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Abstract

Topology optimization is a valuable tool for the optimization of all kinds of structures. It can
create highly efficient but complex designs. This complexity can make these structures chal-
lenging to clean. However, cleanability is often a requirement in, for example, the medical or
food industries. Currently, no method exists to reduce the complexity and create these clean-
able structures using topology optimization. The goal of this project is to create a method
that can generate two-dimensional cleanable structures. In this context, cleanability has been
defined using two requirements. Every section of the surface must be visible, and no sharp
edges can appear on the exterior. These requirements are met by generating a structural and
cleanable shell around the design. The shell needs to be optimized to minimize the compli-
ance of the entire structure. The addition of this shell has been achieved by the use of a hybrid
method. This method combines two structural optimization methods, a level-set method, and
the modified SIMP approach. The level-set method acts as a shape optimization method. Its
shape forms a boundary in which the modified SIMP method is used to generate a design.
Material is placed at this boundary of the level-set shape to create a shell that encloses the
structure. Experiments on several sets of boundary conditions show a successful creation of
a shell in every case. The resulting designs are not guaranteed to be cleanable, but a satis-
factory result has been achieved in every case by changing some parameters. This method
sets the stage for further development toward the application of topology optimization to create
cleanable designs.
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1
Introduction

Optimization is, in many ways, the very basis of engineering. It is optimization that turns ac-
ceptable designs into outstanding designs. These optimized designs can be generated using
a computer in a process called topology optimization and be optimized for many different pur-
poses. Examples are the reduction of weight (Cavazzuti et al., 2011, Merulla et al., 2019), im-
proving aerodynamic performance (Muyl et al., 2004), reducing compliance (Sigmund, 2001),
and many more. The designs that are created with topology optimization often perform bet-
ter than conventional designs when it comes to the optimization objective. For that reason,
topology optimization is now an established tool that is applied in different industries such
as the automotive and aerospace industries (Bendsoe and Sigmund, 2003, Zhu et al., 2016,
Papoutsis-Kiachagias and Giannakoglou, 2016).

However, designs created using topology optimization often require post-processing. One
of the reasons for this is that some aspects of a design cannot be easily implemented in a
topology optimization process. This can be aspects such as the cost of manufacturing, the
ease of maintenance, or the subject of this report, the cleanability. Cleanability, the ability
to clean or easily clean a structure, is a requirement in different industries and applications.
Two examples are the medical and food industries. In these industries, keeping everything
clean and avoiding contamination is an absolute necessity. On the other hand, topology op-
timization may result in complex designs that include features that make them challenging
to clean. One example of this is features that trap fluids. These features are the subject
of research done by Giele et al., 2022. Other features can, for example, be unreachable
areas or tiny crevices. Take the design shown in Figure 1.1 as an example. It is imagin-
able that it takes a significant effort for this structure to be cleaned. That might disqualify it
for use in the previously mentioned industries. To make topology optimization a feasible de-
sign method in these cases, it needs the capability to generate cleanable results but also still
achieve an otherwise optimized result. In this report, an attempt is made to solve this prob-
lem for two-dimensional designs. These can be seen as cross-sections of three-dimensional
structures. The method should be designed to be expandable to a three-dimensional space
to be a stepping stone for future research. This report seeks to answer the following question;

How can a two-dimensional topology optimization process be extended to create optimized
structures which meet the cleanability requirement?

To find the answer to this question, another question has to be resolved first. What makes a
structure cleanable? Answering this question is the subject of Chapter 2, where cleanability
is defined and its requirements established. Chapter 3 discusses the method for achieving
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2 1. Introduction

Figure 1.1: An example of a structure generated using topology optimization that seems difficult-to-clean, from
Galjaard et al., 2015.

the desired result. The implementation of this method is described in Chapter 4. The result
is a topology optimization program that can generate cleanable structures. Different experi-
ments have been performed to validate the method. These experiments and their results are
shown in Chapter 5. The work is then discussed in Chapter 6, and concluded in Chapter 7.
Recommendations for future work are given in Chapter 8.



2
Cleanability

Cleanability needs to be clearly defined to be able to create cleanable designs. In this chapter,
it is discussed what factors make a structure cleanable. A design has to meet certain require-
ments to be considered cleanable. These requirements are defined in Section 2.1. After that,
in Section 2.2, a solution is proposed to turn structures into cleanable structures.

2.1. Establishing the requirements
Cleaning an object can be done in numerous ways. The proposed requirements are for clean-
ability on amacro scale. Cleaning surfaces on amicro-scale is outside the scope of this project.
The cleaning is done via an unspecified physical method. Unfortunately, little research is pub-
lished on the role of the geometry of structures in their cleanability. A single example is the
algorithms that can check if a water jet can reach a surface by Li et al., 2009. The authors
assume that any surface that is unreachable is also uncleanable. This inherent characteris-
tic of physical cleaning methods will become part of the requirements for cleanability for this
project. What can be considered reachable differs for each cleaning method. Implementing
a method to judge whether a surface is reachable would require a significant amount of time.
For those reasons, judging what is and what is not reachable has been done manually for this
project.

The small amount of literature on the subject requires further assumptions to be made. The
main assumption is that exclusively the exterior of a design will have to be cleaned. The inside
should not get dirty as long as it is completely closed off. The exterior itself then needs to be
cleanable. The main problem that could arise is the accumulation of material in inward-facing
corners. This material can be troublesome to remove, especially if the angle of these corners
is acute. It would be too constraining to disallow such corners. For that reason, only corners
with an acute angle will be considered uncleanable. It can be considered an improvement
to reduce the number of inwards facing corners, but this will not be a requirement. In short:
The two requirements are that every surface has to be reachable, and acute angles may not
be present on the exterior. The structure can be considered cleanable if it meets these two
requirements.

Three examples are shown in Figure 2.1 to further illustrate the requirements. Design A
on the left can be considered cleanable, as it meets all the requirements. Design B is also
cleanable, it has no difficult-to-reach places and the angle of the bottom corners is not quite
acute. This structure could be easier to clean when these corners are no longer present.
There is a difficult-to-reach area present in design C and it is therefore not cleanable.

3



4 2. Cleanability

Figure 2.1: Three example designs to illustrate the cleanability requirements. Examples A and B are cleanable,
as the corners of example B are not quite acute. Example C is uncleanable as it contains an unreachable area.

Figure 2.2: The designs of Figure 2.1 with an additional green shell. All designs now meet the requirements due
to the addition of this shell.

2.2. Improving Cleanability
In the previous section, cleanability has been defined and the requirements have been estab-
lished. Now, it is possible to create a method to make the designs in Figure 2.1 cleanable.
It is established that only the shape of the exterior of the design impacts the cleanability. A
solution is to enclose the structures generated using topology optimization within a shell. The
solution is focused on the exterior to minimize the impact of the cleanability requirement on the
overall design. This solution can be seen in Figure 2.2. These are the boxes from Figure 2.1
with additional material, shown in green, enclosing the interior. Nothing changes for structure
A, but structures B and C now meet the requirements and are as easy to clean as structure
A. Encapsulating a design within a shell can significantly reduce the complexity of the design
when viewed from the outside. The shape of the shell is then the only attribute dictating the
cleanability. Controlling this shape means controlling the cleanability.

To conclude, cleanability has been defined as only being dependent on the exterior of a
structure. Every surface has to be reachable, and acute angles may not be present on this
exterior. Creating a shell around such a structure will render it cleanable while having aminimal
impact on the design.



3
Creating an optimal shelled structure

It is established in the previous chapter that structures will usually become cleanable by enclos-
ing them. In this chapter, it is discussed how to create an optimal shelled structure. Section 3.1
discusses how to create an optimal shell using topology optimization. Section 3.2 discusses
combining the shell with topology optimization.

3.1. Creating an optimal shell
The goal of topology optimization is to create an optimal design. Thus, the performance of
a cleanable design should be as close to the optimal uncleanable design as possible. This
means that the shape of the cover should contribute as much as attainable to the optimization
objective.

It is often possible to add secondary requirements to the topology optimization problem by
making them a constraint or part of this objective. Unfortunately, this implementation is not
feasible for cleanability. The main reason is that cleanability is challenging to quantify as it is
a discrete objective. A design is either cleanable or uncleanable. This quantification problem
means that methods for multi-objective topology optimizations will not work. There are other
ways to add material to the design without it being an objective. It is possible to use a filter
and place material around surfaces that are found to be uncleanable. The main problem with
a filter is that many solutions exist to make a structure cleanable. Creating a filter that finds
the optimal solution for any set of boundary conditions is challenging.

The alternative to explicitly implementing cleanability via an objective is to implicitly add
it by forcing the shell into the design. The optimizer should be able to change the shape of
this shell to improve its optimization objective but be unable to remove it. Otherwise, this shell
would usually be gotten rid of during the process for not contributing enough to the objective. A
topology optimization method allows for the creation of holes in the shell and lets the optimizer
remove it. A shape optimization method, such as the level-set method, is more suited for this
purpose. Such a method keeps the topology of the shell consistent, only allowing the shape to
change. This shape can be optimized for the objective while feasibly meeting the cleanability
requirements. Figure 3.1 shows a hypothetical shape optimization process of the shell. It is
expected that the shell will wrap around the structure, as this structure represents the most
optimal shape. The gaps will then be covered, as can be seen in Figure 3.1b. The shell
could converge further inwards as can be seen in Figure 3.1c. This behavior is desirable as it
improves the objective while still meeting the cleanability requirements. The curvature of the
shell does have to be limited to prevent the behavior that can be seen in Figure 3.1d. In this
scenario, the shell has merged with the original structure and the design is reverted to being
uncleanable.

5



6 3. Creating an optimal shelled structure

(a) A design with an initial shape of a shell. (b) The shell is fitted around the exterior but bridges the
gap. This design is cleanable.

(c) The shell converges into the gap. This design is also
cleanable.

(d) The shell is fully converged and has become one with
the rest of the structure. This design has most likely the
best objective value, but it is no longer cleanable.

Figure 3.1: The shape optimization of the shell, shown in red. From top left to bottom right, this describes a
hypothetical optimization process.
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Figure 3.2: An illustration of the level-set function. This function is transformed into a two-dimensional design. The
boundaries of this design are shown in red. In the hybrid method, this boundary acts as a boundary of the design
domain. Figure taken from Wei et al., 2018.

(a) Topology optimization design (b) Shape optimization design (c) Combined or hybrid design

Figure 3.3: Three figures showing how the individual designs combine to create a new hybrid design. It can be
seen that only elements that are present in both designs end up in the hybrid design.

