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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Optimized SEBAL improved ET accuracy
by integrating eddy covariance with
remote sensing.

• Utilized Bayesian inference to optimize
key model parameters, reducing RMSE
by up to 40 %.

• Global sensitivity analysis identified
solar radiation and hot/cold pixels as
influential factors.

• Validated SEBAL-OPT across diverse
land uses, demonstrating optimized
model robustness.
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A B S T R A C T

Accurate evaluation of water resource systems is essential for informed planning and decision-making. Evapo-
transpiration (ET), a key component of water resource management, is often estimated using remote sensing
techniques; however, such estimates can be subject to significant uncertainties under certain conditions. In this
study, we present a novel approach to improving the accuracy of ET estimates in composite terrains. The
methodology involves optimizing the Surface Energy Balance Algorithm for Land (SEBAL-OPT) by integrating
ground-based eddy covariance (EC) flux tower data into the satellite-based ET retrieval process. The approach
was evaluated at four sites in California, each representing different land uses. Parameter optimization was
achieved through Bayesian inference using the Differential Evolution Adaptive Metropolis (DREAM) algorithm,
which minimized discrepancies between ET estimates derived from Landsat 8 and 9 imagery and the observed ET
from EC measurements. Results from the global sensitivity analysis identified solar radiation and hot/cold pixel
selection as the most sensitive parameters in the SEBAL algorithm, highlighting their critical role in reducing
uncertainty in ET estimates. SEBAL-OPT demonstrated significantly improved accuracy, with root mean square
error (RMSE) values ranging from 0.72 mm to 1.33 mm, compared to the original SEBAL parameterization
(SEBAL-ORG), which produced RMSE values between 1.03 mm and 2.14 mm. This approach highlights that,
when properly calibrated, the model can be effectively applied across diverse agricultural landscapes, regardless
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of the specific land use at individual sites. These findings have significant implications for water resource
planning, agricultural water management, and water rights adjudication and could be applied to other remote
sensing of ET models.

1. Introduction

Agriculture accounts for a considerable portion of global water
consumption (Foley et al., 2011). Accurately measuring crop water use
or evapotranspiration (ET) is critical to managing water use in agricul-
ture. The quest for sustainability in water resources management is
inherently linked to ensuring food security, necessitating accurate esti-
mations of water consumption. ET is a key concept in understanding and
quantifying the dynamics of the hydrological cycle. ET encapsulates the
combined processes of evaporation, and transpiration representing the
amount of water released into the atmosphere from soil and plant sur-
faces and the quantity released via the plant stomata, respectively (Allen
et al., 1998; Monteith, 1981; Penman, 1948). This important hydrologic
flux signifies the water utilized by crops and serves as a fundamental
indicator in assessing the water needs of agricultural systems (L. Zhang
et al., 2019). Accurately estimating crop water consumption is essential
for informed decision-making and effective planning. Reliable data on
ET plays a critical role in enabling policymakers, agricultural stake-
holders, and resource managers to make informed decisions regarding
water allocation, crop selection, irrigation management strategies, and
during adjudication of water rights disputes.

In hydrologic water balance modeling and irrigation management,
ET is the key factor that drives water allocation and significantly in-
fluences water demand. At the local scale, various methods, such as
lysimeters and eddy covariance systems (Baldocchi et al., 2001; Nagler
et al., 2005; Paul et al., 2013; Peddinti and Kisekka, 2022a), have been
used to estimate ET. In addition, physical-mathematical models like the
Penman-Monteith method, combined with crop coefficients (Allen et al.,
1998; Jensen & Wright, 1970; Karimzadeh et al., 2024) are commonly
applied. However, these approaches rely on ground-based measure-
ments, which face challenges when scaling to larger, heterogeneous
landscapes (Bastiaanssen and Steduto, 2017). Additionally, routine
direct measurement of ET proves laborious and logistically challenging
to sustain. In contrast, optical and thermal satellite data used in surface
energy balance models such as SEBAL (Bastiaanssen et al., 1998a),
METRIC (Allen et al., 2007a), TSEB (Kustas and Norman, 1999), SEBS
(Su, 2002), and ALEXI (Anderson et al., 2011), offer a promising alter-
native for ET estimation. Yet, comparative studies of remote sensing-
based ET methods have not consistently identified a clear best option
(Sriwongsitanon et al., 2020; Tran et al., 2023; Volk et al., 2023).
Satellite-based ET models inherently involve various sources of uncer-
tainty and error, including inaccuracies in input data, data processing,
and model parameters (L. Zhang et al., 2023). These uncertainties can
propagate through the modeling process, potentially affecting the final
outputs (FAO, 2023). Unaddressed, these uncertainties pose challenges
to effective policymaking for stakeholders reliant on such data. The past
decade has witnessed the emergence of publicly accessible ET products,
such as SSEBop (Senay et al., 2022), WaPOR (FAO, 2018), and OpenET
(Melton et al., 2022), which have become available, emphasizing the
growing need for accurate ET estimations with quantified uncertainty.

There is a notable gap in the literature regarding comprehensive
uncertainty analysis for remotely sensed ET and strategies focused on
minimizing errors. ET varies highly across spatial domains, and field
conditions differ significantly from catchment-average ET conditions.
Wolff et al. (2022) introduced an optimization framework that in-
tegrates pixel selection into the SEBAL algorithm to reduce the differ-
ences between modeled and measured ET. Pixel selection is critical in
energy balance models like SEBAL and METRIC, significantly affecting
model accuracy. Efforts have been made to automate this process (e.g.,
Bhattarai et al., 2017; Silva et al., 2019), but automation alone has not

sufficiently reduced uncertainties in the final outputs. However, auto-
mating pixel selection alone has not adequately reduced uncertainty in
final outputs. Long et al. (2011) examined the uncertainties introduced
by changes in sensor resolution and input variables in SEBAL, empha-
sizing the sensitivity of heat flux estimates to anchor pixel temperatures.
The subjective selection of “hot” and “cold” pixels, influenced by factors
like domain size, cloud cover, soil type, and vegetation, introduces
substantial uncertainties and propagates errors in SEBAL-based ET es-
timates (Gao et al., 2008; Marx et al., 2008; Saboori et al., 2021). On the
other hand, ground-based data accuracy is subject to different chal-
lenges. Global studies on eddy covariance indicate energy balance
closure errors ranging from 10% to 20% (Peddinti and Kisekka, 2022b).
Jensen and Allen (2016) reviewed various ET measurement methods
and noted that eachmethod has inherent limitations. While some studies
have explored the sensitivity of input variables and model parameters on
SEBAL outputs, none have systematically conducted a global sensitivity
analysis (SA) or developed a scoring system to identify key parameters
that require careful consideration for accuracy (Teixeira et al., 2009;
Wang et al., 2009). These limitations highlight the ongoing challenge of
quantifying and mitigating uncertainties in remotely sensed ET models.

