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Real-time Routing and Scheduling of On-demand Autonomous
Customized Bus Systems

Rongge Guo1, Xiaoyu Liu2, Saumya Bhatnagar1, Mauro Vallati1

Abstract— The integration of autonomous vehicles and on-
demand customized bus systems is expected to be beneficial
for responding to real-time demands. This paper investigates
the autonomous customized bus (ACB) system that leverages
passenger demand prediction to enhance service quality and
vehicle utilization. A novel ACB service design optimization
model that determines vehicle movements and passenger-to-
vehicle assignments is developed for the real-time routing and
scheduling problem. Then, a rolling horizon approach, incor-
porating travel demand prediction, proactive dispatching and
reactive adjustment, is proposed to address the studied problem.
The performance of the introduced ACB system is evaluated
using smartcard data from Beijing and the state-of-the-art
machine learning algorithm. Results show that the proposed
ACB system can effectively improve system performance and
service level in terms of operating cost and passenger waiting
time compared to reactive operations.

I. INTRODUCTION

The demand-responsive customized bus (CB) has become
an appealing alternative to traditional public transit (PT)
services, due to its enhanced accessibility, flexibility and
reliability [1]. This on-demand service has gained popularity
and has been implemented in a number of large cities, such
as Beijing and Shanghai [2].

Unlike traditional bus services, CBs offer the convenience
of allowing passengers to pre-submit their travel require-
ments and reserve customized services through an online
platform. Reserved demands are then aggregated for routing
and scheduling purposes by the CB system. Examples of
successful studies include [3], [4], wherein travel demands
are assumed to be fixed and known beforehand [3]; the
CB service design is treated as a vehicle routing problem
with pickup and delivery [4]. A key operational challenge
for CB systems, however, is how to respond to the real-
time demands submitted during operation. To tackle this
class of demand, researchers have exploited the real-time
operational strategy, such as the dynamic dispatching strategy
and demand insertion approach [5]. The work of Wu et al.
[6] proposed four passenger handling approaches and ad-
dressed the real-time passengers via periodic re-optimization
procedures. Nonetheless, when human-driven buses are used,
these strategies face limitations due to driving behaviors and
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crew scheduling constraints, which significantly restrict the
efficiency and flexibility of CBs.

The emerging autonomous vehicle (AV) technology has
the potential to mitigate the above-mentioned issues by
eliminating driver-related constraints and facilitating auto-
mated vehicle allocation, that can concretely enhance the
performance of real-time operation of demand-responsive
systems [7], [8]. Despite its significant potential, only limited
studies have explored the use of AVs in CBs. Guo et al. [9]
integrated the AVs into CB systems and put forward a two-
phase optimization model to deal with reserved and real-time
demands; then, they extended the autonomous customized
bus (ACB) system by considering the modularity of AVs
in dynamic scheduling [10], which improved the system
performance in terms of capacity utilization.

Even with the successful deployment of AVs in CB
systems, the existing studies primarily focus on reactive
services. They aim to adapt the existing routes and schedules
for fulfilling the uneven and uncertain demands in real time,
which fosters the necessity of short-term travel demand
forecast. The adoption of demand prediction can foresee the
temporal and spatial fluctuations in real-time demands, and
respond proactively to offer a better travel experience to
passengers. Numerous efforts have been made in the field
of shuttle buses and metro services [11], [12], where the
smartcard data, including spatial and temporal attributes are
utilized to estimate the high-value travel information with
advanced machine learning or deep learning methods [13],
[14]. However, there is a lack of work to accurately estimate
and predict travel requests in CB systems.