3.2. Combining shape and topology optimization
Shape optimization is not necessarily the best method to optimize the rest of the structure. The
results achieved using shape optimization methods depend strongly on the initial designs. A
topology optimization method does not come with this downside. Therefore such a method is
more suitable to use for the interior. It is possible to combine shape optimization and topology
optimization. Combining these has been done before by Geiss and Maute, 2018 and Giele et
al., 2021. In these methods, a level-set and a density method are combined. These methods
will be further explained in Section 4.2. The level-set method is used for shape optimization.
The level-set function defines a boundary, this boundary can be seen in Figure 3.2. Inside
this boundary, a density method is used to create a structure. Material is only placed where
both fields overlap, an example can be seen in Figure 3.3. Effectively, this level-set function
acts as a boundary to the design domain. Making the elements around this boundary solid
would result in an enclosed design. This solution combines the best of both worlds. An optimal
shelled design should emerge by optimizing this boundary and the rest of the structure inside it.
The exact implementation of this method is discussed in the next chapter. The combination of
the level-set and density methods will be referred to as ‘the hybrid method‘ The hybrid method
with an additional shell will be referred to as ‘the shell method.‘





4
The method

In the previous chapter, the use of a hybrid method to create cleanable structures has been
presented. In this chapter, the implementation of the shell method to generate these cleanable
structures is discussed. This method is designed to have minimization of compliance as an
optimization objective. This objective is the only one that has been considered. Different
objectives might work for this method, but these have not been tested. The programming
language and resources used to create the program are discussed in Section 4.1. The density
and the level-set method are discussed in Section 4.2. These methods help form the shell
method. The implementation of the shell method is explained in Section 4.3. Then, in Section
4.4, the mapping and shell are examined. In Section 4.5, the finite element analysis (FEA) is
shortly discussed. Then in Section 4.6, the calculation of the sensitivities is explained. After
that, in Section 4.7, the density filter is briefly discussed. The optimizer is discussed in Section
4.8. Lastly, multiple ways to control the behavior of this shell are discussed in Section 4.9.

4.1. Creating the program
The program which implements the method outlined in this chapter is created using the MAT-
LAB programming language. This language can perform the many required matrix operations
relatively quickly. Beyond that, it has been the programming language of choice for many
topology optimization programs. Many of those programs are well documented. A lot of the
code for this program has been influenced by or taken from such programs. The finite element
method and the simplified isotropic material with penalization (SIMP) approach have been in-
spired by or taken from the ‘top88‘ program by Andreassen et al., 2011. The implementation
of the method of moving asymptotes and level-set mapping are influenced by or taken from
the ‘topcut‘ program by Andreasen et al., 2020. The program can use the modified SIMP,
the level-set, the hybrid method, and the shell method. This ability makes it easier to test the
different methods separately and to keep changes consistent across them.

4.2. Optimization methods
In the previous chapter, it was mentioned that the hybrid method uses density methods and
level-set methods. These have been selected because they are both commonly used meth-
ods with many available resources and this combination has been successfully implemented
by Geiss and Maute, 2018 and Giele et al., 2021. In this section, the density and level-set
methods will be discussed.

9



10 4. The method

4.2.1. SIMP method
The topology optimization method used in the hybrid function is the Simplified Isotropic Mate-
rial with Penalization (SIMP) method. The SIMP method is a density method. This is a group
of methods that describe the structure using intermediate densities. This means that the ele-
ments in the design are not just solid or void, but also anything in between. These intermediate
densities turn the discrete design variables into continuous variables. Bendsøe and Kikuchi,
1988 introduced the first density method. This density method has then been improved by
Bendsøe, 1989, introducing the SIMP method. The SIMP method and its derivatives remain
some of the most popular methods to date. The SIMPmethod calculates the Young’s modulus
of each element using Equation 4.1.

𝐸𝑒(𝜌𝑒) = 𝜌𝑝𝑒𝐸0 (4.1)

The Young’s modulus of each element, 𝐸𝑒, is the default Young’s modulus, 𝐸0, multiplied by
the density of the element, 𝜌𝑒. The density can be any value between 1, representing a solid
element, and 0. representing a void element. The density is penalized by a factor of 𝑝. The
penalty reduces the Young’s modulus of intermediate densities, thereby encouraging the use
of either solid or void elements. The result of this equation can not be exactly 0 as this would
lead to matrix singularity during the analysis of the design. This results in a minimum density
value. Sigmund, 2007 has proposed a slight modification of the original SIMP approach. This
is called the modified SIMP approach. This approach introduces a minimum Young’s modulus
for each element, 𝐸𝑚𝑖𝑛. This can be seen in Equation 4.2.

𝐸𝑒(𝜌𝑒) = 𝐸𝑚𝑖𝑛 + 𝜌𝑝𝑒 (𝐸0 − 𝐸𝑚𝑖𝑛) (4.2)

The minimum value, 𝐸𝑚𝑖𝑛, is several orders of magnitude smaller than 𝐸0. For this project the
value of 𝐸0 is 1, the value of 𝐸𝑚𝑖𝑛 is 10−9. The values of 𝐸𝑒 are needed to analyze the design,
this is further explained in Section 4.5.

4.2.2. Level-set methods
Osher and Sethian, 1988 first introduced the use of the level-set function to describe shapes.
Later, it has been suggested to use the level-set function for topology optimization by Haber
and Bendsøe, 1998. Level-set methods use the level-set function 𝜙(𝑥) to describe a design.
The values of 𝜙(𝑥) are linked to the material distribution by Equation 4.3.

𝜌 = {
𝜙(𝑥) < 𝑐 ∶ 0 (void)
𝜙(𝑥) = 𝑐 ∶ Γ (boundary)
𝜙(𝑥) > 𝑐 ∶ 1 (material)

} (4.3)

The material is represented by 𝜌. Conventionally, the values of 𝜙 range from -1 to 1, and the
value of 𝑐 is usually 0. The interface is defined by 𝜙(𝑥) = 𝑐. This is the boundary between
the solid material of the areas where 𝜙 is larger than 𝑐 and the void where 𝜙 is smaller than 𝑐.
This boundary is neither material nor void and is represented using the letter Γ. The 𝜙 function
consists of multiple smaller basis functions. These basis functions can affect one or multiple
nodal values. The use of nodal values differs from the density method where element values
are used. There are many different possible basis functions. The level-set function used in
this project uses bilinear local basis functions on a fixed mesh. A visual example can be seen
in Figure 4.1. These functions are relatively easy to implement and straightforward to extend
to a third dimension (Van Dijk et al., 2013). These authors also note the downside that a large
number of iterations is needed because each function only affects a single node.

The usage of nodal values means that these values have to be transformed into element
values. There are many different approaches to this problem. Only the approach that has
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Figure 4.1: A nearly uniform field with a single bilinear local basis function with a higher value. The linear shape
and the fact that it only affects a single node can be seen. Each nodal value is connected to a different basis
function.

been used for this project will be discussed. This discussion can be found in Section 4.4. This
implementation of the level-set method is not strictly a shape optimization. Changes to the
topology are discouraged by reducing the sensitivities, but not impossible.

4.3. The implementation of the shell method
The shell method combines the modified SIMP method with the level-set method. Figure 4.2
shows a simplified flowchart of a part of the hybrid process. This figure can help visualize
the implementation described in this section. The simplified flowcharts of the density and
level-set method are found in Appendix A. The hybrid method combines the density field, x𝑓,
and the level-set field, 𝜙𝜙𝜙𝑓. The ‘f‘ subscript in the figure indicates that the fields have been
filtered using a density filter. The density filter is explained in Section 4.7. These fields form
the basis and are the design variables of the method. To merge the fields, the nodal field 𝜙𝜙𝜙𝑓
is transformed into an element field. This process is explained in depth in Section 4.4. One
of the two fields to result from this operation is s𝑓. This field is combined with the x𝑓 field.
Using element-wise multiplication of the x𝑓 and s𝑓 fields, the hybrid field xs𝑓 is created. This
multiplication means that material is placed only in locations where both fields are not void.
Figure 4.3 shows the result of this operation. To turn this hybrid method into a shell method,
material has to be placed near the boundary of the level-set function. This placement is done
via a separate field, the shell field, s𝑠ℎ𝑒𝑙𝑙,𝑓. This shell field is the second field to emerge from
the mapping process. This field is added to the xs𝑓 field, resulting in the final 𝜉𝜉𝜉𝑝ℎ field. This
addition means that the shell is unaffected by the values of the density field, and therefore it
should always be present. This is further explained in the next section.

4.4. Mapping and shell
The mapping of the level-set function to the density field plays a key role in unifying both
methods. The nodal values of 𝜙𝜙𝜙𝑓 are mapped to the element density values s𝑓 and s𝑠ℎ𝑒𝑙𝑙,𝑓.
The goal is to find the volume fraction, or density, of each element. The first step is to find the
values of𝜙𝜙𝜙𝑓 inside the element using the shape functions. Then two different volume fractions
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Figure 4.2: Simplified flowchart of the first steps taken for the hybrid method. The 𝜙𝜙𝜙𝑓 field is mapped to the s𝑓
and s𝑠ℎ𝑒𝑙𝑙,𝑓 fields. The s𝑓 field is then combined with the x𝑓 field using element-wise multiplication. The result is a
new field, xs𝑓. The s𝑠ℎ𝑒𝑙𝑙,𝑓 field is added to the xs𝑓 field. This addition results in the final shelled hybrid field, 𝜉𝜉𝜉𝑝ℎ.
A finite element analysis is then performed and the sensitivities towards the objective 𝑐 of 𝜉𝜉𝜉𝑝ℎ are calculated.

Figure 4.3: The combination of the different fields. Left: the density field x𝑓. Middle: the mapped level-set field
s𝑓. Right: the combination of the fields xs𝑓. This field only consists of material present in both x𝑓 and s𝑓.

are calculated, one for the s𝑓 field and one for the s𝑠ℎ𝑒𝑙𝑙,𝑓 field, this is done using two different
Heaviside functions. Numerical integration is then used to calculate the densities.
The value of 𝜙𝜙𝜙𝑓 inside each element, henceforth referred to as the local values, is evaluated
at several points. The number of points in each direction is represented by 𝑛, making the total
number of points 𝑛2. This can be seen in Figure 4.4. The location of the points is chosen in
such a way that each point represents a fraction of 1/𝑛 of the total area of the element. This
means that the distance of each point to the edge is 1/2𝑛 and the distance of each point to the
nearest points is 1/𝑛. Using a Gauss–Legendre quadrature with the corresponding points and
weights would lead to a smaller error. However, due to time constraints and its more difficult
implementation, this method has not been selected. The increase in the error from using a
more basic method is expected to be negligible when enough sample points are used. To find

𝜙4

𝜙2

𝜙1 𝜙3𝜙𝐿,5

𝜙𝐿,7

𝜙𝐿,3

𝜙𝐿,1 𝜙𝐿,9
𝜙𝐿,8

𝜙𝐿,6

𝜙𝐿,4

𝜙𝐿,2

Figure 4.4: The location of the local phi variables. In this example, the number of points in each direction, 𝑛, is 3.
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the value of 𝜙𝜙𝜙𝑓 at each point the shape functions are used. The shape functions are bilinear
interpolations and can be expressed as the following equations:

𝑁𝜙1(𝑥, 𝑦) =
(1 − 𝑥)(1 − 𝑦)

4 (4.4)

𝑁𝜙2(𝑥, 𝑦) =
(1 − 𝑥)(1 + 𝑦)

4 (4.5)

𝑁𝜙3(𝑥, 𝑦) =
(1 + 𝑥)(1 + 𝑦)

4 (4.6)

𝑁𝜙4(𝑥, 𝑦) =
(1 + 𝑥)(1 − 𝑦)

4 (4.7)

Each local value, 𝜙𝐿,𝑖, can then be found using Equation 4.8. Here the variables 𝑥𝑖 and 𝑦𝑖
represent the coordinates of the sample point.

