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SUMMARY

The Internet of Things (IoT) is taking the world by storm, from smart lights to smart plant
monitoring. This revolution is not only present in consumers’ homes, but companies
are also looking for more and more ways to monitor every aspect of their production
process. This transition to ubiquitous monitoring is made possible by extremely low-
power embedded devices, mostly powered by batteries. However, with the projected
number of IoT devices reaching tens of billions within the next few years, this growth
will directly contribute to a massive increase in battery waste, negatively impacting the
environment. This increase in battery waste alone is already a well-founded reason to
explore alternative energy sources. However, batteries come with more downsides. Many
of these IoT devices will operate in hard-to-reach places (e.g., embedded into walls), and
the sheer quantity in which these devices will be deployed will make it nearly impossible
to replace batteries periodically without employing a costly dedicated workforce.

One alternative energy source for—often low-power—embedded devices comes from
energy harvesting. Energy harvesting is collecting energy from the system’s surroundings,
such as energy from the sun, vibrations, wind, and radio waves. However, because of
size constraints and the limited harvestable energy, there is often not enough energy to
power these embedded systems constantly. Additionally, the energy from these sources
is unreliable (e.g., when a cloud floats by, a solar cell’s output will drop significantly
or even stop outright). These limitations can be partially addressed by adding a small
buffer capacitor to store a small amount of energy. Still, despite this capacitor, the power
supply to an embedded device, and therefore its operation, will remain intermittent. To
still perform meaningful computations, the device must continue (close to) where it left
off after a power failure to avoid re-executing the same fragment of code over and over
again (i.e., it should make forward progress). The approach of saving state to continue
computation across power failures is called intermittent computing, and reducing the
overhead introduced to support intermittent computing is the focus of this thesis.

More specifically, we set out to answer the question: "How to reduce the overhead
caused by automatically supporting intermittent computing?". To this end, this thesis
explores different techniques to improve the performance of intermittent computing by
lowering the introduced overhead. The overhead introduced by intermittent computing
results from saving the system’s state, i.e., a checkpoint, which is required to allow the
program to continue executing where it left off. To achieve the aforementioned forward
progress, the system must create checkpoints periodically or on demand (when the system
reaches critical energy levels), which takes time and is the leading cause of overhead. A
checkpoint contains all the information needed to continue execution, i.e., the system’s
volatile state, which typically includes the memory and the registers. The improvements
developed in this thesis are achieved without requiring the programmer or application
designer to manually change their existing code or adopt a special-purpose programming
language to realize intermittently powered applications. Additionally, all the techniques

xi



xii SUMMARY

presented in this work have the quality of being "incorruptible." That is, no matter when
the power fails, even if it happens while storing the devices’ state, the most recently
completed checkpoint must still be able to be restored successfully.

This thesis is split into two parts. Part one focuses on intermittent computing support
for systems with volatile main memory, which is the standard for nearly all embedded sys-
tems currently in use. When using volatile memory, its content must be saved somewhere
in non-volatile memory so it can be restored when attempting to continue operation after
a power failure. The benefit of this approach is that it can be directly applied to existing
embedded architectures, which is what we will show first in a system that is designed for
rapid prototyping of intermittently powered applications. We optimize the process of sav-
ing the volatile memory reducing the amount of volatile state that is copied to non-volatile
memory during the creation of a checkpoint by only saving the changes in memory since
the last checkpoint as patches. Then, during the restoration processes, these patches
are combined to completely restore the memory state as it was during the more recently
completed checkpoint. Optimizing the checkpoint time is beneficial because the system
usually creates more checkpoints than it performs restorations. Checkpoints are often
created when the system’s power becomes dangerously low or sometimes periodically.
Depending on the incoming harvested energy, the system can execute for longer. There-
fore, the application executes opportunistically until the power runs out entirely, possibly
creating many checkpoints until the power failure occurs.

Part two of this thesis focuses on systems with non-volatile main memory. With the
main memory being non-volatile, power failures do not change the memory content.
Hence, the memory content does not need to be saved before a power failure, signifi-
cantly reducing the checkpointing cost. However, a new challenge appears. Because
the processor state, i.e., the registers, is still volatile and saved in a checkpoint, we must
keep this checkpoint state consistent with the memory state, which is no longer saved
in a checkpoint. If the memory changes, the power fails, and the previous checkpoint
is restored, then the system state is not identical to the state when the checkpoint was
created.

Addressing the consistency problem requires checkpoints to be kept consistent with
the memory, which can be done in multiple ways. One way is to undo all the changes
made to the non-volatile main memory. Another way is to create idempotent sections
concerning the main memory—i.e., regions of code that can be re-executed without side
effects to the main memory. Finally, it is also possible to realize the creation of idempotent
sections in hardware.

Undoing modifications made to the memory is the technique that will be demon-
strated first, employing stack segmentation and undo logging. Logging is an effective
technique when longer regions without checkpoints are preferred. In existing logging-
based systems recursive functions have been problematic, but our system addresses
these limitations. Additionally, our system introduces time-based decision-making to
avoid processing stale information after a long power outage. For load-store architec-
tures (i.e., architectures where memory is modified exclusively through dedicated load
and store instructions), compiler transformations that create idempotent sections sep-
arated by checkpoints are better suited. This technique is the basis for the subsequent
approach in this thesis, which reduces the number of needed checkpoints by rescheduling
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instructions. This method reduces the overhead without requiring a runtime logging
component that introduces dynamic execution times or code regions. Lastly, we will
consider a hardware-based approach that addresses the overhead caused by introducing
many checkpoints and reduces the execution time and power consumption associated
with using non-volatile main memory. The introduced data cache delays writing to the
non-volatile memory for as long as possible, instead using the faster volatile cache, and
can trigger checkpoints when detecting an idempotent region’s end. The detection of an
idempotent region’s end is achieved by novel changes to the cache controller algorithm
combined with additional bits in the cache lines.

In conclusion, the results presented in this thesis offer diverse solutions that can be
used to reduce the overhead introduced to support incorruptible intermittent computing
on various platforms automatically.





SAMENVATTING

Het Internet of Things (IoT) verovert de wereld stormenderhand, van slimme lampen tot
toezicht houden in fabrieken. Deze revolutie is niet alleen aanwezig bij de consument
thuis, ook bedrijven zoeken steeds meer manieren om elk aspect van hun productiepro-
ces digitaal bij te houden. Deze overgang naar alomtegenwoordige monitoring wordt
mogelijk gemaakt door embedded systems met een extreem laag energyverbruik, meestal
gevoed door batterijen. Echter, met het verwachte aantal IoT-apparaten dat de komende
jaren tientallen miljarden zal bereiken, zal deze groei direct bijdragen aan een enorme
toename van batterijafval, wat een negatieve invloed heeft op het milieu. Alleen al deze
toename van batterijafval is een gegronde reden om alternatieve energiebronnen te ver-
kennen. Batterijen hebben echter meer nadelen. Veel van deze IoT-apparaten zullen op
moeilijk bereikbare plaatsen werken (bijv. weggewerkt in muren), en de enorme aantallen
waarin deze apparaten zullen worden ingezet, maakt het bijna onmogelijk om batterijen
periodiek te vervangen zonder dure toegewijde arbeidskrachten in dienst te nemen.

Een alternatieve energiebron voor low-power embedded systems, is het oogsten van
energie, ofwel energy harvesting. Energy harvesting is het verzamelen van energie uit
de omgeving van het systeem, zoals energie van de zon, trillingen, wind en radiogol-
ven. Vanwege de beperkte omvang en de beperkte oogstbare energie is er echter vaak
niet genoeg energie beschikbaar om deze embedded systemen constant van stroom te
voorzien. Bovendien is de energie van deze bronnen onbetrouwbaar (als er bijvoorbeeld
een wolk voorbij drijft, zal de energietoevoer van een zonnecel aanzienlijk dalen of zelfs
helemaal stoppen). Deze beperkingen kunnen gedeeltelijk worden verholpen door een
kleine buffercondensator toe te voegen om een kleine hoeveelheid energie op te slaan.
Ondanks deze condensator blijft de stroomtoevoer naar het apparaat, en dus de werking
ervan, intermittent. Om nog steeds zinvolle berekeningen uit te voeren, moet het appa-
raat (ongeveer) doorgaan waar het was gebleven na een stroomuitval om te voorkomen
dat hetzelfde codefragment steeds opnieuw wordt uitgevoerd (d.w.z. het apparaat moet
vooruitgang boeken). De techniek van het opslaan van de status om door te gaan met
rekenen na stroomonderbrekingen wordt intermittent computing genoemd, en het ver-
minderen van de extra rekenkosten die is geïntroduceerd om intermittent computing te
verwezenlijken, is de focus van dit proefschrift.

Meer specifiek wilden we de volgende vraag beantwoorden: "Hoe de kunnen we
de vereiste extra rekenkosten verminderen die wordt veroorzaakt door het automatisch
ondersteunen van intermittent computing?". De extra rekenkosten geassocieerd met in-
termittent computing zijn het gevolg van het opslaan van de systeemstatus, d.w.z. een
controlepunt (checkpoint), dat nodig is om het programma verder te laten gaan met
uitvoeren waar het was gebleven. Om de voorwaartse voortgang te bereiken, moet het sys-
teem periodiek of op indien nodig (wanneer het systeem kritieke energieniveaus bereikt)
checkpoints creëren, wat tijd kost en de belangrijkste oorzaak van de extra rekenkosten
is. Een checkpoint bevat alle informatie die nodig is om de uitvoering voort te zetten,

xv
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d.w.z. de vluchtige toestand van het systeem, typisch het geheugen en de registers. De
verbeteringen die in dit proefschrift worden ontwikkeld, worden bereikt zonder dat de
programmeur of applicatieontwerper zijn bestaande code handmatig hoeft te wijzigen
of een special-purpose programmeertaal moet gebruiken om intermittent aangedreven
applicaties te realiseren. Bovendien zijn alle technieken die in dit proefschrift worden
gepresenteerd incorruptible. Dat wil zeggen, ongeacht wanneer de stroom uitvalt, zelfs als
dit gebeurt terwijl de status van de apparaten wordt opgeslagen, moet het meest recent
voltooide controlepunt nog steeds met succes kunnen worden hersteld.

Dit proefschrift is opgesplitst in twee delen. Deel één richt zich op het mogelijk maken
van intermittent computing voor systemen met vluchtig werkgeheugen (volatile main
memory), de standaard voor bijna alle embedded systemen. Wanneer vluchtig geheugen
wordt gebruikt, moet de inhoud ervan ergens in niet-vluchtige geheugen (non-volatile
memory) worden opgeslagen, zodat deze kan worden hersteld om de werking voort te
zetten na een stroomstoring. Het voordeel van deze techniek is dat deze direct kan worden
toegepast op bestaande architecturen, wat we als eerste zullen laten zien in een systeem
dat is gemaakt voor het snel ontwerpen van prototypes voor batterijloze applicaties. We
optimaliseren het proces van het opslaan van het vluchtige geheugen en verkleinen de
hoeveelheid vluchtige toestand die naar het niet-vluchtige geheugen wordt gekopieerd
tijdens het maken van een checkpoint door alleen de wijzigingen in het geheugen sinds
het laatste checkpoint op te slaan in de vorm van patches. Tijdens de herstelproces-
sen worden deze patches gecombineerd om de geheugenstatus volledig te herstellen
zoals deze was tijdens het meest recent voltooide checkpoint. Het optimaliseren van
de checkpoint-tijd is voordelig omdat het systeem meestal meer checkpoints aanmaakt
dan herstelt. Checkpoints worden vaak gecreëerd wanneer de stroom van het systeem
gevaarlijk laag wordt of soms periodiek. Afhankelijk van de binnenkomende geoogste
energie kan het systeem langer doorgaan. Daarom wordt de applicatie opportunistisch
uitgevoerd totdat de stroom volledig op is, waardoor er vaak vele checkpoints worden
gecreëerd voordat de stroom uitvalt.

Deel twee van dit proefschrift richt zich op systemen met niet-vluchtig werkgeheugen
(non-volatile main memory). Aangezien het werkgeheugen niet-vluchtig is, veranderen
stroomonderbrekingen de geheugeninhoud niet. Daarom hoeft de geheugeninhoud
niet te worden opgeslagen voordat de stroom uitvalt, waardoor de checkpointing-kosten
aanzienlijk worden verlaagd. Er dient zich echter wel een nieuwe uitdaging aan. Omdat
de processorstatus, d.w.z. de registers, nog steeds vluchtig is en wordt opgeslagen in een
checkpoint, moeten we deze checkpoint-status consistent houden met de geheugensta-
tus, die niet langer wordt opgeslagen in een checkpoint. Als het geheugen verandert en
vervolgens de stroom uitvalt en het vorige checkpoint wordt hersteld, is de systeemstatus
niet identiek aan de status toen het checkpoint werd gemaakt.

Om het consistentieprobleem aan te pakken, moeten checkpoints consistent worden
gehouden met het geheugen, wat op verschillende manieren kan worden gedaan. Eén
manier is om alle wijzigingen in het niet-vluchtige werkgeheugen ongedaan te maken. Een
andere manier is om idempotente secties te maken met betrekking tot het werkgeheugen,
d.w.z. codegebieden kunnen opnieuw worden uitgevoerd zonder bijwerkingen in het
werkgeheugen. Ten slotte is het ook mogelijk om de creatie van idempotente secties in
hardware te realiseren.
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Het ongedaan maken van wijzigingen in het geheugen is de techniek die als eerste zal
worden gedemonstreerd, waarbij gebruik wordt gemaakt van stack-segmentatie en undo
logging. Logging is een effectieve techniek wanneer langere regio’s zonder checkpoints de
voorkeur hebben. In bestaande logging gebaseerde systemen waren recursieve functies
problematisch, maar ons systeem lost deze beperkingen op. Bovendien introduceert
ons systeem tijd gebaseerde besluitvorming om te voorkomen dat verouderde informa-
tie wordt verwerkt na een lange periode zonder energie. Voor load-store-architecturen
(d.w.z. architecturen waarbij het geheugen uitsluitend wordt gewijzigd door speciale
laad- en opslaginstructies), zijn compiler-transformaties die idempotente secties creëren,
gescheiden door checkpoints, beter geschikt. Deze techniek is de basis voor de daarop-
volgende aanpak in dit proefschrift, die het aantal benodigde checkpoints reduceert door
instructies te herorganiseren. Deze methode vermindert de extra kosten van intermit-
tent computing zonder dat er een runtime-logging component nodig is die variabele
uitvoeringstijden van coderegio’s introduceert. Ten slotte zullen we een op hardware ge-
baseerde benadering presenteren die de extra rekenkosten aanpakt die wordt veroorzaakt
door de introductie van veel checkpoints en die de uitvoeringstijd en het stroomverbruik
vermindert die gepaard gaan met het gebruik van niet-vluchtig werkgeheugen. De geïn-
troduceerde data-cache vertraagt het schrijven naar het niet-vluchtige geheugen zo lang
mogelijk, en gebruikt in plaats daarvan de snellere vluchtige cache, en kan checkpoints
activeren bij het detecteren van het einde van een idempotent gebied. De detectie van
het einde van een idempotent gebied wordt bereikt door wijzigingen in het algoritme van
de cachecontroller in combinatie met extra bits in de cacheregels.

Samenvattend, de resultaten die in dit proefschrift worden gepresenteerd diverse
oplossingen die kunnen worden gebruikt om de benodigde extra rekenkosten te vermin-
deren die wordt geïntroduceerd om incorruptible intermittent computing op verschillende
platforms automatisch te ondersteunen.





1
INTRODUCTION

I love deadlines.
I love the whooshing noise they make as they go by.

Douglas Adams

Smart devices are taking over the world, with the Internet of Things (IoT) at the fore-
front [22, 212]. Omnipresent embedded systems have changed how people monitor [83]
and interact with the world [150], detect diseases [140, 204], protect wildlife [10], monitor
infrastructure [9], and play games [55]. Not only do people want to be more connected,
but they also want every detail of their life accessible at their fingertips at all times [22].
Collecting and receiving information about every facet of our environment can signifi-
cantly increase the productivity of industrial applications and add to the comfort level
when applied for personal use. However, many embedded IoT devices must be deployed
in the coming years to achieve this goal. With the number of IoT devices already having
surpassed the number of humans living on earth and on track to reach 125 billion by
2030 [215, 150], this increase comes with considerable downsides.

IoT devices are increasingly embedded in hard-to-reach places and rely more and
more on batteries instead of being constantly tethered to mains power. Replacing their
batteries when such systems reach the end of their lifespan can be difficult, if not impossi-
ble. For example, it is very desirable to detect moisture in the walls of a building in a timely
fashion, as prolonged exposure to moisture can cause irreparable damage. Therefore, it
would be highly desirable to monitor the moisture content of the walls throughout the
lifetime of the building. However, this is not currently viable due to the limited battery life
of existing monitoring devices—compared to the lifespan of a building. To replace the
monitoring device’s battery, a technician would need to break open the wall to reach the
device, destroying a part of the wall. To exacerbate the problem, many monitoring devices
must be embedded throughout to observe the entire wall, all of which will eventually
need their battery replaced.

In addition to being difficult and costly to replace [62], IoT’s reliance on batteries raises
concerns regarding its sustainability [247, 45]. The batteries that power these embedded
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Figure 1.1: Harvested energy (left) and smooth harvested energy using a buffer capacitor (right).

devices need to be properly disposed [72] and can be a fire hazard [123].

These negative aspects of batteries stain the otherwise impressive potential that IoT
can bring, which invites us to look further to develop battery-free solutions.

1.1. BATTERY-FREE COMPUTING
Just like clean alternative energy sources are taking over society’s energy needs on a
grand scale [232], so can energy harvesting supersede the use of batteries for embedded
devices [8, 198, 74, 107, 108]. Harvested energy can come from many sources, such as
radio waves, vibration, temperature differentials, wind, and the most classic example,
solar.

The major downside of energy harvesting comes in the form of unreliability [201, 198].
Not only when the corresponding harvesting source is unavailable, e.g., at night when
using solar, but also the stability of the outputted energy during harvesting. Fluctuations
can occur very rapidly when harvesting energy from the environment. Additionally, the
form-factor of low-power embedded devices are often constrained, and many energy
harvesting solutions have a strong correlation between their size and the amount of
energy they can harvest. This limitation means that the amount of energy harvested is
often insufficient to power the system directly, making it impossible to simply replace the
battery by an energy harvester. We can mitigate both of these limitations by introducing
a buffer capacitor as shown in Figure 1.1. A buffer capacitor smooths out the voltage
coming from the energy harvester. Additionally, a buffer capacitor can store a small
amount of energy, allowing the system to continue operation for a short time after the
energy harvesting has stopped.

With a buffer capacitor comes a trade-off. A larger capacitor can keep the system run-
ning longer without incoming energy. However, it also takes more time for the capacitor
to reach a sufficient voltage threshold to boot the system. Exacerbating this trade-off are
leakages in the capacitor, making it more challenging to store energy over an extended
period. No matter the capacitor size, power failures—although less frequent but with
longer charge times—are still the norm.

1.2. INTERMITTENT COMPUTING
The duration when the embedded device is powered and executes code is called the on-
duration. This on-duration depends on the capacitor size, as mentioned earlier, but also
the amount of incoming and outgoing energy. A downside of an energy-harvesting-based
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Figure 1.2: Program execution that lacks forward progress. Without a mechanism to save the program’s state,
the application restarts from the beginning after each power failure.

solution is that an on-duration is often insufficient to execute an embedded application,
as many embedded programs infinitely execute a loop without a designated end. Even
a single one of these iterations might not be able to complete within an on-duration.
To complicate matters, successive iterations of the program’s main loop might depend
on information from previous iterations by means of the program’s state. When the
program keeps executing the same code, there is no forward progress, as demonstrated
in Figure 1.2. Therefore when power failures occur, specially designed mechanisms are
needed to continue the program’s operation in a subsequent on-duration. This mode of
operation is called intermittent computing [135, 85, 136, 235, 31], and it is the focus of
this dissertation.

1.2.1. STORING AND RESTORING SYSTEM STATE

To continue the execution of a program during the subsequent on-period, one must save
the current execution state of the program’s execution in non-volatile memory (e.g., flash)
before the end of the on-period. This saved state is called a checkpoint and holds all
the information needed to continue execution. The content of a checkpoint depends
on the method used to continue execution, but in its simplest form, it contains the state
of the volatile components in the system, shown in Figure 1.3. Volatile components in
a microcontroller-based embedded system include the register state (which includes
the continuation point of the program), the volatile memory state (which holds the
variables), and potentially any peripherals configuration for interfaces such as UART, SPI,
and I2C (e.g., clock speed). During the subsequent on-period, the system restores the last
successfully created checkpoint from the non-volatile memory, restoring all the volatile
states from the non-volatile memory and allowing the system to continue execution as if
nothing happened, as shown in Figure 1.4. In addition to the content of the checkpoint, it
is important where the checkpoint occurs during the program’s execution. The checkpoint
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Figure 1.3: Microcontroller connected to non-volatile memory.
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Figure 1.4: Execution of the same program as in Figure 1.2, but with forward progress. Because the program’s
state is stored in non-volatile memory before the power failure using a checkpoint, the execution can continue
where it left off after the restoration.

location does not necessarily correlate to the point where the power fails. Instead, the
checkpoint happens sometime before the power failure causing part of the code to be
re-executed after a power failure.

HANDLING SYSTEM CORRUPTION

A consideration for intermittent computing support is whether the solution results in
corruptible or incorruptible applications. When a system is corruptible, there is a chance
that the system will reach a state where the content of the memory and the registers
is not what it should be after a power failure. The root of this corruption comes from
the uncertainty associated with the harvested energy. Some intermittent computing
approaches regard checkpoints as atomic actions that must complete before a power
failure [144, 30, 12]. This assumption of atomicity relies on predicting the impending
power failure and leaves no room for error. If the new checkpoint overwrites (part) of
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the previous checkpoint and the power fails while creating the new checkpoint, the
checkpoint will be corrupted. During the restoration of the checkpoint, part of the
memory will reflect the state of the old checkpoint, and part will reflect the state it was
during the failed checkpoint. This corruption can often be addressed by double buffering
the checkpoint, i.e., not overwriting the previous checkpoint but the one before it. This
way, the last fully completed checkpoint is always available. However, applying this
technique is not always straightforward, as will be demonstrated in Part 1 of this thesis.

An incorruptible intermittent computing framework allows for power failures during
any part of the program’s execution, even during the creation or restoration of checkpoints.
Hence, these systems can not rely on predictions to operate correctly. However, they can
use predictions to improve performance if they can not impact the program’s computa-
tional correctness. However, these incorruptible approaches can introduce execution
time penalties that are significantly more substantial than their corruptible counterparts.
Nonetheless, many systems will have incorruptibility as their core requirement.

Numerous battery-free applications will be deployed in hard-to-reach places and must
operate for considerable amounts of time, longer than can be supported by batteries.
For this reason, stable operation for long periods—ideally indefinitely—is at the core of
intermittent computing. Restarting the application from scratch because of corruption
can be detrimental in these scenarios. There can be cold start problems with the program.
The application might expect a more extended period of power to perform its initial boot
and calibration (as any subsequent boot would normally continue where the program left
off). Additionally, starting the application from the beginning might overwrite any data
collected thus far. Incorruptible systems are, therefore, the only viable approach for many
applications, and users that require incorruptibility will have to accept the additional
overhead it brings.

MANUAL INTERMITTENT COMPUTING SUPPORT

Intermittent computing support comes in two main varieties, automated and manual.
The manual approach depends on programmers manually transforming existing code or
designing new programs to allow for power failures. Splitting the program into different
tasks is the most popular method to convert applications manually [250, 142, 47]. How-
ever, these tasks differ from those known in traditional computer science literature. Here,
tasks must confine their execution time to finish within a set energy budget. The tasks are
then connected to execute the complete program. Because these tasks have well-defined
transition points and execute atomically within an on-period, a checkpoint only holds
which task is the current task and the data it received from the previous task. Note that
this means the tasks are idempotent and can not modify any global state, such as global
variables. By saving such a small amount of data to the non-volatile memory—only the
data communicated from one task to the next—manually created tasks have the potential
to be highly efficient. However, the downside of manually transforming applications is
the need to redesign and rewrite applications completely, requiring a lot of programmer
intervention and eliminating the use of existing code in these new battery-free projects.
Additionally, how to create tasks that have the correct length is challenging. As discussed
earlier in Section 1.1, harvested energy is unreliable. Additionally, the power consumed
by the embedded device is not constant and changes depending on the operation and
the interaction with sensors and actuators. This uncertainty regarding the required task
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length can cause the developer to create smaller tasks to account for the variability of
the harvestable energy, leading to considerably more task transitions than are neces-
sary to achieve forward progress. Having many task transitions reduces the benefit of
a task-based system, as every task transition saves its output in non-volatile memory;
unnecessary task transitions lead to more time spent writing to and reading from non-
volatile memory. Moreover, programming in a higher-level programming language makes
it extremely challenging for a programmer to predict the actual energy cost of a section of
code. Together these uncertainties regarding the desired task duration and the difficulty
in correctly estimating a task’s actual duration make it very challenging for programmers
to design a task-based intermittent system. Previous works have tried to alleviate this
dependence on manual work by automatically profiling these tasks or by profiling the
application to better estimate available execution time between power failures [48]. Again,
the problem with this approach is that the harvesting conditions can frequently change,
and developers often want to reuse created tasks in other applications with different
harvesting conditions. Therefore most task-based systems tend to target significantly
shorter task durations than technically possible, reducing their efficiency. However, even
with perfect code profiling, it is often still challenging to logically split regions of code
into tasks. Take, for example, encryption or AI libraries. The code in these libraries tackles
challenging topics that often include many calculations in loops that are only fully un-
derstood by experts. An application developer using a task-based model must manually
go through these libraries to split the functionality into tasks if they exceed the allocated
energy budget, which introduces a significant chance of introducing difficult to find bugs
in the system.

