitutes
a natural analogue to MPC [8] for noncooperative, multi-
agent settings. That is, at regular intervals the ‘ego’ agent
formulates a finite-horizon trajectory game between itself and
its opponent. The equilibrium of this game specifies optimal
trajectories for both players; the ego agent begins to execute
its equilibrium trajectory, and the procedure repeats after a
short time once the players have moved.

The finite-horizon trajectory games formulated at each plan-
ning interval can be modeled as a pair of coupled optimization
problems, as is common in the literature [5, 24]:

OPT1(τ2, x1) := argmin
τ1

f1(τ1, τ2)

s.t. τ1 ∈ K1(x1)
(1a)

OPT2(τ1, x2) := argmin
τ2

f2(τ1, τ2)

s.t. τ2 ∈ K2(x2)
(1b)

The decision variables τi for each player i ∈ {1, 2} represent
discrete-time state-control trajectories starting from initial con-
figuration xi. Therefore, the constraint sets Ki(xi) represent
the set of all trajectories satisfying dynamic constraints, control
limits, etc. Note that these sets need not be compact or
convex, and that the players’ constraint sets are independent
of one another’s trajectory. In contrast, the differentiable cost
functions fi(τ1, τ2) in each problem can depend upon both
players’ trajectories. Thus, the fi can encode preferences
such as goal-reaching and collision-avoidance. In particular,
since constraints are decoupled, we assume that any aspect of
interaction in the game is modeled via the cost functions and
not through constraints.

As discussed in Section II-B, existing methods to find local
equilibrium solutions of (1) include iterative best response
[44, 45] and iterative linear-quadratic methods [10, 15, 24, 26].
A Nash equilibrium for Game (1) starting from initial config-
uration (x1, x2) is defined to be a pair of trajectories, (τ∗1 , τ

∗
2 ),

satisfying

τ∗1 ∈ OPT1(τ
∗
2 , x1) and τ∗2 ∈ OPT2(τ

∗
1 , x2). (2)

Nash equilibrium points encode rational strategic play for both
players, and hence serve as a natural solution concept in trajec-
tory games (1). For this reason, most recent MPGP methods

2Although we limit our discussion to two players, our formulation may be
extended to the general case. For further discussion, refer to Section IV-C.

[10, 15, 24, 26, 45] aim to compute a Nash equilibrium of
the trajectory game (1). As a practical matter, however, Nash
equilibria can be intractable to compute and modern methods
often settle for local equilibria, in which players’ trajectories
are only locally optimal.

Several important issues arise when employing an MPGP
approach. The first is that solving for a Nash equilibrium—
even a local Nash—is harder than solving for a locally optimal
trajectory (as would be done in the single-agent setting of
MPC). Not only is the search space larger due to the inclusion
of both players’ trajectory variables, but potential complica-
tions are also introduced by agents’ different and potentially
conflicting objectives. As in MPC, real-world applications
depend upon our ability to compute solutions to (1) quickly;
unfortunately though, this increased complexity can make
MPGP unsuitable for real-time applications.

The second issue is that a Nash equilibrium point may
not even exist for Game (1), particularly when one or both
of the subproblems (1a) and (1b) are non-convex. Relatedly,
even if a Nash equilibrium does exist, it may not be unique.
Consequently, in MPGP an agent may spend significant com-
putational effort searching for an equilibrium point that does
not exist. Worse, non-uniqueness implies that even if an agent
finds an equilibrium, the opponent’s predicted Nash trajectory
may not be representative of its true strategy.

To make these issues more concrete, consider the following
“toy” variant of the tag game in Figure 1. Let τ1 and τ2 be
scalars, f1(τ1, τ2) = ∥τ1 − τ2∥22 = −f2(τ1, τ2), and K1 =
K2 = [−1, 1]. Here, the pursuer (Player 1) and evader (Player
2) choose positions in the interval [−1, 1]. By inspection, we
may verify that no Nash equilibrium exists. With additional
regularization, however, this example can be modified to admit
local equilibria. With f1 defined as above, if we redefine
the function f2(τ1, τ2) = −∥τ1 − τ2∥22 − ∥τ2∥22, two local
equilibrium points result: (−1,−1) and (1, 1). Unfortunately,
the locality of these equilibria causes a significant problem:
if Player 1 computed one of these equilibria, and Player 2
computed the other, the resulting pairing of actions, e.g.
(−1, 1), would have a significantly different outcome for the
players than what occurs at either local equilibrium.

IV. APPROACH

We propose a novel lifted trajectory game formulation which
ameliorates the complexity and existence/uniqueness issues
discussed in Section III.

