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Abstract: A semi-empirical equation to estimate the hydration number of Mn(II) complexes was
derived from a database of 49 previously published 1H longitudinal Nuclear Magnetic Relaxation
Dispersion profiles. This equation has the longitudinal 1H relaxivity and the molecular weight of the
Mn(II) complex under consideration as parameters.

Keywords: relaxivity; inner-sphere water molecules; NMRD profile

1. Introduction

During the last decades, Gd3+-chelates, such as Gd-DTPA (DTPA = diethylenetriamine-
N,N,N’,N”,N”,N”’-pentaacetate) and Gd-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’-
tetraacetate), have become indispensable tools for the contrast enhancement of magnetic resonance
images [1–3]. These contrast agents (CAs) have proven to be generally extremely safe; only 0.03% of all
administrations (about 100 million worldwide) gave rise to serious adverse effects. However, during
recent years, some concerns have arisen because of (i) incidents of nephrogenic systemic fibrosis (NSF)
associated with Gd3+-complexes of linear DTPA derivates and (ii) observation of Gd-accumulation
in the brains of patients with normal renal function, after repeated administrations of DTPA-type
of CAs [4–8]. Both effects may be ascribed to the relative kinetic instability of Gd3+ complexes of
linear polyaminocarboxylates. The concerns about Gd-based CAs have led to an increased interest in
application of Gd3+-free CAs. High spin d5 Mn2+ is an attractive alternative for f 7 Gd3+, because it has
only two less unpaired electrons, whereas a high electronic symmetry is favorable for high relaxivities.
Moreover, Mn2+ is less toxic than Gd3+, as reflected in its important role as a cofactor in many enzymatic
reactions, including the anti-oxidant enzyme superoxide dismutase, as well as in enzymes involved
in neurotransmitter synthesis and metabolism in the brain. However, the concentration of free Mn2+

in organisms is very low, for instance 0.3–1 µg·L−1 in human blood [9]. High concentrations are
neurotoxic, and therefore, Mn2+ preferably needs to be sequestered for safe application as CA in
humans. Due to its lower charge, complexes are usually less stable than their Gd3+-counterparts.
It is important to assure that the dissociation of Mn2+-based CAs is minimized in order to avoid any
neurotoxic side effects. On the other hand, the relaxation rate enhancing efficacy should be as high as
possible in view of the inherently low sensitivity of magnetic resonance imaging (MRI) CAs. Finding
a balance between kinetic stability and optimal sensitivity is a challenge during the design of novel
Mn2+-based CAs.

The efficacy of a CA is usually expressed by its relaxivity, the longitudinal, or transverse relaxation
rate enhancement normalized for a solution containing 1 mM of paramagnetic metal ions (r1 and
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r2, respectively). One of the most important parameters governing the longitudinal relaxivity (r1)
of paramagnetic CAs is the number of water molecules in the first coordination sphere of the metal
ion (q), since the inner sphere contribution to r1 is linearly proportional to it. Several good methods
are available to evaluate q for Gd3+-based CAs, including measurements of lanthanide induced 17O
NMR shifts (NMR = Nuclear Magnetic Resonance) of water [1,10,11], determination of the 17O scalar
coupling constant (AO/h̄) from simultaneous fitting of 17O shift and/or relaxation data and 1H NMRD
data (NMRD = Nuclear Magnetic Relaxation Dispersion), and comparison of the luminescence decay
rates of Eu3+ or Tb3+ complexes in H2O and D2O [12]. The determination of q for Mn2+-complexes
is more challenging. The luminescence decay method is impossible, because the complexes are
not luminescent. 17O NMR methods are more ambiguous since they rely on the assumption that
AO/h̄ is almost independent on the coordination environment of Mn2+, which appears not to be case:
values in the range −(26–73) × 106 rad·s−1 have been evaluated from 17O NMR measurements on
Mn2+ complexes (see below, Table 1). Esteban-Gómez et al. have estimated by DFT calculations that
variations of Mn–O distances and dihedral angles among these complexes may lead to AO/h̄ values
ranging between 30 and 58 × 106 rad·s−1 [13]. By contrast, the range of AO/h̄ values observed for
Gd3+-complexes observed is narrower (−(3.6–4.2) × 106 rad·s−1) [11], allowing reasonable accurate
estimations of q using a 17O NMR shift and/or relaxation rates. Moreover, accurate Mn2+-induced
shift measurements are difficult because of the very large line broadenings and relatively small
induced shifts.

