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Abstract

It has been long observed that the sample covariance matrix Sn is a poor estimator of the true
covariance matrix Σn when the dimension p of the data is of comparable size to the sample size n.
In this thesis we shall consider sample covariance matrices Sn in the case when the dimension of
the data increases with the sample size to a fixed ratio c as (p, n)→∞

We will derive a new statistic pα̂∗ based on the general linear shrinkage estimator by Bodnar et
al. (2014)[1], where α̂∗ is the optimal shrinkage quantity. We will show that the new statistic
is normally distributed under the null hypothesis Σn = I, where we assume the existence of the
fourth moment of our data.

Furthermore, we will do simulation study that compares our new statistic to tests from finite
dimensional statistics that have been altered to work in high dimensional statistics by Wang and
Yao [3]. We will look at three different hypothesis, the equicorrelation case, the auto-regressive
case and a fixed ratio case.

After that, we will look at the non-linear shrinkage estimator based on the work by Ledoit and
Peche (2011) [11], and show that, under the null hypothesis, constructing a test is not directly
possible like it is in the linear case.
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Chapter 1

Mathematical Background

Since we will concern ourselves with random matrices, we will need some results from probability
theory, statistics and matrix algebra. We will also use a bit of complex analysis to compute
certain integrals. In this section we will lay some mathematical foundations by giving definitions,
expressions and theorems that we will use throughout this paper. At the end of each section, there
will be a small concluding list of the most important things to take away from that section.

1.1 Matrix algebra

We begin the section by stating some definitions about matrices. We then look into some theorems
that deal with diagonalizability, and conclude with some theorems about the trace of a matrix.

Definitions

Definition 1.1.1. A p× p matrix A is invertible if there exists a matrix C such that

AC = CA = I

Here I is the identity matrix. We note C = A−1

Definition 1.1.2. A matrix D is a diagonal matrix if for each element [di,j ] = 0 for each i 6= j.
That is, on the diagonal of D, there may be non-zero elements, but outside the (main) diagonal
each element is 0.

Definition 1.1.3. An p × p matrix A is symmetric if A = AT , where AT is the transpose of A,
where each element of [ATi,j ] = [Aj,i]

Definition 1.1.4. A p × p matrix A is diagonalizable if there exist an invertible matrix C such
that

C−1AC = D

Here D is a diagonal matrix.

Definition 1.1.5. A p× p real symmetric matrix A is positive semi-definite if for all x ∈ Rp:

xTAx ≥ 0

If it is strictly larger, then it is positive definite.

Definition 1.1.6. An eigenvalue of a matrix A is a value λ such that Av = λv, where v is the
corresponding eigenvector.

Definition 1.1.7. The trace of a square p × p matrix A is tr(A) =
∑p
i=1Ai,i, with Ai,i the

element on the i-th row and i-th column. The trace is then just simply the sum of the diagonal of
the matrix.
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Definition 1.1.8. The Frobenius norm of a matrix m× p matrix A is

||A||F =

√√√√ m∑
i=1

p∑
j=1

|ai,j |2 =
√
tr(AAT )

Here AT denotes the transpose of A. Note that for symmetric matrices A = AT , the Frobenius
norm is

√
tr(A2), and thus the squared Frobenius norm ||A||2F is just tr(A2).

Definition 1.1.9. The trace norm of a matrix A is tr(
√
AAT ). Note that for symmetric matrices

A = AT , the trace norm is just the trace of A, since by definition
√
A2 = A

Matrix theorems

A fundamental result about symmetric matrices is the following Theorem 6.8 from Fraleigh, Beau-
regard (1995) [5]:

Theorem 1.1.1. Every real p× p symmetric matrix A is diagonalizable, i.e. there exist diagonal
matrix D and invertible C, both p× p matrices, such that

A = CDC−1

Consequently, we have that AC = CD

Another very useful theorem, Theorem 5.2 from [5] states that the matrices C and D from above
have to do with eigenvalues and eigenvectors:

Theorem 1.1.2. Let A be an p × p matrix and let λ1, . . . , λp be possibly complex scalars and
v1, . . . , vn be non-zero vectors in n-space, either Rn or Cn. Let C be the p × p matrix with the
vectors vi as columns C = [v1v2 . . . vn] and D be the p × p diagonal matrix with the values λi on
the diagonal, 0 elsewhere.

Then AC = CD if and only if λ1, . . . , λp are the eigenvalues of A and each vi is an eigenvec-
tor of A corresponding to λj, with j = 1, 2, . . . , n.

In other words, if we have a real symmetric matrix A, by Theorem 1.1.1 there exists matrices C
invertible and D diagonal such that A = CDC−1. By Theorem 1.1.2, these matrices consist of
eigenvectors (in the case of C) and of eigenvalues on the diagonal in the case of D.

A nice property that also follow are that the eigenvalues are all real, Theorem 5.5 from Fraleigh,
Beauregard (1995)[5].

Theorem 1.1.3. Every real symmetric matrix A is real diagonalizable. That is, if A is symmetric
and has has real entries then all it’s eigenvalues are real numbers.

In particular, if our matrix A is real symmetric and positive definite, then it has only positive
eigenvalues.

Theorem 1.1.4. Let A be a real symmetric positive definite matrix. Then the eigenvalues of A
are all positive.

Proof. Let λ be an eigenvalue of A. If λ = 0, then there exists some eigenvector v such that
Av = 0. But that would mean that vTAv = 0. This contradicts with A being positive definite.

Now assume λ < 0, then there exists an eigenvector x such that Ax = λx. But if we then
multiply with xT on the left side we get that xTAx = λ|x|2. This smaller than 0, since λ is
negative and the norm |x|2 > 0. This also contradicts with the assumption that A was positive
definite. This implies that all eigenvalues of A are positive.

The main reason why we are interested if a matrix is diagonalizable is that it becomes really
easy to take functions of matrices, if we have an analytic function f(x) =

∑∞
n=0 anx

n. For that
we first state a lemma:
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Lemma 1.1.5. Let A = C−1DC be an diagonalizable matrix. Then for all k ∈ N, Ak = C−1DkC.

Proof.

Ak = (C−1DC)k

= (C−1DC)(C−1DC) . . . (C−1DC) (k times)

= C−1D(CC−1)D(CC−1) . . . (CC−1)DC

= C−1D . . .DC

= C−1DkC

Using this lemma, you can prove that for analytic f , this function applied to a diagonalizable
matrix A is a product of the same eigenvectors with transformed eigenvalues.

Theorem 1.1.6. Let A = C−1DC be a diagonalizable matrix, and f be an analytic function
f(x) =

∑∞
n=0 anx

n. Then
f(A) = f(C−1DC) = C−1f(D)C

Proof. We have that

f(A) =

∞∑
n=0

an(A)n

=

∞∑
n=0

an(C−1DC)n

=

∞∑
n=0

anC
−1DnC (by the lemma)

= C−1(

∞∑
n=0

an(D)n)C

= C−1f(D)C

At the end we made use of the left and right distributivity of matrices.

This Theorem has some very important implications. First and foremost, it implies that if A
is diagonalizable, then f(A) is also diagonalizable with the same matrix C of eigenvectors, and
diagonal matrix f(D). Since D is a diagonal matrix, every function we take of it applies to the
diagonal element only:

D =


λ1 0 . . . 0

0 λ2 . . .
...

... . . .
. . . 0

0 . . . . . . λp

 , f(D) =


f(λ1) 0 . . . 0

0 f(λ2) . . .
...

... . . .
. . . 0

0 . . . . . . f(λp)


So if A is diagonalizable with eigenvalues λ1 . . . λp, then f(A) has eigenvalues f(λ1), . . . f(λp), with
the same eigenvectors as A. In particular, the matrix A2 has eigenvalues λ2

1, . . . , λ
2
p.

Trace theorems

Furthermore, we will need some theorems about the trace of a matrix A. Recall that we defined
the trace as the sum of the diagonal. A handy lemma from page 77 from [6] about the trace of a
matrix is that the trace of 2 square matrices is the same, no matter in what order you multiply
them

Lemma 1.1.7. Let A and B both be p× p square matrices. Then

tr(AB) = tr(BA)
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Proof. We have

tr(AB) =

p∑
i=1

(AB)i,i =

p∑
i=1

p∑
j=1

Ai,jBj,i

=

p∑
i=1

p∑
j=1

Bj,iAi,j =

p∑
j=1

(BA)j,j = tr(BA)

We use this lemma to prove that the trace of an analytic function f applied to a diagonalizable
matrix A is equal to the sum of it’s eigenvalues, where you apply f to the eigenvalues.

Theorem 1.1.8. Take an p × p diagonalizable matrix A = CDC−1with eigenvalues λ1, . . . , λp,
and let f(x) =

∑∞
k=0 akx

k be analytic function.
Then

tr(f(A)) =

p∑
i=1

f(λi)

Proof. We have that

tr(f(A)) = tr(Cf(D)C−1) = tr((Cf(D))C−1)

= tr(C−1(Cf(D))) = tr((C−1C)f(D))

= tr(I × f(D)) = tr(f(D)) =

p∑
i=1

f(λi)

Here we made use of the associative property of matrix multiplication, the lemma 1.1.7 about the
cyclic property that allowed us to switch matrices Cf(D) and C−1, and made use of the fact that
C−1C = I.

So far we have that: if A is diagonalizable, it can be written as a product of C and D, and
we can take analytic functions of it. We conclude the section with a final proposition.

Proposition 1.1.1. Let A be real diagonalizable p× p matrix, with eigenvalues λ1 . . . λp. Then

tr(A) =

p∑
i=1

λi

Proof. This is just a special case of Theorem 1.1.8, with f(x) = x

Above proposition is actually in general true for all square matrices A, no matter if they are
diagonalizable or not. However, since we are only interested in the sample covariance matrix
which is symmetric (and thus diagonalizable), we state the results specifically for diagonalizable
matrices.

Summary

• If a matrix A is symmetric, it can be written in a form A = C−1DC where C has the
eigenvectors as columns, and D has the eigenvalues on the diagonal.

• If f is an analytic function, and A and p×p matrix with eigenvalues λ1, . . . , λp, then tr(f(A))
is equal to

∑p
i=1 f(λi)
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1.2 Probability

Definitions

Before we can do data analysis, we need to establish some ground rules for our data. We will
assume that our data lives on some probability triple (Ω, F,P), where Ω is the space of possible
outcomes, F a σ-algebra on Ω, and P : Ω→ [0, 1] a proper probability measure.

We also need some notions of convergence of random variables:

Definition 1.2.1. A sequence of random variables {Xn} converges almost surely towards X if

P( lim
n→∞

Xn = X) = 1

Definition 1.2.2. A sequence of random variables {Xn} converges in probability to a random
variable X if for all ε > 0:

lim
n→∞

P(|Xn −X| > ε) = 0

Definition 1.2.3. A sequence of random variables {Xn} with corresponding cumulative distribu-
tion functions Fn(x) converges in distribution to a random variable X with cumulative distribution
function F (x) if

lim
n→∞

Fn(x)
D−→ F (x)

Remark: This only holds at the points x where F (x) is continuous.

Definition 1.2.4. Given a sequence of random variables X1, . . . , Xp, the covariance matrix C is
the p× p matrix with elements

ci,j = cov(Xi, Xj) = E(Xi − E(Xi))(Xj − E(Xj))

A central object in this paper will be the sample covariance matrix. The sample covariance matrix
is the usual estimator for the true underlying covariance matrix of the data set.

Definition 1.2.5. Given a p × n data matrix Y = (y1, . . . ,yn), with each yi a data vector of
dimension p, the sample covariance matrix Sn is the matrix

Sn =
1

n

n∑
i=1

yiyi
T =

1

n
Y Y T

Each particular element si,j , which estimates the covariance between the i− th and j− th variable,
can be individually calculated by si,j = 1

n

∑n
k=1 yk,iyk,j

This formula assumes that the mean of the data is known. If the mean is unknown, one needs
to replace the 1

n by 1
n−1 . This is called the substitution principle. However, in our paper we will

assume that we know the mean and variance of the data, so we can use the simpler formula with
1
n .

Definition 1.2.6. Let S be a p×p matrix with eigenvalues {λ1, . . . λp}. The empirical distribution
function Fp(x) of the matrix S is

Fp(x) =
1

p

p∑
i=1

1(λi<x)

Here 1A denotes the indicator function.

The following definition from Yao et al (2015)[2] will be important later, for when we define linear
spectral statistics.

Definition 1.2.7. Let S be a p × p matrix with eigenvalues {λ1, . . . λp}. The empirical spectral
distribution function FS of the matrix S is

FS =
1

p

p∑
i=1

δλi

Here δa denotes the Dirac mass placed at a point a.
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Distributions of interest

Three distributions that will be used throughout this paper are the well known normal or Gaussian
distribution, the Gamma distribution and the Marcenko-Pastur distribution (or MP).
The first is important because it appears in the classical one-dimensional central limit theorem,
but also in the Central Limit Theorem that we will use for our research. The second one won’t
be used as much, but will be serve as an alternative distribution for us to test with. We will only
use it to compare empirical sizes behaviour. The third one is important because it tells us how
eigenvalues of the sample covariance matrix are distributed in the limit, see section 1.2.

Definition 1.2.8. A random variable X is normally distributed with parameters E[X] = µ and
V ar[X] = σ2 if it has density function

f(x) =
1

σ
√

2π
e−

1
2

(x−µ)2
σ

If we have µ = 0 and σ2 = 1, we call X standard normal.

Definition 1.2.9. A random variable X is Gamma Γ(a, b) distributed with shape a and rate b if
it has density

f(x; a, b) =
baxa−1e−bx

Γ(a)
, x ≥ 0

Here the Γ(a) in the denominator is the Gamma-function, and satisfies for integers n : Γ(n) =
(n− 1)!. The distribution Γ(a, b) has expectation a

b and variance a
b2 .

Marcenko Pastur as the limit distribution

This section is dedicated to elaborate what the Marcenko-Pastur distribution is, and why we are
interested in this particular distribution.

Definition 1.2.10. We say that a random variable X is Marcenko-Pastur distributed with index
c > 0 if it has density function

pc(x) =

{
1

2πcx

√
(b− x)(x− a) a ≤ x ≤ b

0 elsewhere

Here a = (1−
√
c)2 and b = (1 +

√
c)2. If it happens that c > 1, we place mass 1− 1

c on 0. Below
in figure 1.1 you can view for certain values of c how the density function looks like.

From Proposition 2.13 from the book by Yao et al. (2015) [2], the moments of the Marcenko-
Pastur law are:

Proposition 1.2.1. Let X be Marcenko Pastur distributed. Then moments µk = E[Xk] satisfy

µk :=

∫
xkpc(x)dx =

k−1∑
r=0

1

r + 1

(
k

r

)(
k − 1

r

)
cr

In particular, it’s expectation is 1, and it’s variance is 1+c.
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Figure 1.1: Marcenko-Pastur density plotted with different values of c.
c = 1/8 (dotted), c = 1/4 (dashed), c = 1/2 (solid)

The reason why we are interested in this distribution in particular is that the distribution function
of the Marcenko-Pastur distribution is the limit of the empirical spectral distribution function
of the eigenvalues of a sample covariance matrix Sn. Since the sample covariance matrix itself
is a random matrix, it’s eigenvalues are random variables. It turns out however that in high-
dimensional statistics these eigenvalues obey the Marcenko-Pastur law. This is Theorem 2.9 from
Yao et. al (2015)[2].

Theorem 1.2.1. Let the entries yi,j of the p× n data matrix Y be independent random variables
with mean E(yi,j) = 0 and unit variance V ar(yi,j) = 1. Let Sn be the sample covariance matrix of
Y , and let p

n → c > 0 as (p, n)→∞. Then almost surely, the empirical spectral distribution FSn

converges weakly to the Marcenko-Pastur law Fc

For example, in the figure 1.2 below you will see the density of the Marcenko-Pastur law with
c = 0.5 and a histogram of the eigenvalues of a sample covariance matrix based on Y of size
p = 3200×n = 6400 where each element yi,j is standard normally distributed. Because c = 0.5,our
data lives on the interval [a, b] = [(1−

√
c)2, (1 +

√
c)2], which is [0.0858, 2.9142].
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Figure 1.2: Empirical eigenvalues of a sample covariance matrix obey the Marcenko-Pastur law

Summary

• Given a p × p matrix S, with eigenvalues λ1, . . . λp, one computes the empirical spectral
distribution function FS = 1

p

∑p
i=1 δλi . Here δa denotes the Dirac mass placed at a point a.