𝜙𝐿,𝑖(𝑥𝑖 , 𝑦𝑖) = 𝑁𝜙1(𝑥𝑖 , 𝑦𝑖) + 𝑁𝜙2(𝑥𝑖 , 𝑦𝑖) + 𝑁𝜙3(𝑥𝑖 , 𝑦𝑖) + 𝑁𝜙4(𝑥𝑖 , 𝑦𝑖) (4.8)

The 𝜙𝜙𝜙𝐿 values are used to calculate two different volume fractions. One for the s𝑓 field and
one for the s𝑠ℎ𝑒𝑙𝑙,𝑓 field. This is done by applying two different smooth Heaviside functions.
The smooth Heaviside function reduces some sensitivities in the level-set field by mapping
a range of inputs to nearly identical outputs, which mainly takes place in areas where the
level-set function is solid or void. This helps prevent changes in topology while still allowing
for changes at the boundaries. These functions also adjust the values of 𝜙𝜙𝜙𝑓 to be between 0
and 1 per the allowed density values. More information about the Heaviside function can be
found in Appendix B. The Heaviside function for s𝑓 is shown as Equation 4.9. The Heaviside
function for s𝑠ℎ𝑒𝑙𝑙,𝑓 is shown as Equation 4.10.

𝜙𝐻,𝑖 =
tanh𝛽 + tanh (𝛽(𝜙𝐿,𝑖 − 𝜂1))
tanh𝛽 + tanh (𝛽(1 − 𝜂1))

(4.9)

𝜙𝐻,𝑠ℎ𝑒𝑙𝑙,𝑖 =
tanh𝛽 + tanh (𝛽(𝜙𝐿,𝑖 − 𝜂0))
tanh𝛽 + tanh (𝛽(1 − 𝜂0))

− tanh𝛽 + tanh (𝛽(𝜙𝐿,𝑖 − 𝜂1))
tanh𝛽 + tanh (𝛽(1 − 𝜂1))

(4.10)

The variable 𝜂1 controls where the Heaviside threshold is. Inputs below this threshold are
decreased, and inputs above the threshold are increased. The parameter 𝛽 is used to control
the steepness of the Heaviside function. These Heaviside functions are also visualized in
a graph, Figure 4.5. In this figure, the Heaviside function of s𝑠ℎ𝑒𝑙𝑙,𝑓 is red, and s𝑓 is blue.
The resulting local values can then be used to calculate the volume fractions using numeric
integration, shown as Equation 4.11 and Equation 4.12.

s𝑖 =
∑𝑛

2
𝑗=1 𝜙𝐻,𝑗
𝑛2 (4.11)

s𝑠ℎ𝑒𝑙𝑙,𝑖 =
∑𝑛

2
𝑗=1 𝜙𝐻,𝑠ℎ𝑒𝑙𝑙,𝑗

𝑛2 (4.12)

Looking back at Figure 4.5, the colored areas show in which value of 𝜙𝐿 contributes to which
field. It is important to note that an element can have a value in both fields. Increasing the
value of 𝛽 reduces this overlap. Both 𝛽 and 𝜂1 must have the same value in both equations.
This parity ensures the total density will not be higher than 1 when adding each element of the
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Figure 4.5: Graph visualising the split of 𝜙𝜙𝜙 between the s and s𝑠ℎ𝑒𝑙𝑙 field. The Heaviside function for the shell,
Equation 4.10, is shown in red. The Heaviside function for s, Equation 4.9, is shown in blue. The colored areas
denote the different fields where the material will end up. For this graph 𝛽 = 12, 𝜂0 = 0, and 𝜂1 = 0.5

(a) The x𝑓 field. (b) The s𝑓 field. (c) The s𝑠ℎ𝑒𝑙𝑙,𝑓 field. (d) The 𝜉𝜉𝜉𝑝ℎ field.

Figure 4.6: Four fields of a cantilever beam problem, optimized using the shell method. It can be seen that the
s𝑠ℎ𝑒𝑙𝑙,𝑓 field surrounds the s𝑓 field when it is not connected to the edge of the design domain.

fields. The result of this operation is that material defined by the multiplication of x𝑓 and s𝑓
will always be surrounded by material of s𝑠ℎ𝑒𝑙𝑙,𝑓, assuming reasonable values for the relevant
parameters. The individual fields for a cantilever problem can be seen in Figure 4.6. It can be
seen that the shell field in Figure 4.6c surrounds the s𝑓 field seen in Figure 4.6b.

4.5. Analyzing the structure
After merging the fields, a finite element analysis (FEA) is performed on the shelled hybrid
field, 𝜉𝜉𝜉𝑝ℎ. The finite element analysis calculates the displacement of each element in the
structure. The stiffness of each element is calculated using the modified SIMP approach. The
optimization problem of the modified SIMP approach can mathematically be expressed as
follows:

min𝜉𝜉𝜉 ∶ 𝑐(𝜉𝜉𝜉) = U𝑇KU = ∑𝑁𝑖=1 𝐸𝑖(𝜉𝑖)u𝑇𝑖 k0u𝑖
𝑠.𝑡. ∶ 𝑉𝜉

𝑉0
≤ 𝑓

KU = F
0 < 𝜉𝜉𝜉 < 1

(4.13)
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Figure 4.7: Simplified flowchart of the sensitivity calculations, the optimization, and the filtering steps. The sen-
sitivities of 𝜉𝜉𝜉𝑝ℎ are used to calculate the sensitivities of x𝑓, s𝑓, and s𝑠ℎ𝑒𝑙𝑙,𝑓. The sensitivities of s𝑓 and s𝑠ℎ𝑒𝑙𝑙,𝑓 are
mapped back to the nodes and combined to calculate the sensitivities of 𝜙𝜙𝜙𝑓. The sensitivities of the design vari-
ables are filtered back and fed to the MMA optimizer. New x and s fields are found and filtered. The filtered design
variables are then inserted back into the optimization loop until it is converged.

In this equation, 𝑐 is the compliance. This value is a product of the global displacement vector
U and the global stiffness matrixK. This product, in turn, is the result of the sum of the product
of the Young’s modulus of each element, the element displacement vector, u𝑖, and the element
stiffness matrix, k0. 𝑁 is the total number of elements. The volume constraint is expressed
using the volume fraction 𝑓, the total material volume 𝑉𝜉, and the total domain volume 𝑉0. The
vector F is the global force vector. The force vector is part of the boundary conditions, together
with a set of fixed elements. Using these, the stiffness matrix of a design can be calculated
using a finite element analysis (FEA). For this, a rectangular Cartesian mesh is used. The
implementation is identical to the one used in the top88 MATLAB program by Andreassen et
al., 2011. For this implementation, Poisson’s ratio is set to 0.3.

4.6. Calculating sensitivities
The objective sensitivities are calculated by differentiating the displacements with respect to
the density. This differentiation results in the sensitivities of the 𝜉𝜉𝜉𝑝ℎ field. This differentiation
is performed for each element individually. This is expressed as the following equation:

𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

= −𝑝 ⋅ (𝐸0 − 𝐸𝑚𝑖𝑛) ⋅ 𝜉(𝑝−1)𝑝ℎ,𝑖 ⋅ 𝑐𝑖 (4.14)

In this equation, 𝜕𝑐𝑖/𝜕𝜉𝑝ℎ,𝑖 expresses the sensitivity of an element of the hybrid field. 𝑐𝑖 is the
element objective. The subscript ‘i‘ indicates that this is the value of a single element or node.
The elements of 𝜉𝑝ℎ,𝑖 can be expressed as follows:

𝜉𝑝ℎ,𝑖 = 𝑥𝑓,𝑖 ⋅ 𝑠𝑓,𝑖 + 𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖 (4.15)

The next steps in the hybrid process are visualized in Figure 4.7. From this, the sensitivities of
the x𝑓, s𝑓, and s𝑠ℎ𝑒𝑙𝑙,𝑓 fields can be calculated. This is done for each element using equations
4.16, 4.17, and 4.18 respectively.

𝜕𝑐𝑖
𝜕𝑥𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

⋅
𝜕𝜉𝑝ℎ,𝑖
𝜕𝑥𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

⋅ 𝑠𝑓,𝑖 (4.16)
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𝜕𝑐𝑖
𝜕𝑠𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

⋅
𝜕𝜉𝑝ℎ,𝑖
𝜕𝑠𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

⋅ 𝑥𝑓,𝑖 (4.17)

𝜕𝑐𝑖
𝜕𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

⋅
𝜕𝜉𝑝ℎ,𝑖
𝜕𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝜉𝑝ℎ,𝑖

(4.18)

To calculate the 𝜙𝑓,𝑖 sensitivities from the 𝑠𝑓,𝑖 and 𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖 sensitivities, the values have to be
mapped back, as shown in Equation 4.19.

𝜕𝑐𝑖
𝜕𝜙𝑓,𝑖

= 𝜕𝑐𝑖
𝜕𝑠𝑓,𝑖

⋅
𝜕𝑠𝑓,𝑖
𝜕𝜙𝑓,𝑖

+ 𝜕𝑐𝑖
𝜕𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖

⋅
𝜕𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖
𝜕𝜙𝑓,𝑖

(4.19)

As mentioned before, the s and s𝑠ℎ𝑒𝑙𝑙 fields are the result of the sum of interpolation and a
Heaviside function. The derivatives of the Heaviside equations 4.9 and 4.10 are shown as
equations 4.20 and 4.21 respectively.

𝜕𝜙𝐻
𝜕𝜙𝐿

= 𝛽 sech2(𝛽(𝜙𝐿 − 𝜂1))
tanh𝛽 + tanh (𝛽(1 − 𝜂1))

(4.20)

𝜕𝜙𝐻,𝑠ℎ𝑒𝑙𝑙
𝜕𝜙𝐿

= 𝛽 ( sech2(𝛽(𝜙𝐿 − 𝜂0))
tanh𝛽 + tanh(𝛽(1 − 𝜂0))

− sech2(𝛽(𝜙𝐿 − 𝜂1))
tanh𝛽 + tanh(𝛽(1 − 𝜂1))

) (4.21)

Using this result, the partial derivatives of s𝑓 and s𝑠ℎ𝑒𝑙𝑙,𝑓 with regards to 𝜙𝜙𝜙𝑓 can be calculated
using Equations 4.22 and 4.23. In this equation, 𝑁𝜙𝑖 represents the 4 shape functions.