Several methodologies have been developed to quantify both
parameter and model uncertainty. Techniques such as sequential un-
certainty fitting (SUFI-2) (Abbaspour et al., 2007, 2015), generalized
likelihood uncertainty estimation (GLUE) (Beven and Freer, 2001),
Bayesian approaches including Markov Chain Monte Carlo (MCMC)
(Kuczera and Parent, 1998; Shi et al., 2023; Xie et al., 2009) aim to
derive posterior distributions of unknown parameters based on available
information and observed data. Beyond uncertainty analysis, effective
modeling also requires identifying the individual contributions of each
input or parameter to overall uncertainty (Saltelli et al., 2019; Song
et al., 2015). To address this, SA methods like the Sobol method (Sobol,
2001), Fourier Amplitude Sensitivity Test (McRae et al., 1982; Saltelli
and Bolado, 1998), and Morris One-at-a-time (Morris, 1991; Kisekka
et al., 2013) have been developed. These methods evaluate how varia-
tions in input assumptions and parameters affect model outcomes within
their respective ranges. While SA explores the relationship between
input variations and model outcomes, uncertainty analysis quantifies
the overall uncertainty within the model, irrespective of specific input
assumptions (Saltelli et al., 2019). Although ET estimates play a critical
role in hydrologic studies and irrigation management, there remains a
significant gap in the literature regarding comprehensive uncertainty
analysis, specifically for remote sensing-based ET models. This lack of
focus on quantifying and addressing uncertainties arising from varying
inputs, assumptions, and model parameters hinders the reliability and
confidence in ET data used for decision-making in water resource
management and agricultural planning.

This study uses the SEBAL model, which estimates spatial ET based
on surface energy balance principles and identifies hot and cold pixels
through empirical equations. However, inherent uncertainties arise due
to the model’s simplifications and assumptions. The primary objective of
this research is to identify and prioritize the most influential parameters
within the SEBAL model through global sensitivity analysis. We aim to
highlight key areas for minimizing errors in SEBAL and similar remote
sensing models by ranking these parameters. Another goal of the study is
to reduce discrepancies between SEBAL-derived ET and measured ET
values by integrating the SEBAL algorithm with the Bayesian-based
global optimization technique DREAM (DiffeRential Evolution Adap-
tive Metropolis) (Vrugt, 2016; Vrugt et al., 2009). DREAM, which uti-
lizes a Markov Chain Monte Carlo (MCMC) sampling scheme, efficiently
addresses parameter uncertainties and determines the posterior
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distributions of model parameters. The methodology involves two ap-
proaches: first, performing a one-year calibration of SEBAL and vali-
dating it against other years (temporal validation), and second,
calibrating SEBAL at a single station and validating it across different
locations with varying land uses (spatial validation).

2. Materials and methods

2.1. Study area description and data collection

This study utilized ground-truth data and Landsat imagery collected
from multiple locations in California’s Central Valley, including a
commercial almond orchard and three eddy covariance flux tower sta-
tions within the AmeriFlux network (https://ameriflux.lbl.gov/). The
flux towers continuously monitor ecosystem-level carbon, water, and
energy fluxes. Fig. 1 illustrates the location of the study sites, and
Table 1 provides detailed site characteristics, including data collection
periods, land use types, and geographic coordinates.

2.1.1. CAPEX almond orchard
The primary ground-truth data was collected from a commercial

almond orchard located at California Almond Packers and Exporters
(CAPEX) in the northern Sacramento Valley near Corning, California
(39.95◦N, − 122.24◦W). This site primarily consists of three almond
varieties—Nonpareil-Peach, Butte-Marianna, and Monterey-
Peach—each grafted onto their respective rootstocks. The orchard is
characterized by tree spacings of 4.8 m and a consistent row spacing of

6.7 m. The region’s climate is classified as warm Mediterranean ac-
cording to the Köppen climate classification system, with an annual
mean temperature of 16.6 ◦C and an average annual precipitation of
548 mm, the majority of which occurs during the winter months. These
climatic conditions are ideal for almond production. Irrigation at this
site is conducted via a micro-sprinkler system with a spacing of 6.7 m.
The soil composition at the CAPEX site is heterogeneous, consisting of
silt loam, silty clay loam, and loam, with notable lateral and vertical
variations.

2.1.2. AmeriFlux tower sites
In addition to the CAPEX almond orchard, this study utilized data

from three AmeriFlux flux tower stations: US-Bi1, US-Bi2, and US-Myb.
These sites in central California span diverse land uses—alfalfa, corn,
and permanent wetland, respectively—providing a broad range of
ecological and agricultural conditions for evaluating evapotranspiration
(ET). The US-Bi1 site (38.1◦N, − 121.5◦W) is primarily dedicated to al-
falfa cultivation, while the US-Bi2 site (38.11◦N, − 121.54◦W) focuses on
corn production. The US-Myb site (38.05◦N, − 121.75◦W) is in a per-
manent wetland ecosystem. Data were collected from all three sites over
the same period, spanning from February 2018 to December 2021. All
three sites were equipped with eddy covariance systems that continu-
ously measure water, energy, and carbon fluxes. These high-resolution
flux measurements serve as critical ground-truth data, providing a
solid foundation for validating remotely sensed ET estimates derived
from the SEBAL model. Incorporating data from these ecologically
diverse sites ensures a comprehensive assessment of SEBAL’s perfor-
mance across varying land use types and environmental conditions.

