

Delft University of Technology

XLBlocks
a Block-based Formula Editor for Spreadsheet Formulas
Jansen, Bas; Hermans, Félienne

DOI
10.1109/VLHCC.2019.8818748
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings - 2019 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2019

Citation (APA)
Jansen, B., & Hermans, F. (2019). XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas. In J.
Smith, C. A. Bogart, J. Good, & S. D. Fleming (Eds.), Proceedings - 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2019 (pp. 55-63). Article 8818748 (Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC; Vol. 2019-October). IEEE.
https://doi.org/10.1109/VLHCC.2019.8818748
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/VLHCC.2019.8818748
https://doi.org/10.1109/VLHCC.2019.8818748

XLBlocks: a Block-based Formula Editor for
Spreadsheet Formulas

Bas Jansen
Delft University of Technology

The Netherlands
Email: b.jansen@tudelft.nl

Felienne Hermans
Leiden University
The Netherlands

Email: f.f.j.hermans@liacs.leidenuniv.nl

Abstract—Spreadsheets are frequently used in industry to
support critical business decisions. Unfortunately, they also suffer
from error-proneness, which sometimes results in costly conse-
quences. Experiments in the field of program education have
shown that programmers tend to make fewer errors and can
better focus on the logic of a program if they use a block-based
language instead of a textual one. We hypothesize that a block-
based formula editor could support spreadsheet users in a similar
way. Therefore, we develop XLBlocks and conduct a think-
aloud study with 13 experienced spreadsheet users from industry.
Participants are asked to create and edit several formulas, using
our block-based language. We then ask them to evaluate this
editor using the Cognitive Dimensions of Notations framework.
We found that for all dimensions the block-based formula editor
received a better evaluation than the default text-based formula
editor.

I. INTRODUCTION

Spreadsheets are widely used in industry. It has been esti-
mated that 90% of all analysts in industry use spreadsheets for
their calculations [1]. This observation indicates that spread-
sheets are often used to support critical decisions. Unfortu-
nately, almost all spreadsheets contain non-trivial errors [2]. As
a consequence, decisions are based on incorrect information,
which eventually can lead to significant loss of money1. To
address these quality problems in spreadsheets, Hermans et al.
researched the concept of code-smells in spreadsheet formulas
and worksheets [3], [4]. That work was later extended by
Cunha et al. [5]. Barowy et al. extended the concept of smells
to also cover data [6].

Concerning errors, Panko and Halverson distinguish three
types of spreadsheet errors: mechanical (typing errors), logic
(formula errors), and omission errors [7]. Panko also found
that error rates for logic errors are higher than for mechanical
errors, meaning, that most spreadsheet errors have their origin
in formulas [8]. Therefore, although a spreadsheet model
consists of data, layout, and formulas, we focus in this paper
on creating and maintaining formulas in spreadsheets.

Unfortunately, the way the user interface facilitates the en-
tering of formulas is rather limited. For example, in Microsoft
Excel, formulas can be entered directly in a cell (see Fig. 1a),

1http://www.eusprig.org/horror-stories.htm

in the formula bar (see Fig. 1b), or created using the function
wizard (see Fig. 1c).

(a) In-cell editing

(b) Editing in the formula bar

(c) Using the function wizard

Fig. 1. three ways for entering a formula in Excel

In all 3 of the editing methods, it is difficult to get an
overview of the complete formula. For example, the double
nested if formula in Figure 1b is represented as a string of
characters on a single line. It is difficult to distinguish the
two ifs from their arguments. The function wizard attempts to
visualize this better but has the drawback that it only shows
one function at a time. In Figure 1c the iferror functions
is highlighted, but the ifs are ‘hidden’ in the value field of
the iferror function. Especially with in-cell editing or using
the formula bar, it is easy to forget or misplace a comma,
parenthesis, or quote. In these cases, the user needs to know the
exact syntax of the function, meaning, the order and purpose
of the function’s arguments and whether they are mandatory
or optional.

These problems with formula syntax are similar to the
challenges novice programmers encounter when they learn
to program. Research has shown that block-based program
languages improve the performance of novice programmers
by minimizing the possibility of syntax errors and removing
the necessity for accurate punctuation [9], [10].

We hypothesize that a block-based formula editor for
spreadsheets could support spreadsheet users in a similar way.
This paper introduces XLBlocks, a block-based formula editor
for Excel and presents the results of a think-aloud study in
which the participants perform a set of typical spreadsheet task978-1-7281-0810-0/19/$31.00 c©2019 IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

with XLBlocks. After the tasks, we interview them and ask
them to evaluate XLBlocks using the Cognitive Dimensions
of Notation (CDN) framework [11].

II. XLBLOCKS: A BLOCK-BASED FORMULA EDITOR

This paper examines to what degree a block-based formula
editor could support professional spreadsheet users while de-
veloping or maintaining formulas. In this section, we provide
an overview of XLBlocks (Figure 2). XLBlocks aims to 1)
implement a block-based interface (Section II-A), 2) facilitate
users to replicate formulas across rows or columns (Section
II-B), and 3) introduce new functions that are easier to use
than some of the built-in Excel functions (Section II-C).