𝜕𝑠𝑓,𝑖
𝜕𝜙𝑓,𝑖

=
4

∑
𝑖=1

𝑛2

∑
𝑗=1
(
𝜕𝜙𝐻,𝑖,𝑗
𝜕𝜙𝐿,𝑖,𝑗

)𝑁𝜙𝑖(𝑥𝑗 , 𝑦𝑗) (4.22)

𝜕𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖
𝜕𝜙𝑓,𝑖

=
4

∑
𝑖=1

𝑛2

∑
𝑗=1
(
𝜕𝜙𝐻,𝑠ℎ𝑒𝑙𝑙,𝑖,𝑗
𝜕𝜙𝐿,𝑖,𝑗

)𝑁𝜙𝑖(𝑥𝑗 , 𝑦𝑗) (4.23)

The second set of sensitivities that need to be calculated is the volume sensitivities. This is the
impact the change in density has on the total volume. The volume sensitivities for x𝑓, 𝜙𝜙𝜙𝑓 can
be calculated per element and per node using Equation 4.24 and Equation 4.25 respectively.

𝜕𝑉𝜉
𝜕𝑥𝑓,𝑖

=
𝑠𝑓,𝑖
𝑁𝑒𝑙 ⋅ 𝑓

(4.24)

𝜕𝑉𝜉
𝜕𝜙𝑓,𝑖

= (
𝜕𝑠𝑓,𝑖
𝜕𝜙𝑓,𝑖

⋅ 𝑥𝑓,𝑖 +
𝜕𝑠𝑠ℎ𝑒𝑙𝑙,𝑓,𝑖
𝜕𝜙𝑓,𝑖

) ⋅ 1
𝑁𝑒𝑙 ⋅ 𝑓

(4.25)

Where 𝑉𝜉 is the volume, 𝑁𝑒𝑙 represents the total number of elements, and 𝑓 is the desired
volume fraction. The calculated sensitivities have been verified using a finite difference com-
parison. This comparison can be found in Appendix C.
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𝑟

Figure 4.8: The effect of the density filter on a grid of 3 by 3 elements. On the left the grid consists of a solid
element in the center surrounded by four intermediate-density elements, the corners are void. Shown in red is a
filter with a radius 𝑟. On the right, the filtered densities are shown. The center element is no longer fully solid and
the corner elements are no longer fully void.

4.7. Filtering
The shell method uses a density filter (Bruns and Tortorelli, 2001). This filter uses a mesh-
independent area defined by a radius 𝑟. In this area, the weighted average of the design
variables is used to calculate a new value. This calculation is performed for each element,
creating a new design field. This process can be seen in Figure 4.8. It can be seen that
the density filter increases the number of intermediate densities. This effect is visible at the
boundaries between solid and void in the structure, resulting in blurry transitions between solid
and void at these edges. It is important to note that the density filter preserves the volume of
the elements that are filtered. In Figure 4.8 the density filter is demonstrated on element
values, but it can be used on nodal values too. The filtered design field is used to calculate
the sensitivities. The sensitivities have to be filtered back to obtain the sensitivities for the
original design.

In the shell method, a density filter is applied to the x and 𝜙𝜙𝜙 fields, each with a different
radius, 𝑟𝑥, and 𝑟𝜙. These design fields are filtered for different reasons. For the SIMP method,
the usage of a filter is a known necessity. It is needed to prevent checkerboarding and it re-
duces mesh dependency by filtering out small artifacts. These features are not as relevant
for the level-set method. In that case, the density filter helps convergence by smoothing out
the transitions between solid and void elements. This smoothing ensures the existence of a
boundary where significant sensitivities are present. This is necessary because the Heavi-
side function strongly reduces these sensitivities. Filtering also plays a role in controlling the
thickness and convexity of the shell, this will be explained in Section 4.9.

4.8. The optimizer
The chosen optimizer for this project is the method of moving asymptotes (MMA). The MMA
has first been proposed by Svanberg, 1987 for use in structural optimization, and it has become
a very popular optimizer in topology optimization (Sigmund and Maute, 2013). This optimizer
has been chosen because it is more versatile than the commonly used optimality criteria (OC)
method from Bendsøe and Kikuchi, 1988. Unlike the OC method, the MMA is able to handle
multiple constraints as-is. The main downside is that the MMA generally uses slightly more
computational time than the OCmethod when solving a single constraint minimum compliance
problem. However, the OC method uses a loop to satisfy the volume constraint. Because of
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the complexity of the hybrid method this loop would be more expensive than usual, making
the MMA the preferred choice. The implementation and parameters for the MMA optimizer
are taken from Andreasen et al., 2020. The 𝑐 parameter, for the penalization of the volume
constraint, is set to the default value.

4.9. Controlling the shell
It can be necessary to exert a degree of control on the shell. The reason is that the structure
might not meet the requirements for cleanability. There is no way for the algorithm to check
whether the final design meets the cleanability requirements. Manually verifying the outcome
is necessary. This means that the user ought to be able to change the inputs to achieve a
satisfactory result when needed. It is also possible that a design that meets the requirements
outlined in Chapter 2 might not be the best solution for the user. There could even be a
different set of requirements. For that reason, parameters can easily be changed to control
the thickness and shape of the shell.

The minimum shell thickness is affected by two parameters. It is not possible to set a
maximum shell thickness. The first parameter is the filter radius of the density filter used on
the level-set function 𝜙𝜙𝜙. This radius, 𝑟𝜙, will affect the maximum slope the level-set function
can have. This reduction in slope results in a higher minimum of intermediate density values
of 𝜙𝜙𝜙 between -1 and 1. This higher minimum results, in turn, in more nodes having a value
that is increased by the Heaviside function of the shell. This effect is visible when comparing
the shell width in Figure 4.9a to the one in Figure 4.9b. The hard borders between shell and
no shell shown in these figures are a simplification. There is a group of elements that have a
value in both the s and the s𝑠ℎ𝑒𝑙𝑙 fields, as explained in Section 4.4. The second parameter is
the cut-off of the Heaviside functions when mapping the level-set function, 𝜂1. Increasing the
value results in more material placed in s𝑠ℎ𝑒𝑙𝑙 instead of s. This can be seen by comparing
Figure 4.9a to Figure 4.9c. It is also possible to achieve nearly the same effect by moving 𝜂0.
However, for the sake of simplicity, the value of 𝜂0 is always 0 for this project. The parameter
𝛽 should also be mentioned here. Its value dictates the steepness of the Heaviside function.
More information on 𝛽 and the Heaviside function can be found in Appendix B. If the value of
𝜂1 is too low, the peak of the Heaviside function for the shell will be lower than 1. Thus, making
it impossible to get fully solid shell elements. In that case, it is possible to increase 𝛽 to create
a steeper ascent in the function.

The second aspect of the shell that can be controlled is the curvature. The curvature is
affected by the density filter radius on the level-set field, 𝑟𝜙. This is visualized in Figure 4.10.
Due to the increased minimum distance between the fully solid material and the shell the
corners cannot be as tight. The convexity will not necessarily be limited in areas where there
is no need to place material close to the shell. Increasing the filter radius also impacts the
thickness of the shell as explained earlier.
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(a) A visualisation of the effect of 𝜂 on the
mapping function.
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(b) The impact of the filter radius on the
shell thickness. The more gradual slope
results in a thicker shell.
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(c) The impact of 𝜂1 on the shell thick-
ness. A higher value for 𝜂1 means a
thicker shell.

Figure 4.9: Comparison of the effect that 𝜂 and the filter radius have on the thickness of the shell. The distance
between 𝜂0 and 𝜂1 corresponds to the thickness of the shell. The distance values are arbitrary but identical for
each figure. In most cases, the distance would span several elements.

Figure 4.10: The impact of the filter radius on the width of the shell and the convexity. The circle in the center
shows an area where the s field is 1. The shell field is shown in red, bounded between 𝜂0 and 𝜂1. The low filter
radius on the left allows for much sharper corners than the high filter radius on the right.





5
Experiments

In this chapter, the results of multiple different experiments are presented. These experiments
focus on the effect of the method on the final result. They have been performed on minimum
compliance problems. Different sets of boundary conditions have been created to test the
method. These sets are discussed in Section 5.1. In Section 5.2, the hybrid method is com-
pared to the level-set and SIMP methods. The study into the behavior of the shell and how
different parameters impact it is found in Section 5.3. Some more experiments have been
performed to see if the method can successfully be applied to other boundary conditions. The
results of these experiments are shown in Section 5.4. It is possible to create a design us-
ing a traditional method and add a shell afterward. The results of a comparison between this
method and the shell method are shown in Section 5.5.

5.1. Boundary conditions
It is customary to demonstrate a topology optimization method using the boundary conditions
for an MBB beam or a cantilever beam. However, these setups are not ideal for testing the
behavior of the shell method. All sets of boundary conditions have the placement of fixed
nodes and forces in the center of the design domain in common. This setup ensures that a
shell can be freely formed from every side of the design. All fixed nodes have 0 degrees of
freedom. A numbering system is used for the nodes to indicate the locations where forces
are applied or nodes are fixed. This system is visualized in Figure 5.1. The numbering starts
at 1 at the top left, this corresponds to the index numbers MATLAB uses for matrices. The
coordinates start at 0 at the top left, the positive y-direction is downwards, and the positive
x-direction is to the right. Two sets of boundary conditions have been used to extensively test
the program. Both setups result in a design that should change by adding a shell. In this
section, these setups and the expectations are briefly discussed.

5.1.1. Four points setup
The first setup is the ‘four points‘ setup. The design domain and boundary conditions can be
seen in Figure 5.2a. The dots indicate points that are fixed in both directions, the arrows indi-
cate forces. The exact locations of the nodes can be found in Table 5.1. The exact location,
direction, and magnitude of the forces can be found in Table 5.2. The result of these bound-
ary conditions can be seen in Figure 5.2b. This result is produced using the modified SIMP
method. The fixed nodes and forces are indicated by the crosses and the arrows, respectively.
The fixed points and the force on the top right are placed further from the center to ensure that
the optimal design consists of two groups of solid elements. An additional shell is expected

21
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el1: (0,0)

el2: (0,1)

el3: (0,2)

el4: (1,0)

el5: (1,1)

el6: (1,2)

el7: (2,0)

el8: (2,1)

el9: (2,2)

el10: (3,0)

el11: (3,1)

el12: (3,2)

n1: (0,0)

n2: (0,1)

n3: (0,2)

n4: (0,3)

n5: (1,0)

n8: (1,3)

n9: (2,0)

n12: (2,3)

n13: (3,0)

n16: (3,3)

n17: (4,0)

n18: (4,1)

n19: (4,2)

n20: (4,3)

Figure 5.1: The numbering and coordinates of nodes and elements. The prefix ‘n‘ denotes a node number, and
‘el‘ denotes an element number. The numbering of the nodes and elements starts at the top left corner.

node number coordinates (x,y)

813 12,32
828 12,47
1011 15,35
1026 15,50
1803 27,47
2001 30,50
3036 47,12
3266 50,15

Table 5.1: Node numbers and coordinates of the fixed nodes for the four points setup for a 64x64 design domain.

to connect these two groups, resulting in a single group of material elements. There is no re-
quirement that a design must consist of a single unbroken area of the material. However, this
is an expected result of the shell method. The expectation is also that a connection between
different groups of material will often result in a more simple and cleanable design.