A. Reducing Run-time Computation

To begin, we propose a technique for offloading the com-
plexity introduced by multi-agent interactions to an offline
training phase. The result of this pre-training is that at run-
time, only a single-agent trajectory optimization problem
remains for each player, and these problems can be solved in
parallel. To do so, we introduce auxiliary trajectory references
ξi for each Player i, and with a slight abuse of notation,



reformulate Game (1) as:

OPT1(ξ2, x1, x2) := argmin
ξ1

f1(τ1, τ2) (3a)

OPT2(ξ1, x1, x2) := argmin
ξ2

f2(τ1, τ2) (3b)

Here, the decision variables ξi and the initial states xi

determine trajectory variables τi = TRAJi(ξi, xi), which we
presume to have the form:

TRAJi(ξi, xi) := argmin
τ

1

2
∥Giτ − ξi∥22 +

1

2
∥Hiτ∥22

s.t. τ ∈ Ki(xi).
(4)

The first term of the cost functions in problem (4) enables ξi
to serve as a reference for τi. For example, if τi = [XT

i UT
i ]

T,
with Xi and Ui representing the state and control variables
of the trajectory, then Gi could be [0 I], giving ξi the
interpretation of a control reference signal. Alternatively, ξi
could represent a reference for the terminal state of the trajec-
tory. The second term allows regularization of the trajectory,
which may be needed if the reference and constraint sets are
otherwise insufficient to isolate solutions.

In Appendix A, we prove that for any stationary point
(τ1, τ2) of Game (1), there exists a stationary point (ξ1, ξ2)
of Game (3) such that for both players i, τi = TRAJi(ξi, xi).
This implies that no stationary points are “lost” in the re-
formulation from (1) to (3). Furthermore, we discuss practical
methods to guarantee that all computed stationary points of (3)
result in stationary points of (1). This implies that no spurious
stationary points are “introduced” in the reformulation.

With this reformulation, it is now possible to offload a
significant amount of computation to an offline training phase.
To do so, we propose training a reference generator for
each player, denoted by the function πθi(x1, x2), which maps
both player’s initial states (x1, x2) to reference ξi. Generator
πθi is parameterized by θi and, e.g., may be a multi-layer
perceptron as described in Section IV-D. Given a data set3 of
initial MPGP configurations D := {xk

1 , x
k
2}dk=1, we train the

reference generators (πθ1 and πθ2 ) by solving the following
game offline:

GEN1(θ2, D) := argmin
θ1

1

d

d∑
k=1

f1(τ
k
1 , τ

k
2 ), (5a)

GEN2(θ1, D) := argmin
θ2

1

d

d∑
k=1

f2(τ
k
1 , τ

k
2 ). (5b)

Similar to Game (3), each trajectory τki appearing in (5) is a
function of θi, xk

1 and xk
2 , via the relationships

τk1 = TRAJ1

(
πθ1(x

k
1 , x

k
2), x

k
1

)
,

τk2 = TRAJ2

(
πθ2(x

k
1 , x

k
2), x

k
2

)
.

(6)

3D need not be constructed laboriously; in Section V-E we show that it
can even be accumulated during online operation.

A Nash equilibrium for Game (5) can be found by simultane-
ous gradient descent over each player’s reference generator pa-
rameters, θ1 and θ2. Simultaneous gradient play is widely used
in adversarial machine learning, and is particularly important
in both generative adversarial networks [17] and multi-agent
reinforcement learning [14]. Here, each player’s parameter θi
is iteratively updated as θi ← θi − δθi, where

δθ1 =
α1

d
∇θ1

d∑
k=1

f1

(
TRAJ1(θ1, x

k),TRAJ2(θ2, x
k)
)

δθ2 =
α2

d
∇θ2

k∑
k=1

f2

(
TRAJ1(θ1, x

k),TRAJ2(θ2, x
k)
) (7)

Note that in (7), we use the shorthand xk ≡ (xk
1 , x

k
2), and

although we abbreviate the arguments to the TRAJ functions,
they should be interpreted exactly as in (6). The values α1

and α2 are learning rates used for the respective reference
generators. To compute these gradients, we must differentiate
through each player’s objective fi and through each TRAJi.
We have assumed a priori that the fi were differentiable. To
differentiate through the trajectory optimization step of (4), we
follow a procedure similar to what is outlined in [1, 2, 3].

Assuming that offline gradient play converges to a Nash
equilibrium over the training set D, and that the resulting
trajectory generators generalize to instances of (3) defined by
configurations (x1, x2) not included in D, then an approximate
equilibrium solution to Game (1), denoted by (τ̂∗1 , τ̂

∗
2 ) can be

found via the following evaluations:

ξ1 = πθ1(x1, x2), ξ2 = πθ2(x1, x2)

τ̂∗1 = TRAJ1(ξ1, x1), τ̂∗2 = TRAJ2(ξ2, x2)
(8)

Hence, at run-time, solving this reformulated game only
requires evaluating the reference generators and solving the
optimization problems TRAJi to compute the corresponding
trajectories. These problems can be solved in parallel. Further-
more, since trajectories are generated according to (4), each
player’s constraints defined by Ki(xi) are guaranteed to be
satisfied. Thus, if the reference generator does not generalize
well, the only negative consequence is suboptimality (but not
infeasibility).4

In summary, by pre-training a reference generator for each
player offline, the run-time concerns of MPGP can be allevi-
ated. Unfortunately, however, potential issues persist due to the
possible non-existence or non-uniqueness of Nash equilibrium
solutions. To address this concern, we introduce a concept we
refer to as strategy lifting.