Fig. 2. Left the traditional screen with the textual formula highlighted at the
top, right the block representation of the same formula

A. XLBlocks Interface

XLBlocks is an Excel Add-in developed with the Excel
JavaScript API [12]. The Blockly library [13] was extended
with custom blocks and a code generator for the definition
and generation of spreadsheet formulas. Based on frequently
used functions in the Enron corpus [14], we included the
following functions in the research prototype: SUM, SUMIFS,
IFERROR, INDEX, MATCH, VLOOKUP, IF, -, /, >, <.
Videos demonstrating the user interface of XLBlocks are
available online2.

Fig. 3. Example of a block definition of a SUMIFS formula

To use XLBlocks, a user starts the definition with a formula
block (see (a) in Figure 3). The user can give the formula
a name (b), has to specify the output range (c) (the cells
in the spreadsheet that will receive this formula) and the

2https://doi.org/10.6084/m9.figshare.8863532

functions that are used in the formula. In Figure 3 the SUMIFS
function is used as an example. This function will calculate a
conditional sum based on one or more criteria. Therefore, in
XLBlocks, it is possible to connect one or more filter blocks
as arguments to the SUMIFS function. In this example, two
comments have been added to the formula to document the
filters that are used in this sum. These comments are not
transferred to the spreadsheet but will be available in the
XLBlocks editor.

B. EACH ROW and EACH COLUMN

Within the spreadsheet paradigm, it is common practice to
define a formula and then replicate it across many rows or
columns by dragging it down or to the right. To facilitate this
in the XLBlocks editor, we introduced two special blocks:
‘EACH ROW’ and ‘EACH COLUMN’.

(a) Row totals in excel

(b) EACH ROW block in XLBlocks

Fig. 4. Using EACH ROW to replicate formulas across multiple rows

Figure 4 shows an example of calculating row totals in cells
H5 and H6. In Excel, a user would define the formula in
cell H5 and copy it to H6. In XLBlocks it is sufficient to
specify both cells H5 and H6 as output range (a) and use
the ‘EACH ROW’ block to specify that the sum of each row
in the range D5:G6 should be calculated (b). It also means
that if the average instead of the sum should be calculated,
this can be solved by editing only the formula definition in
XLBlocks instead of editing a formula and dragging it down.
The ‘EACH COLUMN’ block offers the same functionality
for calculations across multiple columns.

C. Lookups

Excel has five functions that can be used to lookup
data (similar to join functions in databases): VLOOKUP,
HLOOKUP, INDEX, MATCH, and LOOKUP. They differ in
syntax and arguments, and some have problematic defaults
[15].

From these formulas, VLOOKUP is used the most fre-
quently, although the combination of INDEX and MATCH
is a better alternative. That combination can be used both
horizontally and vertically, there are no sorting requirements,
and the lookup range can be located anywhere. Unfortunately,

it is not frequently used because of it’s complexity. It is an
excellent candidate to explore if we can replace this with a new
function that is easier to use. Therefore we define a general
purpose ’LOOKUP’ block in XLBlocks (Figure 5).

Fig. 5. LOOKUP formula in XLBlocks

For this function, the user simply specifies the value they
are looking for (a), the range that contains the possible lookup
values (b) and the range that contains the matching results (c).
XLBlocks translates this into the following formula:

=INDEX(C14:C19,MATCH(B5,B14:B19,0))

Using the LOOKUP block in XLBlocks give users the flex-
ibility of the INDEX and MATCH combination without the
complexity.

III. SETUP OF THINK-ALOUD STUDY

A. Research Questions
The goal of this paper is to examine to what degree a block-

based formula editor could support professional spreadsheet
users while developing or maintaining formulas. To address
this goal, we develop XLBlocks, a block-based formula editor
for Excel, and conduct a think-aloud study in which par-
ticipants perform eight typical spreadsheet tasks. After the
tasks, we interview the participants and ask them to evaluate
the XLBlocks interface, using the CDN framework. For each
dimension, we ask them to answer the two following research
questions:

• RQ1: What are the benefits of XLBlocks regarding this
dimension?

• RQ2: What are the drawbacks of XLBlocks regarding this
dimension?

B. Participants
We invited thirteen professional Excel users by mail from

nine different companies within our network of industrial
partners (Table I). Included in the study were participants
who use Excel professionally and who use formulas. All
participants, except one, use Excel multiple times a day and
have on average 20 years of experience using Excel. We asked
them to asses their level of expertise with Excel on a ten point
scale (one = low, ten = high). We used this scale because it
is widely used in (European) schools to grade work and the
participants are more familiar with it than for example a Likert
scale. On average they rated themselves an eight out of ten.

