

Delft University of Technology

Learning to Solve Multiple-TSP With Time Window and Rejections via Deep
Reinforcement Learning

Zhang, Rongkai ; Zhang, Cong ; Cao, Zhiguang ; Song, Wen ; Tan, Puay Siew ; Zhang, Jie; Wen, Bihan ;
Dauwels, Justin
DOI
10.1109/TITS.2022.3207011
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Intelligent Transportation Systems

Citation (APA)
Zhang, R., Zhang, C., Cao, Z., Song, W., Tan, P. S., Zhang, J., Wen, B., & Dauwels, J. (2023). Learning to
Solve Multiple-TSP With Time Window and Rejections via Deep Reinforcement Learning. IEEE
Transactions on Intelligent Transportation Systems, 24(1), 1325-1336.
https://doi.org/10.1109/TITS.2022.3207011
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TITS.2022.3207011
https://doi.org/10.1109/TITS.2022.3207011

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023 1325

Learning to Solve Multiple-TSP With Time Window
and Rejections via Deep Reinforcement Learning

Rongkai Zhang , Cong Zhang, Zhiguang Cao , Wen Song , Puay Siew Tan, Jie Zhang,

Bihan Wen , Member, IEEE, and Justin Dauwels

Abstract— We propose a manager-worker framework (the
implementation of our model is publically available at:
https://github.com/zcaicaros/manager-worker-mtsptwr) based on
deep reinforcement learning to tackle a hard yet nontrivial
variant of Travelling Salesman Problem (TSP), i.e., multiple-
vehicle TSP with time window and rejections (mTSPTWR),
where customers who cannot be served before the deadline are
subject to rejections. Particularly, in the proposed framework,
a manager agent learns to divide mTSPTWR into sub-routing
tasks by assigning customers to each vehicle via a Graph
Isomorphism Network (GIN) based policy network. A worker
agent learns to solve sub-routing tasks by minimizing the cost
in terms of both tour length and rejection rate for each vehicle,
the maximum of which is then fed back to the manager agent
to learn better assignments. Experimental results demonstrate
that the proposed framework outperforms strong baselines in
terms of higher solution quality and shorter computation time.
More importantly, the trained agents also achieve competitive
performance for solving unseen larger instances.

Index Terms— Travelling salesman problem, graph neural
network, deep reinforcement learning.

I. INTRODUCTION

DEEP reinforcement learning (DRL) has been garnering
considerable interests for solving various NP-hard com-

Manuscript received 6 September 2021; revised 17 March 2022
and 30 August 2022; accepted 12 September 2022. Date of publication
23 September 2022; date of current version 26 January 2023. This work was
supported in part by the Agency for Science Technology and Research Career
Development Fund under Grant 222D8235 and Grant C222812027; in part
by the IEO Decentralized GAP Project of Continuous Last-Mile Logistics
(CLML) at the Singapore Institute of Manufacturing Technology under Grant
I22D1AG003; in part by the Rapid-Rich Object Search (ROSE) Laboratory,
Nanyang Technological University, Singapore; in part by the Ministry of
Education, Singapore, under its Academic Research Fund Tier 1 under Project
RG61/22; in part by the Start-Up Grant; in part by the National Natural
Science Foundation of China under Grant 62102228; and in part by the
Shandong Provincial Natural Science Foundation under Grant ZR2021QF063.
The Associate Editor for this article was S. M. Easa. (Rongkai Zhang
and Cong Zhang contributed equally to this work.) (Corresponding author:
Wen Song.)

Rongkai Zhang and Bihan Wen are with the School of Electrical and
Electronic Engineering, Nanyang Technological University, Singapore 639798
(e-mail: rongkai002@e.ntu.edu.sg; bihan.wen@ntu.edu.sg).

Cong Zhang and Jie Zhang are with the School of Computer Science and
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
cong030@e.ntu.edu.sg; zhangj@ntu.edu.sg).

Zhiguang Cao and Puay Siew Tan are with the Singapore Institute of
Manufacturing Technology (SIMTech), Agency for Science Technology and
Research (A*STAR), Singapore 138632 (e-mail: zhiguangcao@outlook.com;
pstan@simtech.a-star.edu.sg).

Wen Song is with the Institute of Marine Science and Technology, Shandong
University, Qingdao 266237, China (e-mail: wensong@email.sdu.edu.cn).

Justin Dauwels is with the Department of Microelectronics, Faculty
EEMCS, Technische Universiteit Delft, 2628 CD Delft, The Netherlands
(e-mail: j.h.g.dauwels@tudelft.nl).

Digital Object Identifier 10.1109/TITS.2022.3207011

binatorial optimization problems (COPs) [1], [2], [3], [4].
Among them, due to its high practical value, the Travel-
ling Salesman Problem (TSP, including the Vehicle Rout-
ing Problem) is receiving particularly increasing attention.
As promising modern alternatives, the DRL based methods
have the potential to not only consume shorter inference
time compared with the exact algorithms while producing
near-optimal solutions, but also circumvent hand-crafted rules
in the conventional heuristics. By virtue of those desirable
capabilities, recently proposed DRL-based methods achieved
much success in solving the general TSP [5], [6].

Recently, a number of attempts have been performed to
leverage DRL to tackle more challenging variants of TSP.
An emerging trend is to incorporate temporal constraints such
as time window [4], [7], [8], as customers always prefer to
be served within a desirable time period, earlier or later than
which may cause dissatisfaction. The other notable trend is to
extend the single vehicle (or salesman) to multiple ones [9],
[10], [11], given that it is more common to dispatch a fleet
of vehicles to serve customers in real life. Although some
seminal works have been delivered to address the two types
of variants respectively, rare studies that exploit the DRL
method to simultaneously cope with time window and multiple
vehicles have been conducted. Note that, it is nontrivial to
investigate the combination of the two variants with the DRL
method. On one hand, this combined variant is more in line
with the real-world scenarios compared with the separate ones.
On the other hand, this combined variant is arduous to be
solved, since simply integrating the respective DRL methods
does not guarantee desirable performance, especially in light
of the NP-hard nature of the problem.

In this paper, we aim to close this gap by propos-
ing a manager-worker framework based on DRL to tackle
this harder yet more practical variant of TSP, namely
multiple-vehicle TSP with time window and rejections
(mTSPTWR). Since time window might be spontaneously
prescribed by customers without any negotiations, it is possible
that some of those temporal constraints would not be satisfied
in a sub-tour. In mTSPTWR, customers who cannot be served
before the deadline are subject to rejections. The goal is to
find a route for each vehicle such that a hybrid cost consisted
of tour length and rejection rate is minimized for the worst
sub-tour.