To bridge this gap and enhance service level, this paper
aims to achieve real-time operation of the ACB system to
address both reserved and real-time demands by leveraging
passenger demand prediction. Given the proven efficacy of
the rolling horizon approach in managing real-time operation
for on-demand mobility systems [15], this paper proposes a
rolling horizon approach integrated with demand prediction.
This method aims to deliver a combination of proactive and
reactive service design, that utilizes predictive insights and
maintains adaptability to tackle the real-time routing and
scheduling of the ACB system. The contribution of this
paper is threefold: First, we develop an ACB service design
optimization model to capture the vehicle routes, schedules
and passenger-to-vehicle (P2V) assignments, intending to
minimize the operating costs and passengers’ waiting costs.
Second, we devise an rolling horizon approach that incor-
porates demand forecasting, plan adjustment and dynamic
dispatching mechanisms, to adapt and update services. Third,
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we evaluate the effectiveness of the proposed approach
through a city-scale experiment, where historical smartcard
data and the state-of-art machine learning algorithm are
exploited for demand prediction. The findings suggest that
the proposed ACB system can effectively improve system
performance and service level in contrast to non-prediction
cases operation.

The remainder of this paper is organized as follows.
Section II introduces the problem description and the mathe-
matical formulation. Section III presents the rolling horizon
approach with demand prediction. Section IV reports the
computational results of the experiment. Finally, Section V
gives the conclusions.

II. PROBLEM DESCRIPTION AND FORMULATION

This section presents a real-time routing and scheduling
problem of the ACB system, which aims to serve all the
reserved and real-time demands with minimal operating costs
and passenger waiting time. Then, the problem formulation
regarding the optimization problem is established.

A. Problem description

Let G = (V,A) be a geographic graph representing the
road network, where V is the set of vertices, including pick-
up and drop-off vertices and depots, denoted by set S =
S+ ∪ S− and O, respectively. A is the set of arcs between
pairs of vertices. We discretize time into intervals of fixed
length ∆t. Considering a planning horizon T with T time
steps at time t: T = [t + 1, t + 2, ..., t + T ]. For the sake
of convenience and to maintain generality, we assume the
planning horizon starts from step t = t0.

In the proposed ACB system, the set of reserved demands
submitted before operation is defined as Pt0 . The set of
real-time travel demands aggregated at each time step t is
denoted by Pt. These collected actual demands in t come
from the real-time passengers who submit the travel requests
in the last step t − 1, and prefer to be picked up in step t.
To harness the benefits of passenger forecasting, the ACB
system can also obtain the predicted passengers who will
submit requirements in t, and prefer to be picked up in the
next step t+1. Under this assumption, let P̂t0 and P̂t denote
the set of expected passengers obtained in step t0 and t.

With the goal of enhancing system performance, the
proposed ACB system aims to leverage foresight to offer
proactive plans, while retaining the flexibility to adjust plans
as real information becomes available. The ACB system
first generates the initial plan for the reserved demands
Pt0 and estimated demands P̂t0 at t0. Then, the system
dynamically updates the plan based on real-time Pt and
expected passengers P̂t in each step. To leverage the future
demand information into current decision-making, P̂t is used
to proactively design services. To be specific, two dynamic
dispatching approaches (i.e., activating an idle vehicle or
dispatching en-route vehicles to detour and turn for serving)
are applied to serve P̂t. Considering the predictive accuracy
of P̂t, Pt+1 collected in the step t + 1 is utilized to adapt
the service to better fulfill real demands. Thereby, a reactive

adjustment procedure is implemented for accommodating
real-time changes in each step: (i) if pt < pt+1(pt ∈
P̂t, pt+1 ∈ Pt+1), the system is triggered to assign unfore-
seen demands; (ii) if p̂t > pt+1, the extra services will be
removed from the plan. Note that there is no rejection of
assigned passengers due to the application of AVs. However,
the passenger waiting time can occur when the vehicle arrival
time at each pick-up vertex is greater than the latest pick-up
time. Figure 1 gives the framework of the ACB system.