AUTOMATED INTERMITTENT COMPUTING SUPPORT

Automated intermittent computing support converts a program written in an existing
(often general purpose) programming language to run intermittently without or with
minimal programmer intervention. This technique has the benefit that application de-
signers and programmers do not have to rewrite existing code bases. Automated support
for systems with volatile main memory frequently works by routinely interrupting the
program’s execution to save the current state in a checkpoint. When this happens depends
on the technique used, but triggers can include the voltage level of the capacitor, the time
elapsed since the last checkpoint, or a combination. Creating the checkpoint can either
be corruptable [30, 12, 35], or incorruptable [203] as discussed earlier in Section 1.2.1.
However, automatically transforming applications to work intermittently comes with
performance penalties. A generic programming language does not allow the programmer
to specify their intent when writing battery-free applications. Therefore automated meth-
ods can not perform specialized optimizations that depend on this information, such
as which variables are still in use, which are explicitly defined when using a task-based
mechanism. Additionally, generic code lacks clear transition points where a minimal
amount of state needs to be saved, increasing the checkpointing cost.

Nevertheless, the ease of use and the adaptability of automated intermittent comput-
ing support often outweigh these limitations. Developers can directly use existing code
and retarget applications to function in environments with different harvesting or energy
usage characteristics. Additionally, automated transformations eliminate the error-prone
interventions required by programmers to convert their applications manually.



1.2. INTERMITTENT COMPUTING

1

7

Microcontroller

Non-Volatile 
Main Memory

Registers

Register Copy

Checkpoint

Figure 1.5: Microcontroller with onboard non-volatile main memory.

1.2.2. RETAINING THE MAIN MEMORY ACROSS POWER FAILURES
For decades the non-volatile memory available in embedded systems was either FLASH
or EEPROM based. Fortunately, new types of non-volatile random-access memory have
entered the market, such as Magnetoresistive Random Access Memory (MRAM), Ferro-
electric Random Access Memory (FRAM), and Resistive Random Access Memory (ReRAM).
These memory types are similar to the Static Random Access Memory (SRAM) tradition-
ally used as the main memory for embedded devices, but with the addition of being
non-volatile. What differentiates these memory architectures from architectures like
FLASH is that they are byte-addressable and low-power and are designed in such a way
that they can be used as drop-in replacements for traditional SRAM memory [71]. The
non-volatility of these new memory architectures, in combination with their likeness
to traditional SRAM, is key to unlocking an alternative method to achieve intermittent
computing, using the non-volatile memory as the system’s main memory (Figure 1.5).

The systems discussed in Section 1.2.1 use standard volatile main memory. Data
stored in such memory does not always need to be saved all at once (as will be demon-
strated in Chapter 3). However, the volatile memory does need to be restored fully to
resume operation. Removing the memory state from the checkpoint by using non-volatile
main memory significantly reduces its size, which reduces the time needed to create
the checkpoint. Having shorter checkpoints and restoration times allows for shorter
on-durations, allowing for smaller capacitors and energy harvesters, reducing the total
size of the system without compromising its functionality.

ADDITIONAL CORRUPTION CAUSES

Not including the non-volatile main memory in the checkpoint reduces the cost of cre-
ating a checkpoint, but it introduces additional challenges that need to be overcome to
provide an incorruptible solution. As is the case with corruption caused in volatile sys-
tems (Section 1.2.1), in systems with non-volatile main memory, corruption is caused by
failing to perform a checkpoint before a power failure. However, when using non-volatile
main memory, the memory is not stored within a checkpoint. Nonetheless, the memory
is continuously modified during execution, so restoring the checkpoint—containing only
the registers—is not enough to restore the system correctly. The memory state will likely
not be the same as when the checkpoint was created, causing the checkpoint (contain-
ing the state of the registers) and the main memory to be desynchronized, leading to
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corruption when program execution continues, caused by re-execution using altered
memory compared to the previous execution. Therefore, we need to take more advanced
approaches to avoid desynchronization, either by undoing modification to the memory
before restoring a checkpoint or avoiding scenarios that can cause desynchronization
altogether.

MANUAL TRANSFORMATION

Similar to Section 1.2.1, manual transformation attempts to segment the program into
sections that can be executed atomically during an on-duration. Because these are
idempotent sections, depending only on the (read-only) input and producing an output
that can be read by the subsequent task, task-based solutions avoid the desynchronization
problem by double-buffering these task transitions. Hence, no additional support is
needed to utilize these techniques using non-volatile main memory. However, there are
also no real benefits to using non-volatile main memory in a fully task-based system, as
the data within the task never needs to be saved and restored. Only the input and output
reside in non-volatile memory, as was already the case for systems with volatile main
memory.

AUTOMATED SUPPORT

Automated support becomes significantly more complicated when non-volatile main
memory is used. For volatile systems, the automatic checkpoint support often comes in
the form of either time or capacitor voltage-level triggered checkpoints that then store
the memory and register content in non-volatile memory. Because the memory is stored
in the checkpoint, double buffering the checkpoint is sufficient to avoid corruption. For
systems with non-volatile memory, this is not the case. When a checkpoint is created,
the memory is not included in the checkpoint. One approach is to use just-in-time
checkpoints, which use prediction or capacitor voltage level triggers to signal the creation
of a checkpoint. However, this technique is susceptible to corruption, as discussed in
Section 1.2.1. Hence, this technique is undesirable for many applications.

To allow for incorruptible intermittent computing, the automated approach must
consider the fact that the memory is not included in the checkpoint and is continuously
modified during the program’s execution. Being able to completely and correctly restore
the system state introduce significantly more complexity at runtime, compile-time, or
both.

1.3. PROBLEM STATEMENT
We introduced intermittent computing as an alternative for battery-powered embedded
systems in Section 1.2. However, moving from a battery—a constant and reliable energy
source—to unreliable harvested energy comes with memory synchronization problems
that are hard to overcome in an automated manner and introduce a significant overhead.
Therefore, we formulate the main research question of this dissertation as follows:

How to reduce the overhead caused by automatically supporting
incorruptible intermittent computing?
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First, we address this question for embedded systems with volatile main memory, and
we formulate following sub-questions:

Sub-Question ①: How to support rapid intermittent computing prototyping on an exist-
ing system with volatile main memory using checkpoints?

Sub-Question ②: How to reduce the overhead caused by checkpointing for embedded
systems with volatile main memory by reducing the checkpoint size?

Second, we address the main research question when considering embedded systems
with non-volatile main memory. As discussed in Section 1.2.2, introducing non-volatile
main memory has benefits but presents challenges regarding memory and checkpoint
synchronization. For such systems, we formulate the following sub-questions:

Sub-Question ③: How to reduce the overhead caused by keeping the checkpoint synchro-
nized with non-volatile main memory with the help of software?

Sub-Question ④: How to reduce the overhead caused by keeping the checkpoint synchro-
nized with non-volatile main memory with the help of hardware?

1.4. CONTRIBUTIONS AND OUTLINE
In this thesis, we provide multiple solutions to support intermittent computing on battery-
free embedded devices. The primary goal is to start with regular programs targeted
at embedded systems, enabling them to execute intermittently without programmer
intervention. Additionally, we want to enable incorruptibile intermittent computing
without needing additional information regarding the proximity to a power failure, i.e.,
no matter when the power fails, the system must be able to continue execution from the
most recently successfully created checkpoint.

This dissertation consists of two parts, as depicted in Figure 1.6, addressing each
of the four sub-questions. The first part focuses on solutions for systems with volatile
main memory. The second part focuses on solutions for systems with non-volatile main
memory. Let us now outline the contributions of the two chapters in part one.

Ï Enabling Battery-free Prototyping—Chapter 2. In this chapter, we convert an exist-
ing battery-powered embedded sensor platform to operate intermittently using harvested
power. The main goal is to identify the challenges of making intermittent computing
without programmer intervention possible on an existing platform to allow for quick
prototyping of battery-free applications using Python. To this end, we take an off-the-
shelf embedded platform, the Adafruit Metro M0 Express, and add an extension hardware
board that harvests energy from the environment. We chose the Metro M0 Express be-
cause it supports an embedded version of Python. By using interpretation to execute
programs instead of directly running on the hardware, we show that we can support
intermittent computing without requiring any modifications to the Python application
code. Interpretation, although considerably slower than native execution, allows us to
modify the underlying execution runtime to hide the intermittent behavior from the
programmer without any alterations to the Python code. This can be done because all
actions the program performs must go through the Python interpreter, allowing us to
track all access to data and peripherals and undertake appropriate actions to ensure the
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Figure 1.6: Visual representation of the thesis outline.

system operates as intended amidst power failures. Because interpretation is already
quite slow, adding intermittent computing support has a relatively small impact on the
system’s overall performance. We demonstrate that our solution correctly handles the
use of peripherals in addition to computational programs. We also show multiple ap-
plications that run intermittently on harvested energy without modifying the Python code.

Ï Differential Checkpoints—Chapter 3. Copying all the volatile to non-volatile mem-
ory during a checkpoint is time-consuming and the most significant cause of overhead
when supporting automatic intermittent computing on systems with volatile main mem-
ory, as is demonstrated in Chapter 2. However, the focus of Chapter 2 is on quick pro-
totyping rather than on performance, and the relatively low performance of the Python
interpreter itself lessens the impact of the checkpointing overhead. Nonetheless, the
high cost of saving all the volatile memory is not always acceptable. In this chapter, we
introduce a novel, patch-based, checkpointing framework called MPatch. MPatch targets
more performant scenarios than the Python interpreter in Chapter 2. MPatch reduces
the amount of memory stored during a checkpoint by creating differential checkpoints,
i.e., by checkpointing only the memory that was changed since the last checkpoint. What
makes MPatch unique is that it does this while remaining incorruptible. Traditional
differential checkpoint approaches rely on prediction to guarantee that they correctly
copy the changed memory into an existing checkpoint. However, if the power fails while
overwriting the existing checkpoint, the system is left in an unrecoverable state and has
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to restart completely. MPatch takes a different approach by creating patches with the
changed memory that are applied during the restoration procedure to reconstruct the
memory. These patches are stored in different parts of the non-volatile memory and
do not change the content of the previous checkpoint or patch. This way, we can incor-
ruptibly create differential checkpoints without requiring the data to be double-buffered,
significantly reducing the checkpointing overhead.

The second part of this dissertation concerns solutions using non-volatile main mem-
ory. As outlined in Section 1.2.2, numerous benefits are related to using non-volatile
memory, but they come at a cost. The chapters in this part of the thesis address these
limitations in more detail and provide three different approaches to reduce the over-
head associated with non-volatile main memory, all with different considerations and
trade-offs.

Ï Avoiding Checkpoints Using Stack Segmentation—Chapter 4. When using non-
volatile main memory, the overhead introduced by supporting intermittent computing
comes from keeping the checkpoint synchronized with the non-volatile memory state.
To this end, the system must revert all modifications to the non-volatile memory after
a checkpoint to avoid incorrect re-execution. Existing architectures solve this by creat-
ing idempotent sections by inserting register checkpoints between memory accesses,
resulting in an enormous number of checkpoints. Or they employ logging to track all
memory accesses after a checkpoint to restore the memory to the state when the most
recent checkpoint occurred after a power failure. This chapter introduces a hybrid ap-
proach, where a part of the stack—a stack segment—is included in the checkpoint. An
active stack segment allows the system to avoid logging memory changes to this part of
the stack, significantly reducing the overhead. This method does increase the size of a
checkpoint, as it now includes a portion of the main memory; however, we show that the
lower memory logging cost offsets this, resulting in a lower total overhead.

Ï Avoiding Checkpoints Using Instruction Rescheduling—Chapter 5. In this chapter,
we consider an alternative software-only approach to reduce the overhead of supporting
intermittent computing on systems with non-volatile main memory. It includes sev-
eral novel compiler transformations that reschedule memory operations to reduce the
number of checkpoints required to avoid potential re-execution errors. The benefit of
this approach compared to the one presented in Chapter 4 is that it does not rely on
runtime logging, which makes the execution time of regions of code constant instead
of it depending on how full the undo-log buffer is and whether a checkpoint is forced
due to the buffer reaching its maximum capacity. However, this approach works best
on load-store architectures without instructions that can read and write memory in one
instruction (a register–memory architecture), as these need to be split up into multiple
instructions—as reading and writing to a memory location without a checkpoint inbe-
tween can lead to invalid re-execution—which would severely impact the performance.
Therefore this chapter targets an ARM processor with such a load-store architecture in-
stead of the MSP processor used in the previous chapter that utilizes a register-memory
architecture. Our main contribution lies in a loop transformation that unrolls the inner
loops in a program and then reschedules writes across loop iterations. We show that this
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method drastically reduces the number of required checkpoints, significantly lowering
the introduced overhead.

Ï Avoiding Checkpoints Using a Data Cache—Chapter 6. In this chapter, we take
a different approach to reduce the overhead introduced by intermittent computing for
systems with non-volatile main memory. Instead of taking a software approach, com-
bined with compiler modifications to track the memory and place checkpoints, we take a
hardware approach where we modify the data cache to detect memory sequences that
can lead to errors during re-execution and trigger a register checkpoint. Data caches are
not heavily researched in the intermittent computing domain because they are typically
not utilized in low-power embedded systems. Data caches are rarely used because the
main memory in traditional embedded systems often consists of on-chip SRAM, which is
the same as would be used in a data cache; therefore, a data cache usually has minimal
benefits. However, for intermittent computing with non-volatile main memory, the non-
volatile memory in question is slower than the SRAM that makes up the cache. Therefore,
a data cache is a great addition to a dedicated processor designed specifically for inter-
mittent computing. In existing solutions, whenever data caches are used in intermittent
systems, they are introduced as a black box combined with existing hardware or software
approaches. In this chapter, we introduce NACHO, a data cache solution that is aware
of intermittent computing and is not only used as a data cache but also as the detection
mechanism that protects against re-execution errors by utilizing novel changes to the
cache lines—in the form of two additional bits—and cache controller to use these extra
bits to trigger the creation of checkpoints. NACHO eliminates the need for additional
software and hardware support to avoid corruption during execution while significantly
increasing the application’s performance compared to the state-of-the-art.



PART ONE:
VOLATILE MAIN MEMORY

In the first part of the thesis, we will target embedded devices for intermittent computing
with volatile main memory. Volatile main memory, e.g., SRAM, is the most common
form of embedded RAM and is therefore present in most off-the-shelf microcontroller
devices, making the techniques introduced directly implementable in current IoT systems.
However, the volatile nature of the main memory means its content is lost on a power failure.
Therefore the memory content needs to be saved and restored to support intermittent
computing. Saving all the memory is achievable, as embedded devices are often very
constrained, having mere kilobytes of memory at their disposal. However, storing and
retrieving all this memory to and from a non-volatile medium such as MRAM, FRAM, or
Flash still comes at a high cost.
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2
ENABLING BATTERY-FREE

PROTOTYPING

In this chapter, we identify the challenges and requirements for converting an existing
embedded platform to a battery-free system. We target an off-the-shelf hobby IoT platform
that uses Python interpretation to perform actions such as reading sensors, processing
data, and controlling actuators. We transform this platform to work intermittently by
introducing a special hardware add-on that harvests energy and contains non-volatile
memory to which data can be saved. We modify the Python interpreter to handle power
failures by saving and restoring the state of the natively executing code, the interpreter, and
the internal peripherals to and from non-volatile memory. Together, these modifications
allow unmodified embedded Python programs to be executed intermittently using harvested
energy.

This chapter is based on the following publication:
Vito Kortbeek, Abu Bakar, Stefany Cruz, Kasım Sinan Yıldırım, Przemysław Pawełczak, and Josiah Hester.
BFree: Enabling Battery-free Sensor Prototyping with Python. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT), volume 4, issue 4, pages 1–39, December 2020. https:
//doi.org/10.1145/3432191.
The accompanying archive containing all the software and data can be found at https://doi.org/10.5281/zenodo.
7714111.
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Figure 2.1: BFree shield connected to an embedded hobbyist-grade embedded computer (Adafruit Metro M0
board [5]) enables developing battery-free applications powered by ambient energy (A). Makers and technology
hobbyists can for the first time program a battery-free platform in Python (B), and can easily connect sensors
to BFree for fast prototyping (C). BFree can be deployed indefinitely, supporting application domains where
untethered and long-term sensing is desired (D).

2.1. INTRODUCTION
The maker and hobbyist movement has brought computing and programming to the
masses [132, 162, 205]. Hobbyists can now build functional embedded computing sys-
tems, such as temperature sensors, motion-controlled actuators, interactive lighting
systems, or simple robotic platforms, that used to be the purview of experts only. Build-
ing with Arduino [20], and more recent platforms such as CircuitPython [6], MBed [25],
Micro:bit [63], or Microsoft MakeCode [160], has empowered novice developers and mak-
ers to think beyond the traditional computing constraints with a desktop or laptop and
what can be accomplished with computing everywhere. All these platforms allow for
quick prototyping and programming of complex embedded systems, reducing the time
to demo.

Concurrently, concerns about the sustainability of computing within wireless sen-
sor networks [193, 115], and more generally, the Internet of Things [215] have arisen.
Battery-free devices allow very unique applications recently demonstrated and deployed
in consumer-grade products like phones [222], in space [49], in implantables [204, 140],
in machine learning [125], in handheld gaming consoles [55], and even underwater [102].
Despite this emerging technology trend, the majority of hobbyist and maker projects
are still plugged into the wall or laptop, or battery-powered, meaning that the hobbyist
programmer is unprepared for (or not even aware of) a battery-free future [190, 85] and
does not have the ability to create novel and exciting untethered applications.

Currently, developing battery-free applications powered by ambient energy only is
in the realm of experts, as a combination of system-level difficulties that span hardware,
software, and design make it difficult to work with these devices. The de facto program-
ming language for programming battery-free systems is the C programming language.
Developers must program in C and use specialized software (i.e., runtimes) and hardware
(i.e., non-volatile memory) to allow a regular program to run correctly and consistently
on intermittent power. However, using these runtimes requires in-depth knowledge of
tools like LLVM, GCC, Make, and custom APIs—again, things that are standard for experts
but arcane for the novice.

If we are to enable hobbyists to program these devices and participate in the future
of sustainable computing, we must streamline this process. We foresee that Python is
the strongest programming language candidate to enable this. It is one of the fastest-
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import time, board, sense

N = 10

while True:

temp_avg = 0

for i in range(N):

temp_avg = temp_avg + sense.temp

time.sleep(0.1)

temp_avg = temp_avg / N

store(temp_avg)
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Figure 2.2: An illustrative power supply trace of a battery-free device executing a simple Python program. The
program never reaches line 9, where it stores the result. With energy harvesting devices, power failures can
occur at any time.

growing and most popular languages currently ranked as the number one language
in 2020 based on IEEE Spectrum multi-metric multi-source study [40]. It is the most
searched language on online language tutorials [39] and one of the top three languages
measured through StackOverflow and GitHub data mining and developer surveys [175].
Python is an interpreted language popular with beginners, hobbyists, and advanced users
for myriad applications from machine learning to embedded programming [227]. Its
simplicity and ubiquity have already made it an ideal language for electronic hobbyists
and makers with the advent of MicroPython and AdaFruit’s CircuitPython [6].

However, using Python to develop battery-free applications is not trivial—an illus-
tration of a battery-free device executing a simple Python code is shown in Figure 2.2.
Power failures cause the program to restart from the top of the program, keeping the
entire program (or an iteration of an infinite loop) from finishing, wasting time and re-
sources, and essentially making the device useless. These power failures also change the
peripherals state (such as a connected sensor or radio) and cause delays (as the time it
takes the battery-free device to restart) to be too long and too energy-intensive for the
device to function on harvested energy only.

In this chapter, we propose an end-to-end system, BFree, shown in Figure 2.1 that
seeks to fill the systems gap preventing hobbyists and makers from participating in the
battery-free energy-harvesting future of ubiquitous computing. We tackle the technical
hurdles of implementing a power failure resilient Python interpreter on low power and
ultra-constrained embedded systems. In particular, we are concerned with making the
tools for resilient, useful, in-the-wild computation to be build-able (make-able) by a
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typical person. We try to integrate as closely as possible in the existing workflows of Python
developers and hobbyist maker communities; for this reason, we adapt the most popular
Python runtime for embedded systems—MicroPython [69]. More specifically we adapt its
fork, CircuitPython [6], targeting ease of learning and use for hobbyist microcontroller
users. Because CircuitPython is actively developed by Adafruit (one of the major providers
of hardware to makers and hobbyists [239]), we start from the base CircuitPython runtime
and implement numerous additions that enable CircuitPython to function effectively
without a battery or tethered to a power outlet. These additions are invisible to the
programmer; they do not change the existing CircuitPython workflow taught by Adafruit1.
In our system, makers and hobbyists can develop untethered, battery-free computers
that can do interesting tasks like read a humidity sensor, transmit information through
LoRa radios, take a thermal image snapshot, or recognize human movements.

Contributions: We make various innovations across hardware and software to make
this happen, rewriting and extending the CircuitPython interpreter (written in C) to
checkpoint and restore state automatically such that Python programs can run despite
frequent power failures on a very constrained computing device (an ARM Cortex-M0 [24]).
This was done by reworking the initialization of CircuitPython to enable fast reboots,
supporting general peripherals like SPI and I2C for interesting applications using sensors,
and rewriting system libraries to support restarting. We build custom hardware based
on Adafruit’s CircuitPython device lineup that functions as a shield and allows for a
plug-and-play way to add energy harvesting and battery-free operation to the standard
CircuitPython microcontroller board [5]. The shield and new runtime work together
to ensure power failure resilient operation—enabling, for the first time, battery-free
computation for hobbyists, makers, and early-stage embedded programmers.

In summary, the specific contributions of this chapter are:

a) Introducing power failure resilience to an embedded Python runtime for ARM
microcontrollers;

b) The integration of re-initialization of active peripherals;

c) The design and development of a hardware module that enables off-the-shelf maker
platforms to be used for battery-free development and deployment;

d) Integrating both of these into an existing workflow supported by the hobbyist and
makers community.

BFree is the first general-purpose platform for battery-free, energy harvesting devices,
that runs Python. We release all code and hardware designs as open source to the makes
and hobbyists community via [230].

2.2. DEVELOPING A BATTERY-FREE INTERNET OF THINGS
As discussed in Chapter 1, battery-powered computing’s negative impacts have become
more apparent. Unfortunately, building battery-free sytems is a complex task, not easily

1The authors are not affiliated with, or funded by, Adafruit.
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done by a hobbyist2, and not lending itself to the maker movement [162, 205]. If these
devices are the future, and everyone will be a programmer, then these devices must be
made accessible to the novice, hobbyist, and maker movement.

2.2.1. MAKER PLATFORMS
The first steps towards this vision were enabled by platforms like Arduino [20], MicroPy-
thon [69], and CircuitPython [6]. CircuitPython is a Python interpreter written in C that
can run on a microcontroller like an ARM Cortex-M0 [24]. Python programs are written
on the desktop computer, sent over USB to the microcontroller (MCU), compiled into
bytecode on the MCU, then executed. CircuitPython wraps common hardware func-
tions like digital I/O, analog, and serial protocols into libraries that are accessible to the
programmer. Other libraries that support things like cameras and radios can be created
with Python. CircuitPython has a large community of users, hundreds of libraries for
sensors and radios, stable releases, and a large number of hardware devices to use. We
chose to build off CircuitPython because the Python programming language has seen
a surge in popularity [40, 175], especially with low skill or hobby programmers, and to
maintain access to this motivated existing user base. CircuitPython currently cannot
support battery-free energy harvesting applications because of a multitude of reasons
centered around the frequent power failures caused by requiring the device to live off
energy harvesting only and not have a battery.

2.2.2. CHALLENGES OF BATTERY-FREE PROGRAMMING
When a battery is removed from a microcontroller such as an Arduino Uno [21] or Adafruit
Metro M0 [5], and the device opportunistically uses energy harvested from the ambient
(like solar radiation), power failures become the norm. Once started, the device begins
a race to get things done before a power failure. Once the power failure occurs, all the
device’s volatile state is lost (for example, memory content or register values). Then the
process begins again.

Without some type of system-level handling of these power failures, programs could
easily get stuck repeating old tasks and never completing all the tasks required (see
again Figure 2.2), never getting to the end of the program. Recent work has explored
instrumenting C programs with checkpoints [136, 203] or partitioning C programs into
task graphs [250, 142] to enable easier checkpoint and restore cycles so that forward
progress can be maintained. These techniques are useful, but only to the expert. In
this work, we rethink the problems in battery-free, intermittent computing in terms
of an interpreted and easy to use language—Python—aiming at the vision depicted
in Figure 2.3. Unlike C/C++, which is compiled directly to machine code with each
instruction executed by the CPU, interpreted languages have a runtime system that
interprets the bytecode of the language into machine code. Allowing the runtime to
handle high-level programming models and concepts, and even compile run code on
the fly without compilation. Our choice to focus on an interpreted language instead of
already very well explored C, stems not only from the fact that Python is probably the

2By hobbyist we refer to people that have at least minimum experience in any of classical (popular) programming
languages such as C, Java or Python; not hobbyist in a sense of being exposed only to extremely simplified
(almost kids-accessible) languages such as Scratch [161].
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Figure 2.3: The vision of computing we hope to enable by allowing hobbyists to build and then deploy battery-
free devices easily and quickly for years: (i) reducing time in development (easy-to-use Python versus C/C++),
(ii) reducing carbon footprint and saving money (elimination of batteries) and (iii) making program execution
understandable despite frequent power failures (guaranteed forward progress despite interrupts).

most popular programming language at the time of writing this article [39], but also due
to its code compactness, fast extensibility, easier comprehension, and its simple and
forgiving syntax. Quoting from a study published in 2000 [196]: “Designing and writing
the program in Perl, Python, Rexx, or Tcl takes no more than half as much time as writing
it in C, C++, or Java-and the resulting program is only half as long.” Naturally, both C and
Python have features that are represented better in one of these languages [153], but the
fact that Python has not yet been used in the context of intermittent execution called for
action.

Unique challenges come from trying to build and program battery-free and energy
harvesting “things” that were addressed for the C language, and must now be explored
and overcome in any interpreted language, such as the Python runtime in this work.

Power Failures: Energy needs usually outweigh the energy availability, meaning that even
with consistent energy harvesting, power failures are the norm as the supply becomes
depleted. Programs can be interrupted mid-execution at any code line, which damages
program consistency and frustrates the programmer.

