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Summary

Fluid-structure interaction simulations are crucial for many engineering
problems. For example, the blood flow around new heart valves or the
deployment of airbags during a car crash are often modeled with fluid-
structure interaction simulations. Also, to design safe parachutes, simula-
tions are carried out to model the unsteady deformations of the parachute
during a jump. Thus, there is an apparent need for multi-physics software
codes which can model fluid-structure interaction problems.

However, current state-of-the-art solvers cannot be used for design or
optimization studies of for example aircraft structures due to long simula-
tion times. This is mainly caused by a large number of coupling iterations
needed to reach convergence within each time step for a strongly cou-
pled fluid-structure interaction simulation. Also, a large number of time
steps are required to reach an acceptable accuracy in time for unsteady
simulations. Hence, there is an urgency for efficiency improvements of
fluid-structure interaction solvers.
In this thesis, two approaches are investigated to decrease the computa-

tional times for a fluid-structure interaction simulation: multi-level accel-
eration of the coupled problem, and the use of higher order time integration
schemes.

Part I. Multi-level acceleration with manifold
mapping for partitioned fluid-structure interaction

Highly sophisticated software codes are available for each single physical
phenomenon. It is desirable to reuse these codes for multi-physics simula-
tions such as a fluid-structure interaction problem where separate fluid and
solid solvers need to be coupled. This partitioned approach is in contrast
to the monolithic approach where all governing equations are implemented
in a single software package and solved as a large system of equations.
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Summary

The focus of the first part of this thesis is to accelerate the convergence
of strongly coupled fluid-structure interaction problems, where the fluid
solver and the structure solver are considered as black boxes.
We apply manifold mapping to a partitioned fluid-structure interaction

problem to decrease the number of sub-iterations of the high-fidelity fluid-
structure interaction model and are the first to do so. Low-fidelity models
or coarse models based on a coarse grid discretization are used, as well
as coarse models based on a different governing equation for the fluid-
structure interaction problem.
Numerical experiments showed the high potential of the coupling scheme,

which can reduce the number of fine model evaluations of a partitioned
fluid-structure interaction simulation by approximately 50% by transfer-
ring most of the work to the coarse model. The convergence of the high-
fidelity model is accelerated even further when information from previous
time steps is reused. Hence, manifold mapping can be applied effectively
to a partitioned fluid-structure interaction simulation, and its use results
in a significant decrease in the number of high fidelity coupling iterations.

Part II. Arbitrarily high order time integration for
partitioned fluid-structure interaction simulations
using spectral deferred corrections

The second part of this thesis focuses on the urgent need to increase the
efficiency of unsteady simulations. Numerical simulations of unsteady phe-
nomena, such as the flow over a wind turbine, or the blood flow through
an artery, are computationally expensive due to a large number of time
steps required to reach an acceptable accuracy.
We use the finite volume method with collocated arrangement of the flow

variables to spatially discretize the incompressible Navier-Stokes equations.
To dampen the checker-board pressure field which appears in the standard
collocated grid, commonly the interpolation procedure proposed by Rhie
and Chow is utilized for steady-state problems. However, when applied
directly to the transient formulation, this method does not ensure time
consistency due to pressure oscillations when decreasing the time step.
Higher order time integration scheme have a potential gain in efficiency
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and accuracy in time. Hence, the primary goal of the second part of this
thesis is to present a solution procedure which preserves theoretical orders
of accuracy in time for spectral deferred corrections, integral deferred cor-
rections, the Picard Integral Exponential Solver, and implicit Runge-Kutta
methods when applied to incompressible flow problems and fluid-structure
interaction problems discretized with the finite volume method on collo-
cated grids.

The good accuracy and efficiency of the time integration methods have
been demonstrated for several numerical examples. The main advantage
of the deferred correction schemes over diagonally-implicit Runge-Kutta
schemes is the fact that the necessary coefficients to reach a desired order
of accuracy are easily obtained by using the quadrature integration rules.
For moderate accuracy, the (E)SDIRK methods proved to be competitive
to SDC and IDC.
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Samenvatting

Vloeistof-structuur interactie simulaties zijn essentieel om vele technische
problemen op te lossen. Bijvoorbeeld, de bloedstroming rond nieuwe hart-
kleppen of het gebruik van airbags bij een auto-ongeluk wordt vaak ge-
modelleerd met vloeistof-vaste stof interactie simulaties. Ook voor het
ontwerpen van veilige parachutes is het noodzakelijk dat simulaties wor-
den uitgevoerd om de tijdsafhankelijke vervorming van de parachute tij-
dens een sprong te kunnen voorspellen. Er is dus een grote behoefte aan
software pakketten die vloeistof-vaste stof interactie problemen efficiënt
kunnen simuleren.

Echter, de huidige generatie software kan niet worden gebruikt voor ont-
werp en optimalisatie studies van bijvoorbeeld vliegtuigstructuren vanwege
lange simulatietijden. Dit wordt onder andere veroorzaakt doordat een
groot aantal koppelings iteraties nodig zijn om te convergeren tijdens elke
tijd stap voor een sterk gekoppeld vloeistof-vaste stof interactie simulatie.
Er is ook een groot aantal tijd stappen nodig om een aanvaardbare preci-
sie te behalen in tijd voor tijdsafhankelijke simulaties. Vandaar dat er een
dringende behoefte is om de efficiëntie van vloeistof-vaste stof interactie
simulaties te verbeteren.
In dit proefschrift zijn twee benaderingen onderzocht om de efficiëntie

te verbeteren van vloeistof-vaste stof interactie simulaties: multi-level ac-
celeratie van het gekoppelde probleem en het gebruik van hogere orde tijd
integratie methoden.

Deel I. Multi-level acceleratie met manifold
mapping toegepast op gepartitioneerde
vloeistof-vaste stof interactie simulaties

Zeer geavanceerde software codes zijn beschikbaar voor iedere afzonderlijke
fysische verschijnsel. Het is wenselijk om deze codes te hergebruiken voor
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Samenvatting

multi-physics simulaties zoals een vloeistof-vaste stof interactie probleem
waarbij aparte vloeistof en structuur oplossers met elkaar moeten worden
gekoppeld. Deze gepartitioneerde benadering staat in contrast met de mo-
nolithische benadering waarbij alle vergelijkingen worden geïmplementeerd
in een enkel softwarepakket en opgelost als een groot stelsel van vergelij-
kingen. De focus van het eerste deel van dit proefschrift is het versnellen
van de convergentie van sterk gekoppelde vloeistof-vaste stof interactie
problemen waarbij de software codes van de afzonderlijke pakketten niet
beschikbaar zijn.
We gebruiken manifold mapping voor het eerst voor een vloeistof-vaste

stof interactie probleem om het aantal sub-iteraties van het high-fidelity
model te verminderen. Low-fidelity modellen of grove modellen gebaseerd
op een grof rooster worden gebruikt, evenals grove modellen gebaseerd op
een andere vergelijking voor het vloeistof-vaste stof interactie probleem.
Numerieke experimenten tonen het grote potentieel van de koppelings

methode aan, welke het aantal fine model evaluaties van een vloeistof-vaste
stof interactie simulatie met ongeveer 50% kan verminderen doordat het
meeste werk wordt uitgevoerd door het grove model. De convergentie van
het high-fidelity model wordt nog verder versneld wanneer informatie van
vorige tijdstappen wordt hergebruikt. Manifold mapping kan dus worden
toegepast op een gepartitioneerde vloeistof-vaste stof interactie probleem,
en het gebruik ervan resulteert in een aanzienlijke daling van het aantal
high-fidelity koppelings iteraties.

Deel II. Willekeurig hoge orde tijd integratie voor
gepartitioneerde vloeistof-vaste stof interactie
simulaties aan de hand van spectral deferred
corrections

Het tweede deel van dit proefschrift richt zich op de noodzaak voor betere
efficiëntie van tijdsafhankelijke simulaties. Numerieke simulaties van tijds-
afhankelijke verschijnselen, zoals de stroming rondom een windturbine, of
de stroming van bloed door een slagader, duren erg lang wat te wijten is
aan het feit dat een groot aantal tijdstappen nodig is om een aanvaardbare
precisie te bereiken.
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We gebruiken de eindige volume methode om de incompressibele Navier-
Stokes vergelijkingen te discretizeren in de ruimte waarbij de vloeistof
variabelen op een collocated rooster zijn gedefinieerd. Om de oscillaties
in de druk door het gebruik van een collocated rooster te verminderen,
wordt gewoonlijk de momentum interpolatie methode van Rhie en Chow
gebruikt. Deze is echter ontworpen voor tijdsonafhankelijke problemen.
Wanneer deze method echter direct op de tijdsafhankelijke vergelijkingen
wordt toegepast, is er geen garantie dat de methode consistent is in tijd
door oscillaties in de druk wanneer de tijd stap wordt verminderd.
Hogere orde tijd integratie methoden zijn in potentie zeer efficiënt en

nauwkeurig in de tijd. Vandaar dat het primaire doel van het tweede
deel van dit proefschrift is om een methode te presenteren, die de theo-
retische orde van nauwkeurigheid in tijd behoudt voor spectral deferred
corrections, integral deferred corrections, de Picard Integral Exponential
Solver en impliciete Runge-Kutta methoden toegepast op incompressible
vloeistof problemen en vloeistof-vaste stof interactie problemen die zijn
gediscretizeerd met de eindige volume methode.
De goede nauwkeurigheid en efficiëntie van de tijdsintegratie methoden

is aangetoond met verschillende voorbeelden. Het belangrijkste voordeel
van de deferred correction method ten opzichte van diagonaal-impliciete
Runge-Kutta methoden is het feit dat de coëfficiënten die nodig zijn om tot
een gewenste orde van nauwkeurigheid te komen eenvoudig te berekenen
zijn via de integratie regels.
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Chapter 1.

Introduction

Physics is actually too hard for physicists.

(David Hilbert)

Wikipedia1 gives a definition of multi-physics:

Multiphysics treats simulations that involve multiple physi-
cal models or multiple simultaneous physical phenomena. For
example, combining chemical kinetics and fluid mechanics or
combining finite elements with molecular dynamics. Multi-
physics typically involves solving coupled systems of partial
differential equations.

Fluid-structure interaction (FSI) is an example where multiple physi-
cal models are coupled [10]. Examples where fluid-structure interaction
is apparent are aero-elasticity [47], arterial flow [35] and airbag deploy-
ment [75]. Also, the deployment of parachute systems [94] can be modeled
with fluid-structure interaction solvers.
However, current state-of-the-art solvers cannot be used for design or

optimization studies of aircraft structures due to large simulation times.
For example, an optimization study may require thousands of evaluation
points with each requiring an unsteady fluid-structure interaction simu-
lation. One simulation may already take four weeks to perform. Hence,
the simulations need to be performed within a reasonable time frame, thus
giving the need for an efficiency improvement of fluid-structure interaction
solvers.

1https://en.wikipedia.org/wiki/Multiphysics
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Chapter 1. Introduction

In this thesis, two approaches are investigated to decrease the computa-
tional times for a fluid-structure interaction simulation: multi-level accel-
eration of the coupled problem, and the use of higher order time integration
schemes.

1.1. Multi-level acceleration with manifold
mapping for partitioned fluid-structure
interaction

Motivation Highly sophisticated software codes are available for each
single physical phenomenon. It is desirable to reuse these codes for multi-
physics simulations such as a fluid-structure interaction problem where
separate fluid and solid solvers need to be coupled. This partitioned ap-
proach [48] is in contrast to the monolithic approach [7, 51, 95] where
all governing equations are implemented in a single software package, and
solved as a large system of equations. Besides the partitioned and mono-
lithic approach, different mixed forms have been proposed such as a split-
ting method [3], which separates the fluid-structure system in a fluid ve-
locity part and a pressure-structure part. The implementation of the dis-
cretization needs to be available with such an approach, which is generally
not the case for commercial packages. This is also a drawback for methods
which utilize the exact Jacobian [88].
A large number of coupling schemes which only consider input/output

information of the fluid and solid solvers are already available in the lit-
erature, such as Aitken’s method [70], vector extrapolation [71], Interface-
GMRES(R) [77, 78], and the Interface Quasi-Newton Inverse Least Squares
(IQN-ILS) technique [33, 35]. The IQN-ILS technique [33] is an effi-
cient [32, 37] and robust black-box coupling algorithm for which conver-
gence theorems are available in [56]. The IQN-ILS algorithm is math-
ematically equivalent to Anderson acceleration [2, 50, 97] which can be
categorized as a multisecant method as discussed by Fang and Saad [46].
When applied to linear problems, it can be shown that Anderson acceler-
ation is essentially equivalent to the GMRES method [97], which has also
been shown for the IQN-ILS method [55]. An overview of several parti-
tioned coupling techniques applicable to fluid-structure interaction can be

2



1.1. Multi-level acceleration with manifold mapping for FSI simulations

found in [3, 22].
The focus of this part is to accelerate the convergence of strongly coupled

fluid-structure interaction problems, where the fluid solver and the struc-
ture solver are considered as black boxes. An implication of using only
input and output information of the fluid and the structural solver is that
a large number of sub-iterations is necessary to obtain a strongly coupled
solution. This means that both the fluid and structure solver are called
multiple times per time step. In case the coupling between the fluid flow
and structural deformation is very strong (strongly coupled FSI), which
is generally the case for large fluid/solid density ratios or due to the in-
compressibility of the fluid (see [21]), the convergence of the sub-iterations
is hard to achieve. One idea is to perform a large amount of the sub-
iterations with a low-fidelity model, instead of the current high-fidelity
flow and structure models [90]. The question remains how to efficiently
couple the multi-fidelity models.
Van Zuijlen and Bijl [101] developed a multi-level acceleration technique,

which is based on the presumed existing geometric multigrid solver for
the flow domain. Coarse and fine level sub-iterations are used alternately,
resulting in substantial gains in computational costs. This technique hinges
on the availability of a geometric multigrid solver for the fluid domain,
which poses problems in case black-box solvers are considered.
In [23], [51], [60], and [87] the multi-grid solution technique is used

in order to decrease the computational effort required to solve the fluid-
structure interaction problem. Although multigrid methods can in princi-
ple be adapted in such a manner that the acceleration is performed only
on the interface, current multigrid methods generally operate on the com-
plete aggregated fluid-structure interaction problem. As opposed to the
manifold-mapping technique presented in this work, which acts only on
the fluid-structure interface, standard multigrid methods are therefore not
applicable to black-box solvers, as these methods are inherently intrusive
with respect to the source code of the fluid and structure solvers.
Degroote and Vierendeels [36] present the multi-level IQN-ILS algorithm

which shows the potential of a multi-level acceleration framework for fluid-
structure interaction where the fluid and structure solvers are considered
as black boxes. A coarse grid is used as the low-fidelity model in order
to build an approximate Jacobian which is reused by the finer grids to

3



Chapter 1. Introduction

accelerate the convergence of the IQN-ILS algorithm. However, the coarse
grid is only used once per time step to built an approximate Jacobian,
and find a better initial guess for the fine grid solution process. It can be
expected that the performance of a coupling algorithm which uses a fine
grid and coarse grid alternately results in less fine grid iterations as is the
case for multi-grid.
Originating from multi-fidelity optimization, the aggressive space map-

ping algorithm has been used by Scholcz et al. [90] to efficiently couple a
high-fidelity model with a low-fidelity model for a fluid-structure interac-
tion problem. Scholcz et al. [90] consider the fluid-structure interaction
interface problem as an optimization problem. A computationally inex-
pensive low-fidelity model is combined with a high-fidelity model in order
to accelerate the convergence of the high-fidelity model.
Bandler et al. [6] proposed the original space mapping algorithm for

modeling and design of engineering devices and systems. Thereafter, the
aggressive space mapping approach [4] was introduced based on a quasi-
Newton iteration, which utilizes each fine model iterate as soon as it is
available. The basis of the space mapping algorithm is the parameter
extraction step which establishes the mapping and updates the surrogate.
However, a breakdown of the algorithm may occur due to non-uniqueness
of the parameter extraction step [5]. Output space mapping [68] aims at
reducing the misalignment between the coarse and fine models by adding
the difference between the two to the response of the coarse model. An
overview of different space mapping algorithms in given in [5]. When
applied to a fluid-structure interaction problem as in this contribution,
the different space mapping techniques consider the fluid and solid solvers
as black-boxes, i.e. the used discretizations for the fluid and structural
domains cannot be changed.
Echeverria et al. [43] introduce the manifold mapping algorithm as an

alternative to the aforementioned space mapping algorithms. A notable
difference between manifold mapping and aggressive space mapping is the
fact that the algorithm has provable convergence to the solution of the
high-fidelity model, under the assumption that the manifold mapping iter-
ate converges and that the optimization problems are well defined as shown
in [43]. However, for a fluid-structure interaction problem, it is difficult
to show whether these conditions are met and are therefore not included
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1.2. Higher order time integration for FSI simulations using SDC

here. It is therefore considered as a hypothetical difference between the
space mapping and manifold mapping technique.

Goal We apply manifold mapping for the first time to a partitioned
fluid-structure interaction problem in order to decrease the number of
sub-iterations of the high-fidelity fluid-structure interaction model. The
fluid and solid solvers are considered as black-boxes. Low-fidelity models
or coarse models based on a coarse grid discretization are used, as well
as coarse models based on a different governing equation for the fluid-
structure interaction problem. The research question is formulated as fol-
lows: can manifold mapping be effectively applied to a partitioned fluid-
structure interaction simulation, and does its use result in a significant
decrease in the number of high fidelity coupling iterations?

1.2. Arbitrarily high order time integration for
partitioned fluid-structure interaction
simulations using spectral deferred
corrections

Motivation Unsteady incompressible flows play an important role in many
engineering and scientific problems. Examples include flow over a wind
turbine [61], blood flow through an artery [11], and the interaction with a
propeller of a ship [1]. Numerical simulations of such unsteady phenom-
ena are computationally expensive due to a large number of time steps
required to reach an acceptable accuracy. Therefore, there is an urgent
need to increase the efficiency of these simulations.
The second order backward differencing scheme (BDF2) is commonly ap-

plied to discretize the unsteady terms of the Navier-Stokes equations [12].
The BDF2 scheme is unconditionally stable, which explains its popular-
ity. One way to obtain a temporally accurate solution while maintaining
computational cost at a reasonable level is to apply a high-order time inte-
gration scheme. However, third order and higher order BDF schemes are
not unconditionally stable, which prohibits their wide use.
An alternative to BDF2 is the diagonally implicit Runge-Kutta (DIRK)

method, which can be constructed at arbitrarily high order while retaining
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Chapter 1. Introduction

good stability properties [67, 83]. But their derivation becomes increas-
ingly difficult due to an increase in order conditions when increasing the
order of the scheme [67]. Examples of the application of DIRK methods to
incompressible flow are available in literature [65, 66, 81], and have shown
to outperform BDF2 in terms of accuracy and computational costs.
A different approach to time integration is taken by Dutt et al. [40],

who have introduced the spectral deferred correction scheme (SDC). High-
order approximations are computed for a time step by solving a series
of correction equations on a number of sub-steps. The corrections are
applied iteratively to an initial solution defined on the sub-steps of a time
step. Each correction iteration, or so-called correction sweep, increases the
formal order of accuracy of the method [59, 79]. The sub-steps are chosen
to correspond to quadrature nodes, and therefore the time integrals can
be computed to a high order of accuracy.
Closely related to SDC methods is the integral deferred correction (IDC)

technique. IDC methods have been developed to be able to use uniform
sub-steps within one time step [29]. These methods still achieve a high
order of accuracy. One notable advantage of implicit IDC methods is the
fact that these methods are L-stable or unconditionally stable, which is not
necessarily the case for spectral deferred correction schemes. Christlieb
et al. [28] use the integral deferred correction method within an opera-
tor splitting framework to obtain higher order approximations of partial
differential equations.
Besides these methods, the Picard Integral Exponential Solver (PIES)

can be used to obtain a user specified accuracy of the solution. Also,
the scheme possesses good stability properties, i.e. it is unconditionally
stable in case of implicit time stepping [69]. High accuracy is obtained by
assuming that the solution at the next time step can be represented by a
combination of complex exponential functions.
In this thesis, the widely used finite volume method with collocated

arrangement of the flow variables is used to spatially discretize the incom-
pressible Navier-Stokes equations. In order to dampen the checker-board
pressure field which appears in the standard collocated grid, commonly
the interpolation procedure proposed by Rhie and Chow [85] is utilized
for steady-state problems. However applied directly to the transient for-
mulation this method does not ensure time consistency due to pressure
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1.3. Outline

oscillations when decreasing the time step [91]. Yu et al. [99, 100] have
further shown that other momentum interpolation schemes can also be
time step and under relaxation factor dependent.

Goal Higher order time integration scheme have a potential gain in effi-
ciency and accuracy in time. Hence, the main goal of the second part is
to present a solution procedure which preserves theoretical orders of ac-
curacy in time for SDC, IDC, and PIES when applied to incompressible
flow problems and fluid-structure interaction problems discretized with the
finite volume method on collocated grids. We show the expected order of
accuracy is reached for both the velocity, as well as for the pressure.

1.3. Outline

This thesis is divided into two parts, and has the following structure:

Part I. Multi-level acceleration with manifold mapping for
partitioned fluid-structure interaction

• Chapter 2 introduces several coupling methods including manifold
mapping for black-box partitioned fluid-structure interaction simu-
lations.

• Thereafter, the potential of manifold mapping is shown with several
test case in Chap. 3.

• Chapter 4 summarizes the first part and gives recommendations for
future research directions.

Part II. Arbitrarily high order time integration for partitioned
fluid-structure interaction simulations using spectral deferred
corrections

• Chapter 5 introduces spectral deferred corrections, integral deferred
corrections, the Picard Integral Exponential Solver, and diagonally
implicit Runge-Kutta methods.

7



Chapter 1. Introduction

• Chapter 6 gives the solution procedures for incompressible flows on
static grids and moving grids whilst preserving the theoretical order
of convergence of the time integration scheme considered.

• The numerical results are split up into two separate chapters. First,
the efficiency and accuracy of SDC, IDC and PIES are compared to
implicit Runge-Kutta methods and second order backward differenc-
ing for incompressible flows in Chap. 7.

• Thereafter, several fluid-structure interaction examples are shown in
Chap. 8.

• Chapter 9 gives conclusions and recommendations on the use of spec-
tral deferred correction methods for incompressible flows and fluid-
structure interaction.

8



Part I.

Multi-level acceleration with
manifold mapping of

strongly coupled partitioned
fluid-structure interaction
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Chapter 2.

Coupling schemes for partitioned
fluid-structure interaction

Music can change the world because it
can change people.

(Bono)

As mentioned in the introduction, we use the partitioned approach in-
stead of the monolithic approach for fluid-structure interaction simulations.
Hence, having the advantage that we consider the fluid and solid solvers as
black boxes, and are able to reuse existing software codes, whether they are
licensed as open source or closed source. Different coupling algorithms ex-
ist to solve for the strongly coupled or monolithic solution. Here, we focus
on the manifold mapping approach and shortly discuss other techniques.
The fluid-structure interaction problem is introduced in Sect. 2.1 uti-

lizing a black-box notation. Section 2.2 introduces the manifold mapping
algorithm, and after that, an overview is given of several other coupling
schemes. The next chapter compares the performance with numerical re-
sults of the different coupling schemes.