• Eigenvalues of the sample covariance matrix Sn are distributed by some non-random law,
the Marcenko-Pastur law, as (p, n)→∞

1.3 Statistics

In this paper we will also concern ourselves with statistics of the sample covariance matrix. We will
make use of some tests and try to compute their sizes and powers. A common test we will would
like to do is the sphericity test. This is a test that wants find out if the underlying population
covariance matrix is the identity matrix:

H0 : Σn = I versus H1 : Σn 6= I

This corresponds with a hypothesis that the underlying variables are all independent of each other,
and have variance 1. In general to test a hypothesis we first need a statistic, computed from the
sample covariance matrix, find it’s distribution and then compute the sizes and powers.

Definitions

Definition 1.3.1. The size of a test is P(reject H0 | H0 is true). This is the probability of making
a type 1 error, rejecting a true hypothesis. Rejecting a true hypothesis is also known as a false
positive.

Definition 1.3.2. The power of a test is P(reject H0 | H1 is true). This the probability of rejecting
a false hypothesis. Rejecting a false hypothesis is also known as a true positive.

Linear spectral statistics

Another central object throughout this paper will be a so called linear spectral statistic (LSS).
These are functionals of the eigenvalues that have the following form:

Definition 1.3.3. Let Sn be a sample covariance matrix with eigenvalues λ1, . . . , λp and with
corresponding empirical distribution function Fp(x). A linear spectral statistic FSn(g) of a real
function g is:

FSn(g) =
1

p

p∑
i=1

g(λi) =

∫ ∞
−∞

g(t)dFSn(t)
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We can relate this to the linear algebra section, in particular Theorem 1.1.8. If g is an analytic
function, the linear spectral statistic is the weighted sum of the trace of g(A).

The reason why we are so interested in these linear spectral statistics is because we want to
know how these behave in high-dimensional case. In particular we want to know they fluctuate
around their limit, if it exists. We will see that for analytic functions, the limit exists and the
fluctuations are normal.

Since our Sn is a direct product of it’s eigenvalues and eigenvectors, knowledge about the trans-
formed eigenvalues of Sn as p → ∞ might allow us to construct new estimators that could be
used as a better approximation than the sample covariance matrix. From Theorem 1.2.1 we have
already that these eigenvalues are random, but satisfy a certain law in the high-dimensional case.
Our main tool, the Central Limit Theorem 1.5.1 will help us out tremendously with these linear
spectral statistics. It will tell us how linear spectral statistics will fluctuate around it’s limit (if it
exists).

Delta method

An important result in statistics is the Delta method, theorem 1 from [7](1932). The result
states that if a random vector converges to some multivariate normal distribution in the limit,
differentiable functions of that random vector are also normally distributed.

Theorem 1.3.1 (Delta method). Let X = (X1, . . . , Xk) be random vector, and g : Rk → Rd be a
differentiable function with derivative ∇g(a) at a ∈ Rk. If we have for some b > 0 and p→∞:

pb
{
X − a

} D−→ Y

then
pb
{
g(X)− g(a)

} D−→ [∇g(a)]TY

This result will be essential for finding the limiting distribution of parameters that itself are func-
tions of normal variables. As we will see in the main result, functionals of eigenvalues are normally
distributed in the limit. The Delta method then implies that estimators that make use of these
functionals will also be normal.

Recall that when adding two normal variables X,Y , the resulting random variable Z = X + Y
is also normal and has expectation E[Z] = E[X] + E[Y ], but variance that also depends on the
covariance: V ar[Z] = V ar[X] + V ar[Y ] + 2Cov(X,Y ).

Summary

• From a dataset Y , we can compute the sample covariance matrix Sn. From this Sn, we can
compute statistics such that we can produce tests and find the powers and sizes.

• If we have that a random vector X converges to some multivariate normal distribution, then
for differentiable functions g, one has that g(X) also converges to some multivariate normal
distribution.

1.4 Complex analysis

A powerful tool from complex analysis is the Residue Theorem. This theorem turns a contour
integral into a sum of residues. Before we state the theorem, we need to know a couple of things
from complex analysis that appear in the residue theorem. We get our theory from the book by
Freitag and Busam (2005) [4].
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Definitions

Definition 1.4.1. Let γ be a closed, smooth curve that does not pass through w ∈ C. The winding
number of γ with respect to w is

χ(γ,w) =
1

2πi

∮
γ

1

z − w
dz

This is definition III6.1 from [4]. This is the rigorous definition, but the intuition is much simpler.
The winding number of a curve measures how many times a curve goes around a given point. Since
we will mostly concern ourselves with the a curve that is unit circle once in the counterclockwise
direction, our winding number for points within the unit circle will be 1, and the winding number
for all points outside the unit circle is 0.

Now we define what a residue is:

Definition 1.4.2. Let U∗r (c) = {z ∈ C : 0 < |z− c| < r} be the punctured disk around a ∈ C with
radius r. Let f : U∗r (c)→ C be an analytic function such that c is a singularity of f , and let

f(z) =

∞∑
n=−∞

an(z − c)n

be the Laurent series of f in U∗r (a). The residue Res(f, c) of f at c is the coefficient a−1.

This is again the formal definition III6.2 from Freitag, Busam (2005) [4]. However, there is a useful
remark, remark III6.4 from [4] that gives us an easy method for computing residues. Generally,
if c is a pole of f order n, then

Res(f, c) =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
((z − c)nf(z))

This is a handy tool to compute there residue if you know the order of the pole, which depends on
what function f you have.

Theorems

Now that we know what residues and winding numbers are, we can go to the main theorem,
Theorem III6.3 [4]

Theorem 1.4.1 (Residue Theorem). Let D ⊂ C be a simply connected open subset, that contains
finite set of distinct points {z1, . . . , zn}, and f an analytic function on D \ {z1, . . . , zn}. Let γ be
a closed curve in D that doesn’t pass through any zk, and let χ(γ, zk) be the winding number.

The line integral of f around γ is then equal to∮
γ

f(ζ)dζ = 2πi

n∑
k=1

χ(γ, zk)Res(f, zk)

This beautiful result tells us that contour integrals of analytic functions are sums of it’s individual
residues. What that means for us is that the expectations and variances for linear spectral statistics
can be easily computed, due to the following theorem.

1.5 Central Limit Theorem for linear spectral statistics

All of the above theory comes together in the following Central Limit Theorem from Yao, Zheng
and Bai (2015) [2]. We will use it throughout the paper to find the limiting distributions of various
linear spectral statistics of our sample covariance matrix in high-dimensional case.
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Theorem 1.5.1 (Central limit theorem). Let the data {yi,j} of the data matrix Y be independent
identically distributed random variables satisfying E(yi,j) = 0,E(y2

i,j) = 1,E(y4
i,j) = β+1+κ <∞.

Here κ = 2 if our data is real, and κ = 1 if our data is complex, and β = E(y4
i,j) − 1 − κ. Also

assume p→∞, n→∞, p
n → c > 0.

Furthermore, let f1, . . . fk be analytic functions on an open region contained in the support of
Fc, which is the support of the Marcenko-Pastur law with index c. Then the random vector
{Xn(f1), . . . , Xn(fk)} where Xn(f) = p{FSn(f) − Fc(f)}, where Fc(f) =

∫
f(x)pc(x)dx, con-

verges weakly (in distribution) to a normal (Gaussian) vector {(Xf1 , . . . , Xfk}, with mean and
covariance functions:

E(Xf ) = (κ− 1)I1(f) + βI2(f)

Cov(Xf , Xg) = κJ1(f, g) + βJ2(f, g)

where

I1(f) = − 1

2πi

∮
c{s/(1 + s)}3(z)f(z)

[1− c{s/(1 + s)}2]2
dz

I2(f) = − 1

2πi

∮
c{s/(1 + s}3(z)f(z)

1− c{s/(1 + s)}2
dz

J1(f, g) = − 1

4π2

∮ ∮
f(z1)g(z2)

(m(z1)−m(z2))2
dz1dz2

J2(f, g) =
−c
4π2

∮
f(z1)

∂

∂z1

{ s

1 + s
(z1)

}
dz1

∮̇
g(z2)

∂

∂z2

{ s

1 + s
(z2)

}
dz2

where the integrals are taken over contours enclosing the support of Fc.

In this current form, Theorem 1.5.1 is hard to apply directly. However there is a nice proposition,
Proposition 3.6 from the book by Yao, Zheng and Bai (2015) [2], that converts the above integrals
into integrals on the unit circle |z| = 1.

Proposition 1.5.1. The integrals I1, I2, J1 and J2 in theorem 1.5.1 are equal to

I1(f) = lim
r↓1

I1(f, r)

I2(f) =
1

2πi

∮
|z|=1

f(|1 + hz|2)
1

z3
dz

J1(f, g) = lim
r↓1

J1(f, g, r)

J2(f, g) = − 1

4π2

∮
|z1|=1

f(|1 + hz1|2)

z2
1

dz1

∮
|z2|=1

g(|1 + hz2|2)

z2
2

dz2

with

I1(f, r) =
1

2πi

∮
|z|=1

f(|1 + hz|2)
[ z

z2 − r−2
− 1

z

]
dz

J1(f, g, r) = − 1

4π2

∮
|z2|=1

∮
|z1|=1

f(|1 + hz1|2)g(|1 + hz2|2)

(z1 − rz2)2
dz1dz2

In these propositions, r starts close to but is greater than 1, and h =
√
c

Even though these integrals still look difficult, the integrals from the proposition are significantly
easier to calculate than the integrals given in the central limit theorem. That is because we can
directly apply the residue theorem, which is stated in the section about complex analysis. Recall
that our curve is just the unit circle once, so we have winding number 1 for all points. This means
we just have to calculate the individual residues at each pole and sum them together to get the
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contour integrals.

This theorem states that if we have a linear spectral statistic with an analytic function f , then
this linear spectral statistic minus some centering term pFc(f) will be normally distributed.

1.6 Motivation and conclusions

We have seen a rich mathematical background already, but one might ask why we are so interested
in all the theory about high-dimensional data analysis.

Let’s say we have a given data matrix Y = Σ
1/2
n X, with Σn the true covariance matrix and X

the p×n matrix whose elements are independent identically distributed with mean 0 and variance
1. Importantly, we also require the fourth moment to exist. We compute the sample covariance
matrix Sn. It is understood that under H0 : Σn = I, if p is fixed and we let n → ∞, then Sn
almost surely converges to the true p× p population covariance matrix Σn = I;

Since Σn = I, our Y is directly the noise matrix and so each element of Y on the i-th row
and j-th column yi,j , is independent with mean 0 and variance 1. Since Y was p × n, we have
i ∈ {1, . . . , p} and j ∈ {1, . . . , n}. That has the following implications for the elements of Sn:

(On the diagonal) E[si,i] = E[
1

n

n∑
k=1

yk,iyk,i] =
1

n

n∑
k=1

E[y2
k,i] =

1

n

n∑
k=1

1 = 1

V ar[si,i] =
1

n2

n∑
k=1

E[y4
k,i] =

1

n
E[y4

k,i]

(Off the diagonal) E[si,j ] = E[
1

n

n∑
k=1

yk,iyk,j ] =
1

n

n∑
k=1

E[yk,iyk,j ] = 0 (Since they are independent)

V ar[si,j ] =
1

n2

n∑
k=1

V ar[yk,iyk,j ] =
1

n2

n∑
k=1

E[y2
k,iy

2
k,j ]

=
1

n2

n∑
k=1

E[y2
k,i]E[y2

k,j ] =
1

n2

n∑
k=1

1 · 1 =
1

n

At the end we made use of Theorem 6.66 from Grimmett,Welsh [10], which states that for inde-
pendent random variables X,Y and functions g, h : R→ R;

E[(g(X), h(Y )] = E[g(X)]E[h(Y )]

In particular, we took x2 for both g and h. In these formulas we see the need to the existence of
the fourth moment for our data. This will be also be an assumption in the main theorem 1.5.1.
Furthermore, we note that as n → ∞, the variance of the estimators will approach zero and thus
our sample covariance matrix Sn perfectly estimates Σn = I.
To further demonstrate, we look at the squared Frobenius norm of the difference between Sn and
Σn:

||Sn − Σn||2F =

p∑
i=1

p∑
j=1

|si,j − σi,j |2 (1.1)

Here σi,j denotes the element of Σn on the i-th row and j-th column, and is non-random. Using
that for any random variable X and constant a ∈ R, we have that

E[|X − a|2] = E[(X − a)2] = E[X2]− 2aE[X] + a2

Now, taking the expectation in expression 1.1 on both sides while applying the remark from above
gives us

E||Sn − Σn||2F =

p∑
i=1

p∑
j=1

E[s2
i,j ]− 2σi,jE[si,j ] + σ2

i,j
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Let us fix i ∈ {1, . . . , p}. We’re left with
∑p
j=1 E[s2

i,j ] − 2σi,jE[si,j ] + σ2
i,j . We know that if

i 6= j, the summand is equal to E[s2
i,j ], since then σi,j = 0. We then get for i 6= j : E[s2

i,j ] =

V ar[si,j ] +E[si,j ]
2 = 1

n . Since we have p−1 elements j 6= i, we have in our sum p−1
n . If i = j, then

E[s2
i,i]− 2σi,iE[si,i] + σ2

i,i (1.2)

= V ar[si,i] + E[si,i]
2 − 2σi,iE[si,i] + σ2

i,i (1.3)

=
1

n
E[y4

k,i] + 1− 2 · 1 · 1 + 12 (1.4)

=
1

n
E[y4

k,i] (1.5)

(1.6)

So for any fixed i ∈ {1, . . . , p}, we have that
∑p
j=1 |si,j − σi,j |2 = 1

nE[y4
k,i] + p−1

n . Now taking the
sum over all i = 1 . . . p, we get that

E||Sn − Σn||2F = p{ 1

n
E[y4

k,i] +
p− 1

n
} =

p

n
E[y4

k,i] +
p(p− 1)

n

Notice that when we fix p, but let n→∞, the expectation converges almost surely to 0, and thus Sn
will be close to Σn = I in the limit. We still require the existence of the fourth moment of the data.

Now we want to turn our attention to the high-dimensional case p→∞, with p
n → c > 0 In these

case things are a bit different. We again get

E||Sn − Σn||2F =
p

n
E[y4

k,i] +
p(p− 1)

n

However, this will no longer converge to 0, but diverge to c · E[y4
k,i] + c(p− 1) =∞.

This is however not really a fair comparison though, since Sn−Σn is a p× p matrix and therefore
an infinite matrix so one could reasonably expect that the sum over it’s elements squared will
diverge. But now let’s take a look at the normalized expectation of the squared Frobenius norm:

1

p
{E||Sn − Σn||2F } =

1

n
E[y4

k,i] +
(p− 1)

n

Now taking the limit as (p, n)→∞, pn → c > 0:

lim
(p,n)→∞

1

n
E[y4

k,i] +
(p− 1)

n
= 0 + c = c

So even the normalized expectation won’t converge to 0, but to the ratio p
n = c. Clearly there is

some non-negligible discrepancy in the high-dimensional case.

We can also look at this from a perspective using the eigenvalues. In the case of a fixed di-
mension p, the eigenvalues of Sn all converge to the eigenvalues of Σn. If H0 : Σn = I holds, then
all p eigenvalues will converge almost surely to 1:

Theorem 1.6.1. Let p be fixed and Sn be the sample covariance matrix, and assume Sn → I as
n→∞, elementwise. Then the eigenvalues of Sn will converge to 1.

Proof. Let Sn be a sample covariance matrix and limn→∞ Sn = I. Let λi,n, i ∈ {1, . . . , p} be the
eigenvalues of Sn. For any λi we have that by definition, with non-zero eigenvector vi

Snvi = λi,nvi

Snvi − vi = λi,nvi − vi
(Sn − I)vi = (λi,n − 1)vi

lim
n→∞

(Sn − I)vi = lim
n→∞

(λi,n − 1)vi

0 = lim
n→∞

(λi,n − 1)vi
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Now vi was nonzero, so we must have that limn→∞(λi,n − 1) = 0. Since λi,n was any eigenvalue,
all eigenvalues converge to 1.

However in the high-dimensional case, we have found by Theorem 1.2.1 that the eigenvalues are
spread out over the interval [a, b] = [(1∓

√
c
2
]. So in the case where p→∞ as well, the eigenvalues

of the sample covariance matrix will not converge to 1, but instead they obey the MP-law. So
the eigenvalues of Sn will not be consistent estimators for the true eigenvalues. Using the sample
covariance matrix directly in high-dimensional statistics might lead to serious errors.

