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Learning to Solve Multiple-TSP With Time Window
and Rejections via Deep Reinforcement Learning

Rongkai Zhang , Cong Zhang, Zhiguang Cao , Wen Song , Puay Siew Tan, Jie Zhang,

Bihan Wen , Member, IEEE, and Justin Dauwels

Abstract— We propose a manager-worker framework (the
implementation of our model is publically available at:
https://github.com/zcaicaros/manager-worker-mtsptwr) based on
deep reinforcement learning to tackle a hard yet nontrivial
variant of Travelling Salesman Problem (TSP), i.e., multiple-
vehicle TSP with time window and rejections (mTSPTWR),
where customers who cannot be served before the deadline are
subject to rejections. Particularly, in the proposed framework,
a manager agent learns to divide mTSPTWR into sub-routing
tasks by assigning customers to each vehicle via a Graph
Isomorphism Network (GIN) based policy network. A worker
agent learns to solve sub-routing tasks by minimizing the cost
in terms of both tour length and rejection rate for each vehicle,
the maximum of which is then fed back to the manager agent
to learn better assignments. Experimental results demonstrate
that the proposed framework outperforms strong baselines in
terms of higher solution quality and shorter computation time.
More importantly, the trained agents also achieve competitive
performance for solving unseen larger instances.

Index Terms— Travelling salesman problem, graph neural
network, deep reinforcement learning.

I. INTRODUCTION

DEEP reinforcement learning (DRL) has been garnering
considerable interests for solving various NP-hard com-
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binatorial optimization problems (COPs) [1], [2], [3], [4].
Among them, due to its high practical value, the Travel-
ling Salesman Problem (TSP, including the Vehicle Rout-
ing Problem) is receiving particularly increasing attention.
As promising modern alternatives, the DRL based methods
have the potential to not only consume shorter inference
time compared with the exact algorithms while producing
near-optimal solutions, but also circumvent hand-crafted rules
in the conventional heuristics. By virtue of those desirable
capabilities, recently proposed DRL-based methods achieved
much success in solving the general TSP [5], [6].

Recently, a number of attempts have been performed to
leverage DRL to tackle more challenging variants of TSP.
An emerging trend is to incorporate temporal constraints such
as time window [4], [7], [8], as customers always prefer to
be served within a desirable time period, earlier or later than
which may cause dissatisfaction. The other notable trend is to
extend the single vehicle (or salesman) to multiple ones [9],
[10], [11], given that it is more common to dispatch a fleet
of vehicles to serve customers in real life. Although some
seminal works have been delivered to address the two types
of variants respectively, rare studies that exploit the DRL
method to simultaneously cope with time window and multiple
vehicles have been conducted. Note that, it is nontrivial to
investigate the combination of the two variants with the DRL
method. On one hand, this combined variant is more in line
with the real-world scenarios compared with the separate ones.
On the other hand, this combined variant is arduous to be
solved, since simply integrating the respective DRL methods
does not guarantee desirable performance, especially in light
of the NP-hard nature of the problem.

In this paper, we aim to close this gap by propos-
ing a manager-worker framework based on DRL to tackle
this harder yet more practical variant of TSP, namely
multiple-vehicle TSP with time window and rejections
(mTSPTWR). Since time window might be spontaneously
prescribed by customers without any negotiations, it is possible
that some of those temporal constraints would not be satisfied
in a sub-tour. In mTSPTWR, customers who cannot be served
before the deadline are subject to rejections. The goal is to
find a route for each vehicle such that a hybrid cost consisted
of tour length and rejection rate is minimized for the worst
sub-tour.

To solve this challenging problem, in our proposed frame-
work, a manager agent learns to divide mTSPTWR into
sub-routing tasks, and a worker agent learns to solve each
resulting sub-routing task. Specifically, we propose a novel
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Graph Isomorphism Network (GIN) as the policy network,
which is leveraged by the manager agent to assign customers
to different vehicles by exploiting the selected output from the
worker agent, while the worker agent relies on a self-attention
based encoder-decoder policy network to minimize the tour
length and rejection rate for each vehicle in regards of the
assigned customers and time window constraints. In doing so,
multiple vehicles and time window constraints are naturally
decoupled and handled by the respective agents. The extensive
experimental results based on randomly generated instances
reveal that our proposed method significantly outperforms
three strong metaheuristic baselines and an adapted DRL
baseline, all of which are carefully tuned. It is also demon-
strated that our method generalizes considerably well to much
larger instances that are unseen during training. In short, the
contributions of this paper are summarized as follows:

• Targeting at more realistic properties, we present and
study a practical yet challenging variant of routing prob-
lem, i.e., mTSPTWR, which handles time windows, rejec-
tions, and multiple vehicles.

• We propose the first DRL-based manager-worker frame-
work to solve mTSPTWR, which encompasses a man-
agement agent for customer assignment based on a Graph
Neural Network (GNN), and a worker agent for routing
based on a self-attention encoder-decoder.

• Extensive experiments confirm that our proposed method
delivers superior performance in terms of higher solution
quality and shorter computation time compared to the
state-of-the-art baselines and can be generalized to large-
scale instances. A detailed ablation study has also justified
the effectiveness of our design.

