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Abstract: Motivated by asymptotic symmetry groups in general relativity, we consider
projective unitary representations ρ of the Lie group Diffc(M) of compactly supported
diffeomorphisms of a smooth manifold M that satisfy a so-called generalized positive
energy condition. In particular, this captures representations that are in a suitable sense
compatible with a KMS state on the von Neumann algebra generated by ρ. We show
that if M is connected and dim(M) > 1, then any such representation is necessarily
trivial on the identity component Diffc(M)0. As an intermediate step towards this result,
we determine the continuous second Lie algebra cohomology H2

ct(Xc(M), R) of the Lie
algebra of compactly supported vector fields. This is subtly different from Gelfand–Fuks
cohomology in view of the compact support condition.

1. Introduction

The mathematical results in this paper are motivated by asymptotic symmetry groups in
general relativity, as in the seminal work of and Bondi, van der Burg, Metzner and Sachs
[1–3]. These groups can typically be described as follows. First, one carefully selects a
set of boundary conditions for the gravitational fields, usually in terms of fall-off condi-
tions at null or spacelike infinity [4–6]. This gives rise to a weak asymptotic symmetry
group G ⊆ Diff(M), whose action on the gravitational fields preserves the specified
boundary conditions. In the context of classical field theory, infinitesimal symmetries
yield conserved currents by Noether’s theorem [7]. If one selects a normal subgroup
N ⊆ G for which the corresponding currents are trivial (the group of trivial gauge
transformations), then the quotient G/N can be interpreted as an asymptotic symmetry
group. For asymptotically flat space–times, this is the Bondi–Metzner–Sachs group (or
BMS group for short), which is a semidirect product of the Lorentz group with an infi-
nite dimensional abelian Lie group [8,9]. However, in general the precise form of G/N
depends quite sensitively on the choice of boundary conditions [10].
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In the present paper, we take a complementary approach. For a given group
G ⊆ Diff(M) of ‘weak asymptotic symmetries’, we expect a putative quantum the-
ory of gravity on a space–time manifold M to come with a Hilbert space H of states,
and with a projective unitary representation (ρ,H) of G. We investigate representations
of G that are subject to a (generalized) positive energy condition, whose precise mean-
ing will be given shortly. For M connected with dim(M) > 1, our main result implies
that the common kernel N of all such representations contains the identity component
Diffc(M)0 of the group of compactly supported diffeomorphisms, assuming of course
that G contains Diffc(M)0 in the first place. We therefore arrive at the conclusion that
the connected group (G/N )0 is localized at infinity from representation theory alone,
without any reference to classical field theory.

In future work, we intend to isolate groups G that admit non-trivial (generalized)
positive energy representations, and subsequently to classify these representations. For
now, let us remark that the universal central extension of the BMS group in three di-
mensions exhibits coadjoint orbits with energy bounded from below [11,12], hinting
at the existence of induced unitary representations that are of positive energy. We refer
to [13–18] for unitary representations of the BMS group in four dimensions, and to
[19] for an approach to positive energy representations of gauge groups in the setting of
Yang-Mills theory that is similar to the one in the present paper.

Generalized positive energy representations. Let us describe in more detail the type
of representations that we wish to consider in the present paper. Let υ be a complete
vector field on M . Then the action of R on Diffc(M) by conjugation with the flow �υ

t
of υ gives rise to the semidirect product Diffc(M) �υ R, which is a locally convex
Lie group by [20]. If G is a group of diffeomorphisms that contains both Diffc(M)

and {�υ
t ; t ∈ R}, then every projective unitary representation of G pulls back to a

projective unitary representation of Diffc(M) �υ R. In order to show that the kernel
of the G-representation contains Diffc(M)0, we can therefore restrict attention to the
group Diffc(M) �υ R, and we will do so from now on.

We consider projective unitary representations ρ : G → PU(H) of the group
G = Diffc(M)�υ R that are smooth, in the sense that they possess a dense set H∞ ⊆ H
of smooth vectors. Such a representation is said to be of positive energy at υ if the strongly
continuous one-parameter group [Ut ] := ρ(idM , t) of projective unitary operators has
a generator H := −i d

dt

∣
∣
t=0 Ut (defined up to an additive constant) whose spectrum is

bounded from below.
If υ admits an interpretation as a future timelike vector field, then H is the corre-

sponding Hamilton operator, and the positive energy condition is quite natural from a
physical perspective. Positive energy representations of possibly infinite-dimensional
Lie groups have consequently been the subject of a great deal of research [19,21–29].
For Diff(S1), they were considered in e.g. [21,22,30,31].

In order to describe systems at positive temperature, the positive energy condition
can be replaced by the KMS condition. KMS states (for Kubo–Martin–Schwinger) on
operator algebras were introduced by Hugenholtz, Haag and Winnink [32] in order to
describe quantum statistical systems at positive temperature. In the context of projective
unitary representations, we say that ρ is KMS at υ relative to Diffc(M) if there exists a
normal state φ on the von Neumann algebra N := ρ(Diffc(M))′′ that satisfies the KMS
condition w.r.t. the automorphism group σ : R → Aut(N ), t �→ Ad(ρ(idM , t)). If
for such a state φ, the canonical cyclic vector �φ in the corresponding GNS Hilbert
space Hφ defines a smooth ray for the associated projective unitary representation
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ρφ : Diffc(M) → PU(Hφ), we say that ρ is smoothly-KMS (cf. Definition 8 and [33,
Lem. 5.8]).

The notion of a KMS state on a von Neumann algebra is closely related to Tomita–
Takesaki modular theory [34, Ch. VIII]. It plays an important role in the operator al-
gebraic formulation of quantum statistical physics [32], [35, Ch. 5.3], and in algebraic
quantum field theory [36–38], motivating our desire to consider representations that are
suitably compatible with a KMS state.

In order to handle positive energy representations and KMS representations at the
same time, we study generalized positive energy representations, a notion that is suf-
ficiently flexible to capture positive energy representations as well as a large class of
KMS representations [33,39]. We say that (ρ,H) is of generalized positive energy if
there exists a dense subspace D ⊆ H∞ of smooth vectors such that for every ψ ∈ D,
the expected energy

μ : P(H∞) → R, μ([ψ]) := 1

‖ψ‖2 〈ψ, Hψ〉

is bounded below on the Diffc(M)0-orbit O[ψ] ⊆ P(H) (cf. Definition 6).
It is important to mention that the (generalized) positive energy condition is invariant

under the adjoint action of Diffc(M)onXc(M)�υR, in the sense thatρ is of (generalized)
positive energy at υ if and only if it is of (generalized) positive energy at Ad f (υ) :=
T ( f ) ◦ υ ◦ f −1 for all f ∈ Diffc(M). More generally, if ρ extends to a projective
representation of a Lie group G that contains both Diffc(M) and the flow of υ, then the
choice of υ is only significant up to the adjoint action of G. We expect to find interesting
(generalized) positive energy representations only when the adjoint orbit of G through
υ generates a convex cone that is pointed. This is the case, for example, in the context
of the BMS group for a suitable choice of υ.

The main result and its consequences. The following is our main result.

Theorem A. Suppose that M is connected and that dim(M) > 1. Let υ ∈ X (M)\{0} be
a complete vector field on M. Let ρ : Diffc(M)�υ R → PU(H) be a smooth projective
unitary representation that is of generalized positive energy at υ. Then Diffc(M)0 ⊆
ker ρ.

This has at least three noteworthy consequences. First of all, it follows immedi-
ately that Diffc(M)0 is in the kernel of every positive energy representation. Secondly,
Diffc(M)0 is in the kernel of every smoothly-KMS representation whose image gen-
erates a factor in B(H) (Corollary 7). And finally, Diffc(M)0 is in the kernel of every
projective unitary representation (ρ,H) of Diffc(M) that is bounded, i.e. continuous in
the norm topology (Corollary 8).

Compactly supported Lie algebra cohomology. From a technical point of view, a key
step towards Theorem A is determining the continuous second Lie algebra cohomology
H2

ct(Xc(M), R) of the Lie algebraXc(M) of compactly supported vector fields, equipped
with its natural locally convex LF-topology. Indeed, any smooth projective unitary rep-
resentation (ρ,H) of Diffc(M) �υ R gives rise to a canonical class in H2

ct(Xc(M), R)

that controls the corresponding central extension at the infinitesimal level [40]. If ρ is of
generalized positive energy, then this cohomology class carries substantial information
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about the kernel of ρ (Proposition 1). Our main result in this regard is the following
theorem:

Theorem B. Let M be a smooth manifold.

1. If dim(M) > 1, then H2
ct(Xc(M), R) = {0}.

2. If dim(M) = 1, then H2
ct(Xc(M), R) ∼= H0

dR(M) is the de Rham cohomology of M
in degree 0.

The continuous Lie algebra cohomology Hn
ct(Xc(M), R) is closely related to the

Gelfand–Fuks cohomology Hn
ct(X (M), R), the continuous Lie algebra cohomology of

the Fréchet–Lie algebra X (M) of all vector fields. However, these two notions do not in
general coincide [41], and many of the tools that are used in Gelfand–Fuks cohomology
(such as Bott’s homotopy operators [42]) break down in the compactly supported case.

The study of Gelfand–Fuks cohomology was initiated by Gelfand and Fuks [43–46],
and carried further by Bott, G. Segal, Haefliger and many others [47–51], see also [42,52]
and the recent exposition [53]. For compact manifolds M with dim(M) > 1, it is well
known that the second Gelfand–Fuks cohomology H2

ct(X (M), R) vanishes ([53, Thm.
4.13 and Cor. 4.25]), covering part 1 of Theorem B in the compact case.

Nevertheless, Theorem B appears to be new if M is a non-compact manifold, which
is of course the case of primary interest in the context of asymptotic symmetry groups.
The proof is very much inspired by [54], and by joint work in progress [55] with Cornelia
Vizman and Leonid Ryvkin on the second Lie algebra cohomology of the Lie algebra of
exact volume preserving vector fields. We are grateful for their kind permission to use
ideas from this unpublished work in the current setting.

Outline and further references. The paper is organized as follows. In Sect. 2 we recall
various preliminary definitions and observations. In Sect. 3 we proceed with the proof
of Theorem A and its consequences, subject to the assumption that H2

ct(Xc(M), R)=0
if dim(M) > 1. Finally, in Sect. 4, we justify this assumption by determining the con-
tinuous second Lie algebra cohomology H2

ct(Xc(M), R) for arbitrary manifolds M ,
culminating in Theorem B.