Parts of this chapter have been published in

• D. S. Blom et al. “Multi-level acceleration with manifold mapping of strongly
coupled partitioned fluid-structure interaction”. In: Computer Methods in Ap-
plied Mechanics and Engineering 296 (2015), pp. 211–231. doi: 10.1016/j.cma.
2015.08.004;

• D. S. Blom et al. “Multi-Level Acceleration of Parallel Coupled Partitioned Fluid-
Structure Interaction with Manifold Mapping”. In: Lecture Notes in Computa-
tional Science and Engineering. Vol. 105. Springer International Publishing,
2015, pp. 135–150. doi: 10.1007/978-3-319-22997-3_8;

11

http://dx.doi.org/10.1016/j.cma.2015.08.004
http://dx.doi.org/10.1016/j.cma.2015.08.004
http://dx.doi.org/10.1007/978-3-319-22997-3_8


Chapter 2. Coupling schemes for partitioned fluid-structure interaction

Fluid Ωf

Solid Ωs

Interface Γf s

Figure 2.1.: Schematic of a fluid-structure interaction problem with a fluid do-
main Ωf and solid domain Ωs. The interface Γf s is defined as the
boundary between the two domains.

2.1. Fluid-structure interaction

The fluid-structure interaction problem is partitioned into a fluid domain
Ωf and a solid domain Ωs, as shown in Fig. 2.1 The separate domains are
coupled on the fluid-structure interface Γf s through the interface condi-
tions consisting of the kinematic and dynamic boundary conditions.
The fluid solver and solid solver are considered as black boxes. In other

words, only the input and output information is accessible. Whether a
compressible or incompressible, viscous or inviscid flow is considered does
not influence the used methodology described in this part. Also, different
models for the solid domain can be applied, since only the input and output
information from the fluid solver and the solid solver is considered to be
accessible.
Therefore, at each time step the response of the fluid solver Ff is defined

as
y = Ff (x) , (2.1)

where x denotes the displacement of the fluid-structure interface, and y
denotes the force acting on the fluid-structure interface. The response of

• D. S. Blom et al. “Acceleration of strongly coupled fluid-structure interaction
with manifold mapping”. In: Proceedings of WCCM XI, Proceedings of ECCM
V, Proceedings of ECFD VI WCCM XI (2014), pp. 1–12.
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2.1. Fluid-structure interaction

the structure solver Fs is consequently defined as

x = Fs (y) . (2.2)

Note that the mentioned variables x and y are defined on the fluid-
structure interface. The fluid and solid solvers solve for the state variables
in their internal domain, for example, velocity, pressure, and displacement.
Generally, the number of degrees of freedom of the interface variables are
much smaller compared to the number of degrees of freedom of the state
variables, since the interface is defined on a smaller dimension. For exam-
ple, for a three-dimensional flow around a wind turbine, the interface is
the surface of the wind turbine.
For a sequential execution of both solvers, the fixed point equation

x = Fs ◦ Ff (x) (2.3)

must be satisfied at every time step. This can also be written as the
interface residual R

R (x) = Fs ◦ Ff (x)− x, (2.4)

which is solved with a minimization or optimization procedure aimed to
find the optimal solution x? such that

x? = arg min
x
||Fs ◦ Ff (x)− x||2 . (2.5)

For a parallel execution of both solvers, a different fixed point equation
can be formulated: [

0 1
1 0

] [
Ff (x)
Fs (y)

]
=

[
x
y

]
. (2.6)

When written as a residual, the following notation applies:

R (x,y) =

[
0 1
1 0

] [
Ff (x)
Fs (y)

]
−
[
x
y

]
. (2.7)

For the sake of reuse of notation for both the sequential and parallel
case, we also refer to the last definition of the residual as R (x). In this
case, x consists of both displacement and force values.
Standard approaches used to solve the strongly coupled fluid-structure
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Chapter 2. Coupling schemes for partitioned fluid-structure interaction

interaction problem are the Gauss-Seidel method [47], fixed under-relaxation [26],
Aitken under-relaxation [70], and the IQN-ILS method [33, 36]. These
minimization procedures require the evaluation of the interface residual
multiple times per time step, which is considered to be expensive for high-
fidelity models.
Algorithms originally developed to accelerate a high-fidelity optimiza-

tion process by using a lower fidelity model, i.e. multi-fidelity optimiza-
tion, such as aggressive space mapping [4] and output space mapping [68],
can also be used to minimize the interface residual. The high-fidelity op-
timization process is accelerated by using a surrogate model which closely
resembles the response of the high-fidelity model, but requires much less
computational time. Naturally, the surrogate model is less accurate than
the high-fidelity model, but it is corrected by the high-fidelity model during
the optimization process. Scholcz et al. [90] proposed a framework for the
application of the space mapping technique to partitioned fluid-structure
interaction problems, to speed up the convergence of high-fidelity simu-
lations. The application of the aggressive space mapping algorithm was
demonstrated on various academic fluid-structure interaction problems.
Here, the use of manifold mapping [42] is investigated to solve the parti-

tioned fluid-structure interaction problem. Manifold mapping has proven
to be an efficient algorithm resulting in less high-fidelity iterations com-
pared to aggressive space mapping [42] and output space mapping [38].

2.2. Manifold mapping

Manifold mapping is a surrogate-based optimization technique, which means
that the quality of the initial solution or approximation of the low-fidelity
model is iteratively improved. The goal of a surrogate-based optimization
technique is to decrease the computational time of the optimization pro-
cess of the high fidelity model by combining it with a low fidelity model.
Here, a fluid-structure interaction simulation is considered for which the
coupling represents the optimization problem. Refer to Eqn. (2.5) for the
staggered case, and to Eqn. (2.7) for the residual of the parallel case.
In the following subsection, the basic terminology is introduced, and the

manifold mapping algorithm is shown. The reader is referred to Echeverria
et al. [43] for the theoretical basis of the technique.
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2.2. Manifold mapping

2.2.1. Manifold mapping terminology

Two types of models are distinguished: a fine model and a coarse model.
It is assumed that the fine model is accurate, but requires a high compu-
tational cost to evaluate. On the contrary, the coarse model is considered
to be computationally less costly, but also less accurate in comparison to
the fine model.

Fine model

The fine model response is denoted by f : X ⊂ Rn → Rn, where x ∈
X represents the control variable of the optimization problem. The fine
model cost function is defined as F (x) = ||f (x)− q||, which represents
the discrepancy between the design specification q ∈ Rn and a particular
response of the model f (x). Therefore, a minimization problem needs to
be solved:

xf
? = arg min

x∈X
||f (x)− q|| . (2.8)

When the manifold mapping technique is applied to the fluid-structure
interaction problem, the fine model response is defined as the interface
residual:

f (x) = Fs ◦ Ff (x)− x. (2.9)

The design specification q is the zero vector for the fine model. For consis-
tency, q is not dropped from the formulation, since the design specification
of the coarse model is not the zero vector, but updated at each manifold
mapping iteration.

Coarse model

The coarse model response is denoted by cz : Z ⊂ Rm → Rm, where z ∈ Z
represents the control variable of the coarse model:

cz (z) = Cs ◦ Cf (z)− z. (2.10)

Cf and Cs represent the coarse model fluid and solid operators. Similar
to the fine model cost function, the coarse model cost function is defined
as C (x) =

∣∣∣∣p−1 (cz (p (x)))− qk
∣∣∣∣, with the mapping p : X → Z, and the

inverse of the mapping p−1 : Z → X. p can be interpreted as a mapping
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Chapter 2. Coupling schemes for partitioned fluid-structure interaction

from the fine model design space to the coarse model design space. The
design specification qk ∈ Rn of the coarse model is iteratively updated dur-
ing the minimization process of the fine model. Subscript k represents the
iteration counter of the manifold mapping algorithm. Therefore, the opti-
mization of the surrogate model, which uses the coarse model, is defined
as

x?c = arg min
x∈X

∣∣∣∣p−1 (cz (p (x)))− qk
∣∣∣∣ . (2.11)

The optimization procedure of the coarse model is performed on the
so-called coupling grid, as is also the case for the multi-level IQN-ILS al-
gorithm [36]. The coupling grid has the same dimension as the dimension
of the design space X and can represent the fine model responses exactly.
Hence, the coarse model response cz is interpolated to the coupling grid
at every coarse model evaluation with the mapping p−1, and the control
variable x is also interpolated from the coupling grid to the coarse model
interface at every coarse model evaluation with the mapping p. In case
a coarse grid is used for the coarse model, then the mappings p and p−1

represent restriction and interpolation operators on the fluid-structure in-
terface. Radial basis function interpolation is used for the mapping p
between the fine model design space X and the coarse model design space
Z, and for the mapping p−1 as well. Figure 2.2 shows the concept of the
coupling grid. Only the fluid model is shown in the figure.

In the remainder of this work, the coarse response is denoted by c defined
in X

c (x) = p−1 (cz (p (x))) . (2.12)

This means, the mapping p and the inverse mapping p−1 are implicitly
assumed for simplicity, and are not included in the formulations.

Standard approaches for solving the partitioned fluid-structure interac-
tion problem as the Gauss-Seidel method [47], fixed under-relaxation [26],
Aitken under-relaxation [70], and the IQN-ILS method or Anderson ac-
celeration [33, 36] can readily be applied to the coarse model optimiza-
tion problem in case the design specification qk is included in the interface
residual. Section 2.3 describes the used algorithm to solve the coarse model
optimization problem.
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2.2. Manifold mapping

Fine model (fluid)

Coarse model (fluid)

Coupling grid

Interpolation

Interpolation

Figure 2.2.: Schematic of the coupling grid used for the interpolation between the
fine model and coarse model of the fluid and solid solvers. Only the
fluid part is shown here. Note that the interface only consists of the
surface of the airfoil in this case.

2.2.2. Manifold mapping algorithm

The manifold mapping algorithm, as proposed in [41], introduces the map-
ping S : c (X) → f (X) with the goal to correct for the misalignment
between the fine and coarse model. With the mapping S, the response
c
(
x?f

)
is mapped to f

(
x?f

)
, and the tangent plane for c (X) at c

(
x?f

)
is mapped to the tangent plane for f (X) at f

(
x?f

)
. Figure 2.3 shows a

sketch of the rotated and translated coarse model.
S is defined as the affine mapping

S (c (x)) = f (xf
?) + S (c (x)− c (xf

?)) (2.13)

for an unknown solution xf ? and with S specified as

S = Jf (xf ) Jc
† (xf ) . (2.14)

The Jacobian of the fine model Jf and the Jacobian of the coarse model
Jc are, however, assumed to be unavailable for a black-box fluid-structure
interaction problem and will be approximated. The symbol † indicates the
pseudo-inverse. Now, each manifold mapping iterate is defined by a coarse
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f
(
x?f
)c (x?c) Fine model

Coarse model

(a) Original models

f
(
x?
f

) Fine model

Coarse model

(b) Rotated and translated coarse
model

Figure 2.3.: Manifold mapping alignment of the coarse model using rotation and
translation

model optimization:

xk+1 = arg min
x∈X

∣∣∣∣∣∣c (x)− c (xk) + S
†

(f (xk)− q)
∣∣∣∣∣∣ , (2.15)

where the pseudo-inverse of the manifold mapping function S† is approxi-
mated by a sequence Tk, resulting in

xk+1 = arg min
x∈X
||c (x)− qk|| (2.16)

with
qk = c (xk)− Tk (f (xk)− q) . (2.17)

The approximation of the pseudo-inverse of the manifold mapping func-
tion Tk requires the singular value decomposition of the matrices ∆Ck and
∆Fk at each iteration k. The columns of ∆C and ∆F span the coarse and
fine model tangent space at the current iteration as in

∆Fk =
[
f (xk+1)− f (xk) , · · · , f (xk+1)− f

(
xmax(k+1−n,0)

)]
(2.18)
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2.2. Manifold mapping

and

∆Ck =
[
c (xk+1)− c (xk) , · · · , c (xk+1)− c

(
xmax(k+1−n,0)

)]
. (2.19)

The singular value decomposition’s of ∆C and ∆F are defined as:

∆Ck = Uc Σc V
T
c and ∆Fk = Uf Σf V

T
f . (2.20)

The design specification qk is updated at each iteration k with Tk given
by [41]

Tk = ∆Ck ∆Fk
† +

(
I − Uc UcT

) (
I − Uf Uf T

)
. (2.21)

The manifold mapping procedure is started with an extrapolation step of
the solutions of the previous time steps in order to initialize the algorithm
with a good initial guess. The resulting algorithm is shown in Fig. 2.4.
In Echeverria et al. [43] it is noted that it can be shown that the

manifold mapping algorithm can be based on any matrix S satisfying
J†c
(
x?f

)
S
†

= J†f

(
x?f

)
. There is complete freedom how S handles com-

ponents in the complement of the range of Uc. The general case is S† =

Jc

(
x?f

)
J†f

(
x?f

)
+
(
I − Uc UTc

)
A with A any m×m matrix. The particu-

lar case A =
(
I − Uf UTf

)
is considered here such that components in the

complement of the range of the left singular vectors Uf are included, as
used before in Echeverria and Hemker [41].
Generally, the number of degrees of freedom n on the fluid-structure

interface is much larger than the number of columns of ∆Ck and ∆Fk.
Therefore, the computational cost of the manifold mapping technique is
limited. It mainly consists of the singular value decomposition of two n×k
matrices. To reduce the number of fine model evaluations per time step,
the matrices ∆Ck and ∆Fk can be combined with the information from r
previous time steps, following the IQN-ILS(r) approach [33]:

∆Fk =
[
∆F ∆F u . . . ∆F u−r+2 ∆F u−r+1

]
(2.22)

∆Ck =
[
∆C ∆Cu . . . ∆Cu−r+2 ∆Cu−r+1

]
, (2.23)

with u + 1 marking the recent time step. The notation MM(r) indicates
that information from r time steps is reused. When information from
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Chapter 2. Coupling schemes for partitioned fluid-structure interaction

1: x0 = arg minx∈X ||c (x)− q||
2: T0 = I
3: for k = 0→ kmax do
4: qk = c (xk)− Tk (f (xk)− q)
5: xk+1 = arg minx∈X ||c (x)− qk||
6: ∆F =

[
f (xk+1)− f (xk) , · · · , f (xk+1)− f

(
xmax(k+1−n,0)

)]
7: ∆C =

[
c (xk+1)− c (xk) , · · · , c (xk+1)− c

(
xmax(k+1−n,0)

)]
8: Solve Uf Σf Vf

T = ∆F with a singular value decomposition
9: Solve Uc Σc Vc

T = ∆C with a singular value decomposition
10: ∆F † = Vf Σf

† Uf T

11: Tk+1 = ∆C ∆F † +
(
I − Uc UcT

) (
I − Uf Uf T

)
12: if converged then
13: break
14: end if
15: end for

Figure 2.4.: The manifold mapping (MM) algorithm

previous time steps is reused, the mapping matrix Tk does not need to be
initialized with the identity matrix at line 2, but can be determined with
Eqn. (2.21) (after the first time step).
The coarse optimization problem can be solved with a coupling scheme

of the users choice. Here, Anderson acceleration is employed to solve the
coarse optimization problem. Note that the coupling scheme needs to meet
the design specification qk, which can be included in the formulation of
the residual for the FSI problem.
The mapping matrix Tk is of size n×n which can be prohibitively large

for large scale applications. To reduce the memory requirements of the
algorithm, the iteratively updated design specification qk can be directly
determined with only matrix-vector multiplications such that the memory
requirements do not exceed n× k:

qk = c (xk)− Tk (f (xk)− q)

= c (xk)−α−∆C
(

∆F †α
)

+ Uc
[
UTc (α− β)

]
+ β,

(2.24)

with α = f (xk)− q, and β = Uf

(
UTf α

)
.
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2.2. Manifold mapping

However, in case the simulation environment allows to store the mapping
matrix Tk in memory, a secant update similar to the approach taken by
Bogaers et al. [19] can be used:

T u+1
k = T uk + (∆C − T uk ∆F ) ∆F †, (2.25)

where the pseudo inverse of ∆F can be computed as ∆F † =
(
∆F T ∆F

)−1
∆F T

or via a singular value decomposition in the same manner as used by the
original manifold mapping algorithm. The advantage of this approach is
that the user does not need to specify the number of time steps the coupling
scheme needs to reuse.
If the fluid and structure solvers are executed in serial, a separate syn-

chronization step is necessary. Once the solution has been found by the
fine model, the degrees of freedom of the coarse model need to be cor-
rected [36]. Two different approaches can be applied. One approach is
to restrict the data in the entire fluid and structure domain from the fine
model to the coarse model. If such a system is not available since the used
solvers are black box solvers, the interface traction calculated by the fine
model can be applied to the fluid-structure interface of the coarse model,
whereafter the structural equations are solved by the coarse model.
When using a mathematical notation, omitting the mappings, we simply

have the evaluation of:
xc = Cs

(
yk+1

)
. (2.26)

Note that this approach can result in a difference between the solution of
the flow and structure domain after a certain number of time steps.
During the manifold mapping iterations, the same interface displacement

is applied on the fine model and also on the coarse model. Therefore, only
the coarse structural model needs to be synchronized with the fine model
if the second synchronization approach is used. If the fine model and the
coarse model use exactly the same structural model, the second approach
will result in a perfectly synchronized coarse model.
However, in case the fluid and structure solvers are executed in par-

allel, the same interface displacement and interface traction are already
applied on the fine model as well as the coarse model. Therefore, a sep-
arate synchronization step is not necessary if the data in the entire fluid
and structure domain is not restricted from the fine model to the coarse
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Chapter 2. Coupling schemes for partitioned fluid-structure interaction

model.

2.3. Coarse model optimization

Anderson acceleration [2, 50, 97] is used to solve the optimization problem
of the coarse model (2.16). Anderson acceleration is mathematically equiv-
alent to the IQN-ILS technique [33]. The algorithm is adapted to solve for
the design specification qk. The technique is a quasi-Newton method with
the aim to minimize the fluid-structure interface residual. To meet the
design specification qk, Newton-Raphson iterations are used with index j:

∂c (xj)

∂x
∆xj = qk − c (xj) (2.27)

xj+1 = xj + ∆xj . (2.28)

The desired value of the residual is the design specification qk, and the
difference between the desired value and the current value ∆c = qk−c (xj)
is approximated as a linear combination of the known ∆ci = c (xi)−c (xj):

∆c ≈
j−1∑
i=0

αij∆ci = Vj αj , (2.29)

where Vj is given as
Vj = [∆cj−1 . . .∆c0] . (2.30)

This is an over-determined problem, and is therefore solved in a least
squares sense. The QR-decomposition of Vj is calculated by using House-
holder transformations:

Vj = QjRj . (2.31)

The coefficient vector αj is found by solving the triangular system

Rjαj = Qj
T (qk − c (xj)) (2.32)

for αj by using back substitution.
The residual of the least squares solution δ∆c is defined as:

δ∆c = ∆c− Vj αj = qk − c (xj)− Vj αj . (2.33)
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2.3. Coarse model optimization

1: x̃0 = Fs ◦ Ff (x0) and c0 = x̃0 − x0

2: x1 = x0 + ω (c0 − qk)
3: for j = 1→ jmax do
4: x̃j = Fs ◦ Ff (xj) and cj = x̃j − xj
5: Vj = [∆cj−1 . . .∆c0] with ∆ci = ci − cj
6: Wj = [∆xj−1 . . .∆x0] with ∆xi = xi − xj
7: Vj = Qj Rj
8: Solve Rj αj = Qj

T (qk − cj) for αj using back substitution
9: ∆xj = β (cj − qk) + (β Vj +Wj)αj

10: xj+1 = xj + ∆xj
11: if converged then
12: break
13: end if
14: end for

Figure 2.5.: Anderson acceleration (equivalent to the IQN-ILS method)

The ∆x that corresponds to ∆c is calculated as a linear combination of
the previous ∆xj , and is denoted with ∆x̃j :

∆x̃j =
k−1∑
i=0

αij∆xi = Wjαj , (2.34)

where ∆x is specified as ∆xi = xi − xj . Wj is determined with

Wj = [∆xj−1 . . .∆x0] . (2.35)

This results in the relation

∆xj = ∆x̃j − δ∆c
= Wjαj − qk + c (xj) + Vj αj .

(2.36)

Optionally, under relaxation can be applied on δ∆c, resulting in the fol-
lowing update:

xj+1 = xj + β (c (xj)− qk) + (β Vj +Wj)αj , (2.37)

with the relaxation parameter β. The final algorithm is shown in Fig. 2.5.
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2.4. Convergence measures

To terminate the fine model iterations, a relative convergence criterion
based on input and output information is used with a tolerance τf :

||f (x)− q||2
||x+ q||2 + ε

≤ τf , (2.38)

with ε =
√

2−52 = 2−26 when computing with double precision floats. For
the results shown in this part, the relatively strict convergence criterion
τf = 10−5 is used for the fine model. The convergence measure of the
coarse model is based on input and output information of the coarse model
and the iteratively updated design specification qk:

||c (x)− qk||2
||x+ qk||2 + ε

≤ τc. (2.39)

In order to ensure convergence of the manifold mapping iteration, the
tolerance parameter τc of the coarse model is set to a stricter value τc =
10−6. Preliminary computations indicated that in case the convergence
measure for the coarse model was set to the same tolerance as the fine
model or even less strict, the iterations did not converge to the specified
tolerance for the fine model.
A different convergence measure for the coarse model would be to moni-

tor the convergence with respect to the first coarse model evaluation during
the optimization step as follows:

||c (x)− qk||2
||c (xk)− qk||2 + ε

≤ τc. (2.40)

This measure can be named a relative residual convergence measure, as
the first residual during an optimization step is used to scale the current
residual. This approach results in less coarse model iterations, but does
not influence the number of fine model iterations significantly. During the
first manifold mapping iterations, the termination criterion is less strict
compared to Eqn. (2.39), effectively reducing the number of coarse model
iterations. The convergence measure becomes more strict, as the manifold
mapping iteration process converges to the fine model optimum. Therefore,
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2.5. Coupling schemes for strongly coupled fluid-structure interaction

a tolerance value of τc = 10−2 or τc = 10−3 is sufficient to reach convergence
for the fine model, in contrast to the relative convergence measure shown
in Eqn. (2.39).

2.5. Coupling schemes for strongly coupled
fluid-structure interaction

The manifold mapping algorithm is compared to the IQN-ILS algorithm,
multi-level IQN-ILS, aggressive space mapping, and output space map-
ping with several test cases. These techniques are shortly discussed in the
following subsections.

2.5.1. IQN-ILS

The IQN-ILS algorithm, as discussed in Sect. 2.3, operates only on one
level. Hence, this approach is not a multi-level technique. The difference
with the algorithm as discussed in Sect. 2.3 is the fact that the design
specification qk is the zero vector. The interface residual is minimized
directly with the fine model, instead of utilizing a multi-level approach.

2.5.2. ML-IQN-ILS

The multi-level quasi-Newton coupling algorithm [36] is based upon the
IQN-ILS algorithm. The main difference is the use of coarse grids to ac-
celerate the convergence of the finest level. The ML-IQN-ILS technique
constructs the approximation of the inverse of the Jacobian on coarser grid
levels, and then iteratively improves the Jacobian on the finest grid level.
First, the interface residual is minimized on the coarsest grid level. Then,

starting from the current solution, the residual is minimized again on a finer
grid reusing the Jacobian information generated on the coarser grid level.
The algorithm is shown in Fig. 2.6.
The displacement and residual are defined on the so-called coupling grid.