A homogeneous fleet of vehicles K = {1, 2, ..., |K|} is
available with the fixed capacity cap at time t0. KIt and
KEt represent the idle vehicle set and en-route vehicle set
in step t. Each vehicle is characterized by the vehicle state
V eht, including location lockt, remaining capacity state qkt,
and idle vehicle set KIt. In each step t, the vehicle state is
recognized based on a set of routes and schedules generated
in step t− 1:

lockt =
∑
i∈V

∑
j∈V

j · xijkt−1, k ∈ KEt, t ∈ T (1)

qkt = qkt−1 −
∑

p∈Pt−1∪P̂t−1

ypkt−1, k ∈ KEt, t ∈ T (2)

qkt = cap, k ∈ KIt, t ∈ T (3)

KIt = (KIt−1 ∪Rt−1)\Dt−1 (4)

KEt = K\KIt, t ∈ T (5)

where Rt−1 and Dt−1 are the sets of vehicles that return
to the depot and remain en route in step t− 1, respectively.
These two sets can be defined as follows:

Rt = {k : zkt−1 = 1, zkt = 0}, t ∈ T (6)

Dt = {k : zkt = 1}, t ∈ T (7)

Each passenger request p (p ∈ Pt ∪ P̂t) has a paired pick-
up vertex i and drop-off vertex j, preferred pick-up time
window [epi, lpi]. The boarding time is assumed as tb. The
vehicle arrival time ξikt at i should follow [epi, lpi], and the
passenger waiting time wpt at i is related to ξikt:

min
p∈Pt∪P̂t

{epi} ≤ ξikt ≤ max
p∈Pt∪P̂t

{lpi},

i ∈ S+ ∩ Sp, k ∈ K, t ∈ T
(8)

wpt = ξikt − epi, p ∈ Pt ∪ P̂t, k ∈ K, t ∈ T (9)

where Sp is the set of demand vertices of p.

Vehicle state

ACB system

Passenger

t0 t

𝑃𝑡  𝑃 𝑡 𝑃𝑡0
𝑃 𝑡0

𝑉𝑒ℎ𝑡0
𝑉𝑒ℎ𝑡

Initial 

plan 

Optimal 

plan (t)
......

Timeline

......

 t+1

𝑃𝑡+1 𝑃 𝑡+1

𝑉𝑒ℎ𝑡+1 

Optimal 

plan(t+1)

......

......

t0+T

Fig. 1. Timeline of ACB system.
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We make the following assumptions for the proposed
problem: (1) reserved demands are known before the opera-
tion, expected demands at each step are predicted, and real
demands are known at each step; (2) the travel distance and
travel time of each arc are known; (3) at any time, in-vehicle
passengers cannot exceed vehicle capacity.

B. Problem formulation

This section presents the optimization model that dynam-
ically designs ACB services to reduce operating costs and
passenger waiting time. At each step, the system takes the
collected real demands, anticipated demands, and vehicle
states as input, then solve an optimization problem to adjust
and update the plan, including vehicle routes, schedules, and
P2V assignment. Five decision variables are defined:

• xijkt ∈ {0, 1}, routing variable, equals to 1 if the route
segment (i, j) is traveled by vehicle k in step t.

• ypkt ∈ {0, 1}, P2V assignment variable, equals to 1 if
the request p is assigned to vehicle k in step t .

• ξikt ≥ 0, represents the vehicle arrival time at vertex i
in step t.

• wpt ≥ 0, denotes the passenger p waiting time at pick-
up vertex in step t.

• zkt ∈ {0, 1}, vehicle utilization variable, equals to 1 if
vehicle k is used in step t

For simplicity, the decision variables are grouped into the
sets: X = {xijkt|(i, j) ∈ A, k ∈ K, t ∈ T }, Y = {ypkt|p ∈
Pt ∪ P̂t, k ∈ K, t ∈ T },÷ = {ξikt|i ∈ V, k ∈ K, t ∈ T },
W = {wpt|p ∈ Pt ∪ P̂t, t ∈ T },Z = {zkt|k ∈ K, t ∈ T }.

