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Optomechanical systems using a membrane-in-the-middle configuration can exhibit a long-range type of
interaction similar to how atoms show collective motion in an optical potential. Photons bounce back and
forth inside a high-finesse Fabry-Pérot cavity and mediate the interaction between multiple membranes
over a significant distance compared to the wavelength. Recently, it has been demonstrated that off-
resonant coupling between light and the intermembrane cavity can lead to coherent mechanical noise
cancellation. On-resonance coupling of light with both the Fabry-Pérot and intermembrane cavities,
predicted to enhance the single-photon optomechanical coupling, have to date not been experimentally
demonstrated, however. In our experiment, a double-membrane system inside a Fabry-Pérot cavity
resonantly enhances the cavity field, resulting in a stronger optomechanical coupling strength from the
increased radiation pressure. The resonance condition is first identified by analyzing the slope of the
dispersion relation. Then, the optomechanical coupling is determined at various chip positions over one
wavelength range. The optimum coupling conditions are obtained and enhancement is demonstrated for
double-membrane arrays with three different reflectivites, reaching nearly fourfold enhancement for the
collective motion of R ¼ 65% double membranes. The cavity losses at the optimum coupling are also
characterized and the potential of reaching the single-photon strong coupling regime is discussed.

DOI: 10.1103/PhysRevX.15.011014 Subject Areas: Mechanics, Optics

I. INTRODUCTION

Membrane-in-the-middle optomechanics first received
attention due to its ability to independently engineer the
optical cavities and mechanical resonators [1]. Many excit-
ing experiments have been realized over the years using
single membranes (SMs), including optomechanical ground
state cooling [2], sensing [3,4], mode squeezing [5,6],
entanglement [7], and an optomechanical memory [8].
Extending the system to multiple membranes inside a
high-finesse Fabry-Pérot (FP) cavity enables many addi-
tional opportunities to test new physics, using long-range
optomechanical interactions [9–11]. In such an experiment,

the light fieldmediatesmechanicalmotion betweenmultiple
modes, leading to effects such as hybridization [12] and
synchronization [13,14] of mechanical motion, topological
[15] and cavity-mediated heat transport [16], coherent state
transfer [17], and mechanical noise cancellation [18,19].
One of the most exciting prospects of such a multi-

membrane system is the ability to realize single-photon
strong optomechanical coupling, where the single-photon
optomechanical coupling strength g0 is larger than both
optical loss κ and mechanical dissipation γM [9,10]. In this
regime, the nonlinear nature of the optomechanical cou-
pling ℏg0â†âðb̂† þ b̂Þ becomes dominant and the typical
linearized form of the Hamiltonian breaks down [20,21].
Here â, â† and b̂, b̂† are photonic and phononic annihilation
and creation operators, respectively. In this regime, phe-
nomena such as the optomechanical photon blockade [22]
and the generation of non-Gaussian mechanical states [23]
will become observable. Furthermore, strong single-photon
coupling could lead to enhanced optomechanical squ-
eezing [24], which is beneficial for quantum sensing
[5,25]. One of the most promising routes to this regime
for membrane-in-the-middle systems is to enhance the
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cavity field between multiple high-reflectivity membranes,
where multimembrane systems collectively interact with a
single optical mode [9,10,26,27]. The strongly localized
light field only couples to the breathing mode of a stack of
identical membranes [9,26,27].
Despite this exciting prospect, no clear observation of this

effect has been made to date. Typically, the optomechanical
coupling rate g0 of a membrane-in-the-middle system can
only reach up to the order of a few kilohertz due to the large
optical cavity mode volume [28,29], making it extremely
challenging to reach g0 > κ. Achieving g0 > γM, on the
other hand, has become relatively straightforward due to
advanced mechanical engineering techniques such as high-
stress material [30,31], soft clamping [32], and phononic
shields [33]. Up until now, experimental efforts to demon-
strate coupling enhancement of multiple membranes inside
an FP cavity have only shown an increase of the linear
optomechanical coupling G [34,35] measured via the slope
of the dispersion curve. This way, G is larger due to the
multiple membranes acting as a single scatterer with
increased response to the field. However, the single-photon
coupling rate g0 is not increased in this case.When operating
on resonance with the intermembrane cavity, on the other
hand, the light field is focused between the membranes and
strongly couples to their collective motion, this long-range
interaction leads to an enhanced collective coupling strength
g0. One of the major experimental challenges in observing
this effect lies in stabilizing these high-finesse cavities,
which has been solved only recently [18].
In this work, we experimentally explore long-range type

of optomechanical interactions which allow us to enhance
the collective coupling strength g0 when the resonance
conditions of the outer high-finesse and intermembrane
cavities are met. We first introduce our integrated double-
membrane (DMs) system and its collective motion and
verify the resonance conditions with the flat dispersion
relations. Subsequently, the cavity is locked on resonance
and mechanical spectra at various optical coupling powers
are measured to extract the optomechanical coupling
strength. This allows us to calibrate the coupling enhance-
ment and cavity losses at each chip position. Additionally,
by measuring devices with three different reflectivities, we
benchmark our experimental performance against theoreti-
cal predictions [10,27]. Finally, we also identify discrep-
ancies between assumptions in the existing theory work
[9,10,26,27] and our experiments in long-range collective
motion, which is due to fabrication imperfections resulting
in nonidentical membranes and discussed in detail in
Appendix D.

II. RESULTS

A. Integrated optomechanical array
inside Fabry-Pérot cavity

Our devices are patterned into 200 nm high-stress silicon
nitride (SiN) films on both sides of a 200 μm silicon (Si)

substrate used as a spacer. Potassium hydroxide (KOH)
etching of the substrate around the devices gives rise to an
intermembrane FP cavity, with a free spectral range (FSR)
about 6 nm, or 750 GHz at the operating wavelength of
1550 nm. The mechanical trampoline resonator designs we
use here have been optimized in previous works [30,34],
allowing us to control the optical reflectivity (R) anywhere
from the intrinsic film value (approximately 35%) to
99.8% through design choices of a photonic crystal
(PhC), while simultaneously reaching a mechanical quality
factor QM≈106. For this particular set of experiments, we
fabricate devices with R of 35%, 50%, and 65% at
1550 nm, respectively. The two trampolines in each device
have nearly identical mechanical frequencies, with the
fundamental mode (out of plane) between 111 and
114 kHz [30]. We attribute the residual spread to fabri-
cation imperfections and slightly different PhC parameters.
The top and side views of our double optomechanical array
are shown in Figs. 1(a) and 1(b), respectively. More details
about the devices are provided in Appendix A.
One of the key features of our device design is the single-

substrate configuration, which allows for a highly uniform
gap between the two membranes, avoiding alignment
difficulties present in other experiments [14,34,35]. The
chip is positioned near the center of our 49.6-mm-long free-
space high-finesse FP cavity [18], with an FSR of about
24.2 pm (equivalent to 3.02 GHz at 1550 nm). The empty
FP cavity has a total linewidth of κempty=2π ≈ 120 kHz,
which corresponds to a finesse of ∼25 000. A piezoelectric
crystal is placed below the membrane chip, which allows
for precise positioning of the chip along the optical axis of
the FP cavity (x direction) over multiple wavelengths (6 μm
range) [see Fig. 1(c)]. For all practical purposes, our system
remains a membrane-in-the-middle and not a membrane-
close-to-the-end-mirror system, even at maximum dis-
placement, which may otherwise restrict the light to the
region between one membrane and the cavity mirror, rather
than between the two membranes [27,36].