Concluding say we have the following situation:

• The data matrix Yn = Σ
1/2
n Xn, with each xi,j iid with mean 0 and variance 1, with existing

fourth moment

• The sample covariance matrix Sn with eigenvalues λ1 . . . λp

• An analytic function g : R→ R

Then by Theorem 1.2, the eigenvalues obey the Marcenko-Pastur law if (p, n)→∞. Consequently
the linear spectral statistics FSn(g) converges to

∫
g(x)dFc(x), with Fc the cumulative distribu-

tion function of the MP-law with index c. Moreover, by the Central Limit Theorem 1.5.1, the
fluctuations of the linear spectral statistic around it’s limit are normal:

p{1

p

p∑
i=1

g(λi)−
∫
g(x)dFc}

= p{
∫
g(x)dFSn(x)−

∫
g(x)dFc(x)}

= p

∫
g(x)d(FSn(x)− Fc(x))

D−→ N(µg, σ
2
g)

Formulae for µg and σ2
g are given in the Central Limit Theorem. Using this machinery, we will try

to find new test statistics based on new types of estimators.
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Chapter 2

Sphericity tests in
high-dimensional case

As stated in section 1.3, one test we would like to perform in the high-dimensional case is the so
called sphericity test. This is a test in which we want to test the following hypotheses:

H0 : Σn = σ2I versus H1 : Σn 6= σ2I

We want to find out if our true underlying covariance matrix is a multiple of the identity matrix.
This corresponds with testing if the underlying variables of our population are independent, and
have variance σ2. As we will see in a minute, the statistics that will be of interested are independent
of σ, so we can take without loss of generality that σ2 = 1, so our test reduces to:

H0 : Σn = I versus H1 : Σn 6= I

Some mathematicians have found a way to make tests from finite dimensional case also work in
high-dimensional case. In this section I will discuss two of these tests for the high-dimensional
case, the corrected likelihood ratio test (CLRT) and the corrected John’s test (CJ). Before I can
go deeper, we need to make some assumptions on our data: [1]

• Our observed p× n data matrix Y is the product of a true positive definite p× p covariance
matrix Σn and a p × n matrix X which elements xi,j are independent identical random

variables with mean 0 and variance 1. Only Y = Σ
1/2
n X is observed.

• Let Hn(t) be the distribution function of the eigenvalues of Σn. Then we assume that Hn(t)
converges to some limit H(t) as n→∞ at all points of continuity of H(t)

Throughout the paper we will use an indicator κ just like in the Central Limit Theorem 1.5.1,
which is 2 if our data is real and 1 if our data is complex. Most of our simulation however will
assume standard normal data or Γ(4, 2)− 2 data. Subtracting 2 from the Γ(4, 2) variable makes it
that the expectation E[Γ(4, 2) − 2], where 4 is the shape and 2 is the rate, is equal to 4

2 − 2 = 0.
The variance is equal to V ar[Γ(4, 2)] = 4

22 = 1. Subtracting 2 won’t change the variance, so we
have that Γ(4, 2)− 2 has mean 0 and variance 1, and so we have another distribution to simulate
from that satisfies the null hypothesis. We will leave κ in the derivations however, to derive the
theory as general as possible.

We also had a parameter β = E[x4
i,j ] − κ − 1 in the Central Limit Theorem, a parameter that

depends on the fourth moment. In the case of standard normal data, one readily checks that the
4th moment is E[x4

i,j ] = 3, and for Γ(4, 2)− 2, the 4th moment is 4.5. Then β = 3− 1− 2 = 0 or
β = 4.5− 1− 2 = 1.5 respectively. We will leave β also in the derivation, but we will substitute it
for it’s appropriate value when simulating.

2.1 Corrected Likelihood Ratio Test (CLRT)

For finite dimensional statistics, a commonly used test is the regular likelihood ratio test. As a
matter of fact, by the Neyman-Pearson lemma it is the most powerful test. It is then interesting
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to study what the test would looks like and behaves in the high-dimensional case.

The likelihood ratio test statistic for a sample covariance matrix Sn with eigenvalues λ1, . . . λp
is [8]

Ln =
( (λ1 · · ·λp)(1/p)

1
p (λ1 + · · ·+ λp)

)( 1
2pn)

The correction for the high-dimensional case is from the following Theorem 2.1, from the paper by
Wang, Yao (2013)[3]:

Theorem 2.1.1. Let Λn = − 2
n log(Ln) be the test statistic, with Ln from above. Assume our data

xi,j are independent identically distributed, satisfying E[xi,j ] = 0,E[x2
i,j ] = 1,E[x4

i,j ] < ∞. Then
under H0 : Σn = I:

Λn + (p− n) · log(1− p

n
)− p D−→ N

{
− κ− 1

2
log(1− c) +

1

2
βc,−κ log(1− c)− κc

}
This is the corrected likelihood ratio test statistic in the high-dimensional case under the null
hypothesis. We will afterwards refer to this as the CLRT. One notices that this statistic is inde-
pendent of σ and that the statistic depends on the logarithm of 1− c in both the expectation and
the variance. In particular, if c is close to 1, so p is close to n, then the variance will blow out of
proportion so one could expect the power of this test to break down if p is large enough compared
to n. Nevertheless, we would like to study this test and compare it to other statistics to find out
if the optimality of power caries over to high-dimensional statistics.

2.2 Corrected John’s test (CJ)

Another test that has been altered to work in the high dimensional case is the corrected John’s
test, or CJ test, from the paper by John [9]. This test is the most powerful test which is rotation
invariant. That means if you rotate the noise matrix X by some orthogonal matrix Q, then the
John’s statistic computed from the new sample covariance matrix

Sn =
1

n
Y Y T =

1

n
Σ1/2QXXTQT (Σ1/2)T

is the most powerful among all alternatives. We will not rotate our data in this paper, but we note
that the identity matrix is also sort of a rotation matrix. If we take Q = I, then still the John’s
test should be really powerful.

In the finite dimensional case he proposed to use a statistic of the form

T2 =
p2n

2
tr
{ Sn
tr(Sn)

− I

p

}2

When p is fixed and n→∞, it can be shown that under the null hypothesis this statistic T2
D−→ χ2

f ,

a Chi-squared distribution with f = 1
2p(p+ 1)− 1 degrees of freedom.

The Corrected John’s test in the high-dimensional case is constructed a bit differently. We now
define a U -statistic, which uses the T2 statistic from above: U = 2

pnT2. We then get the following

theorem [3]

Theorem 2.2.1. Let xi,j be independent identically distributed random variables, satisfying E[xi,j ] =
0,E[x2

i,j ] = 1,E[x4
i,j ] < ∞. Let U = 2

pnT2 be the test statistic, computed from Sn. Then under

H0 : Σn = I and p
n → c > 0:

nU − p D−→ N(κ− 1 + β, 2κ)

As said, a motivation for considering the CJ test is that this is a test that is optimized for power
already in the finite dimensional case under rotation invariance. [9] We would like to find out if the
power carries over to the high-dimensional case. What is important to note, is that the limiting
distribution is independent from the ratio c = p

n , unlike the CLRT test.
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Chapter 3

Linear shrinkage estimators

In this chapter we will derive a new test for the high-dimensional case based on a different esti-
mator, namely the linear shrinkage estimator, based on the work done by Bodnar et.al (2014)[1].

We assume the same setting as for the CLRT and CJ test, i.e. we only observe Y = Σ
1/2
n X, with

each xi,j independent with mean 0 and variance 1, and the distribution function Hn(t) converges
to some limit H(t).

The general linear shrinkage estimator ΣGLSE is of the form:

ΣGLSE = αnSn + βnΣ0 (3.1)

Here Σ0 is a symmetric positive definite matrix bounded in trace norm, i.e ∃N > 0 : ||Σ0||tr =
tr(Σ0) ≤ N . It could be interpreted as a prior belief of what our true Σn could be. The reason why
we require Σ0 to be a symmetric positive definite matrix is that any symmetric positive definite
matrix is a covariance matrix for some multivariate distribution.

For example, let M be any positive definite matrix. From our matrix theorem 1.1.4 all eigen-
values are real and positive. By Theorem 1.1.2, we can decompose our matrix M into C−1DC,
where in particular D consists of the eigenvalues. Since all eigenvalues are positive, we can take
the real square root, to have M = C−1U2C, where U = D1/2. Now we have that M1/2 = C−1UC.
Now if we consider a random vector X with mean 0 and covariance matrix I, then the random
vector Y = M1/2X has covariance matrix M .

So, as long as we take a positive definite matrix as a prior belief, it is automatically a covari-
ance matrix. It is of course logical to only the consider the prior belief matrices that are covariance
matrices.

Now that we know the form of our estimator, we want to find the optimal shrinkage estimators for
αn and βn.

3.1 Optimal linear shrinkage estimators

We define a quantity
L2
f = ||ΣGLSE − Σn||2F (3.2)

This quantity measures how ”far” in squared Frobenius norm our GLSE is from the true Σn. The
smaller it is, the better Σn is approximated by our GLSE matrix ΣGLSE . If we insert expression
3.1 into the quantity 3.2 we get:

L2
f = ||ΣGLSE − Σn||2F

= ||αnSn + βnΣ0 − Σn||2F
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As done in [1], working this expression out, taking partial derivatives with respect to αn and βn
and setting those to 0, we get a system of linear equations:

∂L2
f

∂αn
= αn||Sn||2F + βntr(SnΣ0)− tr(SnΣn) = 0,

∂L2
f

∂βn
= αntr(SnΣ0) + βn||Σ0||2F − tr(ΣnΣ0) = 0

From these equations you can find optimal parameters:

α∗n =
tr(SnΣn)||Σ0||2F − tr(ΣnΣ0)tr(SnΣ0)

||Sn||2F ||Σ0||2F − (tr(SnΣ0))2

β∗n =
tr(ΣnΣ0)||Sn||2F − tr(SnΣn)tr(SnΣ0)

||Sn||2F ||Σ0||2F − (tr(SnΣ0))2

These parameters are not usable just yet, since it depends on the unobservable Σn. However, it
can be shown that these parameters converge to some non-random quantity in the limit.

Remark. Two sequences pn and qn are asymptotically equivalent if as n→∞:

|pn − qn| → 0

Proposition 3.1.1. Let p
n → c > 0, and n, p → ∞. The optimal shrinkage intensities then

converge almost surely to some asymptotic optimal values:

|α∗n − α∗|
a.s.−−→ 0

|β∗n − β∗|
a.s.−−→ 0

These asymptotic optimal values satisfy:

α∗ = 1−
c
p ||Σn||

2
tr||Σ0||2F

(||Σn||2F + c
p ||Σn||

2
tr)||Σ0||2F − (tr(ΣnΣ0))2

β∗ =
tr(ΣnΣ0)

||Σ0||2F
(1− α∗)

These parameters are nonrandom, but still depend on the underlying true covariance matrix and
are hence unknown. However, we are able to find consistent estimators for the asymptotic optimal
value. [1]

α̂∗ = 1−
1
n tr(Sn)2||Σ0||2F

||Sn||2F ||Σ0||2F − (tr(SnΣ0))2

β̂∗ =
tr(SnΣ0)

||Σ0||2F
(1− α̂∗)

These are the quantities that we were after. These parameters will consistently estimate the op-
timal asymptotic value, the value that minimizes the difference in Frobenius norm between our
ΣGLSE and the true covariance matrix Σn in the limit (p, n)→∞. Note that these values are still
dependent on our choice for Σ0.

We would now like to establish what the limits of these parameters are as (p, n) → ∞. We will

however only concern ourselves with α̂∗, because we observe that β̂∗ itself is a function of α̂∗.

We see that α̂∗ is a function of the squared Frobenius norm ||Sn||2F and the trace tr(Sn), and puts
out a single real number. This observation about the structure of α̂∗ gives good motivation for the
Delta method, Theorem 1.3.1.
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If we want to apply the Delta method however, we first need to find the asymptotic distribu-
tions of the squared Frobenius norm ||Sn||2F and the trace tr(Sn). Here we recall that the squared
Frobenius norm for symmetric matrices Sn was equal to tr(S2

n). By theorem 1.1.8, with f(x) = x2,
we can turn the squared Frobenius norm into a linear spectral statistic. By the Central Limit Theo-
rem, 1.5.1, this quantity minus some centering term is normally distributed in the limit (p, n)→∞.
The same applies to the trace tr(Sn), with f(x) = x. The squared Frobenius norm and trace are
then perfectly applicable for the Delta method. We however need to find the limiting distribution
of the squared Frobenius norm and the trace.

In the next section we state the limiting behaviour of these statistics under the null hypothe-
sis H0 : Σn = I, their derivation can be found in the appendix. The requirement that Σn = I is
needed to find the distributions, since the Central Limit Theorem 1.5.1 we stated only applies to
independent identical random variables with mean 0 and variance 1.

3.1.1 Prior belief Σ0

We need to state our prior belief for Σ0, since our optimal α̂ also depends on this matrix. We will
restrict to a prior belief that Σ0 = I as well. However, we have to keep in mind that when we
define a prior belief, our linear shrinkage estimators will optimize with regard to this prior belief.
If we choose another Σ0 as a prior belief, the distribution of our optimal α̂ will change.

3.2 Limiting behaviour of ||Sn||2F and tr(Sn)

||Sn||2F
We note that ||Sn||2F = tr(S2

n). Now we apply our matrix theory. First we use the fact that sample
covariance matrix Sn is real symmetric. It is real because the data are real numbers, and it’s a
symmetric matrix because the covariance between two estimators is a symmetric relationship. This
can be seen as follows:

Sn =
1

n
Y Y T =⇒ (Sn)T =

1

n
(Y Y T )T =

1

n
Y Y T = Sn

Because Sn is a real symmetric matrix, it is diagonalizable by Theorem 1.1.1. And because it is
diagonalizable, we have from Theorem 1.1.8 that tr(S2

n) =
∑p
i=1 λ

2
i . So to summarize:

||Sn||2F = tr(S2
n) =

p∑
i=1

λ2
i

This is a linear spectral statistic of Sn with function f = x2. Now we can apply the Central Limit
Theorem under H0 = Σn = I. It can then be shown that:

||Sn||2F − p(1 + c)

is normal as p→∞ with

E[||Sn||2F − p(1 + c)] = (κ− 1 + β)c

V ar[||Sn||2F − p(1 + c)] = 4(κ+ β)(c3 + 2c2 + c) + 2κc2.

The full derivation can be found in the appendix.

tr(Sn)

Similar to the squared Frobenius norm, this is just a linear spectral statistic
∑p
i=1 λi. We again

use the Central Limit Theorem with f = x, to obtain that under the null hypothesis H0 : Σn = I,
we have that tr(Sn)− p is normal in the limit p→∞ with

E[tr(Sn)− p] = 0

V ar[tr(Sn)− p] = (κ+ β)c

The full derivation can be found in the appendix.
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Covariance of tr(Sn) and ||Sn||2F
As we will see later on we will need to find the covariance between tr(Sn) and ||S||2F . Luckily,
the Central Limit Theorem 1.5.1 and Proposition 1.5.1 give us a formula for the covariance. The
derivation can again be found in the appendix. One finds for the covariance

Cov(tr(Sn), ||Sn||2F ) = 2(κ+ β)(c2 + c)

After I had already done the derivations for the distributions and the covariance for myself, I found
out that this work was already done by Wang and Yao, also in their paper from 2015 [3]. It may
be good to say this to prevent any misunderstandings. On the bright side, it reassured me because
I had done the derivations correctly.

3.3 Limiting distribution of optimal shrinkage intensity α̂∗

Recall from earlier that the consistent optimal estimators are:

α̂∗ = 1−
1
n ||Sn||

2
tr||Σ0||2F

||Sn||2F ||Σ0||2F − (tr(SnΣ0))2

β̂∗ =
tr(SnΣ0)

||Σ0||2F
(1− α̂∗)

For the squared Frobenius norm of Σ0 = I we get

||Σ0||2F = tr(Σ2
0) = tr(I2) = p

Now we substitute Σ0 = I with the corresponding values into our estimators. Those estimators
become

α̂∗ = 1−
p
n ||Sn||

2
tr

p||Sn||2F − (tr(Sn))2
= 1− c · tr(Sn)2

p||Sn||2F − (tr(Sn))2

Now these parameters are in a form such that we can apply the Delta method. Because the Delta
method turns the distribution into a sum of two normal variables, you also need the covariance
between tr(Sn) and ||Sn||2F . I will just state the results here, the derivation is found in the appendix
again in section A.2.