TABLE I
OVERVIEW OF THINK-ALOUD STUDY’S PARTICIPANTS

Nr. Gender Age
Functional
Domain

Excel
level Frequency

Experience
(yrs)

P1 M 38 SE† 9 Daily 15
P2 M 54 SE 7 Daily 20
P3 M 51 SE 8 Daily 10
P4 M 62 Finance 8 Daily 25
P5 M 54 Operations 7 Daily 23
P6 M 25 Operations 7 Daily 4
P7 F 47 Finance 8 Daily 25
P8 M 53 Finance 9 Daily 25
P9 M 39 Finance 7 Daily 20
P10 M 50 CTO 4 Monthly 25
P11 M 56 Finance 8 Daily 25
P12 M 41 SE 8 Daily 20
P13 M 47 Finance 9 Daily 20
Average 47 8 20
† SE = Software Engineering

C. Think-Aloud Study

In a think-aloud study, we ask the participants to perform
eight typical spreadsheet tasks in two different spreadsheets.
The tasks are summarized in Table II.

TABLE II
TASKS TO BE PERFORMED BY PARTICIPANTS IN THINK-ALOUD STUDY

Task Description
T1 Create row totals with SUM function
T2 Create column totals with SUM function
T3 Move output of column totals to different range
T4 Lookup account descriptions with LOOKUP function
T5 Create a conditional sum on two conditions with the SUMIFS

function
T6 Change SUMIFS formula to calculate sum of a different range
T7 Move output of SUMIFS formula
T8 Explain a formula with a nested IF structure

To ensure that the tasks would be similar to the tasks
the participants perform in their spreadsheets, we selected
formulas that are frequently used in spreadsheets from the
Enron corpus [14] and our collection of industry spreadsheets
[16].

Spreadsheets are on average used by 13 different users [17],
which implies that there are many moments a spreadsheet
is transferred from one user to another. Therefore, we are
interested to see if a block representation of a formula can
also support a user in explaining the formula to somebody
else, for which, we added task T8.

Before the participants start with the tasks, they receive a
ten to fifteen-minute instruction about the XLBlocks interface.
They get about 40 minutes to finish the tasks, and we ask
them to think-aloud. We provided the participants with two
sample spreadsheets and explained each task. The sample
spreadsheets are available online3. If a participant created a
block-model leading to an invalid formula, the formula would
not be generated. When such errors occurred during the tasks,
we explained the cause of the error.

3https://doi.org/10.6084/m9.figshare.8863532

Five participants performed the tasks individually, the re-
maining eight participants in pairs. All participants performed
tasks T1 to T7, but we asked the participants that worked in
pairs additionally to perform T8.

Because of the exploratory nature of the study, we did
not measure the time participants needed to complete the
tasks. Also, the participants were not quantitatively assessed
in performing the tasks. The tasks enabled participants to
get experience with XLBlocks so that they could reflect on
usability and could provide us with feedback in the interviews.

D. Interview

After the tasks, we conduct a semistructured interview of
about 30 to 40 minutes with each participant. We use the
CDN framework to structure the interviews. Participants that
perform the tasks in pairs are also interviewed in pairs. We
transcribed all interviews, grouped the answers per dimension,
complemented it with observations from the think-aloud study,
and used the combined information to answer the two research
questions per dimension.

The CDN framework has been used in several usability
studies [18]–[21] and Blackwell and Green developed a ques-
tionnaire for the CDN [22].

For the interview, we used the dimensions as defined in
[23]. We made two adjustments. We excluded the dimension
Abstraction Gradient because users can not create their own
blocks in XLBlocks. Furthermore, we added the dimension
Provisionality as is described in [11], [24]. The dimension
refers to the opportunities that users have to try different design
options. Spreadsheets are continuously evaluated, and users are
used to how easy it is to try something out. For that reason, we
included this dimension. It is closely related to the dimension
Premature commitment, and we discuss the two dimensions
together.

We do not ask participants to fill out the CDN questionnaire,
but rather, we use the questions to structure the interviews. It
allows us to clarify a dimension if we notice that participants
have difficulties understanding it. In addition, we can probe
participants for additional details. Finally, for each dimension,
we ask participants to grade the usability of both XLBlocks
and the built-in Excel formula editor on a scale from 1 to 10.

IV. RESULTS

This section describes the results of the interviews. An
overview is given in Table III and Figure 6. XLBlocks received
a better evaluation on all dimensions. The biggest difference
is found on the dimension Secondary notation and according
to the participants, the two interfaces score similarly on the
dimension Hard mental operations. In the remainder of this
section, we present the results of the user-study and interviews
per dimension.

A. Diffuseness

The dimension Diffuseness describes the verbosity of the
language. How many symbols and space is required to express
meaning.

TABLE III
CDN EVALUATION OF XLBLOCKS AND EXCEL’S FORMULA EDITOR

Excel
formula

Dimension XLBlocks editor
Diffuseness 7.4 5.6
Role-expressiveness 7.9 6.3
Secondary notation 8.1 4.3
Viscosity 8.1 6.2
Visibility 8.2 5.6
Closeness of mapping 7.3 5.6
Consistency 7.6 5.4
Error-proneness 7.6 5.1
Hard mental operations 7.4 6.4
Hidden dependencies 7.8 5.6
Premature commitment &
Provisionality

7.9 5.0

Progressive evaluation 8.2 4.8

Average score per dimension on a ten point scale.