5.1.2. Iron setup
The second setup is the ‘iron‘ setup. Named as such because the resulting image seen in
Figure 5.3b somewhat resembles an iron. The design domain and boundary conditions can
be seen in Figure 5.3a. The exact locations of the nodes can be found in Table 5.3. The
exact location, direction, and magnitude of the forces can be found in Table 5.4. This design
is nearly cleanable. Only the corner of the inset on the left is a bit too sharp and does not meet
the requirements. The cleanability can be improved by reducing the number of inward-facing
corners, as mentioned in Chapter 2. This design is well suited to test the control over the
convexity of the shell.

5.2. Comparing the methods
In this section, comparisons are drawn between the optimization of the SIMP, level-set, and
hybrid methods. The hybrid method is tested both with and without the shell field. The tests are
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(a) The design domain of the four points setup. The fixed nodes
are indicated by dots. These nodes are fixed in both directions.
The forces are indicated by arrows and applied to the nodes
located at the origin of the arrow.

(b) The four points setup design including the boundary con-
ditions. The design is created using the SIMP method. The
fixed nodes are indicated by red crosses, the arrows indicate
the forces.

Figure 5.2: The boundary conditions of the four points setup.

node number coordinates (x,y) direction magnitude

615 9,29 (+x,-y) √2
639 9,53 (+x,-y) √2
2199 33,53 (+x,-y) √2
3455 53,9 (+x,-y) √2

Table 5.2: Node numbers, coordinates, direction, and magnitude of the forces for the four points setup for a 64x64
design domain.

(a) The design domain of the iron setup. The fixed nodes are
indicated by dots. These nodes are fixed in both directions.
The forces are indicated by arrows and applied to the nodes
located at the origin of the arrow.

(b) The iron setup design including the boundary conditions.
The design is created using the SIMPmethod. The fixed nodes
are indicated by red crosses, the arrows indicate the forces.

Figure 5.3: The boundary conditions of the iron setup.
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node number coordinates (x,y)

4031 31,95
4095 31,31

Table 5.3: Node numbers and coordinates of the fixed nodes for the iron setup for a 128x128 design domain.

node number coordinates (x,y) direction magnitude

12287 95,31 (+x,-y) √2
12351 95,95 (+x,-y) √2

Table 5.4: Node numbers, coordinates, direction, and magnitude of the forces for the iron setup for a 128x128
design domain.

performed by generating the solutions to the boundary conditions mentioned in Section 5.3.1.
The parameters used to perform each test in this section are identical. These parameters
will be further explained and tested in Section 5.3. Their values can be found in Table 5.7.
The initial level-set function for each setup is a square that is slightly larger than the final
design. The shell field converges quite slowly. Therefore the change in the objective or design
variables must be minimal to consider the problem converged. The stopping criteria for all
experiments are an objective smaller than 0.01, or a maximum change of a single element in
any field smaller than 0.003.

5.2.1. Four points setup
First is the four points setup. The results can be seen in Figure 5.4, the objective values
are found in Table 5.5. The SIMP approach, Figure 5.4a, finds a slightly better solution than
the level-set, Figure 5.4b, method with an objective value of 18.56 as opposed to 20.07. The
level-set method might perform better when using a different initial design. The hybrid method,
Figure 5.4c, finds a nearly identical solution to the one found by the SIMP approach. The
hybrid method achieves a slightly lower objective value, 18.19 as opposed to 18.56. This
slight increase in performance is most likely due to its sharper edges. The addition of the shell
field results in the solution seen in Figure 5.4d. This addition results in the predicted behavior.
Both areas of material are connected via the shell. This connection comes at the expense of
performance regarding the objective. The objective is 20.18 as opposed to 18.19 of the hybrid
method. In Figure 5.5, the individual fields of the shell method are shown. It is not visible in
the final result, but the shell encloses the entire structure. It is merged with the other material
where possible, effectively replacing the combination of density and level-set material. This
behavior is needed to ensure the shell is not placed in locations where it serves no purpose.

Method and corresponding objective value
SIMP 18.56
Level-set 20.07
Hybrid (no shell) 18.19
Hybrid 20.18

Table 5.5: The objective values of different methods for the four points setup
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(a) The final design of the four
points setup using the SIMP
method. The solution con-
sists of two groups of mate-
rial. The objective value is
18.56.

(b) The final design of the
four points setup using the
level-set method. The solu-
tion consists of three groups
of material. The objective
value is 20.07.

(c) The final design of the
four points setup using the
hybridmethod without a shell.
The solution consists of two
groups of material. The ob-
jective value is 18.19, slightly
better than the SIMP method.

(d) The final design of the four
points setup using the hybrid
method with shell. The dif-
ferent groups of material are
connected via the shell field.
The objective value is 20.18.

Figure 5.4: The final design of the four points setup using the different methods.

(a) The density field, x𝑓 (b) The mapped level-set
field, s𝑓

(c) The shell field, s𝑠ℎ𝑒𝑙𝑙,𝑓 (d) The hybrid field 𝜉𝜉𝜉𝑝ℎ

Figure 5.5: The different fields which compose the final result.
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Method and corresponding objective value
SIMP 68.55
Level-set 67.42
Hybrid (no shell) 67.50
Hybrid 67.61

Table 5.6: The objective values of different methods for the iron setup

(a) The final design of the iron
setup using the SIMPmethod.
The objective value is 68.55.

(b) The final design of the
iron setup using the level-set
method. The objective value
is 67.42.

(c) The final design of the iron
setup using the SIMPmethod.
The objective value is 67.50.

(d) The final design of the
iron setup using the level-set
method. The objective value
is 67.61.

Figure 5.6: The final design of the iron setup using the different methods.

5.2.2. Iron setup
The second series of tests have been performed on the iron setup. The results of this setup
can be seen in Figure 5.6, the objective values are found in Table 5.6. Both the SIMP and the
level-set method, Figures 5.6a and 5.6b, end up with similar solutions. The level-set method
is less detailed but achieves a slightly better objective value of 67.42 compared to 68.55. The
hybrid method, Figure 5.6c, again finds a nearly identical solution to the SIMP approach. It
achieves a slightly lower objective value of 67.50, which is very close to the level-set value.
The addition of the shell field results in the solution seen in Figure 5.6d. The result hardly
differs from the results of the other methods. This result is due to the shell closely wrapping
itself around the structure. It replaces the material placed with the density method. This
result demonstrates that the additional shell does not always lead to a different solution. The
final design does not meet the requirements because the inwards-facing corner on the left is
unchanged.

5.2.3. Convergence
The convergence of each method differs significantly. The convergence has been tested using
different setups but only the four points setup will be discussed as it has been found that there
are only minimal differences in the convergence between different setups. The SIMP method
converges quickly and steadily, as can be seen in Figure 5.7. Full convergence is achieved
after 70 iterations. The level-set method seen in Figure 5.8 is faster still and fully converges
after 40 iterations. It can be seen that the level-set undershoots the volume constraint at the
start. This undershoot is caused by the high maximum step size that the MMA can take for the
level-set method. More information on this step size can be found in Appendix D. The reason
this step size is so high can be found in the convergence of the shell method in Figure 5.10.
The shell method needs 150 iterations to fully converge, much more than the other methods.
This increase is due to the slow convergence of the shell. The convergence of the interior is
not slower than it is for the hybrid method, seen in Figure 5.9. However, the shell itself needs
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Figure 5.7: Convergence of the SIMP method for the four points setup.

Figure 5.8: Convergence of the level-set method for the four points setup.

over 100 iterations on top of this. Taking smaller steps would further increase the number of
required iterations. The overshoot can be seen during the shell method too. The shell shrinks
until it reaches the rest of the material and then overshoots. This results in the small dips that
can be seen around iterations 35, 80, and 125.

5.3. Controlling the shell
The program gives users control over several parameters. The impact of these parameters
will be discussed in this section using the setups discussed in Section 5.1. Most parameters
have little effect on the result or an impact that has already been researched in other works.
For these parameters, a default value has been chosen. They are discussed in Subsection
5.3.1. The most interesting parameters are the ones impacting the behavior of the shell, 𝑟𝜙
and 𝜂1. The impact of these parameters has been tested. The results of these experiments
are discussed in Subsection 5.3.2.

5.3.1. Default values
The default values for all the parameters are shown in Table 5.7. These are the values with
which the experiments are performed unless otherwise mentioned. The mesh sizes are dic-
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Figure 5.9: Convergence of the hybrid method for the four points setup.

Figure 5.10: Convergence of the shell method for the four points setup.



5.3. Controlling the shell 29

tated by the limited computational power available. The chosen sizes, 64x64 and 128x128,
offer a good balance between the computational time and the level of detail. The volume
fraction of 0.15 has been chosen to encourage the creation of void space. This space allows
for better insights into the behavior of the shell. A SIMP penalty of 3 is often used, strongly
discouraging intermediate densities without causing further problems. This value will also be
used here. As mentioned in the previous chapter, 𝜂0 is set to 0 to limit the number of options.
The impact of this parameter is too similar to 𝜂1 to justify further testing. Information about the
other parameters can be found in Appendix D.

The default values for the parameters
Mesh size four points setup 64x64
Mesh size iron setup 128x128
Volume fraction 0.15
SIMP Penalty, 𝑝 3
Filter radius x, 𝑟𝑥 1.5
Filter radius 𝜙𝜙𝜙, 𝑟𝜙 8
Number of mapping sampling points, 𝑛2 49
Heaviside steepness 𝛽 12
Heaviside threshold 𝜂0 0
Heaviside threshold 𝜂1 0.4

Table 5.7: The default values for the parameters. All experiments use these values unless otherwise mentioned.

5.3.2. Shell control parameters
Two parameters have a large impact on the shape of the shell. The Heaviside cutoff, 𝜂1, and
the density filter radius on the level-set field, 𝑟𝜙. The way these parameters influence the shell
thickness is explained in Section 4.9. It can be expected that increasing 𝜂1 will increase the
thickness of the shell. Increasing 𝑟𝜙 will increase the thickness of the shell while increasing the
number of intermediate densities. It will also increase the minimum convexity of the shell. The
parameters have been tested separately and together to see how they interact. The stopping
criteria for all experiments are an objective smaller than 0.01, or a maximum change of a single
element in any field smaller than 0.003.