X-ray crystallography may provide structures of Mn2+ complexes in the solid state, but these
structures are not necessarily the same in solution. Frequently dimeric or oligomeric assemblies
occur in crystal structures, which will dissociate upon dissolution in water. Often, a value of q
is estimated based on the denticity of the organic ligand and assuming a total Mn2+-coordination
number of 6. However, high spin Mn2+-complexes have almost no ligand stabilization energy, and
consequently, do not show a clear preference for a specific coordination number. Others use the
magnitudes of the longitudinal relaxivities to estimate q, which is ambiguous as well, as will be
demonstrated below. Recently, Póta et al. suggested that DFT calculations (at the M062X/TZVP
level) may provide reliable q-values [14]; however, these calculations require excessive amounts of
computing time with supercomputers.

Here, we will demonstrate that reliable q values for Mn2+-complexes can be obtained from
experimental r1 values at low Larmor frequencies (LF) and the formula weight (FW) of the complexes.

2. Results and Discussion

A database of 49 previously published 1H longitudinal Nuclear Magnetic Relaxation Dispersion
profiles (plots of r1 versus LF) was constructed (see Table 1 and Figure 1). The relaxivity has an
inner-sphere contribution by water molecules exchanging between the first coordination sphere of the
metal ion and the bulk (ri,IS) and an outer-sphere contribution due to water molecules in the bulk that
diffuse in the surroundings of the metal ion without being bound to it (r1,OS) (see Equation (1)). The
amount of a Mn2+-based CA needed is always very small (in the mM range) and the Mn2+-induced
chemical shifts of the water protons are negligible. Under those conditions, r1,IS was related to the
longitudinal relaxation time of a Mn2+-bound water molecule (T1M), according to Equation (2) [15,16]:

r1 = r1,IS + r1,OS (1)

r1,IS =
q

55556(T1M + τM)
(2)

Here, τM is the residence time of a water molecule in the first coordination sphere of Mn2+. Since
the electronic relaxation time (T1e) for Mn2+-complexes was generally larger than the rotational
correlation time (τR), the contribution of the Curie relaxation mechanism to the longitudinal
relaxation was negligible; only the dipolar and the scalar mechanisms needed to be taken into
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consideration. These contributions (T1M,DD
−1 and T1M,SC

−1, respectively) may be estimated by using
the Solomon-Bloembergen-Morgan (SBM) equations (Equations (3)–(7)) [17,18]:

1
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Here, (µ0/4π) is the magnetic permeability in vacuum, rMnH is the distance between Mn2+ and
the H-atom of a bound water molecule, S is the electron spin (S = 5/2 for Mn2+), γI is the 1H nuclear
gyromagnetic ratio, γS is the electron gyromagnetic ratio, andωI andωS are the Larmor frequencies
of the proton and electron spin, respectively, AH/h̄ is the hyperfine coupling constant between Mn2+

and the bound water proton, τdi
−1 = τM

−1 + τR
−1+ Tie

−1, and τs2
−1 = τM

−1 + T2e
−1. The electronic

relaxation times are often interpreted in terms of the zero-field splitting (ZFS) interaction using
Equations (6) and (7) [19]:
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In these equations, ∆2 represents the mean-squared fluctuation of the ZFS, and τv is the correlation
time for the instantaneous distortion of the coordination polyhedron of Mn2+. From these equations, it
can be derived that the low field limiting value of the longitudinal and transverse electronic relaxation
rates (τS0

−1) were equal, given by Equation (8):

1
τS0

=
1
5

∆2τv[4S(S + 1)− 3] (8)

The outer-sphere contribution to the relaxivity (r1,OS) is described by Equations (9) and (10) [20]:
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Here, NA is Avogadro’s number, aMnH is the distance of closest approach of a diffusing water
molecule to Mn2+, DMnH stands for the diffusion coefficient, and Jos(ω, Tje) (j = 1, 2) are spin density
functions. The diffusion correlation time (τMnH) is given by aMnH