Theorem 3.3.1. Let X be a p × n data matrix consisting of independent identically distributed

random variables with mean 0 and variance 1, and let Y = Σ
1/2
n X. Let Sn = 1

nY Y
T be it’s sample

covariance matrix with eigenvalues λ1 . . . λn. Let (p, n) → ∞ and p
n → c > 0. We then have that

under H0:

pα̂∗
D−→ N(κ− 1 + β, 2κ)

Where α̂∗ is the optimal consistent estimator of the form

α̂∗ = 1− c · tr(Sn)2

p||Sn||2F − (tr(Sn))2

Proof. The full proof can be found in appendix, section A.2. A small outline is as follows: We
have

p
{ [ 1

p ||S||
2
F − (1 + c)

1
p tr(S)− 1

]} D−→
[
X1

X2

]
Then directly applying the Delta-method, we have that

p
{
g(

1

p
||S||2F ,

1

p
tr(S)T )− g([1 + c, 1]T )

}
D−→ ∇g([1 + c, 1]T )

[
X1

X2

]
∼ N(κ− 1 + β, 2κ)
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In figure 3.1a and 3.1b you can see the empirical distribution function of pα̂∗, repeated 10000 times
with standard normally distributed or Gamma(4, 2) − 2 data, where we have p = 320, n = 640.
These parameters were chosen large to demonstrate the limiting behaviour better. In the case of
standard normal data, we have that it should be approximately a N(1, 4) distribution, and for the
Gamma(4, 2)− 2 data, it should be N(2.5, 4)

(a) Empirical distribution for standard normal (b) Empirical distribution for Gamma(4, 2)− 2

We see that in both cases the distributions are normal. More importantly, this is a ready to use
statistic in the high-dimensional case that makes use of a different type of estimator than the
regular sample covariance matrix Sn. In chapter 4 we will compare this statistic to the existing
CLRT and CJ test from chapter 2.

One thing to note however is that is possible that the optimal estimator α̂∗ is smaller than 0,
since p · α̂∗ ∼ N(κ − 1 + β, 2κ) and p > 0. This is a bit odd intuitively, but keep in mind that
this is an optimization problem involving a random matrix. It is possible that the optimal solution
would require a negative α̂∗. However this only happens in the finite case. If you take the limit as
(p, n)→∞ one would never find a negative optimal estimator α̂∗.

3.4 Equivalence between H0 : Σn = I and H0 : α∗ = 0

I would like to point a relation between the null hypothesis H0 : Σn = I and optimal shrinkage
intensity α∗ = 0. Recall it’s expression from proposition 3.1.1:

α∗ = 1−
c
p ||Σn||

2
tr||Σ0||2F

(||Σn||2F + c
p ||Σn||

2
tr)||Σ0||2F − (tr(ΣnΣ0))2

Plugging in our null hypothesis H0 : Σn = I and our prior belief Σ0 = I we get

α∗ = 1−
c
p ||Σn||

2
tr||Σ0||2F

(||Σn||2F + c
p ||Σn||

2
tr)||Σ0||2F − (tr(ΣnΣ0))2

= 1−
c
pp

2 · p
(p+ c

pp
2)p− p2

= 1− cp2

p2 + cp2 − p2
= 1− 1 = 0

The optimal shrinkage estimator α̂∗ is asymptotically equivalent with α∗ = 0. This can be in-
terpreted as follows: If our prior belief Σ0 perfectly corresponds with the true covariance matrix,
then the optimal linear shrinkage estimator ΣGLSE = αnSn + βnΣ0 will be equal to β∗Σ0 and not
depend at all on the sample covariance matrix in the limit. The closer your initial prior belief is
to the true covariance matrix, the smaller the optimal α∗ will be.

This agrees with was said in subsection 3.1.1. There we saw that our optimal estimator α̂∗ will
depend on what we define as a prior belief. If we have a prior belief Σ0 that is not at all close to
the true covariance matrix, then the sample covariance matrix will play a larger role and thus one
expects the optimal estimator α̂∗ not to converge to 0 at all, but to some other value.
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Now conversely, let’s assume α∗ = 0. We get for the optimal linear shrinkage estimator, with again
prior belief Σ0 = I

ΣOLSE = α∗I + β∗Σ0

= α∗Sn +
tr(ΣnΣ0)

||Σ0||2F
(1− α∗)Σ0

=
tr(Σn)

p
I

Recall that we assumed our ΣOLSE to be optimal, and so it minimizes the Frobenius norm. By
inspection it is not hard to see that the only matrix that minimizes the squared Frobenius norm
is a multiple of the p× p identity and the squared norm is 0:

||ΣOLSE − Σn||2F = || tr(aΣn)

p
I − aΣn||2F

= ||ap
p
I − aI||2F = ||aI − aI||2F = 0

If we had any other matrix than a multiple of the identity as a solution, it would have at least
non-zero element σi,j somewhere. It then contributes σ2

i,j to the Frobenius norm, and thus would
be greater than 0. However since we assumed our data to have variance 1 and not any a ∈ R, the
only matrix that satisfies both requirements is just the identity. Thus we have α∗ = 0 =⇒ Σn = I.

The equivalence is thus as follows:

H0 = Σn ⇐⇒ α∗ = 0, given that Σ0 = I

Testing for α∗ = 0 is then just equivalent with testing the null hypothesis H0 : Σn = I

3.5 Relation between CJ and linear shrinkage

In the previous section we have derived a new statistic in the high-dimensional case, namely

pα̂∗ = p×
{

1− c · tr(Sn)2

p||Sn||2F − (tr(Sn))2

} D−→ N(κ− 1 + β, 2κ), as (p, n)→∞

We immediately see that this statistic has the same asymptotic distribution as the CJ test from
section 2.2. This is a quite striking observation, since the statistics nU − p and pα̂∗ are in general
not equal to each other;

We can rewrite nU − p in the following way:

nU − p = n
2

pn
T2 − p

= n
2

pn

p2n

2
tr((

Sn
tr(Sn)

− I

p
)2)− p

= np · tr( S2

tr(S)2
− 2

Sn
ptr(Sn)

+
I2

p2
)− p

= np
tr(S2

n)

tr(Sn)2
− 2n+ n− p

= np
tr(S2

n)

tr(Sn)2
− n− p = np

||Sn||2F
tr(Sn)2

− n− p

This is in general not equal to pα̂∗ = p
{

1− ctr(S2
n

p||Sn||2F−tr(Sn)2

}
. As a matter of fact, these seem not

very related at all, except that they both depend on the squared Frobenius norm and trace in some
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way, but this is not really unique.
One object we could then maybe study is the absolute difference between nU − p and pα̂∗.

|nU − p− pα̂∗|

Because they have the same asymptotic distribution, their difference will center around 0. However
it’s possible that, when we multiply by p or n, that the difference becomes normal. For example,
we already saw α̂∗ was asymptotically 0, but when multiplied by p, the quantity pα̂∗ was normally
distributed.

Since they are equally distributed, tests that make us of either the CJ statistic or the LS statistic
pα̂∗ will behave the same in high-dimensional case. However, we cannot test with infinite p or n,
and it could be that one outperforms the other at an earlier point, that is; is there a p where one
of the test already shows high-dimensional behaviour where the other does not. We would like to
find if there are any significant differences between these two tests when simulating.
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Chapter 4

Simulation study linear shrinkage

In this section we will test the new linear shrinkage statistic qualitatively in comparison with
the existing corrected tests from section 2. We will do that in the following matter: We try to
find empirical powers as the distance from the alternative H1 : Σn 6= I to the null hypothesis
H0 : Σn = I increases. We take a look at three ways of increasing the distance. How that is done
precisely we will discuss shortly.

Setting

Again, like in section 2, we have the following setting for our data:

• Our observed p× n data matrix Y is the product of a true positive definite p× p covariance
matrix Σn and a p× n matrix X which elements xi,j are real independent identical random

variables with mean 0 and variance 1. Only Y = Σ
1/2
n X is observed.

• Let Hn(t) be the empirical distribution function of the eigenvalues of Σn. Then we assume
that Hn(t) converges to some limit H(t) at all points of continuity of H(t)

We will assume as our null hypothesis H0 : Σn = I. This implies that it’s eigenvalues are all 1,
so the above Hn(t) is δ1, a Dirac mass at 1, for all n. So the second point is satisfied. Because
Σn = I, Y is directly equal to X, and thus has i.i.d. elements, with mean 0 and variance 1. Our
sample covariance matrix Sn is computed as Sn = 1

nY Y
T . From that we compute the 3 statistics

of interest with limiting behaviour (p, n)→∞, pn → c ∈ (0, 1):

Λn − (p− n) log(1− c)− p D−→ N
{
− κ− 1

2
log(1− c) +

1

2
βc,−κ log(1− c)− κc

}
nU − p D−→ N(κ− 1 + β, 2κ)

pα̂∗
D−→ N(κ− 1 + β, 2κ)

We will mostly be working with xi,j which are real standard normal random variables, we can
substitute κ = 2, and as a result β = 0, because the 4th moment of standard normal variables is
3. That turns the distributions into:

Λn − (p− n) log(1− c)− p D−→ N
{
− 1

2
log(1− c),−2 log(1− c)− 2c

}
nU − p D−→ N(1, 4)

pα̂∗
D−→ N(1, 4)

We now want to compare these statistics with the following test:

H0 : Σn = I versus H1 : Σn 6= I

We have to define a rejection condition. For that we need a significance level α. This is chosen as
the probability of rejecting a true null hypothesis. We reject the H0 if our statistics are too far from
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their limiting distribution. For a general statistic with known distribution T ∼ N(µ, σ2), we reject
the null hypothesis if T−µ

σ > w(α). The value w(α) is the value the statistic would need to exceed
and depends on the distribution of the statistic and on how accurate of a test we want. Typically,
α is taken to be 0.05. For example, if a statistic Z is standard normally distributed in the limit
and we have significance level α = 0.05, we would reject the null hypothesis if Z > 1.645. 1.645 is
also known as the 95th percentile of the normal distribution since P(Z > 1.645) = 0.05 = α.
Back to our test statistics( the CLRT, CJ and LS); They are not standard normally distributed, but
still normal. We can centralize any normal variable into standard normal however by subtracting
the mean and dividing by the standard deviation. That would then be our rejection condition:
For any statistic T with mean µ and variance σ2:

Reject H0 if
T − µ
σ

> 1.645

We proceed in the following manner:

1. Generate the sample covariance matrix Sn

2. Compute the three statistics for the CLRT, CJ and LS test

3. Check if the centralized statistics exceed w(α)

This is a Bernoulli experiment. Depending on what hypothesis we condition, we have either success
parameter p = P(reject H0 | H0 is true) or p = P(reject H0 | H1 is true). Recall that we had defined
the following definition for power of a test:

Power =P(reject H0 | H1 is true)

The more a powerful a test is, the quicker it rejects a false hypothesis. It is of our interest to
compute and compare the empirical powers of the CLRT, CJ and LS test.
In our case we repeat above procedure 10000 times. By the weak law of large numbers we have
that for our Bernoulli trial under H1:

amount of times we reject H0

n

P−→ P(reject H0 | H1 is true), n→∞
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4.1 Empirical sizes

Before we go into the empirical powers we quickly take a look at the empirical sizes. If our
statistics are close to the limiting distribution, then the empirical size of the test should be close
the rejection level α = 0.05 under H0. Recall that the definition for size of a test was P(reject
H0 | H0 is true). We will simulate again 10000 times times a sample covariance matrix under H0,
using either standard normal data or Gamma(4, 2)− 2 variables.

(p, n) CLRT CJ LS
(4,128) 0.0591 0.0585 0
(8,128) 0.0567 0.0556 0.0005
(16,128) 0.0518 0.0515 0.0123
(32,128) 0.0536 0.0535 0.0263
(64,128) 0.0533 0.0533 0.0409
(96,128) 0.0569 0.0508 0.0423
(112,128) 0.0536 0.0526 0.0459
(128,128) 0 0.0481 0.0413
(8,256) 0.0543 0.0538 0
(16,128) 0.0531 0.0523 0.0115
(32,128) 0.0551 0.0545 0.0284
(64,256) 0.0486 0.0528 0.0376
(96,256) 0.0478 0.0449 0.0377
(128,256) 0.0467 0.0486 0.0425
(192,256) 0.0503 0.0476 0.0422
(224,256) 0.054 0.0509 0.0470
(256,256) 0 0.0521 0.0488

(a) N(0,1) data

(p, n) CLRT CJ LS
(4,128) 0.0741 0.0745 0
(8,128) 0.0731 0.0802 0
(16,128) 0.0636 0.0703 0.0461
(32,128) 0.0563 0.0654 0.0231
(64,128) 0.0491 0.0533 0.0323
(96,128) 0.0504 0.0588 0.0404
(112,128) 0.0487 0.0573 0.0416
(128,128) 0 0.0586 0.0436
(8,256) 0.0543 0.0538 0
(16,128) 0.0531 0.0523 0.0115
(32,128) 0.0551 0.0545 0.0284
(64,256) 0.486 0.0528 0.0376
(96,256) 0.0478 0.0449 0.0377
(128,256) 0.0476 0.0486 0.0425
(192,256) 0.0503 0.0472 0.422
(224,256) 0.0541 0.0509 0.470
(256,256) 0 0.0521 0.0488

(b) Gamma(4,2)-2 data

Table 4.1: Empirical sizes for the CLRT, CJ and LS test drawn from standard normal and
Gamma(4,2)-2 variables

For most tests, we observe that the empirical sizes are close to the significance level, except for
LS. One thing that immediately stands our in the table is that the sizes of the LS test are really
small if p is small compared to n. This power increases as p grows larger. Therefore we can already
conclude somewhat that the LS statistic relies more on the limiting aspect than the CJ test or
CLRT test. As expected, the CLRT test has power 0 if p = n.

4.2 Empirical power comparisons

In this section we will try to find empirical powers for our three statistics. We will consider three
different alternative hypothesis:

• H1 : Equicorrelation

• H1 : Auto-regressive

• H1 : Fixed ratio of variables have variance 6= 1

Equicorrelation

The first alternative we will investigate is an equicorrelation alternative. For this we are taking
a linear combination of the identity matrix, and a matrix of all ones. This combination tests
the alternative that the parameters of the underlying data have variance 1, but have covariance
Cov = ρ with other variables, so they are all correlated and thus dependent. For ρ ∈ (0, 1), we
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define our alternative hypothesis as:

H1 : Σn,ρ = (1− ρ)I + ρ∆T∆,∆ = (1, 1, . . . , 1),(length p)

Σn,ρ = (1− ρ)


1 0 . . . 0

0 1
...

...
. . .

0 . . . 1

+ ρ


1 1 . . . 1

1 1
...

...
. . .

1 . . . 1

 =


1 ρ . . . ρ

ρ 1
...

...
. . .

ρ . . . 1


We let ρ run from 0 to 1. This is also what we mean with increasing the distance of the alternative
hypothesis. As ρ increases, the covariance matrix Σn becomes less and less like the identity
matrix, our null hypothesis. For each ρ, we get a different alternative hypothesis, and thus we
get different powers for each test. We now generate our sample covariance matrix Sn = 1

nY Y
T

with Y = Σ
1/2
n,ρX. We take values for p = 32, 64 and n = 128, so c = 1/4, 1/2. For demonstrating

purposes, we assume these parameters to be large enough such that the limiting distributions of
the statistics are present.

(a) Empirical powers for 0 < ρ < 0.1, p = 32 (b) Empirical powers for 0 < ρ < 0.1, p = 64

In the figures we see how the power of the tests change when ρ increases. We see that already
quite quickly for small ρ, around about 0.08 all tests have power 1. An explanation for that is that
equicorrelation is quite a strong assumption. Even for small ρ, the test will quite quickly reject
the null hypothesis. We also notice that the CLRT test behaves marginally worse than the CJ and
the LS test.

As expected, the CJ and LS test behave nearly the same, especially for p = 64. However, we
notice a small discrepancy, which is even larger if p = 32. This is likely due to a small head start
in power that the CJ test has over the LS test. In any case, both CJ and LS outperform the CLRT
test.

Auto-regressive

The second alternative we will compare is an auto-regressive relation. For any δ ∈ R, we define
the element on the i-th row and jth column of the p× p true covariance matrix as δ|i−j|:

H1 : Σn,δ =



1 δ δ2 . . . δp−1

δ 1 δ . . . δp−2

... δ
. . .