min
X ,Y,÷,W,Z

∑
k∈K

∑
t∈T

cdzkt +
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijxijkt

+
∑

p∈Pt∪P̂t

∑
t∈T

cwwpt

(10)

s.t. (1)-(9), ∑
k∈K

ypkt = 1, p ∈ P̂t, t ∈ T (11)

∑
i∈V

xijkt =
∑
i∈V

xjikt, j ∈ S, k ∈ KIt, t ∈ T (12)

∑
j∈S

xijkt =
∑
j∈S

xjikt, i ∈ O, k ∈ KIt, t ∈ T (13)

∑
j∈S

xijkt ≥ ypkt,

i ∈ S+ ∩ Sp, p ∈ P̂t, k ∈ KIt, t ∈ T
(14)

∑
i∈S

xijkt ≥ ypkt,

j ∈ S− ∩ Sp, p ∈ P̂t, k ∈ KIt, t ∈ T
(15)

∑
p∈P̂t

ypkt ≤ qkt, k ∈ KIt, t ∈ T (16)

ξjkt ≥ ξikt +M(xijkt − 1) + xijkt(tij + tb),

(i, j) ∈ A, k ∈ KIt, t ∈ T
(17)

zkt ≥ xijkt, (i, j) ∈ A, k ∈ K, t ∈ T (18)

xijkt = Φ(qkt, Pt, P̂t−1),

(i, j) ∈ A, k ∈ KEt, t ∈ T
(19)

xijkt = Ψ(ypkt, lockt, qkt),

(i, j) ∈ A, p ∈ P̂t, k ∈ KEt, t ∈ T
(20)

The objective Eq. (10) aims to minimize the departure
cost, vehicle traveled cost and passenger waiting cost, cd
is the per vehicle departure cost, cij is the travel cost per
route segment, cw is the waiting cost per min. Constraints
(11) specify that any estimated request can be served by an
idle or en-route vehicle. Constraints (12)-(17) formulate the
operation for activating idle vehicles for anticipated demands.
Specifically, constraints (12)-(13) are the routing constraints,
enforcing the flow balance constraints. Constraints (14)-(15)
are the space constraints. Constraints (16) is the vehicle ca-
pacity constraints. Constraints (17) ensure the time flexibility
for visiting arcs, where tij is the travel time of arc (i, j),
M is a large number. Constraints (18) indicate the vehicle
utilization state. Constraints (19) model the plan adjustment
for real demand Pt. Constraints (20) model the dispatching
procedure if the anticipated demand is assigned to en-route
vehicles. They will be discussed in Section III-C and III-D.

III. ROLLING HORIZON APPROACH

In this section, we propose the implementation of the
rolling horizon approach and demand prediction in the real-
time ACB routing and scheduling problem in Section II-A.
The rolling horizon method is a highly flexible approach
designed to handle optimization problems in dynamic envi-
ronments, especially with unforeseen circumstances [16].

Algorithm 1 Rolling Horizon Approach with Prediction
Input: Planning horizon T , time interval ∆t, initial step

t = t0, reserved demands Pt0 and vehicle states V eht0

1: P̂t0 ← demand prediction
2: Xt0 ,Yt0 ,Wt0 ,÷t0 ,Zt0 ← generate initial plan (see Sec-

tion III-A)
3: t = t0 + 1
4: for t ≤ t0 + T do
5: Pt ← real demand collection
6: P̂t ← demand prediction
7: V eht ← vehicle state update.
8: X ,Y,W,÷,Z ← solve the problem in Section II-B
9: t = t+ 1

Output: X ,Y,W,÷,Z

The proposed approach is summarized in Algorithm 1: at
initial time step t0, we first identify the vehicle state V eht0

(including lockt0 , pkt0 , KIt0 ) to recognize the available ve-
hicles, and collect the reserved demands Pt0 and anticipated
demands P̂t0 . Then, the initial plan is generated by solving a
mixed-integer programming model (see Section III-A). After
the defined time interval ∆t, i.e., in the next time step t, the
ACB system updates the vehicle state V eht with Eqs.(1)-(7),
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obtains real Pt and anticipated demands P̂t, and acquires the
optimal plan by solving the problem in Section II-B. This
process is repeated during the entire planning horizon.