Long Reboot Time: Initializing a system, especially a sophisticated runtime, takes time
and energy. Any upfront energy cost for rebooting takes away from valuable user applica-
tion time and, in some cases, can cause a power failure before the completed reboot. This
long reboot happens because the expectation is that these systems will almost always
have continuous power (via a battery or USB plug) and rarely, if ever, need to reboot, so
the reboot does not need to be optimized for speed.

Peripherals: Interfaces such as SPI and I2C have their own state stored in volatile registers.
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while True:
for x in range(10):

accel.append(
           imu.sample())

transform(accel)
featurize(accel)
classify(accel)
send(stats(accel))

NV *accel,res,ndx=0;
int main() {
 for(;;) {
  while(ndx < N) {
    accel[ndx++] = 
      sample();
  }
 
  transform(&accel);
  featurize(&accel);
  classify(&accel);
  res=stats(&accel);
 
  send(res);
 }
 return 0;
}
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Figure 2.4: Current and future programming models for batteryless systems. Two left-most dashed rectangles
shown the state-of-the-art, expert-focused programming models using either task graphs where each task
is a focused C/C++ fragment, to define a program (as in InK [250]), or automatically (with some caveats)
checkpointing a C/C++ program (as in TICS [119]). These models run bare-metal, as in the CPU directly
executes the machine code. A right-most dashed rectangle shows a novice-focused new model for batteryless
systems programming, using Python. While Python requires an interpreter which executes bytecode, and
is therefore much much slower when executing on an MCU compared to other approaches, the benefit of a
familiar, forgiving (no C-pointers) programming model combined with automatic handling of power failures is
far more important.

These interfaces connect to external peripherals (like a temperature sensor or a radio),
which also have a volatile state. Both the interface and the peripheral will lose their
configured settings when a power failure occurs. Developers have to explicitly handle the
loss of the state of both the interface and the peripheral.

This list of challenges is not exhaustive (please refer to a broad discussion of these
challenges in [135]). Indeed the area of intermittent computing for performance-driven
embedded systems is an active research area. However, the fundamental limits listed
above must be overcome once again, rethought, and re-imagined to enable an interpreted
and easy to use language for hobbyist programmers.

2.2.3. STATE-OF-THE-ART IN Programming FOR BATTERYLESS SYSTEMS
With the multitude of challenges for batteryless development, two prevailing program-
ming models have arisen, task- and checkpoint-based, both focusing on the C language,
which we compare and contrast here. Figure 2.4 shows a visual comparison of these two
programming models against Python, and each model’s pros and cons.

Like in any area, the best programming language to use depends on the context,
user skill, and available tools. As discussed in Chaper 1, task-graph-based models like
Mayfly [86], Alpaca [142], and InK [250], require a list of tasks that are strung together in
a task-graph. The graph specifies the order and branching/control of execution. Tasks
themselves must be atomic and idempotent (i.e., have no side effect, so they must bring
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up and tear down peripherals like a radio if used in the task). The runtime system that
executes tasks commits the results after task completion to non-volatile memory, preserv-
ing forward progress. Most task-graph-based languages allow annotations on the edges to
define time constraints and data handling. Together these task-based programming mod-
els are by far the fastest and most energy-efficient methods for intermittent computing,
but they require significant attention and expert rewriting to implement correctly.

The other major programming model is to take regular C code and automatically
instrument it with checkpoints at compile time [119, 143, 235] or runtime [30]. The key
research challenge here is to reduce the size of the checkpoint, such that the execution
time becomes feasible and usable. C/C++ is not known for being novice-friendly, with
its bare metal execution, use of pointers, and requirement (especially in the embedded
context) for the programmer to have in-depth familiarity with computer organization
concepts like memory, addressing, and types, to be useful.

The third option, newly presented by this work, is to use Python, as shown in Figure 2.4,
which compares all three programming models. This option is radically different as it sug-
gests an entirely new way to write software for batteryless systems, using a programming
paradigm (interpreted)—never used on batteryless devices before. Python does not require
the programmer to port existing code to a niche programming model like InK (which is
task-based) and does not require developers to know C/C++ and have intimate knowledge
of computer organization—a non-starter for many programmers with non-traditional
introductions to computing. Python is also directly in line with exciting, novice focused
maker platforms that already have large communities and hardware. Notably, an inter-
preted language like Python will be slower, as an intermediate step exists between the
Python code and the machine code, and is likely the primary reason up untill now Python
was not used on batteryless, intermittently-powered devices. However, we posit that the
flexibility and ease of using the language are worth that performance hit in many contexts.
Finally, Python (and, more specifically, the interpreter) provides a ready mechanism for
seamless—and invisibly to the programmer—checkpointing for power failure resilience.

2.2.4. STATE-OF-THE-ART IN Building FOR BATTERYLESS SYSTEMS

Researchers in intermittent computing have turned to novel hardware to make program-
ming and building batteryless devices easier. C-based task graphs and checkpointed
programming models are used on a multitude of hardware that all have one common
characteristic, TI MSP430 FR series microcontrollers [96], which have built in FRAM, a
byte addressable, non-volatile memory, that makes checkpointing state quick and cheap.
Platforms like WISP [209], Flicker [84], Capybara [49] or Botoks [54] all use MSP430s.
The key problem with these platforms is they are research platforms built for other re-
searchers, not for novice developers or makers trying to build fun applications and learn
things. Using a platform like WISP, an active RFID device, requires access to expensive
RFID readers and custom programming modules. Flicker, Capybara, and Botoks all were
built to explore specific hardware/circuit concepts in intermittent computing, including
federating energy storage to reduce power failures (Flicker, Capybara), enabling rapid
prototyping (Flicker), and using RC circuits for robust timekeeping across power failures
(Botoks). Flicker is most closely related, claiming to enable novices to rapidly prototype.
However, Flicker is a hardware platform only and does not enable a new programming
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model for batteryless systems, but supports existing ones. This is at once the best part,
and great flaw of Flicker, as the programming models supported are all C-based, and as
we discussed in Section 2.2.3, these expert level programming models are not sufficient
for many novice programmers. This can be seen as Flicker was not readily adopted by the
novice community, even now.

Finally, and most importantly, all of these platforms are highly constrained, compris-
ing less than 256 KB of code memory, and 4 KB of SRAM for scratch space. Modern ARM
Cortex M microcontrollers, such as [24], have up to 32 times the scratch space, and four
times more memory, with processors ten times faster or more. The resource constraints
of the TI MSP430 microcontroller preclude running a sophisticated interpreter with large
memory footprint like Python (or JavaScript). Moreover, these platforms are bespoke,
research prototypes, which are not part of any existing large community or ecosystem. To
be truly effective and broadly adopted, a future platform targeting makers and novices
must integrate closely with common hardware, like Adafruit’s Metro M0 [5] boards.

2.3. BFREE SYSTEM DESIGN
We have developed BFree (shown in Figure 2.5) for novice developers, makers, or pro-
totypers who want to program battery-free and energy harvesting Internet of Things
applications easily with Python. To enable this vision, BFree’s goals are:

1. build a power failure resilient version of the Python runtime that can execute
arbitrary Python programs;

2. design hobbyist-usable hardware that can harvest ambient energy;

3. enable a rich set of built-in functionality with sensors and libraries, and

4. integrate (1–3) into a complete platform focused on entire stack (software and
hardware) usability that can be used with common hobbyist platforms.

A key idea to enable the above goal number (4) is to build on and modify CircuitPython,
and leverage the hardware ecosystem surrounding it. With an active user base and
support by the maker-oriented company [5], this integration, though more difficult than
developing a custom solution as in previous work [84, 49, 250], will finally enable the
adoption of battery-free computing with BFree. Instead of designing everything from
scratch, we seek to build on the existing maker and hobbyist electronics communities’
momentum and enable them to go batteryless.

2.3.1. EXECUTING PYTHON CODE

As shown in Figure 2.5, BFree is split across the BFree runtime and BFree hardware shield,
which sits on top of the Adafruit Metro M0 board (see again Figure 2.1). Python programs
can be executed on the Adafruit Metro M0, a simple Arduino-style breakout board that
has power circuitry, USB, LEDs, and pins broken out for easy prototyping, build around
an ARM Cortex-M0 microcontroller [24]. Novice developers write Python code on their
laptop, send it to the Metro M0 over USB, where it is then compiled and executed.
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Figure 2.5: BFree system overview. Programmers develop Python applications on their PC and upload them
to the Adafruit Metro M0 board so that their application is interpreted by a power failure-resilient Python
interpreter. The necessary power-failure management is performed via communicating with the BFree hardware
that harvests energy, handles checkpoints, keeps track of peripherals, and ensures fast reboot.

2.3.2. ENERGY HARVESTING

The Metro M0 board is not equipped with energy harvesting circuitry for battery-free
operation, nor does it have any fast and durable non-volatile memory (it only has FLASH—
slow, energy-intensive, and not very durable). BFree hardware provides access to the
energy available in the ambient; solar, RF, kinetic, or any other type (solar being a default
one). The BFree hardware sits on top of the Adafruit Metro M0 board while still exposing
pins for prototyping. Energy is harvested, stored in a capacitor, then made available to
the Metro M0 board to execute the Python program embedded in the core. When the
Metro M0 and BFree shield is disconnected from power (battery, USB, or wall socket) the
energy harvesting circuitry takes over, enabling battery-free and untethered operation.

2.3.3. CHECKPOINTS AND PROGRESS

The BFree shield and our Python runtime are co-designed to enable resilience to power
failures. Before a power failure, the progress of the Python program is checkpointed.
The checkpoint operation takes all the volatile memory and data stored on the Adafruit
Metro M0 that is required to resume execution and saves it to the fast non-volatile storage
(FRAM) on the BFree shield. When enough energy is stored in the BFree shield for the
whole device to turn on, the Metro M0 turns on, downloads and restores the checkpoint
of past progress from the BFree shield, and then resumes executing the Python program
from where it left off. Doing so keeps the program from wasting cycles re-executing
old code, keeps memory and progress consistent, and makes it easier for the novice
programmer since they do not have to figure out what to do in the face of power failures.
These checkpoints are carefully managed between the BFree shield and Metro M0 so that
the Python code can be safely and consistently executed despite power failures.
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2.3.4. LIBRARIES AND SENSING
As shown in Figure 2.5, programmers can attach sensors via a breadboard and then
import built-in or third-party libraries to use with their Python program. Some built-in
libraries provide access to hardware functions on the Metro M0 and are heavily used by
MicroPython/CircuitPython programmers, for example, the time, digitalio, and busio
libraries. These enable time delays and measurements, usage of the digital pins, and
interaction with I2C and similar communication protocols (which enable use of external
‘breadboarded’ sensors), respectively. The BFree runtime provides modified versions
of these libraries, building in features to enable intermittent computation, reducing
surprises for the novice programmer who wants to move to battery-free operation. For
example, the I2C and digital pin state are saved in a checkpoint so that on reboot the
correct pin direction and output, as well as I2C configuration is restored. These system
design points together enable a broad range of built-in functionality and external sensors
and peripherals.

2.3.5. DEPLOYMENT
Programmers bring this all together to deploy real-world applications with BFree. Once
programmed through the laptop or desktop, the Metro M0 equipped with the BFree shield
is disconnected and deployed in the wild, harvesting energy and performing computation
and sensing despite power failures.

2.4. IMPLEMENTATION
We now describe the implementation challenges and details stemming from the system
requirements necessary to port a significant (CircuitPython) codebase to intermittent
operation. Our core implementation requirement is to enable power failure resilient
operation for interpreted Python programs over bare metal programming environments
such as C/C++. To achieve this (i) the progress of computation and memory consistency
against power failures should be ensured; (ii) the system reboot procedure should be
optimized so that the system recovers from power failures faster; (iii) peripheral state
should be restored so that peripheral interaction continues from a consistent state; and
(iv) system level libraries time, digitalio, and busio must be adapted for persistent and
reliable operation. The BFree additions to the CircuitPython interpreter include over 5500
lines of low-level code, written in C and assembly, split across the ARM Cortex-M MCU
on the Metro, and the MSP430FR MCU on the BFree shield. This represents a substantial
addition to the core codebase of CircuitPython to enable intermittent operation and
checkpointing.

2.4.1. HARDWARE
We designed and built the BFree shield capable of energy harvesting, power-failure de-
tection, managing checkpoints in non-volatile memory, and keeping track of time. This
shield sits on top of the Adafruit Metro M0 board—shown in Figure 2.6. The details of the
hardware design are as follows.

Energy Harvesting Circuitry: The energy harvesting circuitry on the BFree shield is the
source of energy for all the components on both the BFree shield as well as the Adafruit
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Figure 2.6: BFree hardware with annotated components and functions. The non-volatile memory controller
captures and logs checkpoint data. Power-failure circuitry allows for a configurable power-failure signal when
the energy in the storage capacitor is running low. Harvesting circuitry accumulates the harvested energy from
the harvester connector into the buffer capacitor and provides hysteresis control. The memory-clear button
provides the user with an easy way to restart the application (i.e., delete the checkpoints). Headers connect the
shield to the Adafruit Metro M-1 board.

Metro M0 board during battery-free operation. The BFree shield can be equipped with
any energy harvesting source, e.g., a solar panel through a connector to harvest ambient
energy. The energy harvesting circuitry accumulates the harvested energy from this
energy harvesting source into a capacitor, which is user-selectable3. A hysteresis control
(via MIC841 voltage comparator [159]) is implemented to enable operation when the
stored energy in this capacitor is above a predefined threshold.

Power Failure Prediction: The BFree shield is equipped with a user-configurable voltage
comparator—using a potentiometer and a nanopower comparator (TI TLV3691 [225])—
that is used to signal the BFree runtime that the storage capacitor voltage, and therefore
the remaining energy, is running low. This threshold voltage is made configurable because
the ideal setting highly depends on the capacitor’s discharge speed. In turn, this is a
relation between the current draw of the system, the incoming energy from the harvester,
and the size of the capacitor. As BFree aims to support many different applications
with wildly different requirements, this needs to be configurable to fit the applications’
needs. This power failure prediction signal can optionally be used by the BFree runtime
to change the checkpoint scheduling, reducing the checkpointing overhead when the
system’s remaining energy is not critically low.

Checkpoint Storage: The BFree shield is composed of non-volatile memory (FRAM)
hosted by a Texas Instruments MSP430FR5994 microcontroller [96] that has 256 KB FRAM
and 4 KB SRAM. The software on this microcontroller implements a map-based file

3We will report the exact values of both capacitor and the type of energy harvester while discussing results
assessing the impact of energy trace on BFree program execution in Section 2.6.3.
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system to store the checkpoints and takes care of the required double-buffering to keep
checkpoints from becoming corrupted. The microcontroller on the Adafruit Metro M0
board triggers a checkpoint operation by sending commands to the BFree shield over an
SPI bus. The MSP-based FRAM MCU was chosen to alleviate the BFree runtime from the
checkpoint management burden. However, it would be easy to equip the system with a
memory-only module and modify the BFree runtime to perform the data management
(e.g., double-buffering), provided that the Adafruit Metro M0 board would have on-board
FRAM.

2.4.2. SOFTWARE
We modified the CircuitPython runtime interpreter so that the necessary operations to
ensure the progress of computation and memory consistency are taken.

Checkpoints capture the volatile state of the ARM Cortex-M0 microcontroller on
the Metro M0 board that executes the Python interpreter. The volatile state of the ARM
Cortex-M0 includes the contents of the volatile main memory, where the global and
local variables are stored, as well as the contents of the registers and the state of any
initialised interface such as I2C. Capturing this state before a power failure, then restoring
this state on reboot ensures the progress of computation. Computation continues from
where it left just after the recovery from a power failure. However, not all state has to
be restored when the system restores a checkpoint. Some states such as USB and the
file system should be reinitialized from scratch. The CircuitPython codebase has been
explored and divided into two parts. One part that can be safely restored and one part
that requires re-initialization when the system attempts a reboot. We instrumented the
Python interpreter with potential (i.e., not forced) checkpoint locations. Most notably,
we added them to the main interpretation loop. The locations are potential because
whether a checkpoint is performed at these locations is decided by the current checkpoint
strategy (e.g., by the period-based strategy). An alternative is to trigger checkpoints via
power-failure prediction notification (which is possible with BFree hardware).

Checkpoint Content: The checkpoint contains all the necessary information for the
system to continue where it left off. As CircuitPython itself is written in C, this contains: (i)
the registers, (ii) global variables, (iii) the stack, and (iv) any dynamically allocated memory.
The C programming language allows for custom memory schemes as all the memory
can be accessed freely through pointer manipulation. A custom memory allocator is,
therefore, not uncommon within embedded software development. This is also the case
in CircuitPython by means of a garbage collector. The garbage collection sub-system
occupies all the remaining memory in the system after the global variables and the stack
are reserved, the size of which is determined within the linker script during compilation.
The garbage collector is also responsible for all the dynamically allocated memory in the
system, and all the Python interpreter specific stacks—as CircuitPython is a stack-based
interpreter. Our checkpointing implementation allows for the dynamic specification of
memory regions that are required to be checkpointed.

Excising C frameworks that support intermittent execution, such as [250], expect that
the whole system needs to be restored. In real-world applications, such as CircuitPython,
this does not hold. There are parts of the system that need to be reinitialized every reboot.
In CircuitPython, this mainly consists of the USB and flash file system-related data and
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Figure 2.7: Checkpoints ensure the progress of computation and memory consistency. The BFree Python
interpreter sends the checkpoint data (volatile memory contents and register values) over the SPI bus to the
BFree shield so that this data is stored in non-volatile memory. Upon recovery from a power failure, the stored
checkpoint data is used to restore the state of computation and the memory contents.

variables. Excluding this data from the checkpoint is not only to reduce the checkpoint
size—and therefore the checkpoint time—but also having these values at anything other
than zero can (and will) cause bugs during the initialization of these subsystems. We
inspected the CircuitPython code base and selected all global variables that require to be
checkpointed. These are put into a special configuration file, and the compiler will place
these special memory regions that are excluded from the checkpoint.

Checkpoint Operation: The left-hand side of Figure 2.7 depicts the steps taken during
the checkpoint save and restore operations. The checkpoint data is sent over the SPI bus
from the ARM Cortex-M0 microcontroller on the Metro M0 board to the MSP430FR5994
microcontroller on the BFree shield. The checkpoint includes the start and end addresses
of the volatile memory region on the ARM Cortex-M0 microcontroller and the contents
of this memory space. This step is repeated for the different memory sections in Cir-
cuitPython. Moreover, the contents of the general-purpose and special registers should
also be saved within the checkpoint context. Special attention is given to the registers,
as these need to be checkpointed last, and their content must not be altered during the
checkpoint procedure. Otherwise the state of the program will be corrupted when a
restore is performed. To guarantee this, the register checkpointing is written primarily in
assembly language.

All this information is sent over SPI and stored in non-volatile FRAM of the MSP430FR
on the BFree shield. It is worth mentioning that the checkpointed data is stored in a
double-buffered memory region in FRAM to ensure memory consistency: the checkpoint
is stored in a temporary memory region where the original memory region holds the
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data of the previous checkpoint taken successfully. After the checkpoint data is entirely
saved in the temporary buffer, an atomic variable is modified to swap the temporary and
original buffers, thereby committing the checkpoint. If the preexisting checkpoint would
be directly overwritten, a power failure during a checkpoint would lead to a corrupted
state and would therefore require a complete restart of the application.

Restore Operation: Figure 2.7 also depicts the restore operation. After sufficient energy is
harvested and the system reboots to start operating again, the latest successful checkpoint
needs to be restored so that the computation continues from where it left. For checkpoint
recovery, the Metro M0 board communicates with the MSP430FR5994 on the BFree board
over SPI. It reads the contents of the checkpointed memory regions and the values of the
registers and peripherals. The recovery is completed by jumping to the next instruction
to be executed. The successful restoration of the volatile state captured in the checkpoint
ensures the progress of computation and memory consistency. To enable a manual
hard reset—restarting the application from the beginning—an additional reset button
is provided on the BFree board. Pressing this button while powering up the system will
delete the existing checkpoint. Additionally, this can be achieved by uploading a new
Python script to the Metro M0 or by restarting the current Python script using the standard
Python Read-Evaluate-Print-Loop (REPL) language shell made available over the serial
interface.

Reducing System Restart Burden: Unmodified CircuitPython takes an entire second to
boot, which wastes a significant amount of energy. The Metro M0 board has a bootloader
to easily update the CircuitPython binary. This increases the bootup time because some
time is reserved for the user to notify the system to mount it for a CircuitPython update.
Additionally, approximately 700 ms is introduced to let the user enter a so-called safe
mode, shown in Figure 2.16. We remove this delay and optimize other delays during the
reboot in our modification of the runtime (in-depth discussion of this matter is provided
in Section 2.6.5). We do not alter the bootloader code, as we want hobbyists to be able
to freely change their CircuitPython image to our intermittent version (BFree) and back
without the need for an external programmer.

Peripherals and Libraries: For the proper operation of battery-free hardware platforms,
the states of peripherals, including digital pins, I2C, and time, should be restored after
a power failure. As an example, during a particular I2C communication between the
microcontroller and a sensor (i) first the dedicated I/O ports of the microcontroller are
configured for I2C operation, (ii) then the sensor is configured for the desired operation,
(iii) and finally the command for the desired operation is sent, e.g., sampling or actuation.
Upon power failure, if the command is sent without re-configuring the I/O ports of the
microcontroller and/or sensor, the sensor sampling will not work correctly.

In order to require minimal changes to existing CircuitPython applications that make
peripherals and external sensors, a balance was struck between automated restoration
and programmer aided restoration. The states of the peripherals are automatically re-
stored during the restore operation. However, the initialization of different sensors can
wildly differ on a case by case basis. Therefore any re-initialization required by the sensor
must be performed by the programmer. In traditional CircuitPython libraries, the split
between peripheral and sensor initialization is already present, therefore it is often only
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needed to relocate the sensor initialization library calls to just before the reading. The
effects and impact of this trade-off will be further showcased in Section 2.5.

Checkpoint Strategies: We designed three checkpoint scheduling strategies that use the
information provided by the power-failure prediction signal from the BFree shield (see
the description of power failure prediction in Section 2.4.1). These strategies, named (i)
periodic, (ii) trigger, and (iii) hybrid, have different overheads since they generate a differ-
ent number of checkpoints during program execution. The periodic strategy generates
a checkpoint of the system every p milliseconds, without considering the power-failure
signal. Alternatively, the trigger strategy generates a checkpoint every p milliseconds only
when the power-failure signal is active. The hybrid strategy is a combination of the other
two strategies: it generates a checkpoint either every p milliseconds when the energy
level is high (i.e., the power-failure signal is not active) or every q milliseconds when the
power-failure signal is active (i.e., low energy operation).

Among the checkpoint strategies, the trigger strategy eliminates all checkpoints when
the energy level is not low, a desirable property. However, when the power-failure signal is
active, this strategy requires enough energy (i.e., active-time) to perform a checkpoint—
which might not be guaranteed due to varying energy harvesting conditions and different
capacitor sizes. Therefore, if the storage capacitor discharges faster than checkpoint gen-
eration, periodic checkpoints are ideal. Under varying energy harvesting conditions (e.g.,
solar energy harvesting frequently distracted by clouds), the hybrid strategy can perform
the best. In our system, the programmer can switch between these checkpoint strategies
as well as change their parameters (i.e., p) at runtime using a builtin Python library. This
enables dynamic and configurable checkpointing with respect to the characteristics of
the energy harvesting environment during the application’s execution.

2.5. BFREE DEPLOYMENT AND USE CASES
The key question for BFree is how useful it is for building battery-free applications. In
this section, we engage in proof by demonstration, showing a range of battery-free ap-
plications that BFree enables for novice programmers. We build useful, sustainable, and
battery-free applications around BFree with unmodified CircuitPython. Figure 2.8 shows
hardware prototypes of two example applications, (i) LoRa4 sensor mote and (ii) elec-
tronic paper temperature display. For each application, we design an experimental plan
to explore how battery-free operation affects design and deployment. We proceed with
discussing each prototype in detail.

2.5.1. BFREE LORA SENSOR MOTE
The classic use case for embedded systems is to measure environmental factors long term,
with seminal examples deploying ‘motes’ like the TelosB [193] for applications including
volcano monitoring [241], habitat, and wildlife monitoring [146], wildfire detection [78],
and precision agriculture [121], among many others. BFree enables these types of envi-
ronmental monitoring applications programmed in Python, without relying on batteries.

4LoRa is a low power, wide area, low data rate network protocol. It is increasingly common in distributed sensor
networks because of unlicensed operation and very long communication ranges. More details on LoRa can be
found in many academic surveys, e.g., [195].
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Figure 2.8: Assembled hardware to demonstrate two hobbyist-grade applications written in unmodified Circuit-
Python running on intermittent energy with BFree: (A) LoRa sensor mote, and (B) electronic paper temperature
display.

All of these applications have similar functions typical of an edge computing system; they
opportunistically measure some aspect of the environment, process and summarize the
collected data, and (when a specific condition is met) share this information wirelessly.
We prototyped an environmental monitoring system hardware on a breadboard (as is
typical of a hobbyist) and programmed it using Python software. The sensor senses tem-
perature and humidity, averages multiple readings, and then sends that data wirelessly
to a base station. We used an unmodified Adafruit SI7021 [3] breakout board, which
continuously measures temperature and humidity and sends the measured data to the
Adafruit Metro M0 board for further processing through the I2C bus. When a predefined
number of samples are collected, BFree averages them and broadcasts this value using an
Adafruit RFM95W [7] LoRa radio transceiver breakout board connected to the Adafruit
Metro M0 board via the SPI port. To receive and verify the messages broadcast by BFree, a
dedicated LoRa messages collector operating on constant power that continuously listens
for LoRa packets has also been built using a second Metro M0 board running vanilla
CircuitPython.