B. Lifted Trajectory Games

Rather than endowing each player with a single reference
and its resulting trajectory, we allow each player to choose

4Recall that each player’s constraints do not depend upon the trajectory of
the other player. Extension to this more complex case is possible, but beyond
the scope of this paper.
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Fig. 2: Overview of our proposed lifted game solver using reference generators. Generators πθi for both players are trained
jointly to minimize their respective average losses Li (10a). At run-time deployment of this pipeline, the pre-trained generators
produce references ξi which approximate a Nash equilibrium of (9). These references evaluate to equilibrium motion plan
candidates τi and mixing strategies qi for each player. When used in an ego-centric MPGP fashion, e.g. for Player 1, (τ1, q1)
serves as a distribution over ego motion plans, and (τ2, q2) constitutes a probabilistic opponent prediction.

among multiple independent references according to the equi-
librium solution of the bimatrix game formulated below:

OPTlifted
1 (ξ2, x1, x2) := argmin

ξ1

L1(ξ1, ξ2) (9a)

OPTlifted
2 (ξ1, x1, x2) := argmin

ξ2

L2(ξ1, ξ2) (9b)

where the dependence of L1 and L2 on ξ1 and ξ2 is made
explicit through the following relationships:

L1 = q⊺1Aq2, L2 = q⊺1Bq2 (10a)

Ai,j = f1(τ
i
1, τ

j
2 ), Bi,j = f2(τ

i
1, τ

j
2 ) (10b)

τ i1 = TRAJ1(ξ
i
1, x1), i ∈ N1 (10c)

τ j2 = TRAJ2(ξ
j
2, x2), j ∈ N2 (10d)

(q1, q2) = BMG(A,B). (10e)

Here, N1 := {1, ..., n1}, and N2 := {1, ..., n2}, where n1

and n2 are the number of trajectories for Player 1 and Player 2,
respectively. Specifically, each variable τ i1 represents one of
n1 trajectories that Player 1 optimizes over (and similar for
Player 2). The reference variables ξi := (ξ1i , . . . , ξ

ni
i ) are now

collections of trajectory references, with each ξji associated
to τ ji . The function BMG(A,B) maps cost matrices A and B
to mixed equilibrium strategies for the resultant bimatrix game.
Specifically, BMG(A,B) returns a point (q∗1 , q

∗
2) ∈ Rn1×Rn2

such that

(q∗1)
TAq∗2 ≤ qT1Aq∗2 , ∀q1 ∈ ∆n1−1,

(q∗1)
TBq∗2 ≤ (q∗1)

TBq2, ∀q2 ∈ ∆n2−1.
(11)

In (11), ∆k is the k-simplex, representing the space of valid
parameters for a categorical distribution over k + 1 elements.
Note that when n1 = n2 = 1, Game (9) reduces exactly to
Game (3), since BMG(A,B) ≡ (1, 1).

Continuous games, such as (1), may suffer from non-
existence of equilibrium points, but when those games are
separable, a mixed strategy equilibrium is known to exist with
finite support [16, 38]. This theoretical result motivates the
lifting (9) of our reference-based formulation of Game (1).

For comparative purposes, Game (9) is presented analo-
gously to (3), i.e. without any explicit dependence on reference
generators. Nevertheless, generators can be trained analo-
gously to (5), using a similar simultaneous gradient procedure.
As before, solving (9) or an analogous version of (5) via
gradient play requires that each of the function evaluations
in (10) are differentiable in their arguments. It has already
been discussed how each of these functions are differentiable,
with the exception of the bimatrix game in (10e). We discuss
in Appendix B how this function is also differentiable.

A summary of the lifted game solver that utilizes refer-
ence generators for reduced online computation is provided
in Figure 2. With this computation graph, the cost of ap-
proximating solutions to Game (9) is that of evaluating the
two generator calls, solving the resultant n1 + n2 trajectory
optimization problems (in parallel, if warranted), and solving
a bimatrix game formed by considering all combinations of
player trajectories.

C. Extension to Many-Player Games

We reiterate that, although we present this formulation
in the two player setting, generalizations to larger games
are straightforward. In this case, each player would consider
multiple trajectory candidates, and a cost tensor would be
created for each player, representing the costs for all possible
combinations of players’ trajectories. A finite Nash equilib-
rium could be identified over these cost tensors to compute
the equilibrium mixing weights qi [34], and computed by
solving a nonlinear, mixed complementarity program [11, 23].
Note that the majority of computation required to construct
these cost tensors can be trivially parallelized, making our
framework particularly promising for many-player settings.
We defer further study of such games to future work.

D. Implementation

We implement the lifted game solver depicted in Figure 2
in the Julia programming language [7]. For the experiments
conducted in this work, reference generators πθi are realized



as multi-layer perceptrons, trajectory optimization problems
TRAJi are solved via OSQP [39], and bimatrix games are
solved using a custom implementation of the Lemke-Howson
algorithm [27].