B. Intermembrane cavity resonance

In order to observe the enhanced single-photon opto-
mechanical coupling of the two-membrane system, the
operating wavelength of our laser has to simultaneously
match both the resonance conditions of the main cavity as
well as the intermembrane cavity. This way, the field
strength is redistributed. We identify matching both
resonance conditions by analyzing the slope of the
dispersion curves, i.e., the maximum linear optomechan-
ical coupling G ¼ maxðj∂ωc=∂xjÞ [1]. The G vanishes
when we match both resonance conditions, unlike for the
case of an SM [26,34,37]. This behavior is mainly due to
the ∂ωc=∂x of each membrane having opposite signs
when the resonant condition is met. Consequently, the net
cavity frequency shift cancels out in dispersion curves.
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Since our membranes are less reflective than the free-
space FP cavity mirrors (>99.9%), we predominantly find
resonances of the main cavity. The dispersion curves of
both SM and DMs are periodic with λ=2 [1,34,38,39].
Figures 2(a)–2(c) show the on- and off-resonance
dispersion curves of the R ¼ 0.35 DMs, respectively.
When off resonance, the dispersion curve exhibits a large
variation of cavity resonance frequency ωc as a function
of the membrane position [height of dispersion curve
in Fig. 2(d)]. The largest slope yields a coupling G ¼
2.17 MHz=nm near 1549.50 nm. Conversely, on resonance
we observe a flat dispersion curve with a maximum
coupling strength of only G ¼ 0.04 MHz=nm near
1550.45 nm. This prevents us from directly extracting g0
for the collective motion where the enhancement occurs.

Figure 2(c) also shows the first transversal cavity mode,
predominantly due to imperfect mode matching between
the incident laser beam and cavity, as well as small
imperfections in alignment of the DMs stack with the
main cavity. In general, the alignment of the DMs devices
within the cavity is technically challenging, and greatly
exacerbated if the membranes are highly reflective.
The dispersion curve can be modeled by the transfer

matrix method, including two dielectric slabs between
two mirrors [26]. With the same parameters, we obtain
dispersion curves in exactly the samemanner as we do in the
experiment (see details in Appendix B). We refer to the
difference between minimum and maximum cavity fre-
quency as the dispersion curve height [40]. The blue curve in
Fig. 2(d) is our simulated result forR of 35%, which reaches
zero when both cavities are on resonance. The predicted dip
in dispersion curve height matches the intermembrane
cavity resonance that can be observed from a direct optical
characterization of the membrane array [34,41], and the
width of this feature is determined by the finesse F ≃ 3 of
the intermembrane cavity.
Our 1 nm laser wavelength tuning range is much less

than the 6 nm intermembrane cavity FSR, meaning we
cannot see a full oscillation of the dispersion curve height in
a single device. However, due to very small variations in the
thickness across the chip on the order of <1 μm, different
devices have distinct intermembrane cavity resonance
frequencies. For one device [green dots in Fig. 2(d)] the
intermembrane cavity resonance condition falls within the
tuning range of our laser. The other two devices, matching
the laser wavelength tuning range for the DMs with higher
reflectivities R (50%, 65%), are shown in Appendix B.

C. Optomechanical coupling characterization

In order to obtain the single-photon optomechanical
coupling rate g0, we measure the mechanical spectra with
different input laser powers, from which we can directly
extract the linearized optomechanical coupling g ¼ ffiffiffiffiffi

nc
p

g0,
where the mechanical frequency shifts due to the optical
spring effect [20]. It is important to keep the optical power
relatively low to avoid optical bistability in the membrane-
in-the-middle system [33]. The cavity photon number nc
can then be calculated by independently measuring the
incident power, cavity mode matching, cavity linewidth κ,
and detuning Δ [18,20]. The mechanical spectra are
obtained through a homodyne detection scheme, combined
with a Pound-Drever-Hall (PDH) technique locking the
laser to the cavity resonance. The mechanical responses are
fitted with a theoretical description based on a standard
optomechanical Hamiltonian with two mechanical modes,
as described in detail in Ref. [18] and Appendix C.
Figure 3 shows an exemplary set of measurements

required to extract g0. We first measure the cavity linewidth
κ from fitting the PDH error signal, Fig. 3(a). Subtracting
the external decay rate (empty FP cavity linewidth), κempty,

(a)

(c)

(b)

FIG. 1. (a) Microscope image of a SiN double-membrane
trampoline device. The membrane on the back side is visible
as a white shadow. The lateral offset between membranes on the
front and back side of the chip is less than 35 μm, which is much
smaller than the extent of the PhC pad and does not cause
significant optical losses, as the cavity beam waist is only 33 μm.
(b) Side-view schematic of the identical membrane array device
and collective mechanical oscillation in orthogonal basis, where
the top panel shows the mechanical center-of-mass mode (os-
cillates in phase), while the bottom panel shows the mechanical
breathing mode (oscillates with opposite phase). (c) Schematic of
the optical field off (top) and on resonance (bottom) with the
intermembrane cavity. The light field increases inside the
intermembrane cavity compared to the off-resonance case,
yielding a higher radiation pressure across both membranes
and resulting in an enhanced optomechanical coupling strength.
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from the total κ=2π ≃ 560 kHz, we obtain internal losses
due to the membrane, κint=2π ≃ 440 kHz. Unlike κempty, we
observe that κint is power dependent, cf. Fig. 3(b). This may
be attributed to an increase in diffraction [42,43] due to a
deformation of the DMs when increasing the optical power,
which can be further exaggerated due to the alignment
imperfection. We therefore measure κ for each power and
use it to compensate for the power dependence. We obtain
the g0=2π for each of the two membranes 1.58� 0.01 Hz
and 1.62� 0.01 Hz, respectively, which is comparable
to Ref. [18].
The difference in light intensity on either side of the

membrane gives rise to the radiation pressure that leads to
the optomechanical coupling. The coupling strength for
each individual membrane g0;j in the array can be evaluated
by [9,26,27]

g0;j ∝ xzpf
ω

L
jIR − ILj; j ¼ 1; 2; ð1Þ

where 1 and 2 represent either membrane in the array. It
is important to note that due to long-range interaction
nature [9,10], even in the weak coupling regime, each peak

does not correspond to an individual membrane resonance.
Therefore, we evaluate the collective coupling strength gc of
the collective motion, which is predicted in theory [27] and
given by

gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20;1 þ g20;2

q
: ð2Þ

By incrementally moving the whole chip over the range of
one wavelength (see Fig. 4), we can find the position where
the coupling is maximal through the field enhancement [9].
Comparing the case between a DM and a SM, for the latter
the g0 of R ¼ 35% follows a j sinðθ=2Þj2 function, i.e.,
quarter-wavelength periodicity, and the maximum is found
to be g0=2π ≈ 1.15� 0.03 Hz (see Appendix F).
Conversely, we see the coupling rate gc=2π of the DMs
vary significantly, ranging from aminimum 0.28� 0.02 Hz
to a maximum 2.27� 0.07 Hz, exhibiting half-wavelength
periodicity, consistent with theoretical predictions for the
normalized coupling rate gc;norm [27]:

gc;norm ¼
���� ðn2 − 1Þ sinðϕÞ sinð2θ þ ϕÞ

cos2ðθÞ þ n2 sin2ðθÞ
����: ð3Þ

(a) (b)