...
. . . δ

δp−1 δp−2 . . . δ 1


We could pick any δ ∈ R, but we restrict ourselves to δ ∈ (−1, 1), since this corresponds with a
stationary auto-regressive model. And we will see shortly, rejection of the null hypothesis happens
for small δ very quickly. We again generate the sample covariance matrix Sn = 1

nY Y
T with

Y = Σn,δX. We take values for p = 32, 64 and n = 128.
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(a) Empirical powers for −0.2 < δ < 0.2
p = 32

(b) Empirical powers for −0.2 < δ < 0.2
p = 64

Under this hypothesis, the three tests seem to behave quite comparable. For p = 64, the CLRT
performs just a tiny bit worse from δ = 0.1 and onwards. However, when p = 32 the CLRT behaves
nearly as good as the CJ test while the LS test performs worse. This agrees with an observation
from before regarding the sizes of the test. When p is small, and the distance to the null hypothesis
is not as big yet, the LS test performs very poorly compared to the CLRT and the CJ test. It
starts at a lower point on the power curve but picks up as δ departs from 0.

This test needs a larger parameter δ compared to the ρ test to pick up power since for small δ,
powers of δ will be exponentially smaller and thus for small δ our alternative is closer to the null
hypothesis than if we had the same parameter value for ρ. That is why the tests are at power 1
from δ = 0.2, whereas for ρ it had power 1 from ρ = 0.08 and onwards.

We notice that the power curve is symmetric about 0. Explanation for that is our definition

for Y = Σ
1/2
n,δX. The true covariance matrix Σn,δ is a covariance matrix and thus positive definite,

and by theorem 1.1.4 Σn,δ has positive eigenvalues, and the square root matrix exists and is real.
It may have negative elements, but that does not matter since the elements of X are standard
normal, and thus we get positive elements as often as we get negative elements in Y , regardless of
the parity of δ.

Fixed ratio with variance other than 1

The third alternative we consider is an alternative where a fixed ratio r of the variables have a
variance not equal to 1, but equal to 1 + γ. In particular, for any γ ∈ R we define our alternative
hypothesis

H1 : Σn,γ,r =



1 0 . . . 0

0
. . .

...
1 + γ

...
. . .

0 . . . 1 + γ


For example if we pick a ratio of r = 1/2, then half of the p variables will have variance 1 + γ, in
our alternative hypothesis. If it happens that r× p is not a whole number, we will round it down.
For example, if r = 1/3 and p = 64, then we consider 21 non-unit variance random variables, at
the end of the diagonal.

To differentiate between the effects of varying the ratio versus varying the dimension, we con-
sider the ratios 1

2 ,
1
3 and 1

4 , for both p = 32 and p = 64.
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(a) p = 32, ratio = 1/4 (b) p = 32, ratio = 1/3 (c) p = 32, ratio = 1/2

(a) p = 64, ratio = 1/4 (b) p = 64, ratio = 1/3 (c) p = 64, ratio = 1/2

For p = 32, the tests behave comparable just like the auto-regressive case. Their powers remain
relatively close to each other, especially when r = 1

2 . However it seems that the CJ test performs
the best of the three across the board.

When p = 64, again we see that the CJ and LS test outperform the CLRT again, this time by a
bit larger margin. However as the ratio increases the CLRT starts performing a little bit better,
as expected since the distance from the null hypothesis is larger for a bigger ratio r. Again, the
CJ test and LS test perform very similar, but CJ is slightly better still.

4.3 ROC curves

Another way of comparing the quality of tests are receiver operating characteristic curves, or ROC
curves for short. These are curves that compare how the true positive rate changes as we vary
our desired false positive rate. ROC curves are a type of power plot, but instead of varying the
underlying distance variable, we vary the significance level for when we reject. The true positive
rate is defined as the probability that a test correctly rejects a false hypothesis: P(reject H0 | H1

is true). We recognize here the power of the test. These curves allow us to assess the quality of
the tests when their power are close to each other.

We proceed in the following manner. We pick a value of either ρ, δ and γ under an alterna-
tive hypothesis where the powers are close. However, we also want to pick a value that is as far
away from 0 as possible, otherwise we are too close to the H0 hypothesis and then our test isn’t
worth much. So we try to find the empirical value such that the powers are as close as possible,
but the parameter should be as large as possible. We let our false positive rate α run from 0 to 1,
instead of fixing it at 0.05.

Now our rejection condition changes; First we rejected if the centralized test statistics exceeded
1.645, which corresponded with a significance level of α = 0.05. We can compute now for different
α the value w(α), the value which a normal statistic has to exceed to be in the α× 100th percentile
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via the relation:

1− α =
1

2
√
π

∫ w(α)

0

e
−t2
2 dt

⇐⇒ 1− α =
1√
π

∫ w(α/
√

2)

0

e−t
2

dt

⇐⇒ 1− α =
1

2
+

1

2
erf(w(α)/

√
2)

⇐⇒ w(α) =
√

2 · erfinv(1− 2α)

Here we used the error function erf(x) = 2√
π

∫ x
0
e−t

2

dt, and it’s inverse which can be computed

numerically.

Recall our initial rejection condition: T−µ
σ > w(α).

If we insert α = 0.05 into this expression, one would find w(α) = 1.645. If we insert α = 0, we
would find w(0) =∞. We interpret that the following way: If α = 0, we think that no test outcome
is significant at all. Since our test statistic can never be greater than infinity, we never reject the
null hypothesis no matter what hypothesis is true and we get power 0 for all tests. As we allow α
to steadily grow, depending on the test we will get different but increasing powers. If α reaches
1, that corresponds with a belief that every test outcome is significant, so you always reject. We
again see that back in the w(α) value, which is w(1) = −∞. No matter what simulation, every
statistic exceeds this and thus always leads to a rejection, thus power 1.

We compute w(α) and use this value to check if our centralized statistic exceeds this value. Again,
we run it 10000 times and compute the empirical probability, just like for the power plots. If a test
gains more power than the other at the same significance level, than that test could be considered
as a better test.

One thing we also include as a comparison is a straight line, which represents a test that we
will refer to as ”standard”. This test is a test that given a significance level α as it’s false positive
rate, has also true positive rate α. The better a test is, the further away from this straight line it
should be.

ROC curves for equicorrelation

Looking in figure 4.1b, we see that the three tests are (as expected) most comparable to each other
when ρ is small. A value we could use would be ρ = 0.01. That gives us the following ROC curves,
where in the first case we have p = 32, so c = 1/4, in the second case p = 64 and in the other we
have p = 112 so c = 7/8. This is to check whether or not c is of very relevant importance. Our only
test that directly depends on the value of c was the CLRT test. However, our other tests ”rely” on
the value of c in the sense that the higher we have c, for fixed n, the value of p is relatively larger
so the limiting behaviour should be more present and thus lead to higher power.

(a) p = 32 (b) p = 64 (c) p = 112

If p = 32, then our tests are not powerful, for this ρ = 0.01. It seems that for this case, the
high-dimensional aspect is not able to make up for the still relative small distance to H0.
But we see that as our p increases, the CJ and LS test outperform the CLRT, by a significant
margin. As a matter of fact, CLRT only increases a small bit, while CJ and LS performance
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increases well as p increases. As said earlier, this could be due to the limiting behaviour of CJ test
and LS test coming out stronger as p increases.

ROC curves, auto-regressive

We pick, similarly to ρ, a value of δ 6= 0 where the tests are comparable. A good value we could
try would be δ = 0.1. We again repeat the process for p = 32, 64, 112.

(a) p = 32 (b) p = 64 (c) p = 112

Here we see something different happening from the equicorrelation case. Instead of increasing
in power as p increases, all tests are already powerful quite quickly.

However in this case, CLRT now performs increasingly worse, while CJ and LS stay at their
power level. The CLRT test performs better for equicorrelation tests where p becomes larger, and
falls of in power in the auto-regressive case.

ROC curves, ratio case

The γ case is a bit more interesting, since we have a factor extra, namely the ratio that dictates
how large a portion of the diagonal has 1 + γ variance. Looking at the graphs for power, a value
of γ where the powers are close could be γ = 0.25. We fix the ratio at 1

4 and 1
2

(a) Ratio = 1/4 , p = 32 (b) Ratio = 1/4 , p = 64 (c) Ratio = 1/4 , p = 112

Here something similar to the auto-regressive case is happening. For p = 32, the three tests
behave similarly, but the CLRT performs worse as p increases.

Now for r = 1
2

(a) Ratio = 1/2 , p = 32 (b) Ratio = 1/2 , p = 64 (c) Ratio = 1/2 , p = 112
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Compared to r = 1
4 , all the three test are a bit more curved outwards. This is logical, since

bigger ratio means larger distance to the null hypothesis and thus quicker rejection. We also again
see the CLRT test decreasing in power.

4.4 Conclusions

In most curves, we see a trend. The CLRT statistic performs worse, or sometimes equal to the
CJ and LS test. This is something I had not initially expected, since the likelihood ratio test is a
good test in finite dimensional statistics.

Something else we see is that while CJ and LS test perform similarly, the CJ test just slightly
outperforms the LS test, especially when our alternative is close the null hypothesis. For example,
notice the discrepancy between the CJ and LS statistic in figure 4.1a. It seems like the CJ test has
a small head start in power compared to LS. As ρ increases, both these tests increase in power,
but the discrepancy never truly disappears until the power is 1.
A similar observation is made in figure 4.2a. Our LS test starts lower, and is never truly able to
catch up to CLRT and CJ.

I think this phenomenon has the same explanation as why the sizes of the LS are so small. The
LS test needs the high-dimensional aspect more than CLRT and CJ do. One could argue that for
power curves, p = 32 is too small for high-dimensional behaviour to really come forward, and use
that as an explanation for why the LS test is set back a little compared to the CJ test. I’m inclined
to agree with that, since all of these derivations were done under the assumption that p→∞, and
we did see LS test have higher sizes if p was about the same as n, in table 4.1.

However, I would like to point a small rule of thumb that is often used in practice: The regular one
dimensional Central Limit Theorem is in practice applicable for sample sizes of n = 30, if your data
is roughly bell-shaped. In our case we used standard normal data so this satisfies the condition.
I would expect that p = 32 is large enough to at least apply our Central Limit Theorem 1.5.1 for
linear spectral statistics.

It seems like LS is never really able to catch up to the CJ because of the ”delay”, the difference
in power, it starts with. A positive note is that under our alternative hypothesis, it still mostly
outperforms the CLRT. Based on my findings, I would recommend to use the CJ test over the LS
and CLRT test at all levels, either finite or high-dimensional statistics. That is because LS only
works good in high-dimensional case, but even then it just has the same distribution as the CJ
test, and so produces the same results. The CLRT test performs decent in for low dimension, but
falls short as p increases.
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Chapter 5

Non-linear shrinkage estimators

We now consider a new type of estimator; the non-linear shrinkage estimator by Ledoit and Wolf
[12]. The aim of this section is to find out if we can proceed in a similar way as we did for linear
shrinkage; that is find parameters that rely on the sample eigenvalues in some way and find a
limiting distribution. If we are able to do that, we can construct a new statistical test that might
be able to outperform the linear shrinkage, or the CJ-test. Before we are potentially able to find
out a test we first need to lay down the framework for non-linear shrinkage.

5.1 Setting

We again have the following setting:
We are interested in the spectral properties of the sample covariance matrix

Sn =
1

n
Y Y T

where Y = Σ
1/2
n Xn, satisfying the following assumptions:

• (A1) Our p×n noise matrix Xn consists of independent identically distributed variables xi,j
with mean 0 and variance 1, and the 12-th moment Ex12

(i,j) exists.

• (A2) Our true population covariance Σn is a p× p random matrix, independent of Xn

• (A3) p
n → c ∈ (0, 1)

• (A4) τ1 . . . τp are the eigenvalues of Σn, and the empirical spectral distribution Hn(τ) con-
verges to some non-random limit law H(τ)

Before presenting the results we briefly present some definitions and known results that we will
need for our non-linear shrinkage case.

Definition 5.1.1. [2] Let F be a finite measure on the real line. The Stieltjes transform of the
measure F with z ∈ C+ : {z ∈ C : Im(z) > 0} is defined as

mF (z) =

∫
1

x− z
dF (x)

Let (λ1 . . . , λp) denote the eigenvalues of Sn, in decreasing order. If the measure is the empirical
spectral distribution FSn of the eigenvalues of Sn, one gets for it’s Stieltjes transform

mFn(z) =
1

p

p∑
i=1

1

λi − z
=

1

p
tr((Sn − zI)−1)

The first major result is by Marcenko-Pastur (1967) [13]. In the next theorem we recall their result
and present it the most recent version as given in [14].
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Theorem 5.1.1. [13] Let mFn(z) = 1
p

∑p
i=1

1
λi−z be the Stieltjes transform of the ESD of Sn.

Then, under assumptions (A1)-(A4) we have for ∀z ∈ C : Im(z) > 0, that limn→∞mFn(z) =
mF (z) almost surely, where mF (z) satisfies:

∀z ∈ C+ : mF (z) =

∫ ∞
−∞

{
τ [1− c− czmF (z)]− z

}−1
dH(τ)

As always, the empirical distribution function Fp(x) = 1
p

∑p
i=1 1[λi<x] of the sample covariance

matrix converges to the nonrandom limit F , the cumulative distribution function of the Marcenko-
Pastur law.

In addition, it is proven in [15] that the following limit exists:

λi ∈ R \ 0 : lim
z∈C+→λi

mF (z) := m̌F (λi)

Here it comes into play why we required that c ∈ (0, 1). If c > 1, the sample covariance matrix
has eigenvalues equal to zero, with proportion 1− 1

c . We can then not always be sure if this limit
exists in this current form, so we stick to c < 1.

The general form for the non-linear shrinkage estimator we will consider is:

ΣNLS = UnDnU
−1
n

Here Dn = Diag(d1, . . . , dp) is a diagonal matrix, and Un is the matrix consisting of the sample
eigenvectors of Sn. We again want to minimize the following expression:

minDn ||UnDnU
−1
n − Σn||2F , Dn diagonal

It can be shown [11] that the optimal solution is

D̃n = diag(d̃1, . . . , d̃p),∀i ∈ {1, . . . , p} : d̃i = uTi Σnui

where ui denotes the eigenvector corresponding to the i-th eigenvalue. We cannot explicitly cal-
culate these d̃i since they depend on the non-observable Σn. However, the following theorem,
Theorem 4 from [11] gives us the asymptotic quantity that will estimate the non-linear shrinkage
intensity.

Before we can state the theorem we need to introduce the following object:

∀x ∈ R,∆p(x) =
1

p

p∑
i=1

d̃i · 1{λi<x}

This is a type of cumulative distribution with jumps of height d̃i at the eigenvalues. This distri-
bution function will settle down to some non-random cumulative function ∆:

Theorem 5.1.2. Assume conditions (A1)-(A4) hold, and let ∆p(x) be defined as above. Then
there exists a non-random function ∆ defined on R such that ∆p(x) converges almost surely to ∆
for all x ∈ R \ {0}. If furthermore c < 1, then ∆ can be written in the form ∀x ∈ R,∆(x) =∫ x
−∞ δ(λ)dF (λ), where

δ(λ) =
λ

|1− c− cλm̌F (λ)|2
, λ > 0

So the asymptotic quantity that corresponds with d̃i is δ(λi), which is the sample eigenvalue
divided by a correction factor |1− c− cλm̌F (λi)|2.

5.2 Non-linear shrinkage intensities under H0

Now that we know what our optimal non-linear shrinkage estimator looks like, we would like to
find out if we can produce some tests. However, this is not possible as a result of the following
theorem:
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Theorem 5.2.1. Let δ(λi) be the transformed sample eigenvalue defined as in Theorem 5.1.2, with
λi ∈ [a, b] = [(1∓

√
c)2], the support of the Marcenko-Pastur distribution. Then under H0 : Σn = I,

δ(λi) = 1.