To solve this challenging problem, in our proposed frame-
work, a manager agent learns to divide mTSPTWR into
sub-routing tasks, and a worker agent learns to solve each
resulting sub-routing task. Specifically, we propose a novel

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0034-460X
https://orcid.org/0000-0002-4499-759X
https://orcid.org/0000-0001-7624-1861
https://orcid.org/0000-0002-6874-6453

1326 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

Graph Isomorphism Network (GIN) as the policy network,
which is leveraged by the manager agent to assign customers
to different vehicles by exploiting the selected output from the
worker agent, while the worker agent relies on a self-attention
based encoder-decoder policy network to minimize the tour
length and rejection rate for each vehicle in regards of the
assigned customers and time window constraints. In doing so,
multiple vehicles and time window constraints are naturally
decoupled and handled by the respective agents. The extensive
experimental results based on randomly generated instances
reveal that our proposed method significantly outperforms
three strong metaheuristic baselines and an adapted DRL
baseline, all of which are carefully tuned. It is also demon-
strated that our method generalizes considerably well to much
larger instances that are unseen during training. In short, the
contributions of this paper are summarized as follows:

• Targeting at more realistic properties, we present and
study a practical yet challenging variant of routing prob-
lem, i.e., mTSPTWR, which handles time windows, rejec-
tions, and multiple vehicles.

• We propose the first DRL-based manager-worker frame-
work to solve mTSPTWR, which encompasses a man-
agement agent for customer assignment based on a Graph
Neural Network (GNN), and a worker agent for routing
based on a self-attention encoder-decoder.

• Extensive experiments confirm that our proposed method
delivers superior performance in terms of higher solution
quality and shorter computation time compared to the
state-of-the-art baselines and can be generalized to large-
scale instances. A detailed ablation study has also justified
the effectiveness of our design.

II. RELATED WORK

As a classical family of COPs, routing problems have been
investigated for many decades. Various methods, including
conventional (meta)heuristic methods and machine learning
based methods, have been proposed. Among them, DRL based
method is arousing growing interests due to its desirable
generalization capability and independence of ground-truth
label. Bello et al. [12] first formulate TSP as a Markov
Decision Process (MDP) solved by a DRL algorithm, where
the policy is parameterized using a Seq2Seq based encoder-
decoder architecture. Most of its following works apply a sim-
ilar architecture while designing new respective encoders or
decoders to ameliorate the performance. For example, realizing
that the input sequence should be irrelevant to the instance
representation, Nazari et al. [13] replace the LSTM encoder
with element-wise projections so that the updated embeddings
after state changes can be effectively computed. Inspired
by the Transformer model [14], Deudon et al. [15] and
Kool et al. [16] propose two self-attention based frameworks
for TSP co-currently, which both lead to significant perfor-
mance boost. Other notable works include integrating local
search with DRL [17] for TSP and learning to generalize to
large TSP instances [18]. Although some of them have consid-
ered TSP with constraints, e.g., the capacities of vehicles [16],
[17], they are relatively simple and usually handled by trivial
rules.

Fig. 1. Manager-worker framework for solving mTSPTWR. The manager
agent learns to assign customers to different vehicles, and the worker agent
learns to solve the resulting sub-routing tasks.

Very recently, some attempts based on deep (reinforcement)
learning have started to tackle TSP (or VRP) with harder
yet more realistic settings. Kaempfer and Wolf [9] introduce
a supervised learning model for TSP with multiple vehi-
cles. However, it requires sufficient labelled training data,
which is computationally expensive to be acquired. To cir-
cumvent labelled training data, Hu et al. [10] propose a
DRL based agent combined with heuristic solvers, e.g., Or-
Tools [19] to solve TSP with multiple vehicles. Though the
cooperation among the vehicles is considered, the usage of
classical solver may limit its application to other variants.
Besides multiple vehicles, several works focus on handling
some other common yet hard constraints, such as time win-
dow. Ma et al. [20] explicitly consider the single-vehicle TSP
with time windows, i.e., TSPTW (first defined in [21]),
by exploiting a hierarchical graph pointer network (GPN).
Gao et al. [4] leverage DRL to learn local-search heuristics
that iteratively improve the solution quality of VRP (Vehi-
cle Routing Problem) and VRPTW (Vehicle Routing Prob-
lem with Time Window). Chen et al. [7] propose a DRL
based framework to learn an efficient large neighbor search-
ing heuristic for VRPTW. Different from the above works,
Zhang et al. [22] consider a variant of TSPTW from a more
practical view, which allows rejecting the nodes (customers),
i.e., TSPTWR. It is natural since the time window may
conflict with each other, and a feasible solution that satisfies
all customers may not exist. To solve this problem, they
propose a DRL based framework combined with backtracking
to post-process a solution to TSP in ways that it will become
a desirable feasible solution to TSPTWR. To our knowledge,
although some success has been achieved for DRL based
works to tackle TSP with multiple vehicles or time window
separately, none of them is able to effectively handle the
combined variant, which is much harder yet nontrivial.

III. PROPOSED FRAMEWORK FOR MTSPTWR

In this section, we first present the definition of mTSPTWR,
then elaborate the rationale of the proposed manager-worker
framework.

A. Problem Definition

In mTSPTWR, a fleet of vehicles are dispatched to serve
customers scattered at different locations. As a common and
practical property in the variants of TSPTW, customers have
their respective time window for being served. However,
the customers who cannot be served before the deadline

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING TO SOLVE MULTIPLE-TSP WITH TIME WINDOW AND REJECTIONS 1327

are subject to rejections in mTSPTWR. The general goal
is to minimize the total tour length, while serving as many
customers as possible. In our setting, an mTSPTWR instance I
is characterized by a set of n customers C = {c1, . . . , cn} and
m (m > 0) identical vehicles (or salesmen). Each customer
ci � (xi , yi , si , ti) is associated with a 2D location (xi , yi)
and a time window (si , ti), where si and ti (si ≤ ti) denote
the start and terminate of the time window, respectively. The
depot (considered as a dummy customer) houses the m vehicles
and is represented as d � (xd , yd , 0,∞). Departing from the
depot, each vehicle serves a subset of customers in a single
sub-tour and returns to the depot finally. Pertaining to customer
ci , arriving earlier than si causes waiting, and arriving later
than ti renders it rejected to be served.

We achieve the goal of mTSPTWR by minimizing a hybrid
cost of length and rejection rate for the worst sub-tour, where
the rejection rate for a sub-tour is defined as the quotient of
the number of rejected customers and the number of assigned
customers. Formally, let rb(1 ≤ b ≤ m) denote the sub-tour
for vehicle b with length l(rb) and rejection rate rej (rb), and
then the cost for vehicle b is denoted as Jb � l(rb)+β ·rej (rb),
where β is a penalty coefficient to control the rejection rate.
The usage of a hybrid cost can mitigate the ambiguity of a
sole cost. For instance, solely minimizing rejection rate may
result in solutions with different tour length, while using a
hybrid cost can further select the ones with less tour length
out. Accordingly, the objective of mTSPTWR is defined as:

min

(
max

b
Jb

)
. (1)

Note: Although we mainly optimize the above min max objec-
tive, we will demonstrate that our method is not restricted
to particular objectives. As an example, we will show that
our method can learn to minimize the combined overall
rejection rate and tour length for all sub-tours rather than the
combination of that of the worst sub-tour. Nevertheless, here
we argue that the min max objective is more customer-friendly,
as the level of service [23] of each vehicle can be guaranteed
with a higher lower-bound. A more detailed discussion about
different objectives and the experiment results for overall costs
are presented in Appendix A. On the other hand, although
mTSPTWR is partially related to multiple TSPTW (mTSPTW)
and multiple prize-collection TSP (mPCTSP), they are still
obviously different from each other. Firstly, in mTSPTW,
the instances are generated with the assumption that all the
customers [24] can be served feasibly and the goal is usually to
minimize the tour length. It may distort the real-life scenarios
where we have to reject a number of requests to pursue
desirable balance between the rejection rate and the tour
length. Secondly, although ‘rejections’ are also considered
in mPCTSP, they are not triggered by the violation of the
feasibility constraints, i.e., time window.