At each iteration on every grid level, the fluid and solid solvers interpolate
the data from the surface boundary of their grid to the coupling grid.
When compared to manifold mapping or other space mapping algo-

rithms, the multi-level IQN-ILS technique does not return to the coarse
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Chapter 2. Coupling schemes for partitioned fluid-structure interaction

1: l = k = 0
2: x̃0 = Fs ◦ Ff (x0) and R0 = x̃0 − x0

3: x1 = x0 + ωR0

4: for i = 1→ g do
5: while ||Rk|| > τ or l = 0 do
6: l = 0
7: x̃k = Fs ◦ Ff (xk) and Rk = x̃k − xk
8: Construct V and W
9: Calculate the QR-decomposition Vk = QkRk
10: Solve Rkαk = −QkTRk for αk using back substitution
11: ∆xk = Rk + (Vk +Wk)αk
12: xk+1 = xk + ∆xk
13: k = k + 1
14: end while
15: l = 1
16: end for

Figure 2.6.: The ML-IQN-ILS method. g is the number of grid levels.

level after a fine level evaluation. Therefore, the multi-level IQN-ILS per-
forms fewer iterations on the coarse levels compared to manifold mapping,
aggressive space mapping, and output space mapping.

2.5.3. Aggressive space mapping (ASM)

Similar to manifold mapping, the aggressive space mapping technique [4]
performs a minimization of the coarse model after each fine model iteration.
The algorithm is based upon a quasi-Newton method in combination with
first-order derivative approximations which are updated by the Broyden
formula. Another approach would be to apply the IQN-ILS formulation as
in the ASM-ILS technique [90].
The fine model response f (x) needs to be minimized at every time

step of the simulation. The space mapping technique introduces the space
mapping function such that

f (x) = P (x)− x?c , (2.41)
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2.5. Coupling schemes for strongly coupled fluid-structure interaction

where x?c represents the solution of the coarse model minimization. The
space mapping function P is defined as

xc = P (x) = arg min
x∈X

||c (x)− f (xf )|| . (2.42)

Thus, the coarse model is optimized with the aim to satisfy the design
specification f (xf ) for a given xf .
The quasi-Newton method is applied to (2.41), which requires a mini-

mization of the coarse model at each Newton iterate. Therefore, the solu-
tion xk is updated at each iteration k with

xk+1 = xk + J−1
k (x?c − xkc) . (2.43)

The inverse of the Jacobian of the space mapping function J−1
k is updated

directly with the Sherman-Morrison formula

J−1
k = J−1

k−1 +
∆xk − J−1

k−1∆zk

∆xTk J
−1
k−1∆zk

(
∆xTk J

−1
k−1

)
, (2.44)

with ∆xk = xk−xk−1 and ∆z = zk−zk−1, and zk is determined by eval-
uating the space mapping function or the so-called parameter extraction
process

xkc = arg min
x∈X

||c (x)− f (xk)|| . (2.45)

Anderson acceleration as described in Sect. 2.3 is used to find the solu-
tion of the coarse model optimization problem where the design specifica-
tion is given as qk = f (xk).
Contrary to manifold mapping, the convergence of the space mapping

iterate to the solution of the fine model problem is not guaranteed, as
proven in Echeverria and Hemker [41]. Scholcz et al. [90] also observe
this problem for a fluid-structure interaction problem. Their solution is
to switch from the space mapping algorithm to the Anderson acceleration
method in case the method is not converging.

2.5.4. Output space mapping (OSM)

Output space mapping aims at reducing the misalignment of the coarse
model response with the fine model response by adding the difference dk =
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Chapter 2. Coupling schemes for partitioned fluid-structure interaction

1: x0 = arg minx∈X ||c (x)||
2: for k = 0→ kmax do
3: dk = c (xk)− f (xk)
4: xk+1 = arg minx∈X ||c (x)− dk||
5: if converged then
6: break
7: end if
8: end for

Figure 2.7.: Output space mapping (OSM-0)

c (xk) − f (xk) to the coarse model response c. At each space mapping
iteration k, the following coarse model optimization problem is solved:

xk+1 = arg min
x∈X
||c (x)− dk|| , (2.46)

which can be interpreted as the manifold mapping algorithm where the
mapping matrix Tk is kept constant as the identity matrix, which is denoted
by OSM-0. The algorithm is shown in Fig. 2.7.
A second formulation of the output space mapping technique includes

the Jacobian of the misalignment of the coarse model response with the
fine model response:

xk+1 = arg min
x∈X

||c (x)− dk − Jk · (x− xk)|| , (2.47)

denoted by OSM-1. In this work, the Jacobian Jk is updated at each
iteration k with the Broyden update

Jk = Jk−1 +
∆dk − Jk−1∆xk

||∆xk||
∆xTk , (2.48)

with ∆xk = xk − xk−1 and ∆dk = dk − dk−1. The algorithm is shown in
Fig. 2.8.
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2.5. Coupling schemes for strongly coupled fluid-structure interaction

1: x0 = arg minx∈X ||c (x)||
2: J0 = I
3: for k = 0→ kmax do
4: dk = c (xk)− f (xk)
5: xk+1 = arg minx∈X ||c (x)− dk − Jk · (x− xk)||
6: ∆xk = xk+1 − xk
7: ∆dk = dk+1 − dk
8: Jk+1 = Jk + ∆dk−Jk∆xk

||∆xk|| ∆xTk
9: if converged then
10: break
11: end if
12: end for

Figure 2.8.: Output space mapping (OSM-1)
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Chapter 3.

Numerical results for different
coupling schemes

Life’s most persistent and urgent question
is, ‘What are you doing for others?’

(Martin Luther King, Jr.)

In this chapter the performance of the manifold mapping algorithm for
fluid-structure interaction is demonstrated on several test problems: un-
steady flow in a one-dimensional tube [34, 36], the two-dimensional incom-
pressible laminar flow around a fixed cylinder with an attached elastic can-
tilever benchmark [96], and three-dimensional incompressible flow through
a flexible tube. A reduction of approximately 50% in terms of high-fidelity
iterations is achieved compared to the state-of-the-art Anderson accelera-
tion algorithm. The convergence of the high-fidelity model is accelerated
even further when information from previous time steps is reused.

Parts of this chapter have been published in

• D. S. Blom et al. “Multi-level acceleration with manifold mapping of strongly
coupled partitioned fluid-structure interaction”. In: Computer Methods in Ap-
plied Mechanics and Engineering 296 (2015), pp. 211–231. doi: 10.1016/j.cma.
2015.08.004;

• D. S. Blom et al. “Multi-Level Acceleration of Parallel Coupled Partitioned Fluid-
Structure Interaction with Manifold Mapping”. In: Lecture Notes in Computa-
tional Science and Engineering. Vol. 105. Springer International Publishing,
2015, pp. 135–150. doi: 10.1007/978-3-319-22997-3_8.
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z
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h

r

r

p
p

Figure 3.1.: Geometry of the one-dimensional model for the unsteady, incom-
pressible flow through an elastic tube. The length L, the inner ra-
dius r, the pressure p acting on the inner wall of the tube, and the
wall thickness h is shown. Deformation of the tube walls in radial
direction is caused by the fluid pressure p acting on the inner tube
walls. The figure is taken from Mehl et al. [76].

3.1. Unsteady flow in a one-dimensional tube

The first case consists of an incompressible, unsteady flow in a flexible
tube [34, 36]. The tube has a circular cross-section and length L, as shown
in Fig. 3.1. This example is straightforward to implement and is also a
good example to verify the performance of a new coupling algorithm since
the strength of the coupling can easily be changed.

3.1.1. Governing equation for the fluid model

The flow is governed by the equations for conservation of mass and con-
servation of momentum written in conservative form as

∂a

∂t
+
∂av

∂z
= 0, (3.1)

and
∂av

∂t
+
∂av2

∂z
+

1

ρf

(
∂ap

∂z
− p∂a

∂z

)
= 0, (3.2)

with the coordinate z along the axis of the elastic tube, the cross-sectional
area a and the velocity v in z-direction. r is the inner radius of the tube,
the time is denoted by t, p represents the pressure, and ρf is the density of
the fluid. Gravity and viscosity are not taken into account by the model.
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3.1. Unsteady flow in a one-dimensional tube

3.1.2. Governing equation for the structure model

A Hookean constitutive relation describes the behavior of the elastic tube
wall. The inertia of the tube wall is neglected with respect to the inertia
of the fluid, resulting in a structure without mass. The stress acting in
circumferential direction σφφ is approximated with

σφφ = E
r − r0

r0
+ σφφ0 (3.3)

for a given Young’s modulus E and radius r0 for which σφφ = σφφ0 . Only
radial motion of the tube wall is allowed. The forces acting on the fluid-
structure interface are in balance, thus

rp = σφφh. (3.4)

The following relation can be found after substitution of the constitutive
equation (3.3) into (3.4)

rp =
Eh

ρr0
(r − r0) + r0p0, (3.5)

which can also be written as

a = a0

( p0

2ρf
− c2

MK

p
2ρf
− c2

MK

)2

, (3.6)

given the Moens-Korteweg wave speed cMK

cMK =

√
Eh

2ρfr0
. (3.7)

A non-reflecting boundary condition

dv
dt

=
1

cρf

dp
dt

(3.8)

is imposed at the outlet of the tube.
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3.1.3. Discretization

The tube is discretized withN cells of length ∆z. The velocity and pressure
of the flow are determined in the cell centers. A central discretization
is employed for the continuity and momentum equation. However, the
convective term of the momentum equation is discretized with a first-order
upwind scheme. A backward Euler time integration scheme is used with a
time step ∆t.
Thus, the discretized conservation of mass in a control volume is given

by

∆z

∆t

(
aj − anj

)
+vj+ 1

2
aj+ 1

2
−vj− 1

2
aj− 1

2
− α

ρf
(pj+1 − 2pj + pj−1) = 0, (3.9)

and the discretized conservation of momentum in a control volume is

∆z

∆t

(
vjaj − vnj anj

)
+ vjvj+ 1

2
aj+ 1

2
− vj−1vj− 1

2
aj− 1

2

+
1

2ρf

(
aj+ 1

2
(pj+1 − pj) + aj− 1

2
(pj − pj−1)

)
= 0.

(3.10)

The subscript j, j+1 and j−1 indicates the cell centers and the subscripts
j + 1

2 and j − 1
2 denotes the values at the face of cells, calculated with

vj− 1
2

=
vj−1+vj

2 and vj+ 1
2

=
vj+vj+1

2 . Coefficient α = a0

v0+ ∆z
∆t

is a pressure
stabilization term which is added to the continuity equation to remove any
pressure wiggles as a result of the central discretization of the pressure in
the momentum equation, with a given reference fluid velocity v0.
The boundary condition at the outlet for the pressure is discretized as

pout = 2ρf

c2
MK −

(√
c2
MK −

pnout
2ρf
− vout − vnout

4

)2
 . (3.11)

The velocity at the inlet is calculated as

vin = v0 +
v0

10
sin2 (πnτ) , (3.12)

where the dimensionless parameter τ is given by the dimensionless time
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3.1. Unsteady flow in a one-dimensional tube

step τ = v0∆t
L . Linear extrapolation is performed to determine the pressure

at the inlet
pin = 2p1 − p2, (3.13)

and the velocity at the outlet

vout = 2vN − vN−1. (3.14)

The problem can be described with two dimensionless parameters, namely
the dimensionless stiffness κ

κ =
c0

v0
=

√
Eh

2ρf r0
− p0

2ρf

v0
, (3.15)

and the dimensionless time step τ = v0∆t
L . For the computations shown

in this section, these two parameters are set to κ = 10 and τ = 0.01,
which results in a strong coupling between the fluid and the structure [36].
One period of the inlet boundary condition is simulated, thus 100 time
steps. The initial conditions are the dimensionless velocity v0

c0
= 0.1, the

dimensionless pressure p
ρf c

2
0

= 0, and the dimensionless cross-sectional area
a
a0

= 1. A consistent interpolation is used on the interface with radial basis
functions utilizing the globally supported thin plate spline as the basis
function [18].

3.1.4. Numerical results

First, we study the performance of a range of coupling schemes as discussed
earlier. After that, we shortly touch upon the choice of the termination
criterion for the surrogate model.

Comparison of different coupling algorithms

The performance of the manifold mapping algorithm is compared with ag-
gressive space mapping [5, 90], output space mapping [68], multi-level IQN-
ILS (ML-IQN-ILS) [36], and with the IQN-ILS coupling technique [33].
The effect of reuse of information from previous time steps is also demon-
strated. Table 3.1 shows the number of iterations for the fine model and
the coarse model per time step averaged over the entire simulation. Three
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Table 3.1.: One-dimensional flow through a flexible tube. The influence of the
used coarse model is studied. Three different grid sizes for the coarse
model are used: 100, 50 and 20. The manifold mapping algorithm
(MM) is compared with the quasi-Newton method based on the Broy-
den update (QN), IQN-ILS, ML-IQN-ILS, aggressive space mapping
(ASM), and output space mapping (OSM). The number of coupling
iterations per time step has been averaged over the complete simula-
tion.

Method FSI-100 FSI-50 FSI-20

nc nf nc nf nc nf

QN(0) 10.2 10.2 10.2
IQN-ILS(0) 8.3 8.3 8.3
ML-IQN-ILS(0) 9.2 7.2 9.3 8.5 9.6 9.0
OSM-0(0) 56.8 12.8 84.2 19.3 222.1 50.3
OSM-1(0) 48.0 6.3 53.8 7.2 62.1 8.3
ASM(0) 24.7 5.4 27.2 6.0 35.9 7.8
MM(0) 24.4 5.2 26.7 5.5 36.0 7.3

coarse models with different grid sizes are used, namely with 20 cells (FSI-
20), 50 cells (FSI-50) and 100 cells (FSI-100). The fine model uses 1000
cells for every computation. The initial solution of the displacement is
determined by a state extrapolation from previous time steps for each nu-
merical method under consideration. The convergence criterion for the fine
model is set to τf = 10−6, and for the coarse model to τf = 10−7.

The use of manifold mapping leads to a reduction in the number of fine
model evaluations of approximately 37% compared to IQN-ILS for the
FSI-100 case. When the grid size of the coarse model is decreased, the
reduction in the number of fine model evaluations is approximately 33%
and 12% for FSI-50 and FSI-20, respectively.
Similar results are shown in Table 3.2 when reusing information from

previous time steps is considered. The use of manifold mapping with reuse
of information from previous time steps leads to a reduction in the number
of fine model evaluations of approximately 23%, 16% and 10% compared
to IQN-ILS with reuse for the FSI-100, FSI-50 and FSI-20 cases, respec-
tively.
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3.1. Unsteady flow in a one-dimensional tube

Table 3.2.: One-dimensional flow through a flexible tube. The influence of the
used coarse model and the reuse of information from previous time
steps is studied. The information from four previous time steps is
reused. Three different grid sizes for the coarse model are used:
100, 50 and 20. The manifold mapping algorithm (MM) is compared
with the quasi-Newton method based on the Broyden update (QN),
IQN-ILS, ML-IQN-ILS, aggressive space mapping (ASM), and output
space mapping (OSM). The number of coupling iterations per time
step has been averaged over the complete simulation.

Method FSI-100 FSI-50 FSI-20

nc nf nc nf nc nf

QN(4) 5.1 5.1 5.1
IQN-ILS(4) 3.1 3.1 3.1
ML-IQN-ILS(4) 3.8 3.4 3.8 3.8 3.8 4.4
OSM-0(4) 59.8 12.8 90.8 19.3 259.9 50.1
OSM-1(4) 67.6 6.0 67.9 6.2 51.0 6.7
ASM(4) 18.4 4.2 19.8 4.5 23.4 5.2
MM(4) 8.0 2.4 8.7 2.6 9.6 2.8
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In contrast to manifold mapping and space mapping, the multi-level
IQN-ILS algorithm optimizes the coarse model only once per time step.
The constructed Jacobian of the coarse model is used to accelerate the
convergence of the fine model. Manifold mapping and space mapping iter-
atively improve the quality of the coarse model approximation explaining
the difference in fine model iterations, and also the increase in the number
of coarse model iterations compared to ML-IQN-ILS.
Output space mapping with the Jacobian included in the surrogate

model (OSM-1), and without the mapping Jacobian (OSM-0) are both
considered. The use of the mapping Jacobian results in a significant de-
crease in the number of fine model evaluations compared to OSM-0. Reuse
of information from previous time steps does not seem to result in an ac-
celeration of the algorithm.
Concluding, manifold mapping shows the best performance regarding

the number of fine model iterations in comparison with aggressive space
mapping, multi-level IQN-ILS, and output space mapping. The reuse of
information from previous time steps further accelerates the algorithm
significantly.

Convergence measure for the surrogate model

For the surrogate model, different convergence measures can be used. Now,
we compare the relative convergence measure as shown in Eqn. (2.39)
with the relative residual convergence measure as shown in Eqn. (2.40).
Table 2.40 shows the iteration counts when using 100 cells for the fine
model, and 50 cells for the coarse model which uses a linearized fluid
model. In each simulation, we use the manifold mapping algorithm to
drive the interface residual below the tolerance τf = 1 · 10−5.

The relative convergence measure for the first set of simulations is set
to τc = 1 · 10−7. The residual relative convergence measure for the second
set of simulations is set to τc = 1 · 10−3. As shown in the table, the
residual relative convergence measure results in less coarse model iterations
and does not influence the number of fine model iterations significantly
when compared to the relative convergence measure. This is because the
termination criterion allows for fewer iterations during the first manifold
mapping iterations. The convergence measure becomes more strict, as the
manifold mapping iteration process converges to the fine model optimum.
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Table 3.3.: One-dimensional flow through a flexible tube. The influence of the
termination criteria for the surrogate model is studied.

Convergence measure Reuse 0 Reuse 4

nc nf nc nf

Relative convergence measure 32.8 4.1 10.4 2.1
Residual relative convergence measure 24.1 4.0 8.5 2.2

2.5m

0.41m
0.35m

0.02m

r = 0.05m

C A

x
y

(0, 0)

Figure 3.2.: Geometry of the cylinder with an attached flap benchmark originally
proposed in [96]. The figure shows a channel flow with a fixed cylinder
and a flexible flap attached to the cylinder. Point A located at the
back of the flap is used as a reference point for the measurements of
the displacement. The figure has been taken from Mehl et al. [76].

3.2. Fixed cylinder with an attached flexible flap

The second test case, originally proposed in [96], consists of a two-dimensional
incompressible laminar flow around a fixed cylinder with an attached flex-
ible cantilever. The geometry of the problem is shown in Fig. 3.2.

3.2.1. Governing equations of the fluid model

The governing equations for the fluid are given by the balance of momen-
tum

ρf
∂vf

∂t
+ ρf

(
∇vf

)
vf = ∇ · σf , (3.16)
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and the balance of mass, which reduces to a divergence free constraint on
the velocity field due to incompressibility:

∇ · vf = 0 in Ωf , (3.17)

where the velocity field is denoted by vf , the pressure field is denoted by
pf , and ρf represents the density. A Newtonian fluid is considered, which
leads to the constitutive equation for the stress tensor σf

σf = −pfI + ρfνf
(
∇vf +∇vf T

)
, (3.18)

for a given kinematic viscosity νf .

3.2.2. Governing equations of the structure model

The configuration of the structure domain is described by the displacement
us. The structure is assumed to be elastic and compressible, and the
governing equation is given by the balance of momentum

ρs
∂vs

∂t
+ ρs (∇vs)vs = ∇ · σs + ρsg in Ωs

t . (3.19)

Equation (3.19) is modified to use the total Lagrangian description, i.e.
with respect to a fixed initial reference state Ωs, resulting in

ρs
∂2us

∂t2
= ∇ ·

(
JσsF−T

)
+ ρsg in Ωs, (3.20)

where the deformation gradient tensor F is defined as F = I +∇us, and
the Jacobian J is the determinant of the deformation gradient tensor F .
By applying the constitutive law for the St. Venant-Kirchhoff material, the
Cauchy stress tensor σs is found by applying

σs =
1

J
F (λs (trE) I + 2µsE)F T , (3.21)

with E = 1
2

(
F TF − I

)
, and the shear modulus µs [24].
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3.2. Fixed cylinder with an attached flexible flap

3.2.3. Boundary conditions

A parabolic velocity profile is prescribed at the inlet, whereas a free outflow
condition is prescribed at the outlet. No-slip conditions are prescribed for
the fluid on the top and bottom wall, the cylinder, and the fluid-structure
interface.
At the fluid-structure interaction Γf s, the balance of stresses is enforced

through
σfn = σsn on Γf s, (3.22)

with the unit vector n normal to the fluid-structure interface Γf s, and
the stress tensors σf and σs. Also, at the fluid-structure interface the
velocities vf and vs must be equal:

vf = vs on Γf s. (3.23)

In case of inviscid flow, the slip boundary condition is applied.

3.2.4. Physical parameters

In [96] three different scenarios are presented with different solid to fluid
density ratios. For the results shown in this section, the two unsteady
fluid-structure interaction cases are selected, namely FSI2 and FSI3. The
solid to fluid density ratio are set to ρs

ρf
= 10 and ρs

ρf
= 1, respectively. The

Reynolds number based on the diameter of the cylinder is 100 for the FSI2
case, and 200 for the FSI3 case. The reader is referred to [96] for further
details on this benchmark problem.

3.2.5. Discretization

The fluid domain and structure domain are discretized with a second order
finite volume method. A coupled solution algorithm [31] is employed, in-
stead of the well known PISO pressure-velocity coupling technique. Here,
the continuity and momentum equation are solved in a fully coupled im-
plicit manner, instead of a segregated approach. A second order backward
differencing scheme (BDF2) is used to integrate the governing equations
in time. The fluid mesh is deformed with radial basis function interpola-
tion [18]. The coarse model of the flow uses 1 457 cells. The grid is refined
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(a) FSI2: pressure contours (b) FSI2: velocity field

(c) FSI3: pressure contours (d) FSI3: velocity field

Figure 3.3.: Cylinder with an attached flap test case. Pressure and velocity con-
tours of the FSI2 and FSI3 problems.

in each direction with a factor 4, resulting in 23 924 cells for the fine model
of the fluid. The mesh of the structural model consists of 40 cells and is
uniformly refined to form the fine mesh of the solid containing 328 cells.
The computational cost of one coarse model evaluation is approximately
1.4% of one fine model evaluation.
Pressure and velocity contours of the FSI2 and FSI3 problems are shown

in Fig. 3.3. For the FSI3 case, the lift and drag are shown for the coarse
model and the fine model in Fig. 3.4 for separate computations. The
coarse model finds a steady state solution, whereas the fine model finds
the periodic solution.

3.2.6. Numerical results

The numerical results for this test case are shortly discussed. First, the
performance of the manifold mapping acceleration technique is compared
with standard coupling techniques. Thereafter, the difference in coupling
iterations between the serial and parallel coupling of fluid and solid solvers
is discussed.

42



3.2. Fixed cylinder with an attached flexible flap

0.0 0.5 1.0 1.5 2.0
Time [s]

200

100

0

100

200

Li
ft 

[N
]

Fine model
Coarse model

(a) Lift

0.0 0.5 1.0 1.5 2.0
Time [s]

420

430

440

450

460

470

480

490

Dr
ag

 [N
]

Fine model
Coarse model

(b) Drag

Figure 3.4.: Cylinder with an attached flap test case FSI3. Lift and drag are
shown for t = 0 s until t = 2 s for the fine model as well as the coarse
model. The computations shown are executed separately. Note that
the fluid domain is initialized with a fully developed flow.