Proof. Recall that ∀i = 1 . . . p : δ(λi) = λ
|1−c−cλm̌F (λi)|2 . Computing δ(λi) is thus directly equiva-

lent with computing m̌F (λi). Recall it’s definition:

λi ∈ R \ 0 : m̌F (λi) := lim
z∈C+→λi

mF (z)

Recall that mF (z) satisfied

mF (z) =

∫ ∞
−∞

{
τ [1− c− czmF (z)]− z

}−1
dH(τ)

We first need to find a useable expression for mF (z) before we can apply the limit. We use
that under H0, the true covariance matrix is Σn = I. This matrix has as eigenvalue λ = 1,
with multiplicity p. That means that the underlying H(τ), the distribution function of the true
eigenvalues, jumps to 1 at τ = 1. This means that the integral with respect to H(τ) under H0 is:

mF (z) =

∫ ∞
−∞

{
τ [1− c− czmF (z)]− z

}−1
dH(τ) =

1

1− c− czmF (z)− z

Rewriting terms gives us a quadratic equation in mF (z):

czmF (z)2 +mF (z)(c+ z − 1) + 1 = 0

Applying the quadratic formula gives us as solutions:

mF (z) =
(1− c)− z ±

√
(c2 + z2 + 1− 2c− 2z + 2cz)− 4c

2cz

We restrict us to the case where we take the ”plus” solution, but as we will see shortly this
does not matter. The term withing the square root can be simplified to

√
(b− z)(a− z), with

b = [1 +
√
c]2 and a = [1−

√
c]2 the boundaries of the support of the eigenvalues. We have to take

the limit as z → λi of the above expression, which has reduced to

mF (z) =
(1− c)− z +

√
((b− z)(a− z)

2cz

Since we are working with complex numbers we have to define a branch cut for our square root.
We take the principal branch with Arg(z) ∈ (−π, π] and let

√
z = exp(log(z

1
2 ) = exp(

1

2
(ln |z|+ i ·Arg(z))) = exp(

1

2
ln |z|) exp(

i

2
Arg(z))

Here i denotes the imaginary unit that satisfies i2 = −1.

Since our eigenvalues are strictly positive (since c < 1) we won’t have trouble with the fact that
the square root is undefined in z = 0. This square root is then continuous and we can happily take
our limit z → λi. This gives:

m̌F (λi) = lim
z→λi

mF (z) =
(1− c)− λi +

√
(b− λi)(a− λi)

2cλi

Inserting this into our δ(λi) gives

δ(λi) =
λi

|1− c− cλim̌F (λi)|2

=
λi

|1− c− cλi(
(1−c)−λi+

√
(b−λi)(a−λi)

2cλi
)|2

=
λi

|(1− c)− 1
2 (1− c) + λi

2 −
1
2

√
(b− λi)(a− λi)|2

=
λi

| 12 (1− c) + λi
2 −

1
2

√
(b− λi)(a− λi)|2
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Now we notice that since a < λi < b, the expression in the square root is negative and real. We
can however write this as√

(b− λi)(a− λi) =
√

(−1)(b− λi)(λi − a) = i
√

(b− λi)(λi − a)

Here we used the principal branch of our square root, that maps strict negative reals onto the
positive imaginary axis, without 0. That gives for our δ(λi):

δ(λi) =
λi

| 12 (1− c) + λi
2 −

i
2

√
(b− λi)(λi − a)|2

We now work out the denominator. For any complex z it holds that |z|2 = =(z)2 +<(z)2. For the
denominator we have that it’s real part is 1

2 (1− c+λi), and imaginary part − 1
2

√
(b− λi)(λi − a).

Here we notice from earlier that it does not matter if we took the ”plus” or ”minus” solution for
mF (z), because we take the imaginary part squared and the ”plus” or ”minus” only determined
the sign of the imaginary part. We get for the real part and imaginary part of the denominator,
writing ω for short:

<(ω)2 = (
1

2
(1− c+ λi))

2

=
1

4
(1− c+ λi)

2

=
1

4
(1 + c2 + λ2

i − 2c+ 2λi − 2cλi)

=(ω)2 = (−1

2

√
(b− λi)(λi − a)

2

=
1

4
((b− λi)(λi − a)

We separately write out (b− λi)(λi − a)

(b− λi)(λi − a) = ([1 +
√
c]2 − λi)(λi − [1−

√
c]2)

= (1 + 2
√
c+ c− λi)(λi − 1 + 2

√
c− c)

= λi − 1 + 2
√
c− c+ 2λi

√
c− 2

√
c+ 4c− 2c

√
c

+ cλi − c+ 2c
√
c− c2 − λ2

i + λi − 2λi
√
c+ cλi

= 2c+ 2cλi + 2λi − c2 − 1− λ2
i

Taking this all together gives us for the denominator of δ(λi)

<(ω)2 + =(ω)2 =
1

4
(1 + c2 + λ2

i − 2c+ 2λi − 2cλi)

+
1

4
(2c+ 2cλi + 2λi − c2 − 1− λ2

i )

=
1

4
(4λi) = λi

Now recalling the definition of δ(λi), we get that both its enumerator and denominator are λi,
and thus we get that for all eigenvalues λ1 . . . λp, it’s transformed optimal non-linear shrinkage
intensity δ(λi) = 1.

This mere fact makes it not possible to construct tests in the same manner as we did for linear
shrinkage. For linear shrinkage, the fact that made constructing tests possible was that the opti-
mal intensity, α∗, depended on linear spectral statistics. These statistics, like the trace

∑p
i=1 λi

or squared Frobenius norm
∑p
i=1 λ

2
i applied one analytic function to all the the eigenvalues, using

f(x) = x and f(x) = x2 respectively. This allowed us to use the central limit theorem 1.5.1, since
that theorem stated that functionals were normally distributed in the high-dimensional case.
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In the non-linear shrinkage case, we apply a function δ(λ) to each eigenvalue. However, it turns out
that this function δ(λi) maps each eigenvalue to 1 under H0. In one sense this is good news. Our
true covariance matrix is the identity matrix, so it has eigenvalues 1, and the non-linear shrinkage
δ(λi) turns the eigenvalues perfectly into what the true eigenvalues actually are. It makes it how-
ever nonrandom.

The fact that it turns the eigenvalues into non-random quantities is what makes testing as we
did for linear shrinkage not possible. For those tests we were able to find a distribution under
H0 and from that distribution we could define a rejection condition for significance levels. For
non-linear shrinkage this would not make sense since we would already know prior if our statistics
would exceed a certain value. For example, lets say we would define a statistic T = 1

p

∑p
i=1 δ(λi).

Because δ(λi) = 1 for all i, we would get that T = 1
p · p · 1 = 1. This is a degenerate statistic, and

tests using this would always result in power 0 or 1 and size 0 or 1.
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Chapter 6

Conclusions

In this concluding section I would like to review my work and draw some conclusions from it. I
will also discuss some points where I think I could have done better, and what further research
one could do.

6.1 Conclusions

In this paper we have derived a new estimator based on the linear shrinkage estimator by Bodnar
(2014) [1]. We found that when multiplied by it’s dimension, the optimal estimator α̂∗ converges
to a normal distribution, and that distribution is the same as the corrected distribution for the
John’s test, which itself was constructed as an optimal test under rotation invariance. After the
derivation we have done simulation study and found out that the LS test was inferior to CJ test,
by virtue of it being equally distributed in high-dimensional statistics and thus performing the
same but worse in finite dimensional statistics.

We also tried to find a possible test in a similar way based on the non-linear shrinkage esti-
mator by Ledoit (2011) [11]. However, it was not possible to directly construct a test due to the
fact that under the null hypothesis the transformed eigenvalues were 1, and thus non random.

6.2 Discussion

The two tests I compared my LS test with, the CLRT and CJ test, are both initially constructed
from a finite dimensional view. That is, these tests were originally meant for finite dimensional
statistics, but were transformed by Wang and Yao in [3] to work in high-dimensional statistics as
well. While both these tests are very powerful in finite dimensional statistics, these tests might
not be the most powerful in high-dimensional case.

Some other test I could have used was from Onatski et. al (2013)[17]. Here they proposed another
sphericity test that has high power in the high-dimensional case. It could have been interesting to
see how our LS test compared to this test.

6.3 Recommendations

In this section I would like to briefly discuss what some things are that could be explored as a
follow up

6.3.1 Prior belief Σ0

As stated in section 3.1.1, our optimal estimator α̂∗ depends on our choice of prior belief Σ0. Recall
it’s definition:

α̂∗ = 1−
1
n ||Sn||

2
tr||Σ0||2F

||Sn||2F ||Σ0||2F − (tr(SnΣ0))2
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We could of course try many more prior beliefs. However, this might come with some complica-
tions; The squared Frobenius can just be computed directly, but we might not be able to find an
explicit distribution for tr(SnΣ0). Dependent on how you define your Σ0, this might not become
linear spectral statistics and thus not fit for the Central Limit Theorem.

In Bodnar (2014)[1], we can find a handy theorem, theorem 3.2, that could help us out:

1

p
|tr(SnM)− tr(ΣnM)| a.s−−→ 0, (p, n)→∞, p

n
→ c

Here M is any symmetric positive definite matrix. So as long as we choose a symmetric positive
definite matrix Σ0, we will be able to consistently estimate tr(tr(ΣnΣ0) with tr(SnΣ0). Dependent
on what Σ0 you choose, the quantity tr(SnΣ0) might become linear spectral statistics or not. In
either case we are able to consistently estimate it. As a result the optimal estimator α̂∗ multiplied
by p may or may not be normal now.

6.3.2 Case when dimension is larger than sample size

In (nearly) all derivations we have done here, we assumed that c ∈ (0, 1), so our dimension is
smaller than the sample size. The reason we did this was to avoid null eigenvalues. We already
saw that the CLRT was not defined for c ≥ 1, since it depended on log(1 − c). However, a good
part of the theory is still valid for c > 1. For example, the Central Limit Theorem 1.5.1 required
only c > 0. A reason why this could be an interesting case is that in practice one works with a
limited sample size, but you have an enormous amount of data per unit. For example, if you work
in genetics you can measure the gene expression of a person, but this could incorporate a huge
amount of genes. If you want to find out what the co-expressions are for certain genes you would
need to construct a sample covariance matrix where p > n, or even p >> n, dependent on how
many genes you need. Right now a commonly used technique is Principal Component Analysis.
This method however throws away data. High-dimensional statistics could provide an answer, and
researching the case p > n ⇐⇒ c > 1 could be very interesting.

6.3.3 Non-linear shrinkage tests

In my research I was unable to construct a test for non-linear shrinkage. However, it is possible
to construct a test in different ways. Li et al (2018) [16] proposed some tests based on non-linear
shrinkage, like the Bartlett–Nanda–Pillai trace (BNP) test.

One could also proceed in a different way for non-linear shrinkage. Instead of taking the limit
z → λi in limz→λi mF (z), one could try to take the limit as z → λi + ε, for some small ε > 0,
and then see what happens for the transformed eigenvalues. If we however simply add ε to the
denominator in δ(λ) = λ

|1−c−cλm̌F (λ)|2 , one ends up with δ(λ) = λ
λ+ε . This is linear spectral statis-

tics, and this we know what happens. You have that
∑p
i=1

λi
λi+ε

is normal in the limit minus some
correction factor. This could be interesting for future research.
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Appendix A

Derivations of limiting
distributions

A.1 Linear spectral statistics distribution derivation

In this section we will derive the limiting distributions for:

||S||2F =

p∑
i=1

λ2
i , T r(S) =

p∑
i=1

λi

Throughout the whole section, h =
√
c.

A handy remark that will be useful in computing the contour integrals will be the following:

Remark. Let z ∈ C run around the unit circle counterclockwise once, with complex conjugate
z̄ = 1/z. Then

|1 + hz|2 = (1 + hz)(1 + hz)

= (1 + hz)(1 +
h

z
)

= 1 +
h

z
+ hz + h2

= (z + h)(
1

z
+ h) =

(z + h)(1 + hz)

z

A.1.1 Limiting distribution of ||Sn||2F
The squared Frobenius norm is a linear spectral statistic with f = x2. Namely:

||S||2F = tr(S2) =

p∑
i=1

λ2
i

Using the Central Limit Theorem 1.5.1, we get that under H0:
Xn(x2) = p

{
1
p

∑p
i=1 λ

2
i − Fc(x2)

}
converges to a normal variable.

But p( 1
p

∑p
i=1 λ

2
i ) =

∑p
i=1 λ

2
i , which was our squared Frobenius norm. If we can find the limiting

distribution of this expression, we are able to make statements about the Frobenius norm of our
sample covariance matrix.

Expectation For the expectation we get if we apply the Central Limit Theorem 1.5.1 and
Proposition 1.5.1:

E(Xx2) = (κ− 1)I1(x2) + βI2(x2)

= (κ− 1) lim
r↓1

I1(x2, r) + βI2(x2)

= (κ− 1) lim
r↓1

1

2πi

∮
|z|=1

|1 + hz|4
[ z

z2 − r−2
− 1

z

]
dz + β

1

2πi

∮
|z|=1

|1 + hz|4 1

z3
dz
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We first compute the first contour integral, after κ− 1. From our remark we find that |1 + hz|4 =

(|1 + hz|2)2 is equal to (z+h)2(1+hz)2

z2 This turns our contour integral into

1

2πi

∮
|z|=1

(z + h)2(1 + hz)2

z2

[ z

z2 − r−2
− 1

z

]
dz (A.1)

=
1

2πi
(

∮
|z|=1

(z + h)2(1 + hz)2

z2

z

(z − 1
r )(z + 1

r )
dz −

∮
|z|=1

(z + h)2(1 + hz)2

z2

1

z
dz) (A.2)

For the left contour integral, we see that we have a pole of order 1 in z = 0, and poles of order 1
in z = ± 1

r . Because r > 1, we have 1
r < 1 and thus the poles z = ± 1

r lie within our contour. The
residues are:

Res = lim
z→0

(z + h)2(1 + hz)2

(z − 1
r )(z + 1

r )
= 2πi

h2

− 1
r2

= −r2h2

Res(f,
1

r
) = lim

z→ 1
r

(z + h)2(1 + hz)2

z(z + 1
r )

=
( 1
r + h)2(1 + h

r )2

1
r

2
r

Res(f,−1

r
) = lim

z→− 1
r

(z + h)2(1 + hz)2

z(z − 1
r )

=
(− 1

r + h)2(1− h
r )2

−1
r
−2
r

Applying the residue theorem, and then taking the limit r ↓ 1 we get for the left part of A.2:

lim
r↓1

1

2πi

∮
|z|=1

(z + h)2(1 + hz)2

z2

z

(z − 1
r )(z + 1

r )
dz

= lim
r↓1

1

2πi
2πi(Res+Res(f,

1

r
) +Res(f,

−1

r
))

= lim
r↓1

(−r2h2 +
( 1
r + h)2(1 + h

r )2

1
r

2
r

+
(− 1

r + h)2(1− h
r )2

−1
r
−2
r

= −h2 +
(h+ 1)4

2
+

(h− 1)2(1− h)2

2

= −h2 + 1 + 6h2 + h4

= h4 + 5h2 + 1

The right contour integral in equation A.2 has pole of order 3 in z = 0.That means it has
residue

Res =
1

2!
lim
z→0

d2

dz2
(z + h)2(1 + hz)2

=
1

2
(2 + 8h2 + 2h4) = 1 + 4h2 + h4

So the contour integral is equal to

1

2πi

∮
|z|=1

(z + h)2(1 + hz)2

z2

1

z
dz = 1 + 4h2 + h4

Subtracting the contour integrals from each other gives us that

I1(x2) =
1

2πi
(

∮
|z|=1

(z + h)2(1 + hz)2

z2

z

(z − 1
r )(z + 1

r )
dz −

∮
|z|=1

(z + h)2(1 + hz)2

z2

1

z
dz)

= h4 + 5h2 + 1− (h4 + 4h2 + 1) = h2

Recall that h2 = c, we get that I1(x2) = c, and so the first part of the expectation is (κ− 1)c.