II. RELATED WORK

As a classical family of COPs, routing problems have been
investigated for many decades. Various methods, including
conventional (meta)heuristic methods and machine learning
based methods, have been proposed. Among them, DRL based
method is arousing growing interests due to its desirable
generalization capability and independence of ground-truth
label. Bello et al. [12] first formulate TSP as a Markov
Decision Process (MDP) solved by a DRL algorithm, where
the policy is parameterized using a Seq2Seq based encoder-
decoder architecture. Most of its following works apply a sim-
ilar architecture while designing new respective encoders or
decoders to ameliorate the performance. For example, realizing
that the input sequence should be irrelevant to the instance
representation, Nazari et al. [13] replace the LSTM encoder
with element-wise projections so that the updated embeddings
after state changes can be effectively computed. Inspired
by the Transformer model [14], Deudon et al. [15] and
Kool et al. [16] propose two self-attention based frameworks
for TSP co-currently, which both lead to significant perfor-
mance boost. Other notable works include integrating local
search with DRL [17] for TSP and learning to generalize to
large TSP instances [18]. Although some of them have consid-
ered TSP with constraints, e.g., the capacities of vehicles [16],
[17], they are relatively simple and usually handled by trivial
rules.

Fig. 1. Manager-worker framework for solving mTSPTWR. The manager
agent learns to assign customers to different vehicles, and the worker agent
learns to solve the resulting sub-routing tasks.

Very recently, some attempts based on deep (reinforcement)
learning have started to tackle TSP (or VRP) with harder
yet more realistic settings. Kaempfer and Wolf [9] introduce
a supervised learning model for TSP with multiple vehi-
cles. However, it requires sufficient labelled training data,
which is computationally expensive to be acquired. To cir-
cumvent labelled training data, Hu et al. [10] propose a
DRL based agent combined with heuristic solvers, e.g., Or-
Tools [19] to solve TSP with multiple vehicles. Though the
cooperation among the vehicles is considered, the usage of
classical solver may limit its application to other variants.
Besides multiple vehicles, several works focus on handling
some other common yet hard constraints, such as time win-
dow. Ma et al. [20] explicitly consider the single-vehicle TSP
with time windows, i.e., TSPTW (first defined in [21]),
by exploiting a hierarchical graph pointer network (GPN).
Gao et al. [4] leverage DRL to learn local-search heuristics
that iteratively improve the solution quality of VRP (Vehi-
cle Routing Problem) and VRPTW (Vehicle Routing Prob-
lem with Time Window). Chen et al. [7] propose a DRL
based framework to learn an efficient large neighbor search-
ing heuristic for VRPTW. Different from the above works,
Zhang et al. [22] consider a variant of TSPTW from a more
practical view, which allows rejecting the nodes (customers),
i.e., TSPTWR. It is natural since the time window may
conflict with each other, and a feasible solution that satisfies
all customers may not exist. To solve this problem, they
propose a DRL based framework combined with backtracking
to post-process a solution to TSP in ways that it will become
a desirable feasible solution to TSPTWR. To our knowledge,
although some success has been achieved for DRL based
works to tackle TSP with multiple vehicles or time window
separately, none of them is able to effectively handle the
combined variant, which is much harder yet nontrivial.

III. PROPOSED FRAMEWORK FOR MTSPTWR

In this section, we first present the definition of mTSPTWR,
then elaborate the rationale of the proposed manager-worker
framework.

A. Problem Definition

In mTSPTWR, a fleet of vehicles are dispatched to serve
customers scattered at different locations. As a common and
practical property in the variants of TSPTW, customers have
their respective time window for being served. However,
the customers who cannot be served before the deadline
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are subject to rejections in mTSPTWR. The general goal
is to minimize the total tour length, while serving as many
customers as possible. In our setting, an mTSPTWR instance I
is characterized by a set of n customers C = {c1, . . . , cn} and
m (m > 0) identical vehicles (or salesmen). Each customer
ci � (xi , yi , si , ti ) is associated with a 2D location (xi , yi )
and a time window (si , ti ), where si and ti (si ≤ ti ) denote
the start and terminate of the time window, respectively. The
depot (considered as a dummy customer) houses the m vehicles
and is represented as d � (xd , yd , 0,∞). Departing from the
depot, each vehicle serves a subset of customers in a single
sub-tour and returns to the depot finally. Pertaining to customer
ci , arriving earlier than si causes waiting, and arriving later
than ti renders it rejected to be served.

We achieve the goal of mTSPTWR by minimizing a hybrid
cost of length and rejection rate for the worst sub-tour, where
the rejection rate for a sub-tour is defined as the quotient of
the number of rejected customers and the number of assigned
customers. Formally, let rb(1 ≤ b ≤ m) denote the sub-tour
for vehicle b with length l(rb) and rejection rate rej (rb), and
then the cost for vehicle b is denoted as Jb � l(rb)+β ·rej (rb),
where β is a penalty coefficient to control the rejection rate.
The usage of a hybrid cost can mitigate the ambiguity of a
sole cost. For instance, solely minimizing rejection rate may
result in solutions with different tour length, while using a
hybrid cost can further select the ones with less tour length
out. Accordingly, the objective of mTSPTWR is defined as:

min

(
max

b
Jb

)
. (1)