(d)(c)

FIG. 2. Characterization of the R ¼ 35% double-membrane device. (a) Dispersion curve close to the resonance of the intermembrane
cavity. (b) Dispersion curve off resonance. The maximum linear coupling strength is 2.17 MHz=nm. (c) Enlargement of the dispersion
curve from (a), showing that the dispersion tends to flatten (0.04 MHz=nm) when λ is close to the resonance of the intermembrane
cavity. The additional first transversal mode of the cavity is due to small alignment imperfections. Panels (a) and (b) are measured with a
broader wavelength scan of approximately 42 pm. Panel (c) is a finer scan, to accurately identify the intermembrane resonance condition
(λres). (d) Normalized dispersion curve height vs input wavelength. The blue solid line is the numerical simulation of a fixed membrane
spacing based on Ref. [26]. The different data points represent the normalized height of the dispersion curve measured for different
membranes when scanning the wavelength of the laser. One device (green, round dots) is on resonance within the laser operating
wavelength range. λres is 1550.41 nm, shown in (a) and (c).
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Here n is the refractive index of SiN, ϕ is the phase shift due
to the membrane thickness d, given by ndω=c, and c the
speed of light in vacuum. θ is the local phase of the resonant
light, corresponding to the chip position. The relationship is
expressed by θ ¼ 2πðx=λÞ.
The optical losses [Figs. 3(b) and 3(d)] caused by the

slabs both display a periodicity of half-wavelength as
well, consistent with those of the theoretical predictions
for SM [38] and DM [27]. Because of alignment imper-
fections of the chip normal to the incident light, the cavity
resonance slightly shifts [cf. Fig. 2(c)] and the cavity
linewidth lacks a distinct trend [44–46], which is why we
refrain from fitting the data. We estimate that this
misalignment contributes to the cavity loss by about
763 kHz. Furthermore, we observe that the intermem-
brane resonance shifts by up to 0.1 nm when we move the
membranes laterally with respect to the cavity axis. This
effect indicates that the membranes are not perfectly
parallel due to local variations in the substrate thickness.
Nonetheless, the trends in g0 and κ are similar, meaning
that enhanced g0 also results in higher cavity loss. The
cavity linewidth for both the SM and DMs cases tends
toward the empty cavity linewidth, with a similar
minimum measured value about 213 kHz. The losses
of DMs near the optimum coupling (near 0.25λ chip
position) reach 1.17� 0.03 MHz, which is more than
one order of magnitude higher than for the empty FP
cavity. Note that the loss for a SM system also reaches
0.49� 0.02 MHz.

III. DISCUSSION

We have introduced a method to measure the enhance-
ment of the single-photon optomechanical coupling rate,
using long-range interactions in a multimembrane system.
We observe significant enhanced optomechanical coupling
from a double-membrane device in an FP cavity when both
the FP cavity and intermembrane cavity resonance con-
ditions are met. As shown in Fig. 5, the enhancement of gc
of the collective motion matches theoretical predictions
[9,27] and we observe enhancement of 1.97, 2.90, and 3.96
for membrane reflectivities of R ¼ 35%, R ¼ 50%, and
R ¼ 65%, respectively [27]. The light couples to a hybrid-
ized long-range collective motion in which both the center-
of-mass (c.m.) and breathing modes are present (see detailed
analyses in Appendix D), rather than only the latter alone
dominating when enhancement occurs [9,10,27]. Further
enhancement would be possible with even higher reflectivity
[26], which is in principle readily available [34]. However,

(a)

(b)

(c)

FIG. 3. Optical and mechanical characterization of DM with
R ¼ 35%. (a) PDH error signal without (top) and with a
membrane (bottom), both using the same y-axis scale. Blue
dotted lines are raw data and the orange lines are a fit.
(b) Dependence of the cavity linewidth on optical input power.
The lines (orange) show a linear regression. Error bars represent
standard deviation obtained from the fit. (c) Mechanical spectra
showing the two fundamental modes of the membranes, all
characterized at the chip position 0.25λ [cf. Fig. 2(c)]. The spectra
are equally vertically shifted for visualization. The two gray
vertical dashed lines indicate the intrinsic fundamental modes of
the trampoline membranes. PSD: power spectral density

(a)

(b)

(c)

(d)

FIG. 4. Optomechanical coupling strength g0 (gc for DMs) and
cavity loss κ as a function of the chip position. Panels (a) and (b)
are for SM and panels (c) and (d) are for DM, respectively. g0 is
fitted by j sinðθ=2Þj2 for the SM and by Eq. (3) for the DMs. The
blue shaded area in (a) and (c) indicates the fitting uncertainty of
g0. Error bars represent standard deviation obtained from the fit.
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technical limitations in our ability to lock the laser to the
cavity resonance currently prevents us from achieving higher
coupling rates. Part of the challenge comes from imperfect
alignment of the DMs inside the FP cavity, which results in
high cavity losses [45,46], which would be exacerbated even
more when using higher reflectivities.
Our devices already feature ultralow mechanical dissipa-

tion (γM ≈ 0.1 Hz) but can be further improved by applying
advanced mechanical engineering techniques [32,33,47],
which will directly allow us to reach a regime where the
optomechanical coupling rate is larger than the thermal
decoherence rate in a cryogenic environment [48]. With
the method demonstrated here of increasing gc, the main
challenge to reach the single-photon strong coupling regime,
where gc > κ; γM, is to reduce the optical losses, caused by
the FP cavity and the membranes inside. By improving the
alignment between the FP cavity and membranes, it should
be possible to significantly reduce scattering losses, leaving
only material absorption and the empty cavity linewidth
κempty (blue solid curve in Fig. 5). The material absorption of
membranes can be reduced by either thinning down the
thickness or using even lower absorption material (dashed
lines in Fig. 5). For example, reducing the imaginary part of
the refractive index of SiN to 10−6 [46] enhances gc nearly
tenfold relative to the increase in κ. Using silica instead of
silicon nitride could further reduce the imaginary part by 2
orders of magnitude [49] and even lead to a narrowing of the
optical linewidth [10]. At the same time, stable high-finesse
FP cavities with only tens of kilohertz linewidth for cavities