Comparison of different coupling schemes in terms of sub-iterations

Table 3.4 and 3.5 list the number of coupling iterations per time steps for
the fine and coarse model averaged over one periodic cycle. Again, the per-
formance of the manifold mapping acceleration technique is compared with
the quasi-Newton method based on the Broyden update (QN), IQN-ILS,
ML-IQN-ILS, aggressive space mapping, and output space mapping. The
initial solution of the displacement is determined by a state extrapolation
from previous time steps for each numerical method under consideration.
Figure 3.5 shows a graph of the convergence history within one time-step

for the different coupling algorithms considered. Information from previous
time steps is not reused. The figure highlights the fast convergence of the
manifold mapping and aggressive space mapping technique compared to
IQN-ILS.
For the FSI2 benchmark, the number of fine model evaluations is reduced

by approximately 49% in comparison with the fine model only (IQN-ILS).
The FSI3 test case shows the same reduction in fine model evaluations of
49% in comparison with the IQN-ILS algorithm. With reuse of information
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Figure 3.5.: Two dimensional flow over a fixed cylinder with an attached flexible
flap FSI3. The convergence history of the different coupling algo-
rithms is shown for one time step.

from previous time steps, the manifold mapping algorithm can reduce the
number of iterations per time step to approximately two iterations for both
cases.
Results for output space mapping with the mapping Jacobian included in

the surrogate model (OSM-1), and without the mapping Jacobian (OSM-
0) are shown in Table 3.4 and 3.5. For the FSI2 benchmark, the use of
the Jacobian leads to an increase in fine model iterations, which indicates
that the quality of the Jacobian is not sufficient to result in a speedup.
However, for the FSI3 benchmark, the use of the mapping Jacobian results
in a minor decrease of fine model evaluations compared to OSM-0. Also,
the reuse of information from previous time steps does not influence the
results significantly.
The aggressive space mapping algorithm is competitive to manifold map-

ping in case information from previous time steps is not included. However,
with information from previous time steps, the decrease in the number of
fine model iterations is less compared to manifold mapping.
For the FSI2 case, the ML-IQN-ILS shows similar iteration numbers

compared to manifold mapping. For the FSI3 case with a strong coupling
between the fluid and the solid domain, the differences between manifold
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3.2. Fixed cylinder with an attached flexible flap

Table 3.4.: Two-dimensional flow over a fixed cylinder with an attached flexi-
ble flap FSI2. The influence of the reuse of information from pre-
vious time steps is studied for different coupling algorithms for the
fluid-structure interaction problem. Manifold mapping (MM) is com-
pared with quasi-Newton method based on the Broyden update (QN),
IQN-ILS, ML-IQN-ILS, aggressive space mapping (ASM), and output
space mapping (OSM).

Method Reuse 0 Reuse 4 Reuse 8

nc nf nc nf nc nf

QN 10.6 6.3 5.7
IQN-ILS 8.6 3.6 2.9
ML-IQN-ILS 11.6 9.6 4.6 5.3 3.4 4.5
OSM-0 25.2 4.6 19.6 4.5 19.4 4.5
OSM-1 38.1 5.9 47.5 5.3 45.6 5.1
ASM 27.3 4.3 16.0 3.4 16.0 3.4
MM 24.3 4.4 5.8 2.1 5.4 2.0

mapping and ML-IQN-ILS are more substantial. The ML-IQN-ILS algo-
rithm does not return to the coarse model after a fine model evaluation and
performs fewer iterations with the coarse model as a result compared to
manifold mapping, aggressive space mapping, and output space mapping.

Summarizing, the manifold mapping algorithm results in the largest
speedup in terms of the fine model evaluations compared to other coupling
algorithms. By including information from previous time steps, the number
of iterations per time step is decreased substantially.

Serial and parallel execution of fluid and solid solvers

Table 3.6 shows the averaged iteration numbers for the manifold mapping
algorithm and also for IQN-ILS and ML-IQN-ILS. Reuse of information
from previous time steps is considered in order to accelerate the conver-
gence of the different coupling schemes. Sequential execution (S) of the
fluid and structure solvers is compared with the parallel case (P).
In case the sequentially coupled manifold mapping technique (S-MM) is

used and information from previous time steps is not included, approxi-
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Table 3.5.: Two-dimensional flow over a fixed cylinder with an attached flexi-
ble flap FSI3. The influence of the reuse of information from pre-
vious time steps is studied for different coupling algorithms for the
fluid-structure interaction problem. Manifold mapping (MM) is com-
pared with quasi-Newton method based on the Broyden update (QN),
IQN-ILS, ML-IQN-ILS, aggressive space mapping (ASM), and output
space mapping (OSM).

Method Reuse 0 Reuse 4 Reuse 8

nc nf nc nf nc nf

QN 16.0 7.8 6.7
IQN-ILS 11.6 4.5 3.1
ML-IQN-ILS 13.5 8.9 4.9 3.7 4.3 3.3
OSM-0 43.1 7.4 43.3 7.4 44.1 7.4
OSM-1 53.3 7.0 62.7 5.9 59.0 5.8
ASM 37.0 6.0 27.0 4.9 28.3 4.9
MM 35.1 5.7 8.5 2.4 6.6 2.1

Table 3.6.: Two-dimensional flow over a fixed cylinder with an attached flexible
flap FSI3. The influence of the reuse of information from previous
time steps is studied for different coupling algorithms for the fluid-
structure interaction problem. Manifold mapping (MM) is compared
with IQN-ILS and ML-IQN-ILS. Two different cases are considered,
the flow and the structure solver are executed sequentially (S) or in
parallel (P). The iteration numbers are averaged over the complete
simulation.

Method Reuse 0 Reuse 8 Reuse 16 Reuse 24

nc nf nc nf nc nf nc nf

S-IQN-ILS 11.6 3.1 3.3 3.6
S-ML-IQN-ILS 13.5 8.9 4.3 3.3 4.5 3.7 4.6 3.7
S-MM 35.1 5.7 6.6 2.1 6.5 2.0 6.7 2.0
P-IQN-ILS 26.3 5.7 5.7 8.1
P-ML-IQN-ILS 28.8 20.6 10.8 12.7 13.3 18.6 14.4 20.8
P-MM 150.6 11.2 29.4 3.4 32.9 3.0 34.7 2.9
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3.2. Fixed cylinder with an attached flexible flap

mately 5.7 fine model iterations are performed at every time step. IQN-
ILS uses almost twice as many iterations per time step (11.6). With reuse
of information from previous time steps, the least number of fine model
iterations is 3.1 for IQN-ILS. However, this number increases in case in-
formation from more than eight time-steps is included. For the manifold
mapping algorithm, the number of fine model iterations does not increase
in case information from a large number of time steps is taken into account.

In case the fluid and the structure solver are executed in parallel, the
number of fine model iterations increases to 11.2 for the manifold mapping
technique. However, IQN-ILS uses 26.3 iterations per time step. In case in-
formation from previous time steps is reused by the different coupling algo-
rithms, the number of fine model iterations decreases significantly. Again,
it is important to not include information from a large number of time
steps for IQN-ILS, since the number of iterations increases from 5.7 (8
or 16 time-steps reused) to 8.1 (24 time-steps reused). For the manifold
mapping algorithm, an increase in fine model iterations is not observed in
case the information from an increasing number of time steps is reused.

As observed before, the ML-IQN-ILS algorithm uses significantly less
coarse model iterations in comparison to the manifold mapping technique
since the method optimizes the coarse model only once per time step,
whereas for the manifold mapping algorithm the coarse model is opti-
mized at every manifold mapping iteration. Note, in case the fluid and
the structure are coupled in parallel, the number of fine model iterations
is increased significantly compared to the staggered execution of the fluid
and the structure solver.

Table 3.7 shows the averaged iteration numbers for the different coupling
algorithms in case the Jacobians of the different coupling algorithms are
updated with the appropriate secant equation to take into account infor-
mation from all previous time steps. If we compare these results to those of
Table 3.6, Table 3.6 shows worse performance if no time steps are reused,
but better performance if the optimal number of time steps are reused.

47



Chapter 3. Numerical results for different coupling schemes

Table 3.7.: Two-dimensional flow over a fixed cylinder with an attached flexi-
ble flap FSI3. Manifold mapping (MM) is compared with IQN-ILS
and ML-IQN-ILS. Two different cases are considered, the flow and
structure solver are executed sequentially (S) or in parallel (P). The
Jacobians of the different coupling algorithms are updated with the
appropriate secant equation to take into account information from
all previous time steps. The iteration numbers are averaged over the
complete simulation.

Method Sequential Parallel

nc nf nc nf

IQN-ILS 4.4 7.6
ML-IQN-ILS 5.4 4.8 8.5 8.2
MM 14.2 3.2 49.9 5.5

3.3. Wave propagation in a three-dimensional
elastic tube

The third example consists of a wave propagating in a straight, three-
dimensional elastic tube [9, 34, 49]. The geometry of the fluid and the
solid domain is shown in Fig. 3.6. The length of the tube is 0.05m. The
tube has a thickness of 0.001m. The inner diameter of the tube is 0.01m.
Both ends of the tube are fixed. Starting from t = 0 s until t = 0.003 s, the
boundary condition for the gauge pressure at the inlet is set to the fixed
value 1333.2Pa. After that, the inlet gauge pressure is set to zero. At the
outlet, the pressure is fixed at zero at every time instant. The pressure
contours at different time instants are shown in Fig. 3.7.

3.3.1. Physical parameters

The fluid domain of the fine model is governed by the incompressible
Navier-Stokes equations, as discussed in Sect. 3.2.1. The flow has a density
of 103 kg/m3, and a dynamic viscosity of 3.0 · 10−3 Pa · s. The solid is as-
sumed to be elastic and compressible, as described in Sect. 3.2.2. The den-
sity of elastic solid is 1.2 ·103 kg/m3, the Young’s modulus is 3.0 ·105 N/m2,
and Poisson’s ratio is 0.3.

48



3.3. Wave propagation in a three-dimensional elastic tube

Figure 3.6.: Wave propagation in a straight elastic tube. The geometry and a
very coarse mesh are shown for both the fluid and solid domain.

(a) t = 0.0050 s, fine model (b) t = 0.0100 s, fine model

(c) t = 0.0050 s, coarse model (d) t = 0.0100 s, coarse model

Figure 3.7.: Wave propagation in a straight tube. The pressure contours at dif-
ferent time instants on the fluid-structure interface. The solutions
for the fine model are shown on the top, and solution for the coarse
model are shown on the bottom. These simulations are executed
separately.
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The fluid domain of the coarse model is governed by the incompressible
Euler equations, i.e. viscous effects are ignored. Another approach would
be to use the one-dimensional solver described in Sect. 3.1 as the coarse
model for this test case.

3.3.2. Discretization

The same solver as for the fixed cylinder with an attached flexible flap
is used to simulate this problem. Thus, a finite volume solver based on
a coupled solution algorithm is employed in combination with a second-
order time integration scheme. The coarse model of the fluid uses 2 600
cells, and is refined in each direction with a factor 2, resulting in 20 800
cells for the fine model.
Two different cases are considered with regards to the coarse model of

the structure. For the first example, the same structural model is used for
the coarse model as well as the fine model, since the largest computational
time is spent during the fluid evaluation (6 400 cells). The second example
consists of a coarsened grid of the structural coarse model (800 cells). The
initial solution of the displacement is determined by a state extrapolation
from previous time steps for each numerical method under consideration.
The computational cost of one coarse model evaluation is approximately
1% of one fine model evaluation.

3.3.3. Numerical results

The numerical results for this test case are shortly discussed. As for the
previous test case, the performance of the manifold mapping acceleration
technique is compared with standard coupling techniques. Thereafter, the
difference in coupling iterations between the serial and parallel coupling of
fluid and solid solvers is discussed.

Comparison of different coupling schemes in terms of sub-iterations

Table 3.8 and 3.9 show the averaged iteration numbers for the manifold
mapping algorithm, and also for several other coupling algorithms. Com-
paring Table 3.8 with 3.9 shows an increase in the number of fine model
iterations for the multi-level algorithms when using a coarsened mesh for
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3.3. Wave propagation in a three-dimensional elastic tube

the structure, as is to be expected. However, the ML-IQN-ILS technique
shows an increase of 2.8 fine model iterations in case the structural mesh
is coarsened and reuse of information from previous time steps is not con-
sidered. However, for manifold mapping, aggressive space mapping and
output space mapping with the Jacobian information included (OSM-1),
the number of fine model iterations increases with approximately one iter-
ation.
The use of the manifold mapping algorithm results in a reduction in

the number of fine model evaluations of approximately 60% compared to
IQN-ILS without reuse of information from previous time steps, and where
the structural mesh is coarsened. With reuse of information, a reduction of
42% compared to IQN-ILS with reuse is observed for the manifold mapping
technique.
The use of the aggressive space mapping algorithm results in a compa-

rable reduction of fine model iterations when information from previous
time steps is not reused. Reuse of information does not lead to significant
computational savings for both cases.
Output space mapping with the mapping Jacobian included in the surro-

gate model (OSM-1), and without the mapping Jacobian included (OSM-0)
are both considered. Table 3.8 and 3.9 show that the use of the mapping
Jacobian in the surrogate model does not result in a decrease in the num-
ber of fine model iterations, compared to OSM-0. On the contrary, the
reuse of information from previous time steps leads to an increase in the
number of fine model evaluations, which indicates that the quality of the
Jacobian is not sufficient to result in a speedup.
The use of the multi-level IQN-ILS algorithm results in a significant

acceleration of the high-fidelity model. This is also the case when informa-
tion from previous time steps is included by the algorithm. However, the
manifold mapping algorithm is able to reduce the number of fine model
evaluations to a larger extent.
Concluding, manifold mapping shows the best performance in terms of

the number of fine model evaluations in comparison with the quasi-Newton
method based on the Broyden update, IQN-ILS, ML-IQN-ILS, aggressive
space mapping, and output space mapping. Coarsening of the structural
mesh results in an increase of only one fine model iteration. A significant
speedup is observed when information from previous time steps is included.
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Table 3.8.: Three-dimensional flow through a flexible tube. The influence of the
reuse of information from previous time steps is studied for differ-
ent coupling algorithms for the fluid-structure interaction problem.
Manifold mapping (MM) is compared with aggressive space mapping
(ASM), quasi-Newton method based on the Broyden update (QN),
IQN-ILS, ML-IQN-ILS, and output space mapping (OSM). The num-
ber of coupling iterations per time step has been averaged over the
complete simulation. The structural model used for the coarse and
the fine model consists of the same number of finite volumes.

Method Reuse 0 Reuse 4 Reuse 8

nc nf nc nf nc nf

QN 24.7 14.5 12.1
IQN-ILS 15.6 7.5 5.9
ML-IQN-ILS 17.2 6.5 8.8 4.0 7.2 3.9
OSM-0 40.9 5.1 33.1 5.1 31.2 5.1
OSM-1 63.4 7.0 88.2 7.8 82.1 7.7
ASM 42.9 5.0 35.4 5.0 33.8 5.0
MM 40.0 5.0 19.6 3.4 16.4 3.2
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3.3. Wave propagation in a three-dimensional elastic tube

Table 3.9.: Three-dimensional flow through a flexible tube. The influence of the
reuse of information from previous time steps is studied for differ-
ent coupling algorithms for the fluid-structure interaction problem.
Manifold mapping (MM) is compared with aggressive space mapping
(ASM), quasi-Newton method based on the Broyden update (QN),
IQN-ILS, ML-IQN-ILS, and output space mapping (OSM). The num-
ber of coupling iterations per time step has been averaged over the
complete simulation. The structural domain of the coarse model is
coarsened in comparison with the fine model.

Method Reuse 0 Reuse 4 Reuse 8

nc nf nc nf nc nf

QN 24.7 14.5 12.1
IQN-ILS 15.6 7.5 5.9
ML-IQN-ILS 18.1 9.3 9.0 6.1 7.2 4.5
OSM-0 54.0 6.9 45.2 6.9 43.5 6.9
OSM-1 75.7 8.0 92.3 8.2 85.0 8.0
ASM 52.5 6.0 42.0 5.9 39.8 5.7
MM 51.0 6.3 21.8 3.7 17.6 3.4
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Table 3.10.: Three-dimensional flow through a flexible tube. The influence of the
reuse of information from previous time steps is studied for differ-
ent coupling algorithms for the fluid-structure interaction problem.
Manifold mapping (MM) is compared with IQN-ILS and ML-IQN-
ILS. Two different cases are considered, the flow and the structure
solver are executed sequentially (S), or in parallel (P). The iteration
numbers are averaged over the complete simulation.

Method Reuse 0 Reuse 8 Reuse 16 Reuse 24

nc nf nc nf nc nf nc nf

S-IQN-ILS 15.6 5.9 5.1 4.9
S-ML-IQN-ILS 18.1 9.3 7.2 4.5 6.2 4.4 5.8 4.6
S-MM 51.0 6.3 17.6 3.4 15.7 3.4 15.4 3.3
P-IQN-ILS 30.2 11.0 9.5 8.7
P-ML-IQN-ILS 34.0 14.6 12.2 7.6 10.2 7.0 9.3 6.9
P-MM 89.3 6.6 37.3 4.5 31.9 4.3 29.8 4.2

Serial and parallel execution of fluid and solid solvers

Table 3.10 shows the averaged iteration numbers. The use of the mani-
fold mapping algorithm reduces the number of fine model iterations from
15.6 for IQN-ILS to 6.3 in case the fluid and structure are executed in a
sequential fashion and information from previous time steps is not consid-
ered. In case information from previous time steps is reused, the number
of fine model iterations for IQN-ILS reduces to 4.9, whereas the manifold
mapping technique uses just 3.3 iterations per time step. The S-ML-IQN-
ILS scheme outperforms IQN-ILS in terms of fine model iterations, though
the manifold mapping technique is observed to use the least amount of fine
model iterations. Note that viscous effects are ignored for the coarse model
of the fluid domain.
When the fluid and structure solvers are coupled in parallel, the number

of fine model iterations increases slightly to 6.6 for the manifold mapping
technique, whereas the number of iterations for IQN-ILS is almost twice
as high compared to the sequential coupling case. Including information
from previous time steps accelerates the manifold mapping significantly to
only 4.2 fine model iterations per time steps.
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Table 3.11.: Three-dimensional flow through a flexible tube. Manifold mapping
(MM) is compared with IQN-ILS and ML-IQN-ILS. Two different
cases are considered, the flow and the structure solver are executed
sequentially (S), or in parallel (P). The Jacobians of the different cou-
pling algorithms are updated with the appropriate secant equation in
order to take into account information from all previous time steps.
The iteration numbers are averaged over the complete simulation.

Method Sequential Parallel

nf nc nf nc

IQN-ILS 6.8 11.7
ML-IQN-ILS 7.4 6.7 12.0 10.8
MM 28.5 4.6 44.5 5.8

Table 3.11 shows the averaged iteration numbers for the same coupling
algorithms in case the full Jacobians are updated with the appropriate
secant equation in order to take into account the information from all
previous time steps. Again, the sequential and the parallel coupling of the
fluid and structure solvers is examined. The manifold mapping algorithm
clearly outperforms IQN-ILS and the ML-IQN-ILS technique in terms of
fine model iterations for both sequential and parallel cases. The number
of fine model iterations increases with approximately one iteration for the
parallel case compared to sequential coupling, whereas the ML-IQN-ILS
and IQN-ILS use 3 and 4 extra iterations, respectively.

3.4. Steady state for fixed cylinder with an
attached flexible flap case

Thus far unsteady simulations have been performed. Now we are consid-
ering a test case with a steady state solution. Steady-state solutions are of
much importance for industrial test cases. For example, when studying the
cruise flight condition of an airplane, the wings are deformed due to the
aerodynamic loading. Hence, there is an interaction between the structure
and the flow.
Turek and Hron [96] discuss a third setup of the fixed cylinder with an

55



Chapter 3. Numerical results for different coupling schemes

5 10 15
10−5

10−4

10−3

10−2

Fine model iteration [-]

F
in

e
m

od
el

re
si

du
al

[-]
QN

IQN-ILS
ML-IQN-ILS

OSM-0
OSM-1
ASM
MM

Figure 3.8.: Steady state solution of two dimensional flow over a fixed cylinder
with an attached flexible flap FSI1. The convergence history of dif-
ferent coupling methods are shown.

attached flexible flap case which results in a steady state solution, named
FSI1. A segregated solution algorithm is employed for the fluid domain
to solve the incompressible Navier-Stokes equations. The fluid mesh is
deformed with radial basis function interpolation. The coarse model of
the flow uses 5 981 cells. After uniform refinement, a mesh is generated
consisting of 23 924 cells for the fine model of the fluid. The mesh of the
structural model consists of 82 cells and is uniformly refined to form the
fine mesh of the solid containing 328 cells.
Figure 3.8 shows the convergence history of the quasi-Newton method

using a Broyden update (QN), IQN-ILS method, ML-IQN-ILS method,
output space mapping (OSM), aggressive space mapping (ASM) and man-
ifold mapping (MM). The fluid and solid solvers are coupled in a serial
manner. The figure highlights the fast and regular convergence of the
manifold mapping algorithm compared to IQN-ILS. The use of manifold
mapping results in a speedup of approximately 2.3 in terms of fine model
iterations.
The ML-IQN-ILS method needs a lot of fine model iterations before the
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3.5. Unsteady flow in a one-dimensional tube with three levels

method starts to converge. This is probably caused by the fact that the
information from the coarse model is included directly in the approxima-
tion of the Jacobian of the fine model. Since the coarse model data is not
accurate enough, these vectors actually hinder the convergence of the fine
model.
The aggressive space mapping algorithm needs eight fine model itera-

tions to converge but shows a smaller convergence rate during the last four
iterations compared to manifold mapping.
Output space mapping with the mapping Jacobian included in the sur-

rogate model (OSM-1) needs a significantly larger number of iterations
to converge compared to without using the Jacobian. Output space map-
ping without the Jacobian outperforms manifold mapping for this example.
The only difference between output space mapping without the mapping
Jacobian and manifold mapping is the use of the mapping matrix Tk for
manifold mapping. When Tk is kept constant as the identity matrix during
the complete optimization process, it is equal to output space mapping.
Therefore, it can be concluded that the mapping matrix Tk is not accu-
rate enough during the first iterations for manifold mapping. The two
algorithms show very similar convergence rates after the first couple of
iterations.