2/DMnH.
An inspection of Equations (4) and (5) indicates that in an NMRD profile, two inflection points

may be expected: one originating from 1/T1,DD whenωτd2 = 1 (at LF ≈ 10 MHz), and another one due
to 1/T1,SC whenωτS2 = 1 (at LF ≈ 0.06 MHz) [21,22]. Until now, only two MnII-based CAs have been
observed that have NMRD profiles showing these two inflection points: [MnII(H2O)6]2+ [21,22] and
[MnII

2(ENOTA)(H2O)2] [23]. All other reported NMRD profiles display only the high field dispersion
at LF ≈ 10 MHz, indicating that for these compounds the contribution of the scalar interaction to the
relaxivity is negligible.
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It should be noted that the SBM equations, particularly Equations (6) and (7), only hold under certain
conditions, such as (i) the Redfield condition of extreme narrowing (∆sτRH << 1, ∆s is the static ZFS),
(ii) the ZFS energy should be much larger than the Zeeman energy (EZFS >> EZeeman), (iii) the electronic
decay should be mono-exponential [24,25]. Outside these limits, a proper description of the electronic
relaxation requires more complicated calculations that also take the static ZFS into account. Although the
conditions for applying the SBM theory for the modeling of NMRD profiles are not always valid for Mn2+

complexes, this theory has been applied in almost all studies on the complexes mentioned in Table 1. It
may be justified if the Redfield condition applies and if only data for LF > 10 MHz were considered [26],
because then the influence of the electronic relaxation can be neglected. Otherwise, the SBM model can
be applied for a qualitative description of structure relaxivity relationships when the best fit parameters
obtained, particularly those concerning the electronic relaxation, are considered as effective rather than
physically relevant [27]. The most relevant parameters governing the relaxivity as determined by fitting
of NMRD profiles with the SBM equations are included in Table 1.Inorganics 2018, 6, x  5 of 10 
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Table 1. Comparison of qlit with qref as calculated with Equations (11) and (12) for the database of Mn2+

complexes. Other parameters of relevance for the relaxivity at 298 K and hyperfine coupling constants
reported in the literature are included.

Organic Ligand qlit
a r1

b

(s−1·mM−1)
FW qcalc

c τR
d

(ps)
τS0

d

(ps)
τM

d

(ns)
RMnH

d

(Å)
|AO/h̄| d

(106 rad/s)
Ref.

DOTA 0.0 2.76 455.3 0.4 - - - - - [28]
DTPA 0.0 2.40 390.2 0.4 - - - - - [29]
DTPA 0.0 2.30 390.2 0.4 - - - - - [30]

1,7-DO2A 0.0 2.53 341.3 0.4 - 152 - - - [31]
NOTA 0.0 2.30 356.2 0.4 - - - - - [28]
BCPE 0.0 2.23 383.3 0.4 - 87 - - - [32]
DO3A 0.0 2.27 398.3 0.4 - 117 - - - [31]

AAZTA 0.0 2.53 412.3 0.4 - 148 - - - [33]
c-pC-DTPA 0.0 3.02 492.4 0.4 - 161 - - - [34]
t-pC-DTTA 0.0 2.55 510.4 0.4 - 108 - - - [34]

DO3A(BOM)3 0.0 2.55 758.7 0.3 - 135 - - - [35]
bis-DO3A1 0.0 2.27 837.8 0.3 - 93 - - - [36]
bis-DO3A2 0.0 2.48 1340.3 0.3 - 137 - - - [36]
AAZ3MA 0.2 3.04 415.3 0.5 51.0 96 7.52 2.81 8.7 [33]
MeAAZ3A 0.3 3.68 387.3 0.6 50.0 140 7.94 2.81 7.9 [33]

AAZ3A 0.6 5.05 373.3 0.8 50.0 158 21.3 2.81 7.2 [33]
1,4-DO2A 0.9 4.50 359.3 0.7 46.0 74 88.2 2.83 43.0 [31]