The impact of 𝜂1
The parameter investigation of 𝜂1 has been performed with a filter radius, 𝑟𝜙, of 8. This value
allows for relatively fast convergence. The increase in shell thickness when 𝜂1 is increased is
visible. It is shown in Figure 5.11a that the shell is thin and consists of nothing but intermediate
densities when 𝜂1 equals 0.1. The impact on the objective compared to the hybrid method
without a shell is also small, an increase of 0.32. The shell features more solid elements when
𝜂1 is increased to 0.3. This can be seen in Figure 5.11b. This solution looks easily cleanable
with a relatively small impact on the objective, an increase of 1.01. Increasing 𝜂1 to 0.4 a very
different solution appears, as shown in Figure 5.11c. The material cost of the shell means less
material can be used in other locations. This change is paired with a relatively large increase
in objective compared to the 0.3𝜂1 design, 20.18 instead of 19.20. This trend continues, with
a value of 0.7 leading to a solution that is little more than just a shell, Figure 5.11d. This 𝜂1
comes with an objective of 21.86, the worst performance so far. The iron setup is minimally
affected by changes of 𝜂1 because the shell merges with the rest of the structure. For that
reason, these results are not shown here. It is worth mentioning that during the optimization,
the same changes in the shell observed for the four points setup can be seen in the iron setup.



30 5. Experiments

(a) The four points setup with
𝜂1 = 0.1. This value results
in low density values for the
shell field. The objective value
is 18.51.

(b) The four points setup with
𝜂1 = 0.3. The shell is clearly
defined. The objective value
is 19.20.

(c) The four points setup with
𝜂1 = 0.4. The shell is clearly
defined. The objective value
is 20.18.

(d) The four points setup with
𝜂1 = 0.7. The amount of ma-
terial present in the shell now
prevents the use of nearly all
other materials. The objective
value is 21.86.

Figure 5.11: The comparison between different values of 𝜂1 in the four-point setup.

(a) The four points setup with
𝑟𝜙 = 2. The shell does not
converge due to the low filter
radius. The objective value is
18.51.

(b) The four points setup with
𝑟𝜙 = 6. The objective value is
19.05.

(c) The four points setup with
𝑟𝜙 = 16. It can be seen how
the increase in the minimum
convexity of the shell affects
the result. The objective value
is 34.57.

(d) The iron setup with 𝑟𝜙 =
20. The shell can no longer
wrap around the structure and
disappear. The objective
value is 75.88.

Figure 5.12: The comparison between different values of 𝑟𝜙.

The impact of 𝑟𝜙
The parameter investigation of 𝑟𝜙 has been performed with an 𝜂1 of 0.4. It can be seen in
Figure 5.12a that a filter radius of 2 results in a thin shell. The stopping criteria are met with
very little movement of the shell. The values of the sensitivities for the level-set function are too
low. The filter radius is required to be at least 4 for the shell to converge at all. The difference
in the amount of material used in the shell leads to a different topology. This can be observed
when comparing Figure 5.12b to Figure 5.11c. This change is consistent with the change seen
with an increase of 𝜂1. The increase in the thickness of the shell is visible when comparing the
figures. The increase in the minimum convexity is not. This increase becomes visible when
the filter radius is increased to 16. The result is shown in Figure 5.12c. The shell no longer
fits the sharp corner on the top right. For the iron setup, the results are largely the same, a
low filter radius results in a lack of convergence. A high filter radius is interesting because it
can ensure the shell can no longer completely merge with the density material. A filter radius
of 20 achieves this, as can be seen in Figure 5.12d. Due to its thickness, the shell takes over
a significant part of the construction.

Combining 𝜂1 and 𝑟𝜙
An interesting interaction occurs when a high filter radius value is combined with a low value
for 𝜂1. This combination results in a more rounded shell without increasing the thickness too
much. The results of using these parameters for the four points setup can be seen in Figure
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(a) The four points setup with 𝑟𝜙 = 16 and 𝜂1 = 0.15. The
limited convexity of the shell is seen at the top right and bottom
left. The objective value is 21.92.

(b) The four points setup with 𝑟𝜙 = 16 and 𝜂1 = 0.15 and
𝛽 = 24. The increase of 𝛽 from 12 to 24 results in what is
again a sharper and more solid shell. The objective value is
21.14.

Figure 5.13: The result of combining a high value for 𝑟𝜙 with a low value for 𝜂1 for the four points setup.

5.13. Combining a filter radius of 16 with an 𝜂1 of 0.15 results in Figure 5.13a. The shell takes
on a different, more convex, shape. The low value of 𝜂1 does result in shell elements that
are not fully solid. The densities in the shell can be increased by picking a higher value for
𝛽. This can be seen in 5.13b. Increasing 𝛽 also significantly decreases the objective value.
The results for the iron setup can be seen in Figure 5.14. Here, using a 𝑟𝜙 of 20 with an 𝜂1
of 0.15 results in a rectangular shell around the structure as can be seen in Figure 5.14a.
This combination allows the iron setup to meet the cleanability requirements. This shell has a
thickness of several elements, but its densities are not close to 1. Increasing the 𝛽 results in
a more solid shell in this case too as can be seen in Figure 5.14b. This increase in 𝛽 has little
effect on the results in these cases. However, it should be noted that when the filter needs
to be increased even further, new problems could arise. One example is the convergence
problem described in Appendix D.

5.4. Shell creation using different boundary conditions
In the previous section, the behavior of the shell method has been demonstrated using two
setups. In this section, the impact of different combinations of parameters on a design is
demonstrated. The four sets of parameter combinations can be found in Table 5.8. These
combinations result in a very similar minimal shell thickness, but theminimum curvature differs.
This represents a scenario in which the shell thickness is known, and a suitable shape needs
to be found. The goal of these experiments is to demonstrate how difficult it may be to get
the desired result. Four more sets of boundary conditions are used to test these parameter
combinations. The setups seen in Figures 5.15 and 5.16 already meet the requirements.
However, the number of inward-facing corners can be reduced. The setup in Figure 5.17 does
not meet the requirements due to an acute corner near the top right. The last setup, Figure
5.18, consists of two areas of material. The tables containing the relevant nodes can be found
in Appendix E. The initial level-set function for each setup is a square that is slightly larger than
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(a) The iron setup with 𝑟𝜙 = 20 and 𝜂1 = 0.15. The shell
now encloses the structure without becoming part of it. The
objective value is 77.09.

(b) The iron setup with 𝑟𝜙 = 20 and 𝜂1 = 0.15 and 𝛽 = 30. The
increase of 𝛽 from 12 to 30 results in what is again a sharper
and more solid shell. The objective value is 76.03.

Figure 5.14: The result of combining a high value for 𝑟𝜙 with a low value for 𝜂1 for the iron setup.

the final design. A mesh of 128x128 has been used for every setup. The other parameters
are identical to the ones found in Table 5.7. The stopping criteria for all experiments are an
objective smaller than 0.01, or a maximum change of a single element in any field smaller than
0.003.

Combination 𝑟𝜙 𝜂1 𝛽
1 8 0.4 12
2 12 0.274 18
3 16 0.208 24
4 20 0.167 30

Table 5.8: The four different combinations of variables.

The first setup is the C setup, the resulting designs can be seen in Figure 5.19. It can be
seen that the results for each set of parameters are very similar. Each solution is cleanable.
The increase in filter radius does lead to a slight increase in the objective value, from 21.28
to 21.37. This is a small increase compared to the objective value without a shell, which is
20.76. The X setup produces two distinct solutions, these can be seen in Figure 5.20. The
first three parameter combinations yield a result that is very similar to the result produced by
the SIMP method in 5.16. The final combination seen in Figure 5.20d does feature a shell.
This shell is relatively costly for the objective value, increasing it from 34.42 to 40.62. The
results of the three points setup can be seen in Figure 5.21. The solutions are quite similar for
each parameter combination, all can be considered cleanable too. The increase in curvature
is visible for a filter radius of 20. The objective value does not change much compared to
the uncleanable SIMP design. The value increases from 14.98 to 15.05 for the small filter
radius and 15.13 for the large filter radius. The equals sign setup yields four nearly identical
solutions, these can be seen in Figure 5.22. Both areas of material are connected. The
objective value is slightly increased compared to the SIMP design. From 11.54 to 11.90 for
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(a) The design domain of the c setup. The fixed nodes are
indicated by dots. These nodes are fixed in both directions.
The forces are indicated by arrows and applied to the nodes
located at the origin of the arrow.

(b) The c setup, created using the SIMP method. The objec-
tive value is 20.76.

Figure 5.15: The boundary conditions of the c setup

(a) The design domain of the x setup. The fixed nodes are
indicated by dots. These nodes are fixed in both directions.
The forces are indicated by arrows and applied to the nodes
located at the origin of the arrow.

(b) The x setup, created using the SIMP method. The objec-
tive value is 34.42.

Figure 5.16: The boundary conditions of the x setup



34 5. Experiments

(a) The design domain of the three points setup. The fixed
nodes are indicated by dots. These nodes are fixed in both
directions. The forces are indicated by arrows and applied
to the nodes located at the origin of the arrow.

(b) The three point setup, created using the SIMP method.
This result does not meet the cleanability requirements. The
objective value is 14.98.

Figure 5.17: The boundary conditions of the three points setup

(a) The design domain of the equals sign setup. The fixed
nodes are indicated by dots. These nodes are fixed in both
directions. The forces are indicated by arrows and applied
to the nodes located at the origin of the arrow.

(b) The equals sign setup, created using the SIMP method.
The objective value is 11.54.

Figure 5.18: The boundary conditions of the equals sign setup
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(a) The C setup with parameter
combination 1. The objective
value is 21.28.

(b) The C setup with parameter
combination 2. The objective
value is 21.32.

(c) The C setup with parameter
combination 3. The objective
value is 21.34.

(d) The C setup with parameter
combination 4. The objective
value is 21.37.

Figure 5.19

(a) The X setup with parameter
combination 1. The objective
value is 34.10.

(b) The X setup with parameter
combination 2. The objective
value is 34.19.

(c) The X setup with parameter
combination 3. The objective
value is 34.34.

(d) The X setup with parameter
combination 4. The objective
value is 40.62.

Figure 5.20

parameter combination 1 and 11.96 for parameter combination 4. It can be seen that in most
cases, the shell method finds a solution that improves cleanability. In nearly every case, the
method also produces very similar results for different parameter combinations. The X setup
is the exception, where a high filter radius is required to produce a different result. It can be
concluded that in most cases the shell method will produce a desirable result for a lower filter
radius and 𝛽. This offers a good starting point for an optimization process because it also
results in the lowest objective value. If the result is not satisfactory, the filter radius can be
increased until a cleanable design emerges.

5.5. Comparison to adding a shell
A simple alternative to this method could be to add a shell to an existing design. In this chapter,
this two-step approach is compared to the hybrid method with a shell, which will be referred to
as the shell method. The steps taken for the two-step method are illustrated in Figure 5.24 to

(a) The three point setup with
parameter combination 1. The
objective value is 15.05.

(b) The three point setup with
parameter combination 2. The
objective value is 15.08.

(c) The three point setup with
parameter combination 3. The
objective value is 15.08.

(d) The three point setup with
parameter combination 4. The
objective value is 15.13.