Now for the second part that follows after β. We use again that |1 + hz|4 = (z+h)2(1+hz)2

z2 so we
have

I2(x2) =
1

2πi

∮
|z|=1

|1 + hz|4 1

z3
dz

=
1

2πi

∮
|z|=1

(z + h)2(1 + hz)2

z2

1

z3
dz
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Now z = 0 is a pole of order 5, so the residue is:

Res =
1

4!
lim
z→0

d4

dz4
(z + h)2(1 + hz)2

=
1

24
(24h2)

= h2

So the right part of the expectation equals βh2 = βc. Taking the two parts together, we get that
the expectation E(Xx2) = (κ− 1 + β)c

Variance For the variance, we use the covariance formula from theorem 1.5.1 and recall that
V ar(Xf ) = Cov(Xf , Xf ). The formula becomes, again using f = g = x2 and Proposition 1.5.1:

V ar(Xx2) = κJ1(x2, x2) + βJ2(x2, x2)

= κ lim
r↓1

J1(x2, x2, r) + βJ2(x2, x2)

= κ lim
r↓1

−1

4π2

∮
|z2|=1

∮
|z1|=1

(|1 + hz1|)4)(|1 + hz2|4)

(z1 − rz2)2
dz1dz2

+ β
−1

4π2

∮
|z1|=1

(|1 + hz1|)4

z2
1

dz1

∮
|z2|=1

(|1 + hz2|)4

z2
2

dz2

We again first compute the contour integral(s) after κ, J1(x2, x2, r). The inner contour integral
becomes, after rewriting |1 + hz1|4∮

|z1|=1

(z1 + h)2(1 + hz1)2

z2
1

(|1 + hz2|4)

(z1 − rz2)2
dz1

The only pole is z1 = 0 of order 2 and not z1 = rz2, because for fixed |z2| = 1 and r > 1, rz2 lies
outside the contour. It’s winding number is thus 0, and it’s residue adds nothing to the integral.
For the residue at z1 = 0we use the chain rule:

Res = lim
z1→0

d

dz1
(z1 + h)2(1 + hz1)2 (|1 + hz1|4)

(z1 − rz2)2

= (|1 + hz2|4) lim
z1→0

d

dz1

( (z1 + h)(1 + hz1)

(z1 − rz2)

)2
= (|1 + hz2|4) lim

z1→0

d

dz1
t(z1)2

= (|1 + hz2|4) lim
z1→0

2t(z1)
d

dz
t(z1)

Here t(z1) = (z1+h)(1+hz1)
(z1−rz2) . Its derivative is d

dz t(z1) =
(z1−rz2)(1+2hz21+h2)−(z1+h)(1+hz1)

(z1−rz2)2 Taking the

limit z1 → 0 in both the function and the derivative gives us:

lim
z1→0

t(z1) =
h

−rz2

lim
z1→0

t′(z1) =
(−rz2)(1 + h2)− h

(−rz2)2

So the residue is equal to

2(|1 + hz2|4)
h

−rz2

(−rz2)(1 + h2)− h
(−rz2)2
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So the inner contour integral is equal to 2πi · 2(|1 + hz2|4) h
−rz2

(−rz2)(1+h2)−h
(−rz2)2 This becomes

our new integrand for the outer contour integral where we integrate over z2. That outer integral
becomes

−1

4π2

∮
|z2|=1

2πi(|1 + hz2|4)2
h

−rz2

(−rz2)(1 + h2)− h
(−rz2)2

dz2

=
1

2πi

∮
|z2|=1

(z2 + h)2(1 + hz2)2

z2
2

2h

−rz2

(−rz2)(1 + h2)− h
(−rz2)2

dz2

=
1

2πi

∮
|z2|=1

(z2 + h)2(1 + hz2)2

z2
2

2h

z2

(−rz2)(1 + h2)− h
z2

2

1

−r3
dz2

We have a pole of order 5 in z2 = 0. The residue in z2 = 0 is

Res =
1

4!
lim
z2→0

d4

dz4
2

(z2 + h)2(1 + hz2)2(2h)((−rz2)(1 + h2)− h)

−r3

=
1

−24r3
lim
z2→0

(−48h2((5h3 + 5h)rz2 + (2h4 + 4h2 + 2)r + h2))

=
2

r3
h2(h2 + r(2h4 + 4h2 + 2))

So we get that

1

2πi

∮
|z1|=1

(z1 + h)2(1 + hz1)2

z2
1

2h

z1

z1(1 + h2) + rh

z2
1

dz1 =
2

r3
h2(h2 + r(2h4 + 4h2 + 2))

Taking the limit again with r ↓ 1, we get that

lim
r↓1

−1

4π2

∮
|z1|=1

∮
|z2|=1

(|1 + hz1|)4)(|1 + hz2|4)

(z1 − rz2)2
dz2dz1

= lim
r↓1

2

r3
h2(h2 + r(2h4 + 4h2 + 2))

= 2(h2)(h2 + 2h4 + 4h2 + 2)

= 2h2(2h4 + 5h2 + 2)

= 4h6 + 10h4 + 4h2

Now we compute the β part J2(x2, x2) of the variance:

β
−1

4π2

∮
|z1|=1

(|1 + hz1|)4

z2
1

dz1

∮
|z2|=1

(|1 + hz2|)4

z2
2

dz2

These are 2 loose contour integrals. The first one becomes:∮
|z1|=1

(|1 + hz1|)4

z2
1

dz1

=

∮
|z1|=1

(z1 + h)2(1 + hz1)2

z2
1

1

z2
1

dz1

It has pole of order 4: so for the residue we get

Res =
1

3!
lim
z1→0

d3

dz3
1

(z1 + h)2(1 + hz1)2

=
1

6
(12h+ 12h3)

= (2h+ 2h3)
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The first contour integral is then equal to 2πi(2h+ 2h3)
The second contour integral is ∮

|z2|=1

(|1 + hz2|)4

z2
2

dz2

=

∮
|z2|=1

(z2 + h)2(1 + hz2)2

z2
2

1

z2
2

dz2

This is the same integral with z2 instead of z1. So this contour integral is also equal to 2πi(2h+2h3).
Multiplying the values together gives us the β part of the variance:

β
−1

4π2

∮
|z1|=1

(|1 + hz1|)4

z2
1

dz1

∮
|z2|=1

(|1 + hz2|)4

z2
2

dz

= β
−1

4π2

(
2πi(2h+ 2h3)2πi(2h+ 2h3)

)
= β(2h+ 2h3)2

= β(4h2 + 8h4 + 4h6)

Now we add together the κ -and β part, J1(x2, x2) and J2(x2, x2) and use h =
√
c to get

V ar(Xf ) = κ(4h6 + 10h4 + 4h2) + β(4h2 + 8h4 + 4h6)

= 4h6(κ+ β) + 8h4(κ+ β) + 4h2(κ+ β) + 2κh4

= 4(κ+ β)(c3 + 2c2 + c) + 2κc2

Conclusions We have an expectation and variance, but we have to put it into a form such that
we can apply it. Recall that Xx2 = p

{
1
p

∑p
i=1 λ

2
i − Fc(x2)

}
. We note that Fc(x

2) =
∫
x2pc(x)dx

is the second moment of the Marcenko Pastur distribution. Using Proposition 1.2.1, we get that

Fc(x
2) =

∫
x2dpc(x)dx = µ2

=

1∑
r=0

1

r + 1

(
2

r

)(
1

r

)
cr

=

(
2

0

)(
1

0

)
c0 +

1

2

(
2

1

)(
1

1

)
c1 = 1 + c

In other words:

Xx2 = p
{1

p

p∑
i=1

λ2
i − Fc(x2)

}
=

p∑
i=1

λ2
i − p(1 + c)

= ||S||2F − p(1 + c)
D−→ N(µx2 , σ2

x2)

So the squared Frobenius norm minus p(1 + c) is normal in the limit with expectation µx2 =
(κ− 1 + β)c and variance σ2

x2 = 4(κ+ β)(c3 + 2c2 + c) + 2κc2

A.1.2 Limiting distribution of tr(Sn)

We proceed similarly for tr(S) =
∑p
i=1 λi. The trace of Sn is a linear spectral statistic with f = x.

Namely:

tr(Sn) =

p∑
i=1

λi
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Using again the Central Limit Theorem 1.5.1, we get that under H0:
Xn(x) = p

{
1
p

∑p
i=1 λi − Fc(x)

}
converges to a normal variable.

But p( 1
p

∑p
i=1 λi) =

∑p
i=1 λi, which is our trace. Our goal is then to find the expectation and

variance of tr(S)− pFc(x)

Expectation For the expectation we get again if we apply the Central Limit Theorem 1.5.1 and
Proposition 1.5.1 with f = x

E(Xx) = (κ− 1)I1(x) + βI2(x)

= (κ− 1) lim
r↓1

I1(x, r) + βI2(x)

= (κ− 1) lim
r↓1

1

2πi

∮
|z|=1

|1 + hz|2
[ z

z2 − r−2
− 1

z

]
dz + β

1

2πi

∮
|z|=1

|1 + hz|2 1

z3
dz

We first compute the integral that follows κ − 1, I1(x). Using our remark about |1 + hz|2 from
earlier and splitting it up gives us

I1(x) = lim
r↓1

I1(x, r) =
1

2πi
lim
r↓1

∮
|z|=1

|1 + hz|2
[ z

z2 − r−2
− 1

z

]
dz (A.3)

=
1

2πi
lim
r↓1

{∮
|z|=1

(z + h)(1 + hz)

z

z

(z − 1
r )(z + 1

r )
dz −

∮
|z|=1

(z + h)(1 + hz)

z

1

z
dz
}

(A.4)

The left integral has only poles at z = ± 1
r this time, and has residues:

Res(f,
1

r
) = lim

z→ 1
r

(z + h)(1 + hz)

(z + 1
r )

=
( 1
r + h)(1 + h

r )
2
r

Res(f,−1

r
) = lim

z→− 1
r

(z + h)(1 + hz)

(z − 1
r )

=
(− 1

r + h)(1− h
r )

− 2
r

Adding the residues together gives us for the first integral

( 1
r + h)(1 + h

r )
2
r

+
(− 1

r + h)(1− h
r )

− 2
r

=
(1 + rh)(1 + h

r )

2
+

(1− rh)(1− h
r )

2

=
1

2
(1 +

h

r
+ rh+ h2 + 1− h

r
− rh+ h2)

=
1

2
(2 + 2h2)

= 1 + h2

For the second integral we have:

1

2πi

∮
|z|=1

(z + h)(1 + hz)

z

1

z
dz

This one has pole of order 2 at z = 0. The residue is then:

Res = lim
z→0

d

dz
(z + h)(1 + hz)

= lim
z→0

d

dz
(z + hz2 + h+ h2z)

= lim
z→0

(1 + 2hz + h2)

= 1 + h2
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The contour integrals are equal. Since we subtract the second one from the first, we get that I1(x)
is 0.

For the β part, I2(x):

I2(x) =
1

2πi

∮
|z|=1

f(|1 + hz|2)
1

z3
dz

=
1

2πi

∮
|z|=1

(z + h)(1 + hz)

z

1

z3
dz

This has pole of order 4 at z = 0, and residue:

Res =
1

3!
lim
z→0

d3

dz3
(z + h)(1 + hz)

However, the polynomial being differentiated has highest power of hz2, and so the whole thing
vanishes when differentiating 3 times. Thus the residue equals 0, and so the whole contour integral
I2(x) is 0.

Since both I1(x) and I2(x) are 0, the expectation E(tr(S)− p) is 0.

Variance For the variance we again get:

V ar(Xx) = κJ1(x, x) + βJ2(x, x)

= κ lim
r↓1

J1(x, x, r) + βJ2(x, x)

= κ lim
r↓1

−1

4π2

∮
|z1|=1

∮
|z2|=1

(|1 + hz1|)2)(|1 + hz2|2)

(z1 − rz2)2
dz2dz1

+ β
−1

4π2

∮
|z1|=1

(|1 + hz1|)2

z2
1

dz1

∮
|z2|=1

(|1 + hz2|)2

z2
2

dz2

We first compute limr↓1 J1(x, x, r) This is:

lim
r↓1

J1(x, x, r) = lim
r↓1

−1

4π2

∮
|z2|=1

∮
|z1|=1

(|1 + hz1|)2)(|1 + hz2|2)

(z1 − rz2)2
dz1dz2

= lim
r↓1

−1

4π2

∮
|z2|=1

∮
|z1|=1

(z1 + h)(1 + hz1)

z1

(z2 + h)(1 + hz2)

z2

1

(z1 − rz2)2
dz1dz2

The inner contour integral has pole of order 1 at z1 = 0, and residue:

Res = lim
z1→0

(z2 + h)(1 + hz2)

z2
(z1 + h)(1 + hz1)

1

(z1 − rz2)2

=
(z2 + h)(1 + hz2)

z2

h

(−rz2)2

=
(z2 + h)(1 + hz2)

z3
2

h

r2

So 2πi (z2+h)(1+hz2)
z32

h
r2 becomes the integrand in the contour integral over z2:

J1(x, x) = lim
r↓1

J1(x, x, r)

= lim
r↓1

1

2πi

∮
|z2|=1

(z2 + h)(1 + hz2)

z3
2

h

r2
dz2
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This has pole of order 3 in z2 = 0 with residue:

Res =
1

2!
lim
z2→0

d2

dz2
2

(z2 + h)(1 + hz2)
h

r2

=
1

2
lim
z2→0

(2h)
h

r2

=
h2

r2

Taking the limit as limr↓1, we get that J1(x, x) = h2 = c.
Now for the β part:

J2(x, x) =
−1

4π2

∮
|z1|=1

(|1 + hz1|)2

z2
1

dz1

∮
|z2|=1

(|1 + hz2|)2

z2
2

dz2

These are the same integrals, just over different variables. We compute one:∮
|z1|=1

(|1 + hz1|)2

z2
1

dz1

=

∮
|z1|=1

(z1 + h)(1 + hz1)

z1

1

z2
1

dz1

This has pole of order 3 at z1 = 0, and so residue

Res =
1

2!
lim
z1→0

d2

dz2
1

(z1 + h)(1 + hz1)

=
1

2
lim
z1→0

(2h)

= h

So one contour integral equals 2πih, and squared it is −4π2

h2 . This gives us that J2(x, x) = h2 = c,
just like J1(x, x)
Combining everything gives us:

V ar(Xx) = κJ1(x, x) + βJ2(x, x)

= κc+ βc = (κ+ β)c

Conclusions Again we have an expectation and variance, but we have to put it into a form such
that we can apply it. Recall that Xx = p

{
1
p

∑p
i=1 λi − Fc(x)

}
. Here we have that Fc(x) is the

expectation of the Marcenko Pastur law, and is 1. In other words:

Xx = p
{1

p

p∑
i=1

λi − Fc(x)
}

=

p∑
i=1

λi − p

= tr(Sn)− p D−→ N(µx, σ
2
x)

So the trace of Sn minus p is normal in the limit with expectation µx = 0 and variance σ2
x = (κ+β)c

A.1.3 Covariance of ||Sn||2F and tr(Sn)

If you want to find the distribution of pα̂ you will need the covariance between the squared Frobe-
nius norm and the trace. In this section we will derive their covariance.
We use again that the squared Frobenius norm and trace are linear spectral statistics with f = x2

and g = x respectively. We can apply the Central Limit Theorem 1.5.1 and Proposition 1.5.1 to
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find a formula for their covariance:

Cov(Xx2 , Xx) = κJ1(x2, x) + βJ2(x2, x)

= κ lim
r↓1

J1(x2, x, r) + βJ2(x2, x)

= κ lim
r↓1
− 1

4π2

∮
|z2|=1

∮
|z1|=1

(|1 + hz1|4)(|1 + hz2|2)

(z1 − rz2)2
dz1dz2

+ β
−1

4π2

∮
|z1|=1

(|1 + hz1|4)

z2
1

dz1

∮
|z2|=1

(|1 + hz2|2)

z2
2

dz2

We first compute J1(x2, x, r) This is

J1(x2, x, r) = lim
r↓1
− 1

4π2

∮
|z2|=1

∮
|z1|=1

(|1 + hz1|4)(|1 + hz2|2)

(z1 − rz2)2
dz1dz2

= lim
r↓1
− 1

4π2

∮
|z2|=1

∮
|z1|=1

(z1 + h)2(1 + hz1)2

z2
1

(z2 + h)(1 + hz2)

z2

1

(z1 − rz2)2
dz1dz2

The inner contour integral has pole of order 2 at z1 = 0, because rz2 lies outside the contour. That
means it has residue:

Res = lim
z1→0

d

dz1
(z1 + h)2(1 + hz1)2 (z2 + h)(1 + hz2)

z2

1

(z1 − rz2)2

=
(z2 + h)(1 + hz2)

z2
lim
z1→0

d

dz1
q(z1)2

=
(z2 + h)(1 + hz2)

z2
lim
z1→0

2q(z1)
d

dz1
q(z1)

Here q(z1) = (z1+h)(1+hz1)
(z1−rz2) , with derivative d

dz1
q(z1) = (z1−rz2)(1+2hz1+h2)−(z1+h)(1+hz1)

(z1−rz2)2 The limits
are:

lim
z1→0

q(z1) =
h

−rz2

lim
z1→0

q′(z1) =
−rz2(1 + h2)− h

r2z2
2

The residue then becomes:

Res =
(z2 + h)(1 + hz2)

z2
2

h

−rz2

−rz2(1 + h2)− h
r2z2

2

This times 2πi becomes the integrand for the outer contour integral, which becomes

J1(x2, x, r) = lim
r↓1

=
1

2πi

∮
|z2|=1

(z2 + h)(1 + hz2)

z2

2h

−rz2

−rz2(1 + h2)− h
r2z2

2

dz2

We have a pole of order 4 in z2 = 0, and so residue:

Res =
1

3!