2.1.3. Landsat imagery
Cloud-free Landsat 8 and 9 images, covering the geographical re-

gions of CAPEX and the AmeriFlux flux tower sites, were acquired from
the United States Geological Survey (USGS) via the Earth Explorer
platform (http://earthexplorer.usgs.gov). The imagery from the Oper-
ational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) was
collected during the designated data collection periods as outlined in
Table 1. These satellite images served as the primary input for the SEBAL
(Surface Energy Balance Algorithm for Land) model, providing essential
spatial and spectral data for estimating ET across different land use types
and climatic conditions. To enhance the accuracy of the analysis, each
Landsat image underwent preprocessing tailored to the specific re-
quirements of the study areas. This included geometric correction, at-
mospheric correction, and radiometric calibration to ensure the
consistency and reliability of the derived ET estimates. In addition to the
satellite imagery, a Digital Elevation Model (DEM) with a spatial reso-
lution of 30 m, obtained from the Shuttle Radar Topography Mission
(SRTM), was incorporated into the analysis. The DEM data helped ac-
count for variations in topography and elevation, further improving the
precision of the energy balance calculations and providing a more
comprehensive assessment of the SEBAL model’s performance in diverse
environments.

2.2. Micrometeorological data and processing

At the CAPEX site, an eddy covariance (EC) flux tower was installed
to measure high-frequency turbulent fluxes, including ET. The system
comprised a 3D sonic anemometer (Gill R3–50, Li-Cor, USA) for
measuring wind velocity in three dimensions and an open-path gas
analyzer (LI-7500, Li-Cor Inc., Lincoln, NE) mounted at a height of 10 m
to measure CO2 and H2O fluxes at a frequency of 10 Hz. In addition to
these measurements, various Biomet sensors were deployed to monitor
environmental conditions. A four-component net radiometer (SN-500-
SS, Apogee Instruments, Inc., UT, USA) measured net radiation. At the
same time, three soil heat flux plates (HFT-3, Radiation Energy Balance
Systems, Bellevue, WA) were inserted at a depth of 8 cm to assess soil
heat flux. Complementary measurements included three soil

Fig. 1. Framework of the proposed optimization method.
θik+1 and θik: Represents the candidate solution that is being generated in the k-
th and (k + 1)-th generation, γ(δ): Scaling factor, adjusting the perturbation
size, θz1(a) and θz2(b): Two parameter vectors chosen randomly from the current
population, U: is a random number from a uniform distribution (0,1), CR: is the
crossover probability, P

(
θik
⃒
⃒Yobs

)
: This is the posterior distribution of the cur-

rent state given the observed data (Yobs), P
(
θik+1

⃒
⃒Yobs

)
: This is the posterior

distribution of the proposed state given the observed data, ε: Random noise.
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thermocouples (TCAV-L, Campbell Scientific Inc., Logan, UT) and soil
moisture probes (GS-1, METER Group, Inc., USA) buried at a depth of
2.5 cm to account for heat storage above the plates.

Post-processing of the flux data involved several standard correc-
tions. These included a two-dimensional coordinate rotation to align the
data, spectral adjustments following Moncrieff et al. (1997), and cor-
rections for heat and water vapor density fluctuations based on the
Webb et al. (1980) method. These corrections were implemented using
Eddy Pro 7.0.6 software (Li-Cor, USA). Footprint analysis and data
quality assessments were also performed using TOVI software (Li-Cor,
USA). Detailed insights into the specifics of the flux tower and energy
closure for this site can be found in Peddinti and Kisekka (2022a), while
the flux data processing methods are further elaborated in Bambach
et al. (2022). The flux tower footprint model was developed using the
framework proposed by Kljun et al. (2002). The dataset for the CAPEX
site spans from September 2020 to August 2022, encompassing 66

satellite images and multiple crop growth seasons.
For the three AmeriFlux towers, half-hourly data was preprocessed

and filtered based on quality assurance (QA) flags before being aggre-
gated into daily ET estimates corresponding to Landsat overpasses. To
address potential random and systematic errors in the ECmeasurements,
two energy balance closure methods were considered: the Bowen ratio
method and the residual latent heat flux method (Mauder et al., 2013).
The focus was not on the specific closure method used but rather on
ensuring that the EC measurements adhered to the principle of energy
conservation. In this study, the residual latent heat flux method was
applied to correct the measured data, ensuring that the observed energy
fluxes, particularly latent heat, were consistent with the conservation of
energy.

Table 1
Geographic coordinates, land use types, and data collection periods for CAPEX almond orchard and AmeriFlux tower sites.

Site Number of
images

Lat Lon Mean annual Precipitation
(mm)

Mean annual
temperature (Co)

Elevation
(m)

Land use type Eddy Covariance data
availability

CAPEX 66 39.95 − 122.24 548 16.6 89 Almond 2020/9–2022/8
US-Bi1 54 38.1 − 121.5 338 16 − 2.7 Alfalfa 2018/2–2021/12
US-Bi2 54 38.11 − 121.54 338 16 − 5 Corn 2018/2–2021/12
US-
Myb 54 38.05 − 121.75 338 15.9 − 4

Permanent
wetland 2018/2–2021/12

Fig. 2. Study site locations a) US-Myb, b) US-Bi2, c) US-Bi1, d) a commercial almond orchard at the CAPEX ranch located near Corning California in the Sacra-
mento Valley.
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2.3. Methodological framework

The proposed framework, illustrated in Fig. 2, consists of five key
components: (I) Input data collection, including meteorological, remote
sensing, and eddy covariance (EC) data; (II) SEBAL model configuration;
(III) Sensitivity analysis (SA); (IV) Model calibration and Bayesian
inference using the DREAM algorithm; and (V) Validation of simulated
ET against EC data. Sensitivity analysis is critical in identifying key
parameters that significantly improve model optimization. In this study,
SA was performed on meteorological inputs, a vital component of the
SEBAL algorithm, and on the empirical equations used within the model.
The DREAM algorithm is employed to derive posterior parameter dis-
tributions by integrating prior distributions (initial parameter estimates)
with residual errors, represented by the likelihood function, which
captures the discrepancies between model predictions and observed
data.