KMS representations of infinite dimensional Lie groups were studied by Strǎtilǎ and
Voiculescu for U(∞) [56], see [57,58] for related results in the context of Hilbert–Lie
groups. For finite dimensional Lie groups, KMS representations that generate a factor
of type I were fully classified in [59]. Projective unitary KMS representations were
constructed for the loop group C∞(S1, U(N )) in [60,61], and for certain Sobolev maps
from R to U(N ) in [62]. Various other examples of KMS representations are given in
[33, Sec. 5.2.2].

2. Preliminaries

We briefly discuss projective unitary representations for locally convex Lie groups, and
recall some properties of generalized positive energy representations that we will need
in Sect. 3.

2.1. Projective unitary representations. Let G be a locally convex Lie group, in the
sense of Bastiani [63–65], with Lie algebra g.
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Let D be a complex pre-Hilbert space with Hilbert space completion H. We denote
by L(D) the set of linear operators D → D. Define the algebra

L†(D) :=
{

X ∈ L(D) : ∃X† ∈ L(D) : ∀ψ, η ∈ D : 〈X†ψ, η〉 = 〈ψ, Xη〉
}

.

It carries a natural involution T �→ T †. Let I denote the identity on D and define the
Lie algebra

u(D) :=
{

X ∈ L†(D) : X† + X = 0
}

.

Define also the Lie algebra pu(D) := u(D)/ iRI .

Definition 1. We define smooth projective unitary representations as follows:

• A unitary representation (ρ,H) of G is continuous if g �→ ρ(g)ψ is continuous
for every ψ ∈ H. Similarly, a projective unitary representation (ρ,H) is continuous
if the orbit map g �→ ρ(g)[ψ] is continuous for every ψ ∈ H \ {0}.
• If (ρ,H) is a unitary representation of G, then a vector ψ ∈ H is called smooth if
the orbit map G → H, g �→ ρ(g)ψ is smooth. We denote by H∞ the set of smooth
vectors in H, and we call ρ smooth if H∞ is dense in H.
• Similarly, if (ρ,H) is a projective unitary representation ofG, then a ray [ψ] ∈ P(H)

is said to be smooth if the orbit map G → P(H), g �→ ρ(g)[ψ] is smooth. We denote
by P(H)∞ the set of smooth rays, and we say that ρ is smooth if P(H)∞ is dense in
P(H).
• A unitary representation of a locally convex Lie algebra g on D is a homomorphism
π : g → u(D) of Lie algebras. It is called continuous if the map ξ �→ π(ξ)ψ is
continuous for every ψ ∈ D. A projective unitary representation of g on D is a Lie
algebra homomorphism π : g → pu(D).

Remark 1. A smooth unitary representation (ρ,H)ofG defines a unitaryg-representation
dρ : g → u(H∞) on H∞ by dρ(ξ)ψ := d

dt

∣
∣
t=0 ρ(γt )ψ , where γ : R → G is a smooth

curve satisfying T0(γ ) = ξ . If G is finite-dimensional, then H∞ is dense in H for any
continuous unitary representation ρ of G, by a result of Gårding [66] (cf. [67, Prop.
4.4.1.1]). The analogous statement is generally false for infinite-dimensional Lie groups
[68].

Definition 2. A central extension of G by the circle group T is an exact sequence

1 → T → ◦
G → G → 1 (1)

of groups for which the image of T in
◦
G is central. It is a central extension of topological

groups if
◦
G is a topological group, and the group homomorphisms in (1) are continuous.

It is a central extension of locally convex Lie groups if
◦
G is a locally convex Lie group,

the group homomorphisms in (1) are smooth, and
◦
G → G is a locally trivial smooth

principal T-bundle. An isomorphism
◦
G → ◦

G ′ of central extensions is an isomorphism
of groups (topological groups, Lie groups) that induces the identity on G and T.

Definition 3. A central extension of Lie algebras is an exact sequence

0 → R → ◦
g → g → 0 (2)

of Lie algebras for which the image of R in
◦
g is central. It is a continuous central

extension if
◦
g is a locally convex Lie algebra, and the Lie algebra homomorphisms in

(2) are continuous.
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Any central T-extension of locally convex Lie groups determines a corresponding
continuous central R-extension of Lie algebras.

If ρ : G → PU(H) is a continuous projective unitary representation of G, then the
pullback

◦
G := {

(g,U ) ∈ G × U(H) ; ρ(g) = [U ]} (3)

is a central extension
◦
G → G of topological groups, and ρ lifts to a continuous unitary

representation ρ : ◦
G → U(H) that satisfies ρ(z) = z I for all z ∈ T. We call ρ the lift

of ρ.
If, moreover, the projective unitary representation ρ ofG is smooth, then

◦
G is a locally

convex Lie group, and
◦
G → G is a central extension of locally convex Lie groups [40,

Thm. 4.3]. The lift ρ is smooth [40, Cor. 4.5], and P(H)∞ = P(H∞) [40, Thm. 4.3].
Suppose that (ρ1,H1) and (ρ2,H2) are two smooth projective unitary representations
with lifts ρ1 : ◦

G1 → U(H1) and ρ2 : ◦
G2 → U(H2), respectively. Then ρ1 and ρ2

are unitarily equivalent if and only if there exists an isomorphism � : ◦
G1 → ◦

G2 of
central extensions and a unitary U : H1 → H2 such that ρ2(�(x)) = Uρ1(x)U−1 for
all x ∈ ◦

G1 [40, Thm. 7.3].
Analogously, any projective unitary g-representation π onD can be lifted to a unitary

representation π : ◦
g → u(D) of some central R-extension

◦
g of g, by considering the

pull-back of u(D) → pu(D) along π .

Definition 4. We call a projective unitary representation π : g → pu(D) continuous if
its lift π : ◦

g → u(D) is continuous.

2.2. Cohomology of Lie algebras and Lie groups. Smooth projective unitary represen-
tations of G give rise to central T-extensions of locally convex Lie groups, and these in
turn determine continuous central R-extensions of the Lie algebra g. The latter can be
described in terms of continuous Lie algebra cohomology.

Definition 5 (Lie algebra cohomology). Let E be a module over a Lie algebra g.

• The Lie algebra cohomology H•(g, E) of g with values in E is the cohomology
of the complex C•(g, E), where Cq(g, E) consists of alternating multilinear maps
gq → E for q ≥ 0, and it is zero for q < 0. The differential dg : C•(g, E) →
C•+1(g, E) is given by

dgω(ξ0, . . . , ξq) :=
q

∑

j=0

(−1) jξ j · ω(ξ0, . . . , ξ̂ j , . . . , ξq)

+
∑

0≤i< j≤q

(−1)i+ jω([ξi , ξ j ], ξ0, . . . , ξ̂i , . . . , ξ̂ j , . . . , ξq).

(4)

As usual, the arguments in (4) with a caret are to be omitted. Unless mentioned
otherwise, the vector space R is considered as a trivial g-module.
• Ifg is a locally convex Lie algebra and E a topologicalg-module, then the continuous
Lie algebra cohomology H•

ct(g, E) is the cohomology of the subcomplex C•
ct(g, E)

of continuous alternating multilinear maps.
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The continuous central extensions of g by R are classified up to isomorphism by
H2

ct(g, R), the continuous second Lie algebra cohomology with trivial coefficients [40,
Prop. 6.3]. In order to study smooth projective unitary representations of G = Diffc(M),
it is sensible to determine H2

ct(g, R) for the Lie algebra g = Xc(M). This is done in
Sect. 4.

The interpretation of the second Lie algebra cohomology in terms of central ex-
tensions is already implicit in the work of Schur [69,70], and its use in the projective
representation theory of Lie groups was pioneered by E. Wigner [71] and V. Bargmann
[72], see [73] for an exposition and further references.

To some extent, Lie algebra cohomology functions as an infinitesimal counterpart
of Lie group cohomology, with their relation typically given by a van Est-type spectral
sequence [74]. Although group cohomology for discrete groups admits a good descrip-
tion in terms of commutative algebra [75], the appropriate cohomology theory in the
context of Lie groups requires a bit more care. There are in fact many different flavours
of group cohomology for Lie groups, grounded either in Čech cohomology or in explicit
cocycle models [76–78]. With the notable exception of bounded cohomology [79], they
mostly agree on the domain for which they are intended, see [80] for an overview and
comparison, as well as for further references.

2.3. Generalized positive energy (GPE) representations. In the following, G denotes a
locally convex Lie group which is regular in the sense of Milnor [64, Def. 7.6] (cf. [65,
Def. II.5.2]). We denote by g the Lie algebra of G.

This paper is concerned with projective unitary representations ρ of G that satisfy
a so-called generalized positive energy condition. This class of representations was
introduced in [33, Sec. 4]. It includes representations that satisfy a positive energy
condition, and also representations that are in a suitable sense compatible with a KMS
state on the von Neumann algebra generated by ρ(G).

We first introduce the precise definitions, and then review the restrictions that the
cohomology class [ω] ∈ H2

ct(g, R) associated to such a representation imposes on its
kernel. These restrictions play a crucial role in the proof of Theorem A.

Definition 6. Let D be a complex pre-Hilbert space with Hilbert space completion H.
Let h be a locally convex topological Lie algebra.

• Let π : h → u(D) be a continuous unitary representation of h on D. We say that π

is of positive energy at ξ ∈ h if

inf
ψ∈D

〈ψ,−iπ(ξ)ψ〉 ≥ 0.

We say that π : h → u(D) is of generalized positive energy (GPE) at ξ ∈ h if
there exists a 1-connected regular Lie group H with Lie algebra h and a dense linear
subspace Dξ ⊆ D such that

∀ψ ∈ Dξ : inf
h∈H〈ψ,−iπ(Adh(ξ))ψ〉 > −∞. (5)

• Let π be a continuous projective unitary representation of h with lift π : ◦
h → u(D).

We say that π is of (generalized) positive energy at ξ ∈ h if π is so at some
◦
ξ ∈ ◦

h
covering ξ .
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• A smooth unitary representation (ρ,H) of G is of (generalized) positive energy at
ξ ∈ g if the derived representation dρ of g on H∞ is so.
• Letρ be a smooth projective unitary representation ofG onHwith liftρ : ◦

G → U(H).
We say that ρ is of (generalized) positive energy at ξ ∈ g if there exists an element
◦
ξ ∈ ◦

g covering ξ such that ρ is of (generalized) positive energy at
◦
ξ .