DO1A 1.0 4.04 302.3 0.7 22.0 88 0.168 2.83 39.4 [31]
MeNO2A 1.0 4.96 330.2 0.9 36.0 101 1.60 2.77 46.0 [37]
pyDO1A 1.0 3.54 336.3 0.6 23.0 449 0.330 - - [38]
NOMPA 1.0 6.21 336.3 1.1 51.2 129 0.361 2.77 −73.3 [39]

EDTA 1.0 5.41 361.2 0.9 56.0 81 2.12 2.83 40.5 [31]
EDTA 1.0 5.41 361.2 0.9 57.0 81 2.12 2.83 40.5 [31]
EDTA 1.0 5.81 361.2 1.0 - - - - - [30]
EDTA 1.0 5.60 361.2 0.9 - - - - - [29]

pyDO1P 1.0 3.84 371.2 0.6 38.6 36 0.565 - 39.9 [38]
NO2P 1.0 8.03 387.1 1.3 103.0 87 83.333 2.75 33.3 [40]

2,6-diMePyMe3A 1.0 5.23 395.2 0.8 46.0 52 0.357 2.83 26.4 [41]
NODAHep 1.0 8.10 g 414.4 1.3 84.0 37 370 2.75 30.0 [42]

DPAAA 1.0 6.75 415.2 1.0 47.6 146 7.94 2.76 31.5 [43]
c-CDTA 1.0 6.12 415.3 0.9 74.0 78 4.44 2.83 42.7 [44]

NODAHA 1.0 7.51 g 429.3 1.1 80.0 32 370 2.75 30.0 [42]
NODABA 1.0 9.80 g 449.3 1.5 121.0 37 769 2.75 30.0 [42]
t-pC-EDTA 1.0 5.93 467.3 0.9 75.4 80 - 2.92 - [34]

EDTA(BOM) 1.0 5.61 e 495.3 0.8 83.7 87 10.7 2.90 - [35]
1,4-DO2AMBz 1.0 5.67 539.6 0.8 85.0 71 5.71 2.83 33.0 [45]
4-HET-t-CDTA 1.0 6.72 570.4 0.9 104.9 56 5.68 2.83 40.0 [46]
1,4-BzDO2AM 1.0 5.89 595.7 0.8 96.0 60 3.95 2.83 31.0 [45]
EDTA(BOM)2 1.0 7.25 e 629.5 0.9 110.8 84 7.60 2.90 - [35]

ENOTA 1.0 6.46 f 658.5 0.8 85.0 4317 18.2 2.75 5.2 [23]
NO2A 1.4 5.67 317.2 1.0 22.0 160 0.840 2.75 33.3 [40]

15pyN5 2.0 9.64 340.3 1.7 28.3 8710 14.5 2.81 38.6 [47]
15pyN3O2 2.0 11.52 342.3 2.0 40.3 7174 263 2.81 38.6 [47]

15pydieneN5 2.0 14.20 364.3 2.3 - - - - - [30]
DPAMA 2.0 11.25 390.3 1.8 47.8 167 3.27 2.74 - [32]
DPAPhA 2.0 11.65 452.3 1.7 81.0 87 17.9 2.78 25.0 [43]

mX(DPAMA)2 2.0 17.65 854.6 2.1 95.8 183 32.7 2.74 - [32]
mX(DPAMA)3 2.0 19.72 1243.8 2.2 136.0 173 32.7 2.74 - [32]

none 6.0 19.52 h 163.0 5.6 30.0 26042 35.5 2.83 34.6 [13]
none 6.0 20.98 i 163.0 6.0 - - - - - [30]

a As reported in reference. b Measured in reported NMRD profile at Larmor frequency (LF) = 0.01 MHz, unless
stated otherwise. c As calculated with Equations (11) and (12). d Reported values evaluated from analysis of Nuclear
Magnetic Relaxation Dispersion (NMRD) and 17O NMRD data. e LF = 0.03 MHz. f LF =1.14 MHz. g LF = 0.02 MHz.
h LF = 1.00 MHz. I LF = 1.35 MHz.