2.4. Description of the SEBAL algorithm

The SEBAL methodology determines ET as a residual of the surface
energy balance equation. In this study, this approach will hereafter be
referred to as SEBAL-ORG. The net radiation (Rn) at the surface is par-
titioned into soil heat flux (G), sensible heat flux (H), and latent heat flux
(λET) all expressed in units of W m− 2. The relationship is given by the
Eq. (1):

λET = Rn − G − H (1)

This equation indicates that the latent heat flux, which corresponds
to ET, is the remaining energy after accounting for the soil heat flux and
sensible heat flux. Essentially, the energy not used to heat the soil or air
is used for ET.

Net radiation is the balance of incoming and outgoing long- and
short-wave radiation:

Rn = (1 − α)Rs↓ +RL↓ − RL↑ − (1 − ε0)RL↓ (2)

where Rs↓ is the incoming short-wave radiation, and RL↓ and RL↑ are
incoming and outgoing longwave radiation, respectively. α is surface
albedo (− ) estimated according to Tasumi et al. (2008). ε0 is the surface
thermal emissivity determined from vegetative indices such as NDVI
(Van De Griend and Owe, 1993).

The long-wave radiation incidents are computed by the Stefan-
Boltzmann equation (Boltzmann, 1978) as follow:

RL↑ = σε0T4s (3)

RL↓ = σεaT4a (4)

where Ts and Ta are surface temperature and air temperature (K), and σ
is the Stefan-Boltzmann constant, 5.67 × 10–8 Wm− 2 K− 4. The emis-
sivity of the atmosphere (εa) is estimated through an empirical equation
suggested by Bastiaanssen et al. (1998a):

εa = β1( − lnτsw)β2 (5)

where the term τsw is the broad-band atmospheric transmissivity
(dimensionless), computed according to Allen et al. (1998). β1 and β2 are
assumed 0.85 and 0.09 as suggested by Allen et al. (2007b); and Bas-
tiaanssen et al. (1998b).

The second component of energy balance, soil heat flux (G), is esti-
mated as follows:

G
/
Rn = (Ts − 273.15)(β3 + β4α)

(
1 − 0.98NDVI4

)
(6)

β3 and β4 are empirical parameters with default values of 0.0038 and
0.0074, respectively.

H is the rate of heat loss to the air through convection and conduction
driven by temperature differential at two specific heights. The

estimation of H in SEBAL is done through an iterative process:

H =
ρCPdT
rah

(7)

where ρ is the air density (kg m− 3), Cp is the specific heat of air at
constant pressure (J/kg/K), rah is the aerodynamic resistance (s m− 1) for
heat transfer, and dT is the temperature difference between two near-
surface heights (z2, z1). dT is linearly related to surface temperature
where two empirical coefficients (a and b) are determined for two
extreme anchor pixels:

dT = a+ bTs (8)

rah is computed under conditions of neutral stability as:

rah =
ln(z2∕z1)

u* k
(9)

where u* is friction velocity (m s− 1) quantifying the turbulent velocity
fluctuations in the air, and k is the von Karman’s constant (0.41). In
SEBAL, atmospheric stability corrections are applied iteratively using
the Monin-Obukhov length to account for buoyancy effects under stable
and unstable conditions. This process adjusts aerodynamic resistance to
ensure reliable estimates of sensible heat flux (H) and evapotranspira-
tion (ET).

In the first iteration, the friction velocity is estimated using the
logarithmic wind law for neutral atmospheric conditions:

u* =
k u200

ln(200∕zom)
(10)

where zom is the surface roughness length that controls the momentum
transfer (m), and u200 is the wind speed at 200m where the surface
roughness exerts no effect.

zom for each pixel is computed through the empirical equation sug-
gested by Raupach (1994):

zom = (1 − d∕h)e(ku*∕Uh)− ψ (11)

ψ = lncw − 1+ 1/cw (12)

u*
/
Uh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.003+ 0.3LAI∕2

√
(13)

1 − d

/

h =
1 − e−

̅̅̅̅̅̅̅̅
cdLAI

√

̅̅̅̅̅̅̅̅̅̅̅̅
cdLAI

√ (14)

where d is zero-plane displacement (m), h is obstacle or canopy height
(m), Uh is the mean wind velocity at height h, LAI is the leaf area index
and ψ is the roughness-sublayer influence function. The constants cw and
cd are assumed to be free variables, typically set at 2 and 5, respectively.

Finally, once the components of energy balance are estimated, 24-h
ET (ET24) can be estimated as follows:

ET24 = ξ EFinst Rn24
/

λ (15)

ξ = 1+
(
β5 EFinst e(VPD)β6 − 1

)
(16)

EFinst is the evaporative fraction calculated from the ratio of the
instantaneous latent heat to the difference between Rn and G, Rn24 daily
net radiation (W m− 2), λ latent heat of vaporization ξ is advection factor
due to extra energy brought in by advection (Jaafar and Ahmad, 2020;
McNaughton, 1976; Wei et al., 2023) and VPD is vapor pressure deficit
(kPa). β5 and β6 are constants set to 0.985 and 0.008 by default,
respectively.

2.5. Description of the DREAM algorithm

The adoption of Bayesian formalism allows for the derivation of the
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posterior distribution of model parameters by conditioning model
behavior on observed system response. The Bayesian inference can be
formally expressed as follows (Kavetski et al., 2006; Vrugt, 2016):

p(θ Yobs) =
p(θ).p(Yobsθ)

p(Yobs)
∝p(θ).L (θ Yobs) (17)

where p(θ) and p(θ Yobs) signify the prior and posterior probability dis-
tribution, respectively. L (θ|Yobs) denotes the likelihood function deter-
mining the distance between the model behavior and the corresponding
observed response. Marginal likelihood or evidence, p(Yobs) acts as a
normalization factor which is not required for posterior estimation.
Assuming the error residuals are independent and normally distributed
et (θ) ∼ N

(
0, σ2t

)
the likelihood function becomes:

L
(
θ Yobs, σ2

)
=

∏n

t=1

1̅̅̅
̅̅̅

2π
√

σ
exp

[
1
2

(
yt − yobs,t

σt

)2
]

(18)

where yt and yobs,t denote simulated and observed system response
(here, ET) at time step t, respectively and σt is the standard deviation of
model error.