B. Proposed Framework

To efficiently solve mTSPTWR, we propose a DRL based
manager-worker framework that decouples the problem into
upper-level and lower-level tasks, respectively, as depicted in

Fig. 1. Regarding the upper-level task, a manager agent learns
to divide customers into subgroups and then assign them to
different vehicles. Regarding the lower-level task, a worker
agent learns to route for each vehicle in consideration of the
assigned customers and the hybrid cost. The (selected) outputs
from the lower-level task are adopted to train both agents to
help optimize the objective in Eq. (1). Algorithm 1 summarizes
the whole inference process of our proposed framework for
solving the mTSPTWR problem.

Algorithm 1 Inference Process of the Proposed Framework
Load: Manager_agent(), Worker_agent().
Input: One instance GI .
Output: The sub-tours {r1, . . . , rm} and the corresponding

cost {J1, . . . , Jm} for all m vehicles.
1: Customer assignment process:
2: {G1, . . . ,Gm } = Manager_agent(GI).
3: Subtour routing process:
4: for b = 1 : m do
5: rb, Jb = Worker_agent(Gb).
6: end for

Pertaining to the manager agent, we leverage a Graph
Neural Network (GNN) combined with self-attention to para-
meterize the policy, which explicitly models each vehicle
based on learnt graph embeddings and then assigns each cus-
tomer to a vehicle. Pertaining to the worker agent, we exploit
a self-attention based encoder-decoder model that is similar
to [22] to parameterize the policy. The details are as follows.

1) The Manager Agent: The process of customer assign-
ment by the manager agent can be formulated as a one-step
MDP [25]. Given a problem instance I sampled from certain
distribution p(I), i.e., I ∼ p(I), we represent the unique state
sI as a fully connected graph GI = (VI , EI) with nodes set
VI = C ∪ {d} and edges set EI = {(v, u)|∀v, u ∈ VI }. The
action asI is to assign customers to different vehicles, thus the
action space A(sI) (asI ∈ A(sI)) refers to all combinations of
customer-vehicle matches A(sI) ⊆ P(C) with P(C) denoting
the power set of all customers for I . The corresponding reward
is defined as RM (asI , sI) = − maxb(Jb),∀1 ≤ b ≤ m, which
is fed back by the worker agent and refers to the sub-tour with
the maximum hybrid cost. At sI , a stochastic policy π(asI |sI)
outputs a distribution over A(sI), from which the action is
sampled accordingly. Note that, the manager agent outputs
the overall distribution in one shot rather than in a sequential
fashion. During training, an instance will be discarded once
exploited, and new instances will be sequentially generated
on-the-fly to update the policy until converged.

The policy π(asI |sI) for the manager agent is parameterized
by πθM (asI |sI) with trainable parameters θM . To learn infor-
mative representation and facilitate the matching between cus-
tomers and vehicles, we design a policy network as depicted
in Fig. 2. Firstly, we leverage GNN to embed the state
sI including customers and depot. Particular in this paper,
we adopt GIN [26] for graph embedding which is known
as a strong GNN variant with discriminative power to learn
representation over graphs. The formulation of GIN layers,

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

1328 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

Fig. 2. Architecture of manager agent policy network πθM . It mainly consists of three components, namely, graph embedding, vehicle embedding, and
customer assignment, respectively. The output is the distribution for all customers ci being assigned to different vehicles.

Algorithm 2 Customer Assignment Process

Input: GI with feature h(0)(v) ∈ R
n0 ,∀v ∈ VI .

Parameter: GIN parameters: θt=0 ∈ R
n0×nG , θt>0 ∈ R

nG×nG ;
vehicle embedding network parameters: θqb ∈ R

2nG×n ,
θkb, θvb ∈ R

nG×n ; customer assignment network parame-
ters: θ 	

q ∈ R
n×n	

, θ 	
k ∈ R

nG×n	
.

Output: Matching between vehicles and customers.
1: Graph Embedding using L GIN layers:
2: for l = 1 : L do
3: h(l)v = GIN(l)θl

(h(l−1)
v).

4: end for
5: hv = ∑L

l=1 h(l)v ; hGI = f (h(l)v) = 1
|V |

∑L
l=1

∑
v h(l)v .

6: Vehicles Embedding using multi-head self-attention:
7: for b = 1 : m do
8: qb = θqbhc, where the context vector hc = (hG I : hd)

with (:) denoting the concatenation operator.
9: for ci ∈ C do

10: kbi = θkbhci , vbi = θvbhci .
11: end for
12: hb = ∑

i wbivbi , wbi = eubi∑
j eubj , ubi = qT

b kbi√
n

.

13: end for
14: Customer Assignment using single-head self-attention:
15: for ci ∈ C do
16: for b = 1 : m do
17: q 	

b = θ 	
qhb , k 	

bi = θ 	
khci , u	

bi = q 	T
b k	

bi√
n	 ,

sbi = tanh u	
bi , pbi = esbi∑

b esbi .
18: end for
19: Assign ci to b̂ci by sampling, i.e., b̂ci ∼ (p1i , . . . , pmi).
20: end for

i.e.,, GIN(h(k−1)
v), is expressed as follows:

MLP(k)θk

((
1 + �(k)

)
· h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
, (2)

where h(k)v is the representation of node v at iteration k and h(0)v
refers to its raw features for input, M L P(k)θk

is a Multi-Layer
Perceptron (MLP) with parameter θk for iteration k followed
by batch normalization [27], � is an arbitrary number that
can be learned, and N (v) is the neighbourhood of v. After
K iterations of updates, a global representation for the entire

graph can be obtained using a pooling function L that takes as
input the embeddings of all nodes and outputs a p-dimensional
vector hG ∈ R

p for G. Here we use average pooling, i.e., hG =
L({hK

v : v ∈ V }) = 1/|V | ∑v∈V hK
v .

Secondly, we exploit a multi-head self-attention architec-
ture [14] to embed vehicles where each head corresponds to
a vehicle. We argue that, although m vehicles are identical,
treating them homogeneously (via parameters sharing) may
cause difficulty for managing them. To model this individuality
of vehicles, we stipulate that the multiple heads are mutually
independent, which is also justified in the ablation study.
Finally, given customer and vehicle embeddings, a single-head
self-attention architecture is employed to model a centralized
assignment policy. The procedure of customer assignment by
the manager agent is summarized as Algorithm 2.