For the evaluation of q, we focused our attention to the low field parts of the NMRD profiles.
Below the dispersion at LF ≈ 10 MHz, the profiles always had a plateau, where r1 was rather large and
almost independent of LF, which allows an accurate measurement of r1. At low field, r1 was dominated
by q and the electronic relaxation, whereas at higher field strengths the nuclear relaxation dominated,
which in turn was dominated by q, τR, and τM. This might lead to local maxima in the profile for high
molecular weight compounds and relatively low relaxivities for low molecular compounds [2].
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Values of r1 at 0.01 MHz were measured in the profiles with a single dispersion. In the profiles for
[Mn(H2O)6]2+ and [Mn2(ENOTA)(H2O)2], the r1 was measured at about 1 MHz (at the plateau behind
the first dispersion), where the scalar contribution may be neglected.

Figure 2 displays a plot of the collected low field r1-values versus the reported q values for the
Mn2+ complexes concerned (qlit). Many of the qlit values were obtained by applying a combination of
several of the methods described above. For q = 0, the datapoints are in a narrow range of r1-values
around an average of 2.4 ± 0.2 s−1·mM−1. This value can therefore be applied as a good estimate of
the outer sphere contribution of all Mn2+ complexes. For q > 0, Figure 2 clearly shows that the ranges
of r1 values for various q-values overlap. Hence r1 ranges alone cannot be applied for the evaluation
of q.
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A closer inspection of the structures corresponding with datapoints at q = 1 and q = 2 indicates
that r1 increased with the molecular volume of the Mn2+-complexes at each q, which suggests that the
r1 at low field also depended on the rotational correlation time (τR). Therefore, we next considered the
datapoints for q 6= 0. For these data, r1/q appeared not to be linearly proportional to the molecular
weight (FW). Regression of r1/q as a function of FW with the computer program CurveExpert 1.4
using all in-built models afforded a good fit with Equation (11):

y = 9.16
{

1− exp
(
−2.97× FW × 10−3

)}
(11)

The hydration number can be calculated with Equation (12):

qcalc =
r1

y
(12)

Figure 3 shows the good agreement between the calculated hydration numbers (qcalc) and the
values mentioned in the publications from which the r1 values were taken (qlit). Fractional q numbers
are also correctly predicted. From Figure 3, the accuracy of qcalc is estimated to be ±0.4. The good
agreement between all calculated and reported q values indicates that the applied previously reported
q values are correct. Moreover, it indicates that q and FW are the main parameters that determined the
relaxivity; apparently, the influence of other parameters was rather small. This is surprising, since r1 at
low LF was expected to be dominated by the electronic relaxation. Even the q-values of complexes with
relatively large τS0-values (Mn2(ENOTA)(H2O)2, [Mn(15pyN5)(H2O)]2+, [Mn(15pyN3O2)(H2O)2]2+,
and [Mn(H2O)6]2+, see Table 1) seem to be predicted correctly. To explain this, simulations of r1 at LF
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= 0.01 MHz as a function of τM, τR, and τS0 were made using the SBM equations. Figure 4 shows,
for example, the simulations for typical q = 1 Mn2+ complexes. Figure 4A shows that r1 is unsensitive
to variations in τM; however, it is strongly dependent on τR, and Figure 4B shows that r1 was only very
sensitive to variations of τS0 for complexes for which τR > 150 ps. The complexes in the database used
to deduce Equations (11) and (12) are exclusively of low and medium molecular weight compounds
(FW < 1250). The simulations in Figure 4 confirmed that for those complexes, r1 can be expected to be
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3. Methods

The relaxivities were extracted from published NMRD profiles using the computer program
WebPlotDigitizer, version 4.1 [48]. Equation (11) was selected with the computer program CurveExpert,
version 1.4 [49].

4. Conclusions

An inspection of published 1H NMRD profiles of Mn2+-complexes of low and medium molecular
weights (FW < 1250) shows that the magnitudes of r1 at LF ≤ 0.1 MHz is dominated by the parameters
q and τR. Using a dataset of 49 published NMRD profiles as learning set, Equations (11) and (12) were
evaluated for a quick and reliable estimation of q from r1 values at LF ≤ 0.1 MHz and the molecular
weight of the complex.

Author Contributions: Conceptualization, J.A.P. and C.F.G.C.G.; validation, J.A.P. and C.F.G.C.G.; formal analysis,
J.A.P.; writing—review and editing, J.A.P. and C.F.G.C.G.
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