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Abstract

Today’s computing architectures and device technolo-
gies are unable to meet the increasingly stringent de-
mands on energy and performance posed by emerg-
ing applications. Therefore, alternative computing
architectures are being explored that leverage novel
post-CMOS device technologies. One of these is a
Computation-in-Memory architecture based on memris-
tive devices. This paper describes the concept of such
an architecture and shows different applications that
could significantly benefit from it. For each applica-
tion, the algorithm, the architecture, the primitive op-
erations, and the potential benefits are presented. The
applications cover the domains of data analytics, signal
processing, and machine learning.

1 Introduction

Emerging applications are extremely demanding and
have surpassed the capabilities of todays computational
architectures and technologies [1,2]. Hence, in order for
computing systems to continue delivering sustainable
benefits for the foreseeable future, alternative comput-
ing architectures have to be explored. The emerging
new device technologies could play a key role in this ex-
ploration. Computation-in-Memory (CIM) computing
[3,4], brain-inspired neuromorphic computing [5] and
quantum computing [6] are some of the most promising
computational approaches being pursued, while mem-
ristive devices, quantum dots, spin-wave devices are

∗This research on CIM architecture is supported by EC
Horizon 2020 Research and Innovation Program through
MNEMOSENE project under Grant 780215.

some of the key emerging device technologies [7].

The EC H2020 MNEMOSENE project aims at
demonstrating the Computation-In-Memory (CIM)
concept based on memristive devices; it is based on in-
tegrating the processing units and the memory in the
same physical location. As a consequence, it signifi-
cantly reduces the memory accesses and data move-
ments while supporting massive parallelism, resulting in
potentially orders of magnitude improvement in terms
of energy and computing efficiency. However, to achieve
the ultimate objective of fully integrating the process-
ing units and the memory in the same physical location,
several technological challenges need to be overcome.

CPU CIM

DRAM

External Memory

Program

loop1:

loop2:

loop3:

CIM
Accelerator

(a) (b)

Figure 1: The CIM-based architecture

A realistic implementation which is well within the
reach of today’s technology is to use the CIM core as an
on-chip accelerator. Figure 1(a) shows the concept; the
CIM core may consist of very dense memristive crossbar
array and CMOS peripheral circuitry responsible for
the communication and control from/to the crossbar.
In a conventional computer, the memory access part of
the executed applications is dominating the energy con-
sumption and the performance degradation. If we man-
age to get this part executed within the CIM core, then
significant energy and performance improvement can be
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Dist. Size Year

A 55 Large 2016

B 23 Medium 2014

C 43 Small 2015

D 60 Medium 2016

E 25 Medium 2000

F 34 Medium 2001

G 18 Small 2012

H 30 Small 2011
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Figure 2: The database query problem and scouting
logic

realized. Figure 1(b) illustrates a program that could be
executed efficiently on this architecture; multiple loops
can be executed within the CIM core while the other
parts of the program can be executed on the conven-
tional core. It is worth stressing that computations in
CIM core takes place within the memory core consisting
of a memory array and the peripheral circuits. There-
fore, depending on where the result of the computation
is produced, CIM core architecture can be divided into
CIM-Array (CIM-A) [4,8] and CIM-Periphery (CIM-
P) [9,10]. Even though both CIM-A and CIM-P could
impact the design of the memory array, CIM-P entails
a lesser impact on the design and hence is particularly
attractive for a range of applications

This paper investigates three different application do-
mains that could significantly benefit from the proposed
architecture, and is organized as follows. Section II dis-
cusses the potential of accelerating two data analytic
application kernels, QUERY SELECT for database and
XOR encryption for security encryption. Section III
and Section IV investigate the speed-up for two sig-
nal processing applications (compressed sensing and re-
covery and advanced image processing) and two ma-
chine learning applications (deep learning inference for
IoT sensory applications, and brain-inspired hyper-
dimensional computing), respectively. Section V con-
cludes the paper.

2 CIM for data analytics

One of the potential applications is big-data analytics
with a high percentage of logical operations that per-
form poorly on conventional architectures due to e.g.,
high cache miss rates.