In order to facilitate back-propagation of gradients through
this computation graph, we utilize the auto-differentiation tool
Zygote [19]. For those components that cannot be efficiently
differentiated automatically, namely TRAJi and BMG in Fig-
ure 2, we provide custom gradient rules via the implicit func-
tion theorem, c.f. [1, 2, 3] and Appendix B. Our implementa-
tion can be found at https://lasse-peters.net/pub/lifted-games.

V. RESULTS

We have presented a novel formulation of lifted trajec-
tory games in which learned reference generators facilitate
the efficient online computation of mixed strategies. In this
section, we evaluate the performance of our proposed lifted
game solver on variants of the “tag” game shown in Fig-
ure 1 and described below in Section V-A. Concretely, we
aim to quantify the utility of learning trajectory references
rather than choosing them a priori (Section V-B), characterize
the equilibria identified by trajectory lifting (Section V-C),
evaluate the performance of trajectory lifting in head-to-head
decentralized competition (Section V-D), and demonstrate our
method’s capacity for online training in receding horizon
MPGP (Section V-E). Our supplementary material includes
a video summarizing these results.

A. Environment: The Tag Game

We validate our methods in a two-player tag game, illus-
trated in Figure 1. Here, each player’s trajectory τi follows
time-discretized planar double-integrator dynamics p̈i = ui,
where pi ∈ R2 is understood to represent horizontal and
vertical position in the plane. The set Ki(xi) then encompasses
all dynamically-feasible trajectories that also satisfy input
saturation limits and state constraints. In particular, we require
that positions remain within a closed set, such as the pentagon
illustrated in Figure 1, and that speeds remain below a fixed
magnitude. These choices yield linear constraints, so that (4)
becomes a quadratic program. We note, however, that our
approach does not rely upon this convenient structure and is
compatible with more general embedded nonlinear programs.

For the purposes of this example, we shall designate
Player 1 to be the “pursuer” and Player 2 to be the “evader.”
Hence, the pursuer’s objective f1(τ1, τ2) measures the average
distance between players’ trajectories over time and is regu-
larized by the difference in control effort between the two
players to ensure the existence of at least local pure Nash
equilibria for the original game (1). The evader’s objective is
f2(τ1, τ2) = −f1(τ1, τ2). Since the tag game has zero-sum
cost structure, throughout the following evaluations we only
report the cost for the pursuer and refer to this quantity as the
game value. Furthermore, unless otherwise stated, we use an
input reference signal ξi for all players in (3) and (9).

B. The Importance of Learning Trajectory Candidates

Without lifting, it is still possible to approximate mixed
strategies for the trajectory game by discretizing the trajectory
space (e.g., via sampling [31]). We compare to a sampling-
based mixed-strategy baseline to study the isolated effects of
learning in a lifted space.
Setup. We instantiate an evader with n2 = 20 pre-sampled
trajectory references. To strengthen the evader, we ensure that
these samples cover a large region of the trajectory space. To
that end, in this experiment (only) we use ξi as a reference
for Player i’s goal state rather than their input sequence. We
compare the pursuer’s performance for two different schemes
of generating trajectory candidates. The non-learning baseline
samples n1 ∈ {1, . . . , 20} pursuer trajectory references from
the same distribution as the evader. Our method computes the
pursuer strategy by performing gradient play on (9a) to learn
2 trajectory candidates via the goal reference parameterization.
The mixed Nash equilibrium (q1, q2) over the players’ trajec-
tory candidates is computed according to (10). We evaluate
both methods for 50 random initial conditions, and record the
game value for each trial.
Discussion. Figure 3 summarizes the results of this exper-
iment. As shown, the baseline steadily improves its perfor-
mance with increasing numbers of sampled trajectory refer-
ences to mix over. However, even with 20 trajectory samples,
it cannot match the performance of our approach with only
two learned candidates. Moreover, learning only a few tra-
jectory references drastically reduces the number of trajectory
optimizations and, consequently, the size of the bimatrix game
in (10).
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Fig. 3: Comparison of game value for both sampled and
learned pursuer trajectories. Lines trace the sample mean over
50 randomized trials, and the surrounding ribbons denote the
SEM. On the horizontal axis, we vary the number of sampled
baseline trajectories n1, while fixing our approach to learn
only 2 trajectories.

C. Convergence and Characteristics of Lifted Equilibria

In this experiment, we analyze mixed strategies found by
our lifted solver and compare them to pure strategies com-
puted by a non-lifting baseline. We shall demonstrate that
both approaches reliably converge to different equilibria, and
characterize these differences.
Setup. We perform a Monte Carlo study in which we randomly
sample 20 initial states of the tag game. On each sample, we
invoke two solvers which perform gradient play on different

https://lasse-peters.net/pub/lifted-games
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Fig. 4: Equilibrium value convergence averaged over 20 initial
states. Ribbons indicate the SEM. The baseline approximates
Nash equilibria in pure strategies via gradient play on (3).
Our method approximates Nash equilibria in lifted strategies
via gradient play on (9).

strategy spaces. The baseline solver is restricted to pure
strategies as in Game (3).5 Our method utilizes lifting to find
mixed strategies which solve Game (9). In each iteration of
gradient play, we record the game value.
Discussion. Figure 4 shows the reliable convergence of both
methods in this Monte Carlo study. Since both players learn
competitively via simultaneous gradient play, the game value
ought not to evolve monotonically; an equilibrium is reached
when neither player can improve its strategy unilaterally. At
convergence, we observe that the mixed strategies found by
our lifting procedure result in a higher game value. This higher
value implies that, by operating in a lifted strategy space, the
evader can secure a greater average distance between itself
and the pursuer.