3.5. Unsteady flow in a one-dimensional tube with
three levels

A natural extension of the two-level manifold mapping algorithm is to use
three or even more levels. Here, we study the use of three levels. The
optimization of the coarse model is accelerated by the manifold mapping
algorithm, with an even cheaper and less accurate low fidelity model. The
earlier discussed unsteady flow in a flexible one-dimensional tube case is
used again to study the use of three levels. From this point on, we only con-
sider the manifold mapping technique as we have already established the
good performance of the method compared to other coupling techniques
in the previous sections.
Table 3.12 shows the iteration counts averaged over the complete simu-

lation where two levels and three levels are considered with different mesh
sizes and different settings for reuse of information from previous time
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steps. The governing equations for each fluid model are linearized around
the initial state, except for the fine fluid model. The fluid equations for
the fine model are still the full non-linear equations, which are coupled to
the solid solver. Hence, the fine model is accelerated by a substantially
different coarse model. The mesh size of the models is indicated between
the brackets. Thus, 2 (100, 1000) represents a two-level simulation with
100 cells for the coarse model, and 1000 cells for the fine model. 3 (20, 50,
1000) indicates a three-level simulation with 1000 cells for the fine model,
and 20 and 50 cells for the coarse models.
The reuse of information from previous time steps results in the largest

reduction in the number of sub-iterations per time step for the fine model,
namely from 4.7 - 5.7 to 2.6 - 2.7 sub-iterations depending on the coarse
model. The coarse model also benefits largely from reuse of information
from previous time steps.
The addition of a third level results in a reduction of approximately 25%

- 27% for the intermediate level (26.4 to 19.2 iterations, and 23.6 to 17.7
iterations) when information from previous time steps is not reused. The
number of fine model iterations is not influenced significantly, which can
be expected since the accuracy of the coarse models does not differ greatly,
and a further speedup of the fine model is therefore not expected. In case
information from previous time steps is reused, the addition of a third level
results in a reduction of approximately 18% - 23% for the intermediate
level (10.1 to 7.7 iterations, and 9.8 to 8.0 iterations).
For the 2 (50, 1000) and 3 (50, 100, 1000) level simulations, a new level

is added in between the original coarse and the fine model with 100 cells.
Thus, the accuracy of the coarse model is increased when compared to the
two-level setup. One can expect a decrease in the number of fine model
iterations for the three-level setup. The number of fine model iterations
does decrease by approximately 8%, but the number of iterations with the
coarse model containing 50 cells is increased from 26.4 to 55.5. Thus, it
is not necessarily the case that the addition of an extra model results in a
speedup of the overall simulation.
Table 3.13 shows the number of iterations when the fluid and solid solvers

are coupled in parallel. When information from previous time steps is not
reused, the acceleration of the coarse model by a third level is substantially
larger compared to the serial case, namely from 56.5 iterations to 15.6
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3.6. Wave propagation in a three-dimensional elastic tube with three levels

Table 3.12.: One-dimensional flow through a flexible tube. The influence of three
levels within the manifold mapping framework is studied. The num-
ber of coupling iterations per time step are shown. The information
from previous time steps is reused (0, 4 and 8 time steps). The fluid
and solid solver are coupled in a serial or staggered manner. The
coarse models use a linearized fluid model instead of the full non-
linear equations. Level 3 is the most accurate model, where level 1
and level 2 represent the coarse models.

Levels / Histories Reuse 0 Reuse 4 Reuse 8

1 2 3 1 2 3 1 2 3

2 (20, 1000) 27.9 5.7 10.0 2.8 9.8 2.7
2 (50, 1000) 26.4 5.3 9.6 2.7 10.1 2.7
2 (100, 1000) 23.6 4.7 9.5 2.6 9.8 2.6
3 (20, 50, 1000) 57.7 19.2 5.2 15.9 7.7 2.6 15.7 7.7 2.6
3 (20, 100, 1000) 51.6 16.8 4.7 16.1 8.0 2.6 15.8 7.8 2.6
3 (50, 100, 1000) 55.5 17.7 5.0 16.6 8.1 2.7 16.6 8.0 2.7

iterations for the coarse model with 100 cells (72%), and 60.9 to 21.7 for
the coarse model with 50 cells (64%). However, when information from
previous time steps is reused, it highly depends on the accuracy of the
coarse model whether a speedup is observed.

3.6. Wave propagation in a three-dimensional
elastic tube with three levels

A final example is considered where three levels are applied within the man-
ifold mapping framework. The three-dimensional flow through a flexible
tube example, as discussed in Sect. 3.3 is used to study the computational
efficiency of the method when applied to three levels. Where previously
a simplified one-dimensional model was used, now the fluid and solid do-
mains are governed by the incompressible Navier-Stokes equations and the
geometrically non-linear elasticity equations.
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Table 3.13.: One-dimensional flow through a flexible tube. The influence of three
levels within the manifold mapping framework is studied. The num-
ber of coupling iterations per time step is shown. The information
from previous time steps is reused (zero, four and eight time-steps).
The fluid and solid solver are coupled in a parallel manner. The
coarse models use a linearized fluid model instead of the full non-
linear equations.

Levels / Histories Reuse 0 Reuse 4 Reuse 8

1 2 3 1 2 3 1 2 3

2 (20, 1000) 58.2 5.5 17.4 3.0 16.8 3.0
2 (50, 1000) 60.9 5.2 9.2 2.3 9.2 2.3
2 (100, 1000) 56.5 4.5 9.7 2.3 9.5 2.2
3 (20, 50, 1000) 100.0 21.7 6.2 23.2 9.3 3.1 22.6 9.2 3.0
3 (20, 100, 1000) 88.9 19.4 5.7 22.8 9.4 3.1 21.4 9.0 3.0
3 (50, 100, 1000) 85.8 15.6 4.5 15.6 7.0 2.3 14.9 6.7 2.2

3.6.1. Discretization

The same structural solver as in Sect. 3.3 is used. The fluid solver is also
based on the finite volume method but uses an iterated PISO-like solver
to solve the nonlinear incompressible Navier-Stokes equations. Again, a
second order backward differencing time integration scheme is used for
both the fluid as well as the structural domain.
The coarse models for the fluid domain are governed by the incompress-

ible Euler equations. Hence, the coarse models actually simulate different
physics. The meshes for the fluid and solid are refined uniformly. Refine-
ment level 1 contains 2 600 cells for the fluid, and 800 cells for the solid.
Refinement level 2 has 20 800 cells for the fluid, and 6 400 cells for the
solid. Finally, the finest grids contain 166 400 cells for the fluid domain,
and 51 200 cells for the solid.

3.6.2. Numerical results

Table 3.14 shows the iteration counts averaged over the complete simu-
lation where the fluid and solid solvers are coupled in serial. One set of
simulations does not reuse information from previous time steps, whereas
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Table 3.14.: Three-dimensional flow through a flexible tube. The influence of
three levels within the manifold mapping framework is studied. The
number of coupling iterations per time step is shown. The informa-
tion from previous time steps is reused (zero and four time-steps).
The fluid and solid solver are coupled in a serial or staggered manner.
For the fluid, the coarse models are governed by the incompressible
Euler equations, where the fine model is governed by the incom-
pressible Navier-Stokes equations. The values between parentheses
indicate the refinement level of the mesh.

Levels / Histories Reuse 0 Reuse 4

1 2 3 1 2 3

2 (1, 3) 40.4 4.6 14.9 2.4
2 (2, 3) 36.5 3.8 15.5 2.5
3 (1, 2, 3) 109.1 21.3 3.9 39.6 10.6 2.5

the other set reuses information from four previous time steps which is suf-
ficient as shown in Sect. 3.3. The refinement level of the mesh for both the
fluid and the solid domains is indicated between parentheses in Table 3.14.
Thus simulation 2 (1, 3) indicates a setup with two levels, of which the
coarse model uses refinement level 1, and the fine model uses refinement
level 3.

When only two levels are considered, it can be observed that the mani-
fold mapping method results in a small number of coupling iterations for
the fine model, even when the coarse model is coarsened to the point where
the computational costs are negligible (3.8 and 4.6 iterations without reuse,
and 2.4 and 2.5 iterations with reuse). Note that the coarse model uses a
different model for the fluid domain. The use of a more accurate coarse
model decreases the number of fine model iterations in case information
from previous time steps is not being reused.
However, when information from previous time steps is reused, the num-

ber of fine model iterations does not differ significantly between different
setups. The use of three levels does decrease the number of coarse model
iterations for refinement level 2 from 15.5 to 10.6 (32%).
Table 3.15 shows the number of iterations per time steps when the fluid

and solid solver are coupled in parallel. Similar conclusions from this table
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Table 3.15.: Three-dimensional flow through a flexible tube. The influence of
three levels within the manifold mapping framework is studied. The
number of coupling iterations per time step is shown. The informa-
tion from previous time steps is reused (zero and four time-steps).
The fluid and solid solver are coupled in a parallel manner. For the
fluid, the coarse models are governed by the incompressible Euler
equations, where the fine model is governed by the incompressible
Navier-Stokes equations. The values between parentheses indicate
the refinement level of the mesh.

Levels / Histories Reuse 0 Reuse 4

1 2 3 1 2 3

2 (1, 3) 87.6 6.0 32.3 3.7
2 (2, 3) 92.7 6.1 33.7 3.9
3 (1, 2, 3) 217.1 29.5 6.2 65.0 14.2 3.7

can be drawn as for the serial case, namely that the reuse of information
from previous time steps results in the largest speedup. The use of three
levels decreases the number of coarse model iterations for refinement level
2 from 33.7 to 14.2 in case information from previous time steps is reused.
Concluding, the use of three levels to accelerate the convergence of the

coarse model is only beneficial if the computational costs of the coarse
model are significant compared to the fine model. For this example, the
most inaccurate model with negligible computational costs can already be
applied to accelerate the convergence of the fine model to 2.4 iterations per
time step showing the robustness of the manifold mapping technique.
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Chapter 4.

Conclusions on multi-level
acceleration techniques for
strongly coupled fluid-structure
interaction

According to the theory of aerodynamics,
as may be readily demonstrated through
wind tunnel experiments, the bumblebee
is unable to fly. This is because the size,
weight, and shape of his body in relation
to the total wingspread make flying
impossible. But the bumblebee, being
ignorant of these scientific truths, goes
ahead and flies anyway-and makes a little
honey every day.

(Anonymous)

4.1. Conclusions

A new multi-level coupling algorithm for partitioned simulation of fluid-
structure interaction has been proposed based on the manifold mapping
algorithm. The main advantage of the manifold mapping algorithm is
that it has provable convergence to the solution of the high-fidelity model
under mild conditions, contrary to aggressive space mapping which does
not always converge to the solution of the high-fidelity model as proven by
Echeverria and Hemker [41] and Echeverria et al. [43]. Also, the technique
gives complete freedom in the choice of the low-fidelity model. A coarser
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mesh can be selected for the low-fidelity model, but also an engineering
model can be used in combination with a finite volume or finite element
approach for the high-fidelity model. Finally, the method is non-intrusive
in the sense that only input-output information of the different models is
considered.
The research question was formulated as follows: can manifold mapping

be effectively applied to a partitioned fluid-structure interaction simula-
tion, and does its use result in a significant decrease in the number of high
fidelity coupling iterations? Numerical experiments showed the high po-
tential of the coupling scheme, which can reduce the number of fine model
evaluations of a partitioned fluid-structure interaction simulation by ap-
proximately 50% by transferring most of the work to the coarse model.
The convergence of the high-fidelity model is accelerated even further when
information from previous time steps is reused. As mentioned, the man-
ifold mapping algorithm has provable convergence to the solution of the
high fidelity model.
The use of three levels to accelerate the convergence of the coarse model

is only beneficial if the computational costs of the coarse model are signif-
icant compared to the fine model. For the examples considered here, the
most inaccurate model with negligible computational costs can already
be applied to accelerate the convergence of the fine model showing the
robustness of the manifold mapping technique.
Judging from the numerous examples we considered, it can be expected

that for more complex test cases such as the airflow around a wing in
transonic conditions with shocks, similar speedups are observed when com-
pared to the IQN-ILS method or Anderson acceleration technique. The
most efficient setup is to use a relative residual convergence measure for
the surrogate model, and also reuse information from previous time steps
to achieve the lowest number of coupling iterations.
In case a test case with a steady state solution is considered, informa-

tion from previous time steps cannot be reused. On the contrary, only
information from previous iterations is available. Since the approximation
changes rapidly during the first iterations, the approximate Jacobian used
by the manifold mapping algorithm is not accurate enough for good con-
vergence rates during those initial iterations. Therefore, it is advised to use
the identity matrix as the mapping matrix during the initial iterations (i.e
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output space mapping), and then enable the use of the mapping matrix Tk.

4.2. Recommendations

Two approaches exist to reach the smallest number of coupling iterations
per time step. Specifically, (1) the user specifies the number of time steps
of which information is reused, or (2) the mapping matrix Tk is stored in
memory and a secant update is used to take into account information from
all previous time steps.
The first approach has the advantage that the memory requirements are

on the order of the number of interface points. However, the user needs
to fine tune the variable which specifies the number of time steps of which
information is reused. The second approach has the advantage that the
user does not need to specify this parameter, but it results in large memory
requirements. The size of the mapping matrix scales with n-squared, with
n being the number of interface points.
One possible solution which bypasses both disadvantages is to observe

that the mapping matrix has a low rank. Therefore, it can be approxi-
mated by a low-rank approximation based on a truncated singular value
decomposition. The use of the low-rank approximation results in linear
storage requirements for the mapping matrix, and the user does not need
to specify the number of time steps of which information is reused. The
question remains whether this approach results in a similar number of
coupling iterations.

65





Part II.

Arbitrarily high-order time
integration for partitioned
fluid-structure interaction
simulations using spectral

deferred corrections
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Chapter 5.

Higher order time integration
schemes

We must use time wisely and forever
realize that the time is always ripe to do
right.

(Nelson Mandela)

We consider the application of arbitrarily high-order time integration us-
ing spectral deferred corrections (SDC), integral deferred corrections (IDC)
and the Picard Integral Exponential Solver (PIES). The potential of deliv-
ering higher temporal accuracy with lower cost than lower order methods
has been the incentive in their consideration. Algorithmic details of the
solution procedure for spectral deferred corrections, integral deferred cor-
rections, the Picard Integral Exponential Solver, and finally singly-diagonal
implicit Runge-Kutta schemes are presented.

Parts of this chapter have been published in

• D. S. Blom et al. “On the application of spectral deferred corrections to incom-
pressible flow on unstructured grids”. In: Journal of Computational Physics
under review (2016);

• D. S. Blom et al. “Arbitrarily high order time integration for partitioned fluid-
structure interaction simulations using integral deferred corrections”. In: Journal
of Computational Physics under review (2016).
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Chapter 5. Higher order time integration schemes

5.1. Time integration

In this part, we use the method of lines paradigm. In other words, a partial
differential equation is first discretized in space and then discretized in
time. We study an initial value problem of the form:

d
dt
u (t) = f (u (t) , t) , u(0) = u0, t ∈ [ 0, T ] , (5.1)

with initial solution u0 on the time interval t ∈ [ 0, T ]. As time integra-
tion schemes, we study spectral deferred corrections, integral deferred cor-
rections, the Picard Integral Exponential Solver, and diagonally-implicit
Runge-Kutta methods.

5.2. Spectral deferred corrections

Spectral deferred corrections (SDC) were originally developed for ordinary
differential equations (ODE’s) by Dutt et al. [40]. Following the initial
introduction of the method, an acceleration procedure has been proposed
to accelerate the convergence of the SDC sweeps [62]. Also, the method
has been applied to problems of reactive flow [20] and gas dynamics [72],
among others. Here, we focus on the original formulation of the method as
discussed by Dutt et al. [40]. The application of the acceleration procedure
is left as future work. The notation of SDC by Speck et al. [92] is used
throughout this thesis.
The SDC method starts from a standard initial value problem in integral

form:

u (t) = u0 +

∫ t

0
f (u (s) , s) ds, (5.2)

where t ∈ [0, T ], u0 represents the initial solution, u (t) ∈ RN , and the
function f (u (t) , t) ∈ RN . The time t ∈ [ 0, T ] is subdivided into time
steps of size ∆t. Each time step is divided further into M sub-steps based
on a set of quadrature nodes. For example, Gauss-Lobatto, Gauss-Radau
and Clenshaw-Curtis nodes can be used as quadrature nodes. However,
uniform nodes are chosen in case of the integral deferred correction method,
discussed in Sect. 5.3.
Figure 5.1a shows an example of one time-step with three intermediate
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5.2. Spectral deferred corrections

Tn Tn+1t1 t2 t3

(a) Non-uniform sub-steps

Tn Tn+1t1 t2 t3

(b) Uniform sub-steps

Figure 5.1.: Schematic of a time step ∆t with non-uniform and uniform sub-steps.

quadrature nodes. Depending on the used quadrature nodes, the function
value at the left end point Tn is included or not included in the integration
in time. Where Gauss-Lobatto and Clenshaw-Curtis nodes do include
the left-end point, Gauss-Radau nodes do not include the left-end point.
Figure 5.1b gives an example of uniform sub-steps, as is the case for integral
deferred corrections.
The collocation polynomial on [Tn, Tn+1] is denoted with up (t). Thus,

we make the approximation Uj = up (tj) ≈ u (tj). The quadrature weights
are defined as follows

qm,j =
1

∆t

∫ tm

Tn

lj (s) ds, m = 0, . . . ,M, j = 0, . . . ,M, (5.3)

where Tn = t0 < t1 < · · · < tM = Tn+1, and (lj)j=0,...,M are the La-
grange polynomials. The time step ∆t is simply ∆t = Tn+1 − Tn. An
approximation of the solutions Um,m = 0, . . . ,M is obtained with

Um = u0 + ∆t
M∑
j=0

qm,j f (Uj , tj) , m = 0, . . . ,M. (5.4)

The integration matrix q is defined to be (M + 1×M + 1) with the
matrix entries qm,j . The solution vector U is represented with

U = [U0, . . . , UM ] , (5.5)
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and the vector F containing the function evaluations is defined as

F (U) = [F0, . . . , FM ] = [f (U0, t0) , . . . , f (UM , tM )] . (5.6)

Besides these definitions, the matrix Q is introduced as Q = q ⊗ IN with
the identity matrix I and the Kronecker product ⊗. The set of equations
as shown in (5.4) can now be written more compactly as:

U = U0 + ∆tQF (U, t) , (5.7)

with U0 defined as U0 = U0 ⊗ IN .

Equation (5.7) is a fully coupled system consisting of M × N degrees
of freedom. We would like to decouple this system and apply an iterative
scheme to achieve the same order of accuracy of Eqn. (5.7), but solve a
system of N degrees multiple times instead.

Thus, we introduce the quadrature weights sm,j , which apply to node-
to-node integration, to decouple the fully coupled system as follows:

sm,j =
1

∆t

∫ tm

tm−1

lj (s) ds, m = 1, . . . ,M. (5.8)

Hence, integrals over [tm−1, tm] are approximated. The integration matrix
s consists of the quadrature weights sm,j , and the matrix S is consequently
defined as S = s⊗ IN .

The implicit update equation is found as:

Uk+1
m+1 = Uk+1

m +∆tm

[
f
(
Uk+1
m+1, tm+1

)
− f

(
Ukm+1, tm+1

)]
+∆t Zkm, (5.9)

which can be interpreted as a backward Euler step with an extra source
term:

Uk+1
m+1 − Uk+1

m

∆tm
= f

(
Uk+1
m+1, tm+1

)
− f

(
Ukm+1, tm+1

)
+

∆t

∆tm
Zkm. (5.10)

Zkm is defined as Zkm = S F
(
Uk
)
, and ∆tm = tm − tm−1. The residual of
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the implicit system is simply defined as

rkEuler =
Uk+1
m+1 − Uk+1

m

∆tm
− f

(
Uk+1
m+1, tm+1

)
+ f

(
Ukm+1, tm+1

)
− ∆t

∆tm
Zkm.

(5.11)

Solving (5.9) at each quadrature node is named an SDC sweep or SDC
iteration. One interesting property of the spectral deferred correction
method is that each correction sweep increases the order of accuracy of
the method, up to the order of accuracy of Eqn. (5.7). This is under the
assumption that the implicit systems are solved sufficiently accurate. Also,
the use of a first order integrator is assumed, i.e. backward Euler for im-
plicit time stepping. On convergence of the SDC iterations, the method
becomes equivalent to the collocation scheme as determined by the quadra-
ture nodes. Hence, the order of convergence of the scheme depends on the
chosen quadrature rule, the number of integration points, and the number
of SDC sweeps.

Here, the implicit systems with residual (5.11) are solved up to a user
specified tolerance τEuler. Instead of using a fixed number of SDC sweeps,
the SDC residual is evaluated:

rkSDC = U0 + ∆tQF
(
Uk
)
−Uk. (5.12)

Convergence of the SDC sweeps is assumed in case the L2-norm of the
residual scaled by the L2-norm of ∆tQF

(
Uk
)
is smaller than the tolerance

τSDC : ∣∣∣∣U0 + ∆tQF
(
Uk
)
−Uk

∣∣∣∣
||∆tQF (Uk)|| ≤ τSDC . (5.13)

Figure 5.2 gives a schematic example of three sweeps. The solid line rep-
resents the exact solution which is approximated by the dots at the time
instants t1, t2, t3 and Tn+1. At each iteration, the accuracy of the approx-
imate solution increases with approximately one order.

Emmett and Minion [45] have proposed to solve the sub-steps of the
spectral deferred correction method in parallel and use a multi-grid solver
in time to perform the least amount of iterations or sweeps on the fine
level. The coarse grid performs the SDC sweeps in serial, whereas the fine
grid solves each sub-step in parallel. The aim of the technique is to achieve
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. .
. .

.

Tn Tn+1t1 t2 t3

Line: exact solution

Dots: current approximation

(a) Sweep 1

. .
. .

. .
. ..

Tn Tn+1t1 t2 t3

Line: exact solution

New dots: second order approximation

(b) Sweep 2

. .
. .

. .
. .. . .
. .

Tn Tn+1t1 t2 t3

Line: exact solution

New dots: third order approximation

(c) Sweep 3

Figure 5.2.: Schematic of SDC sweeps. The red dots are the current approxi-
mations of the solution at the times t1, t2, t3 and Tn+1. The blue
line is the exact solution. The accuracy of the approximate solution
increases quickly with each iteration.
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better parallel scalability of an already existing code, which uses a domain
decomposition to solve the spatial discretization in parallel.
We introduce the notation SDCxy, where x represents the number of

quadrature nodes, and y the theoretical order of convergence. For example,
SDC23 is a third order method, where one SDC sweep consists of two sub-
steps.

5.3. Integral deferred corrections

Integral deferred corrections are closely related to spectral deferred correc-
tions, namely uniform quadrature nodes are chosen, instead of for exam-
ple Gauss-Lobatto, Gauss-Radau or Clenshaw-Curtis nodes. Additionally,
in [29] it is proven, under mild conditions, that using an rth order Runge-
Kutta integrator to solve the update equation, the order of accuracy of
the method increases by r orders at every correction sweep. This is not
necessarily the case for the spectral deferred correction method [29]. Equa-
tion (5.9) is an example where the first-order implicit Euler integrator is
used to solve the update equation.
The focus is on quadrature rules that do not depend on the left-hand

endpoint, i.e. right-hand quadrature rules. These methods have good sta-
bility properties as shown by Hansen and Strain [59] and Layton and Min-
ion [73], and are expected to be good candidates for the simulation of
incompressible flows.
The notation IDCx is used throughout this thesis, where x represents

the number of quadrature nodes which equals the order of accuracy.

5.4. Picard Integral Exponential Solver (PIES)

The Picard Integral Exponential Solver is closely related to SDC meth-
ods [53, 69]. However, its main difference with the SDC method is the
assumption that the solution can be accurately represented by a combi-
nation of complex exponential functions. The selection of the exponential
functions is based on a matrix skeletonization step and the solution of a
linear least squares system. Highly accurate quadrature weights are com-
puted on uniform quadrature nodes and can be determined off-line or once
during every simulation. A short description of the method is given here.
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For further details, the reader is referred to Glaser and Rokhlin [53] and
Kushnir and Rokhlin [69].
First, the solution of an initial value problem is approximated by the

summation of complex valued exponential functions:

u (t) ≈
n∑
j=1

αj e
λj t, (5.14)

with the coefficients αj and a-priori chosen complex numbers λj . A set
λ1, . . . , λn is chosen based on a numerical scheme called matrix skeletoniza-
tion [27] (applied on (5.17)). When λ1, . . . , λn are known, the integration
coefficients ω for the numerical integration are computed based on a least
squares approach. These coefficients are comparable to the coefficients
qm,j of the spectral deferred correction method.
Furthermore, the set λ1, . . . , λn is selected for which λ lies in the complex

semi-disk Sρ
Sρ = {λ ∈ C|Re (λ) ≤ 0, |λ| ≤ ρ} , (5.15)

with radius ρ. With Lemma 13 by Glaser and Rokhlin [53], it is concluded
that it is sufficient to only discretize the boundary of the semi-disk Sρ.
Exponentials of the form eλ t up to precision δ are selected such that∣∣∣∣∣eλ t −

n∑
i=1

ci e
λi t

∣∣∣∣∣ < δ t ∈ [−1, 1] , (5.16)

with coefficients ci.
Assume that λ1, . . . , λN and t1, . . . , tM are sufficiently dense uniform

discretization of the semi-disk Sρ, and the time interval [−1, 1]. Then, the
subset λ1, . . . , λn is selected based on the skeleton of the matrix B

B =


eλ1 t1 eλ2 t1 · · · eλN t1

eλ1 t2 eλ2 t2 · · · eλN t2

...
...