After defining the prior distribution and likelihood function, the next
step is to sample the posterior distribution effectively. At this stage, the
DREAM algorithm—a powerful multi-chain Markov Chain Monte Carlo
(MCMC) sampler—is utilized to sample from the posterior distribution
efficiently (Laloy and Vrugt, 2012; Vrugt, 2016). The DREAM algorithm
operates by running multiple Markov chains concurrently. Each chain
proposes candidate solutions that explore the parameter space, ulti-
mately converging toward the posterior distribution—an updated belief
about the parameters conditioned on the observed data and model.

The process, illustrated in Fig. 3, consists of several key steps:

1. Generate Candidates: The algorithm begins by generating candidate
parameter vectors for each of the sensitive parameters identified in
the SEBAL model (Fig. 2). This is achieved by adapting the differ-
ences between randomly selected parameter vectors from multiple
chains. The candidate generation step incorporates a differential
evolution process combined with a small perturbation (ϵ), allowing
for efficient exploration of the parameter space while ensuring di-
versity among the chains.

2. Crossover: The candidate parameters are adjusted based on a cross-
over probability CR in this step. If a random number U is less than 1
− CR, the candidate parameters are retained; otherwise, they are
swapped with the parameters of the current chain. This allows the
algorithm to maintain variability while encouraging convergence to
the posterior distribution.

3. Evaluate Posterior: For each candidate set of parameters, the poste-
rior probability is evaluated using Bayes’ theorem, where the like-
lihood function and prior distributions are combined to estimate the
updated parameter probabilities given the observed data.

4. Acceptance Probability: The proposed candidate’s acceptance is
determined by comparing the posterior probability of the candidate
parameters with the current parameter set. The algorithm uses an
acceptance probability formula (Fig. 3) to ensure that candidates
with higher posterior probabilities are favored while still allowing
some level of exploration.

5. Posterior Distribution: Once a candidate is accepted, the Markov
chain moves to this new candidate. As this iterative process

Fig. 3. Simplified workflow of the methodology including sensitivity analysis and optimization.
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continues and the chains converge, the samples begin to represent
the posterior distribution of the SEBAL model’s parameters.

The DREAM algorithm’s iterative nature, along with its adaptive
multi-chain approach, allows it to effectively sample complex posterior
distributions in high-dimensional parameter spaces. This results in more
accurate estimates of the posterior distributions, which are critical for
parameter uncertainty analysis and model calibration.

2.6. Introducing a new formulation for optimizing the SEBAL model

The selection of anchor pixels, specifically the hot and cold pixels
within the image, typically relies on setting thresholds based on per-
centiles of NDVI and surface temperature. These thresholds help identify
the extreme (hot and cold) end members from a candidate pool (Allen
et al., 2013; Laipelt et al., 2021). Cold endmember candidates are chosen
from well-vegetated areas, while hot endmember candidates are
selected from the least vegetated fields. In our study, we introduced two
equations into the optimization process, which we named thereafter
SEBAL-OPT, to refine the selection of these extreme pixels after their
initial identification:

Hcold = selected Hcold +Ω1(selected Hhot–selected Hcold) (19)

Hhot = selected Hhot +Ω2 (selected Hhot–selected Hcold) (20)

where Hcold and Hhot are values of the cold and hot pixels after being
modified, respectively, selected Hcold and Hhot are the endmember pixels
selected out through NDVI and surface temperature filter, Ω1 and Ω2 are
constants that are subject to optimization. This iterative refinement
process helps optimize the hot and cold pixel selection to match the
actual observations better.

We conducted a global sensitivity analysis using the FAST algorithm
to support this refinement, focusing primarily on meteorological inputs
and the constants in the SEBAL-ORG equations (Table 2). This analysis
was essential for identifying the parameters that most significantly in-
fluence the performance of the SEBAL-OPT model. The key parameters
considered for SA included: β1, β2, β3, β4, cd, cw, β5, β6, Ω1, and Ω2
(Table 2). Once the key parameters were identified through sensitivity
analysis and incorporated into the calibration process. The objective of
the calibration was to determine the optimal values of these parameters
by minimizing the objective function and improving model performance
in simulating ET.

SEBAL-OPT calibration was carried out using two approaches:

1. Temporal Calibration at the CAPEX Site: In this approach, calibration
was performed using data from the first year (2020− 2021) at the

CAPEX almond orchard site. The optimized parameters were then
validated against data from the second year (2022). The goal was to
evaluate whether a single year of data could effectively calibrate the
model for future years at the same location, potentially reducing the
need for continuous year-over-year data collection.

2. Spatial Calibration across AmeriFlux Sites: In this approach, cali-
bration was conducted using data from one AmeriFlux EC tower (US-
Bi1). The optimized parameters were then validated using data from
two other nearby EC towers (US-Bi2 and US-Myb), which represent
different land use types—corn and wetland, respectively. This
method assesses the model’s accuracy when calibrated at one loca-
tion but applied across sites with varying land use and environmental
conditions, providing insights into the spatial generalizability of
SEBAL-OPT.

The temporal calibration strategy at the CAPEX site assesses the
model’s ability to predict ET over time when calibrated using data from
only one year. In contrast, the spatial calibration strategy across
AmeriFlux sites evaluates the robustness of SEBAL-OPT when applied to
different land use types and geographical conditions. Together, these
approaches offer a comprehensive evaluation of SEBAL-OPT’s adapt-
ability across both temporal and spatial scales, aiming to achieve reli-
able ET estimations under varying climatic and agronomic conditions.

3. Results

3.1. Sensitivity analysis of SEBAL-ORG

Fig. 4 provides a visual representation of the sensitivity indices for
each of the inputs and model parameters considered. Among all inputs,
daily solar radiation emerged as the most sensitive, exerting a higher
influence on the model outputs. This is expected, as solar radiation is the
primary driver of the surface energy balance, and inaccuracies in its
measurement can introduce considerable uncertainty into the ET esti-
mates. This finding aligns with existing studies (e.g., Laipelt et al.
(2021)) that similarly highlight the critical role of solar radiation in
energy balance models. In contrast, other meteorological variables such
as daily temperature, relative humidity, wind speed, and instantaneous
solar radiation had minimal impact on the model outputs. This reduced
sensitivity suggests that fluctuations in these inputs have a relatively
minor influence on the overall accuracy of the SEBAL-ORG model.