For both the SI7021 sensor and the RFM95W LoRa module, we used the unaltered
Python libraries provided by Adafruit. Within the application Python the only alterations
were (i) moving the LoRa initialization to the transmission code and (ii) disabling check-
points before the LoRa initialization and transmission and enabling them after, which is
provided in an API for BFree programmers. Doing so is required as the LoRa module has
an internal state that needs to be configured at boot, which will be lost after every power
failure. The SI7021 has no internal state and is therefore automatically handled by the
BFree runtime. So only two additional single-line statements from the programmer are
required to fully unplug the USB cable, leave the battery behind, and survive off energy
harvesting only. With BFree, programming in Python, and using hobbyist electronics, this
relatively complex application is easily transformed into a battery-free system resilient to
power failures.

Experimental Setup: To demonstrate that BFree works as expected, we run a series of
benchmarking tests on the LoRa application that exercises the checkpointing and restore
the functionality of a complex, peripheral enabled application. We limited the number of
LoRa packet broadcasts to 50, and the number of samples collected (both the temperature
and the humidity) before a broadcast to 100. These numbers were chosen such that the
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Table 2.1: Duty cycle to on/off relation.

Duty cycle (%) On time (s) Off time (s)

100 ∞ 0 (i.e., continuous power)
83.3 5 1
66.6 4 2

50 3 3
33.3 2 4

benchmark on continuous power completes in approximately 250 seconds. The payload
of each LoRa packet contains three main fields coded in plain text: (i) broadcast packed
ID, and (i) average temperature measurement, and (iii) average humidity measurement
(comma-separated two decimals per each of the two measurements). To make our
evaluation repeatable and remove any potential energy harvesting variability, we connect
a controlled square wave (low state of zero volts and high state of positive voltage) to the
harvester input. This way, we can experiment with the on/off time relation (i.e., duty
cycle) of the system in a controlled way and more accurately synchronize the start of the
application with the start of an on period. Additionally, by varying only the duty cycle and
not the time it takes to perform one on/off cycle we can directly compare the results from
run to run. The only limitation we encountered using this controlled setup is the lack of
power failure detection, as the square wave causes an immediate power fault, limiting us
to investigate only the periodic checkpointing strategy. We configured the system with a
checkpoint period of 200 ms, i.e., when the system is active every 200 ms a checkpoint is
created. Additionally, we chose a period of six seconds and ran the application using five
different duty cycles shown in Table 2.1. Note that an on-time of one second is too short
to be feasible due to the limitations imposed by the setup, initialization time of the LoRa
module, and broadcast time of the LoRa module.

Summary of Results: We experiment with different levels of intermittency, i.e., different
levels of energy availability. As the duty cycle, we selected (see again Table 2.1) decreases
from 100% (i.e., continuous power) down to 33.3%, the total time to complete the bench-
mark increases. However, the active time (i.e., the time the system is on and executing
code) remains somewhat constant, see Figure 2.9a. The difference between the active
times is the accumulation of all the reboot procedures, checkpoint restores, and re-
execution of code executed before a power failure and after the last checkpoint. As shown
in the same figure, this only accounts for a small amount of the active time. The total
number of samples, as can be seen in Figure 2.9c, stays constant throughout all the runs
since our application performs 50 LoRa packet broadcasts and broadcasts data only after
100 samples are taken and averaged. The number of restorations in Figure 2.9b is equal
to the number of off-time occurrences throughout the run. The number of checkpoints
in this configuration is approximately equal to the active time divided by the checkpoint
period.
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Figure 2.9: Evaluation of the LoRa sensor mote application. This application sends a total of 50 LoRa broadcast
packets that carry the average temperature and humidity of 100 samples collected. The intermittency is
varied using different duty cycles within 6 second period (see Table 2.1). The period checkpoint strategy with
a checkpoint period of 200 ms is used. The results indicate that (a) as the off time increases, the total time
increases as it takes longer to complete the benchmark application. The constant active time (the time the
system is actually on) shows that the overhead caused by re-execution and restores is minimal; (b) the number
of checkpoints stays constant due to the periodic checkpoint strategy; (c) as the benchmark is completed after
5000 samples are collected (50 times 100 samples), the total number of samples stays constant irrespective of
varying duty cycles.
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2.5.2. BFREE ELECTRONIC PAPER DISPLAY

The second demonstration system we developed is a BFree electronic paper display that
updates a display output every n seconds with the average temperature since the last
display refresh. These displays are becoming more common for electronic shelf labels in
automated supermarkets and grocery stores, as they can automatically update values and
pricing without human intervention. Of course, these systems suffer from the use of a
battery. With BFree, a shelf label can be energy harvesting and auto-updating. For this
demonstration, we breadboard a BFree system that takes average temperature readings
over time and displays it on e-paper at a set update rate. We use the same temperature
sensor as used in the LoRa application, i.e., Adafruit SI7021 (see Section 2.5.1). For the
display, we use an electronic paper (e-paper) display. E-paper displays are ideal for
intermittent applications as they retain their display state even if there is no power. A
limitation with e-paper displays is the low maximum refresh rate and (in some cases)
the requirement to perform a time-consuming update cycle whenever a section of the
display requires changes. We set to show the average temperature every ten seconds,
so the maximum update rate is not an issue. On the other hand, to overcome the need
to update the whole screen (which can take between two and ten seconds depending
on the model of the display), we chose a Wemos Electronics 2.13 inch 250×122 e-paper
display [240] that supports partial updates. Partial updates allow us to only write to a
small section of the screen, reducing the update time to around 0.7 seconds. As there are
no e-paper libraries for CircuitPython that allow for partial updates, we wrote a custom
library in C as a demonstration that BFree also works for built-in libraries written in
C. Additionally, the e-paper application demonstrates a different kind of intermittent
application. For LoRa, the number of samples and broadcasts was fixed, so a certain active
time is required to complete the benchmark. In contrast, for the e-paper application,
we added a real-time clock (RTC) and fixed the refresh-period of the e-paper display.
The RTC is an Adafruit PCF8523 module [4] and is used without modifying the provided
Python library. Note that the RTC module supports a coin cell battery by default (which
was used in the experiment), but any (super-)capacitor can also be used to keep BFree
completely battery-free (for example 220 mF capacitor should keep the RTC running for
at least a month assuming a startup charge of 3.3 V, see [172, Page 34], simple circuitry
could additionally be used to charge the RTC capacitor from harvested energy).

Experimental Setup: We chose to refresh the e-paper screen every ten seconds. To com-
plete the benchmark, a total of 25 screen refreshes must be performed. These numbers
were chosen to (i) not damage the e-paper display by exceeding the refresh rate and (ii)
limit the total benchmark time on continuous power to approximately 250 seconds. For
the same reasons mentioned in Section 2.5.1, we use a square wave with different duty
cycles (see Table 2.1) to power the board and a checkpoint period of 200 ms to evaluate
the applications.

Summary of Results: In contrast to the LoRa application presented earlier, the total
time of the e-paper application remains constant (see Figure 2.10a) as the duty cycle
decreases from 100% down to 33.3%. This is due to the fact that we fixed the amount of
time the benchmark takes (using the RTC and a fixed number of screen updates) instead
of fixing the number of samples required to complete the benchmark. Consequently, the
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Figure 2.10: Evaluation of the e-paper application benchmark refreshing the screen a total of 25 times with
the average temperature collected during a ten-second period between refreshes. The intermittency is varied
using different duty cycles of a six-second period (see Table 2.1). The period checkpoint strategy is used with a
checkpoint every 200 ms. The results indicate that (a) total time stays constant and the active time decreases
(in contrast to Figure 2.9a). This is because of the time-sensitive nature of the application; (b) the number
of checkpoints decrease when the duty cycle increases because it is directly tied to the active time when the
period checkpoint strategy is used. The restores are constant for the same reason; (c) because the benchmark is
completed after 250 seconds (25 times 10 seconds) the total number of samples decreases as the active time
also decreases.
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active time, the total number of samples (Figure 2.10c) and the number of checkpoints
(Figure 2.10b) decrease. Since the number of times the system turns off during the bench-
mark is also constant—except for the case of continuous power—the number of restores
is constant.

2.6. EVALUATION
The main design goals of BFree are to (i) match the runtime performance of CircuitPython
on continuous energy, (ii) enable the progress of computation during intermittent opera-
tion that relies only on harvested energy, (iii) introduce a minimal burden on baseline
CircuitPython in terms of resources. In order to see if we meet these goals, we evaluate our
BFree prototype implementation by comparing its performance and runtime overhead to
unmodified baseline CircuitPython/MicroPython and regular C. In particular, we perform
the following experimental evaluation:

1. Running benchmark programs in order to measure the performance versus baseline,
and verify the correctness of execution despite multiple power failures;

2. Demonstrating the effects of using harvested energy and different checkpoint
strategies;

3. Measuring the cold boot (startup time) of the system;
4. Profiling the resource requirements such as the main and non-volatile memory

overhead;

Experimental Setup: For each experiment, we use an Adafruit Metro M0 with the BFree
shield connected on top. We control power delivery in one of two ways: (i) via a microcon-
troller that gates power using a MOSFET from a Digilent power supply to the BFree device
under test, allowing us to repeatably simulate intermittency rates, and (ii) via a lamp from
which the BFree shield harvests light energy. We use a Keysight DSOX3014A oscilloscope
and Saleae Logic Pro 8 Logic Analyzer to perform time and electrical power (P/I/V/E)
measurements. When making comparisons, we use baseline CircuitPython firmware
(version 4.1.0) running on the same experimental setup (i.e., software and hardware).

2.6.1. COMPARING EXECUTION TIME: C, CIRCUITPYTHON, BFREE
An interpreted programming language, such as CircuitPython, will, in most cases, be
slower (in terms of code execution duration) than a compiled language, such as C—a lan-
guage of choice for professional development with embedded microcontrollers. Python
(thus also CircuitPython) will trade-off execution speed for code extensibility, code clarity,
and multi-purpose features. In this experiment, we measure the difference in execu-
tion time between interpreted CircuitPython and bare-metal C compiled to machine
code. Additionally, we compare the execution time of BFree (as in our modified Circuit-
Python runtime coupled with the BFree shield) compared to vanilla (i.e., unmodified)
CircuitPython.

Experiment: We measured CircuitPython’s execution speed for selected three simple
programs, (i) a Fibonacci sequence generator (for one specific value), (ii) a program
that outputs the length of a predefined string, and (iii) a program that counts bits of a
predefined bit sequence. Each of these programs was implemented in simple Python, and
in C. All programs were written such that they did not rely on any internal or high-level
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Figure 2.11: Comparison of execution time of three applications: (i) generator of Fibonacci sequence for the
value of 40 (denoted as Fibonacci), (ii) program that outputs the length of a predefined string with a length of
40 characters (denoted as String length), and (iii) a program that counts the bits of the number 0x7FFFFFFF
(denoted as Bit count) written with (i) vanilla C language, (ii) vanilla CircuitPython (denoted as CPy), and
(iii) CircuitPython running under BFree runtime. Two cases of checkpoining were used: (i) trigger, with
checkpoint triggered by an on-board BFree comparator and (ii) periodic, with checkpoint every 200 ms. Each
application is run 10000 times and the result presented is the average of all the runs. Applications implemented
in CircuitPython with and without BFree shield take up to a thousand times more time to complete than simple
C implementations. On the other hand, BFree introduces a small overhead over vanilla CircuitPython.

functions (of either C or Python). All three programs (for C and for Python), which source
code is available in [230], were executed on Adafruit Metro M0 board with and without
BFree shield. The same programs were also run on two versions of BFree: (i) trigger, when
BFree on-board comparator triggered a checkpoint (refer to Section 2.4.1 (Power Failure
Prediction)) and (ii) periodic when the checkpoint was triggered periodically every 200 ms,
irrespective of supply voltage level. We compare all programs with continuous power
to not confound execution time with delays from power failures and only compare the
actual time computing.

Results: The result of the experiment is presented in Figure 2.11. Our results confirm our
intuitive hypothesis that compiled C programs are faster than interpreted CircuitPython.
In terms of actual values, compiled C demonstrates thousands of times faster execution
than CircuitPython. On the other hand, we see that BFree gives only a small overhead
compared to vanilla CircuitPython, which is already widely used by the maker community,
proving that the end user of BFree will not experience significant performance degra-
dation compared to vanilla CircuitPython. Our final observation is that event-driven
checkpointing reduces the overhead of the intermittent runtime, which is clearly seen
comparing BFree (triggered) and BFree (periodic) for all three programs in Figure 2.11.

2.6.2. BENCHMARKING FOR CORRECTNESS AND POWER FAILURE RESILIENCE

Next, we measured the execution time and correctness of the same benchmarks written
in Python as the one used in the previous experiment (see Section 2.6.1) running on
BFree. Each benchmark was executed on intermittent power of a varying duty cycle,
the same way as done in Section 2.5.1, i.e., different duty cycles of a total period of six
seconds, where a duty cycle of 100% equals constant power (see Table 2.1). Also similar
to Section 2.5.1, a periodic checkpoint strategy was used with a period of 200 ms. The
results of the evaluation are given in Figure 2.12.

The key takeaway from Figure 2.12 is that BFree allows these benchmark programs
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(a) Fibonacci sequence execution time
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(b) Fibonacci sequence checkpoints and restorations
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(c) String length sequence execution time
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(d) String length sequence checkpoints and restorations
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(e) Bitcount sequence execution time
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(f) Bitcount sequence checkpoints and restorations

Figure 2.12: Evaluation of the Fibonacci, String length, and Bit count benchmarks written in Python (the same
ones as used in Figure 2.11), using the same input as mentioned in Section 2.6.1. The benchmarks are executed
in a loop of 30000 iterations for Fibonacci and bit count, and 10000 iterations for the string length application.
The intermittency rate is varied using different duty cycles of a six-second period (Table 2.1) with the addition of
the 16.7% duty cycle. The period checkpoint strategy is used with a checkpoint every 200 ms. (figures (a, (c), and
(e)). As with the LoRa demonstration app (Section 2.5.1), these apps are computational and not time-based,
therefore (again) the total time increases with the increase of the off-time. The slight increase in active time is
due to the re-execution of code that happens after the last successful checkpoint, and restore operations (figures
(b), (d), and (f)). Due to the period checkpoint strategy, the number of checkpoints remains the same. The
number of restores is equal to the number of reboots of the system, and therefore is also equal to the number of
off periods.
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Figure 2.13: Recording of the energy trace (the voltage on the capacitor) when running the Fibonacci benchmark.
The light intensity used was (a) 1000 lx, and (b) 3000 lx. Both traces used a 15 mF storage capacitor and the
power failure signal (signaling low energy operation) is configured at 3.25 V on the storage capacitor. The low
energy operation is nearly imperceptible at 1000 lx as the voltage of the storage capacitor is falling too fast.

to complete and make progress despite intermittent power failures. This would not be
possible for this task using normal CircuitPython, as the benchmark will never complete.
The time it takes for the benchmark to complete, including the time the system is off due
to a power failure, is denoted as the total time. The active time is the time spent executing
code, i.e., the total time minus all the off-times/time during power failures. Additionally,
the active time (denoted as dark blue in Figure 2.12) only slightly increases when the
number of power failures increases, signifying that our boot and restore overhead is
small. Because we used a periodic checkpoint strategy, the number of checkpoints
remains constant, and the number of restores is equal to the number of power failures.
If a trigger-based strategy were used, the number of checkpoints would grow with the
number of restorations. This is because the number of checkpoints created during low
energy operation is determined by the programmer through the potentiometer setscrew
on the BFree shield, the incoming energy and the consumed energy (Section 2.14).

We verified the outcome of each benchmark for correctness (for example, by com-
paring the values generated by the Fibonacci function). Since the programs running
intermittent power had multiple power failures before the final result was computed,
the intermediate results and checkpointing must work for the correct result. By getting
the correct result for each of the benchmarks, this demonstrates that the BFree method
preserves program consistency and correctness through power failures.
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2.6.3. EXECUTION IN VARIED ENERGY HARVESTING ENVIRONMENTS

To evaluate the power-management and harvesting subsystems of the BFree shield, we
directly connected a solar panel to the BFree shield and recorded a trace of the system. The
Python code running during this trace is the Fibonacci benchmark used in Section 2.6.2.
We used a 6 V 0.6 W 80×55 mm off-the-shelf solar panel [168] and recorded the system’s
operation during an 80-second time window for two different light intensity levels. These
levels are 1000 lux and 3000 lux and correspond, approximately, to an overcast day and
shade during a sunny day, respectively. Note that no maximum power point tracking was
performed as the solar panel was directly connected to the BFree shield; a 15 mF storage
capacitor was used.

The results are shown in Figure 2.13. As can be seen the active time (light blue)
in Figure 2.13a is significantly shorter than in Figure 2.13b, because of this the low energy
operation (dark blue) is extremely short. We also clearly see the intermittent operation
for both cases of light intensities.

2.6.4. MEASURING THE EFFECT OF CHECKPOINT STRATEGIES

Different energy scenarios require different checkpoint strategies (refer to Section 2.4.2).
To observe the performance of each of the introduced strategies, we recorded a single
active period for each of these strategies (periodic, trigger, and hybrid), each with two
different configurations. The system configuration is identical to the one used in gener-
ating Figure 2.13b. The results are presented in Figure 2.14. The impact of the different
strategies on the Fibonacci benchmark can be seen in Figure 2.15, with the summary
presented in the caption of the figure.

2.6.5. STARTUP TIME

We measured the cold boot time of the baseline CircuitPython system to be 700 ms. By
applying the techniques described in Section 2.4.2, we reduced the boot time of BFree
considerably. A full boot of the BFree until the point the system is ready to restore a
checkpoint is now approximately 270 ms. A detailed result of this comparison is presented
in Figure 2.16.

2.6.6. RESOURCE USAGE

We measure the memory and speed overhead incurred from our checkpointing routines.

Checkpoint Content: BFree either periodically or on-demand checkpoints the volatile
system state to the BFree shield over SPI. The transfer speed and the checkpoint size are
dominating factors when it comes to the overhead introduced by BFree. The current
SPI frequency is is set to 3 MHz. The checkpoint size is constant and dominated by
the size of the garbage collector and is therefore always 27.6 kB. The distribution of the
memory regions making up the checkpoint is shown in Table 2.2. Therefore, the time
spent performing a checkpoint is also constant and measured it to be approximately
75 ms. A restoration is slightly slower, averaging around 80 ms. The SPI frequency can be
increased to 4 MHz to improve the checkpoint time to approximately 52 ms, but this can
leave the system vulnerable to interference on the SPI bus. Therefore, all the experiments
were performed at the slower clock speed of 3 MHz.
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Figure 2.14: Recordings of the checkpoint strategies—period, trigger, and hybrid—each with two different
configurations that can all be configured at runtime by the user. The period based strategy, figure (a) and (b),
does not take low energy into account when scheduling a checkpoint. When using the trigger based checkpoint
strategy, figure (c) and (d), checkpoints are only performed when the energy level is low. Lastly the hybrid
approach, figure (c) and (f), has two configuration periods: (i) one during normal operation, and (ii) one during
low energy operation.

Checkpoint Code Overhead: The memory footprint of BFree compared to CircuitPython
is presented in Table 2.3. Therein, it is seen that the FLASH footprint, representing the
additional code, is almost the same for both CircuitPython and BFree due to the scale of
the CircuitPython project. The additional mechanisms to allow for checkpoint creation
and restoration introduced by BFree increase the RAM used by almost 17%, reducing
the memory left for CircuitPython applications by 7.3%. To put these numbers into
perspective, the RTC library used in Section 2.5.2 which was written by the CircuitPython
community (in other words: not the authors of this thesis), requires almost seven times
more memory than the additional memory required by BFree. Most of the increase in
memory consumption is caused by additional data structures introduced to keep track
of the peripheral state during execution and a 512 Byte ‘safe stack’ used to execute the
checkpoint routines without changing any of the memory in use by the Python interpreter.
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Figure 2.15: Evaluation of the Fibonacci benchmark from Section 2.6.2 running on intermittent power harvested
using the same hardware setup as in Section 2.6.3. The chosen light intensity was 3000 lx; a 15 mF storage
capacitor was used. We tried to keep the light intensity—and therefore the active time—constant, but in practice
it varied from 2.1 to 2.6 seconds. The checkpoint strategies were configured as in Figure 2.14 (b), (d), and (f),
respectively. The results show that the total execution time, see figure (a), not only depends on the chosen
checkpoint strategy, but also the configuration parameters of the strategy. In theory, the total time of the hybrid
strategy can be lower than the period strategy. In this case, the number of checkpoints taken, see figure (b),
is lowest for the trigger strategy and highest for the hybrid strategy. The hybrid strategy can be improved by
either (i) lowering the checkpoint frequency of any of the energy operation modes, or (ii) by tuning at what
voltage of the storage capacitor the low energy operation starts (see Section 2.4.1 (Power Failure Prediction)).
The number of restorations, see Figure (b), directly translate to the number of off periods encountered during
operation.
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Figure 2.16: Measurement of the boot time of pure CircuitPython running on Adafruit Metro M0 board only
(top graph), and CircuitPython running on top of Adafruit Metro M0 board, connected to BFree shield running
BFree runtime (bottom graph). Current measurement was taken with a digital oscilloscope connected to a
shunt resistor connected in series to Adafruit Metro M0 power supply port (powered by 3.3 V from an external
source). The bottom figure clearly shows that we have optimized BFree boot time considerably by eliminating
the introduced delay to enter ‘safe mode’ and by disabling the on-board RGB LED (used to show the current
stage of operation on Metro M0 board), reducing the current consumption and voltage fluctuation during
startup. BFree current consumption (shield and runtime) is approximately 2.2 mA and is the difference in
current consumption between the top and the figure.
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Table 2.2: BFree checkpoint content and its respective size in Bytes.

Checkpoint Content Size (Bytes)

registers 68
.data 16

.bss 1320
stack 5280

garbage collector 20916
total 27600

Table 2.3: CircuitPython and BFree memory footprint. For ease of comparison the increase in FLASH and
RAM use between CircuitPython and BFree is directly noted. The remaining memory for the CircuitPython
application is roughly 24000 bytes when using BFree. To put these number into perspective, the RTC library
used in Section 2.5.2 uses approximately 8000 bytes of memory, almost seven times more than the additional
memory required by BFree.

CircuitPython (Bytes) BFree (Bytes) Increase (%)

FLASH RAM FLASH RAM FLASH RAM
193488 6840 204336 8000 5.61 16.96

2.6.7. DISCUSSION OF RESULTS

We consider different aspects of the evaluation results.

Performance: As shown with the benchmarks’ performance, the additions made to the
CircuitPython runtime system do not significantly hamper the operation of programs
while plugged in. When running on harvested and intermittent power, the performance is
mostly determined by the amount of energy that can be harvested and the length of power
failures. We note that without careful recovery mechanisms like those implemented in
BFree, CircuitPython programs will go into inconsistent states, corrupt memory, or crash
when harvesting energy and running intermittently.

Overhead: The current mechanism for checkpointing takes nearly the entire volatile
memory and saves it. This takes a significant amount of time to checkpoint versus bare-
metal, C-based embedded runtime systems. However, this level of overhead is often
acceptable for reactive, human speed, sensing-based, and low numerical complexity
programs run by makers and hobbyists.

Hardware Limitations: We note that the CircuitPython Metro board is not necessarily
designed for low power operation or untethered operation, as the 10–15 mA operating
range is quite high (see again Figure 2.16), and the selection of circuitry for USB commu-
nication, power regulation, and others are designed for ease of manufacture and cost.
Additionally, peripherals are connected in such a way that they use power even when off.
A careful redesign of the Metro M0 board would easily reduce total power consumption by
an order of magnitude by using lower power ARM microcontrollers, e.g., [14], selectively
gating peripherals, and redesigning the power conditioning circuitry. Despite this, we
have shown that application development with BFree is still possible and performant.
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Fair Comparisons: We do not compare against state-of-the-art intermittent runtime
systems like InK [250], Alpaca [142] or Chain [47], as these are written for professional
programmers in C. Neither BFree nor CircuitPython/MicroPython can approach these
runtimes’ low overhead or performance (as shown in Section 2.6.1 comparing Python
to C), as they spend significant clock cycles interpreting Python bytecode, managing
the Python runtime, and facilitating operations that make the novice programmers life
easier (such as handling USB connections and file systems). However, these systems
are not in competition as they present radically different programming models, with the
former serving expert developers. In contrast, we propose to serve novice and hobbyist
developers seeking entrance into the ubiquitous and untethered computing world.

Harvesting Tradeoffs: During our evaluation, we used a single storage capacitor, and we
only measured the trace using one solar panel (although with different light intensities).
Changing these will affect energy harvesting and, potentially, the operation of the appli-
cation. If we consider an application with a certain energy requirement, increasing the
capacitor size will lead to a longer active time. This means that a different checkpoint
strategy might be optimal. If the harvester output energy is increased (e.g., by using a
different solar panel), the active time will also increase. However, increasing the capac-
itor size will also affect the off-time of the system, as the capacitor also takes longer to
charge. Because BFree is intended for hobbyists and can be applied in various ways, in
many different configurations, we did not exhaustively evaluate all the combinations.
Instead, we attempted to provide an overview of the possible combinations and the sig-
nificant number of parameters that can be tuned in BFree—both in the hardware and
the software—to gracefully handle all these different harvesting scenarios considered
in Section 2.6.3 and Section 2.6.4.

2.7. USER STUDIES
To complement the evaluation results of BFree presented in Section 2.6, we conducted
two user studies5, both approved by the Human Research Ethics committee of Delft
University of Technology, that ask the following research questions:

• RQ1: Would programming considering intermittency support in (Circuit) Python
be easier than with state of the art intermittent programming runtimes (written for
the C language)?

• RQ2: Is the system we built usable and useful with regard to making battery-free
electronics (powered by ambient sources) for low skill, inexperienced makers?

These research questions help us to understand how novice programmers would best
be able to program systems previously only used by experts.