Note: Although we mainly optimize the above min max objec-
tive, we will demonstrate that our method is not restricted
to particular objectives. As an example, we will show that
our method can learn to minimize the combined overall
rejection rate and tour length for all sub-tours rather than the
combination of that of the worst sub-tour. Nevertheless, here
we argue that the min max objective is more customer-friendly,
as the level of service [23] of each vehicle can be guaranteed
with a higher lower-bound. A more detailed discussion about
different objectives and the experiment results for overall costs
are presented in Appendix A. On the other hand, although
mTSPTWR is partially related to multiple TSPTW (mTSPTW)
and multiple prize-collection TSP (mPCTSP), they are still
obviously different from each other. Firstly, in mTSPTW,
the instances are generated with the assumption that all the
customers [24] can be served feasibly and the goal is usually to
minimize the tour length. It may distort the real-life scenarios
where we have to reject a number of requests to pursue
desirable balance between the rejection rate and the tour
length. Secondly, although ‘rejections’ are also considered
in mPCTSP, they are not triggered by the violation of the
feasibility constraints, i.e., time window.

B. Proposed Framework

To efficiently solve mTSPTWR, we propose a DRL based
manager-worker framework that decouples the problem into
upper-level and lower-level tasks, respectively, as depicted in

Fig. 1. Regarding the upper-level task, a manager agent learns
to divide customers into subgroups and then assign them to
different vehicles. Regarding the lower-level task, a worker
agent learns to route for each vehicle in consideration of the
assigned customers and the hybrid cost. The (selected) outputs
from the lower-level task are adopted to train both agents to
help optimize the objective in Eq. (1). Algorithm 1 summarizes
the whole inference process of our proposed framework for
solving the mTSPTWR problem.

Algorithm 1 Inference Process of the Proposed Framework
Load: Manager_agent(), Worker_agent().
Input: One instance GI .
Output: The sub-tours {r1, . . . , rm} and the corresponding

cost {J1, . . . , Jm} for all m vehicles.
1: Customer assignment process:
2: {G1, . . . ,Gm } = Manager_agent(GI ).
3: Subtour routing process:
4: for b = 1 : m do
5: rb, Jb = Worker_agent(Gb).
6: end for

Pertaining to the manager agent, we leverage a Graph
Neural Network (GNN) combined with self-attention to para-
meterize the policy, which explicitly models each vehicle
based on learnt graph embeddings and then assigns each cus-
tomer to a vehicle. Pertaining to the worker agent, we exploit
a self-attention based encoder-decoder model that is similar
to [22] to parameterize the policy. The details are as follows.

1) The Manager Agent: The process of customer assign-
ment by the manager agent can be formulated as a one-step
MDP [25]. Given a problem instance I sampled from certain
distribution p(I ), i.e., I ∼ p(I ), we represent the unique state
sI as a fully connected graph GI = (VI , EI ) with nodes set
VI = C ∪ {d} and edges set EI = {(v, u)|∀v, u ∈ VI }. The
action asI is to assign customers to different vehicles, thus the
action space A(sI ) (asI ∈ A(sI )) refers to all combinations of
customer-vehicle matches A(sI ) ⊆ P(C) with P(C) denoting
the power set of all customers for I . The corresponding reward
is defined as RM (asI , sI ) = − maxb(Jb),∀1 ≤ b ≤ m, which
is fed back by the worker agent and refers to the sub-tour with
the maximum hybrid cost. At sI , a stochastic policy π(asI |sI )
outputs a distribution over A(sI ), from which the action is
sampled accordingly. Note that, the manager agent outputs
the overall distribution in one shot rather than in a sequential
fashion. During training, an instance will be discarded once
exploited, and new instances will be sequentially generated
on-the-fly to update the policy until converged.

The policy π(asI |sI ) for the manager agent is parameterized
by πθM (asI |sI ) with trainable parameters θM . To learn infor-
mative representation and facilitate the matching between cus-
tomers and vehicles, we design a policy network as depicted
in Fig. 2. Firstly, we leverage GNN to embed the state
sI including customers and depot. Particular in this paper,
we adopt GIN [26] for graph embedding which is known
as a strong GNN variant with discriminative power to learn
representation over graphs. The formulation of GIN layers,
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Fig. 2. Architecture of manager agent policy network πθM . It mainly consists of three components, namely, graph embedding, vehicle embedding, and
customer assignment, respectively. The output is the distribution for all customers ci being assigned to different vehicles.

Algorithm 2 Customer Assignment Process

Input: GI with feature h(0)(v) ∈ R
n0 ,∀v ∈ VI .

Parameter: GIN parameters: θt=0 ∈ R
n0×nG , θt>0 ∈ R

nG×nG ;
vehicle embedding network parameters: θqb ∈ R

2nG×n ,
θkb, θvb ∈ R

nG×n ; customer assignment network parame-
ters: θ 	

q ∈ R
n×n	

, θ 	
k ∈ R

nG×n	
.

Output: Matching between vehicles and customers.
1: Graph Embedding using L GIN layers:
2: for l = 1 : L do
3: h(l)v = GIN(l)θl

(h(l−1)
v ).

4: end for
5: hv = ∑L

l=1 h(l)v ; hGI = f (h(l)v ) = 1
|V |

∑L
l=1

∑
v h(l)v .

6: Vehicles Embedding using multi-head self-attention:
7: for b = 1 : m do
8: qb = θqbhc, where the context vector hc = (hG I : hd)

with (:) denoting the concatenation operator.
9: for ci ∈ C do

10: kbi = θkbhci , vbi = θvbhci .
11: end for
12: hb = ∑

i wbivbi , wbi = eubi∑
j eubj , ubi = qT

b kbi√
n

.