2.1 Targeted problem

We consider to speed up kernels (driven by bit-wise
operation); examples are QUERY SELECT kernel
(database applications) [11,12] and XOR encryption
kernel (security encryption) [13].

• QUERY SELECT kernel: it performs the query-
06 of the TPC-H benchmark [11], which includes
22 queries written in SQL language. The query-
06 performs compare instructions to check if the
requested data is available in the database or not.

• XOR encryption kernel: it performs an XOR oper-
ation of a string sequence and a predefined (secret)
key. It is used for one-time-pad cryptography [14].

For QUERY SELECT kernel, we use a bitmap in-
dex scheme; it uses bitmaps (i.e., a vector of zeros and
ones) to represent a database; generally they work well
for low-cardinality columns. Figure 2(a) shows an ex-
ample dataset with 8 entries, representing information
of newly discovered stars. Each entry has three char-
acteristics, i.e., distance (dist.), size and the year in
which the star was discovered. Figure 2(b) presents the
bitmap transposed representation of the same dataset,
where the three characteristics (also called bins) are en-
coded into seven rows of zeros and ones; each column
(e.g., A) is an entry while each row is a characteristic
or bin. For example, a star with distance larger than
40 is defined as far, and otherwise as near. Typical
database queries consist of searching for specific data
patterns. These queries are carried out by performing
bitwise operations on the bitmaps.

2.2 Implementation with CIM architec-
ture

The implementation of CIM architecture considered for
this application it similar to that shown in Figure 1;
it consists of a conventional processor, main DRAM
memory, novel data-centric CIM core and an external
memory. Both the main memory and the CIM core can
fetch data from the external memory. Like the main
memory, CIM core is addressable from the processor
and uses an extended address space. For simplicity, we
assume that the data stored in the CIM core is not du-
plicated on the main DRAM memory; hence, simplified
memory coherency schemes are required. The CIM core
is initialized with data from the external memory, e.g.,
database(s); this initialization needs to be performed
only once.

The architecture implementation considered here be-
longs to CIM-P; i.e., computing within CIM takes place
within the peripheral circuitry. For the considered
application, computing consists mainly of performing
bit-wise operations including OR, AND, XOR gates.
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Hence, the peripheral circuit should be modified. It is
equipped with Scouting Logic [15] illustrated in Fig-
ure 2(c) using two binary valued memristive devices
programmed to resistance values R1 (for M1) and R2

(for M2), respectively. Instead of reading a single mem-
ristive device at a time, two (or more) inputs are acti-
vated simultaneously (e.g., M1 and M2). The sensing
current by the sense amplifier depends on the equiva-
lent input resistance (R1//R2). By selecting appropri-
ate reference currents Iref , the gates OR, AND or XOR
gates can be realized.

2.3 Analysis of the potential

To evaluate the the potential of considered architecture
in terms of (normalized) delay and energy, we developed
two analytical models similar to that in [16]; one for
conventional architecture and one for CIM architecture.
Using an analytical evaluation model makes it faster to
perform a design space exploration, although it could
be less accurate. It is worth noting that the model
for the two bit-wise driven applications considered here
(QUERY SELECT kernel and XOR encryption kernel)
are similar; it is about the potential impact the CIM
core on the overall performance rather than accurately
quantifying the impact.

For the conventional architecture, we use the Intel
Xeon E5-2680 multicore as a baseline with 4 cores, each
with a frequency of 2.5GHz. Each core contains an
ALU, and a two level cache (L1 of 32KB and L2 of
256KB). The cores share a main DRAM memory of
4GB. For the CIM architecture, we assume a single host
processor with the same characteristics as an individ-
ual core in the conventional architecture. It contains
an ALU, 32KB L1 cache and 256KB L2 cache, 1GB
DRAM, and a CIM unit comprising 1,048,576 parallel
memory arrays which has an area equivalent to that
of 3GB DRAM. We assume that a logical instruction
takes ∼ 10ns on CIM core which is equivalent to 20
CPU cycles [15,17].