2.7.1. BFREE LANGUAGE COMPARATIVE STUDY
To answer question RQ1, we conducted a study on a large group of computer science stu-
dents of the Delft University of Technology. We asked them to compare Python and C/C++
in the context of application development for intermittent computing. The purpose of this
study is by no means to evaluate the BFree programming language (i.e., CircuitPython)

5Details about the study, including questionnaire and the detailed answers given by participants of both studies
are available in [230].
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Figure 2.17: BFree language comparative study results (356 participants; the average age of the participant of
the study was 19 years, with the youngest participant being 17 years old and the oldest—35 years old). Figure
(a) presents study participants’ technical capabilities self-assessment, while figure (b) presents answers to a
questionnaire provided after participants were exposed to a simple task of finding a bug in a Python code
transform to handle power intermittency. A large group of participants with little programming experience and
exposure to hobbyist embedded systems unanimously agreed that system that handles program correctness
despite power interrupts would help a programmer and save development time. Note: number on each bar in
both figures represent the number of responses to each question.

or its sub-components, but to verify the hypothesis that (Circuit) Python programming
language (with intermittent execution support engine invisible to the programmer) is
easier to use for a novice programmer, compared to state of the art software solutions
targeting expert programmers, such as [119, 250, 142, 47] based on the C language.

PARTICIPANTS

As noted earlier, our study was performed among a large pool of students of computer
science of Delft University of Technology (details on the student cohort are given in
the caption of Figure 2.17). We aimed at students of varying levels of experience with
computer programming and with hobbyist-level microcontrollers. Specifically, we have
presented the questionnaire during a break of one lecture of the first-year undergraduate
“Object Oriented Programming” class, second-year undergraduate “Digital Systems” class,
and graduate-level “Analytics and Machine Learning for Software Engineering” class.

Participants have self-assessed their technical abilities and knowledge of the Adafurit
Metro M0 and CircuitPython by answering a short questionnaire at the end of the study,
which will be described in the subsequent section. Results of the self-assessment are
given in Figure 2.17a, with the raw data accessible in [230].

Based on the outcome of the self-assessment, we conclude that majority of students
never heard of CircuitPython and had very little experience with using Arduino Uno [21]
or Adafruit Metro M0 [5]. Moreover, we conclude (see again Figure 2.17a) that the majority
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of students have little or no programming experience (especially in C/C++). This level
of experience is representative of inexperienced hobbyists beginning with active use of
embedded electronics platforms.

DESIGN AND EXECUTION OF THE STUDY

Firstly, we presented the study participants with a short overview of the challenges of
program execution on battery-free devices running intermittently, followed by the link
to the questionnaire. The questionnaire started with a short textual introduction to
CircuitPython and small embedded microcontrollers, followed by a short description of
the intermittent computing problem. Neither during the overview, nor in the introduction
to the questionnaire, it was revealed that the authors are the designers of BFree hardware
and BFree Python, to avoid any bias in giving answers.

We then proceeded with the exercise that exposed the respondents to the cognitive
burden of intermittent computing. That is, we provided a short explanation on how to
convert a Python code into one that can run intermittently. This conversion is done by
the process of task transformation, shown earlier in Figure 2.4, e.g., in the same way as
proposed by the state of the art runtimes for C language such as InK [250] or Alpaca [142].
Then the participants were asked to find a bug in the Python code of a simple “variable
swap” function, which does not use an extra temporary value, i.e., the code executed

a = a + b; b = a - b; a = a - b .

After this step, we presented three different task-transformed implementations of the
original Python code of this “variable swap” function. Two of these implementations were
50 lines long, while the third one was 52 lines long. Exact code listing is provided in [230].
Among these three intermittently-executable program options two contained a bug: one
option had an incorrect task transition and the other option did not save the program
state completely. Respondents had to choose the bug-free version one from the three
choices. After a choice was made respondents were not allowed to change their answer.

RESULT

From all respondents 78.7% (292 out of 371 responses to this question) found the cor-
rect answer and spent approximately five minutes on this task. This implies that the
respondents were educated enough to answer the core set of questions.

After the participants gave an answer to this exercise we then asked three core ques-
tions pertaining to the simplicity of BFree Python. Answers could be provided on the
five-level Likert scale. Questions and the results are shown in Figure 2.17b. Therein,
we see that an overwhelming majority assessed that developing intermittent programs
using BFree Python is easier (and also faster) than using existing systems (i.e. manual
transformation of the code for intermittency protection) that lead to extensive cognitive
burden. We consider this a positive answer to the research question RQ16.

6We recall that the task transformation is one of the core ways of preparing code for intermittency for advance
embedded systems programmers, see [250, 142].
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2.7.2. BFREE USER EXPERIENCE STUDY

We proceed with the second study aiming at answering RQ2, by asking a small set of stu-
dents to experiment with a real BFree platform (that runs a real battery-free application)
and provide feedback on BFree’s use.

PARTICIPANTS

For the BFree user experience study we have selected nine participants—all university
students of either MSc or PhD level (details on this student cohort are given in the caption
of Figure 2.18). The study participants have self-assessed their technical capabilities
at the end of the study by answering a set of questions. Detailed result of this self-
assessment is presented in Figure 2.18a, with the raw data available in the BFree online
repository [230]. Analyzing the responses in Figure 2.18a we see that the group was
diverse and none of the students had any experience either with CircuitPython or with
Adafruit Metro M0 board. This was a desired outcome, as this way the participants were
not biased in assessing CircuitPython and the Adafruit Metro M0 board. At the same time
all participants claimed to use a regular Python language and most study participants
claimed to use another popular hobbyist-grade embedded microcontroller platform—
Arduino Uno. Participants of the study were found via email announcements to student
groups. No direct professional connection was present between the participants and the
authors of this study.

DESIGN AND EXECUTION OF THE EXPERIMENT

Each participant was invited to the room specifically prepared for the BFree experience
study, as not to influence the participant with the supervisor (or other people’s) presence.
The participant was asked to sit in front of a desktop PC, standing on a regular office table.
This PC was connected via an USB port to Adafruit Metro M0 board, to which the BFree
board was attached. On the PC’s monitor a web browser was opened that contained a
short description of the experiment. The participant was asked to read this description
first. This description was accompanied by the same short introduction to intermittent
computing as given to the participants of the language comparative study presented
earlier, see Section 2.7.1. After reading the description of the experiment, we explained
the experiment to the participant again—this time in person—giving each participant the
opportunity to ask questions about the experiment process.

The explanation itself was performed as follows. The same PC located in a room had
also a pre-loaded program editor with a prepared temperature measurement application
written in CircuitPython (code of this program is available in [230]). We asked each
participant during the explanation to upload this code to the Adafruit Metro M0 board
and subsequently disconnect it from the USB port. Disconnection from the USB port
effectively made Adafruit Metro M0 board intermittently-powered by ambient indoor light.
Additionally, a table on which the PC and BFree board was located, was also equipped
with a light bulb (to imitate strong light source) which participants could turn on and
off, controlling the rate of intermittent power supply. Participants were then asked to
connect the board back to the PC (making it again continuously powered) to read-out the
temperature measurement, which continued from the last moment the Metro M0 with
BFree was powered (indicated on a terminal window with an increasing counter).
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(a) Technical capabilities self-assessment of BFree user experience study participants
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(b) BFree usability questionnaire responses after 20 minute session of experimenting with battery-free temperature measure-
ment app

Figure 2.18: BFree user experience study results (with one female and eight male participants; two participants
were 21 years old, one participant–24 years old, two participants–25 years old, three participants—26 years old,
and one participant—29 years old). Figure (a) presents study participants’ technical capabilities self-assessment,
while figure (b) presents answers to the BFree usability questionnaire after hands-on session with a real battery-
free application. A diverse group of participants, having no practical experience with CircuitPython and Adafruit
Metro M0 board, responded positively to BFree aiding in developing battery-free applications. Note: number on
each bar in both figures represent the number of responses to each question.
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After this explanation the participant was ready to perform an actual experiment. For
this we asked each participant to redo the process we demonstrated, asking first to modify
(in any way the participant deemed interesting) the original code of the temperature
measurement and then upload in to BFree. In other words we asked the participant
to simply “play” with the code and BFree (by increasing or decreasing the light of the
light bulb, covering solar panels with hands, plugging USB cable in then reading the
measurement and unplugging it again as many times as possible, etc.). We then left the
participant alone in the room. Each participant had about 20 minutes for this task. After
completing the experiment the participant was asked to answer a short questionnaire
related to the experience with BFree. The questionnaire was password-protected and the
password was shared only after the participant completed the experiment.

RESULT

Answers to closed and open questions provided after the completion of the experiment
are provided in Figure 2.18b and Table 2.4, respectively.

Based on the individual experience session with BFree majority of participants agreed
that BFree helps to develop battery-free applications, making the development of such
applications easy (see Figure 2.18b). Participants found the environmental impact of
batteries is existent and makers/hobbyists would be interested in using BFree.

At the end of the study participants also suggested a set of applications, deployment
scenarios, listed the strong and weak points of BFree, as well as provided remarks on
BFree they briefly experimented with. A succinct list of answers is given in Table 2.4.
These comments also point us to potential areas for future work.

Based on the above outcome we conclude that BFree is usable and useful, which
positively answers research question RQ2.

LIMITATIONS OF BFREE EXPERIENCE STUDY

The experience study has limitations. The main one is the lack of access to the real makers
community that would provide a matched and in-depth assessment of our developed
platform. Also, a larger participants pool and longer time provided to the participants
would result in a more expressive evaluation of BFree. Longer experience would also
enable users to develop more sophisticated applications, gaining more knowledge on
the limitations of BFree. Finally, participants of this experience study were using the first
version of BFree, with many, still unresolved at that time, bugs. We note that the results
provided in this chapter (Section 2.6) are based on the much newer version of BFree shied
and BFree runtime.

Finally, we remark that this user experience study was executed in mid-February
2020. Since then we could not redo the experience study with a new version of BFree
due to COVID-19 restrictions regarding people’s presence at our university. Simply, it was
logistically hard to control flow of people in and out of the room where the experiment
was performed.
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Table 2.4: Selected responses to open questions regarding BFree usability made by participants of BFree user
experience study. Exact response text from participants were compressed to fit this table. For exact and complete
set of answers the reader is referred to [230].

Open question Responses

What apps would
you develop with

BFree?

• Event counter powered by harvested energy
• Weather sensors/wildlife counters in non-populated regions
• Crypto-currency mining
• Aerospace (when power cuts out due to vibrations rocket

state machines could continue right where left off)

What apps would
you deploy with

BFree?

• I would not use this to deploy a product: it feels too much
‘hobbyistic’

• Cheap wireless sensors everywhere to measure temperature,
humidity, light, motion

What are the
strong points
about BFree?

• Easy to use, does not need complicated setup, easy to com-
pile code

• No need to think about keeping state in your code
• If succeeded making it 100% seamless1 developers would not

need to learn anything to use battery-free feature

What are the
weak points

about BFree?

• Unknown what the approximate power limitations are and
how these combine with different hardware

• Unclear which operations are safe and what are the risks if
the power dies during a task

• Harder to debug/test than a standard microcontroller
• Doubt about use cases: typically device would either run all

the time or it would not matter if it completely resets

Do you have any
remarks about

BFree?

• Stress to audience how it is different from any solar-powered
computer

• Better documentation on how to make sure power cuts are
handled safely

• Have smaller form factor BFree boards
• People will be able to come up with cool applications for

BFree

1 User reported an issue with device resetting when connected to USB port of a PC, which was corrected with
the latest revision of BFree board; refer to explanation in Section 2.7.2.

2.8. RELATED WORK
This chapter merges two visions: the future of embedded computing —battery-free inter-
mittent computing—and sustainable and novice-oriented programming environments.
This work, built on expert-oriented intermittent computing systems, is the first interpreted
runtime for intermittent computation, and the first such system targeting novice and
hobbyist developers.
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Intermittent Computing: Devices like the WISP [210], computational RFID tags which
harvest energy from RFID reader transmissions, were the first attempts to enable battery-
free, energy harvesting embedded computing. Programming for these devices was in-
credibly difficult and inefficient, so runtime systems that instrumented C programs with
checkpoints [136, 203] or transformed these programs into tasks [250, 86, 47] were created.
Platforms that leveraged these new runtime systems were developed to increase energy-
efficiency and dependability of intermittent computing applications [49, 84]. Tools that
enabled deeper introspection into the energy environment [82] and brought command
line debugging support [46] further enhanced the ability of experts to deploy battery-free
systems. None of these systems have addressed novice developers, focusing on perfor-
mance and energy-efficiency. Even platform such as Flicker [84] mentioned above, that
proposes a modular hardware system (similar in spirit to BFree) where individual hard-
ware modules (energy harvesters, computation engine, wireless communication modules,
displays, sensors, etc.) can be mixed in various combinations to create an application-
specific sensor, requires a very good knowledge of embedded C programming. But more
importantly Flicker has no dedicated runtime that handles energy intermittency. Also,
Flicker modules are not backward compatible with popular hobbyist-grade microcon-
troller boards (such as in the case of BFree: Adafruit Metro M0) and does not have enough
of memory to store the complete BFree runtime.

Recent technology advances in non-volatile memory storage and ARM Cortex plat-
forms [24] enable us to make the first interpreted language for battery-free devices, and
the first focused on enabling the novice instead of focusing on performance as in previous
approaches. Moreover, as the novice is not as concerned with minute optimizations and
performance, but mostly with getting something working, the overhead of our interpreted
language approach compared to the state-of-the-art is not detrimental.

Battery-free Applications: We can already list single purpose applications that eschew
batteries designed by experts such as wearable health [200], environmental monitor-
ing [83], pervasive or wearable displays [73, 56], wearable authentication and haptics [131],
gesture recognition [130], rapidly prototype interactive objects [216, 128], making Skype
calls [222], enabling smart spaces [60], and others. This set of applications is enabled
by the range of energy available to harvest in various forms, gathering from sunlight,
radio frequency transmissions, vibrations, heat [188], human movement [249], and even
microbial communities [58]. These applications show the potential for our work, as
all of these systems are research products made by experts, often combining advanced
techniques spanning computing, electrical engineering, and physics. We believe that
BFree will enable these applications to be developed by novices, and potentially ease the
development process for experts.

Sensing Platforms: Platforms for wireless sensor networks (WSNs) research and de-
ployment have been developed over the past two decades [90], most notably with the
TelosB [193] which was one of the most successful general purpose sensing platforms,
and Prometheus [105] the first energy harvesting sensor platform. Energy harvesting
WSNs [8] have begun to dominate the sensor world because of decreased maintenance
costs and longer deployment lifetimes. Building on these works, synthetic sensors for gen-
eral purpose embedded computing framed towards the HCI space [122] were developed,
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along with other platforms meant to increase the applicability and generality of sensors
like Hamilton [115], and EcoMicro [124]. None of these platforms can run firmware in
Python. Also, none of these platforms can enable battery-free deployment, being built
on the assumption that power is continuous and reliable, even if constrained. BFree is
specifically engineered to handle the various system difficulties when faced with frequent
power failures, enabling the development of robust battery-free, untethered applications
by novices.

Novice-Oriented Programming: Developing tools and systems to increase access and
applicability of computing to novices has a long history and inspires this work. Well
known systems like Logo, Scratch, Processing, and Arduino represent programming
environments designed with a low learning curve and directed toward makers, artists,
designers, and inexperienced programmers. Platforms like Codeable Objects [100] extend
programming to the physical world. Bifröst [154], WiFröst [155] and Scanalog [217] help
with debugging complex hardware and software embedded systems. Python Tutor [75]
and OmniCode [109] and similar work have sought to teach Python programming to the
novice with interactive execution. All of these systems focus on an area where novice
programmers are under-served, in this spirit, BFree opens up battery-free and energy
harvesting programming to the novice. We believe that interactive programming environ-
ments are an interesting area of future research to help novice programmers predict how
their battery-free application will perform in the wild.

Computing for Conservation and Sustainability: BFree is motivated by the growing
ecological concerns associated with climate change and planetary stewardship that has
inspired significant work in computing, HCI, and sustainability [192, 116]. Systems that
are designed to encourage energy conservation are tangentially related to this work [218].
For example, EnergyBugs [206] materialize the unseen energy into a tangible object.
Persuasive displays [120], eco-feedback systems [64], and other battery-free systems are a
response to the increasingly devastating ecological impact of a battery-powered Internet
of Things. Other work has advocated for sustainable, responsible approaches to building
the smart city [79] and more considered HCI in agriculture [133]. We view BFree as an
attempt to democratize mobile and wearable computing with an ecologically responsible
view, building on the intellectual underpinnings of work in sustainability. Computing with
batteries has offered convenience, but has constrained the design space of ubiquitous
computing. As a tool, BFree devices offer ways to visualize energy, show the power of
responsible computing practice, and assist in novel computing applications.

2.9. DISCUSSION AND FUTURE WORK

This work is only the beginning, opening up the possibilities of battery-free devices,
for everyone, everywhere. We anticipate major research directions to be taken that will
enhance the workflow and systems presented here, so that novice developers can be a
part of a sustainable future of ubiquitous computing.

A General Platform: Future work could allow the BFree shield to be used without Python,
and instead with other languages, both compiled, such as C and Rust, to those interpreted
such as JavaScript, and even MakeCode [160] block-based languages. This potential for
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a general platform that supports many languages is a future goal of BFree such that any
person, at any skill level and with any past programming experience can engage in battery-
free, energy harvesting prototyping and software development. However, enabling this is
not trivial, as checkpointing routines, instantiation mechanisms, and memory manage-
ment would need to be re-evaluated per language. For example, JavaScript has an even
more flexible (often confusing) specification than Python, with a more complex bytecode.
We leave this for future work.

Alternative Solutions: Potentially one could write a Python program that stored data right
after it was generated, and upon start would read that data and try to resume. In essence,
this approach amounts to rolling a custom intermittency solution, running into all the
problems described earlier in this chapter. Manually keeping progress is not simple, as it
is not known when a failure might happen, and in fact, a failure could happen before the
Python runtime even starts or a single line of user code is executed. Another alternative is
making your program small enough and simple enough that it will likely finish before the
storage capacitor depletes. While this is possible, it is not ideal, as one must first guess
how much energy one has and how much energy a line of code costs, becoming very
constrained in what one can do. BFree allows makers to program just like they always do
and not worry about power failures and recovery.

Garbage Collection: The garbage collector in CircuitPython is a black box: during a
startup, required fixed size memory regions are allocated, and then the remaining memory
is allocated for dynamic memory requested by the Python application. Because of the
black box nature of the algorithm used by the garbage collector it is impossible to find the
exact occupied memory regions. For this reason, we are forced in BFree to save all the
memory available to the garbage collector during the checkpoint procedure, even when
most of it is not actually used by the Python program. A future improvement would be to
replace the current garbage collector with one that causes less fragmentation, or adapt
the current one to both: (i) expose the memory used by the Python application and (ii)
have an efficient compacting method which is called before each checkpoint to reduce
the checkpoint size.

Performance: The performance of BFree, especially considering the speed of program
resumption after restart, requires further work. Also, we acknowledge that Python code
hand-instrumented (but optimized) for intermittent operation might be faster than our
non-optimized BFree implementation. This observation has been echoed by some of the
respondents of our survey, quote:

(...) programmers are pretty adamant of being able to control every inch of
their code if they need efficiency, and handwritten code will almost always be
faster.

Nonetheless, the aim of BFree is to enable hobbyist or maker programmers, for which the
speed of execution is of secondary importance to the usability of the whole system and
rapid prototyping ability. We hope to increase both usability and performance to ease
access to the battery-free computing domain.

Checkpoint Strategies: BFree provides multiple entry points and adjustable settings for
creating checkpoint strategies. This work has only explored the surface level of strategies
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with just-int-time, periodic, and hybrid methods. In many cases and applications, none
of these strategies would be ideal. Significant research space exists to explore and under-
stand checkpoint strategies for interpreted languages. Because an interpreted language
has access to the bytecode and other information from the program, which is not always
available for bare-metal machine code, more intelligent checkpointing could be envi-
sioned. Moreover, with the larger memory space and compute power of the ARM-based
BFree system, more sophisticated checkpoint methods could be explored that take into
account history, trends, or even energy aware prediction. These methods are bound to
increase the performance of BFree and are a rich area to explore.

Platforms: Our BFree shield is the first proof-of-concept of what is possible with battery-
free development for hobbyists and makers. Further hardware extensions could include,
emulators for energy harvesting (to test the performance of the application), capacitor
size adaptation shields (to test the code under different energy supply reservoirs), or
multi-sensor shields (to experiment with different battery-free applications without the
need to buy new sensors for each new experiment).

Applications: The success of battery-free intermittent systems solely depends on the
richness of applications they can execute. As the field matures, more and more inter-
esting applications arise, from smart protective equipment, to space satellites, to wear-
able devices that never need charging. That said, not all applications will immediately
benefit from BFree, and not all users are even aware of the potential applications or
power that battery-free operation gives. As one of the respondents of one of our studies
(see Section 2.7) said:

The only application I can really think of (...) is long term execution (of)
programs. Something like a neural network or genetic algorithm which may
run for 24+ hours. It seems kind of niche but I can see the appeal.

Therefore, more work is needed to think about what “killer” applications for battery-free
hobbyist micro-controllers could be, and more work is needed to encourage hobbyists
to think beyond traditional boundaries of computing and energy. We view this platform
as an enabler for interaction research; such as that extending energy materially [191],
exploration of novel interactions that engage with energy, engineering persuasive exhibits
or displays, and allowing novel wearables. In the future we hope to see interesting and
dynamic applications written and deployed with BFree.

Tooling: Finally, a set of tools is needed, helping makers in experimenting with BFree.
These tools have not been a focus of this work. This includes user interface enhancements
(for code development, code optimization and code debugging), developer community
code management system for BFree hardware and software, and energy introspection.

2.10. CONCLUSIONS
BFree allows makers and low skill hobbyists to develop computing and sensing platforms
that not only run perpetually on harvested ambient energy but also make them free from
batteries and a tethered power supply—thereby reducing the ecological and maintenance
cost of traditional embedded systems. BFree’s core innovation lies in developing the first
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power failure resilient runtime for an interpreted language (CircuitPython) that runs on
embedded systems. With BFree, novice programmers can develop CircuitPython applica-
tions that sense, compute, learn, communicate, and much more—all without needing
a battery or access to an electrical socket. BFree invisibly handles the frequent power
interrupts caused by scarce ambient energy so that the programmer does not need to
account for them. We evaluated BFree against a battery-powered CircuitPython baseline
and showed reasonable overhead of BFree. Our system was tested with actual users, con-
firming the usability of BFree. Further, we open sourced the code and hardware of BFree
as a resource to the community. With BFree, we open a new application area for makers
and hobbyists and new realms of possibilities to build sustainable IoT devices. BFree
unlocks rapid battery-free prototyping and demonstrates the possibility of converting
existing systems to operate intermittently using energy harvested from the environment.





3
DIFFERENTIAL CHECKPOINTS

In the previous chapter, we developed a fully featured battery-free hobby platform—based
on interpretation—with support for computation and peripherals, showing the steps
needed to successfully support the intermittent execution of applications without the
need to rewrite the application. However, checkpoint times can be relatively long, and the
dominating cause of the checkpoint being so significant is the volatile main memory of the
system that needs to be copied to non-volatile memory. The checkpointing cost was less
relevant in the previous chapter due to the high cost of interpreting Python programs and
the focus on quick prototyping rather than performance.

In this chapter, we extend the techniques introduced in the previous chapter by intro-
ducing differential checkpoints that only contain changes made to the volatile memory
since the previous checkpoint, which greatly reduces the size of checkpoints because often
only a limited amount of memory is modified between checkpoints. However, to safely
update the changed data in the checkpoint would require double-buffering, as shown in
Section 1.2.1, doubling the required number of non-volatile memory writes. Instead, we
introduce a novel patch-based differential checkpointing technique that keeps old check-
points intact, stores the new data elsewhere in the non-volatile memory, and rebuilds the
complete volatile memory state from these patches during restoration—effectively double
buffering the data without requiring additional non-volatile memory writes.

This chapter is based on the following publication:
Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. Battery-Free Game Boy. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), volume 4, issue 3, pages
1–34, September 2020. https://doi.org/10.1145/3411839.
The accompanying archive containing all the software and data can be found at https://doi.org/10.5281/zenodo.
7684870.
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Figure 3.1: Energy harvested from button presses and sunlight powers our custom handheld platform, BFree,
running a Nintendo Game Boy emulator which can play classic 8 bit games. BFree efficiently preserves game
progress despite power failures, demonstrating for the first time battery-free mobile entertainment.

3.1. INTRODUCTION
This chapter originates from the question: is it possible to game-on-the-go without bat-
teries? Batteries add size, weight, bulk, cost and especially inconvenience because of
frequent recharging—to any device. Energy can be generated by mashing buttons while
gaming, and readily available energy from sunlight is all around us, so why not use this
energy for battery-free mobile gaming! Significant challenges in software resiliency and
efficiency, hardware operation and energy usage first need to be solved, but would rep-
resent a fundamental advancement over non-interactive (and not very fun) battery-free
devices that currently exist.

Prototype battery-free devices have been used to make phone calls [223], deployed
for machine learning [125], greenhouse monitoring [83], video streaming [163], eye track-
ing [129] and even built into a robot [250]. However, none of these techniques or proto-
types have enabled interactive battery-free devices—like a smartwatch, in-place interactive
display or even a handheld video game console. This is a critical gap in the research
around battery-free devices, as these types of reactive, interactive, and screen-focused
systems are a significant portion of the current and anticipated smart systems.

In this chapter we focus specifically on this ignored part of the battery-free device
ecosystem, mobile gaming, and use this application to elucidate the essential challenges
that must be explored to get us to a future where reactive and user facing applications can
also be battery-free. From a market perspective there is a deep need to explore this area.
The global gaming industry is massive and generates unprecedented revenues, which
already exceeded 100 billion USD in 2016 [166]. Handheld console game sales constitute
a large portion of the industry [166].

To enable these types of devices, mobile gaming platforms must be re-imagined at the
system and interactivity level. The main challenge is that energy harvesting is dynamic
and unpredictable. This is intuitively apparent when considering a solar panel; a cloud,
the time of day, weather conditions, movement and orientation of the panel, and even
the electrical load all change the amount of harvested energy. Because of this dynamism,
these devices run out of energy and lose power frequently, only intermittently computing
with the device having to wait seconds or minutes to gain enough energy to turn back on.
This long recovery process can be energy and resource intensive, causing responsiveness
delays. Worse, it can leave the game in an inconsistent state. Naturally, going through
this entire re-loading process (from the loading screen of a game to starting play) every
time is burdensome, so just blindly replacing batteries in a game console with an energy
harvester is not enough to ensure smooth game operation.