A. Initial plan generation

The initial plan generation focuses on the reserved and
anticipated demands collected at step t0, which aims to
determine routes, schedules and P2V assignments for all idle
vehicles. This static ACB routing and scheduling problem
with fixed demands is formulated as a mixed integer pro-
gram:

min
∑

k∈KIt0

cdzkt0 +
∑

(i,j)∈A

∑
k∈KIt0

cijxijkt0

+
∑

p∈Pt0∪P̂t0

cwwpt0

(21)

s.t. (3), (8)-(9), (11)-(18),

lockt0 = vo, o ∈ O, k ∈ KIt0 (22)

ξokt0 = t0, o ∈ O, k ∈ KIt0 (23)

KIt0 = {1, 2, ..., |K|} (24)

where k ∈ KIt and p ∈ P̂t in constraints are modified
to k ∈ KIt0 and p ∈ Pt0 ∪ P̂t0 , t ∈ T is removed from
all constraints. This problem can be solved by commercial
solvers.

B. Travel demand prediction

The introduced approach relies on predicting travel de-
mands at t. Let f be a predictive model trained with histor-
ical travel records, α(t) a diverse set of features relevant
to the model available at the time window of prediction
(including day type, OD, demand size, etc.). We denote
Tf as the forecasting horizon, that is same as the planning
horizon T . The predicted demands in t of day d are related
to the travel data from the corresponding time period in
the past n days. The estimated demands can be predicted
with the model P̂t = f(α(t), Ptd−tn), where Ptd−tn =
f(Ptd−1, Ptd−2, ..., Ptd−n). The process of demand predic-
tion and predictive model are discussed in Section IV-B.

C. Plan adjustment

The plan adjustment in step t is proposed to deal with the
inaccurate prediction obtained in t−1, as shown in Algorithm
2. This reactive component enables the adaptability of the
pre-planned service to better cater to the differences between
the predicted demands in t − 1 and real requirements in t.
There are two conditions:
(i) If pt > pt−1(pt−1 ∈ P̂t−1, pt ∈ Pt), then the unexpected
demands are served by assigning to en-route vehicles. This
dispatching procedure is discussed in Section III-D.
(ii) If pt < pt−1, and pt = 0, then the system removes the
demand vertices of p from the route Jkt−1 (Jkt−1 is the
planned vehicle route for serving p in t− 1).

D. En-route vehicle dispatching

The allocation procedure used here shares some elements
with the operational strategies 2 and 3 proposed in [10], that
insert passengers to en-route vehicles. However, here we do
not consider modular features, increasing the importance of
exploiting predictions to maximize the use of vehicles’ space.
For the detailed dispatching and demand insertion algorithm
the reader is referred to [10].

Algorithm 2 Plan Adjustment
1: adjustment procedure
2: Pt, P̂t−1 ← obtain demands at t and t− 1
3: for ∀p ∈ Pt

4: if pt > pt−1 then
5: Jkt = Dispatch(Jkt−1, pt − pt−1)
6: else if pt < pt−1 and pt = 0 then
7: Jkt = Jkt−1\Sp

IV. EMPIRICAL ANALYSIS

In this section, we present the results of our experimental
analysis aiming at demonstrating the efficiency of the pro-
posed approach on a large-scale urban network in Beijing.

A. Experimental Settings

We implement the proposed ACB system on a real urban
road network of Beijing. To accurately capture the travel
patterns of passengers, we employ the smartcard data (SCD)
that contains 12 million travel records per day of conven-
tional buses from November 2018 to February 2019, to
estimate the travel requirements of customized services. The
SCD contains the card IDs, line numbers, boarding and
alighting time and stations, which can be used to identify and
aggregate the OD demands, including the passengers’ origins
and destinations, and preferred pick-up time. All experiments
are conducted with CPLEX 12.8 and MATLAB R2021a on a
machine equipped with a 3.4 GHz CPU and 16 GB of RAM.