Figure 5.21
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(a) The equals sign setup with
parameter combination 1. The
objective value is 11.90.

(b) The equals sign setup with
parameter combination 2. The
objective value is 11.92.

(c) The equals sign setup with
parameter combination 3. The
objective value is 11.94.

(d) The equals sign setup with
parameter combination 4. The
objective value is 11.96.

Figure 5.22

Figure 5.23: An example of a convex hull. From Moreira and Santos, 2007

help visualize the method. The first step in the two-step method is finding a solution for a lower
volume fraction than the one used for the shell method, using the density or hybrid method
without a shell. The remaining volume budget is then used for the shell itself. The convex
hull is used to decide where the shell should be placed. A convex hull is the smallest convex
shape that can be placed around a set of points. An example is shown in Figure 5.23. For the
two-step method, the convex hull is placed around all the points with a density higher than 0.9.
This value ensures that the shell will be directly connected to the structure. The densities of
all the elements that make up the convex hull are then set to 1. Next, the parts of the convex
hull that directly border the material of the original design are removed. This removal ensures
that the convex hull is not added as an extra layer on top of the existing structure in locations
where it is unneeded. After this removal, it is possible to increase the thickness of the hull.
This increase may be desirable depending on the size of the mesh. Then, a density filter is
applied to the hull. This filter makes the hull smoother and ensures there will be no small
artifacts. Finally, the hull volume is adjusted for the design to meet the original constraint. The
stopping criteria for all experiments are an objective smaller than 0.01, or a maximum change
of a single element in any field smaller than 0.003.

The first experiment is performed using the four points setup. The initial volume constraint
for the designs is 0.12. That means a volume fraction of 0.03 is reserved for the convex hull
shell. The shell method uses roughly twice the material for the shell field. However, this shell
field also takes over some of the material placed by the x and s fields. The volume budget of
0.03 for the convex hull shell results in an effective shell of roughly the same thickness. The
hull has been created using a filter radius of 1.5 on a single-element thickness. The results are
found in Figure 5.25. The density method with a convex hull shell has the highest objective
value, 21.00. A better result is achieved using the hybrid method with a convex hull shell,
with an objective value of 20.38. This increase in performance is consistent with the earlier
results without the convex hull. The shell method has the best performance with an objective
of 19.20. The designs that use the convex hull have some shell material on the bottom left
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(a) Step 1: Generating a design using a
lower volume constraint. In this case, the
volume constraint is 0.12, leaving 0.03 for
the hull.

(b) Step 2: Finding the convex hull
around all elements with a density higher
than 0.9.

(c) Step 3: Removing all material that
overlaps with a diluted version of the de-
sign from step 1.

(d) Step 4: Dilating and filtering the con-
vex hull. In this case, a filter radius of 1.5
is used.

(e) Step 5: Correcting the volume, ensur-
ing that the total volume of the hull is 0.03.

(f) Step 6: Adding the convex hull to the
original design.

Figure 5.24: The six steps taken to add the convex hull shell to the design for the two-step approach.

that is not present in the hybrid method with a shell. The shell connection between the two
areas of material is also slightly longer in the convex hull designs.

The second experiment is performed using the iron setup. The initial volume constraint for
the designs is 0.13. That means a volume fraction of 0.02 is reserved for the convex hull shell.
The shell method uses 0.028 volume for the shell fields. Of this volume, roughly a quarter
is merged with the structure, so this should be a fair comparison. The hull has been created
using a filter radius of 3 on a hull that is 3 elements thick. The results are found in Figure
5.26. The results are similar to the results of the four points setup. The density method with
a convex hull shell has the highest objective value in this setup as well, 79.69. A better result
is achieved using the hybrid method with a convex hull shell, with an objective value of 78.12.
The shell method has the best performance with an objective of 77.09. The relative difference
in the objective value between these designs is smaller than it was for the four points setup.
Despite the filtering, the convex hull shell is not a completely straight line on the left side, small
jumps are visible. The hybrid convex hull also places some material near the bottom. This
material is most visible in the hybrid method design.

The results show that the hybrid method with a shell performs slightly better than adding
the convex hull shell afterward. The implementation of the addition of this shell could be better.
It can be improved by creating a smoother hull and removing it from more locations where it
adds little to the objective. It is unlikely that this method will outperform the shell method even
with these improvements. It is also more difficult to get a consistent thickness and density for
the shell when using the convex hull method.
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(a) The density method with added con-
vex hull shell. The objective value is
21.00.

(b) The hybrid method with added convex
hull shell. The objective value is 20.38.

(c) The hybrid method with shell. The ob-
jective value is 19.20.

Figure 5.25: Comparison between the different methods to create a shell using the four points setup. It can be
seen that the shell method (c) performs significantly better than the density method (a) and the hybrid method with
an added convex hull (b).

(a) The density method with added con-
vex hull shell. The objective value is
79.81.

(b) The hybrid method with added convex
hull shell. The objective value is 78.12.

(c) The hybrid method with shell. The ob-
jective value is 77.09.

Figure 5.26: Comparison between the different methods to create a shell using the iron setup. It can be seen that
the hybrid method with shell (c) performs better than both the density method (a) and the hybrid method (b) with
the added convex hull.
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Discussion

6.1. Definition of cleanability
In Chapter 2, some assumptions have been made concerning cleanability. A cleanable struc-
ture has been defined as a structure with an exterior of which every location is reachable.
Moreover, no acute angles may be present on the exterior. These assumptions have been
made based on very little research. A deeper dive into what makes a structure cleanable might
generate new insights. Another consideration is that there are many ways to clean objects.
Each method will have its requirements. The shell method deals with physical cleanability in
a more general sense. Designing with a single, well-defined, cleaning method in mind will
probably lead to a more applicable result.

6.2. The degree of control over the shell
Two parameters have a large impact on the way the shell behaves, 𝜂1 and 𝑟𝜙. Tweaking these
values gives a reasonable degree of control over the shell. However, it would an improvement
to have more ways of controlling the shell. One good addition would be a way to control the
curvature of the shell without impacting its other properties. This control is currently exerted
by changing 𝜂1, 𝑟𝜙, and 𝛽. However, it has been shown that problems arise when using a
low value for the filter radius or a high value for 𝛽. Because of this, different combinations of
curvature and thickness cannot be used. The minimum convexity that is enforced using these
parameters could also be achieved by controlling the feature size for the level-set function, as
has been done by, for example, Guo et al., 2014. A different possibility might be to ensure that
the interface of the level-set function is convex. This can prevent the behavior shown in Figure
3.1d without further controlling the curvature. A method to achieve this has been proposed by
Shi and Li, 2021.

It is also possible to implement a minimum surface area of the level-set function. This can
be done by using a mass conservative, or volume preserving, level-set function. Different ver-
sions of a mass conservative level-set function have been proposed by, for example, Kuzmin,
2014 and Basting and Kuzmin, 2014. This can also prevent the behavior shown in Figure 3.1d
without controlling the curvature.

6.3. The use of local level-set functions
The level-set field 𝜙𝜙𝜙 consists of local FEM basis functions. This method is easy to implement
but any change only affects a single node. Therefore more iterations are needed to fully
converge (Van Dijk et al., 2013). The convergence plots have shown that most of the time
spent optimizing is dedicated to the shell. It would have been valuable to explore different
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basis functions and compare the results. The use of a different type would likely reduce the
number of iterations and save time in the long run.



7
Conclusion

The main objective of this research is to create a topology optimization method that can gener-
ate two-dimensional optimized structures that meet the cleanability requirement. The results
have shown that this objective has been achieved on several sets of boundary conditions. The
shell method also performs better than adding a shell to an existing structure.

The concept of cleanability has been narrowed down to two requirements. The first is
that all exterior surfaces of a structure must be visible. The second requirement is that no
acute corners are present on this surface. Beyond that, reducing the number of inward-facing
corners is assumed to improve cleanability, but this is not a requirement. Structures can be
covered by a cleanable shell, resulting in a cleanable exterior. This shell must become part of
the structure and the optimization process to ensure it contributes towards the objective.

A method is proposed to generate these shelled structures. This method uses a combi-
nation of the modified SIMP method and the level-set method, referred to in this project as
the hybrid method. The level-set function acts as a boundary. The SIMP method can place
material inside this boundary. A shell can be created by placing material near the edge of the
level-set function. The nodal values of the level-set are mapped to the elements of the mesh
to combine the two methods. This mapping is done via two separate fields, s and s𝑠ℎ𝑒𝑙𝑙, by
using different Heaviside functions. The s field is always enclosed by the shell field, resulting
in a shell around the structure.

This method has been tested for several boundary conditions, consisting of both cleanable
and uncleanable designs. At least one cleanable solution has been found for each set of
boundary conditions. The effect of the parameters on the thickness and convexity of the shell
has been demonstrated. The shell method produces better results than adding a convex hull
shell to an existing design.

The method is not guaranteed to produce a result that meets the requirements for clean-
ability as it cannot verify whether the final result is cleanable. The cleanability needs to be
confirmed by the user. If the requirements have not been met, changing the parameters and
trying again will likely yield a satisfactory result.
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8
Future work

8.1. Finding a way to quantify cleanability
The main weakness of the proposed method is the lack of quantification of cleanability. The
program is unaware of the secondary objective that has been implicitly added. It simply gen-
erates the structure with the least compliance. The method steers toward such a cleanable
result, but there is no way to guarantee a cleanable structure as output. If cleanability were
to be quantified it could be used as either an objective or a constraint. This would open up
the possibility to make it part of the optimization process and would allow for cleanability to
become an objective or constraint, and part of the optimization process. Only then would it be
possible to guarantee cleanable structures or to easily weigh the additional cost of cleanability.

8.2. Extending to the 3rd dimension
For this method to be applied in the industry, an extension to the third dimension is needed.
With the addition of this dimension, the number of design variables and the computational time
required would increase drastically. It would therefore be advisable to find ways to reduce this.
It is advisable to use a faster programming language such as C++ to create this program.

There is little reason to think this method will not work in 3D but one problem that could
arise is the inconsistency of the method. As mentioned, using this method does not always
lead to a cleanable result. Different parameter settings are needed for different boundary
conditions. This problem could be amplified in 3D. The increase in variables can make results
less consistent and raise the need for more ways to control the shell.
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A
Density and level-set flowcharts

Figure A.1: Simplified flowchart of the steps taken for the density method.

Figure A.2: Simplified flowchart of the steps taken for the level-set method.
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B
The Heaviside function

The Heaviside function is inspired by the Heaviside step function. This is a discrete step
function with a cutoff. With this function, any number between 1 and 0 is transformed into
either 1 or 0. A continuous version of this function is first used in topology optimization by
Guest et al., 2004. Many different versions have been used. Eventually, this function has
been turned into the volume-preserving continuous equation by Wang et al., 2011 that can be
seen in Equation B.1. This is the version used in this project.