3.2. CHALLENGES

3

59

To address this challenge this chapter presents a framework of solutions based around
energy-aware interactive computing and a reference implementation of a popular game
console—8 bit Nintendo Game boy [171, 50]—as a demonstration, see Figure 3.1. To
reduce the unpredictability of energy harvesting, we take advantage of mechanical en-
ergy generated by “button mashing” of the console, harvesting this energy generated by
actually playing a game on a handheld, and using it, along with solar panels, to power
all operations. We design the system hardware and software from the ground up to be
energy-aware and reactive to changing energy situations to mitigate the issues caused by
frequent power failures. Specifically, we design a technique to create minimal save games
that can be quickly created, updated, and saved to non-volatile memory before a power
failure, then quickly restored once power returns—for example mid-jump in a platform
game—all this despite the device fully losing power.

Contributions. In this chapter we present a practical, usable mobile gaming device, En-
ergy Aware Gaming (abbreviated as ENGAGE). The first intermittently powered interactive
gaming platform. Our contributions follow:

1. We introduce the concept of intermittently powered mobile gaming;
2. We develop an approach to failure resilient, memory-efficient, fast, whole system

save games for interactive, display driven devices. A just-in-time differential check-
pointing scheme is used based on the concept of tracking changed memory in
patches;

3. As a stress test and demonstrative exercise of the promise of battery-free gaming,
we use these systems and hardware to develop a full system Nintendo Game Boy
emulator which plays unmodified Game Boy games despite power failures.

This chapter is a reduced version of the publication Battery-Free Game Boy [55]. It
focuses on the software support needed to efficiently support intermittent computing
on a batteryless handheld gaming device through a novel patch-based checkpointing
approach. The remaining components of the original publication, e.g., the hardware,
harvesting, emulation, input management, and screen handling, were developed as part
of a collaborative project and are not part of this thesis. Sections of the original publication
focussing solely on these components are excluded from this chapter. However, some
components unrelated to this thesis are included in this chapter as they provide the
motivation and use case for the introduced checkpointing mechanism. More details on
the excluded components can be found in the original publication [55].

The checkpointing mechanism introduced in this chapter was designed as part of the
ENGAGE platform, which powers the Battery-Free Game Boy. However, the introduced
techniques and the developed framework—MPatch—are general and can be used on
other hardware to create efficient intermittently-powered systems.

3.2. CHALLENGES
The goal of this work is to develop the systems and hardware foundations for battery-
free mobile gaming. This is motivated by two reasons: (i) the enhanced availability
and usability of a platform that never needs to be recharged or plugged in—making the
platform more convenient for the typical user, and more accessible for everyone, and (ii)
the need for alternative and sustainable forms of entertainment—a nod to the various
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Figure 3.2: Dynamic energy harvesting causes voltage fluctuations which cause frequent power failures. Shown
is what would typically happen if a battery was removed from a Game Boy and replaced with solar panels.
The game would play until energy is lost (i.e. at line 185) and then restart at the loading screen. Intermittent
computing techniques seek to make it such that after the power failure, line 186 is then executed proceeding
from the exact system state as before the failure.

industry consortia such as Playing for the Planet [197] which aim to reduce the gaming
industries ecological impact. A battery-free handheld game console reduces ecological
costs and disappointment, as it is always ready to be picked up and played without
needing to be recharged.

Numerous explorations of battery-free smart devices address the calls for sustain-
able and carbon-neutral electronic device interaction and electronic design and com-
puting [116, 36, 149, 243, 114] while preparing human-interactive electronics for the
“post-collapse society” [228]. None of the existing state-of-the-art intermittently powered
systems have yet explored the question of mobile handheld entertainment, going beyond
the simple forms of battery-free gaming devices demonstrated commercially in the early
1980’s [51]. This is because making such a device is challenging due to complex system
difficulties stemming from frequent power failures, listed below.

Challenge 1: Unpredictable Energy Harvesting. Environmental conditions change, and
this is exacerbated by mobile gaming. When players move from place to place, most
forms of ambient energy change drastically (for instance, by moving from sun to shade),
or increasing distance from a radio frequency power source. Without a more predictable
source of power, it is hard to envision being able to play continuously without a battery.

Challenge 2: Keeping Track of System/Game State. Maintaining the state of computa-
tion, let alone game state, through power failures from intermittent harvested energy is
hard [135, 158]. Many software frameworks that support computation progress despite
these power failures exist, saving state in non-volatile memory like FRAM and then restor-
ing state after power resumes (see Figure 3.2), such as TICS [119], TotalRecall [242], and
many others. Most systems trade memory efficiency for performance, this approach is
the opposite of that needed for gaming, where a display buffer and numerous sprites and
large game state variables must be saved, requiring high memory efficiency.
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Figure 3.3: ENGAGE hardware platform (left) and its internal architecture (right).

Challenge 3: Enormous Variability of Games. These previous issues are compounded by
the huge variability of games, both in terms of memory size, number of sprites, actions,
difficulty, and even number of button presses per second. Each game is unique, and could
pose difficulties when creating a general battery-free solution.

Challenge 4: Gaming’s High Computational Load. To date, no full system emulation
of any complex system has been attempted on battery-free, intermittently computing
devices. Games and gaming platforms require more performant processors even when
running natively—when running in emulation, this is compounded. All existing popular
runtimes for intermittent computing are based on Texas Instrument’s mixed-memory
MSP430 MCU [226], which is an order of magnitude slower than the fastest ARM MCU on
the market. To meet the high computational load of games, a practical runtime for ARM
microconrollers must first be built.

Challenge 5: Realistic Demonstration. The over-arching goal is to play a real, unmodified,
video game on a battery-free console that everyone around the world knows (like Tetris)—
in other words to be able to execute preexisting game code (or any existing code for that
matter), not to design a custom game only to demonstrate the potential of battery-free
gaming. This could be possible only when all the above challenges are addressed.

To tackle above Challenge 1–5 we took one of the most popular gaming consoles
of all-time [170]—the original 8 bit Nintendo Game Boy [171, 50]—and redesigned its
hardware-software, powering gameplay from the solar panels and button presses of the
user, building the first ARM based intermittent computing hadware and runtime system,
and doing the first full system emulation of a real world platform (Nintendo Game Boy)
with intermittent computing techniques.
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3.3. BATTERY-FREE HANDHELD GAMING
We designed the Energy Aware Gaming (ENGAGE) platform as proof by demonstration
that the discussed challenges could be overcome. The design and architecture of the
ENGAGE platforms are shown in Figure 3.3. The ENGAGE hardware is the size and form
factor of a Nintendo Game Boy, it is built around (i) user input via mechanical energy
harvesting buttons (on the A, B, and D-Pad of the original Game Boy), (ii) a display, (iii)
a slot for Game Boy game cartridges to be inserted, and (iv) energy harvesting circuitry
from solar cells and the buttons which store energy in a small internal capacitor. The
ENGAGE kernel consists of (i) a patch-based differential checkpointing system (denoted
as MPatch) which handles low level memory movement and automatically saves and
restores the state of the entire system by efficiently moving necessary data to non-volatile
memory (FRAM) and back (SRAM), and (ii) an extensively rewritten full-system Nintendo
Game Boy emulator, which can run unmodified Game Boy games. ENGAGE is the first full
system emulation, and the first gaming platform built for battery-free, energy harvesting,
intermittently powered computing devices.

Usage and Impact. We released the hardware designs, firmware and software as open-
source repositories on Github [2]. We target a broad audience with our platform.

3.3.1. KEY IDEAS

Existing handheld gaming devices rely on large batteries because they need continuous
high power to support high compute load, energy cost, and reactivity. We want to enable
playing retro 8 bit console games, such as Tetris and Super Mario Land, on a battery-free
console that is similar in user interface and gameplay to the original Nintendo Game Boy.
Removing the battery and only using harvested energy causes intermittent operation,
which leads to the challenges discussed in Section 3.2. The ENGAGE platform design
navigates these challenges based on four key ideas.

Track and Checkpoint Minimal State at the System Level. We must handle intermittent
power failures to maintain the state of play. Unfortunately, in games large amounts
of memory is moved back and forth to the display, often in the form of sprites, with
computation happening in between. Naively checkpointing the entire system state would
be impractical, significantly increasing the latency of operation. We note that while large
memory movements happen, the changes in these memories are often small, meaning we
can reduce checkpoints to only the changed memory, save that state just in time before a
power failure, and then restore that state and resume game play. This addresses Challenge
2, Challenge 3 and Challenge 4.

Use Processor Emulation to Play Retro Games. While ENGAGE could be used for custom
gaming libraries made specifically for intermittent operation, the more challenging and
interesting problem is full system emulation enabling the play of thousands of existing
games, and even home-brewed games. This also allows us to explore and understand the
variability of real world games. This addresses Challenge 3 and Challenge 5.

Speedup Intermittent Computing. We embrace ultra low powered, high performance
ARM Cortex microcontrollers, and external FRAM memory to speed up computation.
While a seemingly trivial technology advancement, with this approach we increase com-
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pute speed but increase our I/O burden for checkpointing, as the traditional MSP430
FRAM-enabled MCUs have internal FRAM memory accessible at CPU speeds. This is a
different tradeoff space than any other intermittent hardware platform [54, 84, 49]. This
addresses Challenge 2 and Challenge 4.

3.3.2. ENGAGE FULL SYSTEM NINTENDO GAME BOY EMULATOR

A key part of our approach is running a full system emulation on ENGAGE hardware. To
be able to run Nintendo Game Boy games an emulator is used to emulate the instruction
set of the Game Boy processor, i.e. 8 bit 4.19 MHz custom-built Sharp LR35902 MCU
with a processor closely based on the Z80 instruction set [50]. An emulator reads bitcode
instructions and executes them in native code, mimicking the emulated CPU as closely
as possible to ensure it executes in an identical fashion to the emulated CPU. With the
restrictions of battery-free systems additional scenarios are introduced that normally
do not exist, such as the loss of power while running a game and then attempting to
restore the system to the state it lost power. Additionally, emulation efficiency is of critical
importance in regards of power consumption.

The emulator allocates non-volatile and volatile Game Boy game memory within the
memory space of ENGAGE, removing the need to keep cartridges continuously powered.
Only upon loading a new game is the cartridge interface used to retrieve the non-volatile
game data.

3.3.3. GAMING THROUGH POWER FAILURES

ENGAGE is protected from the loss of progress by the custom-designed runtime that
guarantees data consistency despite power interrupts. The goal of this runtime is to save
(i.e. to checkpoint) the current state of the emulator. This entails the current volatile
memory content and the registers of both the host processor and the emulated system.
Doing this will allow the system to continue execution from this point as if a power failure
never happened.

There are multiple intermittent runtime systems which can be broadly divided into
two classes: (i) those that use a special (C program) code instrumentation to guarantee
the correctness of computation despite power interrupts and (ii) those that use a special
version of the checkpointing, of which a subset is designed for systems that use volatile
memory—such as SRAM—as their main memory, and use a separate non-volatile mem-
ory that contains the checkpointed data. While designing ENGAGE we chose to use a
checkpoint based system to allow emulation of arbitrary game code. We did not consider
task-based runtimes simply because they are too complex to comprehend by a program-
mer and more difficult to design than a checkpoint-based system; see related discussion
on this topic in [119]. But first and foremost, task-based system cannot execute a binary
(machine) code, which ENGAGE is mostly executing.

The main requirement for ENGAGE is responsiveness. Hence the checkpointing
system needs to be as lightweight as possible. Naturally all of the checkpoint systems
have some overhead, so when searching for a good solution we would like to minimize
checkpoint size as much as possible—resulting in minimum overhead from data restora-
tion. Checkpointing the entire system state, including game, and emulator, would be
impossible. One core idea, proposed first by the DICE runtime [12], is to checkpoint only
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Figure 3.4: Memory writes heat map of four popular 8 bit Game Boy games for one minute of play. Writes tend to
cluster in a few large regions; tracking and checkpointing these regions would allow for performant intermittent
execution. Note the log-scale of the number of writes.

parts of device memory that have been changed since the last checkpoint. To check whether
this idea applies to battery-free handheld gaming system we have performed a simple
experiment. For four example Nintendo Game Boy games: (i) Tetris, (ii) Space Invaders,
(iii) Super Mario Land, and (iii) Bomberman, we have measured to which memory regions
of an MCU each game was writing during one minute of game play. The result is presented
in Figure 3.4. Indeed, we see that memory writes are very unevenly distributed for each
game, hinting that such approach, which we broadly denote as differential checkpointing,
is well suited for our ENGAGE needs.

The checkpoint runtimes, including differential ones, can be further divided into two
unique classes: (i) corruptible and (ii) incorruptible, as discussed before in Chapter 1.

• Corruptible Checkpoint: Such systems copy the current state of the MCU (memory,
registers, etc.) to a predetermined location in non-volatile memory. This location is
the same every time, as this eases the runtime development and reduces the non-
volatile memory requirements. However, it is required that a checkpoint operation
must guarantee to complete, otherwise part of the previous checkpoint may be
overwritten with the current checkpoint1. Often these corruptible runtimes include
a check whether a checkpoint was completed successfully, otherwise they start the
program execution from the beginning. Such systems require exact prediction of
the energy (required to perform a checkpoint) and the energy currently consumed
by the complete system (to be able to guarantee that a checkpoint is only performed
when its completion can be guaranteed). Such a requirement is unrealistic for a
computing platform, such as ENGAGE, that includes many peripherals and compo-
nents all connected to the same energy buffer, as correctly predicting the required
energy—even the CPU alone—is difficult;

• Incorruptible Checkpoint: Such systems take a different approach: at all times they
guarantee that there is a valid checkpoint which can be restored. This means that a
new checkpoint will never overwrite part of the previous checkpoint in non-volatile
memory. Such a guarantee is often implemented through double-buffering.

1If the system were to run out of power during the creation of a checkpoint, with the next checkpoint restoration
a corrupt state will be restored leading to undefined behavior—thus to a corrupt system.



3.3. BATTERY-FREE HANDHELD GAMING

3

65

Table 3.1: Comparison of MPatch with state-of-the-art intermittent checkpointing runtimes.

System Incorruptible Differential Just-in-time Volatile main memory ARM support

Mementos [203] Yes ✓ No ✗ Yes ✓ Yes ✓ Yes ✓

Hibernus++ [30] No1✗ No ✗ Partially — Yes ✓ No ✗
QuickRecall [103] No ✗ No ✗ Yes ✓ No ✗ No ✗

Chinchilla [143] Yes ✓ N/A No ✗ No ✗ No ✗
Rachet [235] Yes ✓ N/A No ✗ No ✗ Yes ✓

HarvOS [35] No1✗ No ✗ Yes ✓ Yes ✓ Yes ✓
TICS [119] Yes ✓ N/A No ✗ No ✗ No ✗

TotalRecall [242] No1✗ No ✗ Yes ✓ Yes ✓ No ✗
Elastin [44] Yes ✓ N/A No ✗ No ✗ No ✗

DICE [12] No 1✗ Yes ✓ Yes ✓ Yes ✓ Yes ✓
MPatch Yes ✓ Yes ✓ Yes ✓ Yes ✓ Yes ✓

1 These systems require perfect energy prediction to not get corrupted. Any changes in, for example, capacitor
size [44], power consumption due to peripheral use, or harvested energy, will lead to incorrect predictions and
therefore corruption.

As of the time of publication, there were no known incorruptible differential check-
point systems, and just one corruptible differential checkpoint system, DICE [12], also
refer to Table 3.1 where existing intermittent runtimes are qualitatively compared from
ENGAGE requirements point of view. Therefore, to realize a working ENGAGE we de-
veloped a new checkpointing runtime, denoted as MPatch, that performs incorruptible
differential checkpoints. The proposed runtime is aided by a new concept of patch
checkpointing, discussed below.

MPatch—a Patch Checkpointing Intermittent Runtime. Memory is constantly being
modified during the execution of a program. However, as Figure 3.4 clearly illustrates, it
is unlikely that during an on-period of any intermittently powered embedded system,
including ENGAGE, all memory is modified. Therefore, when creating a checkpoint
containing all the known or active memory regions of the system, one will inevitably copy
memory locations that have not changed since the last checkpoint.

It is thus desirable to copy as little of the (embedded) system state as possible while
keeping the checkpointing incorruptible. The most fundamental method to do this
efficiently is to track which memory regions have been changed since the last checkpoint,
in other words, to see memory modification differences in-between checkpoints. As
mentioned earlier, the only checkpoint runtime that has employed this form of differential
checkpoint so far was DICE [12], see again Table 3.1. It is, however, difficult to apply the
techniques used by DICE while maintaining an incorruptible system (that uses double
buffering). Specifically, assuming that only one of the buffers is active, if part of the
checkpoint resides in the previous buffer, and yet another checkpoint occurs, then it is
impossible to keep the incorruptibility trait with DICE without still copying all checkpoint
data between the two buffers. Therefore, to achieve differential checkpointing that is
incorruptible, a new system has to be designed, which resulted in MPatch.

MPatch Just-in-Time Checkpoints. As we have shown in Figure 3.4 not all of the emulator
and display memory is written to at every MCU clock cycle. Hence we only checkpoint
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Patches
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Figure 3.5: MPatch stage operation. Patches outlined with red are staged, but not committed. Patches outlined
with blue signify committed patches.

the modified memory regions, which we denote as patches. Then, we monitor the voltage
level of the storage capacitor, as in other existing runtimes, e.g. [30, 12, 242, 103] and only
checkpoint the state when nearing a power failure—we call this just-in-time checkpoint.
We purposefully do not perform checkpoints at an interval timer: game players are
susceptible to lagging in a game. Hence interval-based checkpointing (which introduces
frequent fixed-interval delay) is not desirable.

Patch Handling. A patch is a non-volatile copy of a consecutive region of volatile memory
that has changed since the last successfully created checkpoint. As different memory
regions are modified during execution, multiple patches of different memory sections
might be required for a complete checkpoint. During the restoration, the most recent
patches (in combination with the pre-existing patches) are used to restore the volatile
memory to the state it was in during the last checkpoint. By only storing the modified
regions the checkpoint time is significantly reduced, as often only a small part of the
memory is changed between the two consecutive checkpoints (we will investigate this
further in Section 3.5).

As with traditional checkpoint-based systems that use double-buffering, an atomic
variable n, determines which of the two buffers should be used to restore the system in
case of a power failure [203, 119]. This variable n is changed—often incremented—to
mark the completion of a checkpoint. The requirement on n is that for its increment,
n +1, it holds that (n mod 2) ̸= (n +1 mod 2). MPatch patch management is also built
around the atomic variable. However, MPatch extends the function of this variable to act
as a logical clock, with the additional requirement that n ̸= n +1.

We now define three fundamental patch operations (i) Patch Stage, (ii) Patch Commit,
and (iii) Patch Restore.

• Patch Stage: When a patch is created, the required amount of non-volatile memory
is allocated and the volatile-memory is copied to the patch. Next, the patch is staged
by signing it with the current logical clock n added to the front of the patch chain,
i.e. the list of patches, ordered from newest to oldest, that will be applied during
restoration. Staged patches are outlined in red color in Figure 3.5. While a patch
is staged it will be discarded if a power failure (and thus a restoration procedure)
occurs.

• Patch Commit: When the logical clock n is incremented, all previously staged
patches will become committed. These patches are outlined in blue in Figure 3.5.
Committed patches will be considered during the patch restore procedure.

• Patch Restore: When ENGAGE inevitably fails due to a lack of energy, it should
be restored to the last completed checkpoint. Patches hold copies of consecutive
volatile memory regions and are linked together to form the patch chain. This
moves the complication of deciding what part of the patch to apply, if any, to
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the restore operation. To reconstruct the state of the most recent checkpoint the
(partial) content of multiple patches has to be combined. This reconstruction,
due to the implicit ordering in the patch chain, starts from newest to oldest. For
each patch, only the parts that were not already applied during the current restore
operation are copied to volatile memory, as illustrated in Figure 3.6. In contrast,
for a traditional incorruptible checkpoint runtime, restoring a checkpoint means
reading the logical clock n and copying the checkpoint content from the selected
buffer to the corresponding volatile memory and registers.

3.4. ENGAGE IMPLEMENTATION
We proceed with the implementation details of ENGAGE. Additional information re-
garding the hardware implementation can be found in the original publication [55]. All
hardware, software and tools, as well as documentation for ENGAGE are publicly available
via [2].

3.4.1. ENGAGE HARDWARE
We built a handheld, energy harvesting, battery-free hardware platform to enable the
development and testing of our approach to battery-free mobile gaming. ENGAGE is built
using the following components.

PROCESSING AND MEMORY

Stemming from the requirements (Section 3.2), for compatibility and popularity reasons,
we build our ENGAGE around an ARM MCU architecture. However, none of the ARM
architecture MCUs we are aware of contain on-chip fast, byte-addressable non-volatile
memory—such as FRAM—serving as main memory. Only slow and energy-expensive
FLASH memory is present. Therefore we equip our battery-free console with external
dedicated FRAM. Central to ENGAGE is the Ambiq Apollo3 Blue ARM Cortex-M4 MCU
operating at a clock frequency of 96 MHz [16], chosen for its good energy efficiency. The
Apollo3 runs the Game Boy emulator and MPatch software. External Fujitsu MB85RS4MT
512 KB FRAM [65] is connected through SPI to the MCU providing a fast and durable
method of non-volatile storage for patch checkpoints.

3.4.2. ENGAGE EMULATOR IMPLEMENTATION
As many Nintendo Game Boy emulators have already been written we have decided
not to build yet another one and relied on the existing emulator implementation that
targets a different MCU. Specifically, to run with ENGAGE we extensively modified and
rewrote a pre-existing freely-available implementation of original Nintendo Game Boy
emulator targeting a STM32F7 MCU [33]. All the modifications to this emulator, enabling
to reproduce our work, are part of our open-source repository freely available to download
from [2].

ENGAGE Memory Configuration. The Apollo3 ARM Cortex-M4 features flash and SRAM
as on-board memory, where the Flash memory contains all the code (MPatch and Game
Boy game emulator code) and non-volatile game data copied from the Game Boy game
cartridge. SRAM contains the memory of the whole ENGAGE platform and the volatile
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(b) MPatch memory after restoration. The restore sequence
applies only the parts of patches that are required to reconstruct
the memory.

Figure 3.6: MPatch patch restore procedure after three successful checkpoints (CP). For the ease of illustration,
we assume that the memory is initiated as empty; blue rectangles depict patches that have been successfully
committed to non-volatile memory and green rectangles signify the parts of the patches that are applied during
restoration.
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Figure 3.7: ENGAGE physical memory structure. Constant game data is executed from Flash with its volatile
memory in SRAM, avoiding overhead from accessing the external FRAM. Only checkpoints and patches are
stored in external FRAM.

game memory—both separated from each other. Two buffers, Checkpoint A and Check-
point B, for double buffering the core content during checkpointing, as well as all patches
created by MPatch reside in external FRAM. The complete memory map of ENGAGE is
presented also in Figure 3.7.

3.4.3. MPATCH IMPLEMENTATION

CORE CHECKPOINTS

MPatch is built upon a basic double-buffered checkpoint scheme which we denote as
the core checkpoint system. The core checkpoint encompasses all the emulation man-
agement logic of ENGAGE, except for the emulated game memory, which is checkpointed
using patches as described in Section 3.4.3. Specifically, the core checkpoint system
checkpoints the .data, .bss and active stack sections of the MCU’s volatile memory as
well as the registers of the MCU, as can be seen in Algorithm 1. All this is double-buffered
in the external non-volatile memory of ENGAGE. Naturally, this means that for every
byte of volatile memory in the checkpoint, we need twice as many bytes in non-volatile
memory. We remark that not all memory of ENGAGE is checkpointed. Specifically, we do
not checkpoint memory buffers required for peripherals (as the peripheral state needs
to be re-initialized every ENGAGE reboot). The restoration of a checkpoint will restore
the state of the system to that of the last successful checkpoint. If the system does not
experience a first time boot, the default memory initialization step (which traditionally
runs before any user code) will be skipped. After this, the steps listed in Algorithm 2
are performed to continue executing as if no power failure had occurred. In line 3 of
Algorithm 2 the MPatch patch restoration process is started to restore the emulated game
memory which will be discussed further in Section 3.4.3.

We designed the core checkpoint system from the ground up, implementing special
keywords enabling the exclusion of certain volatile memory parts from a checkpoint. Also,
the core checkpoint provides hooks for every stage of the checkpoint for ease of extension,
which is required to incorporate patches from MPatch.
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Algorithm 1: Checkpoint Creation

1 Procedure CheckpointCreate():
2 CoreCheckpoint() // Checkpoint memory not manged by MPatch
3 PatchesCreate() // Create and stage patches; see Section 6 and Algorithm 3
4 RegisterCheckpoint() // Checkpoint the CPU registers
5 RestorePoint() // Continuation point after a restore operation
6 if isNotRestore() then
7 CheckpointCommit() // Call function that commits the checkpoint

Algorithm 2: Checkpoint Restoration

1 Procedure CheckpointRestore():
2 CoreCheckpointRestore() // Restore memory not manged by MPatch
3 PatchesRestore() // Restore committed patches; see Algorithm 5
4 PeripheralRestore() // Restore peripherals
5 RegisterCheckpointRestore() // Restore the CPU registers
6 RestorePoint() // Continue at the restore point; see Algorithm 1

PATCH CHECKPOINTS IMPLEMENTATION

The emulated memory, i.e. the memory used by the Game Boy games, is a region in SRAM
accessed only by emulated read and write instructions from the emulator. Leveraging this
fact makes tracking modification to the emulated memory straightforward, and doing so
has little impact on the overall performance. ENGAGE tracks these modifications, and
when a checkpoint is created, this information is used to create the required patches as
can be seen in Algorithm 3. Tracking of these modifications is done using the memory
protection unit of the MCU. Upon writing to a region of emulated game memory, the
memory protection unit triggers an interrupt allowing the memory region to be marked as
modified. After a region is marked as modified the interrupt for the region is disabled. This
results in an efficient method of tracking memory writes since the introduced overhead is
only present during the first write after a reboot. The memory protection unit features
eight regions which each have eight sub-regions, for a total of 64 sub-regions. We equally
divided the memory space of the emulated Game Boy memory between these sub-regions
resulting in patches containing 32 kB / 64 = 512 B of emulated memory.