Remark 2. Suppose that π is a continuous unitary representation of g onD that is of GPE
at some element in g. Then the group H in (5) is the simply connected cover G̃0 of the
identity component of G, because two regular 1-connected Lie groups are isomorphic
if their Lie algebras are so [64, Cor. 8.2], and G̃0 is regular whenever G is so [65, Thm.
V.1.8].

Remark 3. If a unitary representation (ρ,H) of G is of positive energy at ξ ∈ g, then it
is also of generalized positive energy at ξ . Indeed, since

〈ψ, dρ(Ad−1
g (ξ))ψ〉 = 〈ρ(g)ψ, dρ(ξ)ρ(g)ψ〉 for all g ∈ G, ξ ∈ g and ψ ∈ H∞,

Remark 2 implies that ρ is of generalized positive energy at ξ ∈ g if and only if

I (ξ, ψ) := inf
g0∈G0

〈ρ(g0)ψ,−idρ(ξ)ρ(g0)ψ〉 > −∞ (6)

for all ψ in some linear subspace Dξ ⊆ H∞ that is dense in H. If ρ is of positive
energy at ξ , then the left hand side of (6) is nonnegative for any ψ ∈ H∞, since H∞ is
G-invariant.

Remark 4. Let (ρ,H) be a smooth unitary representation of G.

• The generalized positive energy cone

C(ρ) := { ξ ∈ g : ρ is of GPE at ξ }
is AdG -invariant for the (not necessarily connected) Lie group G. Indeed, if ξ ∈ C(ρ)

and g ∈ G, then (6) for ξ and ψ ∈ Dξ implies the corresponding inequality for
ξ ′ = Adg(ξ) and ψ ′ ∈ Dξ ′ with Dξ ′ := ρ(g)Dξ .
• If ξ ∈ C(ρ), then C(ρ) also contains the AdG0 -invariant convex cone generated
by ξ . To see this, suppose that (6) is satisfied for ψ ∈ Dξ ⊆ H∞. Let n ∈ N,
gk ∈ G0 and ck ≥ 0 for k ∈ {1, . . . , n}, and define C := ∑n

k=1 ck . Then for
ξ ′ := ∑n

k=1 ckAdgk (ξ) we have that I (ξ ′, ψ) ≥ C · I (ξ, ψ), so that ξ ′ ∈ C(ρ).
• If, moreover, ρ is of positive energy at ξ ∈ g, then it is of positive energy at every
element of the AdG-invariant closed convex cone Cξ ⊆ g generated by ξ . It follows
that ker(dρ) contains the AdG-invariant closed ideal Cξ ∩−Cξ of g. If Cξ ∩−Cξ = g,
then [40, Prop. 3.4] implies that G0 ⊆ ker ρ.
• In particular, if g admits no non-zero proper AdG -invariant closed ideals, then G0
can only act non-trivially in a smooth unitary representation of G that is of positive
energy at ξ if the cone Cξ is pointed. This is the situation for G = Diffc(M) if M is
connected, as we shall see in Corollary 5.

Remark 5. A smooth projective unitary G-representation ρ with lift ρ is of GPE at ξ ∈ g

if and only if for some (and hence any)
◦
ξ ∈ ◦

g covering ξ , the function

μ : P(H∞) → R, μ([ψ]) := 1

‖ψ‖2 〈ψ,−idρ(
◦
ξ)ψ〉

is bounded below on the G0-orbit O[ψ] ⊆ P(H∞) for all ψ in some dense linear sub-
space Dξ ⊆ H∞.
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The following observation plays a crucial role in Sect. 3. It shows that the cohomol-
ogy class in H2

ct(g, R) associated to a projective GPE-representation carries substantial
information about the kernel.

Proposition 1 ([33, Prop. 4.4]). Let π : g → pu(D) be a projective unitary representa-
tion of g that is of generalized positive energy at ξ ∈ g. Let ω ∈ C2

ct(g, R) be a 2-cocycle
whose class [ω] in H2

ct(g, R) corresponds to the central extension
◦
g → g. Suppose that

η ∈ g satisfies [[ξ, η], η] = 0. Then ω([ξ, η], η) ≥ 0 and

ω([ξ, η], η) = 0 ⇐⇒ π([ξ, η]) = 0.

In particular, if [ω] = 0 in H2
ct(g, R), then

[[ξ, η], η] = 0 �⇒ π([ξ, η]) = 0.

Before defining the notion of a KMS-representation, we briefly recall the definition
of a KMS state on a von Neumann algebra (cf. [35, Ch. 5.3], [34, Ch. VIII]). Let
St := { z ∈ C : 0 < Im(z) < 1 }.
Definition 7. Letφ be a normal state on a von Neumann algebraN , and letσ : R → Aut(N )

be a one-parameter group.

• We say that φ satisfies the modular condition for σ if:
1. φ = φ ◦ σt for every t ∈ R.
2. For every pair x, y ∈ N , there is a bounded continuous function Fx,y : St → C,

holomorphic on St, so that for every t ∈ R we have:

Fx,y(t) = φ(σt (x)y),

Fx,y(t + i) = φ(yσt (x)).

• We say that φ is σ -KMS if it satisfies the modular condition for the automorphism
group t �→ σ−t .

Definition 8. Let ξ ∈ g, and let N ⊆ G be an embedded Lie subgroup such that
etξ Ne−tξ ⊆ N for all t ∈ R.

1. A continuous unitary representation (ρ,H) of G is KMS at ξ relative to N if the
von Neumann algebra N := ρ(N )′′ admits a normal state φ that is σ -KMS for
σt (x) := ρ(etξ )xρ(e−tξ ). It is smoothly KMS if additionally n �→ φ(ρ(n)) is a
smooth function N → C.

2. Let ρ : G → PU(H) be a smooth projective unitary representation of G, with lift
ρ : ◦

G → U(H). Let
◦
g be the Lie algebra of

◦
G and let

◦
N ⊆ ◦

G be the Lie subgroup
covering N . We say that ρ is smoothly-KMS at ξ ∈ g relative to N if there exists
◦
ξ ∈ ◦

g covering ξ such that ρ is smoothly-KMS at
◦
ξ relative to

◦
N .

Various examples of KMS-representation are considered in [33, Sec. 5.2.2].
Suppose that N ⊆ G and ξ ∈ g are as in Definition 8. Let n be the Lie alge-

bra of N , ρ a unitary representation of G, and let N := ρ(N )′′ be the von Neu-
mann algebra generated by ρ(N ). Define α : R → Aut(N ) by αt (n) = etξne−tξ and
D ∈ der(n) by Dη := [ξ, η]. Suppose that the normal state φ is KMS w.r.t. the auto-
morphism group σ : R → Aut(N ), σt (x) := ρ(etξ )xρ(e−tξ ). The GNS-construction
(for Gelfand–Naimark–Segal) provides a ∗-representation πφ of the von Neumann al-
gebra N on the GNS-Hilbert space Hφ . We therefore obtain a unitary representation
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ρφ := πφ ◦ ρ of N on Hφ . Letting �φ denote the modular operator associated to φ (cf.
[81, Ch. 2.5]), the representation ρφ extends to N�αR by setting ρφ(n, t) := ρφ(n)�−i t

φ .
This representation is smooth if n �→ φ(ρ(n)) is a smooth map N → C [33, Lem. 5.10].

The following relates KMS-representations to the generalized positive energy con-
dition:

Theorem 2 ([33, Thm. 5.13]). Let ρ be a unitary representation of G that is smoothly-
KMS at ξ ∈ g relative to N ⊆ G, and let φ : N → C be as in Definition 8. Then the
associated unitary representation ρφ of N �α R on the GNS-Hilbert spaceHφ is smooth
and of generalized positive energy at (0, 1) ∈ n �D R.

3. GPE Representations of Diff c(M) �υ R

Let M be a smooth manifold of dimension dim(M) > 1. If υ ∈ X (M) is a complete
vector field on M with flow �υ : R → Diff(M), we write Diffc(M) �υ R for the semidi-
rect product of Diffc(M) and R relative to the smooth R-action on Diffc(M) defined by
αs( f ) = �υ

s ◦ f ◦ �υ
s−1 for s ∈ R and f ∈ Diffc(M). The corresponding Lie algebra

is Xc(M) � Rυ, where υ acts on Xc(M) by the derivation Dw := [υ,w].
In Sect. 4, we will see that H2

ct(Xc(M), R) is trivial for dim(M) > 1. This puts severe
restrictions on the class of projective unitary representations of Xc(M) � Rυ that are of
generalized positive energy at υ. The following result on Lie algebra representations is
the crux of the matter.

Theorem 3. Suppose that dim(M) > 1. Let π : Xc(M) → pu(D) be a continuous
projective unitary representation of Xc(M) on the complex pre-Hilbert space D. Let
C ⊆ X (M) be a cone of complete vector fields on M, and define the open set

U :=
⋃

υ∈C
{ p ∈ M : υ(p) �= 0 } .

Suppose that for every υ ∈ C the representation π extends to a continuous projective
unitary representation of Xc(M) � Rυ that is of generalized positive energy at υ. Then
Xc(U ) ⊆ ker π .

In Sect. 3.1, we classify invariant ideals inXc(M). This is an intermediate step towards
the proof of Theorem 3, which is given in Sect. 3.2. Lastly, in Sect. 3.3 we use this result
to derive Theorem A, which is a group-level analogue of Theorem 3.

3.1. Ideals of the Lie algebra Xc(M). Let M be a smooth manifold. For any x ∈ M , let
Ix ⊆ Xc(M) denote the closed ideal of vector fields that are flat at x . So v ∈ Ix ⇐⇒
j∞x (v) = 0 for v ∈ Xc(M). The proof of Theorem 3 uses Proposition 4 below.

Definition 9. If J ⊆ Xc(M) is an ideal, define its hull by

h(J ) := { x ∈ M : v(x) = 0 for all v ∈ J } .

Remark 6. The set of maximal ideals in Xc(M) is given by {Ix : x ∈ M} [82, Thm.
1] (cf. [83, prop. 7.2.2] or [84, Prop. 1]). Moreover, if x ∈ M and J ⊆ Xc(M) is an
ideal, then x ∈ h(J ) if and only if j∞x (v) = 0 for all v ∈ J . Indeed, if x ∈ h(J ),
then for any w1, . . . , wm ∈ Xc(M) and v ∈ J we have Lw1 · · ·Lwmv ∈ J , as J
is an ideal, and so

(Lw1 · · ·Lwmv
)

(x) = 0. Consequently j∞x (v) = 0. We thus see
that h(J ) = {x ∈ M : J ⊆ Ix } corresponds to the set of maximal ideals of Xc(M)

containing J .
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Proposition 4. Let J ⊆ Xc(M) be an ideal and let x ∈ M. Then either x ∈ h(J ), or
there is an open neighborhood U ⊆ M of x such that Xc(U ) ⊆ [J,Xc(M)] ⊆ J .