several millimeter long [50,51] have recently been realized.
By shortening our cavity length to a few millimeters while
preserving the long-range type of interaction (L ≫ λres),
we can achieve an initial g0 on the order of hundreds of
hertz [6,52]. For double membranes with a reflectivity of
99.9%, we can therefore extrapolate that the enhancement
could reach a factor of 157, which, with improved alignment
and reduced losses, could allow us to get within the regime
where g0=κ ≲ 1, potentially reaching the single-photon
strong coupling regime. Entering this regime will allow us
to observe novel effects, such as an optomechanical photon
blockade [22] and the generation of non-Gaussian mechani-
cal states [23].
Currently, the enhancement in gc is comparable to the

increase in κ, already leading to an enhancement of the
single-photon cooperativity (C0 ¼ 4g2c=κγM) [27]. Despite
the higher losses, our results demonstrate a twofold
increase in C0, from 1.8 × 10−4 to 3.9 × 10−4, as R goes
from 35% to 65%. Additionally, shortening the cavity
length L can directly increase C0 as both g0 and κ scale as
1=L [6,33,53]. Therefore, the increase in gc can be used for
enhanced optomechanical squeezing [5,24] and room-
temperature quantum optomechanical experiments [6].
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APPENDIX A: DEVICE CHARACTERIZATION
AND SETUPS

The double-membrane devices are fabricated by follow-
ing the same processes as in Ref. [34]. Parameters of the
device patterns are illustrated in Fig. 6. The front and back
side patterns are aligned by using the same chip corner
during the two electron beam lithography processes, which
is necessary to pattern the devices on both sides of the same
substrate. By carefully selecting the reference points, the
misalignment can be minimized to below 5 μm. The
detailed parameters of three types of reflectivity devices
are shown in Table I. The membrane’s intensity reflection
and transmission are first characterized in the setup
described in Ref. [54]. Then, the sample is loaded near
the center in our high-finesse cavity setup [18]. In detail,

FIG. 5. Enhancement of optomechanical coupling strength
(black circles) and corresponding increase in cavity linewidth
(blue squares) vs membrane reflectivities. The black solid curve
represents the enhancement in gc and the blue curve illustrates the
κempty and material absorption (κabs) limited total cavity losses,
applying adapted models from Ref. [27] using our experimental
parameters—membrane thickness d of 200 nm and complex
refractive index of 2þ 10−5i, where the imaginary part indicates
absorption. The two dashed lines highlight potential improve-
ments in κ by thinning down d to 100 nm or reducing ImðnÞ to
10−6 [46], respectively. Error bars of gc=g0 are standard deviation
derived from the fit.
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the cavity mirrors are mounted in a monolithic, stainless
steel holder to keep their alignment and reduce their relative
motion. One is mounted on top of a piezoelectric ring to
control the cavity length. The sample holder is mounted on
a y-z alignment stage (x being the cavity axis), which is
mounted on a tip-tilt alignment stage. These all are placed
in a vacuum chamber at pressures<10−7 mbar to minimize
the viscous damping of the mechanics [55].
The double membranes form an intermembrane cavity

and the expected finesse F can be estimated by [56]

F ¼ π
ffiffiffiffi
R

p

1 − R
: ðA1Þ

The intermembrane cavity exhibits optical losses beyond
the bare SiN material losses, with an extra round-trip loss

exceeding 10−3, in addition to the external coupling due to
transmission [34]. This indicates that the membranes
introduce additional scattering and absorption losses when
they are placed in the high-finesse cavity.
We drive our cavity with a laser beam originating from

an ultralow phase noise NKT Koheras Adjustik C15 with
1 nm wavelength tunability centered around 1550.12 nm.
To stabilize the laser frequency to the cavity resonance,
we utilize a Pound-Drever-Hall scheme [57] with 30 MHz
sidebands. After reflecting from the cavity, part of the
light is split off and subsequently detected on an ava-
lanche photodiode, and this signal is mixed with another
30 MHz tone derived from the same signal generator. The
resulting error signal is fed to a proportional-integral-
derivative controller that applies a modulation voltage to
the laser.
The rest of the reflected light from the cavity is sent to a

50-50 beam splitter with a local oscillator driven by the
same laser, and then detected using a home-built homodyne
detector. A fiber stretcher is used to stabilize the phase of
the local oscillator.

APPENDIX B: NUMERICAL MODEL
OF FABRY-PÉROT CAVITY
WITH TWO MEMBRANES

The optical properties of our system can be modeled by
the transfer matrix method (TMM), by setting dielectric
slabs inside a high-finesse FP cavity [10,26,38]. We
simulate the dispersion relation by moving dielectric slabs
along the cavity axis (x) (see Fig. 7). The maximum slopes
[G ¼ maxðj∂ωc=∂xjÞ] within different FP cavity FSR of the
SM are the same, and only depend on the reflectivity [see
Fig. 8(a)]. In contrast, G of the DM depends on both the
wavelength and the membrane reflectivity [see Fig. 8(b)].
Both cases give dispersion curves that are similar to the
measured one in our experiments and in Ref. [34].
Here, as illustrated in Fig. 7(a), we first describe the

details of our DMs dispersion relations by TMM simu-
lations, by applying expressions provided in Ref. [26].
The membrane’s amplitude transmission and reflection
coefficients are

rm ¼
ffiffiffiffiffiffi
Rm

p
; tm¼

ffiffiffiffiffiffi
Tm

p
; ðB1Þ

where Rm, Tm are the intensity transmission and reflection
coefficients of membranes, which are obtained from
experiments. The reflection and transmission coefficients
can be described by the material parameters of thin
films [26,58],

rm ¼ ðn2 − 1Þ sin β
ðn2 þ 1Þ sin β þ i2n cos β

;

tm ¼ 2n
ðn2 þ 1Þ sin β þ i2n cos β

; ðB2Þ

FIG. 6. Highlights of design parameters of the SiN trampoline
on a microscope image. The device is patterned over an area
750 × 750 μm2. The width of the tether is 10 μm. The membrane
pattern is 300 × 300 μm2. The inner fillet radius is 150 μm and
the outer one is 20 μm, which reduces the stress concentration
around corners [30]. The photonic crystal pattern parameters are
listed in Table I.

TABLE I. Parameters of the three measured devices.