This gap in value may be understood intuitively by exam-
ining the strategy profiles for each method shown in Figure 1.
In Figure 1(a), players are restricted to pure strategies, and a
rational pursuer can exploit the evader’s deterministic choice
of trajectory. In contrast, our proposed lifting formulation
allows the evader to mix over multiple trajectory candidates,
c.f. Figure 1(b), making its motion less predictable and hence
increasing the chance of escaping the pursuer. In response,
the pursuer also mixes between two trajectory candidates.
However, each of the pursuer’s candidates must account for
the full distribution of evader trajectories; hence, the pursuer
plans to turn less aggressively than the evader.

In this experiment, we have studied a centralized setting in
which each method computes strategies for both players from
a single game. Therefore, the results presented above are only
suitable to characterize the solution points of (3) and (9), but
do not justify conclusions about the competitive performance
of these solutions in decentralized settings, such as MPGP. In
the next section, we extend our analysis to settings in which
the opponent’s decision-making process is unknown.

D. Competitive Evaluation Against Non-Lifted Strategies

This experiment is designed to examine the performance
of both pure (Baseline) and lifted (Ours) strategies in de-

5Such pure Nash solutions could also be found using iterated best re-
sponse [44], iterative linear-quadratic methods [10], or mixed complementarity
methods [11].

TABLE I: Open-loop competition.

Evader

Pursuer Lifted Pure

Lifted 1.577± 0.021 1.502± 0.022
Pure 1.672± 0.022 1.370± 0.027

centralized head-to-head competition. For this purpose, we
perform two additional Monte Carlo studies which simulate
tournaments among players in each strategy class.

Note that, in contrast to previous experiments, here, player
strategies are not computed as the solution to a single, central-
ized game. Rather, each player is oblivious to their opponent’s
decision making process and solves its own version of the
game from a known initial state over a finite time interval.

1) Open-Loop Competition: To begin, we evaluate both
methods in open-loop on a fixed, 20-step time horizon.
Setup. For this Monte Carlo study, we randomly sample
100 initial states. For every sampled state, we invoke pure
and lifted game solvers twice with randomly sampled initial
strategies; once to obtain pursuer strategies, and once to obtain
evader strategies.6 For all possible solver pairings on these 100
state samples we record the resultant value of the competing
strategies; i.e., if Player i chooses trajectory τi, we record
f1(τ1, τ2).
Discussion. Table I summarizes the mean and the standard
error of the mean (SEM) of the resultant game value for this
open-loop tournament. The evader has a clear incentive to uti-
lize lifted strategies, since they secure the highest game value
irrespective of the solution technique used by the pursuer. The
best response of the pursuer is then also to play a lifted strategy
to minimize value within this column. Hence, (Ours, Ours)
is the unique Nash equilibrium in this meta game between
solvers.

Additionally, observe that the baseline pursuer performs
very well against the baseline evader, as deterministic evasion
strategies can always be exploited by a rational pursuer.
However, the tournament value reported in the bottom right of
Table I is inconsistent with the equilibrium value for the base-
line found earlier in Figure 4. This discrepancy suggests that
players in this decentralized setup find different local solutions
depending on the initialization of the baseline solver. Hence,
random initialization effectively makes even a pure strategy
evader slightly unpredictable, thereby allowing it to attain
a higher average value. By contrast, the value of the lifted
strategy computed by our method (top left, Table I) closely
agrees with the equilibrium value computed in Figure 4, which
indicates that non-uniqueness of solutions is not an issue for
our approach.7

6This initialization procedure avoids leaking information about players’
decision making processes to one another.

7This close agreement in value suggests that our method identifies global
(rather than local) Nash equilibria which satisfy the so-called ordered inter-
changeability property [5]. Unfortunately, as in continuous optimization, it is
generally intractable to properly verify that these solutions are global.
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Fig. 5: Training a reference generator for the lifted game solver in Figure 2 in simulated self-play. Transparency denotes the
mixing probabilities associated with each trajectory which arise from BMG. (a) Game value mean and SEM over a moving
window of 500 turns. (b-d) Strategies at different phases of learning.

TABLE II: Receding-horizon competition.