1

−r3
lim
z2→0

d3

dz3
2

(z2 + h)(1 + hz2)(2h)(−rz2(1 + h2)− h)

=
1

6

2

−r3
lim
z2→0

−6h2(h2 + 1)r

= 2rh2(h2 + 1)
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Taking the limit as r ↓ 1 gives us that J1(x2, x) = 2h2(h2 + 1) = 2c2 + 2c
Now we compute J2(x2, x):

J2(x2, x) =
−1

4π2

∮
|z1|=1

(|1 + hz1|4)

z2
1

dz1

∮
|z2|=1

(|1 + hz2|2)

z2
2

dz2

=
−1

4π2

∮
|z1|=1

(z1 + h)2(1 + hz1)2

z2
1

1

z2
1

dz1

∮
|z2|=1

(z1 + h)(1 + hz1)

z1

1

z2
2

dz2

The left contour integral has pole of order 4 in z1 = 0 and so it has residue

Res =
1

3!
lim
z1→0

d3

dz3
1

(z1 + h)2(1 + hz1)2

=
1

6
lim
z1→0

12h(2hz1 + h2 + 1)

= 2h(h2 + 1)

The right contour integral has pole of order 3 in z2 = 0 and so it has residue

Res =
1

2!
lim
z2→0

d2

dz2
2

(z1 + h)(1 + hz1)

=
1

2
lim
z2→0

2h

= h

Multiplying the contour integrals together gives us that

J2(x2, x) = 2h(h2 + 1)h = 2h2(h2 + 1) = 2c2 + 2c

Combining the results for J1(x2, x), J2(x2, x) gives us

Cov(Xx2 , Xx) = κ(2c2 + 2c) + β(2c2 + 2c) = 2(κ+ β)(c2 + c)

A.2 Derivation limiting distribution α̂∗

A.2.1 Joint Normal Distribution of ||S||2F and tr(Sn)2

Before we can move on to the derivation of α̂∗, we need to observe the joint normality of the
Frobenius norm and the trace. Since they have a covariance 2(κ + β)(c2 + c), which is nonzero,
they are dependent. However they can still be jointly normal. It is however important that we
subtract p(1 + c) from the Frobenius norm and p from the trace, otherwise these quantities would
become unbounded as p→∞. We then get

(||Sn||2F − p(1 + c), tr(Sn)− p)T D−→ N(µ,Σ)

where µ = ((κ− 1 + β)c, 0)) =T and Σ =

(
4(κ+ β)(c3 + 2c2 + c) + 2κc2) 2(κ+ β)(c2 + c)

2(κ+ β)(c2 + c) (κ+ β)c

)

A.2.2 Delta method applied to α̂∗

We have

α̂∗ = 1− c · tr(Sn)2

p||Sn||2F − tr(Sn)2

But also we have that:{
||Sn||2F − p(1 + c)

tr(Sn)− p

}
= p

{ 1
p

∑p
i=1 λ

2
i − (1 + c)

1
p

∑p
i=1 λi − 1

}
D−→
[
X1

X2

]
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X1 ∼ N((κ− 1 + β)c, 4(κ+ β)(c3 + 2c2 + c) + 2κc2)

X2 ∼ N((0, (κ+ β)c)

Cov(X1,X2) = 2(κ+ β)(c2 + c)

If we can write α̂∗ as a function of 1
p

∑p
i=1 λ

2
i and 1

p

∑p
i=1 λi, we can apply the Delta method with

a =

(
1 + c

1

)
, p→∞ and b = 1

To this end, let us rewrite

α̂∗ = 1− c · tr(Sn)2

p||Sn||2F − (tr(Sn))2

= 1−
c · p2( 1

p tr(Sn))2

p2 1
p ||Sn||

2
F − p2( 1

p tr(Sn))2

= 1− cy2

x− y2

The last step is justified since we can divide away p2, and substitute x = 1
p ||Sn||

2
F and y = 1

p tr(Sn).
We substitute for simplicity.
We now observe that our α̂∗ is a function g : R2 → R for the sake of the Delta method: Namely

α̂∗ = g(x, y) = 1− cy2

x− y2

The Delta method now implies that

p
{
α̂∗ − g(a)

} D−→ [∇g(a)]T
[
X1

X2

]
,a =

(
1 + c

1

)
We compute then:

g(a) = g(1 + c, 1)

= 1− c(12)

1 + c− 12

= 1− c

c
= 0

For [∇g(a)]T = [ ∂g∂x (a), ∂g∂y (a)], we compute the partial derivatives with respect to x and y:

∂g

∂x
=

∂

∂x

{
1− cy2

x− y2

}
=

cy2

(x− y2)2

∂g

∂y
=

∂

∂y

{
1− cy2

x− y2

}
= − 2cxy

(x− y2)2

If we then put in a =

(
1 + c

1

)
, we get for the partial derivatives:

∂g

∂x
(a) =

c(12)

(1 + c− (12))2

=
c

c2
=

1

c
∂g

∂y
(a) = − 2c(1 + c) · 1

(1 + c− (12))2

= −2c(1 + c)

c2
= −2(1 + c)

c
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So we get that

[∇g(a)]T = [
1

c
,

2(1 + c)

c
]

Combining this all implies that

pα̂∗
D−→ [

1

c
,

2(1 + c)

c
]

[
X1

X2

]
=

1

c
X1 −

2(1 + c)

c
X2

So pα̂∗ is the sum of two normal variables in the limit, and is thus also normal! It has expectation

E(pα̂∗) = E
(1

c
X1 −

2(1 + c)

c
X2

)
=

1

c
E(X1)− 2(1 + c)

c
E(X2)

=
1

c
(κ− 1 + β)c− 2(1 + c)

c
· 0

= κ− 1 + β

It has variance

V ar(pα̂∗) = V ar
(1

c
X1 −

2(1 + c)

c
X2

)
=

1

c2
V ar(X1) + (−2(1 + c)

c
)2V ar(X2)− 2 · 1

c

2(1 + c)

c
Cov(X1,X2)

=
1

c2
(4(κ+ β)(c3 + 2c2 + c) + 2κc2) + (

2(1 + c)

c
)2(κ+ β)(c)− 2

1

c

2(1 + c)

c
2(κ+ β)(c2 + c)

= 2κ

Thus
pα̂∗

D−→ N(κ− 1 + β, 2κ)

We now have derived a ready to use statistic in the high-dimensional case based on a estimator
other than the regular sample covariance matrix.
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Appendix B

Matlab Code

function y = TraceNorm (S ) ;
y = trace ( ( S∗ t ranspose (S ) ) ˆ ( 1 / 2 ) ) ;
end

function y = Frob (S ) ;
y = sqrt ( trace (S∗ t ranspose (S ) ) ) ;
end

B.1 Codes used for sizes / power curves

B.1.1 Empirical size

%% EMPIRICAL SIZES
c l e a r v a r s ;
t ic

A = 1e2 ;

pval = [8 ,16 , 32 ,64 ,96 , 126 ,192 ,224 ,256 ] ;
n = 256 ;
w = 1 . 6 4 4 9 ;
kappa =2;
beta = 1 . 5 ; %% OR 0 IF NORMAL DATA

powervecCLRT = zeros ( length ( pval ) , 1 ) ;
powervecCJ = zeros ( length ( pval ) , 1 ) ;
powervecLS =zeros ( length ( pval ) , 1 ) ;
for j = 1 : length ( pval )

p = pval ( j ) ;
c = p/n ;
Sigma 0 = eye (p ) ;
countCJ = 0 ;
countCLRT =0;
countLS = 0 ;
for i = 1 :A

Y = gamrnd (4 ,1/2 , p , n)−2;
%Y = randn (p , n ) ;
S = 1/n∗(Y∗ t ranspose (Y) ) ;
LambdaN = p∗ log ( trace (S)/p)−log ( det (S ) ) ; %
i f (LambdaN+(p−n)∗ log(1−c)−p)>w∗sqrt(−kappa∗ log(1−c)−kappa∗c)+ (−(kappa−1)∗ log(1−c )/2+0.5∗beta∗c )

countCLRT = countCLRT+1;
end
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%CJ TEST
T2 =(pˆ2∗n/2)∗ trace ( ( S/trace (S)−eye (p)/p ) ˆ 2 ) ;
U = (2/( n∗p ) )∗T2 ;
i f (n∗U−p) > w∗sqrt (2∗ kappa)+(kappa−1+beta ) ;

countCJ = countCJ + 1 ;
end

%LINEAR SHRINKAGE
alphahat = 1−(1/n∗trace (S)ˆ2∗Frob ( Sigma 0 )ˆ2 )/ ( Frob (S)ˆ2∗Frob ( Sigma 0)ˆ2−trace (S ) ˆ 2 ) ;
i f p∗ alphahat > w∗sqrt (2∗ kappa)+(kappa−1+beta ) ;

countLS = countLS+1;
end

end
powervecCLRT( j ) = countCLRT/A;
powervecCJ ( j ) = countCJ/A;
powervecLS ( j ) = countLS/A;

end
toc

B.1.2 Power plots

c l e a r v a r s ;
p = 64 ;
n = 128 ;
c=p/n ;
rho = − 0 . 3 : 0 . 0 1 : 0 . 3 ;

kappa = 2 ;
beta = 0 ;

A = 1e3 ;
powervecCLRT = zeros ( length ( rho ) , 1 ) ;
powervecCJ = zeros ( length ( rho ) , 1 ) ;
powervecLS =zeros ( length ( rho ) , 1 ) ;

alpha = 0 : 0 . 0 1 : 1 ;

$Sigma 0$ = eye (p ) ;
t ic
for j = 1 : length ( rho )

r = rho ( j ) ;
Sigma = (1− r )∗eye (p) + r ∗ ones (p ) ;
countLS = 0 ;
countCLRT = 0 ;
countCJ = 0 ;

for i = 1 :A;
X = randn(p , n ) ;
Y = Sigma ˆ(1/2)∗X;
S = 1/n∗(Y∗ t ranspose (Y) ) ;
%s t a t i s t i c s
%CLRT
LambdaN = p∗ log ( trace (S)/p)−log ( det (S ) ) ;
i f (LambdaN+(p−n)∗ log(1−c)−p)>1.645∗ sqrt(−kappa∗ log(1−c)−kappa∗c)+ (−(kappa−1)∗ log(1−c )/2+0.5∗beta∗c )

countCLRT = countCLRT+1;
end

%CJ TEST
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T2 =(pˆ2∗n/2)∗ trace ( ( S/trace (S)−eye (p)/p ) ˆ 2 ) ;
U = (2/( n∗p ) )∗T2 ;
i f (n∗U−p) > 1 .645∗ sqrt (2∗ kappa)+(kappa−1+beta ) ;

countCJ = countCJ + 1 ;
end

%LINEAR SHRINKAGE
alphahat = 1−(1/n∗trace (S)ˆ2∗Frob ( Sigma 0 )ˆ2 )/ ( Frob (S)ˆ2∗Frob ( Sigma 0)ˆ2−trace (S ) ˆ 2 ) ;
i f p∗ alphahat > 1 .645∗ sqrt (2∗ kappa)+(kappa−1+beta ) ;

countLS = countLS+1;
end

end
powervecCLRT( j ) = countCLRT/A;
powervecCJ ( j ) = countCJ/A;
powervecLS ( j ) = countLS/A;

end
toc
figure
plot ( rho , powervecCLRT ) ;
hold on
plot ( rho , powervecCJ ) ;
hold on
plot ( rho , powervecLS ) ;
hold o f f
xlabel ( ’Rho ’ )
ylabel ( ’ Power ’ )
legend ( ’CLRT’ , ’CJ ’ , ’LS ’ ) ;
t i t l e ( [ ’ c=’ ,num2str( c ) ] ) ;

B.1.3 ROC plots

%% ROC CURVES
c l e a r v a r s ;
p = 112 ;
n = 128 ;
c=p/n ;
gamma = 0 . 1 ;
rho = 0 . 0 0 6 ;
d e l t a = 0 . 0 5 ;

alpha = 0 : 0 . 0 1 : 1 ;
x = sqrt (2)∗ erfinv (1−2∗alpha ) ;

kappa = 2 ;
beta = 0 ;
A = 1e4 ;

powervecCLRT = zeros ( length ( x ) , 1 ) ;
powervecCJ = zeros ( length ( x ) , 1 ) ;
powervecLS =zeros ( length ( x ) , 1 ) ;
Sigma 0 = eye (p ) ;
Sigma = (1−rho )∗eye (p)+rho∗ ones (p ) ;
%Sigma = z e r o s ( p ) ;

% d = d e l t a ;
% f o r a = 1 : p ;
% f o r b = 1 : p ;
% Sigma (a , b ) = d ˆ( abs (a−b ) ) ;
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% end
% end
r = 1/2 ;
l end i ag = f loor ( r ∗p ) ;
Sigma = diag ( [ ones (1 , p−l end i ag ) ,(1+gamma)∗ ones (1 , l end i ag ) ] ) ;
t ic
for j = 1 : length ( x ) ;

w = x ( j ) ;

countLS = 0 ;
countCLRT = 0 ;
countCJ = 0 ;
for i = 1 :A;

X = randn(p , n ) ;
Y = Sigma ˆ(1/2)∗X;
S = 1/n∗(Y∗ t ranspose (Y) ) ;
%s t a t i s t i c s
%CLRT
LambdaN = p∗ log ( trace (S)/p)−log ( det (S ) ) ; %
i f (LambdaN+(p−n)∗ log(1−c)−p)>w∗sqrt(−kappa∗ log(1−c)−kappa∗c)+ (−(kappa−1)∗ log(1−c )/2+0.5∗beta∗c )

countCLRT = countCLRT+1;
end

%CJ TEST
T2 =(pˆ2∗n/2)∗ trace ( ( S/trace (S)−eye (p)/p ) ˆ 2 ) ;
U = (2/( n∗p ) )∗T2 ;
i f (n∗U−p) > w∗sqrt (2∗ kappa)+(kappa−1+beta ) ;

countCJ = countCJ + 1 ;
end

%LINEAR SHRINKAGE
alphahat = 1−(1/n∗trace (S)ˆ2∗Frob ( Sigma 0 )ˆ2 )/ ( Frob (S)ˆ2∗Frob ( Sigma 0)ˆ2−trace (S ) ˆ 2 ) ;
i f p∗ alphahat > w∗sqrt (2∗ kappa)+(kappa−1+beta ) ;

countLS = countLS+1;
end

end
powervecCLRT( j ) = countCLRT/A;
powervecCJ ( j ) = countCJ/A;
powervecLS ( j ) = countLS/A;

end
toc
figure
plot ( alpha , powervecCLRT ) ;
hold on
plot ( alpha , powervecCJ ) ;
hold on
plot ( alpha , powervecLS ) ;
hold on
plot ( alpha , alpha ) ;
hold o f f
xlabel ( ’ Fa l se p o s i t i v e ra t e alpha ’ )
ylabel ( ’ True p o s i t i v e ra t e ’ )
legend ( ’CLRT’ , ’CJ ’ , ’LS ’ , ’ Standard ’ ) ;
%t i t l e ( [ ’ De l ta = ’ , num2str ( d e l t a ) , ’ , c = ’ , num2str ( c ) ] ) ;
t i t l e ( [ ’Gamma = ’ ,num2str(gamma) , ’ , c =’ ,num2str( c ) , ’ , r a t i o = ’ ,num2str( r ) ] ) ;
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Appendix C

List of mathematical symbols

Symbol Meaning
n Sample size
p Dimension
c ratio p/n
Sn Sample covariance matrix
λi i-th sample eigenvalue of Sn
Σn True underlying population covariance matrix
Σ0 Prior belief for the covariance matrix
h

√
c

κ Indicator of nature of data, κ = 2 if our data is real and κ = 1 if our data is complex
β Fourth moment - κ -1
H0 Null hypothesis, H0 : Σn = I
H1 Alternative hypothesis one wants to test for
||S||2F Frobenius norm of a matrix S
tr(S) Trace of a matrix S
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Bibliography
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