13: end for
14: Customer Assignment using single-head self-attention:
15: for ci ∈ C do
16: for b = 1 : m do
17: q 	

b = θ 	
qhb , k 	

bi = θ 	
khci , u	

bi = q 	T
b k	

bi√
n	 ,

sbi = tanh u	
bi , pbi = esbi∑

b esbi .
18: end for
19: Assign ci to b̂ci by sampling, i.e., b̂ci ∼ (p1i , . . . , pmi ).
20: end for

i.e.,, GIN(h(k−1)
v ), is expressed as follows:

MLP(k)θk

((
1 + �(k)

)
· h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
, (2)

where h(k)v is the representation of node v at iteration k and h(0)v
refers to its raw features for input, M L P(k)θk

is a Multi-Layer
Perceptron (MLP) with parameter θk for iteration k followed
by batch normalization [27], � is an arbitrary number that
can be learned, and N (v) is the neighbourhood of v. After
K iterations of updates, a global representation for the entire

graph can be obtained using a pooling function L that takes as
input the embeddings of all nodes and outputs a p-dimensional
vector hG ∈ R

p for G. Here we use average pooling, i.e., hG =
L({hK

v : v ∈ V }) = 1/|V | ∑v∈V hK
v .

Secondly, we exploit a multi-head self-attention architec-
ture [14] to embed vehicles where each head corresponds to
a vehicle. We argue that, although m vehicles are identical,
treating them homogeneously (via parameters sharing) may
cause difficulty for managing them. To model this individuality
of vehicles, we stipulate that the multiple heads are mutually
independent, which is also justified in the ablation study.
Finally, given customer and vehicle embeddings, a single-head
self-attention architecture is employed to model a centralized
assignment policy. The procedure of customer assignment by
the manager agent is summarized as Algorithm 2.

Meanwhile, the policy πθM (asI |sI ) is trained using the
REINFORCE [28] algorithm. Specifically, we maximize the
expected reward obtained with πθM (asI |sI ) given any instance
I as follows,

EI∼p(I )[
∑
asI

(RM (asI , sI )− B(I ))πθM (asI |sI )], (3)

where the reward RM (asI , sI ) is acquired from the worker
agent, and B(I ) is a baseline to reduce variance during
training [16]. With such an objective, the manager agent will
learn assignments that help reduce the hybrid cost of the worst
sub-tour. In practice, we adopt a batch of instances from p(I )
and rollout πθM on them to estimate the objective in Eq. (3),
which is then used to update the policy.

2) The Worker Agent: Once decomposed by the manager
agent, the mTSPTWR becomes a TSPTWR for the respective
vehicle. Then, the worker agent should construct the route by
finding a sub-tour for each vehicle such that the hybrid cost
consisted of tour length and rejection rate is minimized for
each sub-tour. In light of the recently reported competitive
performance, DRL based method is more desirable for the
worker agent to solve the TSPTWR [22]. However, the size
of customers assigned to a vehicle always varies, and it would
be substantially challenging to jointly train the manager agent
and worker agent. To alleviate this issue, we train them in a
two-stage manner. In the first stage, the worker agent is trained
alone with its own cost. In the second stage, the well-trained
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Fig. 3. The diagram of the worker agent [22].

Algorithm 3 Training Process of Worker Agent
Input: Instances S, Batch Size Sbs , Training Epoch E , Update

Threshold α > 0.
Parameter: �, �B L .
Output: �∗ for the optimal baseline/agent.
1: for epoch = 1:E do
2: for all S do
3: Sample Sbs instances from S
4: for Si ∈ Sbs do
5: Hi = Encoder�(Si ),HB Li = Encoder�BL (Si ).
6: ri = Decoder�(Hi),rB Li = Decoder�BL (Hi).
7: Jbi = Backtracking(ri ).
8: JbB Li = Backtracking(rB Li ).
9: end for

10: ∇L ∝ ∑Sbs
1 (Jbi − JB Li)∇�log Pi (rbi ).

11: � = Adam(�,∇L).
12: if Jbi − JbB Li < −α then
13: �B L = �i .
14: end if
15: end for
16: end for

worker agent is fixed and the output is adopted to calculate
the cost for the manager agent to learn better assignments.
In doing so, we not only guarantee stable training performance,
but also enable flexibility on selecting routing algorithm that
is deployed in a plug-and-play manner for the worker agent.

In our framework, we exploit a self-attention based encoder-
decoder model that is similar to [22] to parameterize policy.
Fig. 3 illustrates the training and inference process of the
exploited model. We represent a TSPTWR instance for a single
vehicle b as a fully connected graph Gb = (Vb, Eb), with
Vb = {Cψb } ∪ {d}. Passing Gb through a self-attention based
encoder-decoder policy network π�(r |Gb), a tour r (may be
infeasible) for serving all the customers in Gb is generated.
Then r is mapped to rb (a guaranteed feasible solution) by
a backtracking procedure [22]. The resulting hybrid cost for
vehicle b is given as Jb = l(rb) + β · rej (rb). The negative
hybrid cost −Jb is applied as the reward for the worker
agent. REINFORCE [28] with a rollout baseline is utilized to
enable a faster training process with lower variance. During

training, the parameter �B L is updated to �, if Jθ is less
than JB L . This baseline is not only exploited to adjust �,
but also able to reinforce the good solutions by increasing the
probability. The final parameter�∗ for inference is set to �B L .
Algorithm 3 summarizes the training process of the worker
agent and Algorithm 4-6 detail the respective key components,
i.e., encoder, decoder, and backtracking in the worker agent.
All the algorithms are written as pseudo code in python style.