Proof. This is immediate from the proof of [84, Lem. 2.1], which does not require the
ideal J ⊆ Xc(M) to be maximal. ��

Although Xc(M) is not simple, the following related result does hold true:

Corollary 5. Assume that M is connected. Suppose that J ⊆ Xc(M) is an ideal that is
stable, in the sense that Adg(J ) ⊆ J for all g ∈ Diffc(M)0. Then either J = Xc(M)

or J = {0}.
Proof. That J is stable implies that its hull h(J ) ⊆ M is Diffc(M)0-invariant. Since M
is connected, Diffc(M)0 acts transitively on M (cf. [85, p. 22]). It follows that either
h(J ) = ∅ or h(J ) = M . Using a partition of unity argument, Proposition 4 implies that
either J = Xc(M) or J = {0}. ��
Remark 7. Suppose that M is connected. Let ρ : Diffc(M) → PU(H) be a smooth
projective unitary representation. Let dρ : Xc(M) → pu(H∞) be its derived represen-
tation. Its kernel J := ker dρ is a closed ideal in Xc(M) satisfying Adg(J ) ⊆ J for all
g ∈ Diffc(M). So dρ is either trivial or injective by Corollary 5.

3.2. The proof of Theorem 3. We now proceed with the proof of Theorem 3. Let n :=
dim(M) > 1. We start with a lemma that concerns the local situation near a regular
point of a vector field υ ∈ C. We thus consider the following setting:

Let I ⊆ R be an open interval containing zero. Let U0 ⊆ R
n−1 be an open subset

that is diffeomorphic to R
n−1. Define U := I × U0, which is then diffeomorphic to

R
n . We consider the locally convex Lie algebra Xc(U ) of compactly supported smooth

vector fields on U . We write (t, x1, . . . , xn−1) ∈ R
n for the coordinates on R

n , and
(∂t , ∂x1 , . . . , ∂xn−1) for the corresponding basis of X (Rn) over C∞(Rn). Notice that the
derivation D := [∂t ,−] on Xc(U ) does not necessarily integrate to a 1-parameter group
of automorphisms of Xc(U ), because the open set U need not be invariant under the
flow of ∂t .

Lemma 6. Let π : Xc(U ) � R∂t → pu(D) be a continuous projective unitary repre-
sentation on the pre-Hilbert space D. Assume that

[v, Dv] = 0 �⇒ π(Dv) = 0, ∀v ∈ Xc(U ). (7)

Then Xc(U ) ⊆ ker π .

Proof. Let p0 = (t0, x0) ∈ U = I ×U0 be arbitrary. Let f ∈ C∞
c (I ) and w ∈ Xc(U0)

be s.t. f ′(t0) �= 0 and w(x0) �= 0. Define v ∈ Xc(U ) by v(t, x) := f (t)w(x) for
t ∈ I and x ∈ U0. Observe that Dv(t, x) = f ′(t)w(x). In particular, Dv(p0) �= 0
and [v, Dv](t, x) = f (t) f ′(t)[w,w](x) = 0. It follows using (7) that Dv ∈ ker π . Let
J ⊆ Xc(U ) be the ideal generated by Dv. Then J ⊆ ker π . As Dv(p0) �= 0, it follows
using Proposition 4 that Xc(V ) ⊆ J for some open neighborhood V ⊆ U of p0. So we
have Xc(V ) ⊆ ker π . We have thus shown that any p ∈ U has a neighborhood V ⊆ U
for which Xc(V ) ⊆ ker π . Consequently, if K ⊆ U is a compact subset, we can find
a finite open cover {U1, . . . ,Um} of K with Xc(Uk) ⊆ ker dρ for all k ∈ {1, . . . ,m}.
Using a partition of unity argument, it follows that XK (U ) ⊆ ker dρ for any compact
set K ⊆ M , so that Xc(U ) ⊆ ker dρ. ��



   45 Page 12 of 27 B. Janssens, M. Niestijl

We now return to the global setting, and prove Theorem 3.

Proof (of Theorem 3). Let p ∈ U and let υ ∈ C satisfy υ(p) �= 0. By assumption,
π extends to a continuous projective unitary representation of Xc(M) � Rυ that is of
generalized positive energy at υ, again denoted π . Since υ(p) �= 0, we can find an open
neighborhood Up ⊆ M of p, an open interval I ⊆ R containing zero, an open subset
U0 ⊆ R

n−1 that is diffeomorphic to R
n−1, and a diffeomorphism φ : I ×U0 → Up such

that φ∗([∂t , w]) = [υ, φ∗(w)] for all w ∈ Xc(I ×U0) [86, Thm. 9.22]. So φ∗ defines an
isomorphism

φ∗ : Xc(I ×U0) � R∂t → Xc(Up) � Rυ.

In view of Theorem B, we know that H2
ct(Xc(M), R) = 0. As π is of generalized positive

energy at υ, it follows using Proposition 1 that [w, Dw] = 0 implies π(Dw) = 0 for
any w ∈ Xc(M). As a consequence, the pull-back of π along the composition

Xc(I ×U0) � R∂t
φ∗−→ Xc(Up) � Rυ ↪→ Xc(M) � Rυ

satisfies the conditions of Lemma 6, from which it then follows that Xc(Up) ⊆ ker π .
So any p ∈ U has an open neighborhood Up ⊆ M satisfying Xc(Up) ⊆ ker π . This
implies that Xc(U ) ⊆ ker π .

3.3. The proof of Theorem A. In this section, we derive Theorem A as a group-level
consequence of Theorem 3. As a special case, we obtain similar results for KMS and
bounded representations.

Proof (of Theorem A). Since the derived representation dρ : Xc(M) � Rυ → pu(H∞)

is of generalized positive energy at υ, it is so at every υ ′ in the cone C generated by the
adjoint orbit of υ in Xc(M) � Rυ. Since υ is non-zero, there exists some open subset
U0 ⊆ M on which υ is non-vanishing. Then Ad f (υ) is non-zero on f (U0) for every f ∈
Diffc(M). Since M is connected, Diffc(M) acts transitively on M (because all orbit are
open and therefore also closed, cf. [85, p. 22]). Hence

⋃

υ ′∈C
{

p ∈ M : υ ′(p) �= 0
} =

M . We obtain using Theorem 3 that Xc(M) ⊆ ker dρ. Corollary 21 now implies that
Diffc(M)0 ⊆ ker ρ.

Corollary 7. Suppose that M is connected and that dim(M) > 1. Let υ ∈ X (M)\{0} be
a complete vector field on M. Let ρ : Diffc(M)�υ R → PU(H) be a smooth projective
unitary representation that is smoothly-KMS at υ relative to Diffc(M). Assume that the
von Neumann algebra ρ(Diffc(M))′′ is a factor. Then Diffc(M)0 ⊆ ker ρ.

Proof. Let ρ : G → U(H) be the lift of ρ, where the Lie group G is a central T-
extension of Diffc(M) �υ R. Let H ⊆ G be the Lie subgroup covering Diffc(M).
Let h and g denote the Lie algebras of H and G, respectively. Let N := ρ(H)′′ be
the von Neumann algebra generated by ρ(H). As ρ is smoothly-KMS at υ relative to
Diffc(M), there is some ξ ∈ g covering υ such that ρ is smoothly-KMS at ξ ∈ g relative
to H . Let φ be a normal state on N for which the function H → C, h �→ φ(ρ(h))

is smooth, and that is σ -KMS for σt (x) = ρ(etξ )xρ(e−tξ ) with t ∈ R and x ∈ N .
Let ρφ : H � R → U(Hφ) be the associated unitary representation of H � R on the
GNS-Hilbert spaceHφ . According to Theorem 2, the representation ρφ onHφ is smooth
and of generalized positive energy at (0, 1) ∈ h � R. It follows from Theorem A that
ρφ(H0) ⊆ TidHφ

, where H0 denotes the identity component of H . Because the von
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Neumann algebra N is a factor, the GNS-representation N → B(Hφ) is injective (see
e.g. [33, Rem. 5.3 items 1 and 3]). It follows that ρ(H0) ⊆ TidH. Since H0 covers
Diffc(M)0, this implies that Diffc(M)0 ⊆ ker ρ. ��
Corollary 8. Suppose that dim(M) > 1. Let ρ : Diffc(M) → PU(H) be a smooth
projective unitary representation that is bounded, i.e., continuousw.r.t. the norm topology
on PU(H). Then Diffc(M)0 ⊆ ker ρ.

Proof. Let ρ : G → U(H) be the lift of ρ, where G is a central T-extension of
Diffc(M) with Lie algebra g. Let p ∈ M . Take υ ∈ Xc(M) with υ(p) �= 0 and
let ξ ∈ g cover υ. Since ρ is continuous w.r.t. the norm-topology on U(H), the self-
adjoint operator −i d

dt

∣
∣
t=0 ρ(expG(tξ)) is bounded. It follows that ρ is of (generalized)

positive energy at υ ∈ Xc(M). Using Theorem A, this implies that υ ′ ∈ ker dρ for any
υ ′ ∈ Xc(M) for which supp(υ ′) is contained in the connected component of p in M . As
p ∈ M was arbitrary, we find that Xc(M) ⊆ ker dρ. We conclude using Corollary 21
that Diffc(M)0 ⊆ ker ρ. ��

4. Continuous Second Lie Algebra Cohomology

In this section we prove Theorem B, that is, we determine the continuous second Lie
algebra cohomology H2

ct(Xc(M), R). This is a crucial ingredient for the results of Sect. 3.
In Sect. 4.1 we consider the proof of Theorem B for the case dim(M) > 1, and

in Sect. 4.2 we consider the case dim(M) = 1. The cohomology H•
ct(Xc(M), R) is

generally different from the Gelfand–Fuks cohomology H•
ct(X (M), R) (cf. also [41]).

In Sect. 4.3 we therefore clarify the relationship between H2
ct(Xc(M), R) and the second

Gelfand–Fuks cohomology H2
ct(X (M), R). They both vanish when dim(M) > 1, but

differ for noncompact manifolds of dimension 1.
We first make some general observations that will be useful for the proof of Theo-

rem B.