Fig. 6. Evaluation of formula editor in XLBlocks and Excel on a ten point
scale

RQ1: Benefits XLBlocks: When block-based languages
(BBL) are compared to text-based languages, diffuseness is
often seen as a drawback for the BBL. They tend to be much
more verbose and need more physical space to express the
same. However, when we asked our participants about the
diffuseness, they considered it as a benefit that more space was
available. Excel does not feature a fully equipped integrated
development environment (IDE) for editing formulas, but
provide the user with a formula bar that is very limited in space
(see Figure 1b). The additional space the XLBlocs interface
provides, makes it easier to read formulas, and because of the
graphical nature of the BBL, it is easier to see and recognize
the structure of the formula.

RQ2: Drawbacks XLBlocks: Some participants (P2, P8, P11,
P12) indicate that the XLBlocks hides parts of the spreadsheet

interface, which could be a problem in the case of larger
spreadsheets. However, they still prefer the additional space
to inspect and understand the formula. Participants P1 and
P2 noticed that in the XLBlocks interface when additional
functions or arguments are added, formulas tend to grow in
width. They would prefer if formulas grow mainly in height.

B. Role-expressiveness

Role-expressiveness concerns the ease of seeing how a part
of a formula relates to the formula as a whole. What is the
meaning of every part of the formula?

RQ1: Benefits XLBlocks: According to the participants, the
meaning of every individual block is clear. As a reason, they
name the text labels on every block. For function names that
is obvious, but also the arguments of every function are named
(a, b, and c in Figure 5). This is not the case in the formula
bar, and according to the participants, it makes the reading of
the formula much easier. Also the consistent use of colors
(all functions have the same color, see also Section IV-F:
Consistency) support this.

RQ2: Drawbacks XLBlocks: On the other hand, when we
observed the participants executing the requested tasks, it
became clear that the meaning of the special blocks ‘EACH
ROW’ and ‘EACH COLUMN’ was not as intuitive as we had
hoped. Also the term ‘output range’ lead to some confusion.
Especially, in combination with the ‘LOOKUP’ function that
contained an argument that was named ‘Result range’ (See
also c in Figure 5). Also, although constants have a different
color than functions, participants P9 and P10 interpreted the
constant block that was used to indicate a constant number as
the function number (which does not exist in Excel).

C. Secondary Notation

Secondary notation expresses the options user have to
convey additional information about a formula that is not part
of the formal syntax of the formula. Spreadsheets as a whole
provide ample opportunity for secondary notation. Therefore,
it is important to note that we are comparing XLBlocks not
with the spreadsheet, but with the formula editor of Excel.

RQ1: Benefits XLBlocks: All participants indicated that it
is straightforward to add secondary notation to the formula
definition in XLBlocks. XLBlocks has special comment blocks
that can be dragged anywhere in the formula. In the excel
formula bar, it is not possible to add comments. However, a
comment can be assigned to the cell that contains the formula.
According to the participants that is not optimal because 1) one
can only assign one overall comment for the complete formula,
2) the comment is visible in the spreadsheet model and 3) if
a formula has been copied across multiple rows or columns,
it is not clear to which formulas the comment belongs.

RQ2: Drawbacks XLBlocks: For secondary notation, the
participants, did not mention any specific drawbacks. Partici-
pant P2 remarked that further improvement might be possible
if a text field was added to the brown formula block (See
Figure 5) that could be used to write some general information
about the formula. On the other hand participants, P1 and

P2 asked themselves if they would ever use the comments:
“Because the block definition of the formula is easier to read,
the formula documents itself.”

D. Viscosity

The dimension viscosity measures the effort that is required
to perform a single change.

RQ1: Benefits XLBlocks: The participants agree that chang-
ing a formula is simple in XLBlocks. This was confirmed by
the fact that none of the participants made an error in the tasks
that involved changing existing formulas. In comparison with
the formula bar, it is easy to locate the part of the formula
that one wants to change. Also, in the formula bar, users have
to be very careful with the use of parentheses, commas, and
quotes. This is something that is taken care of automatically in
XLBlocks. It was also stated that with XLBlocks it is possible
to change a group of formulas with a single edit.

RQ2: Drawbacks XLBlocks: Two participants (P12 and P13)
comment that, when editing, they use search and replace a lot.
This is possible in the formula bar but not in XLBlocks. Also,
when a formula is not very complex, and an edit comprises
only changing a few characters, it is much quicker to edit
directly in the formula bar than in XLBlocks.

E. Closeness of Mapping

The dimension Closeness of mapping expresses the mapping
between the programming world and the problem world.

RQ1: Benefits XLBlocks: All participants agree that XL-
Blocks visualizes the calculation that will be generated by
Excel. Especially, when the formula is complex or nested
this is visualized better in XLBlocks than in the formula
bar (see Figure 7). Also, XLBlocks needs less interpretation.
For example, the IF function has three named arguments in
XLBlocks: if, then, and else. In Excel, the arguments are not
named. It is by convention that the user knows that the first
argument is the condition, the second the then statement, and
the third the else statement. Also, the user has to know that
commas separate these arguments. In XLblocks, the user does
not need to know these conventions.

RQ2: Drawbacks XLBlocks: One participant (P4) argued
that the XLBlocks interface has a less direct mapping to the
problem the user tries to solve. The EACH ROW and EACH
COLUMN blocks add another layer of abstraction, while in
the formula bar the user is only editing one cell. The fact
that a group of formulas is edited instead of a single formula
reduces the closeness of mapping.