Meanwhile, the policy πθM (asI |sI) is trained using the
REINFORCE [28] algorithm. Specifically, we maximize the
expected reward obtained with πθM (asI |sI) given any instance
I as follows,

EI∼p(I)[
∑
asI

(RM (asI , sI)− B(I))πθM (asI |sI)], (3)

where the reward RM (asI , sI) is acquired from the worker
agent, and B(I) is a baseline to reduce variance during
training [16]. With such an objective, the manager agent will
learn assignments that help reduce the hybrid cost of the worst
sub-tour. In practice, we adopt a batch of instances from p(I)
and rollout πθM on them to estimate the objective in Eq. (3),
which is then used to update the policy.

2) The Worker Agent: Once decomposed by the manager
agent, the mTSPTWR becomes a TSPTWR for the respective
vehicle. Then, the worker agent should construct the route by
finding a sub-tour for each vehicle such that the hybrid cost
consisted of tour length and rejection rate is minimized for
each sub-tour. In light of the recently reported competitive
performance, DRL based method is more desirable for the
worker agent to solve the TSPTWR [22]. However, the size
of customers assigned to a vehicle always varies, and it would
be substantially challenging to jointly train the manager agent
and worker agent. To alleviate this issue, we train them in a
two-stage manner. In the first stage, the worker agent is trained
alone with its own cost. In the second stage, the well-trained

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING TO SOLVE MULTIPLE-TSP WITH TIME WINDOW AND REJECTIONS 1329

Fig. 3. The diagram of the worker agent [22].

Algorithm 3 Training Process of Worker Agent
Input: Instances S, Batch Size Sbs , Training Epoch E , Update

Threshold α > 0.
Parameter: �, �B L .
Output: �∗ for the optimal baseline/agent.
1: for epoch = 1:E do
2: for all S do
3: Sample Sbs instances from S
4: for Si ∈ Sbs do
5: Hi = Encoder�(Si),HB Li = Encoder�BL (Si).
6: ri = Decoder�(Hi),rB Li = Decoder�BL (Hi).
7: Jbi = Backtracking(ri).
8: JbB Li = Backtracking(rB Li).
9: end for

10: ∇L ∝ ∑Sbs
1 (Jbi − JB Li)∇�log Pi (rbi).

11: � = Adam(�,∇L).
12: if Jbi − JbB Li < −α then
13: �B L = �i .
14: end if
15: end for
16: end for

worker agent is fixed and the output is adopted to calculate
the cost for the manager agent to learn better assignments.
In doing so, we not only guarantee stable training performance,
but also enable flexibility on selecting routing algorithm that
is deployed in a plug-and-play manner for the worker agent.

In our framework, we exploit a self-attention based encoder-
decoder model that is similar to [22] to parameterize policy.
Fig. 3 illustrates the training and inference process of the
exploited model. We represent a TSPTWR instance for a single
vehicle b as a fully connected graph Gb = (Vb, Eb), with
Vb = {Cψb } ∪ {d}. Passing Gb through a self-attention based
encoder-decoder policy network π�(r |Gb), a tour r (may be
infeasible) for serving all the customers in Gb is generated.
Then r is mapped to rb (a guaranteed feasible solution) by
a backtracking procedure [22]. The resulting hybrid cost for
vehicle b is given as Jb = l(rb) + β · rej (rb). The negative
hybrid cost −Jb is applied as the reward for the worker
agent. REINFORCE [28] with a rollout baseline is utilized to
enable a faster training process with lower variance. During

training, the parameter �B L is updated to �, if Jθ is less
than JB L . This baseline is not only exploited to adjust �,
but also able to reinforce the good solutions by increasing the
probability. The final parameter�∗ for inference is set to �B L .
Algorithm 3 summarizes the training process of the worker
agent and Algorithm 4-6 detail the respective key components,
i.e., encoder, decoder, and backtracking in the worker agent.
All the algorithms are written as pseudo code in python style.

Algorithm 4 Encoder
Input: Features for nodes xi ∈ Vb, i = (1, . . . , n), Normal-

ization Constant dk , Layers Number N .
Output: Embedding of the instance H ={h(N)i , h̄(N)}.
1: Embed to high dimension: h(0)i = W x xi + bx .
2: for l = 1:N do
3: Compute key ki , value vi and query qi for each node:

ki = W K
l h(l−1)

i , vi = W V
l h(l−1)

i , qi = W Q
l h(l−1)

i .

4: Compute the compatibilitires: ui j = qT
i k j√

dk
, i �= j .

5: Compute the attention weights using softmax:
ai j = eui j∑

j eui j .

6: Output from the multi head attention sublayer:
h(l)i 	 = ∑

j ai j v j .
7: Output from feed-froward sublayer:

h(l)i 		 = W f f1
l ReLu(W f f0

l h(l−1)
i + b f f0

l)+ b f f1
l .

8: Combine and Batch Normalize (B N):
h(l)i = BN(h(l)i 	 + h(l)i).

9: end for
10: Obtain h(N)i and h̄(N) =

∑
i h(N)i
n .

IV. EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to evaluate
our method. Firstly, we compare our method with three strong
metaheuristics on problems of different sizes and difficulties.
In particular, two types of mTSPTWR are selected, namely
an easier version where 10 vehicles are available and a harder
version where only 5 vehicles are available. The problem sizes
range from 50 customers to 500 customers to indicate both
small and large-scale problems in reality. Next, we conducted
several ablation studies. We first show that the GIN based
manager agent can well learn a customer assignment strategy
for each vehicle to boost the performance of worker agent,
which is superior to a multi layer perceptron (MLP) based one
and a counterpart heuristic strategy, e.g., K-means. Afterwards
we justify that multi-head architecture is a key component for
the manager agent to learn meaningful vehicle embeddings.
Finally, we show our algorithm is robust against different val-
ues of the penalty coefficient β, although (we show) different
values of β will affect the solutions in terms of tour length
and rejection rate. The configuration details of the baselines
including K-means are given in appendix B.

A. Settings

Following the settings that are commonly used in the
DRL based methods for solving routing problems [12], [15],

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

1330 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

[16], [29], we randomly generate problem instances with
different sizes of customers (n) and vehicles (m). Specifically,
we consider n = {50, 100, 150} as small sizes to train and
test our method, and n = {200, 300, 400, 500} as relatively
large sizes to evaluate the generalization performance. For
each customer size, we also consider m=5 and 10, respectively,
where m=5 is considered as harder since fewer vehicles are
available. We follow [16] to generate customer locations,
i.e., ∀ci , (xi , yi) ∈ U [0, 1] × U [0, 1] with U [·] denoting the
uniform distribution. The time window is unified for all sizes
and provided as ∀ci , si ∼ U [0, 3], ti = si + 3. The location
of depot can be randomly selected or predefined in the unit
square, however, for an easier data generation, We fix the depot
at location [0.5, 0.5] with time window [0, 10], where 10 is
used to make sure all vehicles return to depot. Note that, the
customer size n also includes the depot, which is considered
as a dummy customer in our setting.

Algorithm 5 Decoder

Input: Overall embedding h̄(N), Key for nodes K .
Output: Tour for all customers r .
1: Initialize two trainable place holders for step 0:
v f , vl .

2: Compute initial decode context:
qd = W Qd Concate(Encoder(h̄(N), v f , vl)).
Concate() denotes concatenation operator

3: for i = 1:n do
4: Compute the compatibilities:

ud j = qT
d k j√

dk
, j = (1, . . . , n).