Algorithm 4 Encoder
Input: Features for nodes xi ∈ Vb, i = (1, . . . , n), Normal-

ization Constant dk , Layers Number N .
Output: Embedding of the instance H ={h(N)i , h̄(N)}.
1: Embed to high dimension: h(0)i = W x xi + bx .
2: for l = 1:N do
3: Compute key ki , value vi and query qi for each node:

ki = W K
l h(l−1)

i , vi = W V
l h(l−1)

i , qi = W Q
l h(l−1)

i .

4: Compute the compatibilitires: ui j = qT
i k j√

dk
, i �= j .

5: Compute the attention weights using softmax:
ai j = eui j∑

j eui j .

6: Output from the multi head attention sublayer:
h(l)i 	 = ∑

j ai j v j .
7: Output from feed-froward sublayer:

h(l)i 		 = W f f1
l ReLu(W f f0

l h(l−1)
i + b f f0

l )+ b f f1
l .

8: Combine and Batch Normalize (B N):
h(l)i = BN(h(l)i 	 + h(l)i 		 ).

9: end for
10: Obtain h(N)i and h̄(N) =

∑
i h(N)i
n .

IV. EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to evaluate
our method. Firstly, we compare our method with three strong
metaheuristics on problems of different sizes and difficulties.
In particular, two types of mTSPTWR are selected, namely
an easier version where 10 vehicles are available and a harder
version where only 5 vehicles are available. The problem sizes
range from 50 customers to 500 customers to indicate both
small and large-scale problems in reality. Next, we conducted
several ablation studies. We first show that the GIN based
manager agent can well learn a customer assignment strategy
for each vehicle to boost the performance of worker agent,
which is superior to a multi layer perceptron (MLP) based one
and a counterpart heuristic strategy, e.g., K-means. Afterwards
we justify that multi-head architecture is a key component for
the manager agent to learn meaningful vehicle embeddings.
Finally, we show our algorithm is robust against different val-
ues of the penalty coefficient β, although (we show) different
values of β will affect the solutions in terms of tour length
and rejection rate. The configuration details of the baselines
including K-means are given in appendix B.

A. Settings

Following the settings that are commonly used in the
DRL based methods for solving routing problems [12], [15],
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[16], [29], we randomly generate problem instances with
different sizes of customers (n) and vehicles (m). Specifically,
we consider n = {50, 100, 150} as small sizes to train and
test our method, and n = {200, 300, 400, 500} as relatively
large sizes to evaluate the generalization performance. For
each customer size, we also consider m=5 and 10, respectively,
where m=5 is considered as harder since fewer vehicles are
available. We follow [16] to generate customer locations,
i.e., ∀ci , (xi , yi ) ∈ U [0, 1] × U [0, 1] with U [·] denoting the
uniform distribution. The time window is unified for all sizes
and provided as ∀ci , si ∼ U [0, 3], ti = si + 3. The location
of depot can be randomly selected or predefined in the unit
square, however, for an easier data generation, We fix the depot
at location [0.5, 0.5] with time window [0, 10], where 10 is
used to make sure all vehicles return to depot. Note that, the
customer size n also includes the depot, which is considered
as a dummy customer in our setting.

Algorithm 5 Decoder

Input: Overall embedding h̄(N), Key for nodes K .
Output: Tour for all customers r .
1: Initialize two trainable place holders for step 0:
v f , vl .

2: Compute initial decode context:
qd = W Qd Concate(Encoder(h̄(N), v f , vl )).
Concate() denotes concatenation operator

3: for i = 1:n do
4: Compute the compatibilities:

ud j = qT
d k j√

dk
, j = (1, . . . , n).

5: Mask visited nodes: ud j = −∞, if node j is visited.
6: Compute probability of visiting node j :

pd j = eud j∑
i eud j .

7: Sample a node based on the probability:
ri = Sample/GreedySample(pd j ).
# GreedySample() is only used in inference.

8: Update v f ,vl : v f = h(N)r1 ,vl = h(N)ri .
9: Update decode context:

qd = W Qd Concate(Encoder(h̄(N), v f , vl)).
10: end for

Algorithm 6 Backtracking Function
Input: Tour r (for all customers), Instances S.
Output: Solution to TSPTWR rb.
1: Initialize time t = 0,
2: for i = 0:n − 1 do
3: t = t + tri ,ri+1 , where tri ,ri+1 is the time needed from

node ri to ri+1.
4: if t > tri+1 (the termination time of node ri+1) then
5: t = t − ti,i+1.
6: delete ri+1 from r .
7: end if
8: end for