Evader

Pursuer Lifted Pure

Lifted 1.360± 0.003 1.289± 0.005
Pure 1.463± 0.004 0.903± 0.009

2) Receding-Horizon Competition: As MPGP is naturally
applied in a receding horizon fashion, we replicate the previous
Monte Carlo study in that setting.
Setup. For each of 5 state samples, we simulate receding-
horizon competitions for all possible solver pairings. As
before, we use a planning horizon of 20 time steps for all
players, and in order to simulate latency, we only allow players
to update their plans every 9 time steps. Each simulation
terminates once players have updated their strategy for the
500th time. From one such trial, we compute the game
value by evaluating the pursuer’s objective f1 on the entire
closed-loop trajectories of both players. Note that, in contrast
to previous experiments, here we use pre-trained reference
generators for all solvers as described in Section IV-A to
accelerate the computation in this large simulation.
Discussion. Table II summarizes both the mean and SEM
for the resultant game value in this receding-horizon Monte
Carlo tournament. Overall, we observe the same patterns as in
the open-loop setting: lifting is the dominant strategy for the
evader and the corresponding best response for the pursuer.
However, the game values found for this receding horizon
setting are generally lower than in open-loop. By replanning in
receding horizon, the pursuer can react to the evader’s decision
before the distance between them grows very large.

E. Learning in Receding-Horizon Self-Play

Finally, we demonstrate that a lifted game solver with
trajectory generators, as shown in Figure 2, can be rapidly
trained from scratch in simulated self-play.
Setup. We repeat the following experiment 10 times. For each
player, we randomly sample an initial state xi and initialize
their reference generator πθi with parameters θi sampled from

a uniform distribution. Subsequently, we simulate receding-
horizon learning over 2500 turns with the lifted game solver
in the loop. In contrast to the setup used in Section V-D2,
here, we do not use pre-trained reference generators. Instead,
the network parameters are updated on the fly using gradient
descent. That is, at every turn, we first perform a forward pass
through the computation graph of Figure 2 to compute a lifted
strategy profile, followed by a backwards pass to compute
a gradient step on each player’s reference generator param-
eters θi. For each experiment, we record players’ strategies as
well as the game value over a moving window of 500 turns.
Discussion. Figure 5 summarizes the results of lifted learn-
ing in self-play. Initially, the untrained reference generators
cause both players to move haphazardly, c.f. Figure 5(b).
As learning progresses, players become more competitive,
resulting in purposeful, dynamic maneuvers, c.f. Figure 5(c).
Within approximately 1500 turns, learning converges, the
game value stabilizes, and the solver has learned to generate
highly competitive mixed strategies as shown in Figure 5(d).

Note that, throughout the learning procedure, state and input
constraints are explicitly enforced in the TRAJ step of the
pipeline in Figure 2. Moreover, since our proposed pipeline is
end-to-end differentiable, it provides a strong learning signal.
Therefore, training in simulated self-play over 2500 turns can
be performed in less than three minutes on a standard laptop.
Then, once the reference generators πθi are fully trained,
learning can be disabled, and a forward pass on the pipeline in
Figure 2 can be computed with an average run-time of 2ms. In
summary, these results indicate that our method learns quickly
and reliably, making it well-suited for online learning in real
systems with embedded computational hardware.

VI. CONCLUSION

In this paper, we have proposed two key contributions
to the field of noncooperative, multi-agent motion planning.
First, we have introduced a principled technique to reduce
the online computational complexity of solving these trajec-
tory games. Second, we extended this approach to optimize
over a richer, probabilistic class of lifted strategies for each



player. Taken together, these innovations facilitate efficiently-
computable, high-performance online trajectory planning for
multiple autonomous agents in competitive settings. More-
over, our method directly accounts for problem constraints
and hence guarantees that learned trajectories satisfy these
constraints whenever they are feasible.

While our formulations readily extend to games with many
players and arbitrary cost structure, we demonstrate our results
in a two-player, zero-sum game of tag. We validate our ap-
proach in extensive Monte Carlo studies, in which we observe
rapid and reliable convergence to solutions which outperform
those which emerge in the original, non-lifted strategy space.

Finally, we showcase our approach in online learning, where
each player solves lifted trajectory games in a receding time
horizon. Despite the additional complexity present in this
setting—e.g., non-stationary training data and potential limit
cycles—our method converges reliably to competitive mixed
strategies. These initial results are extremely encouraging, and
future work should investigate online learning and adaptation
in noncooperative settings more extensively. In particular,
we note that our method is limited to so-called open-loop
information structures, in which each agent in a trajectory
game must choose future control inputs as a function only of
the current state. We believe that the incorporation of feedback
structures at the trajectory-level will be an exciting direction
for future research.
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APPENDIX A
EQUIVALENCE OF GAME (1) AND GAME (3)

In this section we establish an equivalence result between
(1) and (3). We prove this for a particular interpretation of the
reference variables ξi, and forms of Gi, Hi,Ki(xi), noting that
similar results can be established for other settings.

For each Player i, consider the instance of (4) in which
Gi := I and Hi := 0, representing the identity and zero
matrices of appropriate dimension. Furthermore, assume that
the set Ki(xi) := {τ : lbi ≤ gi(τ) ≤ ubi}, for some
vector-valued and twice-differentiable function gi, and lower
and upper bounds lbi and ubi. It is assumed that a suitable
constraint qualification applies to this constraint set, such as
the LICQ [33]. This implies that ξi has dimension equal to
that of the decision variable τ , and the objective of (4) is to
find a trajectory τ ∈ Ki(xi) which is as close as possible to
ξi as measured by the ℓ2-norm.