5: Mask visited nodes: ud j = −∞, if node j is visited.
6: Compute probability of visiting node j :

pd j = eud j∑
i eud j .

7: Sample a node based on the probability:
ri = Sample/GreedySample(pd j).
GreedySample() is only used in inference.

8: Update v f ,vl : v f = h(N)r1 ,vl = h(N)ri .
9: Update decode context:

qd = W Qd Concate(Encoder(h̄(N), v f , vl)).
10: end for

Algorithm 6 Backtracking Function
Input: Tour r (for all customers), Instances S.
Output: Solution to TSPTWR rb.
1: Initialize time t = 0,
2: for i = 0:n − 1 do
3: t = t + tri ,ri+1 , where tri ,ri+1 is the time needed from

node ri to ri+1.
4: if t > tri+1 (the termination time of node ri+1) then
5: t = t − ti,i+1.
6: delete ri+1 from r .
7: end if
8: end for

We tune all hyperparameters on size n=50 with m=10 and 5,
respectively, and fix them during training and evaluations for
other sizes. Pertaining to the manager agent, we train the

policy network for 10, 000 iterations with 128 (batch size)
instances generated on-the-fly at each iteration. The model is
validated on 100 fixed instances every 100 training iterations.
For GIN, we adopt 3 layers and set �(t) = 0 for all layers
following [17]. The mlp(t)θt

for each layer has 2 hidden layers
with dimension 32. We use mean neighborhood aggregation
for each GIN layer and mean pooling as the readout function
over the entire graph. For multi-head self-attention vehicle
embedding network and single-head self-attention assignment
network, we unify the hidden dimensions of all parameters,
i.e., θqb, θ

	
q , θ

	
k ∈ R

64×64 and θkb, θvb,∈ R
32×64. Pertaining to

the worker agent, we mainly follow configurations in [22]. The
pretraining sizes related to solving TSPTWR are set as �n/m�
(i.e., �·� refers to the rounding up operation). For example,
regarding the mTSPTWR instances with m = 5 and n = 150,
the pretraining size is �150/5� = 30, and it also can solve
TSPTWR with customers more or less than 30. Accordingly,
we adopt pretraining sizes of {5, 10, 15, 20, 30} for the worker
agent to train the manager agent on small sizes of mTSPTWR,
while {40, 50, 60, 80, 100} to evaluate the generalization on
large sizes. The penalty coefficient β for rejection rate is
set to 100. We use Adam optimizer with constant learning
rate lr = 1 × 10−4 for both the manager and worker agents
during training. Other parameters follow the default settings
in PyTorch [30].

As reviewed in Section II, due to the complexity, the
mTSPTWR has been rarely studied with DRL based methods.
To better benchmark our method, we adapt AM [16] to
mTSPTWR as a baseline, which is known as the state-of-the-
art DRL method for TSP. Besides, we adopt three competi-
tive and representative conventional metaheuristic algorithms
including tabu search (TS) [31], simulated annealing (SA) [32]
and bees algorithm (BA) [33] as additional baselines. More-
over, we conduct detailed ablation studies on the components
in our proposed framework to verify their effectiveness. The
hardware we use is a PC with Intel Core i9-10940X CPU and
251GB memory. The specific configurations of baselines are
carefully tuned for the same objective, i.e., minimizing the
hybrid cost of length and rejection rate for the worst sub-tour,
and given in the appendix B.

B. Results and Analysis

1) Comparison Studies on Easier and Harder mTSPTWR:
We first train and test AM and our method on small sizes of
mTSPTWR with n = 50, 100,1 and 150. Then we evaluate
the generalization performance on large sizes of mTSPTWR
without re-training, where n = 200, 300, 400, and 500.
For each customer size, we consider two different sizes of
vehicles, namely, easier mTSPTWR with 10 vehicles (m=10)
and harder mTSPTWR with 5 vehicles (m=5). We infer
100 unseen randomly generated instances for each size of
customer and vehicle, and explicitly report the averaged tour
length, rejection rate, hybrid cost and computation time. Note
that during inference, both manager and worker agent greedily
choose respective actions according to computed probability,

1The biggest size for AM is n = 100 due to the heavy computation [16],
and bigger sizes than n = 100 cause out of memory.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING TO SOLVE MULTIPLE-TSP WITH TIME WINDOW AND REJECTIONS 1331

TABLE I

OUR METHOD VS. BASELINES ON MTSPTWR WITH M=10. “REJ.

RATE”: REJECTION RATE. COMPUTATION TIME IS COUNTED IN

SECONDS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

i.e., the action with the highest probability will be selected.
Although sampling multiple solutions may yield better results,
greedy policy is faster for inference while still producing
satisfactory results (see [17]).

Table I demonstrates that for easier mTSPTWR, when the
problem sizes are small, the conventional metaheuristics can
produce solutions with high qualities, e.g., SA achieves the
lowest hybrid cost with customer sizes of 50, 100, and 150.
AM exhibits acceptable performance for testing sizes smaller
than the training ones, but fails to generalize to bigger sizes.
Our proposed method achieves competitive performance com-
pared to SA with slightly higher hybrid cost, and generalizes
well to different sizes. It should be emphasized that, thanks
to the careful tuning of hyperparameters and small solution
space, conventional metaheuristics could achieve desirable
performance where SA attains slightly better objective values
than ours by solving instances individually. However, its
computation time is far longer as SA needs to search from
scratch for each instance, especially given that ours only
requires about 0.08s to solve an instance. This significantly
limits the scalability of conventional metaheuristics. On larger
sizes, the performance of all the baselines drops dramatically,
because it is hard for the conventional metaheuristics to
conduct an efficient search in such large solution space, while
AM cannot be generalized. Our method outperforms all the
baselines in terms of the solution quality and computation
time, even though our models are trained on instances that
are much smaller than the inferred ones. The overall trend is
that the closer testing sizes are to the training ones, the better
the performance is. Moreover, it should be noticed that in

TABLE II

OUR METHOD VS. BASELINES ON MTSPTWR WITH M=5. “REJ.

RATE”: REJECTION RATE. COMPUTATION TIME IS COUNTED IN

SECONDS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

all these instances our method outputs lower rejection rates
than the baselines. It means that our learnt policy is able
to reduce unnecessary rejections with minor sacrifices in the
hybrid cost. Generally, the results reveal that our model can
be generalized well to unseen instances of the same or larger
sizes, while maintaining competitive performance. Concerning
real-life problems whose sizes may vary, our method has the
desirable potential to be trained for a specific size but applied
to handle various sizes with short inference time.