Data generation. Considering the CB services primar-
ily appeal to commuters, we focus on commuting trips
during peak morning hours (7:00-9:00AM), determined by
the methodology presented in [17]. We consider trips made
between major residential communities and working places,
and use the trips taken between 3rd December 2018 and
18th January 2019 for training, and those between 21st and
25th January 2019 for testing. The dates have been selected
to reduce the impact of external factors, such as COVID-19
and Chinese New Year. The map of the urban road network
and the distribution of the 53 demand vertices is shown in
the work of [9].

Parameters. We consider a homogeneous fleet of AVs for
operation. The vehicle capacity cap is given as 40 people.
The vehicle running cost per km of each route segment and
departure cost per vehicle are ¥15 and ¥500, respectively.
For each passenger, the waiting cost per min is ¥2. The
planning horizon is set from 7:00 AM to 8:30 AM, and the
time interval is set as 15 min.
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B. Travel demand prediction

Data processing. The considered prediction problem can
be tackled as a regression problem, which aims to estimate
the passengers who will require the service between every
possible OD within the defined time window. To maximize
the prediction accuracy, it is crucial to leverage on the
available data. We introduce and extend six uncorrelated
prediction features, available in the considered dataset:

• Week Day. This feature is extended from the date, to
refer to the working days of the week.

• Type. To indicate whether the day is Monday or Friday,
that have specific patterns for commuters, or other
working days.

• Period. This feature is derived from the boarding times-
tamps collected from the OD demand data. Five time
categories have been identified, namely 7:00-7:30 AM,
7:30-7:45 AM,7:45-8:00 AM, 8:00-8:15 AM, 8:15-8:30
AM, where the first corresponds to the reserved de-
mands, and the remaining are the forecast time intervals
for future demands.

• OD. It is a combination of origin-destination vertices.
• Size. This feature represents the size of the passengers

of each OD.
• Presence. It is a Boolean feature that implies the exis-

tence of the demand for a specific OD pair.
Predictive model generation and performance. To gen-

erate the regression predictor, we use the well-known Ex-
treme Gradient Boosting (XGBoost) approach [18]. It is a
powerful machine learning approach, that is a scalable, dis-
tributed Gradient-Boosted Decision Tree (GBDT) algorithm,
that has been recently used for passengers’ prediction in
traditional public transport systems.

The trained XGBoost model performed well in the con-
sidered ACB scenario, with a MAE (Mean Absolute Error)
of 1.23, and a RMSE (Root Mean Squared Error) of 1.75. In
summary, it can provide meaningful predictions with limited
error in terms of passengers number.

C. Impact of demand prediction

This section aims to validate the fruitfulness of using
demand prediction in the proposed solution approach. Three
types of approaches are considered here:

• ACB-Pure. The approach described in Algorithm 1
does not incorporate prediction. The system updates the
service with real demands in each step without proactive
design for the predicted demands.

• ACB-Oracle. The approach described in Algorithm 1
where the demand prediction leverages oracle, its per-
formance provides the upper bound of the proposed
approach.

• ACB-XGBoost. The approach described in Algorithm 1
exploits the XGBoost for prediction.

Table I and Figure 2 present the results generated by the
different solution approaches. In both prediction cases, we
can obverse that demand forecasting plays an important role
in operational indicators, compared to the non-prediction

case (ACB-Pure). Despite the fact that the exploitation of
prediction can lead to higher vehicle traveled distance with
an average increase of 4.6%, the savings in terms of operating
cost, running vehicles and average waiting time are signifi-
cant, at about 12.2%, 23.3% and 25.4%, respectively. There
are two reasons: (i) demand prediction allows the proactive
operation in response to the fluctuations of passengers,
leading to highly efficient vehicle allocation and reduced
passenger waiting time; (ii) the integration of rolling horizon
manner and prediction enables service adjustments in each
step to address the inaccurate prediction, which can better
manage demand changes and avoid unnecessary or inefficient
services. However, the vehicle allocation under the demand
forecast may result in longer detours and turns.