When examining model parameters/constants, the selection of hot
and cold pixels emerged as the most influential. This result aligns with
the findings of Long et al. (2011), which emphasized the importance of
anchor pixels in determining heat flux and, ultimately, ET. Among the
two, the selection of hot pixels was notably more impactful than cold
pixels in shaping the final ET estimates. This is because the hot pixels

Table 2
Parameters and their corresponding equations are considered in the global sensitivity analysis.

Functions Parameters Default value Lower boundary Higher boundary

εa = β1( − lnτsw)β2 β1 0.85 0.65 1.1
β2 0.09 0.08 0.3

G/Rn = (Ts − 273.15)(β3 + β4α)
(
1 − 0.98NDVI4

)
β3 0.0038 0.001 0.0055
β4 0.0074 0.003 0.009
cd 5 1 30

zom = (1 − d∕h)e(ku*∕Uh )− ψ cw 2.5 2 10
β5 0.985 0.7 1.3

ξ = 1+
(
β5 EFinst e(VPD)β6 − 1

)
β6 0.08 0.05 0.2

Hcold = selected Hcold Ω1 0 − 3 3
+ Ω1(selected Hhot − selected Hcold)

Hhot = selected Hhot
+ Ω2 (selected Hhot − selected Hcold) Ω2 0 − 3 3
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represent the upper bound of surface temperature and heat flux in the
model, which directly affects the latent heat flux and, consequently, the
ET calculations. Fig. 4 underscores the importance of improving the
accuracy in hot and cold pixel selection as a primary step to reduce
uncertainty in ET estimations.

The findings of this global sensitivity analysis validate the focus on
optimizing hot and cold pixel selection. Therefore, only these two pa-
rameters were considered for the calibration.

3.2. Optimization and accuracy assessment

The first row of Fig. 5 presents the results of the temporal calibration
at the CAPEX site. The left panel shows the performance of SEBAL-ORG,
while the right panel illustrates the improvements achieved with SEBAL-
OPT. The temporal calibration approach resulted in marked improve-
ments in ET estimation. SEBAL-OPT exhibited significantly reduced
dispersion around the 1:1 line, with the R2 increasing from 0.69 to 0.72
and the NSE improving from 0.15 to 0.69. The RMSE decreased from
1.39 mm d− 1 with SEBAL-ORG to 0.84 mm d− 1 with SEBAL-OPT, and
the PBIAS shifted from a 29 % overestimation to a much-improved − 7
%. These improvements suggest that SEBAL-OPT effectively reduces
biases and enhances ET estimations’ accuracy over time at the same site.
Fig. 6 further demonstrates the benefits of temporal calibration at the
CAPEX site. SEBAL-ORG consistently overestimated ET, particularly
during peak growth periods, while SEBAL-OPT brought the ET estimates
much closer to the observed EC measurements. This improvement is
sustained over the entire validation year, highlighting the capability of
SEBAL-OPT to produce reliable ET estimates beyond the initial cali-
bration period. These results indicate that when applied to a single year
of data, temporal calibration can effectively optimize the SEBAL model
for use in subsequent years, making it a practical solution for long-term
ET monitoring at the same site.

The second, third, and fourth rows of Fig. 5 display the results of the
spatial calibration performed using data from the US-Bi1 tower and
validated at the US-Bi2 and US-Myb towers. SEBAL-OPT consistently
outperforms SEBAL-ORG across all three sites, demonstrating the
effectiveness of the spatial calibration approach. At the US-Bi1 site,
SEBAL-OPT improved the R2 from 0.78 to 0.82 and the NSE from 0.59 to
0.80, with the RMSE decreasing from 1.03 mm d− 1 to 0.72 mm d− 1 and
the PBIAS improving from − 11.26 % to − 4.04 %. These improvements
indicate that the optimized parameters derived from SEBAL-OPT
significantly enhanced the accuracy of ET predictions at the calibra-
tion site.

More importantly, the results from the validation sites (US-Bi2 and
US-Myb) reveal that spatial calibration can effectively generalize the
optimized parameters across diverse land use types. For example, at the
US-Bi2 site, SEBAL-ORG had a considerable overestimation of ET, with
an RMSE of 2.14 mm d− 1 and a PBIAS of 41.25 %. After applying the
parameters optimized through SEBAL-OPT at US-Bi1, the RMSE dropped
to 1.33 mm d− 1, and the PBIAS improved to 22.78 %. Although this is
still an overestimation, the improvement demonstrates that the model
can reasonably generalize to other agricultural contexts. At the US-Myb
site, classified as a permanent wetland, the SEBAL-ORG model showed
poor performance, with an R2 of 0.59 and an RMSE of 1.31 mm d− 1.
However, SEBAL-OPT improved these values to an R2 of 0.69 and an
RMSE of 0.94 mm d− 1. The PBIAS improved from − 19.69 % to 5.65 %,
indicating a more balanced ET estimation in this unique environment.
Fig. 6 shows the temporal comparison of simulated versus observed ET
at the three sites. At US-Bi1, where the calibration occurred, SEBAL-OPT
provides the best fit for the EC measurements. At US-Bi2 and US-Myb,
SEBAL-OPT improved ET estimates significantly, even though the cali-
bration was not directly applied at these sites. This demonstrates that
spatial calibration can help SEBAL-OPT perform well across different
land use types within the same geographic region without site-specific

Fig. 4. Global sensitivity analysis of the SEBAL model using FAST algorithms.
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Fig. 5. Comparison of SEBAL model parameter optimization approaches; no optimization (SEBAL-ORG), optimized SEBAL (SEBAL-OPT) in 4 sites in California.
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recalibration.
As summarized in Table 3, both temporal calibration at the CAPEX

site and spatial calibration across the AmeriFlux towers led to significant
improvements in SEBAL-OPT’s performance. The success of the tem-
poral calibration demonstrates that SEBAL-OPT can provide reliable ET
estimates for long-term monitoring at a single site after being calibrated
with one year of data. Meanwhile, the spatial calibration approach
confirms that SEBAL-OPT can generalize its optimized parameters to
other land use types within the same region, ensuring accuracy in ET
predictions even without site-specific recalibration. These results

suggest that SEBAL-OPT has the potential to be a highly flexible and
accurate model for ET estimation across diverse environments, opening
the door to broader applications in regions where ground-based mea-
surements are limited or unavailable.