F. Consistency

Consistency means that parts of a formula that have a similar
meaning should have a similar appearance.

RQ1: Benefits XLBlocks: Most participants perceived the
block notation in XLBlocks as consistent. They name the use
of color as the main reason. In XLBlocks each category of
blocks has its own color. It is easy to see what is a function,
cell reference, or constant. In the formula bar, this is less
clear. Although Excel also colors the cell references, there

is no difference in typographic style between functions and
constants (See Figure 1b).

RQ2: Drawbacks XLBlocks: In its current implementation,
all functions in XLBlocks have the same color (green). This
could result in one big green block of functions if a formula
consists of several nested functions. Therefore, one participant
(P2) suggested to color the functions according to their cat-
egory (e.g., text functions would have a different color than
math functions).

G. Error-proneness
The dimension Error-proneness indicates how easy it is to

make errors while writing a formula.
RQ1: Benefits XLBlocks: In XLBlocks, the code generator

inserts commas, parentheses, and quotes at the right place
in the formula. According to several participants (P4, P7,
P9, P10, and P12), this is the main reason that fewer errors
are made in XLBocks. Also, two participants (P3 and P13)
observed that the function blocks in XLBlocks guide the user
through the function. As a consequence, it is not possible that
arguments are forgotten or used in the wrong order.

RQ2: Drawbacks XLBlocks: During the tasks, we observed
participants placing blocks in the wrong position. This corre-
sponds with feedback we received from other participants (P9,
P10, and P12) that it was possible to misplace blocks. Also,
a participant forgot to give the formula a name. Although this
does not lead to an error in the formula, it makes it more
challenging to find the formula.

H. Hard Mental Operations
Working on a formula requires mental effort. The dimension

Hard mental operations indicates to which extent the block-
based language used in XLBlocks itself causes this mental
effort.

RQ1: Benefits XLBlocks: The participants stated that in
XLBlocks they had to think less about the exact syntax of the
formula, the correct order of the arguments and when nesting
functions, the order of the functions themselves.

RQ2: Drawbacks XLBlocks: For the participants, the con-
cept of the ‘EACH ROW’ and ‘EACH COLUMN’ blocks was
the most difficult to understand. Partially this is not something
caused by the notation, but by the concept itself. On the other
hand, participants had difficulties placing the ’EACH ROW’
block at the right spot. They could use more guidance from
the XLBlocks interface.

I. Hidden Dependencies
Spreadsheets are disreputable for their hidden dependencies.

However, they are less common in a spreadsheet formula. A
hidden dependency in a spreadsheet could be a function and its
corresponding arguments. Consider, for example, the following
formula:

=IFERROR(IF(C5/D5-1>1,">100%",IF(
C5/D5-1<-1,"<-100%",C5/D5-1)),0)

The zero at the end of the formula is an argument of the
IFERROR function at the beginning of the formula and could
be considered as a hidden dependency.

RQ1: Benefits XLBlocks: According to the participants, it
is much easier to see hidden dependencies in a formula in
XLBlocks than in the formula bar in Excel. They name the
previously mentioned IFERROR function as an example (Fig-
ure 7). Because the ‘in case of error’ argument is physically
connected to the IFERROR function, the dependency is much
more visible.

Fig. 7. Example of the IFERROR function, the ‘in case of error’ argument
is visually connected to the function

RQ2: Drawbacks XLBlocks: The participants did not men-
tion any drawbacks of XLBlocks concerning Hidden depen-
dencies.

J. Premature Commitment & Provisionality

The dimension Premature commitment expresses the extent
to which the user is forced to take decisions before the neces-
sary information is available. This dimension was first defined
in [23]. Later it was extended in [24] and [11] with a separate
dimension Provisionality that concerns the opportunities for
the user to play around with ideas. Is it, for example, easy to
try different design options or to use ‘what-if’ scenarios?

RQ1: Benefits XLBlocks: According to the participants, the
user has complete freedom in the order that blocks are dragged
onto the canvas. During the tasks, we observed that dragging
out the necessary blocks helped the participants to think about
the formula. They said things like “I will start with the blocks
I know ...” (P8) and “Now I start seeing how it will come
together ...” (P7). They compared it with the formula bar where
users are forced to start with the outer function and work their
way inwards. Participants also recognized that it was possible
to create two variants of a part of the formula and that they
could easily swap them to try out the different options. They
liked that it was not necessary to ‘clean up your canvas’.

RQ2: Drawbacks XLBlocks: The participants did not men-
tion any drawbacks of XLBlocks concerning Premature com-
mitment and Provisionality.

K. Progressive Evaluation

While developing a formula, users often want to check if the
formula gives the desired results. The dimension Progressive
evaluation focuses on how a notation facilitates this.

RQ1: Benefits XLBlocks: The participants perceived the
way XLBlocks makes it possible to check the formula during

development, more comfortable to work with than the Excel
formula bar. As main reason, they named the blocking error
they get in Excel when the formula is not correct.

RQ2: Drawbacks XLBlocks: One participant would prefer
if XLBlocks showed a real-time version of the formula that is
being generated.