We investigate the impact of the percentage of logi-
cal instructions accelerated by CIM core, as well as the
impact of L1 and L2 cache miss rates on the potential
improvement. Figure 3 shows the performance metric
(defined by the normalized delay in seconds) for the con-
ventional architecture (red planes) with respect to CIM
architecture (green planes) for different percentages of
accelerated instructions (X) on CIM core (ranging from
30 to 90%), assuming the problem size of ∼32 giga-
byte (GB). It can be seen that the larger the size of the
accelerated part on the CIM core, the higher the perfor-
mance speed up; the speed up reaches up to 35x for the
considered case. This can be clearly observed as the gap
between the red and green planes increases. Moreover,
the higher the miss rates, the higher the performance
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Figure 3: Analytical results of the performance (delay)
metric
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Figure 4: Analytical results of the energy metric

speed up of the CIM architecture. For low miss rates,
the CIM could be even worse than conventional archi-
tecture especially when the percentage of accelerated
instruction is low (e.g., 30% as Figure 3 shows).

Hence, the CIM architecture could be very suitable
for applications with large data sizes and heavy memory
access instruction (and bad data locality) resulting in a
relatively high cache miss rate. Note that it has been
shown that at least 30% of a database application could
be accelerated using computation-in-memory [18].

Figure 4 shows the energy metrics (defined by the
normalized energy in joule) for both architectures.
Overall, similar trends are observed with respect to the
percentage of accelerated instructions. However, the
energy consumption of the CIM architecture is always
lower, irrespective of the cache miss rates. In case 30%
of the instructions are accelerated, the conventional ar-
chitecture consumes 6x more energy for the same prob-
lem size. This grows up to two orders of magnitude
in case 90% of the instructions are accelerated. The
high energy consumption of the conventional architec-
ture can be partly attributed to the data movement and
leakage current.

3 CIM FOR SIGNAL PRO-
CESSING

Next, we will investigate the advantages of a CIM archi-
tecture for applications such as advanced image process-
ing and data compression. First, we will motivate an
image processing application namely, guided image fil-
ter. Thereafter, we will present a detailed investigation
of the application of compressed sensing and recovery.
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Figure 5: Bilateral Filtering and Guided Filtering Pro-
cesses [19]

3.1 Image and video processing

The next generation of advanced image and video
processing kernels often exhibit a mix of regular
and irregular (or data-dependent) memory accesses.
Moreover, they require data access which goes beyond
the immediate local neighbours. Typically, they need
a medium-size neighbourhood around the current
pixel access. Typical values can be from 7 × 7 up
to 11 × 11 pixels of 23 bits (in the case of colour
images); and these do not directly fit in the local
register-files, so they need to be accessed from SRAM
caches or scratchpad memories. This limits the efficient
mapping of these kernels on modern GPUs. The
guided image filtering application [19] comprises a
guidance image I, a filtering input image p, and an
output image q. Both the guidance image I and the
input image p act as input to the application, and as
a special case, they can even be identical. Figure 5
illustrates the bilateral and guided filtering process.
The guided image filtering problem is ideally suited
to be implemented in a CIM-P architecture. The
essential idea is store the data in a large non-volatile
memristive array and enable irregular memory access
by modifying the address decoder of the memory macro.

3.2 Compressed sensing and recovery

3.2.1 Targeted problem

Reconstruction of a sparse high-dimensional signal from
low dimensional noisy measurements, for example re-
ceived by sensor arrays, is used in many application
fields, including radio interferometry for astronomical
investigations, and magnetic resonance imaging, ultra-
sound imaging, and positron emission tomography for
medical applications. Unfortunately, high-performance
sparse signal recovery algorithms typically require a sig-
nificant computational effort for the problem sizes oc-
curring in most practical applications. While the com-
putational complexity is not a major issue for applica-
tions where off-line processing on CPUs or graphics pro-
cessing units can be afforded, it becomes extremely chal-
lenging for applications requiring real time processing
at high throughput or for implementations on power-
constrained devices.