Content of a Patch. In addition to the copy of a volatile memory region, a patch contains
accompanying metadata required to successfully manage and restore a patch. This
metadata is: (i) the value of the logical clock n from when the patch was staged, (ii) the
interval of the volatile memory that is stored within the patch, (iii) the next patch in
the patch chain, (iv) the metadata to build an augmented interval tree to speed up the
restoration procedure, which will be discussed later in this section.

Patch Allocation. Patch sizes are allowed to differ. Therefore some form of dynamic
memory allocation is required. This brings challenges, as dynamic allocation leads to
fragmentation, which is undesirable in an embedded system. Therefore patches are
allocated using a fixed-size block allocator [113]. These allocated blocks are chained
together to create enough room required to store the volatile memory within the non-
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Algorithm 3: Patch Creation

1 Procedure PatchesCreate():
2 while p ← ModifiedMemory do // For each of the modified regions of memory
3 PatchStage(p.addressstart, p.addressend) // Create and stage the patch; see

Algorithm 4

Algorithm 4: Patch Staging

1 Procedure PatchStage(addressstart, addressend):
2 patch ← AllocatePatch(addressstart, addressend) // Allocate memory for a patch
3 PatchCreate(patch) // Copy the volatile memory region into the non-volatile

patch

volatile blocks. Each block contains: (i) a link to the next block in the chain, and (ii) a
link to the next free block in the chain. All blocks are stored and managed in non-volatile
memory. This creates challenges when trying to synchronize its non-volatile and volatile
state. If these are not kept in sync, blocks will be lost, and the system may become
corrupt. Additionally, write-after-read (WAR) violations [52] should be avoided when
interacting with the non-volatile state. These two separate links in a block are required
to eliminate one of these WAR violations, and this violation could also be eliminated by
introducing forced checkpoints, as inserting a checkpoint will break a WAR violation [52].
The total memory overhead of a patch in ENGAGE as it is currently implemented is 29 B.
By excluding the interval tree required for the metadata, this can be reduced further
to 17 B, but this would require an additional dynamic memory allocator to allocate this
memory in volatile memory during a restoration (e.g. standard heap). For the final version
used in ENGAGE, this was deemed undesirable, and therefore we integrated the interval
tree metadata within non-volatile patches.

Patch Restoration. Restoring patches involves first discarding all staged—but not yet
committed—patches, and then iterating through the patch chain while applying only the
regions of a patch that were not previously applied during the restoration process. To
keep track of the regions of volatile memory that were already restored we maintain an
augmented interval tree during the restoration process. After a patch is applied, its range is
added to the interval tree, and when a patch is applied, the interval tree is queried to detect
overlaps. If there are no overlaps, the path is applied (i.e. written to the corresponding
region in volatile memory). However, if the patch region overlaps with any region in the
interval tree, the patch is split-up and all sub-patches are attempted to be applied. The
complete algorithm for patch restoration is shown in Algorithm 5, with its accompanying
patch apply algorithm shown in Algorithm 6.

Memory Recovery. One of the features of MPatch is its constant time patch creation
while being incorruptible. However, patches that are no longer useful, i.e. that will not
be applied during restoration, should be deleted. To avoid WAR violations, removing
a patch (reclaiming its memory), consists of two operations. Firstly, the patch is freed,
and secondly, the patch is deleted. Between these two operations, a checkpoint of only
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Algorithm 5: Patch Restoration (note: low(p), high(p) denote the low, high
component of range p, respectively)

1 Procedure PatchesRestore():
2 DiscardUncommitted() // Call function that discards uncommitted patches
3 while papply ← next(PatchC hai n) do // Extract next patch from patch chain
4 PatchApply(papply, low(papply),high(papply)) // Apply patch; see Algorithm 6
5 IntervalInsert(low(papply),high(papply)) // Insert the patch range into the

interval tree

Algorithm 6: Patch Apply (note: low(p), high(p) denote the low, high component
of range p, respectively)

1 Procedure PatchApply():
2 if poverlap ← IntervalOverlap(low, high) then // Check for overlapping region in

interval tree
3 if l ow < low(poverlap) then
4 PatchApply(papply, l ow, low(poverlap)−1) // Recursively apply patch with a

new, partial, range

5 if hi g h > high(poverlap) then
6 PatchApply(papply,high(poverlap)+1,hi g h) // Recursively apply patch with

a new, partial, range

7 else
8 Write(papply, l ow,hi g h) // Write patch content between low and high to the

volatile memory

the MPatch management state is made containing patch and block allocation related
metadata. During the deletion of a patch special care is taken to avoid WAR violations
when modifying non-volatile memory in the patch chain. Memory recovery is not needed
during every time a checkpoint is created or restored, is automatically done when there is
no more non-volatile memory available to allocate a patch.

3.5. ENGAGE EVALUATION

We built ENGAGE as proof by demonstration that battery-free mobile gaming was possible.
In this section we demonstrate that the system can play unmodified retro games despite
intermittent power failures. We analyze the real-world execution of the platform while
playing Tetris in different lighting scenarios (i.e. with different energy scarcity) to show
the effect of energy availability. We then benchmark the ENGAGE hardware platform for
power consumption and, investigate the performance of the MPatch system. We find
that in well-lit environments playing games that require at least moderate amounts of
clicking, play is only slightly interrupted by power failures (less than one second of failure
per every ten seconds of play). Our measurements of MPatch across four different games
show that checkpoints are fast (less than 50 ms and restoration time after a power failure
is not noticeable (average of 140 ms).
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Figure 3.8: End-to-end evaluation of ENGAGE operating in ‘daylight’ (approximately 40 klx during Tetris game-
play using harvested energy only. The storage capacitor voltage is shown, overlaid by unique button presses
(marked as light blue dots). Additionally, the following system events are shown at the bottom of the figure:
initialization time (marked in dark green), system on time (marked in light green), low energy state (marked
in light blue, denoting moments of ENGAGE periodically checkpointing due to critical system voltage) and
checkpoint time (shown in dark blue in the separate zoomed-in window on the right). The actual game frames
are shown on top, taken from recording the ENGAGE display during the evaluation scenario. The scenario
shows that user interaction prolongs the on time of ENGAGE, by pressing buttons during gameplay—achieving
ten seconds or more of on time with small off times. We consider this to be a playable Tetris scenario.

3.5.1. END-TO-END ENGAGE PERFORMANCE

First, we look at the typical play of ENGAGE executing an example Nintendo Game Boy
game Tetris, chosen due to its requirement for moderate/high button presses and a small
number of cut-scenes. We show how the system operates only on harvested energy. We
execute two experiments, each in different lighting conditions: (i) ‘daylight’ with approx-
imately 40 klx and (ii) ‘shade’ with approximately 20 klx, where a gamer plays ENGAGE
fully untethered, operating on harvested energy only. In the experiment the voltage of the
main supply capacitor of ENGAGE is recorded together with various debugging signals
indicating different system states. The system state and button presses are recorded
using a Saleae logic pro 8 logic analyzer [208]. The ENGAGE platform was placed in a
light box with two remotely controllable lights generating the two different light expo-
sure conditions. The luminance of both scenarios was verified using a UNI-T UT383 lux
meter [231].

In the first scenario (‘daylight’, Figure 3.8) we show a period of execution with both
little and many button presses. Here clearly the contribution of the energy harvesting
by the switches is shown, significantly prolonging the on time of the device (marked in
green). The figure shows the complete sequence from startup until the ENGAGE reaches
a critically low energy level when it starts checkpointing. Due to the variability in the
incoming energy pattern, ENGAGE can spend some time in this state, since it always
needs to account for the worst-case scenario of no additional incoming energy. This
scenario results in on times of ten seconds or more with small off times of less than a
second, making it a very playable experience.

In the second scenario (‘shade’, Figure 3.9) we halved the amount of light the solar
panels are exposed to compared to ‘daylight’, a more challenging condition for ENGAGE.
This reduces on times to around 3.5 s with off times of more than a second. Despite
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Figure 3.9: End-to-end evaluation of ENGAGE operating in ‘shade’ (approximately 20 klx. Description of figure
elements is the same as in Figure 3.8. With less energy available to ENGAGE as in the scenario in Figure 3.8,
on times are reduced to around 3.5 s, with off times of more than a second. This scenario creates a noticeable
impact to the user experience.

the system still functioning correctly the lack of incoming energy becomes noticeable
and even button mashing cannot compensate for the lack of energy. As with any energy
harvesting platform, the limits of operation are defined to a major degree by the available
energy in the environment. Full-system emulation is challenging and energy-intensive,
but the game is still playable and functional; just with longer intermittent outages. We
note that the downward peaks of storage voltage in Figure 3.8 and Figure 3.9 are caused
by the energy harvester: during maximum power point tracking no energy is harvested
causing the quick drop in the storage capacitor voltage.

Full-System Restoration Time. We have also measured end-to-end time of ENGAGE
restoration: from the moment of applying power to the MCU to the moment of executing
game code within the Game Boy emulator. In the case of Tetris this is 264 ms. The other
games we tested resulted in comparable restore times, the main difference resulting from
MPatch operations, as is further described in Section 3.5.2.

3.5.2. MPATCH PERFORMANCE
To better understand and quantify the effect of patches on the checkpoint and restore
time, we evaluate MPatch against a naive approach—comparable in operation to Memen-
tos [203]—where all active memory in the system is copied to non-volatile memory during
a checkpoint, even if it was not modified since the last checkpoint. We compare these two
strategies, MPatch and naive, by running multiple different games on ENGAGE. These
games include: (i) Tetris, (ii) Super Mario Land, (iii) Space Invaders, and (iv) Bomberman.
These games represent a wide variety of play styles, developers, and even release dates.

MPATCH CHECKPOINT TIME

To measure only the impact of the MPatch patch checkpoints, we disable the just-in-time
checkpoints—used in Section 3.5.1—and run the system on constant power during these
measurements. Instead, we perform a checkpoint every c execution cycles of the emulator
and chose three different values for c, which correspond to different on times, i.e. 1 s, 5 s,
and 10 s. During normal operation checkpoints will only be created when the voltage
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Figure 3.10: MPatch checkpoint time comparison of approximately two minutes of game play per game using
three different on times (1 s, 5 s, and 10 s) between successive checkpoints. ENGAGE has noticeably better
performance than naive system, across all on times and games.
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Figure 3.11: Restoration time comparison of after approximately two minutes of game play per game using
three different on times (1 s, 5 s, and 10 s) between successive checkpoints. ENGAGE has comparable or better
performance than naive system, across all on times and games.
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reaches a critical threshold, as seen in Section 3.5.1. These fixed on times represent a
simplified scenario where the critical voltage threshold is reached after the specified
on time. The on time affects the number and size of the checkpoints, as it allows for
more memory writes between two consecutive checkpoints. The on time does not affect
the naive checkpoint, as it always checkpoints all memory, with the only variable size
being the system stack of ENGAGE. However, because of the way ENGAGE works—as an
emulation loop—the system stack size is virtually constant.

During the emulation of each game, with the three different on times, we measured
the cost of each component of the checkpoint using the same logic analyzer as used in
experiments in Section 3.5.1. A checkpoint of ENGAGE consists of a core checkpoint of
ENGAGE (Section 3.4.3) and additionally patches created by MPatch. The core checkpoint
includes the management of both the emulator and the emulated memory, but excludes
the emulated memory itself. This emulated memory is the largest memory component
of the system, and therefore also the largest component of a naive checkpoint. For this
reason we checkpoint this part of the system using MPatch, as the other components of
ENGAGE are virtually constant in the amount of memory that is modified and are thus
covered by the core checkpoint.

Figure 3.10 illustrates the naive checkpoint time as the horizontal line, the average
checkpoint time of a core checkpoint (light blue bar), the differential component of a
checkpoint using MPatch (dark blue bar), and the outliers (blue diamonds). As can be
seen, the cost of the core checkpoint is around 30 % of the complete naive checkpoint,
the rest being the emulated memory. However, when using MPatch to checkpoint the
emulated memory, the core checkpoint dominates the total checkpoint time. In total
MPatch is on average more than two times faster than the naive approach. This confirms
our hypothesis that only a small amount of emulated memory is modified during execu-
tion. This reduction in checkpoint time directly leads to a lower energy requirement for
each checkpoint and leaves more time for game emulation. Interestingly this assumption
seems to hold even when the on time approaches 10 s, which is substantial for intermittent
devices. Some outliers take longer than a naive checkpoint, and this is due to a periodi-
cally performed memory recovery procedure (Section 3.4.3)—which was introduced to
keep the creation of patches constant while keeping the system incorruptible.

MPATCH RESTORATION TIME

We also evaluate the restoration time of patch checkpointing of MPatch, in a similar
manner as in the previous section (i.e. the same set of games, comparison against three
other reference mechanisms). The results are presented in Figure 3.11.

Restoring a patch-based checkpoint requires more time than the creation of a patch,
as described in Section 3.4.3, due to the need to apply only the parts of the patches that
are required, and because all the volatile memory has to be restored. Additionally, the
restoration procedure must take into account all the committed patches when trying
to restore the volatile memory, as each of these might hold some region that was only
checkpointed using that specific patch. Therefore it is not directly influenced by the on-
period, but influenced by the time since a memory recovery. Nevertheless, as can be seen
in the figure, MPatch often reduces the restoration time compared to naive restoration.
We can also conclude from this that tested games often only modify a portion of their
memory (in this case the emulated memory), as can also be seen in Figure 3.4.
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3.6. DISCUSSION AND FUTURE WORK

Our evaluation of ENGAGE has shown that retro games are playable without batteries,
making the next step in self-sustainable gaming made first decades ago by e.g. Bandai
Corporation’s LCD Solarpower game series [51]. Although the core gameplay mechanisms
of the mobile handheld gaming have been successfully implemented, i.e. interaction with
screen-displayed data (for the original Nintendo Game Boy), other forms of interaction
that make game experience complete are waiting to be researched and implemented.

3.6.1. LIMITATIONS, ALTERNATIVES AND FUTURE WORK

Of course ENGAGE is just a first step in the direction of battery-free gaming and the
proposed platform still has many limitations that need to be addressed. First, our battery-
free platform plays no sound. We agree that no sound play is the main hurdle of complete
game immersion. How to make sound enjoyable despite power supply intermittency is
the core research question, but at the same time (in our opinion) an exciting research
area. Some approaches to the sound problem we anticipate as worth-considering are
(i) to include separate storage for sound buffering and play, following the architecture
of [49, 83], (ii) introduce superficial pauses in the original game tone—effectively making
the game sounds identical to the original battery-based game but punctured by silence at
pre-selected moments—to make sound interrupts less irritating during gameplay, or (iii)
to create intermittent system-specific game sounds—sounds that inform the user that
the system is about to die or has just become operational again—to enrich battery-free
gameplay.

Additionally, we cannot claim that all games will have the same playability when
ported to the intermittently-powered domain. Only when the off-times are negligible for
the player we can safely assume that any existing game could be played intermittently.
Negligible off-times will cause no irritation to the person who is accustomed to always-on
style of play. This observation would hold for any game system—not only classical (but
old) Nintendo GameBoy we used as a basis for ENGAGE, but also recent systems such as
PlayStation Portable or Nintendo Switch. An open research question is to find how long
this off time is (less than a second or maybe less than a millisecond)? Our intuition says
that this time is game-dependent and the longer the off times are present in a battery-free
console, the set of games that can be ported to the battery-free platform gets smaller.
Games that do not need frequent button pushes intuitively would be less irritating to
play intermittently (e.g. Chess) or Solitaire); refer also to qualitative comparison of 8-bit
Nintendo Games portability in Table 3.2. However, this creates an interesting paradox of
button-based interaction. More button presses during the game result in more energy be-
ing supplied to the game console. and Section 3.3.2 (in extreme case games that are based
on button bashing, such as classical Track & Field arcade game from Konami Corporation,
gamer would be able to continuously generate energy purely from gameplay). At the
same time less button presses result in less energy being created, causing a reduction in
continuous duration of play. To verify the above claims detailed user studies considering a
large pool of gamers and games need to be performed, where users play different games
with artificially-induced intermittent operation (varying duration of on and off times).
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Table 3.2: This table describes the difficulty (or irritability) of playing types of Nintendo GameBoy games on
intermittent power, assuming the intermittent effect is noticeable to the player and that enough energy is
available for some level of play.

Game name Type Button presses Intermittent play Comments

Baseball Sports Very High Hard Reaction time is part of the game
Super Mario Land Platformer High Hard Button press order is crucial

Tetris Puzzle High Medium Tile rotation is often infrequent
Solitaire Cards Low Easy No penalty for missing a press

WordZap Puzzle Low Easy Easy with “no solving time” penalty
Chess Strategy Very Low Easy Most time spent on thinking

Behavior Nudges to Generate More Energy. Many types of games have natural gaming
mechanics that could be leveraged to increase energy harvesting actions. Dance Dance
Revolution, Bop-It, and others, exploring this gaming induced behavior change for in-
creasing energy is an interesting research direction. For example, a specific rapid button
pressing sequence can trigger new game events (new levels, extra game points, etc.). Then,
there are great user interfaces for battery-free interaction, for instance a crank2, that can
be researched further.

Native Execution. We chose the hard path: running a game emulator on an intermittent
platform. This was to demonstrate the range of capabilities available to intermittent
computing, and to leverage the vast amount of pre-built games that can play unchanged
on the platform. However, one could imagine that native gameplay would significantly
increase the performance of the platform, by orders of magnitude, since a single emu-
lated instruction has significant overhead over native code for the platform. This could
be accomplished by compiling game binaries to native ARM code, or by leveraging a
bespoke gaming API from bare-metal C code. The latter is intriguing as an exercise to
take advantage of the unique aspects of intermittently-powered and battery-free gaming,
where the situation and context, as well as the gameplay, will affect how much energy is
harvested. Game mechanics leveraging this system attribute might increase engagement.

3.7. RELATED WORK

Battery-free Sensors. Long before our idea of a batter-free gaming console, non-gaming
embedded platforms were realized in a battery-free manner—making these sensors
more environmentally-friendly. The first such battery-free platforms were wireless sen-
sors [190]. First battery-free sensors were based on the idea of computational RFID tags:
programmable RFID tags with on-board sensors (such as accelerometers or temperature
sensors) communicating with the outside world by radio frequency backscatter to a RFID
reader. WISP [234, 210] and Moo [233] are the first realization of such RFID tags. Since the
introduction of WISP and Moo many research groups have focused on making battery-free
backscatter communication more efficient [244], for instance, by making it free from ded-
icated energy sources [189], by enabling communication with non-backscatter networks

2Which is already used in the upcoming post-retro Playdate console [187], which sadly is not used for internal
battery charging.
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such as IEEE 802.11 [112] or LoRa [221], or by improving backcatter-based networks—
either based on standard RFID protocols [141], or based on dedicated backscatter network
stack [81]. A separate line of research focused on introducing camera-based image pro-
cessing to backscatter-based sensors. First, a backscatter-based battery-less cameras,
as an extension to WISP platform, has been demonstrated in [164, 165], later followed
by a dedicated (non-WISP) backscatter-based system [163, 207]. Additionally, non-radio
frequency backscatter systems based on passive visible light communication backscatter,
such as PassiveVLC mote [245], have also been demonstrated. It is important to remark
that the biggest drawback of backscatter-based systems is the reliance on external en-
ergy sources (itself powered by batteries or power lines) that downscales the benefit of
removing battery from a complete system.

Additionally, battery-free sensors that communicate using non-backscatter, i.e. ac-
tive, communication techniques also become actively researched. These include simple
sense and transmit sensor powered by ambient temperature differences [255], UFoP [83]
and Capybara [49]—energy-harvesting storage-adaptive sensors, Battery Free Phone [223],
SkinnyPower—wearable sensor powered by intra-body power transfer [213], Camaroptera—
image-inferring sensor [167], SoZu—battery-free activity detector [254], or Botoks—time-
aware wireless sensor [54]. Non-wireless/non-communicating battery-free sensors in-
clude CapHarvester—local energy monitor powered by harvesting stray voltage from AC
power lines-[74], self-powered step motion counter [107], Saturn—battery-free micro-
phone [28], and active radio battery-less eye tracker [129].

Battery-free Interactive Devices. It is imperative to extend battery-less devices beyond
a simple ‘sense-and-transmit’ functionality (as summarized above) demonstrating sim-
ple forms of user interaction. The same RFID technology that laid the foundation for
battery-free sensing was also used to demonstrate battery-less interaction. Such systems
include RFID-based tags displaying external information [176], elderly monitoring based
on embedded-in-clothes RFID tags [104], surface shape detection [106], speech recogni-
tion [237], augmented reality with (i) unmodified RFID tags [128] and (ii) modified RFID
tags (to enable touch sensing) [93], interactive building block system with augmented
RFID tags3 [131, 94] or finger gesture measurement [111]. It needs to be emphasized that
any RFID tags-based interaction is very sensitive to interference and signal mis-matches
as demonstrated in [238].

Separately from RFID-based battery-free interactive devices, non-RFID counterparts
are also actively researched. Most of these devices focus on remote device control through
touch. Examples of such devices are capacitance-based touch sensors (although com-
municating with FM radio receiver through backscatter) [236], Ohmic-Sticker—force-
to-capacitance sensors attachable to laptop touchpad [95], aesthetically pleasing self-
powered interactive surfaces based on photovoltaic cells [156] and self-powered gesture
recognition based on (i) photovoltaic panels [137]4, (ii) photodiodes [130] and (iii) capaci-
tance sensing [229]. E-ink battery-free wearable displays embedded in clothes, energized
by NFC-enabled smartphones were demonstrated in [56].

Another approach for battery-free embedded devices is to equip the area where
the sensor resides in some form of wireless power transfer system. Many end-to-end

3A similar concept for NFC-based tags has been presented in [38].
4System claims to be battery-less, while in evaluation a battery-based version was used.
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wireless power solutions can be found in the literature, including recent systems built
on top of capacitive power transfer [253], magnetic resonant coupling [220], quasistatic
cavity resonance [211], lasers [99] or distributed RF beamforming [61]. As in the case of
backscatter-based sensors, wirelesly-powered sensors require external (complex, bulky
and still having not fully resolved safety issues) infrastructure. This limits applicability of
this approach to ubiquitous battery-free gaming.

Battery-free Gaming. An ultimate form of interaction is through a gaming system. The
first commercial battery-free/solar-powered gaming platform was Bandai’s LCD Solar-
power [51], released already in 1982, which enabled the manipulation of hard-coded
elements on a liquid crystal display. Unfortunately, Bandai’s console and modern ex-
isting academic-grade battery-free gaming systems are limited to a simple game forms,
such as attachable touch pad extenders for better (but still battery-powered) mobile
game experience [43, 251] (similar to an earlier referred design [95]), extra controllers for
smartphones based on its front/rear cameras [246], or based on RFID technology that
requires heavy-lifting of battery-less features by an expensive RFID reader using either
(i) computational RFID tags [233, 234] as for instance in [151], or (ii) using commercial
off-the-shelf RFID tags as in [127]. Battery-free non-RFID touch pad extender for the
introduction of physical manipulation into touch screen-based games was prototyped
in [169]. Battery-free gaming aimed at children includes a system based on rubbing/-
touching electrostatic surfaces to power simple electronics [110, 42, 41] and an attachable
energy harvester mote for learning and understanding concepts of energy generation and
consumption [206].

Sustainable Design of Interactive Devices. Design of any future interactive devices
must consider sustainability and reuse, as advocated already a decade ago in [36, 149].
The same plea, but in the context of pervasive devices, was presented in [101]. For
almost a decade many studies call for sustainable ‘upstream’ HCI by making conscious
choices in HCI design process in selecting materials that are sustainable, recyclable
and reusable [114] or using post-apocalyptic terms— HCI “designed for use after the
industrialized context has begun to decay” [228]. We are unaware of any studies on
whether the (handheld) gaming community considers sustainable gaming as important,
let alone existing, problem. A loosely related study to our posted problem is the study on
the motivations behind leading green households [243].

Intermittent Computing Systems. As discussed in Chapter 1, the goal of intermittent
computing frameworks is to guarantee the correctness and completion of the compu-
tation of battery-less energy harvesting embedded platforms despite frequent power
interrupts. Such framework is essential for the usability of battery-free gaming platform.

From the publication of the first framework supporting intermittently-powered de-
vices, Mementos [203]—voltage threshold-triggered checkpointing system, more efficient
checkpoint systems are being published. These include Hibernus++ [30] and QuickRe-
call [103] (just like Mementos, both hardware-activated checkpoints), DICE (differential
checkpoints) [11, 12] and WhatsNext (checkpointing augmented with approximate com-
puting) [66].

A separate stream of work targets peripheral support for intermittently-powered
devices, such as Restop (through dedicated middleware) [29], Samoyed (through just-
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in-time checkpoints) [145] and Karma (supporting parallel or asynchronous peripheral
operations) [37], or targeting handling of dedicated peripherals such as e-displays (to
improve their update rate) [157].

3.8. CONCLUSIONS
This chapter presented a first working example of a battery-free gaming console and
the first full system emulation on intermittent power: ENGAGE. We demonstrate we
can port existing battery-based gaming platforms—such as in our case 8 bit Nintendo
Game Boy—to the battery-free domain. To achieve this, we developed MPatch, a new
system for persistent computation across power failures based on a novel concept of
patch checkpointing of the volatile memory state into non-volatile memory regions.





PART TWO:
NON-VOLATILE MAIN MEMORY

In the previous part of the the thesis, we focused on enabling intermittent computing on
embedded systems with volatile main memory (SRAM). However, despite our best efforts,
a significant amount of data is still copied to and from non-volatile memory to keep a
consistent copy of our volatile memory, therefore still introducing considerable overhead to
support intermittent computing. We can mask this overhead using larger buffer capacitors,
requiring checkpoints less frequently. But increasing the capacitor size also increases the
charge time and the system’s total size as the capacitor’s physical size increases.