�̃�𝑖 =
tanh𝛽𝜂 + tanh𝛽(𝜌𝑖 − 𝜂)
tanh𝛽𝜂 + tanh𝛽(1 − 𝜂) (B.1)

The equation appears in Section 4.4 as the Equation which transforms 𝜙𝐿 into 𝜙𝐻, also seen
here as Equation B.2.

𝜙𝐻,𝑖 =
tanh𝛽 + tanh (𝛽(𝜙𝐿,𝑖 − 𝜂1))
tanh𝛽 + tanh (𝛽(1 − 𝜂1))

(B.2)

In this equation, the value of 𝜙𝐻 is the result of three variables. The input 𝜙𝐿, 𝜂1, and 𝛽. The
value of 𝜂1 shows where the threshold is. Values below this threshold will be rounded down,
those above will be rounded up. The parameter 𝛽 is used to control the steepness of the
function. This is visualized in Figure B.1. It can be seen that a higher value of 𝛽 results in a
steeper function. An infinitely high 𝛽 would result in a discrete step function.

The Heaviside function can be derived. This is necessary for the calculation of the sensi-
tivities as explained in Section 4.6. The derived Heaviside function is shown as Equation B.3.
This equation also appears in Section 4.4 as Equation 4.20.

𝜕𝜙𝐻
𝜕𝜙𝐿

= 𝛽 sech2(𝛽(𝜙𝐿 − 𝜂1))
tanh𝛽 + tanh (𝛽(1 − 𝜂1))

(B.3)
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Figure B.1: The continuous Heaviside function for different values of 𝛽. The value of 𝜂1 is set to 0.



C
Finite difference results

In this chapter, the finite difference (FD) results are presented. These results are created
using a finite difference check. The FD check is performed to verify the objective and volume
sensitivities. The goal of this verification is to ensure that the calculation of the sensitivities
works as intended. The check is done by comparing the effect of a small perturbation of a
single node or element to the calculated sensitivity. A separate check has been performed
for the SIMP method, the level-set method, and the shell method. The four points setup from
Section 5.1 has been used for these checks. The parameters are the default parameters
from Table 5.7. For each check, six different elements or nodes have been selected. Two
void points, one near the area of material on the bottom left, and one near the top right. Two
intermediate points on the edge between the material and the void, one on the bottom left and
one on the top right. And lastly, two solid points, one on the bottom left and one on the top
right. The node numbers are displayed in the graphs, the explanation of these numbers can
be found in Figure 5.1.

The results of the SIMPmethod FD check can be seen in Figure C.1. The error is displayed
on the y-axis, and the magnitude of the perturbation is displayed on the y-axis. It can be seen
that the objective error of all elements besides the void elements is small. The void elements
are not shown because their error is ‘infinite‘. This is due to the FD check finding a sensitivity of
1012 or lower while the sensitivity is calculated to be 0. The volume errors are smaller than the
objective errors. The errors for the void elements are bigger but remain within an acceptable
range.

The results of the level-set method FD check can be seen in Figure C.2. It can again be
seen that the objective and volume errors of all nodes besides the void nodes are small. The
error in the void nodes is caused by the use of the Heaviside function. This operation results
in very low sensitivities in the order of 1012 or lower. The absolute errors in these nodes are
thus very small, despite their large relative error. The relative error in the solid nodes is not as
large because these nodes are not as close to 1 as the void nodes are to -1.

The same elements and nodes have been checked for the shell method. The results can
be seen in Figures C.3 and C.4 respectively. The errors are somewhat bigger for the shell
method. The method results in bigger errors for intermediate element 3271. This increase is
likely due to the combination of the density, level-set, and shell at this point. For that reason,
this error is considered to be acceptable. The combination of the level-set and density fields
also further increases the errors in the void nodes. The absolute errors in these points are
even smaller than they are for the individual methods, in the order of 1014 or lower.

From this data, it can be concluded that the calculation of the sensitivities works as intended
for the three methods.
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Figure C.1: Finite difference check of the SIMP method.

Figure C.2: Finite difference check of the level-set method.
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Figure C.3: Finite difference check of the elements of the shell method.

Figure C.4: Finite difference check of the nodes of the shell method.





D
Parameters

To pick the right values for different parameters, the effect of each parameter has been inves-
tigated. In this appendix, the maximum step sizes, the steepness of the Heaviside function,
and the number of sample points are discussed.

D.1. Maximum step sizes
The maximum step size controls the size of the steps the optimizer is allowed to make for a
design variable. There is a separate limit for both the x field and the 𝜙𝜙𝜙 field. The higher this
limit is the faster the optimizer can converge. However, if the limit is too high the optimizer
can overshoot and even fail to find the best solution. The level-set field is much slower to
converge than the density field. The boundary of the level-set field has to move whereas
the SIMP method can place or remove material anywhere. This makes the move limit of the
𝜙𝜙𝜙 field the main driver of the convergence speed. For this reason, the move limit of x has
been set to a fairly conservative value of 0.02. Higher values have a too small impact on
the speed of the hybrid method to be of much use. The maximum step size of the level-set
field is especially interesting due to the impact it has on the shell. The shell is usually the
last part of the structure to converge. The impact of the step size on the number of iterations
needed to converge the shell has been investigated. The four points setup from Section 5.1
has been used for this. The experiment has been performed with the default parameters from
Table 5.7. The stopping criteria for all experiments are an objective smaller than 0.01, or a
maximum change of a single element in any field smaller than 0.003. Figure D.1 shows the
convergence when using a step size of 0.05. The quick initial convergence can be seen after
which the convergence of the shell continues. The shell is fully converged after about 350
iterations. This number can be reduced to about 210 by increasing the maximum step size to
0.1, as can be seen in Figure D.2. Further increasing the step size to 0.3 and 0.5 results in
about 150 and about 130 iterations. This can be seen in Figures D.3 and D.4 respectively. It
is clear that as the step size is further increased, the returns diminish. When increasing the
value to 0.5, it has been found that the program might not properly converge. This has been
the case when running the four points setup with parameters 𝜂 = 0.15, 𝑟𝜙 = 16, and 𝛽 = 24.
This can be seen in Figure D.5. This behaviour has not been encountered for a value of 0.3.
For this reason, the level-set move limit has been set to 0.3.

D.2. Beta
The 𝛽 parameter impacts the steepness of the Heaviside step function, as explained in Ap-
pendix B. When it comes to the mapping, a higher value of 𝛽 will lead to sharper edges.
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Figure D.1: The convergence for a step size of 0.05. The shell is fully converged after about 350 iterations.

Figure D.2: The convergence for a step size of 0.1. The shell is fully converged after about 210 iterations.

Figure D.3: The convergence for a step size of 0.3. The shell is fully converged after about 150 iterations.
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Figure D.4: The convergence for a step size of 0.5. The shell is fully converged after about 130 iterations.

Figure D.5: The lack of proper convergence for a step size of 0.5 with parameters 𝜂 = 0.15, 𝑟𝜙 = 16, and 𝛽 = 24.
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Figure D.6: The four points setup with 𝛽 = 2 Figure D.7: The four points setup with 𝛽 = 6

Moreover, it will reduce the sensitivities further from the edges of the level-set function. These
are both desirable features but high values can lead to problems with convergence. Values
below 4 result in very blurry edges, this is especially problematic for the shell, rendering it
effectively useless. This can be seen in Figure D.6. Values between 4 and 8 do result in a
more solid shell but they still have some blurry edges, as can be seen in Figure D.7. On the
higher end of the scale, other problems appear. Values above 16 already need significantly
more iterations due to slower convergence. It is for that reason that the value of 12 has been
chosen as a default. It should be noted that situations might arise in which the sensitivities
inside a structure are high enough that the topology is changed by the level-set. This could
be a reason to pick a higher value for 𝛽, despite convergence problems.

D.3. Number of sample points
As explained in Section 4.4, a number of local 𝜙 variables is used to calculate the density of an
element. As mentioned in Section 4.4, the chosen numerical integration is not as accurate as
a method that uses a Gaussian Quadrature rule. This inaccuracy can be overcome by using
more sample points. However, using more sample points does increase the computation time.
A simple experiment has been performed to test the effect that different values of 𝑛 have. The
parameter 𝑛 represents the number of sample points for a single direction. Thus, the total
number of sample points is 𝑛2. This experiment gives some insight into the effect the number
of sample points has on the computational time and final result. The four points setup has been
used to test the time it takes to converge using values 1 to 24 for 𝑛. The stopping criteria for all
experiments are an objective smaller than 0.01, or a maximum change of a single element in
any field smaller than 0.003. The results can be seen in Figure D.8. It is clear that increasing
𝑛 increases the time required to find the solution. The slight dips at the 𝑛 values of 5, 9, 15,
and 21 are caused by the program not converging as much as it has done for other values,
stopping early. This is indicated by an increase in the objective value which can be seen in
Figure D.9. A lower objective value can be seen for 𝑛 < 4. This decrease is caused by a
reduction in the number of intermediate values in the final result. It can be concluded that the
value for 𝑛 should be at least 3. Because the numerical integration method is not the most
accurate one, the value that has been selected for 𝑛 is 7. This value is very much on the safe
side without costing too much computational time.
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Figure D.8: A graph of the impact that 𝑛 has on the convergence time.

Figure D.9: A graph of the impact that 𝑛 has on the objective value.





E
Boundary condition tables

node number coordinates (x,y)

12287 95,31
12351 95,95

Table E.1: Node numbers and coordinates of the fixed nodes for the c setup for a 128x128 design domain.
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node number coordinates (x,y) direction magnitude

4031 31,95 (-x,-y) √2
4095 31,31 (-x,+y) √2

Table E.2: Node numbers, coordinates, direction, and magnitude of the forces for the c setup for a 128x128 design
domain.

node number coordinates (x,y)

12287 95,31
12351 95,95

Table E.3: Node numbers and coordinates of the fixed nodes for the x setup for a 128x128 design domain.

node number coordinates (x,y) direction magnitude

4031 31,95 (-x,+y) √2
4095 31,31 (-x,-y) √2

Table E.4: Node numbers, coordinates, direction, and magnitude of the forces for the x setup for a 128x128 design
domain.

node number coordinates (x,y)

3321 25,95
4101 31,101
7191 55,95
7971 61,101
12281 95,25
13061 101,31

Table E.5: Node numbers and coordinates of the fixed nodes for the three points setup for a 128x128 design
domain.

node number coordinates (x,y) direction magnitude

2431 18,108 (+x,-y) √2
8881 68,108 (+x,-y) √2
13951 108,18 (+x,-y) √2

Table E.6: Node numbers, coordinates, direction, and magnitude of the forces for the three points setup for a
128x128 design domain.

node number coordinates (x,y)

12287 95,31
12351 95,95

Table E.7: Node numbers and coordinates of the fixed nodes for the equals sign setup for a 128x128 design
domain.
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node number coordinates (x,y) direction magnitude

4031 31,95 (-x) 1
4095 31,31 (-x) 1

Table E.8: Node numbers, coordinates, direction, and magnitude of the forces for the equals sign setup for a
128x128 design domain.
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