ACB-Pure ACB-Oracle ACB-XGBoost
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Fig. 2. Operating cost under ACB-Pure, ACB-Oracle and ACB-XGBoost.

TABLE I
IMPACT OF DEMAND PREDICTION.

Distance/km Vehicle/veh Avg.W/min

Increase Saving Saving
ACB-Pure 369.0 15 1.23
ACB-Oracle 395. 5 7.2% 11 26.7% 0.92 24.9%
ACB-XGBoost 376.7 2.1% 12 20% 0.91 25.8%

Overall, the computed results indicate that the proposed
approach with demand prediction outperforms the non-
prediction method; it is noted that their performances highly
rely on the accuracy of predictions. As the computational
time of each case is below 0.2 seconds, an analysis of the
computational efficiency is omitted.

D. Performance of the rolling horizon approach
To assess whether the rolling horizon method is worth

exploiting, this section compares the performance of the
introduced approach with those of a practical reactive oper-
ation. The baseline reactive optimization approach used here
aligns with the conventional way of CB operations:

• Reactive. The demand prediction and periodical oper-
ation are not applied: when a passenger arrives, the
system is triggered to respond either by activating
new vehicles or by assigning the passenger to en-route
vehicles.

Table II and Figure 3 show the performance indicators
of the reactive baseline compared to ACB-Pure and ACB-
XGBoost. First, it is easy to notice that even ACB-Pure

1540

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 14:54:31 UTC from IEEE Xplore.  Restrictions apply. 



case can lead to savings regarding operating costs and
running vehicles, with 9.9% and 21.2%, respectively. This
remarkable result indicates that even if the predictions are
not involved, it is better to rely on the periodical operation
manner, to achieve better vehicle allocation. Unsurprisingly,
the rolling horizon manner may lead to a rise in passenger
waiting time. The reason for this is that it assigns real-time
demands received in each step uniformly, resulting in a delay
in responding to some passengers, rather than updating or
replanning the service once a request occurs, as in the case
of reactive operation. However, this disadvantage can be
mitigated by leveraging the benefits of demand forecasting,
with a slight rise in waiting time of 7.0%.
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Fig. 3. Passenger total waiting time in each time step under Reactive,
ACB-Pure and ACB-XGBoost

TABLE II
PERFORMANCE ON ROLLING HORIZON APPROACH IN TERMS OF

OPERATING COST , TRAVELED DISTANCE AND OPERATED VEHICLES.

Operating Cost/¥ Distance/km Vehicle/veh

Saving Increase Saving
Reactive 15282.4 351.4 19
ACB-Pure 13772.9 9.9% 369.0 5.0% 15 21.1%
ACB-XGBoost 12197.0 20.2% 376.7 7.0% 12 36.8%

V. CONCLUSION

To better exploit the benefits that can derive from au-
tonomous customized bus systems, this paper presented
an ACB system that effectively addresses fluctuations in
reserved and real-time travel requests. We introduced a
service design optimization model for real-time routing and
scheduling problem, and put forward a rolling horizon ap-
proach that leverages travel demand prediction. An extensive
experiment is conducted to assess and measure the impact
of the proposed approach to the overall system performance,
where the state-of-the-art machine learning method is applied
for demand prediction. Our experimental analysis confirms
that the hybrid of the proactive and reactive service design
can significantly enhance service quality and operational
efficiency: compared to the traditional reactive operation, the
introduced ACB system can lead to significant savings across

key operational indicators. Overall, the saving in operating
cost is above 20%.

Future work will focus on extending the proposed ap-
proach to increase robustness to low-quality predictions or
unforeseen circumstances.
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