3.3. Posterior distribution of hot and cold pixels

The DREAM algorithmwas initiated with 5000 iterations to optimize
the constants for hot and cold pixels (Ω1 and Ω2). The prior distributions
were assumed to be uniform, with the initial ranges defined in Table 2.

EC
SEBAL-ORG

SEBAL-OPT

US-MybUS-Bi2

US-Bi1CAPEX

Fig. 6. Temporal variation of Evapotranspiration derived from SEBAL-ORG and SEBAL-OPT against Eddy Covariance ET.

Table 3
Summary statistics of SEBAL-ORG and SEBAL-OPT all sites. RMSE is in mm d− 1.

Site SEBAL-ORG1 SEBAL-OPT2

r-squared RMSE PBIAS NSE r-squared RMSE PBIAS NSE

CAPEX 0.69 1.39 29 % 0.15 0.72 0.84 − 7.02 % 0.69
US-Bi1 0.78 1.03 − 11.26 % 0.59 0.82 0.72 − 4.04 % 0.8
US-Bi2 0.6 2.14 41.25 % − 0.26 0.72 1.33 22.78 % 0.51
US-Myb 0.59 1.31 − 19.69 % 0.3 0.69 0.94 5.65 % 0.64

1 SEBAL original.
2 SEBAL optimized.
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Given their high sensitivity, only Ω1 and Ω2 were selected for optimi-
zation. Fig. 7 presents the posterior distributions of Ω1 and Ω2 for the
almond orchard and the US-Bi1 (alfalfa) sites. The histograms reflect the
distribution of values for both constants after optimization, centering
around the true values determined during the process. For the almond
site, the distribution of the cold pixel constant Ω1 is skewed significantly
toward negative values, with a peak near − 2. This indicates that the cold
pixel initially selected by SEBAL was warmer than expected for a cold
pixel, prompting the algorithm to adjust and ‘cool down’ this pixel
during optimization. This adjustment effectively brought the cold pixel
temperature closer to its optimal value for accurate ET estimation.

Similarly, at the US-Bi1 site, the cold pixel constant Ω1 shows a
comparable skewness toward negative values, clustering around − 0.5.
This pattern suggests that the cold pixel initially selected by SEBAL also
required ‘cooling down,’ though to a lesser extent than the almond site,
which indicates that the initial cold pixel temperature was closer to the
ideal value in this case. In contrast, the posterior distribution for the hot
pixel constant Ω2 for the almond site is centered around zero, implying
that the original selection of the hot pixel was relatively accurate. There
was little need for adjustment during the optimization process, as the
initial hot pixel temperature was already appropriate for accurate ET
estimation. Interestingly, the distribution for the hot pixel does not
extend into positive values, reinforcing the conclusion that no signifi-
cant increase in temperature was necessary. For the US-Bi1 site, how-
ever, the distribution of the hot pixel constantΩ2 is slightly shifted to the
right, centering around 0.5. This pattern indicates that the initially

selected hot pixel was cooler than expected, and the optimization pro-
cess compensated by selecting a positive constant to adjust the pixel’s
temperature upwards. The histogram reveals that this adjustment was
necessary to bring the hot pixel temperature closer to the ideal range for
accurate ET estimation.

Fig. 8 presents example maps of evapotranspiration (ET) before and
after the calibration process. As shown, the calibration introduces sig-
nificant changes to the spatial distribution and variability of ET values
compared to SEBAL-ORG. Additionally, shifts in the ET histograms are
noticeable, indicating that the calibration not only affects spatial vari-
ations but also alters the overall statistical distribution of ET values.
These shifts suggest improved alignment with ground-based measure-
ments and a more accurate representation of the heterogeneity in water
use across different land types.

Overall, the posterior distributions emphasize the role of optimiza-
tion in refining the hot and cold pixel temperatures. At the almond site,
the cold pixel required amore significant adjustment, while the hot pixel
was already close to its optimal value. Conversely, at the US-Bi1 site, the
hot pixel needed a slight upward adjustment, while the cold pixel
required only a modest downward correction. These findings highlight
the importance of accurately selecting anchor pixels, as their initial
temperatures can significantly influence the accuracy of ET estimates in
SEBAL.

Fig. 7. Posterior probability density distribution for hot pixel constants and cold pixel constants for (a) almond orchard (CAPEX) (b) US-Bi1. Poster distributions as
part of the output from the DiffeRential Evolution Adaptive Metropolis (DREAM).
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4. Discussion

ET is controlled by a combination of biological and environmental
factors, with their influence varying across different land surface covers
(Fang et al., 2016; Lei et al., 2018; Pan et al., 2020). Biological controls,
such as vegetation type, leaf area index (LAI), stomatal conductance
(Saugier and Katerji, 1991), and root depth, directly impact transpira-
tion, a major component of ET (Yang et al., 2019). For instance, dense
canopies with high LAI, such as forests, facilitate higher transpiration
rates due to greater leaf surface area for water exchange, whereas sparse
vegetation in semi-arid regions limits ET. Environmental factors such as
sunlight, atmospheric temperature, wind dynamics, and soil water
content (Du et al., 2021) determine the energy and moisture availability
that drive evapotranspiration processes. In complex terrains, these
controls are further modulated by topographic variability. The results of
this study underscore the critical importance of precise parameter cali-
bration in improving the accuracy of SEBAL model estimates.

Specifically, the accurate identification of hot and cold pixels emerged
as a key factor in reducing uncertainty in estimated ET values.
Misidentification of these anchor pixels can lead to substantial errors in
ET predictions, highlighting the need for careful calibration and
parameter selection to enhance the reliability of SEBAL-based models.
The sensitivity analysis demonstrated that, while SEBAL-based ET esti-
mates are relatively insensitive to variations in meteorological inputs
such as temperature, wind speed, and relative humidity, solar radiation
remains a highly sensitive input. Therefore, while state-of-the-art global
reanalysis datasets like ERA5 (Hersbach et al., 2020), CFSR (Saha et al.,
2010), and GLDAS (Rodell et al., 2004) can be confidently used for
SEBAL-based ET modeling over large scales or in data-scarce areas
(Melton et al., 2022; Senay et al., 2022). Special attention must be paid
to the accuracy of solar radiation data. Integrating solar radiation
measurements from geostationary satellites (e.g. Diak et al., 2000) may
improve ET estimates and reduce uncertainty.