We tune all hyperparameters on size n=50 with m=10 and 5,
respectively, and fix them during training and evaluations for
other sizes. Pertaining to the manager agent, we train the

policy network for 10, 000 iterations with 128 (batch size)
instances generated on-the-fly at each iteration. The model is
validated on 100 fixed instances every 100 training iterations.
For GIN, we adopt 3 layers and set �(t) = 0 for all layers
following [17]. The mlp(t)θt

for each layer has 2 hidden layers
with dimension 32. We use mean neighborhood aggregation
for each GIN layer and mean pooling as the readout function
over the entire graph. For multi-head self-attention vehicle
embedding network and single-head self-attention assignment
network, we unify the hidden dimensions of all parameters,
i.e., θqb, θ

	
q , θ

	
k ∈ R

64×64 and θkb, θvb,∈ R
32×64. Pertaining to

the worker agent, we mainly follow configurations in [22]. The
pretraining sizes related to solving TSPTWR are set as �n/m�
(i.e., �·� refers to the rounding up operation). For example,
regarding the mTSPTWR instances with m = 5 and n = 150,
the pretraining size is �150/5� = 30, and it also can solve
TSPTWR with customers more or less than 30. Accordingly,
we adopt pretraining sizes of {5, 10, 15, 20, 30} for the worker
agent to train the manager agent on small sizes of mTSPTWR,
while {40, 50, 60, 80, 100} to evaluate the generalization on
large sizes. The penalty coefficient β for rejection rate is
set to 100. We use Adam optimizer with constant learning
rate lr = 1 × 10−4 for both the manager and worker agents
during training. Other parameters follow the default settings
in PyTorch [30].

As reviewed in Section II, due to the complexity, the
mTSPTWR has been rarely studied with DRL based methods.
To better benchmark our method, we adapt AM [16] to
mTSPTWR as a baseline, which is known as the state-of-the-
art DRL method for TSP. Besides, we adopt three competi-
tive and representative conventional metaheuristic algorithms
including tabu search (TS) [31], simulated annealing (SA) [32]
and bees algorithm (BA) [33] as additional baselines. More-
over, we conduct detailed ablation studies on the components
in our proposed framework to verify their effectiveness. The
hardware we use is a PC with Intel Core i9-10940X CPU and
251GB memory. The specific configurations of baselines are
carefully tuned for the same objective, i.e., minimizing the
hybrid cost of length and rejection rate for the worst sub-tour,
and given in the appendix B.

B. Results and Analysis

1) Comparison Studies on Easier and Harder mTSPTWR:
We first train and test AM and our method on small sizes of
mTSPTWR with n = 50, 100,1 and 150. Then we evaluate
the generalization performance on large sizes of mTSPTWR
without re-training, where n = 200, 300, 400, and 500.
For each customer size, we consider two different sizes of
vehicles, namely, easier mTSPTWR with 10 vehicles (m=10)
and harder mTSPTWR with 5 vehicles (m=5). We infer
100 unseen randomly generated instances for each size of
customer and vehicle, and explicitly report the averaged tour
length, rejection rate, hybrid cost and computation time. Note
that during inference, both manager and worker agent greedily
choose respective actions according to computed probability,

1The biggest size for AM is n = 100 due to the heavy computation [16],
and bigger sizes than n = 100 cause out of memory.
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TABLE I

OUR METHOD VS. BASELINES ON MTSPTWR WITH M=10. “REJ.

RATE”: REJECTION RATE. COMPUTATION TIME IS COUNTED IN

SECONDS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

i.e., the action with the highest probability will be selected.
Although sampling multiple solutions may yield better results,
greedy policy is faster for inference while still producing
satisfactory results (see [17]).

Table I demonstrates that for easier mTSPTWR, when the
problem sizes are small, the conventional metaheuristics can
produce solutions with high qualities, e.g., SA achieves the
lowest hybrid cost with customer sizes of 50, 100, and 150.
AM exhibits acceptable performance for testing sizes smaller
than the training ones, but fails to generalize to bigger sizes.
Our proposed method achieves competitive performance com-
pared to SA with slightly higher hybrid cost, and generalizes
well to different sizes. It should be emphasized that, thanks
to the careful tuning of hyperparameters and small solution
space, conventional metaheuristics could achieve desirable
performance where SA attains slightly better objective values
than ours by solving instances individually. However, its
computation time is far longer as SA needs to search from
scratch for each instance, especially given that ours only
requires about 0.08s to solve an instance. This significantly
limits the scalability of conventional metaheuristics. On larger
sizes, the performance of all the baselines drops dramatically,
because it is hard for the conventional metaheuristics to
conduct an efficient search in such large solution space, while
AM cannot be generalized. Our method outperforms all the
baselines in terms of the solution quality and computation
time, even though our models are trained on instances that
are much smaller than the inferred ones. The overall trend is
that the closer testing sizes are to the training ones, the better
the performance is. Moreover, it should be noticed that in

TABLE II

OUR METHOD VS. BASELINES ON MTSPTWR WITH M=5. “REJ.

RATE”: REJECTION RATE. COMPUTATION TIME IS COUNTED IN

SECONDS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

all these instances our method outputs lower rejection rates
than the baselines. It means that our learnt policy is able
to reduce unnecessary rejections with minor sacrifices in the
hybrid cost. Generally, the results reveal that our model can
be generalized well to unseen instances of the same or larger
sizes, while maintaining competitive performance. Concerning
real-life problems whose sizes may vary, our method has the
desirable potential to be trained for a specific size but applied
to handle various sizes with short inference time.