Definition 10. A 2-cochain ψ : Xc(M) × Xc(M) → R is called diagonal if

supp(v) ∩ supp(w) = ∅ �⇒ ψ(v,w) = 0, ∀v,w ∈ Xc(M).

Lemma 9. Every 2-cocycle on Xc(M) is diagonal.

Proof. Let v,w ∈ Xc(M) have disjoint support. Then we can find open subsetsU1,U2 ⊆
M with U1 ∩U2 = ∅ such that supp(v) ⊆ U1 and supp(w) ⊆ U2. Since the Lie algebra
Xc(U1) is perfect ([83, Thm. 1.4.3] or [84, Cor. 1]), there exist vi1, v

i
2 ∈ Xc(U1) s.t.

v = ∑N
i=1[vi1, vi2]. Since ψ : Xc(M) × Xc(M) → R satisfies the cocycle identity

ψ([u, v], w) = ψ([u, w], v) + ψ(u, [v,w]), (8)

and since w has support disjoint from that of vi1 and vi2, we have

ψ(v,w) =
N

∑

i=1

ψ([vi1, vi2], w) =
N

∑

i=1

ψ([vi1, w], vi2) + ψ(vi1, [vi2, w]) = 0,

as required. ��
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Let g be a locally convex Lie algebra, and let g′ be its continuous dual. We consider g′
as a g-module with the coadjoint action, defined by (ξ · α)(η) := −α([ξ, η]) for α ∈ g′.
For a continuous cochain ψ ∈ Cq

ct(g, R) with values in R, we define a (not necessarily
continuous) cochain ψ̂ ∈ Cq−1(g, g′) by

ψ̂(ξ1, . . . , ξq−1)(η) := ψ(ξ1, . . . , ξq−1, η). (9)

Let C•−1(g, g′) denote the shifted complex with Cq−1(g, g′) in degree q, and with
differential from the q th to the (q + 1)th degree given by dg : Cq−1(g, g′) → Cq(g, g′)
as in (4). We note the following:

Proposition 10. The assignment ψ �→ ψ̂ defines a morphism C•
ct(g, R) → C•−1(g, g′)

of cochain complexes. Moreover, the induced map H2
ct(g, R) → H1(g, g′) is injective.

Proof. That ψ �→ ψ̂ defines a morphism C•
ct(g, R) → C•−1(g, g′) of cochain com-

plexes follows from a straightforward computation using (4). For the final assertion,
note that ψ �→ ψ̂ is injective and restricts to an isomorphism C1

ct(g, R) → C0(g, g′).
This implies that a 2-cocycle ψ ∈ C2

ct(g, R) is a coboundary if and only if ψ̂ ∈ C1(g, g′)
is a coboundary ��

So if ψ ∈ C2
ct(Xc(M), R) is a continuous 2-cocycle on Xc(M) with trivial coeffi-

cients, then ψ̂ ∈ C1(Xc(M),Xc(M)′) is a 1-cocycle with values in the continuous dual
space Xc(M)′, and

ψ̂([v,w]) = v · ψ̂(w) − w · ψ̂(v) (10)

for all v,w ∈ Xc(M).

Lemma 11. Let ψ ∈ C2
ct(Xc(M)) be a 2-cocycle. Then ψ̂ ∈ C1(Xc(M),Xc(M)′) ex-

tends to a 1-cocycle ψ̂ ∈ C1(X (M),Xc(M)′).

Proof. Let {Ki }i∈N be an exhaustion of M by compact subsets. For v ∈ X (M) and i ∈ N,
we define ψ̂i (v) ∈ XKi (M)′ by ψ̂i (v)(w) := ψ( fKi v,w) for an arbitrary fKi ∈ C∞

c (M)

that satisfies fKi (x) = 1 for all x in some open neighborhood Ui of Ki . This is indepen-
dent of fKi by Lemma 9. The various ψ̂i (v) define an element ψ̂(v) of Xc(M)′. Indeed,
Xc(M) is the locally convex inductive limit Xc(M) = lim−→i

XKi (M), and the functionals

ψ̂i (v) are compatible in the sense that the restriction of ψ j (v) to XKi (M) ⊆ XK j (M)

coincides with ψi (v) if Ki ⊆ K j . The linear map ψ̂ : X (M) → Xc(M)′ obtained in this
way clearly extends the original map ψ̂ : Xc(M) → Xc(M)′ and because ψ is diagonal,
it satisfies the cocycle identity

ψ̂([v,w]) = v · ψ̂(w) − w · ψ̂(v) (11)

for the action of X (M) on Xc(M)′ by (v · φ)(u) = φ([−v, u]). ��
Remark 8. Because the continuous 2-cocycle ψ is diagonal (Lemma 9), the map ψ̂ :
X (M) → Xc(M)′ from Lemma 11 is support decreasing, in the sense that supp(ψ̂(v)) ⊆
supp(v) for any v ∈ X (M). By Peetre’s Theorem, we conclude that the linear map
ψ̂ : X (M) → Xc(M)′ is a differential operator of locally finite degree. This follows
from [87, Thm. 1]; the locally finite set of discontinuous points for ψ̂ : X (M) → Xc(M)′
is empty because ψ : Xc(M) × Xc(M) → R is continuous.
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4.1. Manifolds M of dimension dim(M) > 1. We now proceed with the proof of The-
orem B for manifolds of dimension dim(M) > 1. Note that we will occasionally use
Einstein summation convention, so repeated indices imply a sum.

4.1.1. The local setting We begin with the case where M = R
n . In Lemma 13 below,

we will show that H2
ct(Xc(R

n), R) = {0} for n > 1. This should be regarded as the
local analog of Theorem B for dim(M) > 1. The analogous statement in Gelfand–Fuks
cohomology follows e.g. from [53, Thm. 3.12].

The following is an adaptation of a result in [55], and we thank Cornelia Vizman and
Leonid Ryvkin for illuminating discussions on this topic.

We first make some preliminary observations. The Lie algebraWn ⊆ X (Rn) of vector
fields with polynomial coefficients is Z-graded, with Wk

n consisting of vector fields with
homogeneous polynomial coefficients of degree k+1 for k ≥ −1, and Wk

n = {0} for k <

−1. Since [Wk
n ,Wl

n] ⊆ Wk+l
n , the constant vector fields W−1

n decrease the degree by 1.
Also, every Wk

n is a representation of the Lie algebra W 0
n of linear vector fields, which

we identify with gl(n, R) via the isomorphism gl(n, R) → W 0
n that maps (Aμ

ν )nμ,ν=1

to the linear vector field aμ
ν xν∂μ with constant coefficients aμ

ν = −Aμ
ν . Under this

identification, we have Wk
n

∼= Sk+1(Rd)∗ ⊗ R
d as gl(n, R)-representation for every

k ∈ N≥0, where Sk+1(Rd)∗ denotes the space of homogeneous polynomials on R
n of

degree k + 1. The Euler vector field E = xμ∂μ acts on v ∈ Wk
n by [E, v] = kv.

Lemma 12. The space Xc(R
n)′ of translation invariant elements is equivalent to the

space (Rn)∗ ⊗ ∧n(Rn)∗ as a gl(n, R)-representation. In particular, the Euler vector
field E ∈ W 0

n acts on a translation-invariant φ ∈ Xc(R
n)′ by

E · φ = (n + 1)φ. (12)

Proof. The linear vector field aμ
ν xν∂μ corresponding to A = (Aμ

ν )nμ,ν=1 acts on φ ∈
Xc(R

n)′ according to

(aμ
ν x

ν∂μ · φ)(uσ ∂σ ) = φ(−aμ
ν [xν∂μ, uσ ∂σ ])

= −φ(aμ
ν x

ν(∂μu
σ )∂σ ) + φ(aμ

σ u
σ ∂μ)

= −tr(A)φ(uσ ∂σ ) + φ(aμ
σ u

σ ∂μ) + (∂μ · φ)(aμ
ν x

νuσ ∂σ ),

(13)

where the last equality uses (∂μ·φ)(aμ
ν xνuσ ∂σ ) = −φ(aμ

ν uσ ∂σ )δν
μ−φ(aμ

ν xν(∂μuσ )∂σ ).
Assume now thatφ is translation-invariant. Then (∂μ·φ)(aμ

ν xνuσ ∂σ ) = 0, andφ(uσ ∂σ ) =
bσ I (uσ ) for some vector b = (bσ )nσ=1 ∈ R

n , where I ( f ) := ∫

Rn f dx for f ∈ C∞
c (Rn).

It follows using (13) that

(aμ
ν x

ν∂μ · φ)(uσ ∂σ ) = ( − tr(A)bσ + aμ
σ bμ

)

I (uσ ) = b′
σ I (u

σ ),

where b′ := −tr(AT )b − AT b. This corresponds to the natural action of gl(n, R) on
(Rn)∗⊗∧n(Rn)∗ under the isomorphismgl(n, R) ∼= W 0

n specified above, so the assertion
follows. ��
Lemma 13. Let n > 1 be an integer. Then H2

ct(Xc(R
n), R) = {0}.
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Proof. Let ψ be a continuous 2-cocycle on Xc(R
n), and let ψ̂ be the corresponding

1-cocycle in C1(X (Rn),Xc(R
n)′), obtained using Lemma 11. By Remark 8, we can

expand ψ̂ into a locally finite sum as

ψ̂(v) =
∑

�σ∈Nn≥0

(

∂ |�σ |

∂x �σ vμ

)

φ �σ
μ, (14)

whereφ �σ
μ ∈ Xc(R

n)′. Here ∂ |�σ |
∂x �σ := ( ∂

∂x1 )σ1 · · · ( ∂
∂xn )σn is a higher order partial derivative.

We show for any integer k ≥ −1 that ψ̂ is cohomologous to a 1-cocycle that vanishes on
the subspace W≤k

n of vector fields with polynomial coefficients of degree at most k + 1.

The case k = −1. The cocycle identity (11) for constant vector fields v = ∂μ and w = ∂ν

yields

∂μ · φ
�0
ν − ∂ν · φ

�0
μ = 0. (15)

We identify Xc(R
n)′ � D′(Rn) ⊗ (Rn)∗ with n copies of the distributions D′(Rn) by

setting

(ζσ ⊗ dxσ )(vμ∂μ) := ζσ (vσ ), for ζσ ∈ D′(Rn) and vμ ∈ C∞
c (Rn).