. . .
...

eλ1 tM eλ2 tM · · · eλN tM

 (5.17)

with an error term smaller than δ, which can be computed with a QR-
decomposition. This results in n columns with indices i1, . . . in. The se-
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−6 −4 −2 0 2

−2

0

2

Real axis

Im
ag

in
ar

y
ax

is

Figure 5.3.: Example of selection of complex numbers λ1, . . . , λn on the boundary
of the semi-disk with radius 3.15 and δ = 1 · 10−12

lected complex numbers λ1, . . . , λn span
{
eλt|λ ∈ δSρ

}
on the boundary of

the semi-disk up to precision δ and are therefore a suitable representation
of
{
eλt|λ ∈ Sρ

}
.

An example of the selected complex numbers λ1, . . . , λn is shown in
Fig. 5.3. The radius of the semi-circle ρ is set to 3.15 as suggested by Glaser
and Rokhlin [53]. The semi-disk is discretized with 800 points, and the
selection criterion δ is set to 1 ·10−12. Another example is given in Fig. 5.4
where the selection criterion δ is set to 1 ·10−5. As can be seen, a substan-
tially smaller set complex numbers λ1, . . . , λn is selected.

Similarly to spectral deferred correction methods, the numerical inte-
gration of one time-step can be evaluated by the quadrature rule∫ tj

−1
u (s) ds ≈

k∑
i=1

u (ti)ωij , (5.18)

with the real valued weights ωij ∈ R. Note that the weight matrix ω =
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Figure 5.4.: Example of selection of complex numbers λ1, . . . , λn on the boundary
of the semi-disk with radius 3.15 and δ = 1 · 10−5

(ωij) ∈ Rn×k has to satisfy the linear system

Aω = b, (5.19)

with the complex valued matrix A ∈ Cn×k

A =


eλ1t1 eλ1t2 · · · eλ1tk

eλ2t1 eλ2t2 · · · eλ2tk

...
...

. . .
...

eλnt1 eλnt2 · · · eλntk

 , (5.20)

and the complex valued matrix b ∈ Cn×k

b =


∫ t1
−1 e

λ1sds
∫ t2
−1 e

λ1sds · · ·
∫ tk
−1 e

λ1sds∫ t1
−1 e

λ2sds
∫ t2
−1 e

λ2sds · · ·
∫ tk
−1 e

λ2sds
...

...
. . .

...∫ t1
−1 e

λnsds
∫ t2
−1 e

λnsds · · ·
∫ tk
−1 e

λnsds

 . (5.21)
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We use a singular value decomposition to solve the linear system (5.19) for
the coefficients ωij , which have the same function as the coefficients qm,j of
the spectral deferred correction method (see Eqn. (5.3)). The node-to-node
integration coefficients ωsij can be computed with a different definition of
the matrix bs:

bs =


0
∫ t2
t1
eλ1sds · · ·

∫ tk
tk−1

eλ1sds
0
∫ t2
t1
eλ2sds · · ·

∫ tk
tk−1

eλ2sds
...

...
. . .

...
0
∫ t2
t1
eλnsds · · ·

∫ tk
tk−1

eλnsds

 . (5.22)

The rest of the procedure is the same as the spectral deferred correc-
tion method. So, the update equation (5.9) is now solved with the newly
obtained coefficients ωsij .
Kushnir and Rokhlin [69] show that when the left-hand endpoint tn

is excluded, an L-stable method is found. Since uniform sub-steps are
assumed, the convergence rate of the non-linear solver will not differ sig-
nificantly from one sub-step to the next, just as the IDC technique. We
use the notation PIESx, where x denotes the number of sweeps. This is
equal to the expected order of accuracy under the assumption that the
systems solved accurately enough. Unless explicitly stated otherwise, δ is
set to δ = 1 · 10−13.
Summarizing, the procedure to determine the sub-steps and coefficients

with the Picard Integral Exponential Solver is as follows:

1. Create a fine discretization of the boundary of the semi-disk Sρ with
radius ρ;

2. Create a fine discretization of the time interval t ∈ [−1, 1 ];

3. Compute the matrix B as shown in Eqn. (5.17), copied here for
completeness:

B =


eλ1 t1 eλ2 t1 · · · eλN t1

eλ1 t2 eλ2 t2 · · · eλN t2

...
...

. . .
...

eλ1 tM eλ2 tM · · · eλN tM

 , (5.23)
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Chapter 5. Higher order time integration schemes

Table 5.1.: Butcher tableau of a SDIRK method

c1 γ 0 0 0
c2 a21 γ 0 0
...

...
. . . . . . 0

cs as1 . . . ass−1 γ

as1 . . . ass−1 ass

and perform the skeletonization process up to precision δ to select
the subset λ1, . . . , λn;

4. Then, solve for the node-to-note coefficients ωs as in Eqn. (5.19) by
using the definitions of A and bs in Eqn. (5.20) and (5.22), respec-
tively. Thereafter, the coefficients can be divided by two in order to
scale the coefficients to the unit time interval t ∈ [ 0, 1 ].

In Table A.1 the coefficients are given for the node-to-node integration
with ρ = 3.15 and δ = 1·10−2. Coefficients for schemes with smaller values
of δ are not shown, due to a large number of coefficients.

5.5. Implicit Runge-Kutta

We consider the singly-diagonally-implicit Runge-Kutta (SDIRK) method,
which subdivides a time step into s stages. SDIRK schemes are of the form

ki = f

un + ∆t

s∑
j=1

aij kj , tn + ci ∆t

 , i, . . . , s, (5.24)

un+1 = un + ∆t
s∑
i=1

bi ki, (5.25)

where the coefficients aij , bi, ci depend on the chosen scheme, and are
chosen such that some order conditions are satisfied in order to reach the
specified order of accuracy. Also, the coefficients can be found in a Butcher
tableau, as shown in Table 5.1.
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5.5. Implicit Runge-Kutta

. .
.

..

Tn Tn+1t1 t2 t3

Figure 5.5.: Schematic of one time step solved with a SDIRK scheme. The red
dots are the current approximations of the solution at the times t1,
t2, t3 and Tn+1. The blue line is the exact solution. Only the final
solution at Tn+1 has a high order of accuracy.

Here, we only consider stiffly-accurate SDIRK schemes, i.e. the last row
of the Butcher tableau is identical to bT which is advantageous in solv-
ing stiff problems [58]. In other words, the solution at the next time step
equals to the last sub-step solution. Just as the integral deferred correc-
tion schemes, each sub-step or stage corresponds to solving an implicit
Euler time step with an extra source term. However, it is a direct method
contrasting the IDC technique. Thus, when all the stages are solved, the
solution at the next time step is found. The scheme moves then to the next
time step. A schematic of one time step solved with the SDIRK scheme is
shown in Fig. 5.5.
The explicit-singly-diagonally-implicit Runge-Kutta (ESDIRK) method

is closely related the SDIRK method. The a11 entry of the Butcher tableau
equals zero for an ESDIRK scheme, resulting in an explicit first stage.
This is in contrast to the SDIRK method for which every stage is implicit.
Therefore, ESDIRK schemes need the function value f at the start of the
time interval. Since the first stage is explicit, the implicit stages can be
constructed to be second order accurate instead of first order accurate for
the SDIRK scheme.
The Butcher tableau’s of the considered time integration schemes can

be found in: Ellsiepen [44] (SDIRK2), Cash [25] (SDIRK3, SDIRK4),
Kennedy and Carpenter [67] (ESDIRK3, ESDIRK4, ESDIRK5), Rang [84]
(SDIRK2PR) and Rang [83] (ESDIRK53PR, ESDIRK63PR, ESDIRK74PR).
For convenience and fast look up, the Butcher tableau’s are also included
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in Appendix B and C.
This concludes the description of the time integration methods. The

finite volume method used to discretize the Navier-Stokes equations is
discussed in the following chapter.
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Chapter 6.

Spatial and temporal
discretization of the
incompressible Navier-Stokes
equations

The fundamental laws necessary for the
mathematical treatment of a large part of
physics and the whole of chemistry are
thus completely known, and the difficulty
lies only in the fact that application of
these laws leads to equations that are too
complex to be solved.

(Paul Dirac)

Where the previous chapter focused on several higher order time integra-
tion schemes, here we show the solution procedure of the incompressible
Navier-Stokes equations. Details of the numerical method are shown which
preserves the theoretical orders of accuracy in time, including the appro-
priate treatment of the velocity flux (time-consistent Rhie-Chow interpo-
lation), and use of an iterative time advancing algorithm (iterated PISO)
to minimize the influence of iterative errors on temporal order.

Parts of this chapter have been published in D. S. Blom et al. “Arbitrarily high order
time integration for partitioned fluid-structure interaction simulations using integral
deferred corrections”. In: Journal of Computational Physics under review (2016).
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Chapter 6. Discretization of the incompressible Navier-Stokes equations

6.1. Introduction

We consider the incompressible Navier-Stokes equations, which consist of
the momentum and continuity equations:

u̇ +∇u · u− ν∆u +∇p = 0, (6.1)

∇ · u = 0. (6.2)

u and p denote the velocity and pressure, and ν represents the kinematic
viscosity. We use the iterated PISO algorithm [63] to solve the Navier-
Stokes equations with a finite volume method on unstructured grids. Also,
the momentum interpolation of Lien and Leschziner [74] (later also pub-
lished in Yu et al. [100]) is used in order to obtain a temporally consistent
formulation. First, the solution procedure for static meshes is discussed.
After that, the changes necessary for simulations on deforming meshes are
shown.

6.2. Static grids

By applying the finite volume method, the momentum equation per control
volume is:

d
d t

∫
VC

u dV +

∮
SC

n · uu dS −
∫
VC

∇ · (ν∇u) dV = −
∫
VC

∇p dV. (6.3)

We introduce a control volume VC , cell surface area SC , and n as the
normal vector to the cell surface. The discrete form of the continuity
equation is written as ∑

f

uf · nfSf = 0, (6.4)

where we introduce the velocity uf which is defined on the face centers, and
can be used to compute the mass flux through the face with φf = uf ·nfSf .
The subscript f defines a variable which is defined on the face center. The
discrete form of the momentum equation is given as

V
du
dt

+
∑
f

φu + ν
∑
f

(∇u)f · nfSf = −
∑
f

(p)fnfSf . (6.5)
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6.3. Face-velocity interpolation

After dividing by the volume V , and choosing appropriate schemes for
the spatial operators, Eqn. (6.5) can be written as

du
dt

+ au +B u = q−∇p, (6.6)

with the diagonal a and off diagonal B coefficients of the discretization
matrix. q consists of the remaining source terms. The H operator is
defined in the following way:

H (u) = q−B u. (6.7)

Note that the volume V can only be assumed to be constant for static
grids, therefore Eqn. (6.6) is not valid for moving grids.
To obtain a method which is consistent in time, the H operator needs

to contain contributions only from the spatial discretization. Hence, the
momentum equation can be simplified to

du
dt

+ au = H (u)−∇p. (6.8)

By applying implicit Euler time integration we find

un+1 − un

∆t
+ aun+1 = H

(
un+1

)
−∇pn+1. (6.9)

Hence, the residual vector F is defined as follows:

F = −aun+1 + H
(
un+1

)
−∇pn+1. (6.10)

Finally, we arrive at the following initial value problem which can be inte-
grated in time using one of the chosen time integration schemes:

du
dt

= F (u, p, t) . (6.11)

6.3. Face-velocity interpolation

To avoid pressure-velocity decoupling, we follow the solution algorithm of
Rhie and Chow [85]. Thus, a fully discretized momentum equation for the
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Chapter 6. Discretization of the incompressible Navier-Stokes equations

face velocities is applied. The method of Rhie and Chow [85] does not result
in a consistent time integration. Thus the momentum interpolation of Lien
and Leschziner [74] is used to obtain a temporally consistent formulation.
Equivalent to the cell centered formulation of the momentum equation

(see Eqn. 6.8), we can write the momentum equation for the face centers
as follows:

duf
dt

+ auf = Hf − (∇p)f , (6.12)

with (∇p)f as the face pressure gradient normal to the surface. The nota-
tion H and a indicates a linear interpolation from the cell centers to the
cell face of the H and a operators. After discretization in time with the
implicit Euler method we find

un+1
f − unf

∆t
+ aun+1

f = Hf −
(
∇pn+1

)
f
. (6.13)

Equation (6.13) is slightly rewritten to find the face velocity

un+1
f =

1

1 + ∆t a

(
∆tHf −∆t

(
∇pn+1

)
f

+ unf

)
. (6.14)

After recalling the continuity equation

∇ · u =
∑
f

uf · nfSf =
∑
f

φf = 0, (6.15)

Equation (6.14) is substituted into the continuity equation, which yields
the Laplace equation for the pressure:

∑
f

(
∆t
(
∇pn+1

)
f

1 + ∆t a

)
· nfSf =

∑
f

(
∆tHf + unf

1 + ∆t a

)
· nfSf . (6.16)

6.4. Solution algorithm

Since a segregated solution procedure is used to find the velocity and pres-
sure, and the nonlinear convection term is treated implicitly, an itera-
tive solution procedure is applied. Thus, for each sub-step of the integral
deferred correction scheme, or for each stage of the SDIRK method, a
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6.4. Solution algorithm

backward Euler step with extra source term qt is solved in the following
manner.

1. Solve the discretized momentum equation for the velocity vector
un+1
r+1 with outer iteration counter r:

un+1
r+1 − un

∆t
+ aun+1

r+1 = H
(
un+1
r+1

)
−∇pr + qt. (6.17)

The pressure of the previous time step is used as initial guess for
∇pr.

2. Calculate the intermediate mass flux with

φ?f =

∆tH
(
un+1
r+1

)
f

+ unf + ∆tqtf

1 + ∆t a

 · nfSf . (6.18)

Note the linear interpolation from the cell centers to the cell faces
for Hf and a, as indicated by the overline notation . The term
qtf is the higher order source term of the time derivative of the face
velocity.

3. Solve for the pressure at the next iteration r + 1 with

∑
f

(
∆t
(
∇pn+1

r+1

)
f

1 + ∆t a

)
· nfSf =

∑
f

φ?f . (6.19)

4. Correct the flux and velocities defined in the cell centers and face
centers as follows:

un+1
r+1 =

∆tH
(
un+1
r+1

)
−∆t

(
∇pn+1

r+1

)
+ un + ∆tqt

1 + ∆t a
,

un+1
r+1f

=
∆tH

(
un+1
r+1

)
f
−∆t

(
∇pn+1

r+1

)
f

+ unf + ∆tqtf

1 + ∆t a
,

φf = uf · nfSf .

(6.20)
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Chapter 6. Discretization of the incompressible Navier-Stokes equations

We use the non-linear residual defined on the cell centers to monitor the
convergence of the outer iterations:

R =
un+1
r+1 − un

∆t
+ aun+1

r+1 −H
(
un+1
r+1

)
+∇pr+1 − qt. (6.21)

When the norm of the non-linear residual falls below a certain threshold,
the procedure moves to the next sub step or time step. Otherwise, the
algorithm restarts at step 1 with updated velocity and pressure solutions.

6.5. Moving grids

For deforming domains, the Arbitrary Lagrangian Eulerian (ALE) frame-
work is applied onto the incompressible Navier-Stokes equations. Thus,
the discretized momentum equation reads as follows:

duV
dt

+
∑
f

(φ− φmesh)u + ν
∑
f

(∇u)f · nfSf = −
∑
f

pfnfSf , (6.22)

with the mesh velocity flux φmesh, and the inclusion of the volumes in the
time derivative. After discretizing in space, and applying the implicit Euler
time integration scheme, the following form of the momentum equation is
found:

un+1 V n+1 − un V n

∆t
+ aun+1 V n+1 = H

(
un+1

)
V n+1 −

∑
f

pf n
n+1
f Sn+1

f .

(6.23)
Note that the equation is not divided by the volume V , due to the fact that
the volumes are not constant during the simulation. The residual vector
F follows as:

F = −aun+1 V n+1 + H
(
un+1

)
V n+1 −

∑
f

pf n
n+1
f Sn+1

f . (6.24)

Hence, the following initial value problem is found:

duV
dt

= F (u, p, t, V ) . (6.25)
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6.5. Moving grids

The momentum equation for the face center velocity uf also includes
the contributions of the changing volumes:

un+1
f V n+1 − unf V

n

∆t
+aun+1

f V n+1 = Hf V n+1−
∑
f

pf n
n+1
f Sn+1

f . (6.26)

After solving for the face center velocity uf we find:

un+1
f =

1

1 + ∆t a

(
∆tHf −∆t

(
∇pn+1

)
f

+ unf
V n

V n+1

)
, (6.27)

which is sufficient to implement a time consistent solver for the incom-
pressible Navier-Stokes on moving meshes.
For completeness, the solution algorithm is laid out here including higher

order source terms qt and qtf . These source terms have the unit m4/s2,
as it is an acceleration term multiplied by a volume term.

1. Solve the discretized momentum equation for the velocity vector
un+1
r+1 at iteration r + 1:

un+1
r+1 V

n+1 − unr+1 V
n+1

∆t
+ aun+1 V n+1

= H
(
un+1
r+1

)
V n+1 −

∑
f

pr n
n+1
f Sn+1

f + qt.

(6.28)

As mentioned before, the pressure of the previous time step is used
as initial guess for

∑
f pr n

n+1
f Sn+1

f , i.e. pn+1
0 = pn.

2. Calculate the intermediate mass flux φ?f by taking the change in
volume into account:

φ?f =

∆tH
(
un+1
r+1

)
f

+ unf
V n

V n+1
+

∆tqtf

V n+1

1 + ∆t a

 · nn+1
f Sn+1

f . (6.29)

Linear interpolation of the volumes from the cell centers to the face
centers is necessary to take the change in volume into account. Note
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Chapter 6. Discretization of the incompressible Navier-Stokes equations

that the volumes are first interpolated to the faces, and thereafter
divided: V n

V n+1
instead of

(
V n

V n+1

)
.

3. Solve for the pressure with∑
f

(
∆t

1 + ∆t a
(∇pr+1)n+1

)
· nn+1

f Sn+1
f =

∑
f

φ?f . (6.30)

4. Correct the flux and velocities defined in the cell centers and face
centers as follows:

un+1
r+1 =

∆tH
(
un+1
r+1

)
−∆t

(
∇pn+1

r+1

)
+ un V n

V n+1 + ∆tqt

V n+1

1 + ∆t a
,

un+1
r+1f

=
∆tH

(
un+1
r+1

)
f
−∆t

(
∇pn+1

r+1

)
f

+ unf
V n

V n+1
+

∆tqtf

V n+1

1 + ∆t a
,

φf = uf · nfSf .

(6.31)

Similar to the static grid case, we use the nonlinear residual as defined
on the cell centers to monitor the convergence of the outer iterations:

R =
un+1
r+1 V

n+1 − unr+1 V
n+1

∆t
+ aun+1 V n+1

−H
(
un+1
r+1

)
V n+1 +

∑
f

pr+1 n
n+1
f Sn+1

f − qt.
(6.32)

When the norm of the non-linear residual falls below a certain thresh-
old, the procedure moves to the next sub step or time step. Otherwise,
the algorithm performs step 1 through 4 again with updated velocity and
pressure solutions.

6.6. Higher order time integration

So far, we only considered the implicit Euler scheme (or only included
the source term qt in the formulation), which is first order accurate. To
obtain a higher order approximation in time, we apply spectral deferred
corrections, the integral deferred correction scheme, the Picard Integral
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6.7. Discrete Geometric Conservation Law

Exponential Solver, and the diagonally implicit Runge-Kutta method. The
time derivative occurs in the cell centered momentum equation, i.e. face
centered momentum equation, and in the Laplace equation for the pressure.
When the spectral or integral deferred correction scheme is applied to

the cell centered momentum equation, we find the following equation:

uk+1
m+1 V

k+1
m+1 − uk+1

m V k+1
m

∆t
= F

(
uk+1
m+1, p

k+1
m+1, V

k+1
m+1, tm+1

)
−F

(
Ukm+1, p

k
m+1, V

k
m+1, tm+1

)
+

∆t

∆tm
Zkm.

(6.33)

The residual vector F is defined as in Eqn. (6.24). The equations for the
face centered velocity, and the Laplace equation for the pressure follow in
a similar fashion.
The solution procedure for the Navier-Stokes equations used in this the-

sis only results in an explicit function operator for the cell centered terms,
but not for the face value terms. Also, the function value F cannot be
evaluated straightforward at the left end point (start of the time interval)
for the Discrete Geometric Conservation Law (see Sect. 6.7). Therefore,
the left end point is not included in the quadrature nodes to not further
complicate the implementation of the complete method.
Thus, at the end of each implicit solve, the function F is determined

by rewriting the update Equation (6.33) instead of performing a separate
function call:

F
(
uk+1
m+1, p

k+1
m+1, V

k+1
m+1, tm+1

)
=

uk+1
m+1 V

k+1
m+1 − uk+1

m V k+1
m

∆t

+ F
(
Ukm+1, p

k
m+1, V

k
m+1, tm+1

)
− ∆t

∆tm
Zkm.

(6.34)

6.7. Discrete Geometric Conservation Law

The mesh fluxes φm are determined with the Discrete Geometric Conser-
vation Law (DGCL), and are consequently based on the swept volumes.
Violation of the DGCL results in spurious oscillations due to additional
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Chapter 6. Discretization of the incompressible Navier-Stokes equations

sources and sinks of mass [39]. The DGCL states that the change in vol-
ume of a moving control volume must be equal to the sum of the total
volume swept by the faces that enclose the volume. When applying the
backward Euler (BE) method, we find the mesh fluxes φmesh as follows:

φmesh,BE =
∆V n+1

f

∆t
, (6.35)

with the swept volumes of a face ∆Vf . When applying the integral deferred
correction scheme, we find:

φmesh, IDC = f∆V

(
∆V k+1

m+1, tm+1

)
− f∆V

(
∆V k

m+1, tm+1

)
+

∆t

∆tm
Zkm,

(6.36)
with the function f∆V defined as

f∆V =
∆Vf
∆t

. (6.37)

6.8. Boundary conditions at the fluid-structure
interface

At the fluid-structure interface Γf s, the balance of stresses (i.e. dynamic
boundary condition) is enforced through

σfn = σsn on Γf s, (6.38)

with the unit vector n normal to the fluid-structure interface Γf s, and
the stress tensors σf and σs. Also, at the fluid-structure interface the
velocities vf and vs must be equal (i.e. kinematic boundary condition):

vf = vs on Γf s. (6.39)

6.9. Integral deferred corrections applied to
fluid-structure interaction simulations

We consider the partitioned fluid-structure interaction setup because highly
specialized solvers have already been developed for fluid as well as structure
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simulations. It is desired to reuse these applications for fluid-structure in-
teraction computations where separate fluid and structure solvers need to
be coupled. We shortly discuss the used coupling method and convergence
measures which should be used when using an integral deferred correction
method.