Table II shows that other than the fast inference, our method
is also robust for solving harder mTSPTWR. In comparison
with the results in Table I, both the rejection rate and tour
length increase for all methods in Table II, which is natural
since there are fewer available vehicles for the customers to
choose from. However, the increments in hybrid cost for the
conventional metaheuristics are considerably large, especially
as the number of customers becomes higher than 100. In con-
trast, the increments for our method is relatively low across all
sizes. Again, in our method, the closer testing sizes are to the
training ones, the better the performance is. The superiority
of our method comes from the fact that it is always able to
yield lower rejection rates. Although increasing the number
of available vehicles could decrease the rejection rates, how
to efficiently serve more customers in the case of a limited
number of vehicles would be more desirable. Remarkably,
our method seems having a strong capability to capture this
key feature of mTSPTWR and learn competitive policies
accordingly. In addition, the training curves for all sizes of
problems given in Fig. 4 demonstrate that our algorithm
performs stably across all sizes of problems, and converges
quickly as well.
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Fig. 4. Training curves of rejection rate, length, and hybrid cost for the worst sub-tour of each problem. The hybrid cost curve has the similar shape
as that of rejection rate, and this is because we set β = 100 in our experiment, rendering rejection rate the relatively dominant term in the formula
Jb � l(rb )+ 100 · rej (rb).

Fig. 5. (a) Comparison between worker agent alone and with manager agent; (b) The maximum and minimum number of customers assigned to vehicles in
an instance; (c) Comparison between single-head (SH) and multi-head (MH) self-attention for vehicle embedding.

2) Compensation Study: We further verify the superiority of
our method by analyzing the compensation from the manager
agent to the worker agent. In fact, the worker agent is pre-
trained with the customer size �n/m�, and intuitively, it should
achieve the best performance when handling TSPTWR with
about �n/m� customers. However, we show that with the
assignment by the manager agent, the worker agent can further
reduce hybrid cost even if the pretrained model is applied to
solve TSPTWR of other sizes during inferring an mTSPTWR
instance.

As depicted in Fig. 5(a), we show the average hybrid cost
of TSPTWR by the sole worker agent (the dashed lines) and
the corresponding mTSPTWR by the manager-agent frame-
work (the solid lines), respectively, where the former model
is trained and tested with TSPTWR of �n/m� customers.
Note that, the hybrid cost for mTSPTWR still refers to the
maximum one among the m vehicles. We observe that with
the supervision by the manager agent, the hybrid cost of
mTSPTWR is much lower than that of the corresponding
TSPTWR. This superiority becomes more significant as the
customer size increases, which well reflects that the manager
agent could compensate the sole work agent by learning more
effective customer assignment for it. As depicted in Fig. 5(b),
we present the maximum and minimum numbers of assigned
customers to the vehicles regarding the involved mTSPTWR
instances. We can obviously see that the manager agent always
assign various sizes of customers to vehicles rather than the
ones close to �n/m�.

3) Ablation Study for Assignment Strategy: We compare
the assignment strategy learnt by our manager agent against
K-means heuristic (a clustering method commonly applied in
the two-stage routing problem [34]) and the one learnt by a
3-layer MLP. In particular, regarding the former baseline, the
customers are partitioned into m clusters by K-means based
on spatial information (locations) and temporal information
(time windows), after which the same worker agent is applied
for each cluster. Regarding the latter baseline, we mainly
replace the GIN with MLP while keeping the remaining parts
of the whole framework unchanged. Both ours and MLP are
trained for mTSPTWR-150 with m = 5/10 and generalized
to the other sizes. Table III summarizes the performance of
our manager agent, MLP and K-means. It can be observed
that, although K-means produces shorter route lengths on
some instances, its rejection rate and the hybrid cost are
much inferior to our manager agent and MLP in most cases.
It implies that K-means fails to generate desirable clusters
(that would lead to lower hybrid cost) by mining the given
spatial and temporal information. Moreover, compared with
MLP, our GIN based manager agent can successfully learn
a more effective assignment policy from these heterogeneous
raw features yielding better performance for most of the cases.

4) Ablation Study for Multi-Head Architecture: To justify
the effectiveness of the multi-head attention for the man-
ager agent to identify and differentiate m identical vehicles,
we compare it with a single-head self-attention where all
m vehicles share parameters. Specifically, we compute their
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Fig. 6. (a) The ablation study for different values of β with size (n = 150,m = 5); (b) The maximum and minimum number of customers assigned to
vehicles in (n = 100,m = 5) instances for objectives “min max” and “overall”, respectively; (c) The maximum and minimum number of customers assigned
to vehicles in (n = 100,m = 10) instances for objectives “min max” and “overall”, respectively.

TABLE III

THE PERFORMANCE OF OUR MODEL COMPARED WITH K-MEANS
HEURISTIC WHERE THE NUMBER OF VEHICLES m SERVES AS THE

NUMBER OF CLUSTERS AND THE ASSIGNMENT STRATEGY LEARNT

BY AN MLP. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

query, keys, and values as qb = θqhc, kbi = θkhi , and vbi =
θvhi for ∀ci ∈ C , where θq , θk and θv are shared trainable
parameters. All other configurations of the model remain the
same as in subsection IV-A. In Fig. 5(c), we observe that
compared with sharing parameters, embedding each vehicle
separately via independent network can learn more effective
representation for each vehicle. In contrast, with the single-
head architecture, the resulting assignment policy for the man-
ager agent seemingly degenerates into a random allocation.