Figure 6: Proposed CIM implementation of compressed
sensing with AMP recovery

In practically all the applications mentioned above,
the observation model can be formulated as

y = Ax0 + w

where A ∈ IRM×N is a known measurement matrix,
x0 ∈ IRN is the signal of interest, y ∈ IRM is the
measurement data vector and w ∈ IRM represents the
measurement noise. The goal is to recover x0 from y
when M<N. A first order approximate message passing
(AMP) technique for reconstructing x0 given y [20] may
be represented as

zt = y −Axt +
N

M
zt−1

〈
η

′

t−1(A∗zt−1 + xt−1)
〉

xt+1 = ηt(A
∗zt + xt)

where xt ∈ IRN is the current estimate of x0 at it-
eration t, zt ∈ IR M is the current residual, A∗ is the
transpose of A, ηt(·) is a function, η′t(·) its derivative,
〈·〉 denotes the mean and x0= 0. The final value of
xt provides the estimate of x0. The AMP algorithm
has a relatively simple formulation and requires only
multiplications and additions, making it suitable for a
memristive CIM architecture.

3.2.2 Implementation with CIM architecture

A CIM architecture comprising CIM-P-type units that
can store the measurement matrix A and perform the
matrix-vector multiplications within the array would
significantly increase the area/time/power efficiency.
The elements of A are mapped as conductance values
of memristive devices organized in a crossbar array, as
depicted in Figure 6 [21]. One possible method to pro-
gram the conductance values is by an iterative program-
and-verify procedure. The compressed measurements y
are acquired by applying x0 as voltages to the cross-
bar rows via digital-to-analog conversion, and obtaining
y through analog-to-digital conversion of the resulting
output currents at columns. The positive and negative
elements of A can be coded on separate devices together
with a subtraction circuit, whereas negative vector ele-
ments can be applied as negative voltages.

4



Once the matrix A is programmed in the crossbar
array and the measurements y are obtained, the AMP
algorithm is run in a dedicated processing unit, while
the computation of qt=Axt and ut=A∗zt is performed
using the (same) crossbar array. The vector qt is com-
puted by applying xt as voltages to the rows and reading
back the resulting currents on the columns, and ut by
applying zt as voltages to the columns and reading back
the resulting currents on the rows.

In the AMP algorithm, ignoring the ηt(·) and η′t(·)
functions, the main computational cost comes from the
matrix-vector multiplications Axt and A∗zt which both
require O(MN) operations for dense A. The other op-
erations in the AMP algorithm are vector additions and
multiplications which require O(N) operations. Thus,
one could potentially reduce the complexity of AMP
from O(MN) to O(N) by performing Axt and A∗zt in
memristive arrays, assuming that ηt(·) and η′t(·) involve
only O(N) or less operations. The expectation is that
in a memristive crossbar, matrix-vector multiplications
can be performed with constant time complexity O(γ),
where γ is independent of the crossbar size.

3.2.3 Analysis of the potential

To quantify the potential energy gains of the CIM
implementation over a conventional design, based on
the figures currently achieved with a prototype phase-
change memory (PCM) chip [22], we made an FPGA de-
sign that operates at the same speed and the same pre-
cision at which we expect a PCM-based crossbar to per-
form. In the AMP algorithm, the matrix-vector multi-
plications are the most expensive operations, so we com-
pared the memristive crossbar analog multiplier with a
4-bit FPGA multiplier design. We focus in this analy-
sis on the energy drawn by the computational units and
disregard the time and power consumption of the data
transfers.

The time to compute one dot-product is equal to
the vector size divided by 8, plus 5 cycles to complete
the pipeline. For a 1024 × 1024 matrix-vector prod-
uct using the 1024-unit design, each dot-product unit
stores one of the matrix row of 1024 elements encoded
with 4-bit per value in the local 32Kbit BlockRAM.
To read the row vector from memory and to perform
the dot-product operation takes a total of 133 clock
cycles. Hence, it takes 665 ns to complete one matrix-
vector multiplication at a clock frequency of 200 MHz.
Considering a dynamic power consumption of 26.6W,
one matrix-vector multiplication consumes 17.7µJ on
the FPGA.