6.9.1. Anderson acceleration combined with higher order time
integration

Chapter 2 discusses the Anderson acceleration method, which is used in
this part as well to accelerate the convergence of the sub-iterations within
one sub-step. Note that special care has to be taken when combining the
Anderson acceleration method with a high-order time integration method.
With uniform sub-steps, information from previous sub-steps and previous
time steps can easily be reused to speed up the convergence of the coupling
iterations in the current sub-step.
However, in the case of spectral deferred corrections or the SDIRK

method, non-uniform sub-steps are applied. In this case, it is necessary to
scale the values of the interface Jacobian by the used sub-step. Otherwise,
the change in sub-step size will be incorporated in the approximation of
the interface Jacobian possibly increasing the number of coupling iterations
instead of accelerating the method.

6.9.2. Convergence measures for partitioned fluid-structure
interaction

As mentioned in Chap. 2, a standard way to measure the convergence of
the coupling iterations is to use a relative convergence criterion based on
input and output information with a tolerance τ :

||R (x)||2
||x||2 + ε

≤ τf , (6.40)

with ε =
√

2−52 = 2−26 when computing with double precision floats,
and the fluid-structure interface residual R. This is the preferred way to
measure convergence for the SDIRK time integration scheme or backward
differencing. However, in case of the integral deferred correction method,
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each sweep increases the accuracy of the solution, and it is not necessary
to solve the FSI problem up to a strict tolerance τ . Following the ideas of
Speck et al. [93], the norm of the residual is scaled by the norm of the first
residual of each sub step and each correction sweep:

||R (x)||2
||R0||2 + ε

≤ τ. (6.41)

Now, at each sweep the norm of R0 decreases, and convergence is as-
sumed in case the SDC residual is small enough. Thus, it is sufficient to
set the tolerance τ to 10−1 or 10−2. This approach can be combined with
an absolute convergence criterion for the interface residual to avoid over-
solving. Concluding, the convergence of each sub-step is assumed when
the absolute convergence criteria are met, or in case (6.41) is satisfied.
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Chapter 7.

Numerical results for
incompressible flows

I write by hand, making many, many
corrections. I would say I cross out more
than I write. I have to hunt for words
when I speak, and I have the same
difficulty when writing.

(Italo Calvino)

In this chapter, we consider the application of arbitrarily high-order time
integration using spectral deferred corrections (SDC), integral deferred
corrections (IDC) and the Picard Integral Exponential Solver (PIES) to
cell-centered collocated finite volume discretization of the unsteady in-
compressible Navier-Stokes equations. By considering some test cases, the
theoretical order of convergence is confirmed for both the velocity and
pressure. Furthermore, the accuracy and computational efficiency of SDC,
IDC, and PIES compared to diagonally implicit Runge-Kutta methods
and second order backward differencing scheme are investigated. The nu-
merical results demonstrate a clear advantage over second order backward
differencing regarding efficiency for a given temporal accuracy. For mod-
erate accuracies, diagonally implicit Runge-Kutta methods prove to be
competitive to SDC, IDC, and PIES. For high accuracies, it is certainly
beneficiary to increase the order to five or higher.
The next chapter investigates several numerical examples when the higher

Parts of this chapter have been published in D. S. Blom et al. “On the application
of spectral deferred corrections to incompressible flow on unstructured grids”. In:
Journal of Computational Physics under review (2016).
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Chapter 7. Numerical results for incompressible flows

order schemes are applied to incompressible flows on moving meshes and
partitioned fluid-structure interaction simulations.

7.1. Travelling waves

First, the well-known two-dimensional traveling waves test case is con-
sidered. An exact analytical solution of the incompressible Navier-Stokes
equations exists [80]. The analytical solution is used as the initial solution
of the simulations:

u (x, y, t) = 0.75 + 0.25 cos (2π (x− t)) sin (2π (y − t)) e−8π2t/Re, (7.1)

v (x, y, t) = 0.75− 0.25 sin (2π (x− t)) cos (2π (y − t)) e−8π2t/Re, (7.2)

p (x, y, t) = − 1

64
(cos (4π (x− t))− cos (4π (y − t))) e−16π2t/Re. (7.3)

Periodic boundary conditions are used for the velocity as well as the pres-
sure. The Reynolds number is set to Re = 10. The size of the square
domain is two meter in both directions, with x in [-1,1] and y in [-0.5,1.5].
A uniform grid with size 50× 50 is used. The simulations are carried out
until t = 0.05 s. The convection and diffusion terms of the Navier-Stokes
equations are discretized with second order central schemes. Figure 7.1
shows the pressure and velocity contours at t = 0 s and at t = 0.05 s.

To minimize the computational costs of the simulations, the nonlinear
systems are solved based on the convergence criterion:

rnon-linear

rnon-linear,initial
< τEuler, (7.4)

with τEuler = 1.0·10−2, and the initial momentum residual rnon-linear,initial
evaluated at the start of each non-linear solve. The tolerance τSDC is set
to 1.0 · 10−13. The reference solution is obtained with the SDC611 scheme
with ∆t = 0.00125 s. The relative error is defined as the L2 norm of the
difference between the approximation and reference solution scaled by the
L2 norm of the reference solution.
Figure 7.2 shows the convergence study for both the velocity and pres-

sure field when using the spectral deferred correction method. Note that
both the velocity and the pressure show the expected convergence order
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Figure 7.1.: Travelling waves test case: pressure and velocity contours of the
initial and final solution.
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(a) Velocity error for SDC schemes
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(b) Pressure error for SDC schemes

Figure 7.2.: Travelling waves test case: time step study for the SDC scheme. The
temporal L2 error norm of the velocity and pressure fields are shown.

when decreasing the time step. Below an error of 10−12, the numerical
round-off error starts dominating the temporal error. Due to the high or-
der of accuracy of the SDC scheme, machine precision is quickly reached
for the SDC47, SDC59, and SDC611 methods.

Figure 7.3 shows the results of the time step studies for the IDC, PIES,
SDIRK, ESDIRK and BDFmethods. The results for the mentioned schemes
show the expected order behavior. For the ESDIRK schemes, the ES-
DIRK5 reaches the highest level of accuracy.

Figure 7.3b and 7.3c show the convergence plots when the PIES method
is used with δ = 1 ·10−13 and δ = 1 ·10−5, respectively. When the selection
criterion is set to δ = 1 · 10−5, the accuracy of the interpolation with the
exponential functions is decreased. This can also be observed in the plots,
as the convergence plots level off quicker compared to Fig. 7.3b.
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(a) Velocity error IDC schemes
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(b) Velocity error PIES schemes, δ = 1·10−13
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(c) Velocity error PIES schemes, δ = 1 ·10−5
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Figure 7.3.: Travelling waves test case: time step study for IDC, PIES, SDIRK,
ESDIRK and BDF schemes. The temporal L2 error norm of the
velocity field is shown.
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7.2. Lid-driven cavity flow

The lid-driven cavity flow has been used by other researchers to study dif-
ferent time integration schemes [8, 66]. A two-dimensional flow is consid-
ered with Reynolds number Re = 10. The computational domain consists
of a unit square with solid boundaries. At the top, a Dirichlet boundary
condition is applied to the velocity in the x-direction with the value 1m/s.
A uniform mesh of size 50×50 is used. A zero gradient boundary condition
is used for the pressure, and the no-slip boundary condition is applied on
the solid walls for the velocity. Second order centered schemes are used for
the spatial discretization.
For the time step study, the initial transient of the simulation is consid-

ered. The flow is initially at rest, and the simulations are carried out until
t = 0.05 s. The reference solution is obtained with the SDC815 scheme
with ∆t = 0.000625 s.
Figure 7.4 shows the temporal error of the velocity field against time

step size for the SDC, IDC, SDIRK, ESDIRK and BDF schemes. The
orders of accuracy for the different methods are confirmed. Again, due to
the high order of accuracy of the SDC method with Gauss-Radau nodes,
machine precision is quickly reached for the SDC611 method.
For the PIES method, an accuracy of 10−12 is reached due to the tol-

erance settings for computing the coefficients. The error constant of the
PIES method is significantly smaller compared to the other time integra-
tion methods, due to the relatively large number of sub-steps with δ =
1.0 ·10−13, namely 27. When the selection criterion is set to δ = 1.0 ·10−5,
as shown in Fig. 7.5, the convergence plots level off at an accuracy of 10−10.

Figure 7.6 shows temporal error versus computational time for the same
computations. As the order for the SDC method increases, the efficiency
of the method increases substantially until machine precision is reached.
This effect is not that large for the IDC method since the order of the
method increases only by one when a sub-step is added. Hence, the SDC
schemes outperform the IDC methods due to a higher order of convergence
for the same number of quadrature nodes.
The PIES methods become more efficient with an increasing number

of sweeps and show a relatively large increase in costs when decreasing
the time step compared to the other methods. This is again explained by
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(b) Velocity error IDC schemes
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(c) Velocity error PIES schemes, δ = 1·10−13
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Figure 7.4.: Lid-driven cavity flow: time step study for SDC, IDC, PIES, SDIRK,
ESDIRK and BDF schemes. The temporal L2 error norm of the
velocity field is shown.
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Figure 7.5.: Lid-driven cavity flow: time step study for the PIES scheme with
δ = 1 · 10−5. The temporal L2 error norm of the velocity field is
shown.

the large number of sub-steps selected. Note that the coefficients of the
method are computed off-line, and the corresponding computational times
are therefore not included in this plot. Judging from Fig. 7.7 (δ = 1 · 10−5

and δ = 1 · 10−13), the same observations can be made. Note though that
due to the smaller number of sub-steps, the computational costs are not
decreased but approximately at the same level as for the simulations with
δ = 1 · 10−13. The only difference between the two sets of simulations is
a difference in the number of sub-steps. The order of convergence is the
same, thus selecting more sub-steps only results in a smaller error constant.
The difference in computational cost for the BDF and ESDIRK methods

are relatively small compared to the SDC, IDC and PIES methods due to
the lower orders of accuracy, i.e. 1 to 5. It can be concluded that increasing
the order is beneficial and enhances both efficiency and accuracy. Note that
the fourth order ESDIRK74PR method is competitive to the ESDIRK5
method.
Figure 7.8 summarizes the results of Fig. 7.6 by using a linear fit through

the best data points, thus only differentiating between SDC, IDC, PIES,
BDF, SDIRK and ESDIRK methods. The result of the largest time step
of the PIES simulations is used in Fig. 7.8. The SDIRK and ESDIRK
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(a) Velocity error for SDC schemes
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(b) Velocity error IDC schemes
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(c) Velocity error PIES schemes
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Figure 7.6.: Lid-driven cavity flow: comparison of computational efficiency versus
temporal error in velocity for the SDC, IDC, PIES, SDIRK, ESDIRK
and BDF schemes.
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Figure 7.7.: Lid-driven cavity flow: comparison of computational efficiency versus
temporal error in velocity for the PIES scheme with δ = 1 · 10−5 and
δ = 1 · 10−13.
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Figure 7.8.: Lid-driven cavity flow: smoothed computational costs versus error
for SDC, IDC and ESDIRK.

schemes are computationally more efficient than the SDC, IDC and PIES
methods for the accuracy range shown. The PIES method is competitive to
SDC and becomes more efficient when the number of sweeps is increased.
Note that in contrast to the other time integration schemes, the ES-

DIRK methods need the function values f at the left end point of the
time domain. Comparing the results of PIES and SDC with SDIRK, it is
expected that they will outperform the SDIRK scheme for high accuracies.

7.3. Lid-driven cavity flow with time dependent
boundary conditions

The third case consists again of a lid-driven cavity flow. Now an oscillating
boundary condition is applied on the top wall [66] to study the behavior
for the different time integration schemes with a time dependent boundary
condition. Hence, a non-autonomous system is considered, with the initial
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value problem defined as

d
dt
u (t) = f (u (t) , t) , u(0) = u0, t ∈ [ 0, T ] , (7.5)

in contrast to an autonomous system, for which the function does not
depend on time:

d
dt
u (t) = f (u (t)) , u(0) = u0, t ∈ [ 0, T ] . (7.6)

A sinusoidal forcing is imposed on the top wall:

ux = sin (ω t) , (7.7)

with the velocity u =

[
ux
uy

]
, the frequency of the oscillations ω, and the

time t. The Reynolds number is set to Re = 400, and the frequency of
oscillations to ω = 0.5π. A uniform grid is used with 1292 cells. After the
initial transient, the flow reaches a periodic state of which one period is
simulated with the different time integration schemes.

Figure 7.9, 7.10, 7.11 and 7.12 show the results of the performed simula-
tions. The expected order of accuracy of the spectral deferred correction,
integral deferred correction schemes, and PIES is confirmed for this test
case when a time dependent boundary condition is imposed. However,
the SDIRK4 and ESDIRK5 methods reduce to third order accuracy. The
ESDIRK74PR results in the lowest temporal error compared to the other
(E)SDIRK methods.

The efficiency of the SDC, IDC, PIES and ESDIRK methods is shown
in Fig. 7.13 where the results are summarized with a linear fit through
the best data points of Fig. 7.11. The (E)SDIRK schemes prove to be
competitive to SDC and IDC for the accuracy range shown. IDC and SDC
exhibit very similar computational cost for a given accuracy. The PIES
method shows similar computation times to SDC for accuracies between
10−4–10−8.
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(a) Velocity error for SDC schemes
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(b) Velocity error for IDC schemes
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(c) Velocity error for PIES schemes, δ = 1 ·
10−13
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Figure 7.9.: Lid-driven cavity flow with time dependent boundary condition: time
step convergence study. The temporal L2 error norm of the velocity
field is shown.
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Figure 7.10.: Lid-driven cavity flow with time dependent boundary condition:
time step convergence study for PIES with δ = 1 · 10−5. The tem-
poral L2 error norm of the velocity field is shown.

7.4. Flow around a cylinder

Finally, a more complex benchmark problem of the flow around a cylinder
is considered [64, 89]. John [64] has also studied this test case with different
time integration schemes, namely the second order Crank-Nicolson scheme
and the fractional-step θ-scheme. The influence of the time integration
scheme on the lift coefficient is considered here.
The length of the domain is 2.2m, and the height H is 0.41m. The

diameter of the cylinder is 0.1m, with the center of the cylinder located
at (0.2, 0.2), where the origin of the domain is located at the bottom left
corner. A schematic of the test case is shown in Fig. 7.14.
A time-dependent inflow profile

ux(y, t) =
6 y

H2
(H − y) sin

(
πt

8

)
0 ≤ y ≤ H (7.8)

is prescribed for 0 ≤ t ≤ 8 s. The mean inflow velocity equals ux (t) =
sin
(
π t
8

)
m/s. Therefore, the maximum inlet velocity is umax = 1m/s.

For the velocity, zero gradient boundary conditions are applied at the
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(a) Velocity error for SDC schemes
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(b) Velocity error IDC schemes
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(c) Velocity error PIES schemes, δ = 1·10−13
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(d) Velocity error SDIRK, ESDIRK and
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Figure 7.11.: Lid-driven cavity flow with time dependent boundary condition:
comparison of computational efficiency versus error in velocity.
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Figure 7.12.: Lid-driven cavity flow with time dependent boundary condition:
comparison of computational efficiency versus error in velocity for
PIES with δ = 1 · 10−5 and δ = 1 · 10−13.
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Figure 7.13.: Lid-driven cavity flow with time dependent boundary condition:
smoothed computational costs versus error for SDC, IDC and ES-
DIRK.

Inlet Outlet

Figure 7.14.: Schematic of the domain for the flow around a cylinder test case
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outlet and at the other boundaries the no-slip condition is imposed. At the
outlet, the average pressure is set to zero, and the zero gradient boundary
condition is applied on the remaining boundaries. The kinematic viscosity
is ν = 1.0 ·10−3 m2/s, and the fluid density is ρ = 1.0 kg/m3. A zero initial
solution is used for both the velocity and pressure. The mesh consists of
38 156 control volumes. Based on the mean inflow velocity, the Reynolds
number varies between zero and 100.
A second order upwind scheme is used for the convection term of the

Navier-Stokes equations. The diffusion term is discretized with a second
order centered scheme including a non-orthogonality correction. A time
step of 0.01 s is used for all time integration schemes.

Figure 7.15 shows the lift coefficient cl, drag coefficient cd and the dif-
ference of the pressure between the front and back of the cylinder ∆p for
a subset of the studied time integration schemes, namely SDC, ESDIRK
and BDF schemes. The lift and drag coefficient are defined as:

cl (t) = − 2L (t)

ρ umax
2 S

, (7.9)

cd (t) =
2D (t)

ρ umax
2 S

, (7.10)

with the lift force L, drag force D, and reference area S (0.1m). The lift
coefficient is the most sensitive to the used time discretization scheme.
Also, it is immediately clear that the backward Euler method produces

inaccurate results for cl. BDF2 follows the general trend of the lift his-
tory but introduces a phase shift in time. Fig. c shows a zoom of the
lift coefficient. Note that the ESDIRK4, ESDIRK5, SDC35, and SDC47
methods produce identical results indicating that the temporal discretiza-
tion error is not dominating for these simulations. The third order SDC23
and ESDIRK53PR lie close to the reference values.
Table 7.1 shows the computational times, relative error of the lift coeffi-

cient for 0 ≤ t ≤ 8 for a second set of simulations. Namely, the length of a
sub-step or stage of each method is approximately the same for each time
integration scheme. The relative error of the lift coefficient is determined
by using a cubic interpolation of the lift coefficient in the complete time
interval to the time instants of the reference solution, thereafter comput-
ing the L2-norm of the difference between the approximation and reference
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Figure 7.15.: Lift, drag coefficient, and pressure difference for SDC, ESDIRK and
BDF time integration schemes
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Chapter 7. Numerical results for incompressible flows

Table 7.1.: Flow around a cylinder test case: time step versus computational time
for different time discretization schemes

Method Time step [s] Computational time [h] Relative error

SDC47 0.04 33.1 1.10 · 10−3

SDC35 0.03 28.3 1.55 · 10−3

SDC23 0.02 24.4 9.76 · 10−3

ESDIRK53PR 0.04 13.5 8.73 · 10−2

ESDIRK5 0.07 14.9 2.03 · 10−2

ESDIRK4 0.05 14.1 2.59 · 10−2

ESDIRK3 0.03 14.5 1.23 · 10−1

BDF2 0.01 10.6 6.16 · 10−1

BDF1 0.01 13.8 1.01 · 10+0

solution, and scaling by the L2-norm of the reference solution.
The ESDIRK schemes have similar computational costs but show a clear

increase in accuracy for higher orders. The SDC schemes have higher
timings, however also smaller errors for the lift coefficient. It is interesting
to point out that large errors for the BDF1 and BDF2 methods occur,
where the error of BDF1 is larger than 100% for this simulation run.
Similar conclusions for the ESDIRK and SDC methods can be drawn

from this case, namely that ESDIRK proves to be an efficient time inte-
gration method for moderate accuracies. SDC schemes of higher order are
good candidates for even higher accuracies.
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Chapter 8.

Numerical results for partitioned
fluid-structure interaction
simulations using integral deferred
corrections

Before I came here I was confused about
this subject. Having listened to your
lecture I am still confused. But on a
higher level.

(Enrico Fermi)

Now, we consider arbitrarily high-order time integration schemes using in-
tegral deferred corrections for partitioned fluid-structure interaction sim-
ulations. The integral deferred correction method is applied for the first
time to a fluid-structure interaction problem. By partitioning the com-
putational domain into a fluid and solid domain, a partitioning error is
introduced. Furthermore, the use of a segregated solution technique (it-
erated PISO) for the incompressible Navier-Stokes equations introduces a
second splitting error. By using sub-iterations accelerated by Anderson
acceleration, the partitioning error is minimized.
In this chapter, we apply the IDC method which uses uniform sub-steps.

With uniform sub-steps, information from previous sub-steps and previous
time steps can easily be reused by the Anderson acceleration technique to

Parts of this chapter have been published in D. S. Blom et al. “Arbitrarily high order
time integration for partitioned fluid-structure interaction simulations using integral
deferred corrections”. In: Journal of Computational Physics under review (2016).
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z

L

h

r

r

p
p

Figure 8.1.: Geometry of the one-dimensional model for the unsteady, incom-
pressible flow through an elastic tube. The length L, the inner ra-
dius r, the pressure p acting on the inner wall of the tube, and the
wall thickness h is shown. Deformation of the tube walls in radial
direction is caused by the fluid pressure p acting on the inner tube
walls. The figure is taken from Mehl et al. [76].

speed up the convergence of the coupling iterations in the current sub-
step. In the case of spectral deferred corrections or the SDIRK method,
non-uniform sub-steps are applied. Then, it is necessary to scale the values
of the interface Jacobian by the used sub-step. Otherwise, the change in
sub-step size will be incorporated in the approximation of the interface
Jacobian possibly increasing the number of coupling iterations instead of
accelerating the method.
By considering several test cases, the theoretical order of convergence

is confirmed for the velocity as well as the pressure. The accuracy of the
integral deferred method is compared to singly-diagonally-implicit Runge-
Kutta methods (SDIRK). The numerical results show an order reduction
for the SDIRK methods for which the coefficients do not satisfy order
conditions derived from the Prothero-Robinson example, whereas the in-
tegral deferred correction achieves the expected order of accuracy. The use
of different time integration schemes for the fluid and solid domain shows
that the IDC method can be effectively combined with a second-order time
integration scheme for the structural domain.

8.1. Unsteady flow in a one-dimensional tube

The first case consists of an incompressible, unsteady flow in a one-dimensional
flexible tube [34, 36]. The tube has a circular cross-section and length L,

116



8.1. Unsteady flow in a one-dimensional tube

as shown in Fig. 8.1. This example is straightforward to implement and is
a good example of a strongly coupled fluid-structure interaction problem.
Two different structural models are considered based on a Hookean consti-
tutive equation, and a generalized string model based on linear elasticity
theory where an inertia term is included.

8.1.1. Governing equation for the fluid model

The flow is governed by the equations for conservation of mass and con-
servation of momentum written in conservative form as

ρf ∂ a

∂ t
+
ρf ∂ a v

∂ z
= 0, (8.1)

and
∂ a v

∂ t
+
∂ a v2

∂ z
+

1

ρf

(
∂ a p

∂ z
− p∂ a

∂ z

)
= 0, (8.2)

with the coordinate z along the axis of the elastic tube, the cross-sectional
area a and the velocity v in z-direction. r is the inner radius of the tube,
the time is denoted by t, p represents the pressure, and ρf is the density of
the fluid. Gravity and viscosity are not taken into account by the model.