5) Ablation Study for Different Penalty Coefficient (β): In
reality, the respective magnitude of rejection rate and sub-tour
length in hybrid cost may vary under different circumstances.
For example, when some customers are VIPs, the vehicles may
have to serve them regardless of the cost. In this situation,
the manager agent should pay more attention to optimize
rejection rate while adjusting their service strategies. On the
other hand, some customers may have flexible schedules which

TABLE IV

THE PERFORMANCE OF OUR MODEL FOR β = 10 AND m = 5. THE
NUMBER IN THE BRACKETS ARE DIFFERENCES TO THAT OF β = 100.

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE V

THE PERFORMANCE OF OUR MODEL FOR β = 10 AND m = 10. THE

NUMBER IN THE BRACKETS ARE DIFFERENCES TO THAT OF β = 100.
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

makes an alternative visit possible. In this case, vehicles may
postpone services to them to make the sub-tour length small
for saving cost. All these different purposes can be achieved
via adjusting the penalty coefficient β in the objective formula
Jb � l(rb)+ β · rej (rb), i.e., paying more attention on either
optimizing rejection rate or sub-tour length. Previously we
have evaluated our method with β = 100. Here we continue
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to show our algorithm learns adjusted policies for another
case when β = 10. Pertaining to the baseline, we only
compare with the simulated annealing (SA) since it demon-
strated relatively superior performance to others previously.
For simplification, we only consider small size (50), median
size (150), and large sizes (300, 500). The results for easier
and harder mTSPTWR are recorded in Table V and Table IV,
respectively. We observe that our algorithm still preserves
better performance against baseline in the case of β = 10.
Interestingly, when compared with results for β = 100,
our algorithm seems able to adjust learnt policies to capture
the discrepancies. For instance, regarding the same problem
instances, the learnt policies should yield a smaller sub-tour
length but a larger rejection rate, since β = 10 is much
smaller compared with β = 100. This expectation is basically
reflected by the difference values in the brackets. Furthermore,
we illustrate how different β values affect the tour length and
rejections for mTSPTWR with m = 5, n = 150 in Fig. 6(a),
which also reveals the general trend.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a DRL based manager-worker
framework to tackle a challenging yet practical variant of TSP
with (1) multiple vehicles, (2) time window and rejections,
i.e., mTSPTWR. By dividing mTSPTWR into manager-level
and worker-level tasks, the respective agents can learn strong
policies to produce high-quality solutions to the original
problem in short computation time. Extensive experiments
confirm the superiority of our method against the metaheuristic
baselines and also show that the proposed framework can gen-
eralize well to larger instances unseen during training. In the
future, besides extending our framework to other multi-vehicle
routing problems and real world datasets, we also would like
to investigate, (1) how to enable the two agents to feed back
to each other and train them jointly; (2) how to optimize the
number of vehicles without exhausting them all; (3) how to
automatically decide the penalty coefficient β for different
scenarios.

APPENDIX A
DISCUSSION ON DIFFERENT OBJECTIVES FOR MTSPTWR

Besides the objective we considered in Eq. (1), a more
straightforward objective for mTSPTWR is directly minimiz-
ing the overall statistics, i.e., the average tour length and
overall rejection rate. We retrain our proposed framework for
this overall objective and use SA with the same objective as
a baseline. Using mTSPTWR with m = 5/10, n = 100 as
an example, we demonstrate that our framework can also
work well for the overall objective, the results of which are
summarized in Table VI. However, since the sub-tours are
not (explicitly) assessed in the overall objective, it may lead
to extremely “unbalanced” solutions, where some vehicles
are not deployed and some vehicles are assigned with too
many customers. This may not make the best use of a fleet
and consequently harm the level of service. In contrast, our
objective encourages the manager agent to assign customers in
a more balanced way, which can fulfill practical demands from

TABLE VI

THE COMPARISON OF OUR MODEL WITH SA W.R.T THE OVERALL COST.
THE “LENGTH” AND THE “REJ. RATE” ARE THE AVERAGE DIS-

TANCE AND REJECTION RATE FOR ALL VEHICLES, RESPECTIVELY.
THE “HYBRID COST” IS CALCULATED AS “LENGTH” + β ·

“REJ. RATE” WHERE β = 100. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD

TABLE VII

HYPERPARAMETERS FOR BASELINES

the customer’s perspective. Particularly, Fig. 6(b) and Fig. 6(c)
display the minimum and maximum number of customers
assigned to vehicles, which also justified the favorable property
of our objective.

APPENDIX B
HYPERPARAMETERS FOR BASELINES AND

CONFIGURATION OF K-MEANS

We present detailed configurations for our baselines, namely
tabu search (TS), simulated annealing (SA) and bees algorithm
(BA). For each method, the objective in Eq. (1) with β =
100 is adopted as the evaluation function. TS is implemented
with python. SA and BA are implemented in Matlab using
YPEA [35] toolbox. All the solutions can be manipulated
by swapping, reversing, and inserting to generate neighbors.
The hyperparameters are carefully tuned, and we select the
ones that can deliver satisfactory overall performance on all
sizes of the problems. As a common hyperparameter, the
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number of iterations for each method is set to 1000. Other
hyperparameters are listed in Table VII for each respec-
tive baseline, where n denotes the number of customers in
the corresponding problem instances. For K-means, we use
scikit-learn [36] machine learning package with the fol-
lowing hyper-parameters, i.e., max_iter=1000 (Maximum
iteration number of the K-means algorithm for a single run).
All other parameters follow the default setting.
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