The action of ∂μ on Xc(R
n)′ is then simply given by differentiating the components in

D′(Rn), so that for φ
�0
ν = φ

�0
νσ ⊗ dxσ we have ∂μ · φ

�0
ν = ∂μφ

�0
νσ ⊗ dxσ . Indeed, we

compute that

(∂μ · φ
�0
ν )(X τ ∂τ ) = φ

�0
ν (−[∂μ, X τ ∂τ ]) = φ

�0
νσ ⊗ dxσ (−(∂μX

τ )∂τ )

= φ
�0
νσ (−(∂μX

σ )) = (∂μφ
�0
νσ )(Xσ ) = (∂μφ

�0
νσ ⊗ dxσ )(X τ ∂τ ).

Equation (15) therefore yields for each σ that ∂μ · φ
�0
νσ − ∂ν · φ

�0
μσ = 0 for all in-

tegers μ, ν ranging from 1 to n. With respect to the differential d : �
n−p
c (Rn)′ →

�
n−(p+1)
c (Rn)′, 〈dT, α〉 := (−1)p+1〈T, dα〉 on the space of currents (cf. [88, III§11]),

this means precisely that the current cσ := φ
�0
μσdx

μ ∈ �n−1
c (Rn)′ is closed, because

dcσ =
∑

1≤μ<ν≤n

(∂μ · φ
�0
νσ − ∂ν · φ

�0
μσ )dxμ ∧ dxν = 0.

(Identifying D′(Rn) ∼= �n
c (R

n)′ using the volume form dx1 ∧ · · · ∧ dxn on R
n , for

any T ∈ D′(Rn) and α ∈ �p(Rn), we interpret Tα as element of �
n−p
c (Rn)′ via the

pairing 〈Tα, β〉 := T (α ∧ β) for β ∈ �
n−p
c (Rn), cf. [88, p. 36].) By the Poincaré

Lemma for currents [88, IV§19], it follows that there exist distributions ησ ∈ D′(Rn)

with ∂μησ = φ
�0
μσ for all integers 1 ≤ μ, σ ≤ n. The 1-coboundary dg(ησ ⊗ dxσ ) in

C1(X (Rn),Xc(R
n)′) thus agrees with ψ̂ on ∂μ ∈ W−1

n :

dg(ησ ⊗ dxσ )(∂μ) = ∂μ · (ησ ⊗ dxσ ) = ∂μησ ⊗ dxσ = φ
�0
μσ ⊗ dxσ = φ

�0
μ = ψ̂(∂μ)
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Replacing ψ̂ by the 1-cocycle ψ̂ − dg(ησ ⊗ dxσ ), we assume from now on that ψ̂

vanishes on W−1
n .

The case 0 ≤ k ≤ n. Suppose that ψ̂ vanishes on W≤(k−1)
n . Let v ∈ Wk

n . Since
[∂μ, v] ∈ Wk−1

n , the cocycle identity (11) yields ∂μ · ψ̂(v) = 0 for all μ, so that
ψ̂(v) is translation invariant. So E · ψ̂(v) = (n + 1)ψ̂(v), in view of Lemma 12. From
the cocycle identity ψ̂([E, v]) = E · ψ̂(v) − v · ψ̂(E), we find for any v ∈ Wk

n that

(n + 1 − k)ψ̂(v) = v · ψ̂(E). (16)

We consider separately the cases k = 0 and 0 < k ≤ n. Suppose that k = 0. The
preceding then shows that ψ̂(v) = 1

n+1v · ψ̂(E) for all v ∈ W 0
n . The 0-cochain η =

1
n+1 ψ̂(E) therefore satisfies (dgη)(v) = ψ̂(v) for any v ∈ W 0

n . Since E ∈ W 0
n , we know

that ψ̂(E) is translation-invariant, so we also have (dgη)(v) = 1
n+1v · ψ̂(E) = 0 for

v ∈ W−1
n . Replacing ψ̂ by the cohomologous cocycle ψ̂ − dgη if necessary, we may

assume that ψ̂ vanishes on W≤0
n . Suppose next that 0 < k ≤ n. Then E ∈ W≤(k−1)

n ,
so ψ̂(E) = 0. Consequently, (16) implies that ψ̂(v) = 0 for any v ∈ Wk

n and hence ψ̂

vanishes on W≤k
n . Inductively, we thus find that ψ̂ vanishes on W≤n

n , and that ψ̂(v) is
translation invariant for any v ∈ Wn+1

n .

The case k = n + 1. The cocycle identity (11) for A ∈ W 0
n and v ∈ Wn+1

n reads
ψ̂([A, v]) = A · ψ̂(v), because ψ̂(A) = 0. Since ψ̂(v) is translation invariant for any
v ∈ Wn+1

n , we conclude using Lemma 12 that the linear map

ψ̂

∣
∣
∣
Wn+1

n

: Wn+1
n → (Rn)∗ ⊗ ∧n(Rn)∗ ⊆ Xc(R

n)′

is an intertwiner of gl(n, R)-representations. The action of sl(n, R) on ∧n(Rn)∗ is trivial,
and we notice that

Homsl(n,R)

(

Wn+1
n , (Rn)∗

) ∼= Homsl(n,R)

(

Sn+2(Rn)∗, (Rn)∗ ⊗ (Rn)∗
)

= 0,

because (Rn)∗⊗(Rn)∗ ∼= S2(Rn)∗⊕∧2
(Rn)∗ does not contain the irreducible sl(n, R)-

representation on Sn+2(Rn)∗ (cf. [89, Prop. 15.15]). So ψ̂(v) = 0 for any v ∈ Wn+1
n .

The case k > n + 1. Suppose that ψ̂ vanishes on W≤(k−1)
n for k > n + 1. Then (16)

implies that ψ̂(v) = 0 for any v ∈ Wk
n , so ψ̂ vanishes on W≤k

n . Inductively, we thus find
that ψ̂ vanishes on W≤k

n for any integer k ≥ −1. This implies that all the coefficients
φ �σ

μ in equation (14) are zero, so ψ̂ = 0 and hence ψ = 0. ��

4.1.2. A local-to-global argument Having established that H2
ct(Xc(R

n), R) = {0}, we
now show that H2

ct(Xc(M), R) vanishes for general manifolds M of dimension greater
than 1, using a local-to-global argument. This completes the proof of the first part of
Theorem B.

We let X ′
c denote the presheaf defined by U �→ Xc(U )′ and the natural restriction

maps. This is in fact an acyclic sheaf by Proposition 19.
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Lemma 14. Assume that dim(M) > 1. Then H2
ct(Xc(M), R) = {0}.

Proof. Let n := dim(M). The continuous Chevalley–Eilenberg cochains define a pre-
sheaf U �→ Cm

ct (Xc(U ), R) for any m ∈ N, that we denote by Cm
ct (Xc). We denote by

Zm
ct (Xc) ⊆ Cm

ct (Xc) its sub-presheaf consisting of cocycles. Let U = {Ui : i ∈ S} be
an open cover of M such that every Ui is diffeomorphic to R

n , and consider the (aug-
mented) double complex Č•(U ,C•

ct(Xc)) for the Čech-cohomology with coefficients in
the presheaf C•

ct(Xc). Restricted to cocycles in Chevalley–Eilenberg degree 2, the left
lower portion looks as follows:

0 0 0

0 Z2
ct(Xc(M))

∏

i∈S Z2
ct(Xc(Ui ))

∏

i, j∈S Z2
ct(Xc(Ui ∩Uj ))

0 C1
ct(Xc(M))

∏

i∈S C1
ct(Xc(Ui ))

∏

i, j∈S C1
ct(Xc(Ui ∩Uj ))

0 0 0.

δ̌ δ̌

dg

δ̌

dg

δ̌

dg

The middle column is exact by Lemma 13, as every Ui ∈ U is diffeomorphic to R
n ,

and the column on the right is exact at
∏

i, j∈S C1
ct(Xc(Ui ∩ Uj )) as Xc(Ui ∩ Uj )

is perfect for any i, j ∈ S [83, Thm. 1.4.3]. The bottom row is exact because
C1

ct(Xc) = X ′
c is an acyclic sheaf, by Proposition 19. Lemma 9 further guarantees

that the map δ̌ : Z2
ct(Xc(M)) → ∏

i∈S Z2
ct(Xc(Ui )) is injective. Indeed, suppose that

ψ(Xc(Ui ),Xc(Ui )) = {0} for all i ∈ S. Then ψ(Xc(Ui ),Xc(M)) = {0} for any
ψ ∈ C2

ct(Xc(M)) and i ∈ S, because ψ is diagonal. So ψ = 0, by a partition of unity
argument. A straightforward diagram chase now shows that H2

ct(Xc(M), R) vanishes. ��

4.2. Manifolds M of dimension one. Having proven Theorem B for manifolds of dimen-
sion greater than 1, we proceed with the remaining case, and determine H2

ct(Xc(M), R)

for manifolds of dimension 1. In the connected case, M must be diffeomorphic to either
R or S1. It is well-known that H2

ct(X (S1), R) = R is spanned by the class of the Virasoro
cocycle (cf. [90, Prop. 2.3]):

ψvir( f ∂θ , g∂θ ) =
∫

S1
f ′′′(θ)g(θ)dθ, f, g ∈ C∞(S1).