Device No. 1 No. 2 No. 3

Reflectivity 0.35 0.5 0.65
Lattice constant (nm) 1240 1310 1340
Radius (nm) 475 500 514
Pad diameter (μm) 300 300 300
x offset (μm) 41.11 4.75 33.52
y offset (μm) 85.23 2.75 14.22
F at 1550 nm 2.61 4.00 6.54
F (theory) 2.86 4.44 7.24
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where β ¼ nkd, and k ¼ 2π=λ is the wave number. This
way rm and tm are complex, containing the phase shift of
the light due to the membrane thickness d. The electric
field amplitudes (Ai; i ¼ 1;…; 6; ref; tran) inside the cav-
ity, transmitted, and reflected are given by

A1 ¼ itAin þ rA2eikL1 ;

A2 ¼ itmA4eikL2 − rmA1eikL1 ;

A3 ¼ itmA1eikL1 − rmA4eikL2 ;

A4 ¼ itmA6eikL3 − rmA3eikL2 ;

A5 ¼ itmA3eikL2 − rmA6eikL3 ;

A6 ¼ rA5eikL3 ;

Aref ¼ itA2eikL1 þ rAin;

Atran ¼ itA5eikL3 ; ðB3Þ

where r and t are the amplitude reflection and trans-
mission coefficients of our two identical FP cavity
mirrors.
In our simulation, we set r ¼ ffiffiffiffiffiffiffiffiffiffiffi

0.995
p

and t ¼ ffiffiffiffiffiffiffiffiffiffiffi
0.005

p
,

which results in an FP cavity linewidth of about 32 fm, or
4 MHz. This is in part due to the limited computational
memory of our simulation tool. In practice, rm and tm
values differ from those of the bare-film for our devices
of Eq. (B2) due to the photonic crystal patterned in the
films [58]. The total cavity length is L ¼ 50 mm and the
membrane spacing L2 ¼ 200 μm. By scanning the chip
position and varying the wavelength, we obtain dispersion
curves as shown in Fig. 8. The laser itself scans 0.4 nm and
covers 1=15 of the FSR (∼6 nm) of the intermembrane
cavity. Clearly, when approaching the resonance of the

(a)

(b)

FIG. 7. (a) Schematic of TMM model for DMs inside an FP
cavity. x1 and x2 are DMs’ static positions, respectively. When
subjected to the radiation pressure, both membranes shift to new
equilibrium positions, x1 þ δx1 and x2 þ δx2. In the dispersion
relation simulations, this shift is not taken into account, as it
affects only the intermembrane cavity resonant wavelength in the
dispersion relation. (b) Optical spring model of coupled mem-
branes through the radiation pressure inside the FP cavity.
The strength of each spring depends on DMs’ positions
(x1, δx1, x2, δx2).

(a) (b)

FIG. 8. Simulated dispersion relation as a function of chip position and wavelength for a SM (a) and DM (b). The reflected signal on
resonance does not reach zero due to a trade-off between wavelength sweeping step size and computational costs. However, it still
captures the resonance of the cavity.
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intermembrane cavity, the dispersion curves become flat
[cf. Fig. 8(b)]. Moreover, the on-resonant condition in our
simulations indicates that the spacing between the mem-
branes are integer multiple of half the cavity wavelength
(L2 ¼ nλ=2) for both cases, with and without considering
the phase shift due to dielectric membranes, which differs
from the discussion in Ref. [27]. By setting the reflec-
tivity to 50% and 65% and extracting either the heights
or the maximum slopes of the dispersion curves that
are spaced by the high-finesse cavity FSR (∼24 pm),
we obtain the normalized dispersion curve heights
(see Fig. 10). In contrast, it is constant for the single-
membrane case (see Fig. 9). The linewidth of 65% is
narrower than the one of 50% (blue curves), which gives a
theoretical finesse of about 4.44 and 6.54 separately. The
measured dispersion curve heights trace out a cavity
resonance that is broadened (lower finesse) than predicted
by our model, which can be attributed to the relative
misalignment between the membranes.

APPENDIX C: OPTOMECHANICAL
COUPLING STRENGTH

The optomechanical coupling strength g0 is evaluated
from the mechanical spectra. We fit these spectra with the
model provided in Ref. [18], which yields coupling rates
for the individual membranes g0;j. We then compute the
collective coupling gc from the individual g0;j [27]. For
increased accuracy, we measure g0;j at different powers and
fit them using the same parameters. By repeating this
procedure for different positions of the chip in the cavity,
we experimentally obtain the position dependence g0ðxÞ.
The theoretical position dependence of g0ðxÞ is calculated

by analyzing the light intensity across the membrane [5,27]
for comparison. Here, we describe the fit model for the
experimental spectra and the theory model for g0 separately.

1. Fit model for mechanical spectra

Considering a regime where the optomechanical cou-
pling strength is much smaller than the total cavity line-
width κ (full width at half maximum), we use a linearized
optomechanical formula, which describes a single cavity
mode ωc interacting with two membranes’ mechanical
oscillation [18]. A laser at frequency ωl couples to the
cavity with coupling strength E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Plκe=ℏωl

p
with Pl

the laser power and κe the external coupling rate. This
cavity contains two mechanical resonators at frequencies
ω1;2 ≃ 2π × 112 kHz with linewidths γ1;2 ≃ 2π × 0.1 Hz.
These resonators are coupled with single-photon optome-
chanical coupling strengths g0;1 and g0;2 to the optical
cavity. The Hamiltonian of this system [18]

Ĥ
ℏ
¼ ωcâ†âþ

X
j¼1;2

�
ωj

2
ðx̂2j þ p̂2

jÞ − g0;jâ†âx̂j

�

þ iEðâ†e−iωlt − H:c:Þ; ðC1Þ

with â (â†) the annihilation (creation) operator of the
optical mode, x̂j and p̂j the position and momentum

(a) (b)

FIG. 9. Dispersion curve height plots for the on-resonance devices of R ¼ 50% (a) and 65% (b). The measured resonance wavelength
conditions are 1549.95 and 1550.36 nm, respectively.

FIG. 10. Normalized dispersion curve heights of three different
reflectivity single membranes.
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operators of the two mechanical resonators (j ¼ 1, 2). The
explicit formalism of g0 of a membrane inside an FP cavity
is given in [59]

g0 ¼ xzpf

�
∂ωc

∂x

����
x¼x0

�
; ðC2Þ

where xzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2meffωM

p
is the membrane eigenmode

(ωM) zero-point fluctuation, and x0 is the rest position of
the membrane. We coherently drive our cavity such that the
cavity field has a large amplitude, jhâij ≫ 1, which allows
us to separate the semiclassical averages and quantum
fluctuations by rewriting the operators in Eq. (B3) as
Ô ¼ hÔi þ δÔ. By rotating the frame and including the
coupling to the environment, we obtain the equations of
motion for the fluctuations of mechanics and optical field,

δpj ¼ −i
ω

ωj
δxj;

δxj ¼ χjðωÞ
�
G�

jδaþGjδa† þ ξj
�
;

δa ¼ χcðωÞ
 X

j¼1;2

iGjδxj þ ffiffiffiffiffi
κe

p
ain
!
; ðC3Þ

with susceptibilities χj¼ðωj=ω2
j −ω2− iγjωÞ and χcðωÞ ¼

f1=½κ=2þ iðΔ − ωÞ�g. Here γj is the mechanical damping
rate. ξ̂ is the thermal noise driving term. For the math-
ematical details of the measured mechanical spectrum with
homodyne detection scheme, we point to Ref. [18].