The optimization results from the posterior distributions of the hot

Fig. 8. Example daily ET maps of SEBAL original (SEBAL-ORG) versus SEBAL optimized (SEBAL-OPT). Figures are presented in pairs.
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and cold pixel constants further reinforce the importance of anchor pixel
accuracy. At both the almond and US-Bi1 sites, adjustments to the cold
pixel constants corrected initial discrepancies, resulting in more accu-
rate ET predictions. This calibration process highlights that accurate
pixel selection, informed by ground-based measurements such as EC
data, can substantially enhance SEBAL’s performance. The SEBAL-OPT
model, which integrates both temporal and spatial calibration ap-
proaches, consistently outperformed the original SEBAL model (SEBAL-
ORG), demonstrating the benefits of this optimized methodology across
different land use types and geographical conditions.

Despite these advancements, a significant gap remains in the global
sensitivity and uncertainty analysis of ET models (Cawse-Nicholson
et al., 2020). As emphasized by Tran et al. (2023), robust sensitivity
analysis and uncertainty propagation are essential for evaluating the
performance of ET models. Their review showed that RMSE in ET
models ranges from 0.01 to 6.65 mm d− 1, with an average of 1.12 mm
d− 1 across 2407 records. The RMSE values calculated in this study align
with this range, confirming the validity of our findings. However, as
temporal scales increase (e.g., from daily to weekly or monthly), RMSE
typically decreases due to the smoothing effect of temporal aggregation.

It is important to note that validation results from one site may not be
directly transferable to other locations, as controlling factors and un-
certainties vary across different regions (K. Zhang et al., 2016). There-
fore, validation metrics should be assessed individually for each site to
ensure accurate interpretations of ET estimates. Future research should
continue to focus on site-specific validation to understand better the
variations in ET model performance across diverse environments. The
optimization framework employed in this study has the potential to be
applied to other energy balance-based ET models, such as DisALEXI,
SEBS, METRIC, and SSEBop, and can be extended to a broader range of
land cover types.

Although cross-model comparison was not the goal of this study, our
analysis showed that SEBAL-OPT can outperform models such as Dis-
ALEXI, METRIC, and SSEBop at the four selected sites. The comparison,
detailed in the supplementary material (Supplementary Material S1),
shows that SEBAL-OPT exhibits reduced dispersion compared to the
OpenET-based models. Additionally, statistical indicators confirm that
SEBAL-OPT achieves higher accuracy through the integration of ground
measurements (See Figs. S1 and S2). However, the availability and
reliability of ground-based measurements, particularly from eddy
covariance systems, remain critical for the successful implementation of
these models. As demonstrated by SEBAL-OPT, incorporating high-
quality, ground-based data significantly improves model accuracy, but
challenges in data availability must be addressed to expand the appli-
cability of these optimized models to other regions and land types. Ad-
vances in low-cost eddy covariance sensors, such as the Licor 710
sensors, offer promise for increasing the density of ground-based mea-
surements that could be used in optimization frameworks such as the
one presented in this study.

5. Conclusions

This study introduced a novel approach aimed at improving the ac-
curacy and reducing the uncertainty of remotely sensed evapotranspi-
ration (ET) estimates. We implemented this approach using the SEBAL
model, enhanced through the integration of Bayesian inference to merge
ground-based eddy covariance (EC) measurements with satellite data.
The framework involved a global sensitivity analysis in identifying the
most influential model parameters, which were then optimized using the
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm.

Applying the SEBAL-OPT model across different land types resulted
in significant improvements in ET estimation accuracy, particularly
when compared to the original SEBAL algorithm. Validation results from
four diverse sites highlighted SEBAL-OPT’s enhanced performance,
emphasizing the critical role of incorporating ground-based EC mea-
surements in refining remote sensing models. The model’s adaptability

to various land types—from almond orchards to maize demonstrates its
potential for broader application across different agroecosystems, a
crucial consideration for large-scale water resource management.

The integration of ground-based EC data proved pivotal in these
improvements, allowing the model to account for local variability that
satellite data alone might not capture. This combination of satellite and
ground-based data strengthens the reliability of ET estimates, which is
particularly important for effective water allocation and resource
management.

However, despite these advancements, certain limitations persist.
The model’s reliance on high-quality ground data poses a challenge in
regions where such data are sparse or unreliable. Future research should
investigate alternative data sources or explore other field measurement
techniques, such as soil moisture data from sensors and lysimeters, to
enhance the model’s applicability in data-limited environments. Addi-
tionally, while this study focused on specific crop types and climates,
further testing across a wider range of crops and climatic conditions is
necessary to fully validate SEBAL-OPT’s generalizability. Several other
limitations should also be acknowledged. First, the energy balance
closure issue inherent to eddy covariance (EC) measurements may
introduce some uncertainty into the validation results. Second, the
spatial scale mismatch between Landsat satellite imagery pixels and the
EC flux tower footprint could affect direct comparisons, particularly in
heterogeneous landscapes. Future studies could explore techniques such
as footprint modeling or integrating higher-resolution imagery to
minimize this scale discrepancy. Finally, cloud contamination in satel-
lite imagery, especially under all-sky conditions, may limit the avail-
ability of cloud-free data for ET estimation. Incorporating alternative
satellite data sources, such as Sentinel-2 or MODIS, or developing robust
gap-filling techniques could help address this limitation and improve the
model’s performance in cloudy regions. These considerations highlight
key avenues for further enhancing SEBAL-OPT’s accuracy, robustness,
and applicability across diverse environmental and agricultural
conditions.

If adopted widely, this framework could significantly improve water
allocation and demand monitoring, helping stakeholders such as poli-
cymakers, water managers, and farmers make better-informed de-
cisions. By enhancing the accuracy of ET estimation, SEBAL-OPT can
support optimized irrigation practices and contribute to the sustainable
management of water resources across diverse agricultural landscapes.
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