A slight adaptation of the proof of Lemma 13 allows us to prove the analogous result on
the real line:

Lemma 15. The second Lie algebra cohomology H2
ct(Xc(R), R) is 1-dimensional. It is

spanned by the class of the Virasoro cocycle

ψvir( f ∂x , g∂x ) =
∫

R

f ′′′(x)g(x)dx, f, g ∈ C∞
c (R). (17)

Proof. Let us first observe that the cocycle

ψvir( f ∂x , g∂x ) =
∫

R

f ′′′(x)g(x)dx
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is not a coboundary. Indeed, if η ∈ C1
ct(Xc(R), R) is a 1-cochain, then the map d̂gη :

X (R) → Xc(R)′ obtained using Lemma 11 is the first-order differential operator
d̂gη( f ∂x ) = f (∂x · η) + 2 f ′η. Indeed, this follows from the calculation

d̂gη( f ∂x )(g∂x ) = −η([ f ∂x , g∂x ]) = η( f ′g∂x − f g′∂x )
= 2η( f ′g∂x ) − η(( f g)′∂x ) = (2 f ′η + f (∂x · η))(g∂x )

for f ∈ C∞(R) and g ∈ C∞
c (R). On the other hand, ψ̂vir is the third-order differential

operator ψ̂vir( f ∂x ) = f ′′′ I , where I ∈ Xc(R)′ is defined by I ( f ∂x ) = ∫

R
f (x)dx . So

ψvir can not be a coboundary.
Let ψ be a continuous 2-cocycle. Let ψ̂ ∈ C1(X (R),Xc(R)′) be the corresponding

1-cocycle obtained using Lemma 11. We show that ψ̂ is cohomologous to a 1-cocycle
in C1(X (R),Xc(R)′) that vanishes on the subspace W−1

1 = R∂x . Choose χ ∈ C∞
c (R)

with
∫

R
χ(x)dx = 1. For any f ∈ C∞

c (R), the function

P( f )(x) :=
∫ x

−∞
f (s) − I ( f ∂x )χ(s)ds

is smooth and compactly supported. We moreover have P( f ′) = f , because I ( f ′∂x ) =
0. Observe that the 0-cochain η ∈ Xc(R)′ = C0(X (R),Xc(R)′) defined by η( f ∂x ) :=
ψ̂(∂x )(P( f )∂x ) satisfies ψ̂(∂x ) + (dgη)(∂x ) = 0, because

(dgη)(∂x )( f ∂x ) = −η( f ′∂x ) = −ψ̂(∂x )(P( f ′)∂x ) = −ψ̂(∂x )( f ∂x ), ∀ f ∈ C∞
c (R).

Replacing ψ̂ by ψ̂ + dgη, we assume from now on that ψ̂ vanishes on W−1
1 = R∂x .

Following the case 0 ≤ k ≤ n in the proof of Lemma 13, we may then further assume
that ψ̂ vanishes on W≤1

1 and that ψ̂(x3∂x ) ∈ Xc(R)′ is translation invariant. The latter
implies that ψ̂(x3∂x ) = cI for some constant c ∈ R. It follows that the 1-cocycle
ψ̂ − cψ̂vir ∈ C1(X (R),Xc(R)′) vanishes on W≤2

1 . Following the case k > n + 1 in the

proof of Lemma 13, this implies that ψ̂ −cψ̂vir vanishes on W≤k
1 for any integer k ≥ −1

and therefore that ψ̂ = cψ̂vir. Hence ψ = cψvir. ��
We have thus shown that H2

ct(Xc(M), R) ∼= R for any connected 1-dimensional man-
ifold. Combined with Lemma 14, the following now completes the proof of Theorem B.

Lemma 16. Let M be a smooth manifold of dimension 1. Then

H2
ct(Xc(M), R) = H0

dR(M).

Proof. Let {Mα}α∈I be the set of connected components of M , where I is some count-
able indexing set. (Here we used that M is second-countable.) As the support of a
compactly supported vector field on M intersects only finitely many Mα non-trivially,
Xc(M) is isomorphic to the locally convex direct sum Xc(M) ∼= ⊕

α∈I Xc(Mα). Hence
Xc(M)′ ∼= ∏

α∈I Xc(Mα)′. Furthermore, any 2-cocycle ψ : Xc(M) × Xc(M) → R is
diagonal by Lemma 9, and therefore decomposes as ψ = ∑

α ψα for some 2-cochains
ψα on Xc(Mα). Moreover, ψ is a cocycle (or a coboundary) if and only if every ψα is
so. It follows that

H2
ct(Xc(M), R) =

∏

α∈I
H2

ct(Xc(Mα), R) =
∏

α∈I
R ∼= H0

dR(M).

��
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4.3. Relation with Gelfand–Fuks cohomology. Finally, let us consider the relationship
between H2

ct(Xc(M), R) and the Gelfand–Fuks cohomology H2
ct(X (M), R). The con-

tinuous injection Xc(M) ↪→ X (M) induces a natural morphism C•
ct(X (M), R) →

C•
ct(Xc(M), R) of cochain complexes, which descends to a linear map H•

ct(X (M), R) →
H•

ct(Xc(M), R) on cohomology. We show that this map is injective in degree 2. We also
show that this map is in general not surjective, so that the continuous cohomology of the
compactly supported vector fields is different from Gelfand–Fuks cohomology.

If ψ ∈ C2
ct(Xc(M), R) is a diagonal 2-cochain, its support supp(ψ) is the set

of points x ∈ M with the property that for any neighborhood U of x , there exist
v,w ∈ Xc(U ) with ψ(v,w) �= 0. If x /∈ supp(ψ) and U is a neighborhood of x
with ψ(Xc(U ),Xc(U )) = {0}, then ψ(Xc(U ),Xc(M)) = {0}, because ψ is diagonal.
The following is a straightforward adaptation of [54, Lem. 4.19] to the present setting:

Proposition 17. Let M be a smooth manifold.

1. A continuous 2-cocycle ψ ∈ C2
ct(Xc(M), R) extends to a continuous 2-cocycle on

X (M) if and only if it has compact support.
2. Assume that the 2-cocycle ψ ∈ C2

ct(Xc(M), R) has compact support and satisfies
ψ = dgη for some η ∈ Xc(M)′. Then supp(η) = supp(ψ) and η extends to a
continuous linear map X (M) → R.

3. The canonical linear map H2
ct(X (M), R) → H2

ct(Xc(M), R) is injective.

Proof. 1. Assume that ψ has compact support, say supp(ψ) = K . Consider the 1-
cocycle ψ̂ ∈ C1(X (M),Xc(M)′) obtained from Lemma 11. Let χ ∈ C∞

c (M) satisfy
χ |U = 1 for some open neighborhood U of K . Define a bilinear map ψ̃ : X (M) ×
X (M) → R extending ψ by setting ψ̃(v,w) := ψ̂(v)(χw) = ψ(χv, χw). This is
independent of the choice of χ because ψ has support K . It is moreover continuous,
in view of the continuity of both ψ and the map X (M) → Xc(M), w �→ χw. We
next show that ψ̃ is a 2-cocycle. Observe that ψ̂(u)(χ [v,w]) = ψ̂(u)([v, χw]) for
any u, v, w ∈ X (M), because Lv(χ)w ∈ Xc(M) vanishes on a neighborhood of K ,
so that ψ̂(u)(Lv(χ)w) = 0. Using (11), we therefore have

ψ̃([u, v], w) + ψ̃(v, [u, w]) = ψ̂([u, v])(χw) + ψ̂(v)(χ [u, w])
= ψ̂(u)([v, χw]) − ψ̂(v)([u, χw]) + ψ̂(v)(χ [u, w])
= ψ̂(u)(χ [v,w])
= ψ̃(u, [v,w]).

Conversely, assume that ψ extends to a continuous 2-cocycle onX (M), again denoted
ψ . Suppose that K := supp(ψ) is not compact. Then we can find a countably infinite
sequence (xi )i∈N in K of distinct points which has no convergent subsequence. Let
{Ui }i∈N be a collection of pairwise disjoint open subsets of M so that xi ∈ Ui for all
i ∈ N. Since xi ∈ K , there exist for every i ∈ N some vi , wi ∈ Xc(Ui ) satisfying
ψ(vi , wi ) = 1. Notice that v := ∑∞

i=1 vi and w := ∑∞
i=1 wi are well-defined

smooth vector fields on M , because the open sets Ui are pairwise disjoint. Since
ψ ∈ C2

ct(X (M), R) is diagonal and continuous, we obtain the evident contradiction
that

lim
N→∞ N = lim

N→∞

N
∑

i=1

ψ(vi , wi ) = lim
N→∞ ψ

(
N

∑

i=1

vi ,

N
∑

i=1

wi

)

= ψ(v,w) < ∞.

So supp(ψ) must be compact.



Generalized Positive Energy Representations Page 21 of 27    45 

2. Let x /∈ supp(ψ). Then there exists an open neighborhoodU of x such that ψ(Xc(U ),

Xc(U )) = {0}. Let u ∈ Xc(U ). Since Xc(U ) is perfect ([83, Thm. 1.4.3]), there
exist N ∈ N and vi , wi ∈ Xc(U ) for i ∈ {1, . . . , N } s.t. u = ∑N

i=1[vi , wi ]. Then
η(u) = ∑N

i=1 η([vi , wi ]) = −∑N
i=1 ψ(vi , wi ) = 0. Thus η vanishes on Xc(U ),

and x /∈ supp(η). It follows that supp(η) ⊆ supp(ψ). Conversely, suppose that x /∈
supp(η). Then there exists an open neighborhood U of x such that η(Xc(U )) = {0}.
Then ψ = dgη implies that ψ(Xc(U ),Xc(U )) = {0}. Thus x /∈ supp(ψ). Hence
supp(η) = supp(ψ) =: K . As η has compact support K , it admits a continuous
linear extension η̃ to X (M) by setting η̃(v) := η(χv) for any χ ∈ C∞

c (M) satisfying
χ |V = 1 for some open neighborhood V of K . Notice that η̃ is indeed well-defined
and continuous.

3. Let ψ ∈ C2
ct(X (M), R) be a 2-cocycle and assume that η ∈ Xc(M)′ satisfies

ψ(v,w) = −η([v,w]) for all v,w ∈ Xc(M). The previous items ensure that η

extends to a continuous functional on X (M). As Xc(M) is dense in X (M) and
ψ is continuous on X (M) × X (M), it follows that ψ(v,w) = −η([v,w]) for all
v,w ∈ X (M). So ψ = dgη. Hence [ψ] = 0 in H2

ct(X (M), R). ��
Proposition 17, Lemma 14 and Lemma 15 have the following consequence for

Gelfand–Fuks cohomology:

Corollary 18. Let M be a smooth manifold.

1. If dim(M) > 1, then H2
ct(X (M), R) = 0.

2. If dim(M) = 1, then H2
ct(X (M), R) = H0

c (M) is the compactly supported de Rham
cohomology of M in degree 0. In particular, H2

ct(X (R), R) = 0.