Table II shows that other than the fast inference, our method
is also robust for solving harder mTSPTWR. In comparison
with the results in Table I, both the rejection rate and tour
length increase for all methods in Table II, which is natural
since there are fewer available vehicles for the customers to
choose from. However, the increments in hybrid cost for the
conventional metaheuristics are considerably large, especially
as the number of customers becomes higher than 100. In con-
trast, the increments for our method is relatively low across all
sizes. Again, in our method, the closer testing sizes are to the
training ones, the better the performance is. The superiority
of our method comes from the fact that it is always able to
yield lower rejection rates. Although increasing the number
of available vehicles could decrease the rejection rates, how
to efficiently serve more customers in the case of a limited
number of vehicles would be more desirable. Remarkably,
our method seems having a strong capability to capture this
key feature of mTSPTWR and learn competitive policies
accordingly. In addition, the training curves for all sizes of
problems given in Fig. 4 demonstrate that our algorithm
performs stably across all sizes of problems, and converges
quickly as well.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

1332 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

Fig. 4. Training curves of rejection rate, length, and hybrid cost for the worst sub-tour of each problem. The hybrid cost curve has the similar shape
as that of rejection rate, and this is because we set β = 100 in our experiment, rendering rejection rate the relatively dominant term in the formula
Jb � l(rb)+ 100 · rej (rb).

Fig. 5. (a) Comparison between worker agent alone and with manager agent; (b) The maximum and minimum number of customers assigned to vehicles in
an instance; (c) Comparison between single-head (SH) and multi-head (MH) self-attention for vehicle embedding.

2) Compensation Study: We further verify the superiority of
our method by analyzing the compensation from the manager
agent to the worker agent. In fact, the worker agent is pre-
trained with the customer size �n/m�, and intuitively, it should
achieve the best performance when handling TSPTWR with
about �n/m� customers. However, we show that with the
assignment by the manager agent, the worker agent can further
reduce hybrid cost even if the pretrained model is applied to
solve TSPTWR of other sizes during inferring an mTSPTWR
instance.

As depicted in Fig. 5(a), we show the average hybrid cost
of TSPTWR by the sole worker agent (the dashed lines) and
the corresponding mTSPTWR by the manager-agent frame-
work (the solid lines), respectively, where the former model
is trained and tested with TSPTWR of �n/m� customers.
Note that, the hybrid cost for mTSPTWR still refers to the
maximum one among the m vehicles. We observe that with
the supervision by the manager agent, the hybrid cost of
mTSPTWR is much lower than that of the corresponding
TSPTWR. This superiority becomes more significant as the
customer size increases, which well reflects that the manager
agent could compensate the sole work agent by learning more
effective customer assignment for it. As depicted in Fig. 5(b),
we present the maximum and minimum numbers of assigned
customers to the vehicles regarding the involved mTSPTWR
instances. We can obviously see that the manager agent always
assign various sizes of customers to vehicles rather than the
ones close to �n/m�.

3) Ablation Study for Assignment Strategy: We compare
the assignment strategy learnt by our manager agent against
K-means heuristic (a clustering method commonly applied in
the two-stage routing problem [34]) and the one learnt by a
3-layer MLP. In particular, regarding the former baseline, the
customers are partitioned into m clusters by K-means based
on spatial information (locations) and temporal information
(time windows), after which the same worker agent is applied
for each cluster. Regarding the latter baseline, we mainly
replace the GIN with MLP while keeping the remaining parts
of the whole framework unchanged. Both ours and MLP are
trained for mTSPTWR-150 with m = 5/10 and generalized
to the other sizes. Table III summarizes the performance of
our manager agent, MLP and K-means. It can be observed
that, although K-means produces shorter route lengths on
some instances, its rejection rate and the hybrid cost are
much inferior to our manager agent and MLP in most cases.
It implies that K-means fails to generate desirable clusters
(that would lead to lower hybrid cost) by mining the given
spatial and temporal information. Moreover, compared with
MLP, our GIN based manager agent can successfully learn
a more effective assignment policy from these heterogeneous
raw features yielding better performance for most of the cases.

4) Ablation Study for Multi-Head Architecture: To justify
the effectiveness of the multi-head attention for the man-
ager agent to identify and differentiate m identical vehicles,
we compare it with a single-head self-attention where all
m vehicles share parameters. Specifically, we compute their

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING TO SOLVE MULTIPLE-TSP WITH TIME WINDOW AND REJECTIONS 1333

Fig. 6. (a) The ablation study for different values of β with size (n = 150,m = 5); (b) The maximum and minimum number of customers assigned to
vehicles in (n = 100,m = 5) instances for objectives “min max” and “overall”, respectively; (c) The maximum and minimum number of customers assigned
to vehicles in (n = 100,m = 10) instances for objectives “min max” and “overall”, respectively.

TABLE III

THE PERFORMANCE OF OUR MODEL COMPARED WITH K-MEANS
HEURISTIC WHERE THE NUMBER OF VEHICLES m SERVES AS THE

NUMBER OF CLUSTERS AND THE ASSIGNMENT STRATEGY LEARNT

BY AN MLP. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

query, keys, and values as qb = θqhc, kbi = θkhi , and vbi =
θvhi for ∀ci ∈ C , where θq , θk and θv are shared trainable
parameters. All other configurations of the model remain the
same as in subsection IV-A. In Fig. 5(c), we observe that
compared with sharing parameters, embedding each vehicle
separately via independent network can learn more effective
representation for each vehicle. In contrast, with the single-
head architecture, the resulting assignment policy for the man-
ager agent seemingly degenerates into a random allocation.

5) Ablation Study for Different Penalty Coefficient (β): In
reality, the respective magnitude of rejection rate and sub-tour
length in hybrid cost may vary under different circumstances.
For example, when some customers are VIPs, the vehicles may
have to serve them regardless of the cost. In this situation,
the manager agent should pay more attention to optimize
rejection rate while adjusting their service strategies. On the
other hand, some customers may have flexible schedules which

TABLE IV

THE PERFORMANCE OF OUR MODEL FOR β = 10 AND m = 5. THE
NUMBER IN THE BRACKETS ARE DIFFERENCES TO THAT OF β = 100.

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE V

THE PERFORMANCE OF OUR MODEL FOR β = 10 AND m = 10. THE

NUMBER IN THE BRACKETS ARE DIFFERENCES TO THAT OF β = 100.
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

makes an alternative visit possible. In this case, vehicles may
postpone services to them to make the sub-tour length small
for saving cost. All these different purposes can be achieved
via adjusting the penalty coefficient β in the objective formula
Jb � l(rb)+ β · rej (rb), i.e., paying more attention on either
optimizing rejection rate or sub-tour length. Previously we
have evaluated our method with β = 100. Here we continue

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

1334 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

to show our algorithm learns adjusted policies for another
case when β = 10. Pertaining to the baseline, we only
compare with the simulated annealing (SA) since it demon-
strated relatively superior performance to others previously.
For simplification, we only consider small size (50), median
size (150), and large sizes (300, 500). The results for easier
and harder mTSPTWR are recorded in Table V and Table IV,
respectively. We observe that our algorithm still preserves
better performance against baseline in the case of β = 10.
Interestingly, when compared with results for β = 100,
our algorithm seems able to adjust learnt policies to capture
the discrepancies. For instance, regarding the same problem
instances, the learnt policies should yield a smaller sub-tour
length but a larger rejection rate, since β = 10 is much
smaller compared with β = 100. This expectation is basically
reflected by the difference values in the brackets. Furthermore,
we illustrate how different β values affect the tour length and
rejections for mTSPTWR with m = 5, n = 150 in Fig. 6(a),
which also reveals the general trend.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a DRL based manager-worker
framework to tackle a challenging yet practical variant of TSP
with (1) multiple vehicles, (2) time window and rejections,
i.e., mTSPTWR. By dividing mTSPTWR into manager-level
and worker-level tasks, the respective agents can learn strong
policies to produce high-quality solutions to the original
problem in short computation time. Extensive experiments
confirm the superiority of our method against the metaheuristic
baselines and also show that the proposed framework can gen-
eralize well to larger instances unseen during training. In the
future, besides extending our framework to other multi-vehicle
routing problems and real world datasets, we also would like
to investigate, (1) how to enable the two agents to feed back
to each other and train them jointly; (2) how to optimize the
number of vehicles without exhausting them all; (3) how to
automatically decide the penalty coefficient β for different
scenarios.