In a memristive crossbar of size 1024×1024 based on
PCM devices, the dynamic power dissipation in the de-
vices for one READ operation is expected to be on the
order of 0.21W, assuming an average READ current of
1µA per device and average voltage of 0.2V. In order

Table 1: FPGA resource utilization, frequency and es-
timated dynamic on-chip power consumption

LUT FF BRAM f[MHZ] Pstatic[W] Pdynamic[W]
307908 180368 1024 200 4.04 26.4
[46.4%] [13.6%] [47.4%] (utilization on the xckul 15 FPGA device)
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Figure 7: Inference on IoT sensory devices

to operate this crossbar at 1µs cycle time, 8 analog-
to-digital converters (ADCs) operating at 125MSps are
needed to read the currents from all 1024 columns in
approximately 1µs. The power consumption of 8-bit
ADCs in 90nm technology is estimated to be around
12 mW/GSps, thus 12.3mW for 1024 reads per mi-
crosecond. Therefore, the total power consumption
of the crossbar and ADCs is estimated to be around
222mW, which is 120 times lower than the 4-bit FPGA
design. The energy per READ is 222nJ, which is 80
times lower than the FPGA. Assuming 90nm technol-
ogy and 25F2 1T1R PCM cells (F = 90nm), the area
occupied by a 1024x1024 crossbar and 8 ADCs (each of
size 50µmx300µm) would be on the order of 0.332mm2.

4 CIM FOR MACHINE
LEARNING

In this section, we will investigate the application do-
main of machine learning in particular applications
where the training or inference has to be performed
in highly energy/area constrained environments. First,
we will present the application domain of deep learning
for internet-of-things (IoT) and subsequently, we will
present the emerging machine learning paradigm of hy-
perdimensional computing.

4.1 Deep learning inference for IoT sen-
sory applications

4.1.1 Targeted problem

Computing systems with CIM architectures could play
a key role in the Internet of things (IoT) sensory do-
main. When deployed in edge-devices, always ON deep
learning inference applications require minimum power
consumption, and therefore, CIM architectures par-
ticularly suit these hard requirements. Examples in-
clude Human Activity Recognition (HAR), Key Word
Spotting (KWS) and online Electro-cardiograph (ECG)
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event detection and classification. As shown in Fig-
ure 7(a), the always ON CIM architectures can process
the data coming from a network of sensors in an efficient
manner, and either work as the main computing ele-
ment on the IoT device, or on the other hand, sparsely
wake up a higher-end CPU should a specific condition
be met.

4.1.2 Implementation with CIM architecture

Similar to the compressed sensing application, the com-
putational primitive is matrix-vector multiplication us-
ing a memristive crossbar array. Deep neural networks
are just a cascade of matrix-vector multiply units and
activation functions. The multiple layers of a stan-
dard fully connected neural network (FCNN) or con-
volutional neural network (CNN) can be mapped to
CIM cores comprising memristive crossbar arrays. Even
though the matrix-vector multiplications are performed
in the analog domain using Ohms law and Kirchhoffs
current summation law, DACs are used to input the
data to each crossbar array and ADCs are used to dig-
itize the resulting current. A key challenge is the lack
of precision associated with the analog multiplication
as well as the quantization of the input and activations
as dictated by the DAC/ADC resolution. However, it
has recently been demonstrated that it is possible to
perform deep learning inference with limited precision.
It is shown that one can achieve comparable classifica-
tion accuracy as networks operating with floating point
precision [23].

4.1.3 Analysis of the potential

Preliminary comparative study of implementations of
the DL algorithms was conducted. First, we analyzed
the effects that low precision layers have on the overall
NN accuracy, determining the quantization character-
istics of the different layers. Second, the CIM approach
was compared with implementations using low-power
near threshold Cortex-M processors [24]. The study
shows the significant potential for energy gains with
the use of a low precision CIM architecture (see Fig-
ure 7(b)).

4.2 Brain-inspired hyper-dimensional
computing

4.2.1 Targeted problem

We present another application space for CIM namely
hyperdimensional (HD) computing suitable for various
learning and classification tasks using memristive de-
vices [25]. HD computing is a brain-inspired computing
paradigm where information is represented in hypervec-
tors: d-dimensional holographic (pseudo)random vec-
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Figure 8: General and scalable HD computing for vari-
ous learning and classification tasks

tors with independent and identically distributed (i.i.d.)
components. When the dimensionality is in the thou-
sands, e.g. d >1000, there exist a very large number of
quasiorthogonal hypervectors. This lets HD computing
combine such hypervectors into a new hypervector using
well-defined vector space operations. These mathemati-
cal operations are bitwise and ensure that the resulting
hypervector has the same dimensionality—i.e., fixed-
width. The resulting hypervectors can then be directly
used to not only classify but also to bind, associate,
and perform other types of “cognitive” operations in a
straightforward manner.