V. DISCUSSION

A. Learnability

We know that block-based languages perform well on learn-
ability [25], [26]. This was confirmed in our think-aloud study.
After receiving only 15 minutes of instruction, all participants
were able to finish the tasks. Several participants (P1, P2, P7,
and P8) remarked that it surprised them how easy it was to
learn to work with XLBlocks.

We also observed that the participants were able to create a
formula with the lookup function in XLBlocks, which does not
exist in Excel. It shows that even if the function is unknown,
the blocks are intuitive enough that users can work with it.

B. Further Reduce Error-Proneness

According to the participants, it is less likely to make errors
in XLBlocks than in the formula bar of Excel. Nevertheless,
based on the feedback we received during the think-aloud
study, it can be further improved. In the current version of
XLBlocks, it is allowed to connect invalid combinations of
blocks (e.g., connecting a function block where a cell reference
block is expected). This can be solved if more robust type-
checking is implemented in XLBlocks.

Users could be further supported by a preconfigured group
of blocks. Instead of dragging a formula block and a range
block from the toolbox and connect them on the canvas,
they can drag a preconfigured formula block with the output
range already attached. Blockly offers this feature with shadow
blocks (placeholder blocks) or block groups (Figure 8) [27].

Fig. 8. An example of a formula block with a shadow range block (a) and
a block group consisting of A SUMIFS block and a filter block (b).

Inspired by this concept, some participants suggested the
idea to create your own templates of blocks for formula
patterns that you use frequently and store them on your toolbox
(similar to the backpack feature in Scratch [28]).

C. Simultaneous Use of XLBlocks and the Formula Bar

XLBlocks has been developed as an alternative way to edit
a formula in Excel. It is not meant to replace the formula
editor of Excel but to complement it. XLBlocks present the
block-based formula embedded into the spreadsheet itself.

Some participants (P10 and P13) named this as one of the
strengths of XLBlocks. According to them some tasks, like
making small edits in simple formulas, are better suited for the
formula bar, while other tasks like editing complex formulas
or explaining a formula to somebody else are better suited for
XLBlocks.

With XLBlocks it is possible to develop a block-based
specification of a formula and generate a valid spreadsheet
formula. The other direction: generating a block-based formula
from a spreadsheet formula, is not yet implemented. Several
participants would like to see this feature added. Especially
when explaining complex formulas to others, it would be
convenient if the user could click on the formula and see the
block-based representation in XLBlocks and use that as a basis
for the explanation.

D. Threats to Validity

A threat to the external validity of our evaluation concerns
the representativeness of the participants. Future studies are
necessary to generalize our findings.

Another threat to the external validity of our evaluation
is the representativeness of the tasks the participants had to
perform. To mitigate this, we used formulas that professional
spreadsheet users use in real-life spreadsheets.

We did not randomly select our participants, which is a
threat to the internal validity. Nevertheless, we believe the
group of participants serve as a useful reference group since
they all work with spreadsheets daily and have on average 20
years of experience using Excel. Furthermore, they work at
different companies, have different backgrounds, and work in
different functional domains.

We are both the designers of XLBlocks and the interviewers,
and this is another internal threat to the validity of our eval-
uation. We minimized this threat to use the CDN framework
to guide the questions in the interview and making sure that
all aspects of the usability of the XLBlocks interface were
covered.

VI. RELATED WORK

A. Spreadsheets and Visual Languages

Most related to our research is the work of Burnet et al.
[29], Leitão and Roast [30], Sarkar et al. [31], and Abraham
et al. [21].

Burnett et al. developed Forms/3, a general purpose visual
language that builds upon the spreadsheet paradigm. They
leveraged the visual aspect of spreadsheets and at the same
time tried to overcome some of the spreadsheet limitations
like a limited number of types and the lack of abstraction
capabilities. However, they consider the spreadsheet as a whole
as a visual language, while in this paper, we focus on a visual
language for the formula editor.

Leitão and Roast designed a visual language to repre-
sent spreadsheet formulas graphically. They developed two
variants: an ‘Explicit Visualization’ (EV) and a ‘Dataflow
Visualization’ (DV). In both variants, numeric values, cell
references, strings, operators and built-in spreadsheet functions

are represented in different combinations of shape and color.
In EV, the visualized formula is a visual match of the orig-
inal textual formula, while in DV the formula is presented
hierarchically in a syntax tree. Both are inspired by dataflow
diagrams and are less textual than a block-based language.

Sarkar et al. propose multiple-representation editing in
spreadsheets. They introduce Calculation View, an alterna-
tive representation of the spreadsheet, primarily designed for
viewing formulas and their groupings. They use a new textual
syntax for copying a formula into a block of cells and naming
cells or ranges. Calculation View uses a textual notation in a
columnar grid of pseudocells to maintain similarity with the
spreadsheet grid.