2. Coupling strength and the
light intensity distribution

The dielectric membrane is sensitive to the local phase
(θ) of the resonant light inside the cavity (see Fig. 11).
Moving the device along the cavity axis (z direction) will
change the light field amplitudes at either side of the
membrane. Consequently, this will change the radiation
pressure applied on the membranes [27,60],

g0 ¼ xzpf
ωc

L
NjIR − ILj; ðC4Þ

where N is an intensity normalization factor. The slab is
thin compared to the cavity length (d ≪ L), and IM does
not contribute to the radiation pressure; however, it does
cause loss through its imaginary refractive index [27].
The light field amplitudes on the left-hand side,

between, and on the right-hand side of DMs can be
obtained through TMM [Eq. (B3)] simulation. First, we
run simulations with a smaller step size (Δλ ≪ κ) for
three dispersion curves near the intermembrane resonant
wavelength [cf. Figs. 12(a)–12(c)]. The dispersion curve
height is much smaller than 1 pm at the intermembrane
resonant wavelength. The corresponding light intensities
are obtained by

IL ¼ A�
1A1 þ A�

2A2;

Iinter ¼ A�
3A3 þ A�

4A4;

IR ¼ A�
5A5 þ A�

6A6: ðC5Þ

Then, the optomechanical coupling strength of two
membranes can be evaluated through

g0;1 ¼ xzpf
ωc

L
N1jIinter − ILj;

g0;2 ¼ xzpf
ωc

L
N2jIR − Iinterj; ðC6Þ

where N1 and N2 are normalization factors that are
given by

N1 ¼
1

L1IL þ L2Iinter
;

N2 ¼
1

L3IR þ L2Iinter
: ðC7Þ

The absolute value in Eqs. (C6) means g0;j are non-
negative. We can now obtain the collective optomechan-
ical coupling strength gc of the collective modes by [27]

gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20;1 þ g20;2

q
: ðC8Þ

As shown in Fig. 12(d) at each chip position g0;1 ¼ g0;2
when the light is on resonance with the intermembrane
cavity. The value of g0;j and gc is periodic with λres=2.
Furthermore, in each period, we can see that the light can
be focusing outside the intermembrane cavity [see dashed
line in Fig. 12(d)], by the sign of g0;j without taking the
absolute value in Eq. (C6). At these positions, the g0;j is
much smaller than the maximum of g0;i, where the light is
the highest between DM. Besides, moving the chip
position slightly off the cavity center does not affect
the maximum g0;j.

FIG. 11. The intensity of the light field on the left (IL), inside
the dielectric slab (IM), and on the right-hand side (IR) depends
on the local phase (θ) of the resonant light. d is the thickness of
the slab, which gives rise to phase shift ϕ ¼ ðndω=cÞ of light
inside the slab.
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We perform the dispersion curve measurements at a
wavelength step size of roughly 100 pm, which is larger
than the FP cavity FSR (24 pm). We further simulate the g0;j
when the light is detuned by 2 FSR [see Figs. 12(b) and
12(e)] and by 4 FSR [see Figs. 12(c) and 12(f)] away.
Moving the laser wavelength off resonance with the
intermembrane cavity has only a minor effect on the g0;j.
Detuning it by 4 FSR off the main FP cavity (12 GHz or
96 pm) results in the shift shown in Figs. 12(d)–12(f).
To capture the light intensities distribution dependence

on the chip position (or θ) on either side (cf. Fig. 11), we
apply the transfer function [61] for the light across a
dielectric slab,

�
ERðθÞ

Z0HRðθÞ

�
¼
�

cosðϕÞ − i
nsinðϕÞ

−insinðϕÞ cosðϕÞ

��
ELðθþϕÞ

Z0HLðθþϕÞ

�
;

ðC9Þ

where Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
is the impedance in the vacuum,

ϕ ¼ ðnωd=cÞ is the phase shift due to the film thickness.
c is the speed of light in vacuum.ER;L andHR;L are electric
field amplitude and magnetic field strength on the right-
hand (left-hand) side of the membrane, respectively.
Considering a plane wave that travels along the cavity
axis (z) and has only one polarization, we can write electric
field as

Eðz; tÞ ¼ E0 sinðkzÞ sinðωtÞ; ðC10Þ

where E0 is the electric field amplitude. Applying the
relation ∇ ×H ¼ ð∂ϵ0E=∂tÞ, we obtain that H satisfies

Hðz; tÞ ¼ ω

k
E0 cosðkzÞ cosðωtÞ: ðC11Þ

Inserting Eqs. (C10) and (C11) into Eq. (C9), we obtain
that the intensity jEj2 satisfies

IR ¼ IL
cos2ðθ þ ϕÞ þ n2 sin2ðθ þ ϕÞ

cos2ðθÞ þ n2 sin2ðθÞ : ðC12Þ

Inserting it into Eq. (C4) and normalizing relative to the
maximum, we obtain the equation

g0;norm ¼
���� ðn2 − 1Þ sinðϕÞ sinð2θ þ ϕÞ

cos2ðθÞ þ n2 sin2ðθÞ
����; ðC13Þ

which is the same as in Ref. [27] and applies to different R
membranes. It shows that g0;norm has a periodicity of half of
the resonant wavelength.

(a) (b) (c)

(d) (e) (f)

FIG. 12. The top panels are enlargements of the dispersion curve simulations where the light is on resonance with the intermembrane
cavity (a), two FP cavity FSR away (b), and four FP cavity FSR away (c), respectively. The wavelength step size is set to 1 fm. The
bottom panels (d)–(f) are the corresponding optomechanical coupling strength g0;j of the two membranes, extracted at the minimum
cavity reflected signal at all chip positions. The solid lines are evaluated with Eq. (C6), while the dashed lines are without taking the
absolute value in Eq. (C6).
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APPENDIX D: COLLECTIVE MOTION
OF DOUBLE ARRAY