Theorem 1. In the setting as stated above,
1) For any stationary point (τ1, τ2) of Game (1), there

exists a stationary point (ξ1, ξ2) of Game (3) such that
τi = TRAJi(ξi, xi) for all players i.

2) For any stationary point (ξ1, ξ2) of Game (3) satisfying
ξi ∈ Ki(xi), the trajectories τi = TRAJi(ξi, xi)
constitute a stationary point for (1).
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Proof: To prove this result, we first make explicit the
definition of of a stationary point for (1) and (3). A stationary
point for (1) is a point (τ1, τ2), such that for both players i,

dT∇τifi(τ1, τ2) ≥ 0,∀d ∈ TKi(τi). (12)

Here, TKi(τi) is the set of linearized feasible directions with
respect to constraint set Ki(xi) at τi, which because we have
assumed a suitable constraint qualification, is equivalent to
the tangent cone at this point [33]. Specifically, at a feasible
point τ , let Il(τ) := {j : gi,j(τ) = lbj}, and Iu(τ) := {j :
gi,j(τ) = ubj}. Then

TKi(τ) := {d : dT∇gi,j(τ) ≥ 0, j ∈ Il(τ),
dT∇gi,j(τ) ≤ 0, j ∈ Iu(τ)}

(13)

A stationary point for (3) is a point (ξ1, ξ2) such that

(∇ξiτi · d)T∇τifi(τ1, τ2) ≥ 0,∀d, (14)

where τi = TRAJi(ξi, xi). Note that (∇ξiτi · d) :=
(∇ξiTRAJi(ξi, xi)d) as appearing above is the directional
derivative of TRAJi(ξi, xi) with respect to changes of ξ in
the direction d. This directional derivative is defined to be e,
where e solves the following quadratic program [35]:

min
e

1

2
eTQ1e+ dTQ2e

s.t. e ∈ Cλi
(τi),

(15)

where Q1 := I − ∇2
τ,τ (g(τi)

Tλi), Q2 := −I , λi are
the dual variables associated with the primal solution τi to
TRAJi(ξi, xi), and Cλi

(τ) is the critical cone to the constraint
set gi(τ) with respect to λi at τ :

Cλi
(τ) := {d : l̄bi,j ≤ dT∇gi,j(τ) ≤ ūbi,j)}. (16)

The bounds l̄bi,j and ūbi,j are defined as:

(l̄bi,j , ūbi,j) :=



(0, 0) j ∈ Il(τ) & λi,j > 0

(0,∞) j ∈ Il(τ) & λi,j = 0

(−∞,∞) i /∈ (Il(τ) ∪ Iu(τ))
(−∞, 0) j ∈ Iu(τ) & λi,j = 0

(0, 0) j ∈ Iu(τ) & λi,j < 0

(17)

Now, to prove 1), we show that ξi = τi satisfies the
claim. It follows directly that τi = TRAJi(ξi, xi). It can
be verified that, because τi ∈ Ki(xi) by definition, then
all constraints appearing in TRAJi are only weakly active,
implying λi = 0. This implies that the constraint set
appearing in (15) is precisely the tangent cone (13). Therefore,
for all directions d, ∇ξiTRAJi(τi, xi) ·d ∈ TKi(τi), which by
(12), implies that (14) holds, establishing the result.

To prove 2), we simply note that if ξi ∈ Ki(xi), then τi =
ξi. Furthermore, in this setting λi = 0 as before, and therefore
the critical cone appearing in (15) is again equivalent to the
tangent cone (13). This implies that the directional derivative
(∇ξiτi·d) is defined to simply be the projection of the direction
d into the tangent cone at τi. The set of all directions d mapped

through this projection results precisely in TKi
(τi). Therefore,

the conditions (14) imply (12) for this setting, implying our
result.

The result as stated in Theorem 1 does not imply that
an arbitrary stationary point found for (3) corresponds to a
stationary point for (1), since it may be that either of the
references ξi /∈ Ki(xi). For such reference points, it is possible
that for some direction d the expression in (14) holds with
equality, yet the expression in (12) is violated. This situation
results in “sticky constraints,” in which a descent direction
exists for fi(τ1, τ2), yet that direction is not in the range
of ∇ξiTRAJi(ξi, xi), i.e. small changes to the reference are
not enough to release τi away from the active constraint
boundaries.

To address this issue, we propose a modest regularization
scheme to eliminate the possibility of reference stationary
points of (3) which do not correspond to trajectory stationary
points of (1). One such approach could be to enforce con-
straints in (3) such that ξi ∈ Ki(xi). This, however, would
render the reformulation from (1) to (3) pointless. Instead, we
impose a simple regularization in the objectives of each player
in (3). Namely, instead of minimizing over fi(τ1, τ2) w.r.t. ξi,
we minimize over

fi(τ1, τ2) + ∥(g(ξi)− ub)+ + (lb− g(ξi))+∥22, (18)

where (·)+ := max(·, 0).
Note that this introduced regularization is exact, and has

precisely the effect of eliminating any stationary points for
(3) in which ξi /∈ Ki(xi). If the regularization term is non-
zero, then necessarily from the definition of the directional
derivative (15), the gradient of the regularization component
is in the null-space of ∇ξiTRAJi(ξi, xi). This implies the
regularization can be driven to zero without changing the
resultant solution τi. This is true irrespective of the scale
factor multiplying the regularization term. Furthermore, if
ξi ∈ Ki(xi), then the regularization term is zero, and has
no effect on stationary points of the un-regularized game (3).