Abraham et al. introduced ViTSL, a visual specification
language for spreadsheets. The language allows the definition
of spreadsheet templates that can be used by a spreadsheet
generator to create Microsoft Excel spreadsheets automati-
cally [32]. Derived from ViTSL, Engels and Erwig developed
ClassSheets [33]. A ClassSheet represents both the structure
and relationships of the involved (business) objects within
the spreadsheet. It narrows the semantic distance between a
problem domain and a spreadsheet application. A drawback of
this approach was the lack of connection between the stand-
alone model development environment where the ClassSheet
was defined and the spreadsheet itself. As a result, automatic
synchronization between the model and the spreadsheet was
not possible. Cunha et al. [34] embedded the ClassSheet in
the spreadsheet itself and made co-evolution of the model and
the spreadsheet possible.

B. Cognitive Dimensions of Notation

Green and Petre have used the CDN framework as an
evaluation technique for visual programming environments
[23]. It provides a vocabulary for discussing the usability of
programming languages. In their study, they present an outline
of the cognitive dimensions and use them to evaluate two
different visual programming environments.

The CDN were also used to design questionnaires intended
for users to evaluate the usability of programming tools.
In reaction, Blackwell and Green developed a generalized
questionnaire and conducted a pilot study that used the ques-
tionnaire with a wide range of respondents [22]. The results
of that study showed that the CDN questionnaire is a suitable
tool for user evaluation of programming languages, tools, and
environments.

The framework has been used to evaluate multiple program-
ming languages. Most related to our research is the previously
mentioned research of Abraham et al.. They used the CDN to
evaluate their visual specification language ViTSL.

C. Block-Based Languages

Glinert introduced in 1986 the language BLOX, which can
be considered as the first block-based language [35]. Research
into block-based languages increased after the introduction
of languages like Alice [36], Scratch [10], and Blockly [13].

These languages were designed as programming environments
for younger learners.

Related to our research is the work of Weintrop et al.
[37]. They created CoBlox, a block-based interface for pro-
gramming a one-armed industrial robot. They showed that
block-based programming could make a complex task like
programming an industrial robot accessible for adults with
limited programming experience.

Also related to our research is the study of Holwerda and
Hermans [38]. They conducted a user study with Ardublockly,
a block-based language derived from Blockly. In their study,
they focus on gaining an understanding of the strengths and
weaknesses of block-based languages as seen by professionals.

VII. CONCLUDING REMARKS

This paper aims to explore if editing spreadsheet formulas
can be eased by using a block-based formula editor. We,
therefore, developed XLBlocks, a block-based formula editor,
and conducted a think-aloud study in which we evaluated the
usability of the editor using the CDN framework. XLBlocks
received on all dimensions a better evaluation. The difference
was the most notable for the dimensions Secondary notation,
Error-proneness, Progressive evaluation, Premature commit-
ment and Provisionality.

Users recognized that in XLBlocks, they do not have to
consider the correct syntax of functions. Also editing a part of
a formula is easier in XLBlocks because they can easily drag
and drop different parts of the formula on the canvas. During
the think-aloud study, we observed that dragging different
blocks on the canvas also supported the user in thinking about
the formula. They started with the blocks they were sure about
and then focused on the more difficult parts. They appreciated
that they could freely decide in which order they would build
the formula.

We also received feedback on areas that could be further
improved. Varying the colors of the function block (e.g., by
category) could make the formulas easier to read. In the current
prototype, it is possible to connect invalid combinations of
blocks. This could be solved by more robust type-checking
and provide block groups as templates.

This paper gives rise to several directions for future work.
At the moment, XLBlocks can generate a valid Excel formula
from a block-based specification. We will extend the prototype
with the possibility to generate a block-based representation of
a spreadsheet formula. Furthermore, we are planning to make
XLBlocks aware of the structural changes a user makes to
the spreadsheet like inserting or deleting rows and columns.
Finally, we will explore the possibility to facilitate the user to
create templates for formulas that they use frequently.

REFERENCES

[1] W. Winston, “Executive education opportunities millions of analysts
need training in spreadsheet modeling, optimization, monte carlo sim-
ulation and data analysis,” OR MS TODAY, vol. 28, no. 4, pp. 36–39,
2001.

[2] R. R. Panko, “Spreadsheet errors: What we know. what we think we
can do,” arXiv preprint arXiv:0802.3457, 2008.

[3] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012,
pp. 441–451.

[4] F. Hermans, M. Pinzger, and A. Deursen, “Detecting code smells in
spreadsheet formulas,” Proceedings of the International Conference on
Software Maintenance (ICSM), 2012.

[5] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog
of spreadsheet smells,” in Computational Science and Its Applications–
ICCSA 2012. Springer, 2012, pp. 202–216.

[6] D. W. Barowy, D. Gochev, and E. D. Berger, “Checkcell: Data debugging
for spreadsheets,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM,
2014, pp. 507–523.

[7] R. R. Panko and R. P. Halverson, “Spreadsheets on trial: a survey of
research on spreadsheet risks,” in Proceedings of HICSS-29: 29th Hawaii
International Conference on System Sciences, vol. 2, Jan 1996, pp. 326–
335 vol.2.

[8] R. R. Panko, “What we know about spreadsheet errors,” Journal of
Organizational and End User Computing (JOEUC), vol. 10, no. 2, pp.
15–21, 1998.