Proof. 1. Assume that dim(M) > 1. Then H2
ct(Xc(M), R) = 0 by Theorem B. We

know using Proposition 17 that the linear map H2
ct(X (M), R) → H2

ct(Xc(M), R) is
injective. It follows that H2

ct(X (M), R) = 0.
2. By reasoning similar to that in the proof of Lemma 16, it suffices to consider the

case where M is connected, so that M is either S1 or R. Since H2
ct(X (S1), R) ∼= R

[90, Prop. 2.3], it remains to show that H2
ct(X (R), R) = 0. By Lemma 15 we know

that H2
ct(Xc(R), R) ∼= R, which by Proposition 17 implies that H2

ct(X (R), R) is
at most one-dimensional. The non-trivial class in H2

ct(Xc(R), R) is spanned by the
cocycle ψvir, defined by (17). Assume that ψ ∈ C2

ct(X (R), R) is a 2-cocycle on
X (R) whose restriction r(ψ) to Xc(M) × Xc(M) is cohomologous to ψvir. Then
r(ψ) = ψvir + dgη for some η ∈ Xc(R)′. By Proposition 17, we know that r(ψ) has

compact support. Consider the associated map r̂(ψ) : X (R) → Xc(R)′. We saw in
the proof of Lemma 15 that d̂gη( f ∂x ) = f (∂x ·η)+2 f ′η, and that ψ̂vir( f ∂x ) = f ′′′ I ,

where I ( f ∂x ) := ∫

R
f (x)dx . So r̂(ψ) is the differential operator given by

r̂(ψ)( f ∂x ) = f ′′′ I + f (∂x · η) + 2 f ′η. (18)

Since r̂(ψ)( f ∂x ) ∈ Xc(R)′ has compact support for any f ∈ C∞(R), we obtain by
taking f = 1 in (18) that ∂x ·η has compact support. Choosing subsequently f (x) = x
in (18), it follows that η has compact support, and hence so does ψ̂vir = r̂(ψ)− d̂gη.
But the support of ψ̂vir is all of R, which is not compact, a clear contradiction. ��
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Appendix A: Sheaves of Distributions

Let E → M be a smooth vector bundle over the smooth manifold M . If U ⊆ M is an
open subset, we denote by �c(U, E) the locally convex vector space of smooth compactly
supported sections of E |U → U , equipped with the natural LF-topology. Let �c(U, E)′
denote its continuous dual space. It is clear that the assignmentU �→ �c(U, E)′ defines a
presheaf �′

c w.r.t. the natural restriction maps. In the following, we show that �′
c actually

defines an acyclic sheaf. Since we are considering the continuous dual space, we have
to slightly extend the usual sheaf-theoretic arguments (such as [91, §V.1 Prop. 1.6 and
1.10]).

Proposition 19. �′
c is an acyclic sheaf.

Proof. Let {Uα}α∈I be a collection of open subsets of M and defineU := ⋃

α∈I Uα . Let
{χα}α∈I be a partition of unity subordinate to the open cover {Uα}α∈I of U [86, Thm.
2.23]. Notice for s ∈ �c(U, E) that χαs is non-zero for only finitely many α ∈ I, because
{ supp χα }α∈I is locally finite. To see that �′

c satisfies the locality axiom, suppose that λ ∈
�c(U, E)′ satisfies λα := λ|�c(Uα,E) = 0 for all α ∈ I. Then λ(s) = ∑

α∈I λα(χαs) =
0 for any s ∈ �c(U, E), so λ = 0. For the gluing axiom, take λα ∈ �c(Uα, E)′ for all
α ∈ I and suppose for any α, β ∈ I that the restrictions of λα and λβ to �c(Uα ∩Uβ, E)

coincide whenever Uα ∩ Uβ �= 0. Define λ ∈ �c(U, E)′ by λ(s) := ∑

α∈I λα(χαs)
for s ∈ �c(U, E). Notice that λ does indeed define a continuous functional on the
LF-space �c(U, E) because { supp χα }α∈I is locally finite. If s ∈ �c(Uβ, E) for some
β ∈ I, then χαs ∈ �c(Uα ∩ Uβ, E) and consequently λα(χαs) = λβ(χαs) for any
α ∈ I. Hence λ(s) = ∑

α λα(χαs) = ∑

α λβ(χαs) = λβ(s). So λ|�c(Uβ ,E) = λβ

for any β ∈ I. It follows that �′
c is a sheaf. We show next that it is fine (cf. [92, Def.

II.3.3]). Assume henceforth that U = M . Define for any open set V ⊆ M and α ∈ I
the linear map ηα : �c(V, E)′ → �c(V, E)′ by ηα(λ)(s) := λ(χαs). This defines a
morphism ηα : �′

c → �′
c of sheaves. Since

∑

α ηα(λ)(s) = ∑

α λ(χαs) = λ(s) for any

http://creativecommons.org/licenses/by/4.0/
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s ∈ �c(V, E)′, the sum being finite, we have
∑

α ηα = 1. Additionally, ηα vanishes on
the stalk of the sheaf �′

c at x for any x in the open neighborhood M\ supp χα of M\Uα .
So �′

c is fine and therefore acyclic [92, II. Prop. 3.5 and Thm. 3.11]. ��

Appendix B: Unitary Equivalence of Projective Representations

Let G be a locally convex Lie group with Lie algebra g.

Definition 11. Suppose for k ∈ {1, 2} that Dk is a complex pre-Hilbert space, and let
πk : g → pu(Dk) be a projective unitary representation of g on Dk . We say that π1 and
π2 are unitarily equivalent if there exists a unitary operator U : D1 → D2 such that

π2(ξ) = U π1(ξ)U
−1

for all ξ ∈ g, where U : P(D1) → P(D2) is the descent of U to
the projective spaces. In this case, we write π1 ∼= π2.

The following is the projective analogue of [40, Prop. 3.4]:

Proposition 20. Assume that G is connected. For k ∈ {1, 2}, let (ρk,Hk) be a smooth
projective unitary representation of G with derived representation dρk : g → pu(H∞

k )

on H∞
k . Then

ρ1
∼= ρ2 ⇐⇒ dρ1

∼= dρ2.

Proof. Passing to the universal cover of G, which is a Lie group by [65, Cor. II.2.4],
we may and do assume that G is 1-connected. Let U : H1 → H2 be a unitary map,
and let U : P(H1) → P(H2) be its descent to the projective spaces. Assume first that

Uρ1(g)U
−1 = ρ2(g) for all g ∈ G. Then by [40, Cor. 4.5], we know that ρ1 and

ρ2 correspond to the same central T-extension
◦
G of G, up to isomorphism of central

extensions. Let
◦
g denote the Lie algebra of

◦
G. Let the smooth unitary

◦
G-representations

ρ1 and ρ2 be lifts of ρ1 and ρ2 respectively. Then there exists a smooth character
ζ : ◦

G → U(1) such that ρ2(
◦
g) = ζ(

◦
g)Uρ1(

◦
g)U−1 for all

◦
g ∈ ◦

G. This implies in
particular that U maps H∞

1 onto H∞
2 . Differentiating the preceding equation at the

identity of
◦
G, it also follows that dρ2(

◦
ξ) = Udρ1(

◦
ξ)U−1 + dζ(

◦
ξ)I for all

◦
ξ ∈ ◦

g,

where I denotes the identity on H∞
2 . Hence dρ2(ξ) = U dρ1(ξ)U

−1
for all ξ ∈ g. So

dρ1
∼= dρ2.

Assume conversely that U maps H∞
1 onto H∞

2 and that U dρ1(ξ)U
−1 = dρ2(ξ) for all

ξ ∈ g. This implies that dρ1 and dρ2 induce isomorphic central R-extension of g, up to
isomorphism. Since G is 1-connected, it follows using [93, Cor. 7.15(i)] that ρ1 and ρ2

induce the same central T-extension
◦
G of G, up to isomorphism. Let the smooth unitary

◦
G-representations ρ1 and ρ2 once again be lifts of ρ1 and ρ2, respectively. There exists
a continuous linear map λ : ◦

g → R such that

dρ2(
◦
ξ) = Udρ1(

◦
ξ)U−1 + iλ(

◦
ξ)I, ∀◦

ξ ∈ ◦
g, (B1)

where I denotes the identity on H∞
2 . Let ψ ∈ H∞

1 and χ ⊥ ψ . Let (χk)k∈N be a

sequence in H∞
1 such that χk → χ in H1. Let γ : R → ◦

G be a smooth path in
◦
G with

γ0 = 1 being the identity of
◦
G, and let γ : R → G be its projection to G. Define the

functions

f (t) := 〈Uχ, ρ2(γt )Uρ1(γt )
−1ψ〉,

fk(t) := 〈Uχk, ρ2(γt )Uρ1(γt )
−1ψ〉, t ∈ R.
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Then fk → f pointwise and fk is smooth for every k ∈ N, as Uχk ∈ H∞
2 . Let

γ ′ : R → ◦
g be the left-logarithmic derivative of γ , defined by γ ′

s := d
dt

∣
∣
t=s γ −1

s γt for
s ∈ R. Let k ∈ N. Observe using equation (B1) that the derivative f ′

k of fk satisfies

f ′
k(s) = 〈Uχk, ρ2(γs)dρ2(γ

′
s )Uρ1(γs)

−1ψ〉 − 〈Uχk, ρ2(γs)Udρ1(γ
′
s )ρ1(γs)

−1ψ〉
= iλ(γ ′

s )〈Uχk, ρ2(γs)Uρ1(γs)
−1ψ〉

= iλ(γ ′
s ) fk(s), ∀s ∈ R.

We see that fk satisfies the ordinary differential equation f ′
k(s) = iλ(γ ′

s ) fk(s) with
initial condition fk(0) = 〈χk, ψ〉. It follows that fk(t) = 〈χk, ψ〉g(t), where g(t) =
e
∫ t

0 iλ(γ ′
s ) ds . Consequently, f (t) = limk fk(t) = 〈χ,ψ〉g(t) = 0 for all t ∈ R. Hence

〈Uχ, ρ2(γt )Uρ1(γt )
−1ψ〉 = 0 for everyχ ⊥ ψ and t ∈ R. Thus [ρ2(γt )Uρ1(γt )

−1ψ] =
[Uψ] for all t ∈ R and ψ ∈ H∞

1 , which implies that U ρ1(γ
−1
t ) = ρ2(γ

−1
t )U for

all t ∈ R. Since
◦
G is a path-connected principal T-bundle over G, it follows that

U ρ1(g) = ρ2(g)U for all g ∈ G. Thus ρ1
∼= ρ2. ��

Corollary 21. Let ρ : G → PU(H) be a smooth projective unitary representation
with derived representation dρ : g → pu(H∞). Let H be a connected Lie group
with Lie algebra h, and let f : H → G be smooth homomorphism of Lie groups. If
Te( f )(h) ⊆ ker dρ, then f (H) ⊆ ker ρ.

Proof. By considering the pull-back of ρ along f , it suffices to consider the case where
H = G and f = idG . Thus, assume that G is connected and that g ⊆ ker dρ. Then
Proposition 20 implies that G ⊆ ker ρ. ��
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