We note that the particular choice of regularization (18) is
only applicable for the interpretation of the references ξi made
throughout this section. For more general parameterizations
of the reference, as discussed in the main text, a suitable
regularization is the norm of inequality constraint multipliers
associated with the solution of TRAJi(ξi, xi). The use of
this dual-variable regularization is effective at eliminating the
spurious stationary points for (3), so long as the parameteri-
zation of the reference is rich enough such that for any ξi and
associated τi, λi, there exists directions d in which the ξi can
be perturbed and the directional derivative of τi is 0, and the
directional derivative of λi,j is negative for all j. This is true,
for example, of the control signal reference used throughout
this work.

Therefore, with use of the introduced regularization (18),
the stationary points of Games (1) and (3) have a one-to-one
correspondence, warranting the use of Game (3) in place of
Game (1).



APPENDIX B
DIFFERENTIATING THROUGH BMG

The problem of finding q1, q2 which satisfy (11) (as is the
task of the function BMG), can be equivalently expressed as
the linear complementarity problem [32]

find p1, p2

s.t. p1 ≥ 0 ⊥ Āp2 ≥ 1

p2 ≥ 0 ⊥ B̄Tp1 ≥ 1.

(19)

The solution (q1, q2) to the BMG are related to the solution
to (19) by the relations

(q1)i =
(p1)i∑
k(p1)k

, (q2)i =
(p2)i∑
k(p2)k

. (20)

It is assumed that Ā and B̄ are derived from the original matri-
ces A,B, as the following. Āi,j := Ai,j+α, B̄i,j := Bi,j+β,
for some positive constants α, β such that every element of Ā
and B̄ are strictly positive. Furthermore, the 1s appearing in
the right-hand side of the constraints in (19) are assumed to
represent vectors of appropriate dimension with each value
equal to 1.

Consider some solution p1, p2 to (19) in which strict com-
plementarity holds for each condition, e.g. either p1,j = 0 or
(Āp2)j = 1, but not both. For each j ∈ {1, 2}, Denote the
index sets I+j := {i : (pj)i > 0}. Then let

p+1 := [p1]I+
1
, p+2 := [p2]I+

2
,

Ā+ := [A]I+
1 ,I+

2
, B̄+ := [B]I+

1 ,I+
2
.

In words, p+1 is the vector formed by only considering the
non-zero elements of p1, and B̄+ is the matrix formed by
considering the columns specified by I+1 and rows specified
by I+2 . By the strict complementarity, at equilibrium, it is that[

0 Ā+

(B̄+)⊺ 0

] [
p+1
p+2

]
= 1, (21)

where, as before, the right-hand side 1 is a vector consisting
of all 1s.

The values p−j := [pj ]i, i /∈ I+j are defined to be iden-
tically 0, and as such have 0 derivative with respect to the
values Ā, B̄. The derivatives of remaining portion of the
solution, p+1 , p

+
2 , can be evaluated from (21). If the matrix

on the left-hand-side of (21) is singular, then the resulting
solution is in fact non-isolated (there exist a continuum of
solutions satisfying (19)), and the derivatives of the solution
are not defined. If the matrix is non-singular, then necessarily
so are Ā+ and B̄+, and the isolated solutions of p+1 , p

+
2 are

locally related to the matrices Ā, B̄ as

p+1 = (B̄+)−⊺1,

p+2 = (Ā+)−11.
(22)

In this form, the derivatives of each element of p+j can
be found by differentiating through the expressions (22).
Combining the above results, the derivatives of the solution

vector p1, p2 with respect to the problem data A, B, can be
established as the following:

∂(p1)i
∂Aj,k

:= 0,

∂(p1)i
∂Bj,k

:=

{
0 : i /∈ I+1
−((B̄+)−⊺Ik,jp

+
1 )i : else

,

∂(p2)i
∂Aj,k

:=

{
0 : i /∈ I+2
−((Ā+)−1Ij,kp

+
2 )i : else

,

∂(p2)i
∂Bj,k

:= 0.

(23)

Above, the term Ij,k is used to refer to the matrix consisting
of zero everywhere except at the (j, k)-th position, which has
value 1.

When strict complementarity does not hold at the solution
to (19), then only directional derivatives of the solution vectors
exist w.r.t. the problem data. The various directional derivatives
are found by, for each condition which does not hold with
strict complementarity, making a selection on whether that
index should be included the sets I+j or not. Then proceeding
with the remainder of calculations, the result forms one of the
directional derivative for the system. The directions for which
this derivative is valid are defined to be those which make the
directional derivative consistent with the selected index sets.

The derivatives of the elements of p1 and p2 with respect
to the cost matrices are formed by propagating the deriva-
tives (23) through the relationships (20).
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