[9] T. W. Price and T. Barnes, “Comparing textual and block interfaces
in a novice programming environment,” in Proceedings of the eleventh
annual International Conference on International Computing Education
Research. ACM, 2015, pp. 91–99.

[10] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[11] A. F. Blackwell, C. Britton, A. Cox, T. R. Green, C. Gurr, G. Kadoda,
M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre et al., “Cognitive
dimensions of notations: Design tools for cognitive technology,” in
International Conference on Cognitive Technology. Springer, 2001,
pp. 325–341.

[12] Javascript API for Office. Accessed: 2019-04-28. [On-
line]. Available: https://docs.microsoft.com/en-us/office/dev/add-ins/
reference/javascript-api-for-office

[13] N. Fraser, “Ten things we’ve learned from blockly,” in 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond), Oct 2015, pp. 49–50.

[14] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 2. IEEE Press, 2015, pp.
7–16.

[15] F. Hermans, E. Aivaloglou, and B. Jansen, “Detecting problematic
lookup functions in spreadsheets,” in 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Oct 2015, pp.
153–157.

[16] E. Aivaloglou, D. Hoepelman, and F. Hermans, “Parsing excel
formulas: A grammar and its application on 4 large datasets,” Journal
of Software: Evolution and Process, vol. 29, no. 12, p. e1895, 2017,
e1895 smr.1895. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/smr.1895

[17] F. Hermans, “Analyzing and visualizing spreadsheets,” Ph.D. disserta-
tion, PhD thesis, Software Engineering Research Group, Delft University
of Technology, Netherlands, 2012.

[18] M. Bellingham, S. Holland, and P. Mulholland, “A cognitive dimensions
analysis of interaction design for algorithmic composition software,”
2014.

[19] M. Kauhanen and R. Biddle, “Cognitive dimensions of a game scripting
tool,” in Proceedings of the 2007 conference on Future Play. ACM,
2007, pp. 97–104.

[20] F. Turbak, D. Wolber, and P. Medlock-Walton, “The design of naming
features in app inventor 2,” in 2014 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, 2014, pp.
129–132.

[21] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual
specifications of correct spreadsheets,” in Visual Languages and Human-
Centric Computing, 2005 IEEE Symposium on. IEEE, 2005, pp. 189–
196.

[22] A. F. Blackwell and T. R. Green, “A cognitive dimensions questionnaire
optimised for users.” in PPIG, vol. 13, 2000.

[23] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[24] T. Green and A. Blackwell, “Cognitive dimensions of information
artefacts: a tutorial,” in BCS HCI Conference, vol. 98, 1998, pp. 1–75.

[25] D. Weintrop and U. Wilensky, “To block or not to block, that is
the question: Students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children, ser. IDC ’15. New York, NY, USA: ACM, 2015, pp. 199–
208. [Online]. Available: http://doi.acm.org/10.1145/2771839.2771860

[26] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. A. Turbak, “Learnable
programming: Blocks and beyond,” CoRR, vol. abs/1705.09413, 2017.
[Online]. Available: http://arxiv.org/abs/1705.09413

[27] Blockly Toolbox Guide. Accessed: 2019-05-06. [Online].
Available: https://developers.google.com/blockly/guides/configure/web/
toolbox#shadow blocks

[28] Scratch Backpack. Accessed: 2019-05-06. [Online]. Available: https:
//en.scratch-wiki.info/wiki/Backpack

[29] M. M. Burnett, J. W. Atwood, R. W. Djang, J. Reichwein, H. J. Gottfried,
and S. Yang, “Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm,” Journal of functional program-
ming, vol. 11, no. 2, pp. 155–206, 2001.

[30] R. Leitão and C. Roast, “Developing visualisations for spreadsheet
formulae: towards increasing the accessibility of science, technology,
engineering and maths subjects,” in 9th Workshop on Mathematical User
Interfaces, 2014.

[31] A. Sarkar, A. D. Gordon, S. P. Jones, and N. Toronto, “Calculation view:
multiple-representation editing in spreadsheets,” in 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
Oct 2018, pp. 85–93.

[32] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger, “Au-
tomatic generation and maintenance of correct spreadsheets,” in Pro-
ceedings of the 27th international conference on Software engineering.
ACM, 2005, pp. 136–145.

[33] G. Engels and M. Erwig, “Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 124–133.

[34] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes, “Embedding
and evolution of spreadsheet models in spreadsheet systems,” in 2011
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Sep. 2011, pp. 179–186.

[35] E. P. Glinert, “Towards second generation interactive graphical pro-
gramming environments,” in Proceedings of IEEE Workshop onVisual
Language. IEEE CS Press, Silver Spring, MD, 1986, pp. 61–70.

[36] M. Conway, R. Pausch, R. Gossweiler, and T. Burnette, “Alice: a
rapid prototyping system for building virtual environments,” in CHI
Conference Companion. Citeseer, 1994, pp. 295–296.

[37] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’18. New York, NY, USA: ACM, 2018, pp. 366:1–366:12.
[Online]. Available: http://doi.acm.org/10.1145/3173574.3173940

[38] R. Holwerda and F. Hermans, “A usability analysis of blocks-based pro-
gramming editors using cognitive dimensions,” in 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), Oct
2018, pp. 217–225.