Photons bounce back and forth inside the high-finesse
FP cavity and mediate the interaction between the DMs.
This leads to collective modes that are not localized on a
single membrane [9]. Although our setup cannot directly
measure the relative phase of the mechanical motion, unlike
in Ref. [62], we can study the long-range correlations
between DMs by analyzing the radiation pressure driven
mechanics, supported by the dispersion curves. Prefacing
that, the relative phases between two membranes split into a
center-of-mass and breathing mode only due to the pres-
ence of a light field [10,18,27]. In contrast, thermal forces
only drive the two membranes independently, without
building any phase correlations.
As shown in Figs. 8(b) and 12, the dispersion curves

flatten when the light is near-resonant with both cavities.
This leads to the light being focused either inside or outside
the intermembrane cavity, depending on the local phase
of the light [cf. Figs. 12(d)–12(f)]. Consequently, the
effective radiation pressure on the two membranes has
opposite sign [Fopt ∝ −∇IðxÞ], leading them to move in
opposite directions. Moreover, if two membranes are
identical, they oscillate out of phase, i.e., only couple to
the breathing mode [9,10,26,27].
To establish a more precise framework, we model the

two-membrane dynamics as coupled harmonic oscillators
[cf. Fig. 7(b)] [63,64], driven by radiation pressure that
depends on the positions of the membranes and the input
field Ain. To do this, we replace L1, L2, and L3 by
x1 þ δx1 þ L=2, x2 þ δx2 − ðx1 þ δx1Þ, and L=2 − ðx2 þ
δx2Þ in Eqs. (B3), respectively. Here, δx1 and δx2 are
displacements induced by radiation pressure. Solving the
cavity fields in each region allows us to obtain the radiation
pressure force on each membrane, which is similar to
Eqs. (C6) without the absolute value:

F1ðx1 þ δx1;x2 þ δx2Þ ∝ N1ðIL − IinterÞ;
F2ðx1 þ δx1;x2 þ δx2Þ ∝ N2ðIinter − IRÞ: ðD1Þ

In this manner, we derive the classical equations of motion
of the DMs instead of relying on Eqs. (C3). Inserting the
classical equations of motion of the DMs into the two-
membranes dynamics including the damping and driving
terms, we get

δẍ1 ¼−ω2
1δx1− γ1δẋ1þ

F1ðx1þδx1;x2þδx2Þ
meff

;

δẍ2 ¼−ω2
2δx2− γ2δẋ2þ

F2ðx1þδx1;x2þδx2Þ
meff

; ðD2Þ

asmeff is constant, we normalize it to one for simplicity. The
exact expressions forFjðx1 þ δx1;x2 þ δx2Þ are too lengthy
to be presented here, but they can be obtained by using
Mathematica, for example. Note that in our treatment, it is
naturally assumed that the cavity field reacts instantaneously

to the membrane’s position, which requires the linewidths of
both the main FP cavity and the intermembrane cavity to be
larger than themechanical dynamics (κe; κDMs ≫ ωj), which
is the case in all of our experimental settings.
The enhancement of the g0 occurs when light is resonant

with both the main FP and the intermembrane cavities, i.e.,
on-resonance condition. This leads to the light field’s
further localization between the membranes, and larger
light intensity gradients across the membrane, resulting in
larger radiation pressure and enhanced g0. This phenome-
non intrinsically occurs in the weak coupling regime, i.e.,
for small optical powers. Therefore, we set Ain to a level
that compensates only for the mechanical damping rate γj
in Eqs. (D2). By numerically solving these coupled
optomechanical equations of motion, we obtain dynamics
of the individual membranes. As shown in Fig. 13, when
light is resonant with both cavities, two identical mem-
branes are driven to opposite equilibrium positions and
oscillate out of phase. This way, we can express the effect
of radiation pressure as follows:

δxj ¼ hδxj;0i þ δxjðωjÞ; j ¼ 1; 2; ðD3Þ

where hδxj;0i ¼ ðωj=2πÞ
R 2π=ωj

0 δxjðtÞdt is the time-
averaged membrane’s displacement, representing the radi-
ation pressure induced displacement in the equilibrium
position. δxjðωjÞ is the oscillation amplitude of individual
membranes driven by radiation pressure at its eigenfre-
quencies [65]. To study the collective behavior of the DMs,
we introduce the c.m. (Q) and breathing mode (q)
coordinates in the orthogonal basis [26],

Q ¼ Q0 þ
1

2
½δx1ðω1Þ þ δx2ðω2Þ�;

q ¼ q0 þ
1

2
½δx1ðω1Þ − δx2ðω2Þ�; ðD4Þ

(a)

(b)

FIG. 13. (a) An exemplary plot of the time evolution of two
identical membranes subjected to radiation pressure in the weak
coupling regime, where g0 is maximally enhanced. We assume
that the DMs start from slightly different initial positions, driven
by thermal forces. (b) Illustration of the optomechanical driven
mechanical motion. The radiation pressure drives two membranes
toward opposite equilibrium positions and results in out-of phase
oscillation, i.e., breathing mode.
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whereQ0 and q0 are the time-averaged displacements of the
c.m. and breathing mode, respectively, induced by radiation
pressure. They are independent of time and frequency:

Q0 ¼
1

2
½hδx1;0i þ hδx2;0i�;

q0 ¼
1

2
½hδx1;0i − hδx2;0i�: ðD5Þ

As shown in Fig. 14(a), when light is resonant with both
cavities, the radiation pressure on the DMs consistently
exerts forces in opposite directions at various chip posi-
tions, in line with the behavior of g0 (cf. Fig. 12). This leads
to the DMs moving in the same direction as the radiation
pressure [cf. Fig. 14(c)], resulting solely in q0 while Q0

remains zero, regardless of whether the DMs are identical
or not. For DMs with identical eigenfrequencies, the

(a) (b)

(c) (d)

(e) (f)

FIG. 14. Two extreme cases of the effect of the radiation pressure on DM’s mechanics in the weak coupling regime. Left- and right-
hand panels correspond to on-resonant (flat dispersion curve) and off-resonant (the steepest dispersion curve) conditions, respectively.
(a),(b) Radiation pressure on each membrane. The purple curves represent the dispersion curves extracted only where the reflected signal
is minimal at each chip positions (cf. Fig. 12). The wavelength axis is arbitrarily scaled to emphasize the correlation between radiation
pressure and dispersion curves, without reflecting any steepness information. On resonance, Frad;j reaches the maximum when the
dispersion is flat, whereas off resonance, it is maximized when the dispersion curve slope is steepest. (c),(d) The time-averaged
displacement of each membrane due to radiation pressure. For both hδxj;0i, dashed curves of two identical membranes are obscured by
those of the nonidentical membranes, respectively. The gray dashed horizontal lines in (a)–(d) highlight the original positions of each
membrane without radiation pressure. (e),(f) Averaged amplitudes of c.m. jQ −Q0j and breathing modes jq − q0j in the orthogonal
basis, extracted with Ā ¼ R T0 AðtÞdt and over a time interval T that is significantly longer than both DMs’ mechanical oscillation period
2π=ωj and beating period 2π=jω1 − ω2j. In (c)–(f), dashed and solid curves correspond to identical or different membranes, respectively,
with the latter matching the devices in the main text. In the on-resonant panels, the light cyan and light orange shaded areas indicate
regions where light is focused outside and between the membranes, respectively. Conversely, in the off-resonant panels, these shaded
areas highlight the directions in which radiation pressure acts on the membranes, opposite for light cyan and the same for light orange. In
(e), the solid orange curve is obscured by the solid blue one. In (f), part of dashed blue curve overlaps with the solid blue one, and the
solid orange one is obscured by the blue one. The parameters used for these simulations are listed in Table II.
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breathing mode dominates across various chip positions
[cf. Fig. 14(e)]. Within the light orange shaded region, it is
noteworthy that the c.m. also emerges and exhibits a
derivative-dependent relationship with respect to radiation
pressure. This arises from the strongly localized light field
between the membranes, which generates a larger radiation
pressure compared to the case where the light field is
primarily distributed outside the intermembrane cavity.
Consequently, themechanical oscillation amplitude becomes
more sensitive to the gradient of the position-dependent
radiation pressure. As a result, we expect the maximum c.m.
amplitude to increase with the input optical power jAinj2
and to diminish as the light approaches the single-photon
level. Nevertheless, light only couples to the breathing
mode where g0 is maximally enhanced [cf. Fig. 14(e)],
consistent with theoretical predictions [9,10,27].
However, when the DMs possess different eigenfrequen-
cies, due to fabrication imperfections, for example, both
c.m. and breathing modes are observed with equal ampli-
tudes over multiple oscillation periods.
Under the off-resonant condition where the dispersion