APPENDIX A
DISCUSSION ON DIFFERENT OBJECTIVES FOR MTSPTWR

Besides the objective we considered in Eq. (1), a more
straightforward objective for mTSPTWR is directly minimiz-
ing the overall statistics, i.e., the average tour length and
overall rejection rate. We retrain our proposed framework for
this overall objective and use SA with the same objective as
a baseline. Using mTSPTWR with m = 5/10, n = 100 as
an example, we demonstrate that our framework can also
work well for the overall objective, the results of which are
summarized in Table VI. However, since the sub-tours are
not (explicitly) assessed in the overall objective, it may lead
to extremely “unbalanced” solutions, where some vehicles
are not deployed and some vehicles are assigned with too
many customers. This may not make the best use of a fleet
and consequently harm the level of service. In contrast, our
objective encourages the manager agent to assign customers in
a more balanced way, which can fulfill practical demands from

TABLE VI

THE COMPARISON OF OUR MODEL WITH SA W.R.T THE OVERALL COST.
THE “LENGTH” AND THE “REJ. RATE” ARE THE AVERAGE DIS-

TANCE AND REJECTION RATE FOR ALL VEHICLES, RESPECTIVELY.
THE “HYBRID COST” IS CALCULATED AS “LENGTH” + β ·

“REJ. RATE” WHERE β = 100. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD

TABLE VII

HYPERPARAMETERS FOR BASELINES

the customer’s perspective. Particularly, Fig. 6(b) and Fig. 6(c)
display the minimum and maximum number of customers
assigned to vehicles, which also justified the favorable property
of our objective.

APPENDIX B
HYPERPARAMETERS FOR BASELINES AND

CONFIGURATION OF K-MEANS

We present detailed configurations for our baselines, namely
tabu search (TS), simulated annealing (SA) and bees algorithm
(BA). For each method, the objective in Eq. (1) with β =
100 is adopted as the evaluation function. TS is implemented
with python. SA and BA are implemented in Matlab using
YPEA [35] toolbox. All the solutions can be manipulated
by swapping, reversing, and inserting to generate neighbors.
The hyperparameters are carefully tuned, and we select the
ones that can deliver satisfactory overall performance on all
sizes of the problems. As a common hyperparameter, the

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LEARNING TO SOLVE MULTIPLE-TSP WITH TIME WINDOW AND REJECTIONS 1335

number of iterations for each method is set to 1000. Other
hyperparameters are listed in Table VII for each respec-
tive baseline, where n denotes the number of customers in
the corresponding problem instances. For K-means, we use
scikit-learn [36] machine learning package with the fol-
lowing hyper-parameters, i.e., max_iter=1000 (Maximum
iteration number of the K-means algorithm for a single run).
All other parameters follow the default setting.

REFERENCES

[1] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 539–548.

[2] E. Yolcu and B. Póczos, “Learning local search heuristics for
Boolean satisfiability,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 7992–8003.

[3] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang, “Heteroge-
neous attentions for solving pickup and delivery problem via deep
reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3,
pp. 2306–2315, Mar. 2021.

[4] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model
to arbitrarily large TSP instances,” 2020, arXiv:2012.10658.

[5] L. Xin, W. Song, Z. Cao, and J. Zhang, “Step-wise deep learning models
for solving routing problems,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp. 4861–4871, Oct. 2020.

[6] L. Xin, W. Song, Z. Cao, and J. Zhang, “Neurolkh: Combining deep
learning model with Lin-Kernighan–Helsgaun heuristic for solving the
traveling salesman problem,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 34, 2021, pp. 1–12.

[7] M. Chen, L. Gao, Q. Chen, and Z. Liu, “Dynamic partial removal:
A neural network heuristic for large neighborhood search,” 2020,
arXiv:2005.09330.

[8] J. Zhao, M. Mao, X. Zhao, and J. Zou, “A hybrid of deep reinforcement
learning and local search for the vehicle routing problems,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 11, pp. 7208–7218, Nov. 2020.

[9] Y. Kaempfer and L. Wolf, “Learning the multiple traveling sales-
men problem with permutation invariant pooling networks,” 2018,
arXiv:1803.09621.

[10] Y. Hu, Y. Yao, and W. S. Lee, “A reinforcement learning approach for
optimizing multiple traveling salesman problems over graphs,” Knowl.-
Based Syst., vol. 204, pp. 106–244, Sep. 2020.

[11] J. Li et al., “Deep reinforcement learning for solving the heterogeneous
capacitated vehicle routing problem,” IEEE Trans. Cybern., early access,
Sep. 23, 2021, doi: 10.1109/TCYB.2021.3111082.

[12] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 2692–2700.

[13] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 9839–9849.

[14] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[15] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau,
“Learning heuristics for the TSP by policy gradient,” in Proc. Int. Conf.
Integr. Constraint Program., Artif. Intell., Oper. Res., 2018, pp. 170–181.

[16] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–25.

[17] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 9, pp. 5057–5069, 2021.

[18] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model
to arbitrarily large TSP instances,” in Proc. AAAI Conf. Artif. Intell.,
vol. 35, no. 8, 2021, pp. 7474–7482.

[19] L. Perron and V. Furnon. (2019). Or-Tools. Google. [Online]. Available:
https://developers.google.com/optimization/

[20] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori, “Combinatorial optimiza-
tion by graph pointer networks and hierarchical reinforcement learning,”
2019, arXiv:1911.04936.

[21] E. K. Baker, “An exact algorithm for the time-constrained traveling
salesman problem,” Oper. Res., vol. 31, no. 5, pp. 938–945, 1983.

[22] R. Zhang, A. Prokhorchuk, and J. Dauwels, “Deep reinforcement learn-
ing for traveling salesman problem with time windows and rejections,”
in Proc. Int. Joint Conf. Neural Netw., Jul. 2020, pp. 1–8.

[23] C. J. Malmborg, “A genetic algorithm for service level based vehicle
scheduling,” Eur. J. Oper. Res., vol. 93, no. 1, pp. 121–134, 1996.

[24] Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and
A. A. Cire, “Combining reinforcement learning and constraint program-
ming for combinatorial optimization,” in Proc. AAAI Conf. Artif. Intell.,
vol. 35, no. 5, 2021, pp. 3677–3687.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[26] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–17.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[28] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992, doi: 10.1007/BF00992696.