8.1.2. Governing equation for the structural model

A Hookean constitutive relation describes the behavior of the elastic tube
wall. The inertia of the tube wall is neglected with respect to the inertia
of the fluid, resulting in a structure without mass. The stress acting in
circumferential direction σφφ is approximated with

σφφ = E
r − r0

r0
+ σφφ0 (8.3)

for a given Young’s modulus E and radius r0 for which σφφ = σφφ0 . Only
radial motion of the tube wall is allowed. The forces acting on the fluid-
structure interface are in balance, thus

rp = σφφ h. (8.4)

The following relation can be found after substitution of the constitutive
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Chapter 8. Numerical results for partitioned fluid-structure interaction

equation (8.3) into (8.4)

rp =
Eh

ρr0
(r − r0) + r0 p0, (8.5)

which can also be written as

a = a0

( p0

2 ρf
− c2

MK

p
2 ρf
− c2

MK

)2

, (8.6)

given the Moens-Korteweg wave speed cMK

cMK =

√
E h

2 ρf r0
. (8.7)

8.1.3. Generalized string model for the structural model

Since the previously discussed structural model does not take inertia into
account and hence does not include a time derivative, we consider a sec-
ond structural model. The model is based on linear elasticity theory for a
cylindrical tube with a small thickness. The axial and circumferential dis-
placement of the wall are not taken into account. The governing equation
for the structure is as follows:

ρs h
∂2r

∂t2
− κGh ∂

2r

∂z2
+

E h

1− ν2

r − r0

r2
0

− γ ∂3r

∂2z ∂t
= p, (8.8)

with the inner radius r, the structural density ρs, and the thickness of
the wall h. The shear modulus G, Young’s modulus E, and Poisson’s
coefficient ν are introduced as well. The model is further simplified by
neglecting the viscoelastic term, i.e. γ = 0 [52]. The Timoshenko shear
corrector factor κ is related to Poisson’s coefficient with [30]

κ =
2 (1 + ν)

4 + 3 ν
. (8.9)
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8.1. Unsteady flow in a one-dimensional tube

8.1.4. Discretization

The tube is discretized withN cells of length ∆z. The velocity and pressure
of the flow are determined in the cell centers. A central discretization
is employed for the continuity and momentum equation. However, the
convective term of the momentum equation is discretized with a first-order
upwind scheme.
The velocity at the inlet is calculated as

vin = v0 +
v0

10
sin2

(
π v0 t

L

)
. (8.10)

The problem can be described with two dimensionless parameters, namely
the dimensionless stiffness κ

κ =
c0

v0
=

√
Eh

2ρf r0
− p0

2ρf

v0
, (8.11)

and the dimensionless time step τ = v0∆t
L . For the computations shown

in this section, κ is set to κ = 10, and τ is varied to show the order of
convergence of the time stepping schemes. This results in a strong coupling
between the fluid and the structure [36]. The initial conditions are the
dimensionless velocity v0

c0
= 0.1, the dimensionless pressure p

ρf c
2
0

= 0, and
the dimensionless cross-sectional area a

a0
= 1.

8.1.5. Numerical results

Three separate simulation sets are used to compare integral deferred cor-
rections with implicit Runge-Kutta methods. First, we use a structural
model without inertia or time-derivative term. Then, we introduce a time
derivative into the structural equals and compare IDC with SDIRK. Fi-
nally, we look at combining different time integration schemes for the fluid
and solid domains.

Results for integral deferred corrections and SDIRK

Figure 8.2 shows the convergence study for both the velocity and cross-
sectional area of the tube. Both the cross-sectional area and the velocity
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Figure 8.2.: Unsteady flow in a one-dimensional tube: order of convergence con-
firmed for the IDC method when applied to a fluid-structure interac-
tion problem. Order reduction observed for the fourth order SDIRK4
method.

show the expected order of convergence for the IDC method when increas-
ing the order from 1 to 6. However, for the SDIRK method, an order
reduction to third order is apparent for SDIRK4 as shown in Fig. 8.2a. An
order reduction is also observed for the velocity (Fig. 8.2b).

Results for IDC and SDIRK with inertia for the solid

Figure 8.3 shows the results of the time step study for the fluid-structure
interaction problem with the second structural model, i.e. an inertia term
for the solid is added. The figure shows the relative error for the velocity of
the fluid and the velocity of the structure. The observed order of accuracy
for both the SDIRK3 and SDIRK4 methods is reduced to second order,
as shown in Fig. 8.3b. However, the IDC method still shows the expected
orders of accuracy.
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Figure 8.3.: Unsteady flow in a one-dimensional tube with inertia for the solid:
order of convergence confirmed for the IDC method when applied
to a fluid-structure interaction problem. Again an order reduction
observed for the fourth order SDIRK4 method, and now also for the
SDIRK3 method.
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Chapter 8. Numerical results for partitioned fluid-structure interaction

Note that the ESDIRK74PR method does not suffer from an order re-
duction for this fluid-structure interaction problem. The coefficients for
the method have been derived by Rang [83] by analyzing the Prothero-
Robinson example and are of interest when index-2 differential algebraic
equations (DAE) are considered [57] such as the incompressible Navier-
Stokes equations. However, the simulation with the smallest time step did
not finish, due to convergence problems of the coupling iterations.
The SDIRK2PR also satisfies the new order conditions derived from the

Prothero-Robinson example and shows the expected second order of accu-
racy. The SDIRK3 and SDIRK4 methods do not satisfy those extra order
conditions and do show an order reduction to second order, as mentioned
earlier.
When the integral deferred correction method is used, the theoretical

orders of convergence are observed. Also, convergence problems for the
coupling iterations did not occur. IDC5 with time step ∆t = 0.03125 s is
used as the reference simulation, and is therefore not shown in the conver-
gence plots.

Different time integration schemes for the fluid and solid domains

When considering the partitioned setup of the fluid-structure interaction
simulation, it can be expected that the dedicated solvers for the differ-
ent domains use different time integration methods. Here, we consider
combining the IDC method for the fluid with the second order backward
differencing method (BDF2) for the solid. Naturally, other time integra-
tion schemes can also be used for the solid mechanics solver. Different
choices can be made how the fluid and solid solvers are coupled in time.
One approach would be to only exchange information at tn+1. For this ex-
ample, we have chosen to perform sub-iterations at each sub-step and keep
the solutions of each sub-step in memory for the solid solver for robustness
and accuracy reasons. Figure 8.4 shows the procedure for one sweep.
Figure 8.5 shows the results of the time step study when changing the

order of accuracy of IDC in the fluid domain, while keeping the second
order accurate BDF2 scheme in the structural domain. As can be seen
in the figure, for large time steps the accuracy of the overall simulation
using a third or higher order method is higher compared to IDC2-BDF2.
However, for the velocity of the solid and for small time steps the accuracy

122



8.2. Lid-driven cavity flow with a moving mesh

1

2

3

4

Fluid

Structure

Tn Tn+1t1 t2 t3

Figure 8.4.: Schematic of the conventional staggered procedure when combined
with the integral deferred correction method.

is limited by the solid domain as can be expected.
So, it can be concluded that it is beneficiary to use a higher order time

integration scheme for the fluid domain to reach a high accuracy for the
fluid solution assuming that the accuracy of the structure does not domi-
nate the overall solution. Generally, the time scales of the fluid domain are
much smaller than the time scales in the structural domain, which is the
reason why some authors use sub-cycling [82] for those type of conditions,
and why one expects a benefit using a high order of accuracy in the fluid
domain and a lower order approximation for the structure.

8.2. Lid-driven cavity flow with a moving mesh

The lid-driven cavity flow has been used by other researchers to study dif-
ferent time integration schemes [8, 66]. A two-dimensional incompressible
flow is considered with Reynolds number Re = 10. The computational
domain consists of a unit square with solid boundaries. At the top, a
Dirichlet boundary condition is applied to the velocity in the x-direction
with the value 1m/s. A zero-gradient boundary condition is used for the
pressure, and the no-slip boundary condition is applied on the solid walls
for the velocity. Second order centered schemes are used for the spatial
discretization.
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Figure 8.5.: Unsteady flow in a one-dimensional tube with inertia for the solid:
BDF1/BDF2 time stepping for the solid domain, and IDC time step-
ping for the fluid domain. The accuracy of the overall simulation for
large time steps using a third or higher order method is more accurate
than the IDC2-BDF combination.
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8.2. Lid-driven cavity flow with a moving mesh

8.2.1. Lid-driven cavity flow with internal moving mesh

The internal mesh is deformed during the simulation as a first step to
show the order of convergence for the velocity and pressure with a moving
mesh. For the time step study, the initial transient of the simulation is
considered. The flow is initially at rest, and the simulations are carried out
until t = 0.05 s. The reference solution is obtained with the IDC6 scheme
with ∆t = 0.00015625 s. A uniform mesh of size 25× 25 is used.

Figure 8.6 shows the temporal error of the velocity and pressure fields
against the time step size for the IDC and SDIRK schemes. The theoretical
order of accuracy for the velocity as well as for the pressure is confirmed
for the integral deferred correction scheme. However, the SDIRK3 and
SDIRK4 methods suffer from an order reduction to two for the pressure.
Note that the SDIRK2PR shows the expected orders of convergence for
the velocity, as well as for the pressure. This can be explained by the fact
that the coefficients of the method satisfy extra order conditions as derived
in Rang [84] by considering the Prothero-Robinson example, as mentioned
in the previous section.

8.2.2. Lid-driven cavity flow with moving block

The complexity of the lid-driven cavity flow is increased by including
a block in the middle of the computation domain which follows a pre-
scribed rigid body motion. The width and height of the block are 0.1m.
The flow is initially at rest, and the simulations are carried out until
t = 0.05 s. The reference solution is obtained with the IDC6 scheme with
∆t = 0.00015625 s. A uniform mesh of size 24 × 24 is used. Figure 8.7
shows the pressure and vorticity contours at the end of the simulation.
Figure 8.8 shows the temporal error of the velocity and pressure fields

against the time step size for the IDC and SDIRK methods. The theoret-
ical order of accuracy for the velocity as well as for the pressure is con-
firmed for the integral deferred correction scheme. SDIRK2, SDIRK3, and
SDIRK4 reduce to first-order accuracy in time for the pressure, whereas
the SDIRK2PR method shows second order accuracy for both the velocity
and pressure.
The pressure shows a reduction for the IDC5 and IDC6 methods when

using small time steps. This can be explained by the fact that a zero-
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Figure 8.6.: Lid driven cavity with internal moving mesh: time step study for
the IDC and SDIRK time integration schemes. The temporal L2

norm of the velocity and pressure error norm is shown. The SDIRK3
and SDIRK4 schemes suffer from an order reduction for the pressure.
The integral deferred correction method performs as expected.
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8.3. Three-dimensional flow over an elastic structure

(a) Pressure contours (b) Vorticity contours

Figure 8.7.: Lid-driven cavity flow with moving block: pressure and vorticity con-
tours at the end of the time interval

gradient boundary condition is used for the pressure at the (moving) walls.
A more consistent boundary condition is proposed by Gresho and Sani
[54] which evaluates the momentum equation on the boundary to obtain
the pressure boundary condition. However, this is a non-trivial task for
unstructured collocated grids and is therefore left to be assessed in future
studies. Therefore, in this study, the often applied zero-gradient condition
is used.

8.3. Three-dimensional flow over an elastic
structure

A three-dimensional incompressible flow is considered over a flexible beam
fixed to a wall, discussed in [86]. The problem is considered to be symmet-
ric in the x/y plane. Thus, the simulation is only performed in one-half of
the domain. The width and height of the computational domain are 0.4m,
where the length is 1.5m. The structure consists of a rectangular block
with a width and height of 0.2m, and a length of 0.1m. The mesh of the
flow domain is shown in Fig. 8.9.

127



Chapter 8. Numerical results for partitioned fluid-structure interaction

10−3 10−2
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

1
1

1
2

1
3

1
4

1
5

Time step [s]

R
el

at
iv

e
er

ro
r

[-]

IDC1 IDC2
IDC3 IDC4
IDC5 IDC6

SDIRK2 SDIRK3
SDIRK4 SDIRK2PR

(a) Velocity

10−3 10−2
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1
1

1
2

1
3

1
4

Time step [s]

R
el

at
iv

e
er

ro
r

[-]

IDC1 IDC2
IDC3 IDC4
IDC5 IDC6

SDIRK2 SDIRK3
SDIRK4 SDIRK2PR

(b) Pressure

Figure 8.8.: Lid-driven cavity flow with moving block: time step study for inte-
gral deferred corrections. The temporal L2 norm of the velocity and
pressure error norm is shown.
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8.3. Three-dimensional flow over an elastic structure

8.3.1. Governing equation for the structural model

The configuration of the structure domain is described by the displacement
us. The structure is assumed to be elastic and compressible, and the
governing equation is given by the balance of momentum

ρs
∂vs

∂t
+ ρs (∇vs)vs = ∇ · σs + ρsg in Ωs

t . (8.12)

Eqn. (8.12) is modified to use the total Lagrangian description, i.e. with
respect to the initial reference state Ωs, resulting in

ρs
∂2us

∂t2
= ∇ ·

(
JσsF−T

)
+ ρsg in Ωs, (8.13)

where the deformation gradient tensor F is defined as F = I +∇us, and
the Jacobian J is the determinant of the deformation gradient tensor F .
By applying the constitutive law for the St. Venant-Kirchhoff material, the
Cauchy stress tensor σs is found by applying

σs =
1

J
F (λs (trE) I + 2µsE)F T , (8.14)

with E = 1
2

(
F TF − I

)
, and the shear modulus µs [24].

8.3.2. Numerical results

At the inflow boundary a parabolic velocity profile is imposed as a Dirichlet
boundary condition with peak velocity vmax = 0.3m/s. On the outflow
boundary, the zero gradient condition is imposed on the velocity and the
pressure has a Dirichlet boundary condition with zero pressure. A no-slip
condition is used on the remaining boundaries. The incompressible fluid
has a density ρ = 103 kg/m3, and kinematic viscosity ν = 10−3 m2/s. The
density of the solid is 103 kg/m3, the Poisson ratio νs = 0.4 and the Young’s
modulus E is set to 104 N/m2, which is a smaller value as in [86] resulting
in a larger displacement of the beam. Radial basis function interpolation
is used to deform the fluid mesh. Anderson acceleration is used to perform
the coupling iterations on the FSI interface. Matching grids are used at
the FSI interface.
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Figure 8.9.: Three-dimensional flow over an elastic structure. Computational grid
of the flow domain.

From t = 0 s until t = 5 s, the solid is assumed to be fixed. After that,
a starting procedure is applied to use a smooth increase of the applied
pressure and viscous force on the solid in time as

F (t) =

{ 0 0 < t <= 5
F [0.5− 0.5 cos (π (t− 5))] 5 < t <= 6

F t > 6
, (8.15)

where F represents the applied force on the structure.
Figure 8.10 shows the lift and drag over time for the different compu-

tations performed, and Fig. 8.11 shows the displacement of the top center
point of the beam. As is to be expected, a large difference in lift and drag
is observed when comparing the first and higher order time integration
schemes. Those large differences highlight the importance of using a higher
order time integration scheme for fluid-structure interaction simulations to
accurately predict important parameters as lift, drag, and displacements.
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Figure 8.10.: Lift and drag results for the flexible beam in a channel obtained
with first, second and third order time integration schemes. Results
for the time steps ∆t = [0.1, 0.05, 0.025] are shown.
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Figure 8.11.: Displacement of the top-center point for the flexible beam in a
channel obtained with first, second and third order time integra-
tion schemes
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Chapter 9.

Conclusions and recommendations
for arbitrarily high order time
integration

When everything seems to be going
against you, remember that the airplane
takes off against the wind, not with it.

(Henry Ford)

9.1. Incompressible flow

Conclusions We demonstrated the use of arbitrarily high order time dis-
cretization schemes for the incompressible Navier-Stokes equations. The
iterated PISO algorithm on collocated grids is used to solve the non-linear
system of equations. The temporal derivative in the momentum equation
is discretized with the method of lines using the chosen time integration
schemes. A temporally consistent approximation is found by making a
distinction between the spatial contribution and temporal contribution of
the velocity flux.
The accuracy and efficiency of the SDC, IDC, and PIES methods have

been demonstrated for several numerical examples. The main advantage
of the deferred correction schemes over diagonally-implicit Runge-Kutta
schemes is the fact that the coefficients necessary to reach a desired or-
der of accuracy are easily obtained by using the quadrature integration
rules, instead of manually deriving the correct coefficients by hand for
the diagonally-implicit Runge-Kutta schemes. Note that when the left-
end point is not included, and uniform sub-steps are applied (IDC), the
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Chapter 9. Conclusions and recommendations for high order time integration

stability of the time integration is always guaranteed (L-stability).
Due to the iterative nature of the spectral deferred correction method, it

is not necessary to solve the inner non-linear and linear systems to a high
accuracy. One can apply a relative residual approach or a fixed number
of iterations such that the current approximation is improved to some
extent. In this case, the SDC loop controls the overall accuracy of the
solution procedure, and the inner systems are not over-solved.
For moderate accuracy, the (E)SDIRK methods proved to be competi-

tive to SDC and IDC. The flow around a cylinder case showed the high
accuracy of the SDC method.

Recommendations One way to further increase the efficiency of the cur-
rent implementation is to use a higher order predictor. For example, a
second order backward differencing scheme, or even a third or fourth order
(E)SDIRK scheme to decrease the number of correction sweeps to converge
to a higher order solution. Another improvement would be to interweave
the DIRK and SDC methods as proposed in Weiser [98] to reach faster
convergence of the correction sweeps.
An extension of SDC time integration is parallel in time computation, as

discussed by Emmett and Minion [45]. Since the SDC method is iterative
by nature, it can be combined with a multi-grid approach in time. The
coarse grid problems in time can work on lower order approximations to
decrease the computational costs of the prediction and correction sweeps.
One important property of the integral and deferred spectral method is

the fact that a continuous representation of the solution in between the
sub-steps is readily available by using the interpolating polynomials. In
the case of a partitioned simulation consisting of multiple domains which
are only coupled in one direction, this property can be exploited. One
example where this is advantageous is where a fluid simulation is coupled
to an acoustics solver at the boundaries of the fluid domain. Generally, the
acoustics solver imposes very strict time restrictions on the used time step
in order to resolve the sound waves. Therefore, a standard approach is to
employ sub-cycling to be able to use a relatively large time step for the
fluid domain, and a small time step for the acoustics. This methodology
has the disadvantage that the order of convergence in time is reduced to
one since the boundary values are kept constant during the sub-cycling
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process. However, when a continuous representation in time is available,
which is the case for the spectral deferred correction scheme, higher order
of convergence can be recovered.

9.2. Partitioned fluid-structure interaction
simulations

Conclusions The integral deferred correction method has been applied to
partitioned fluid-structure interaction problems, and incompressible flows
with a moving object or moving grids. Since higher order time integra-
tion schemes deliver much higher accuracy compared to first or second
order methods, we have shown the solution procedure for partitioned fluid-
structure interaction problems.
To preserve uniform flow with a deforming mesh, we show how the Ge-

ometric Conservation Law (GCL) can be discretized with the IDC or SDC
method. The incompressible Navier-Stokes equations are solved with the
finite volume method on a collocated grid and coupled to the finite ele-
ment solver for the solid domain. The theoretical orders of accuracy are
achieved for the velocity as well as the pressure in case of the incompress-
ible Navier-Stokes equations.
The numerical results show an order reduction for the SDIRK meth-

ods for which the coefficients do not satisfy order conditions derived from
the Prothero-Robinson example, whereas the integral deferred correction
achieves the expected order of accuracy. Concluding, integral deferred
corrections are a good candidate for partitioned fluid-structure interaction
simulations. The integral deferred correction method can be combined
with a lower order scheme for the structure resulting in an accurate solu-
tion for the flow and sufficient accuracy for the structure.

Recommendations As recommended in Sect. 9.1, one way to further
increase the efficiency of the current implementation is to use a higher order
predictor. An idea one might have to further enhance the computational
efficiency of a simulation is to combine the manifold mapping coupling
scheme with the multigrid SDC time integration scheme. So instead of
using a multigrid solver, the manifold mapping scheme can also be used.
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Appendix A.

Coefficients for the Picard Integral
Exponential Solver

Table A.1 shows the coefficients for the node-to-node integration of the
Picard Integral Exponential Solver with ρ = 3.15 and δ = 1 · 10−2. Coef-
ficients for schemes with smaller values of δ are not shown, due to a large
number of coefficients.
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Appendix A. Coefficients for the Picard Integral Exponential Solver

Table A.1.: Coefficients for the node-to-node integration of the Picard Integral
Exponential Solver with ρ = 3.15 and δ = 1 · 10−2.

(0,0) = 6.93889390390723e-18
(0,1) = 6.16911633400483e-01
(0,2) = -1.67658786215060e+00
(0,3) = 3.10782377858074e+00
(0,4) = -3.40459689015166e+00
(0,5) = 2.25518192294052e+00
(0,6) = -7.32065915952810e-01
(1,0) = -6.50521303491303e-18
(1,1) = 5.03446636091372e-02
(1,2) = 1.93708907900272e-01
(1,3) = -1.64811006852359e-01
(1,4) = 1.50424890532760e-01
(1,5) = -9.02230964025978e-02
(1,6) = 2.72223078794539e-02
(2,0) = -3.68628738645072e-18
(2,1) = -1.87209635497346e-03
(2,2) = 6.60817094651747e-02
(2,3) = 1.37492583518608e-01
(2,4) = -5.48383646374622e-02
(2,5) = 2.71779234565757e-02
(2,6) = -7.37508878125622e-03
(3,0) = -2.58040117051550e-17
(3,1) = 5.07189797651921e-04
(3,2) = -6.13558903373280e-03
(3,3) = 8.13118797030042e-02
(3,4) = 1.07698709926562e-01
(3,5) = -2.14482006501728e-02
(3,6) = 4.73267692335439e-03
(4,0) = -4.49943901581484e-18
(4,1) = -3.25469363461508e-04
(4,2) = 3.24312071484101e-03
(4,3) = -1.59089595464406e-02
(4,4) = 1.00430941478203e-01
(4,5) = 8.62718683987311e-02
(4,6) = -7.04483501520615e-03
(5,0) = -1.25767452008319e-17
(5,1) = 4.84478024852252e-04
(5,2) = -4.39804440645361e-03
(5,3) = 1.77912895249151e-02
(5,4) = -4.43686744251683e-02
(5,5) = 1.32325906189536e-01
(5,6) = 6.48317117589854e-02
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Appendix B.

Butcher tableaus for the SDIRK
methods

The used coefficients for the SDIRK2, SDIRK3, SDIRK4, and SDIRK2PR
schemes can be found in Tables B.1, B.2, B.3 and B.4, respectively.

Table B.1.: Butcher tableau for the method of Ellsiepen [44] (SDIRK2), where

α = 1−
√

2/2, α̂ = 2− 5

4

√
2 and α− α̂ = −1 +

3

4

√
2.

α α 0

1 1− α α

bi 1− α α

b̂i 1− α̂ α̂

bi − b̂i α̂− α α− α̂
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Appendix B. Butcher tableaus for the SDIRK methods

Table B.2.: Butcher tableau for SDIRK3, as introduced by Cash [25]

c1 0.435866521508458 0 0

c2 0.282066739245771 0.435866521508458 0

c3 1.20849664917601 -0.644363170684469 0.435866521508458

bi 1.20849664917601 -0.644363170684469 0.435866521508458

b̂i 0.772630127667551 0.227369872332449 0
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Appendix B. Butcher tableaus for the SDIRK methods

Table B.4.: Butcher tableau for SDIRK2PR, as introduced by Rang [84]

c1 0.237286219578241 0 0

c2 0.762713780421759 0.237286219578241 0

c3 0.655553908732991 0.107159871688768 0.237286219578241

bi 0.655553908732991 0.107159871688768 0.237286219578241

b̂i 0.762713780421759 0.237286219578241 0
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Appendix C.

Butcher tableaus for the ESDIRK
methods

The used coefficients for the ESDIRK3, ESDIRK4, ESDIRK5, ESDIRK53PR,
ESDIRK63PR and ESDIRK74PR schemes can be found in Tables C.1, C.2, C.3, C.5
and C.6, respectively.
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66
66
66
66
66
66
7
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c 7
0.
16
84
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42
67
80
58
2
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01
08
08
98
83
18
4
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.2
25
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43
88
96
86
93
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13
44
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50
42
67
4

1.
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37
72
23
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.5
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37
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70
72
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66
66
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1
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