curve is the steepest, radiation pressure on the DMs can
act either in the same or opposite directions, depending
on the local membrane positions [cf. Fig. 14(b)]. When
the radiation pressure acts in the same direction, light
preferentially couples to one membrane, exerting a larger
force on the left membrane in the reflective regime and a
smaller force in the transmissive regime [10,36]. This
results in the DMs moving in the same direction
[cf. Fig. 14(d)]. For identical membranes, the breathing
mode dominates in the cyan-shaded region, while both
modes are present in the light orange region but the c.m.
mode has a larger amplitude due to unequal radiation
pressures. When the membranes have different eigenfre-
quencies, both the c.m. and breathing modes contribute

equally over multiple oscillation periods, similar to the
on-resonance condition.
As previously discussed, when the DMs have different

eigenfrequencies as in our experiments, its collective motion
exhibits both c.m. and breathing modes under both on-
resonance and off-resonance conditions. However, the radi-
ation pressure induced time-averaged displacement of the
DMs is independent of the mechanical eigenfrequencies
[cf. Figs. 14(c) and 14(d)]. As shown in Fig. 15, the q0

reaches its maximum under the on-resonance condition, with
noQ0 present. When the light decouples from the intermem-
brane cavity and approaches the region where the dispersion
curve is the steepest, i.e., half the FSR of the intermembrane
cavity, the coupling to the q0 in each main FP cavity FSR
decreases, while the coupling to the Q0 increases.

APPENDIX E: OPTOMECHANICAL
COUPLING OF DOUBLE ARRAY

In the main text, we present the collective coupling
strengths gc of the double membranes. Here, we provide
both g0;1, g0;2 and κ of all membranes that we investigated
(see Fig. 16 and Table III). All three devices with different
R, g0;j exhibit a clear dependence on θ (or the chip position)
and all of them can be fit by Eq. (C13). However, the fit
does not capture all the details of the g0;j. We attribute the

FIG. 15. Maximum time-averaged c.m. and breathing modes
displacement, across half of an intermembrane FSR range
(∼3.06 nm). The dots represent the maximum displacement of
c.m. (Q0) and breathing (q0) in every main FP cavity FSR range
(∼24.2 pm), respectively.

TABLE II. Summary of TMM numerical simulation
parameters.

Parameters Values

Optics R 0.995
T 0.005

L (mm) 50
L2 (μm) 200
d (nm) 200

n 2þ 10−5i
Ain 0.01

Mechanics Membrane no. 1 Membrane no. 2
ωj=2π (kHz) 111.976 112.473
γj=2π (Hz) 0.1 0.1

meff 1 1

TABLE III. g0=2π (in Hz) and κ=2π (in kHz) of SMs and DMs,
respectively.

Device No. 1 No. 2 No. 3

Reflectivity 0.35 0.5 0.65
g0=2π (SM) 1.15� 0.03 1.77� 0.26 2.38� 0.42
g0;1=2π (DM) 1.60� 0.05 3.64� 0.32 6.68� 0.01
g0;2=2π (DM) 1.73� 0.06 3.62� 0.32 6.86� 0.01
gc=2π (DM) 2.27� 0.07 5.14� 0.45 9.45� 0.02
gc=g0 1.97 2.90 3.96
κ=2π (DM) 1173.6� 33.3 3555.6� 27.5 9101.6� 25.0
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imperfect fit in part to the noisy cavity locking, which could
be improved by further increasing the stability of the setup.
In addition, g0;j near 3π=2 is systematically lower than
predicted. This discrepancy suggests the presence of addi-
tional coupling, which may be explained by the quadratic
or quartic optomechanical coupling [45] or dissipative
coupling [1,38,43,66–68].
We can measure the reflected signal for low R at 35% for

the one-full wavelength period. However, for high R, only
g0;j less than one-half period can be obtained. This
limitation arises due to the shifting of the membrane
splitting the cavity mode and the light is more confined
in either subcavity, leading to a stronger reflected or
transmitted signal [9,36]. Our setup measures only the

reflected signal, and therefore only one-half period of the
signal can bemeasured forR > 0.5. Additionally, a higherR
membrane introduces more scattering losses, resulting in a
poor PDHerror signalwith broader andmore shallow peaks.
This limits the cavity locking andmakes the characterization
more difficult for higher reflective DMs. These challenges
may be overcome by further optimizing the cavity and
device alignment, and optimizing the configuration of
devices, which does not have higher round-trip losses
when the light circulates inside the high-finesse cavity.
For example, a photonic crystal pattern designed for a
Gaussian beam could decrease losses [69,70].

APPENDIX F: OPTOMECHANICAL COUPLING
OF A SINGLE MEMBRANE

In the main text we also present the g0 of a single
membrane. For completeness,we alsoprovide theg0 obtained
from the TMMsimulation (see Fig. 17). The dispersion curve
exhibits a period of half-wavelength [1,34,35], as expected.
Correspondingly, the obtained g0 shows a quarter-wavelength
periodicity, while having the same trend without taking the
absolute value.We can use a j sinðθ=2Þj2 function to fit the g0,
which we obtained from our experiments.

(a)

(b)

(c)

FIG. 16. Optomechanical coupling strength g0;j=2π (black
triangles) and cavity linewidth κ=2π (blue squares) of (a) 35%,
(b) 50%, and (c) 65% reflective double membranes, respectively.
The g0;j=2π are fit by Eq. (C13) (dark blue curves). The fits for
g0;1=2π and g0;2=2π are very similar and therefore only g0;1=2π is
displayed. κ=2π of all three cases are characterized at an input
power of ∼10 μW.

(a)

(b)

FIG. 17. (a) Enlargement of dispersion curve simulation in one
FSR of FP cavity of an SM. Thewavelength step size is set to 1 fm.
(b) The corresponding optomechanical coupling strength g0,
extracted at theminimumcavity reflected signal at all chippositions.
The solid lines are evaluated with Eq. (C6), while the dashed lines
are the ones without taking the absolute value in Eq. (C6).
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