[29] W. Jinzhan, H. Yanmei, Z. Zhaomin, and Z. Liucun, “An novel shortest
path algorithm based on spatial relations,” in Proc. 4th Int. Conf.
Electron. Inf. Technol. Comput. Eng., 2020, pp. 1024–1028.

[30] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[31] S. Aminzadegan, M. Tamannaei, and M. Fazeli, “An integrated produc-
tion and transportation scheduling problem with order acceptance and
resource allocation decisions,” Appl. Soft Comput., vol. 112, Nov. 2021,
Art. no. 107770.

[32] A.-H. Zhou et al., “Traveling-salesman-problem algorithm based on
simulated annealing and gene-expression programming,” Inf., vol. 10,
no. 1, p. 7, 2019.

[33] W. A. Hussein, S. Sahran, and S. N. H. S. Abdullah, “The variants of
the bees algorithm (ba): A survey,” Artif. Intell. Rev., vol. 47, no. 1,
pp. 67–121, 2017.

[34] S. C. Ho, W. Szeto, Y.-H. Kuo, J. M. Y. Leung, M. Petering, and
T. W. Tou, “A survey of dial—A-ride problems: Literature review and
recent developments,” Transp. Res. B, Methodol., vol. 111, pp. 395–421,
May 2018.

[35] M. K. Heris, “YPEA: Yarpiz evolutionary algorithms,” 2019. [Online].
Available: https://yarpiz.com/477/ypea-yarpiz-evolutionary-algorithms

[36] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

Rongkai Zhang received the B.Eng. degree from
the Beijing Institute of Technology, China, in 2017,
and the M.Sc. degree from Nanyang Technolog-
ical University, Singapore, in 2018, where he is
currently pursuing the Ph.D. degree. His research
interests include deep reinforcement learning and its
applications.

Cong Zhang received the B.Sc. degree from the
Department of Mathematical Sciences, University
of Liverpool, U.K., and the Department of Applied
Mathematics, Xi’an Jiaotong-Liverpool University,
China, in 2015, respectively, and the M.Sc. degree
from the Department of Computing, Imperial Col-
lege London, U.K., in 2016. He is currently pursu-
ing the Ph.D. degree with Nanyang Technological
University, Singapore, awarded the Singapore Inter-
national Graduate Award (SINGA). His research
interests include deep reinforcement learning, graph

neural networks, job-shop scheduling, and intelligent vehicle routing.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCYB.2021.3111082
http://dx.doi.org/10.1007/BF00992696

1336 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

Zhiguang Cao received the B.Eng. degree in
automation from the Guangdong University of Tech-
nology, Guangzhou, China, the M.Sc. degree in
signal processing from Nanyang Technological Uni-
versity (NTU), Singapore, and the Ph.D. degree from
the Interdisciplinary Graduate School, Nanyang
Technological University. He was a Research Assis-
tant Professor with the Department of Industrial
Systems Engineering and Management, National
University of Singapore, and a Research Fellow
with the Future Mobility Research Laboratory, NTU.

He is currently a Scientist with the Singapore Institute of Manufacturing Tech-
nology (SIMTech), Agency for Science Technology and Research (A*STAR),
Singapore. His research interests include neural combinatorial optimization.

Wen Song received the B.S. degree in automation
and the M.S. degree in control science and engi-
neering from Shandong University, Jinan, China,
in 2011 and 2014, respectively, and the Ph.D.
degree in computer science from Nanyang Tech-
nological University, Singapore, in 2018. He was
a Research Fellow with the Singtel Cognitive
and Artificial Intelligence Laboratory for Enter-
prises (SCALE@NTU). He is currently an Associate
Research Fellow with the Institute of Marine Science
and Technology, Shandong University. His current

research interests include artificial intelligence, planning and scheduling,
multi-agent systems, and operations research.

Puay Siew Tan received the Ph.D. degree in
computer science from the School of Computer
Engineering, Nanyang Technological University,
Singapore. She is currently an Adjunct Associate
Professor with the School of Computer Science and
Engineering, Nanyang Technological University, and
also the Co-Director of the SIMTECH-NTU Joint
Laboratory on Complex Systems. In her full-time job
at the Singapore Institute of Manufacturing Technol-
ogy (SIMTech), she leads the Manufacturing Control
TowerTM (MCTTM) as a Program Manager. She is

also the Deputy Division Director of the Manufacturing System Division.
Her research interests include cross-field disciplines of computer science
and operations research for virtual enterprise collaboration, in particular
sustainable complex manufacturing and supply chain operations in the era
of industry 4.0.

Jie Zhang received the Ph.D. degree from the
Cheriton School of Computer Science, University
of Waterloo, Canada, in 2009. He is currently a
Full Professor with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. He is also an Adjunct Fellow of the
Singapore Institute of Manufacturing Technology.
His papers have been published by top journals and
conferences and received several best paper awards.
He is also active in serving research communities.
During his Ph.D. study, he held the prestigious

NSERC Alexander Graham Bell Canada Graduate Scholarship rewarded for
top Ph.D. students across Canada. He was a recipient of the Alumni Gold
Medal at the 2009 Convocation Ceremony. The Gold Medal is awarded once
a year to honor the top Ph.D. graduate from the University of Waterloo.

Bihan Wen (Member, IEEE) received the B.Eng.
degree in electrical and electronic engineering
from Nanyang Technological University, Singapore,
in 2012, and the M.S. and Ph.D. degrees in elec-
trical and computer engineering from the Univer-
sity of Illinois at Urbana–Champaign, Champaign,
IL, USA, in 2015 and 2018, respectively. He is
currently a Nanyang Assistant Professor with the
School of Electrical and Electronic Engineering,
Nanyang Technological University. His research
interests include machine learning, computational

imaging, computer vision, image and video processing, and big data applica-
tions. He was a recipient of the 2016 Yee Fellowship and the 2012 Professional
Engineers Board Gold Medal. He was also a recipient of the Best Paper
Runner Up Award at the IEEE International Conference on Multimedia and
Expo in 2020. He has been an Associate Editor of the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 2022, and an
Associate Editor of Micromachines (MDPI) since 2021. He has also served
as a Guest Editor for IEEE Signal Processing Magazine in 2022.

Justin Dauwels received the Ph.D. degree in electri-
cal engineering from the Swiss Polytechnical Insti-
tute of Technology (ETH), Zurich, in December
2005. Moreover, he was a Post-Doctoral Fellow at
the RIKEN Brain Science Institute (2006–2007) and
a Research Scientist at the Massachusetts Institute
of Technology (2008–2010). He is currently an
Associate Professor at the Circuits and Systems
Group, Department of Microelectronics, TU Delft.
His academic laboratory has spawned four startups
across a range of industries, ranging from AI for

healthcare to autonomous vehicles. His research interests include data ana-
lytics with applications to intelligent transportation systems, autonomous
systems, and analysis of human behavior and physiology. He serves as an
Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING
since 2018, an Associate Editor of the Signal Processing journal (Elsevier)
since 2021, a member of the Editorial Advisory Board of the International
Journal of Neural Systems, and an organizer of IEEE conferences and special
sessions. His research team has won several best paper awards at international
conferences and journals.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 14:08:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