HD computing uses three operations to combine bi-
nary hypervectors: addition (which can be weighted),
multiplication, and permutation (more generally, mul-
tiplication by a matrix) that are collectively called as
MAP operations. “Addition” and “multiplication” are
meant in the abstract algebra sense where the sum of bi-
nary hypervectors [A+B+ . . . ] is defined as the compo-
nentwise majority function with ties broken at random,
the product is defined as the componentwise XOR (ad-
dition modulo 2, ⊕), and permutation (ρ) shuffles the
components. All these MAP operations produce a d-bit
hypervector.

HD computing has been used in various applica-
tions such as language recognition [26] (Figure 8(a))
and biosignal processing (Figure 8(b)) including elec-
tromyography (EMG) [27], electroencephalography
(EEG) [28], and electrocorticography (ECoG) [29] with
up to 100 electrodes. These learning and classification
tasks are based on the same hardware construct: 1)
mapping to the HD space, 2) encoding with the MAP
operations, and 3) associative memory (see Figure 8).
During training, the associative memory updates the
learned patterns with new hypervectors, while during
classification it computes distances between a query hy-
pervector and learned patterns. Hence, it is possible to
build a CIM engine based on these operations to cover
a variety of tasks.
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4.2.2 Implementation with CIM architecture

The CIM primitives used for HD computing implemen-
tation are dot-product and bitwise operations. The dot-
product is performed using binary input values, binary
memristor states, and analog output. The bitwise oper-
ations are performed using binary input values, binary
memristor states, and binary output. The memristor
values are written only once before the execution of the
HD algorithm and are never modified again. Additional
digital computations and memory buffers are needed in
order to implement the entire HD algorithm.

4.2.3 Analysis of the potential

Simulation studies were conducted using a CIM unit
based on realistic models of phase-change memory de-
vices. It was shown the CIM architecture can deliver
comparable accuracies to the ideal software simulations
for the task of language recognition. Preliminary results
were also obtained comparing the energy efficiency of a
potential CIM-based implementation over 65nm digital
CMOS implementation. A cycle-accurate RTL model
that has equivalent throughput to that of the proposed
CIM HD processor was developed. The RTL model was
synthesized in UMC 65nm technology node using Syn-
opsys Design Compiler. Energy estimation was carried
out in Synopsys PrimeTime by providing the netlist and
the activity file as the inputs. A best area improvement
of 9× and an energy improvement of 5× is expected
with the CIM HD processor architecture compared to
CMOS counterpart. By utilizing more efficient ADCs
the performance numbers could be improved further.
Nevertheless if only the replaceable module in the ar-
chitecture are considered vast improvements can be ex-
pected which are eclipsed by the current energy budget
of the non-replaceable modules. When only replaceable
modules are considered, energy efficiency can be two to
three orders of magnitude higher in the case of a CIM
architecture.

5 Conclusion

Computation-in-memory using memristive devices is an
emerging computing paradigm that tries to address the
challenge of memory wall posed by the conventional
von Neumann architecture. Although the extent of im-
provement in terms of energy/time efficiency is appli-
cation and problem-size dependent, the CIM architec-
ture clearly has the potential to outperform the tradi-
tional von Neumann architecture due to many reasons.
For instance, it uses non-volatile memristive technology
which reduces the static power. In addition, it per-
forms computation within the memory core, meaning
that data movement is significantly reduced; this re-

sults both in energy saving and performance improve-
ment. Moreover, given the nature of the CIM core,
the time complexity of some primitive function such
as matrix-vector multiplication could be reduced from
O(N2) to O(1), resulting in further performance im-
provement. In this paper, we presented concrete exam-
ples from the domains of data analytics, signal process-
ing and machine learning that could significantly benefit
from this new architecture. We presented how a CIM
architecture could tackle these problems and in many
instances presented a detailed study on the potential
area/energy/time benefits.
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