In this second part of the thesis, we target systems with non-volatile main memory,
e.g., MRAM, FRAM, or ReRAM, which are specialized non-volatile alternatives to SRAM.
Using non-volatile main memory eliminates the need to store the main memory during
a checkpoint, significantly reducing the cost of checkpoints. However, these non-volatile
memories consume more energy and are slower than their volatile counterpart. Addition-
ally, using non-volatile memory requires more complicated techniques to keep the memory
synchronized with the checkpoint of the registers, introducing additional overhead.
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An example of a memory sequence in which a read operation (R) is followed by a write (W) can result in corruption
after a power failure.

Corruption in intermittent systems with non-volatile main memory is caused by re-
executing Write-After-Read (WAR) dependencies, shown in the figure above. Whenever data
in the non-volatile memory is read and later written to, re-executing this section of code
will re-execute the original read from memory. However, this time the read loads a different
value from memory, namely the value written during the write operation just before the
power failure, which will cause the re-execution to be incorrect. This WAR phenomenon is
actually the same underlying reason for corruption in Chapter 1 (Section 1.2.1). However, it
can be handled more easily in systems with volatile main memory, as the memory content
must be copied regardless. When using non-volatile memory, we do not want to copy the
entire memory state, as this would undo all the benefits of using non-volatile main memory.
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Therefore, in this part of the thesis, we tackle these challenges by introducing and improving
techniques to create incorruptible checkpoints when using non-volatile main memory.



4
AVOIDING CHECKPOINTS USING

STACK SEGMENTATION

In this chapter, we consider an embedded device with non-volatile main memory in the
form of FRAM. Having non-volatile main memory eliminates the need to store all the
memory during a checkpoint. However, to maintain a consistent memory state, special
care must be taken to restore the non-volatile memory to the condition it was in when the
checkpoint was created before computation can continue. To address this synchronization
problem, this chapter introduces a segmented stack approach where one active stack is
included in the checkpoint and can be modified freely. Access to memory outside this
active stack must be logged and restored to maintain memory consistency in case of a
power failure.

This chapter is based on the following publication:
Vito Kortbeek, Kasım Sinan Yıldırım, Abu Bakar, Jacob Sorber, Josiah Hester, and Przemysław Pawełczak.
Time-sensitive Intermittent Computing Meets Legacy Software. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 85–99, March
2020. https://doi.org/10.1145/3373376.3378476.
The accompanying archive containing all the software and data can be found at https://doi.org/10.5281/zenodo.
3563081.

85

https://doi.org/10.1145/3373376.3378476
https://doi.org/10.5281/zenodo.3563081
https://doi.org/10.5281/zenodo.3563081


4

86 4. AVOIDING CHECKPOINTS USING STACK SEGMENTATION

4.1. INTRODUCTION
As referred to in Chapter 1, using existing approaches that support intermittent com-
puting on systems with non-volatile main memory introduces numerous challenges.
Task-based programming requires significant developer effort to transform a program to
fit the programming model [48]. On the other hand, checkpointing systems remove the
cognitive burden of porting, but have high memory overhead and performance penalties
due to frequent checkpoints [235]. Moreover, some of these systems cannot execute
all C-programs: in particular, pointers [250] and recursion [143] might lead to incorrect
checkpoints. Additionally, not all existing techniques (e.g., [235]) are effective for micro-
controller architectures with instructions that can directly read and modify memory in
the same instruction, such as the MSP430FR [224], an often used microcontroller series
within the intermittent computing community due to its onboard FRAM. These instruc-
tions would need to be separated into multiple instructions to create idempotent regions,
which introduces additional overhead and requires significant changes to the compiler.
Furthermore, existing checkpointing systems do not allow semantics to handle elapsed
time and in turn they cannot handle time-sensitive data that might be expired after a long
power failure. Developers have no way to easily inject decision points into legacy software
based on the time elapsed since failure can occur in-between any lines of the code.

These issues beg the question: is there a way to bridge the gap between time-sensitive
intermittent computing and legacy software designed for continuously-powered systems?
As of now we are still far from an ideal intermittent computing system that (i) removes
the cognitive burden of porting legacy software and enables unaltered C programs (with
standard programming constructs and any typical compiler optimizations enabled) to
be executed on intermittent power; (ii) provides semantic and syntactic mechanisms
to handle data freshness (and passing of time in general) for timely execution of the
application; and (iii) introduces low memory impact and little performance penalty.
These requirements are necessary to enable the widespread adoption of intermittent
computing.

In this chapter, we propose TICS (Time-sensitive Intermittent Computing System), an
intermittent computing system designed with the goal of running time-sensitive code
on intermittent platforms via automatic checkpoints. TICS enables programmers to (i)
execute any kind of unaltered C program (including pointers and recursion) by greatly
reducing, as well as bounding, the overhead of checkpoint/restore times—eliminating
system starvation, and (ii) optionally annotate the program with structures to specify
custom timing requirements—protecting against timing errors that are never seen in
continuously-powered programs. The core scientific contributions of this work are:

• Time sensitivity semantics for checkpoint-based intermittent systems—enabling,
for the first time, declarative annotations for intermittent applications to handle
the passing of time in-between power failures and to eliminate time consistency
violations particular to intermittent systems;

• Memory consistency management for checkpoint-based intermittent systems by
combining data versioning and stack segmentation to bound checkpoint/restore
times—enabling the execution of unaltered C-programs–including pointers and
recursion–without system starvation and endangering memory consistency, and
providing a foundation for memory isolation and interrupt handling;
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Figure 4.1: Four types of consistency violations encountered with automatic checkpointing. These violations
occur because of incorrect execution caused by bad checkpoint placement, leading to an execution that is not
possible on a continuously powered device. With this work we introduce a new class of violations, i.e. time-based
violations, that have not been previously explored in checkpointing systems—refer to figures (b)–(d).

TIME CONSISTENCY.

Consistency violations identified in previous work [136] include only memory consistency
violation; see Figure 4.1(a): after a checkpoint, non-volatile global variable len is changed,
but these actions are not included in the checkpoint. When the checkpoint is restored,
len is again updated, leading to an incorrect value of len due to the Write-After-Read
(WAR) dependency. We identify three other types of consistency violations, all having to do
with time. The errors stem from the fact that clocks internal to the MCU are reset after
each power failure, meaning that devices have difficulty tracking how long they have been
off [87, 199]; even when using external timekeepers, time-sensitive portions of a program
must be handled differently in checkpointing systems by careful checkpoint placement
or time management.

1. Timely Branching. If a checkpoint is placed in a line of code before a timestamp
is gathered, and that timestamp is used in a predicate statement, execution can
execute both branches if the timestamp elapses; see Figure 4.1(b);

2. Time and Data Misalignment. Often in embedded programs, a timestamp is
gathered every time sensor data is obtained. If a checkpoint is placed between the
timestamp and the data gathering, the timestamp will be inaccurate. After a power
failure recovery at that checkpoint, new data will be gathered associated with an
old timestamp—causing incorrect execution of the program; see Figure 4.1(c);

3. Data Expiration. Data gathered in one power cycle may not be fresh enough for the
next power cycle. This phenomenon [86] has not been handled by any automatic
checkpointing systems to date; see Figure 4.1(d).

4.2. TICS: SYSTEM DESIGN
TICS consists of a runtime combined with code instrumentation for the C language—
Figure 4.2 presents the logical flow and the main components of the TICS system. The
main motivation behind TICS is to provide the view of a continuously-powered system
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@expires_after=5 seconds
int temp;

...
temp @= read_sensor();
@expires(temp){
   if(temp>30)
      blink_leds();
}

int temp;
int temp_timestamp;

...
Checkpoint();
LOG(temp)= read_sensor();
if(temp_timestamp-time()<5)
   if(temp>30)
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Figure 4.2: TICS overview: A runtime combined with code instrumentation ensures memory consistency via
data versioning and stack segmentation; progress of computation via checkpointing; and timely execution via
time annotations.

to the programmer—so that legacy C code can be run without any modification to the
program source. TICS allows the programmer (i) to focus on the correct and timely
execution of the application—eliminating the explicit need for intermittency handling,
and (ii) to perform a few modifications to the original program, specifically, to annotate
their code only to define timing constraints.

Task-based versus Checkpointing. Conversion of a C program into a task-based program
requires significant manual labor; automatic transformation of a pointer-based C pro-
gram is incredibly difficult due to memory burden created by a multitude of versions of
memory locations/variables. Therefore, instead of task-based transformation, TICS uses
checkpointing in order to get rid of manual code transformation and its limitations.

Building an Efficient Stack. As the amount of state that is checkpointed grows, the
checkpointing overhead increases, potentially leading to overheads that may exceed the
device’s capabilities and energy budget. Since functions often manipulate local variables
in their stack frame, there is no need to checkpoint the whole stack. TICS employs a
novel strategy by segmenting the stack into fixed and predetermined size blocks. The
stack segment that is directly manipulated at a time instant by the program is called the
working stack and it will be the only one among others that needs to be logged into a
segment checkpoint—since other segments are not modified. By segmenting the stack
TICS can provide a fixed worst-case checkpoint time, as the variable stack size is fixed to
the size of a stack segment. It is worth mentioning that the programmer is completely
unaware of the underlying stack segmentation but the desired size of stack segments can
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be chosen at compile time for the sake of performance—see Section 4.4.

Pointer Handling. As pointer access cannot be determined at compile time, existing
systems need to checkpoint the whole main memory in order to keep memory consistent—
leading to huge checkpoints and in turn system starvation due to limited energy reservoir.
TICS implements a data versioning scheme to handle pointers and ensure memory
consistency: it keeps track of only manipulated memory locations by keeping the original
values in a non-volatile undo log. The undo log is cleared upon a successful checkpoint,
otherwise TICS restores the original contents of the memory using the undo log—ensuring
memory consistency despite power failures.

Memory Impact. Checkpointing the device’s volatile state requires an atomic two-phase
commit operation to ensure its consistency [142]: in the first phase the checkpointed
data is copied to a temporary buffer in non-volatile memory; then in the second phase
the buffered data is committed to the original location. Existing checkpointing systems
double buffer the stack, .bss and .data sections—their memory requirements increase
with the volatile state. On the other hand, TICS only requires the segment checkpoint
and the modified memory locations in .bss and .data sections to be double buffered—
significantly reducing the memory impact.

Timely Execution. C does not provide any keyword/statement to express time constraints
of the data and handle it—programmers must explicitly timestamp data and handle
data expiration. This complicates application development as well as might lead to bugs
due to manual timing and expiration checks, control flow delivery and recovery due to
data expiration—as given in Section 4.1. TICS provides annotations to relate data and
time as well as special statements to change control flow and perform recovery upon
data expiration—all underlying time management is performed at run-time without
programmer intervention.

4.2.1. EFFICIENT AUTOMATIC CHECKPOINTS

Existing works, e.g. [235, 88, 35] exploit architectural support and ensure constant and
scalable checkpointing overhead. For example, Ratchet [235] uses non-volatile memory as
the main memory so that stack and global variables are already persistent—leading to con-
stant checkpoint time since only the volatile registers of the processor are checkpointed.
This requires decomposing programs into idempotent code sections via the compiler
using static analysis at the instruction level and gluing them together with checkpoints.
However, dynamic memory manipulations that cannot be determined at compile time,
e.g. write operations via pointers, require a checkpoint after each instruction, leading to a
considerable checkpointing frequency and, in turn, overhead. TICS targets devices with
non-volatile main memory—a checkpoint operation logs only the registers and the stack
in a dedicated double-buffered area in non-volatile memory via a two-phase commit.
Since the stack grows/shrinks dynamically, checkpointing overhead grows with the size
of the stack. Moreover, recovery time, i.e. restoring the state after a power failure, is not
fixed and might exceed the device’s energy budget—leading to system starvation. TICS
remedies this with stack segmentation and data versioning.
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Figure 4.3: TICS architecture. With TICS only the working stack and the registers during a checkpoint are
logged—ensuring deterministic worst-case overhead. Previously checkpointed segments belonging to the lower
parts of the stack are maintained in a segment array. The global variable and pointer access are handled by the
memory manager which implements undo logging to keep memory consistent.

STACK SEGMENTATION.
The stack allocation within the execution of the applications might vary significantly, in
particular when a lot of memory space is allocated/deallocated at function entries/returns.
The stack size requirement depends on dynamic program flow (that might be unknown
at compile time) and in turn, it is not possible to guarantee a worst-case checkpoint size.
TICS segments the stack into blocks of fixed size selected at compile time—the maximum
stack frame in a program (determined during compilation) dictates the minimum block
size. TICS maintains the segmented stack of a program as a segment array in non-volatile
memory—see Figure 4.3. The size of the stack array is fixed at compile time by considering
the stack requirements and exceeding the size at runtime leads to a stack overflow. The
program interfaces with the top segment of the segmented stack, the so-called the working
stack: the program modifies only the working stack, and upon a checkpoint, only the
working stack is two-phase committed into the double-buffered segment checkpoint—this
enables a fixed checkpoint time. Moreover, recovering from a power failure only requires
the working stack to be restored from the segment checkpoint, instead of restoring the
whole stack.1

During program execution, the stack grows/shrinks making the working stack point
to different segments in the segment array. When a function is entered, the stack pointer
is adjusted: TICS inserts a check before the modification of the stack pointer to determine
whether there is enough space in the working stack to execute the function. When enough

1Differential checkpoints [11] log only modified part of the stack—but they can still be large for nested function
calls each using a lot of stack.
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space is in the working stack, the execution resumes and the function interfaces with
the working stack. Contrary, if there is not enough space left on the working stack, a
stack grow procedure is initiated so that the working stack points to the next segment
in the segment array. It is worth mentioning that a checkpoint after this point requires
only the new working stack to be saved into the segment checkpoint since the previous
segments remain unmodified. When a function that triggered a stack grow returns, a
stack shrink is initiated so that the working stack points to the previous segment in the
segment array. TICS can enforce an implicit checkpoint if the current working stack was
not saved into the segment checkpoint yet. This is because if the currently checkpointed
segment is out of the program stack, the working stack should be checkpointed first so
that the modifications can be rolled back upon power failures and the stack consistency
is ensured.

It is worth mentioning that no special attention is needed when TICS executes recur-
sive functions. However, as in general embedded systems, the depth of the recursive calls
is limited by the size of the stack memory, which is represented by the fixed size of the
segment array in TICS architecture.

MEMORY MANAGEMENT AND POINTERS.
TICS maintains global variables; i.e. .data and .bss sections in non-volatile mem-

ory. Intermittent execution might create inconsistencies if the application modifies
non-volatile memory directly and the modified locations are not versioned, i.e. double
buffered [202, 136]. TICS instruments non-volatile memory write operations and enables
on-demand versioning: undo logging is employed so that if any memory location outside
of the working stack has been modified, the original version is saved in an undo log. After
a successful checkpoint, the undo log is cleared. Upon power failure, the contents of the
undo log are written back to the original locations. Since the undo log is also fixed in size,
TICS forces a checkpoint when the undo log is full to eliminate the overflow and ensure
forward progress.

In TICS, pointer writes to global variables within the .data and .bss sections in
non-volatile memory are managed at runtime. Additionally, pointers to the stack can
manipulate memory locations, in particular, stack segments other than the working stack.
A pointer to the working stack can directly modify its contents since the working stack is
checkpointed separately. Conversely, if it points to other segments in the segment array
or global variables in .data and .bss, the memory manager employs undo logging.

4.2.2. SEMANTICS FOR TIMELY EXECUTION

TICS provides annotations; i.e. @expires_after, to denote the expiration constraints of
the data and necessary keywords for checking if time constraints are met—see Section 4.4.
A timestamp value is associated with each programmer annotated variable and the write
operations on these variables are instrumented by the compiler. TICS can update the
value of the timestamp automatically upon writes using a persistent timekeeper which
keeps track of time across power failures [86]—see Section 4.3 for details. Programmers
can check the expiration of the data using @expires block—TICS compares the cur-
rent time with the timestamp to identify if programmer-defined timing constraints are
met. Programmers can also use @expires_after=0s statement for any variable that
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@expires_after =1s /* data expires in 1 second */
int temperature [ WINDOW_SIZE ];
...
/* data & timestamp alignment ( assign timestamp ) */
temperature [i] @= read_sensor ();
...
/* catch data expiration */
@expires ( temperature [i]){

if( temperature [i] > max) {max = temperature [i]};
}
...
/* branch in time ( before the send deadline ) */
@timely ( SEND_DEADLINE ){ send(max); } else {...}
...

Figure 4.4: An overview of TICS annotations for timely execution of intermittent applications. TICS supports
timely branches, ensures data and time alignment and catches data expiration.

requires a timestamp associated with it but does not have any expiration constraint. It is
the responsibility of the programmer to provide necessary logic within these syntactic
structures.

SUPPORTING TIMELY BRANCHES.
In order to prevent timely branch violations as depicted in Figure 4.1(b), TICS introduces
@timely/else block that takes a time value as an input. This block disables automatic
checkpoints, reads the current time using the (persistent) timekeeper and checks if the
given time value is greater than the current time. If this is the case, the branch is taken,
a checkpoint is placed at the end of the branch and automatic checkpoints are enabled.
Otherwise, the branch is not taken and automatic checkpoints are enabled.

ENSURING DATA AND TIME ALIGNMENT.
As depicted in Figure 4.1(c), if a checkpoint is placed between the timestamp assignment
and the data gathering (or vice versa), the timestamp can be inaccurate after a power
failure. In particular, this issue is problematic if checkpoints are done automatically, e.g.
with a periodic timer. To remedy this, timestamp assignment and data gathering opera-
tions should form an atomic block. TICS ensures the atomicity by (i) disabling automatic
checkpoints so that timestamp assignment and data gathering cannot be split; and (ii)
placing a checkpoint right after these operations (and enabling automatic checkpoints
thereafter, if needed) so that the consistency of timestamp and data is guaranteed despite
a power failure.

TICS introduces operator @= for the atomic assignment of the data and timestamp—
see Figure 4.2. TICS makes this assignment explicit via @= since there is no need to update
the timestamp of the associated data per each write, e.g. the sensed temperature value
can be converted from the raw ADC value to the degree in Celsius and this conversion
should not lead to the update of the associated timestamp.

CATCHING DATA EXPIRATION.
In TICS, @expires and @expires/catch blocks are used to work with the data within

a certain time frame and to catch data expiration— Figure 4.1(d). For the sake of imple-
mentation simplicity, we remark that these blocks consider only one variable.
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Conditional-based @expires. TICS implements @expires block by using an if statement
at the beginning that checks if the data is still valid; see Figure 4.2. If the condition is
met, the rest of the operations will be executed within this block. Due to automatically-
inserted checkpoints and arbitrary power failures, @expires block might not be atomic.
If a checkpoint is placed inside an @expires block, a power failure might lead to data
expiration—TICS disables automatic checkpoints at the beginning of the @expires block
so that computation starts from the if statement after each power failure. TICS places a
checkpoint at the end of @expires block and enables automatic checkpoints thereafter.
It is worth mentioning that these operations ensure atomicity, but data can still expire
since the instructions within the @expires block can be long enough to violate data
freshness constraints.

Exception-based @expires/catch. In order to catch data expiration while executing an
@expires block, TICS sets a timer at the beginning that fires when the data expires. Upon
timer fire and in turn data expiration, TICS restores the original contents of the modified
variables inside the @expires block by using the original values in undo log. TICS delivers
the control flow to the catch block that handles specific logic to handle data expiration.
Since undo logging is required for exception-based implementation, its implementation
is parallel to the rest of TICS for the sake of memory consistency.

4.3. TICS: IMPLEMENTATION

TICS is built around the MSP430FR5969 [224] MCU with 64 KB non-volatile (FRAM)
and 2 KB volatile (SRAM) memory. The compiler back-end instruments the assembly
to support stack segmentation. The code instrumentation is done via the LLVM utility
library LibTooling [177], which is intended for both static analysis and code transfor-
mations. We employed code transformation rather than compiler support, to allow for
portability, enabling the use of multiple compilers, and in turn eliminating the need for
re-implementing the instrumentation. In order to produce the target binary, we used
MSP430-GCC version 7.

Stack Segmentation. In TICS, stack segmentation is employed at function entries and
exits. Before the stack grows or shrinks, TICS checks the stack frame size of the corre-
sponding function (known at compile time) to determine if the function can be executed
by using the current working stack. If there is not enough space in the working stack, a
stack grow procedure is initiated so that the working stack points the next segment in
the segment array. Since the arguments of the function remain in the previous segment,
these arguments are copied from this segment to the empty working stack. If a stack
shrink is needed, the caller stack is restored, the working stack is changed and a segment
checkpoint is performed if the previously checkpointed data belongs to a segment lower
than the current working stack. All these operations are depicted in steps 1–3 in Figure 4.5.
To enable these operations, we modified the compiler back-end to insert the required
stack availability check and argument copying operations—the size of a stack segment is
determined at compile time and its minimum size depends on the minimal stack require-
ments of the functions in the source.
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int foo(int x){
1   [requires 128 bytes]
2   if (remaining_stack<128)
3      stack_grow();
4   char bar[128];
5   x = foobar(x,bar);   
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7   return x;
}
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Figure 4.5: TICS stack segmentation and checkpointing. In pseudocode: lines in light gray and red colors
represent the code inserted during the compiler pass; the red lines only execute when the working stack needs
to grow or shrink.

Memory Consistency Management. To implement undo logging so that the changes
in non-volatile memory locations (other than the working stack) can be undone, global
variable and pointer manipulations are instrumented. Since pointers can point not only to
global data but also to the working stack or segment checkpoint in non-volatile memory,
the instrumentation is done by checking if the physical address is in the working stack or
not. If so, the memory manager logs the contents of the memory cell in the undo log2.

Automatic Checkpoints. To keep the consistency of checkpointed data—as the system
can die while performing a checkpoint—the checkpoint data is double buffered in non-
volatile memory. A flag is used to provide an exact barrier after which the checkpoint is
ready to be used as a restore point. These enable checkpoint operations to be atomic.
Checkpoint restoration happens when the system reboots due to a power failure. The
current implementation supports: (i) timer-driven checkpointing; where the runtime
interrupts program execution and checkpoints the system state periodically at a given
frequency; (ii) hardware-assisted checkpointing, e.g. [30] where a voltage level based
interrupt triggered upon a low-energy state to perform a checkpoint; and (iii) manual
checkpoints. It is worth mentioning that TICS disables (automatic) checkpoints before in-
terrupt service routines and places an implicit checkpoint right after return-from-interrupt
(ISRs) instruction. This is sufficient to prevent memory inconsistency while servicing
interrupts—if a power failure prevents the completion of an ISR, the system will continue
as if the interrupt did not occur right after the recovery from the power failure.

2Memory management is implemented fully in software as microcontrollers, e.g. MSP430FR59* [224], do not
have a memory management unit.
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‘Greenhouse monitoring’ routines
Sense Sense

Intermitt. Moisture Temp. Compute Send Consist.

4%

plain C 9 9 9 0 ✗
plain C + TICS 0 0 0 0 ✓

TinyOS 0 0 0 0 ✓
TinyOS + TICS 0 0 0 0 ✓

48%

plain C 29 29 29 20 ✗
plain C + TICS 20 20 20 20 ✓

TinyOS 29 29 29 20 ✗
TinyOS + TICS 20 20 20 20 ✓

100%

plain C 47 47 47 47 ✓
plain C + TICS 45 45 45 45 ✓

TinyOS 47 47 47 47 ✓
TinyOS + TICS 44 44 44 44 ✓

Table 4.1: Real-world program with TICS on intermittent power (4%, 48% and 100% intermittency rate).
We ran four applications implementing greenhouse monitoring (GHM): in C and in TinyOS (with and without
TICS instrumentation). We measured how many times each GHM routine executed. Only these programs that
consistently executed the same number of routines were considered correct.

Time Annotations. Each write to a time-annotated variable is instrumented so that
the timestamp value associated with the variable is updated. To implement exception-
based time annotations, we instrumented @expires/catch block so that a timer is set
considering the data expiration constraints. Moreover, we instrumented the necessary
instructions for undo-logging the memory modifications and changing the control flow
upon data expiration. TICS with time-sensitive programs requires the ability to measure
time across power outages using a remanence-based timer [87, 199] or a Real-Time Clock
with a small capacitor [84]—persistent timekeeping is mandatory to update timestamps
and to handle time annotated source files.

4.4. EVALUATION
We investigate the execution overhead of TICS for various applications, comparing to
the state-of-the-art intermittent runtimes. We demonstrate how TICS enables porting
of arbitrary C programs as well as TinyOS code—for the first time we demonstrate the
successful execution of legacy code for sensor networks into the intermittently-powered do-
main. We also show results from a user study we conducted comparing TICS to task-based
programming. We found that TICS has comparable overhead to state-of-the-art runtimes
while providing a complete set of features available to the regular C programmer.

4.4.1. PORTING LEGACY CODE: TINYOS TO INTERMITTENT WORLD
To prove the claim that TICS enables automatic porting of existing/legacy C code for
non-intermittently powered systems, we instrument an unmodified TinyOS program for
Greenhouse Monitoring (GHM). GHM executes in an infinite loop to sense the moisture of
soil, sense the temperature of ambient, Compute measurement averages and Send over
a wireless interface. We compare Plain C and TinyOS [126] versions of GHM with and
without TICS instrumented checkpoints. Both apps were executed on the same microcon-
troller as before (MSP430FR5969 [224] evaluation board) with artificially generated power
intermittency traces, i.e. the microcontroller was brought to a hardware reset following a
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}
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Figure 4.6: Timely execution of the sample AR application: TICS catches data expiration, discards stale data
and ensures timely branches by following the programmer annotations.

pre-programmed pattern. We compare the results of executing the Plain C and TinyOS
versions of GHM in Table 4.1 for varying levels of intermittency. We measured how many
times each GHM routine was executed successfully. Only these programs that consistently
executed the same number of all routines were considered correct.

Results. We observe that TICS allows to work at any intermittency conditions and it
executes legacy code correctly. This shows that TICS can run semi-sophisticated legacy
TinyOS programs without any manual program porting needed. It is worth mentioning
that TinyOS is an event-based operating system and porting event-based legacy code
might require some manual modifications for the sake of the semantically correct exe-
cution of the application—in particular, timely-sensitive handling of the events should
be implemented by the time annotations provided by the TICS in order to guarantee se-
mantically correct results. However, if the programmer omits such manual modifications,
TICS still guarantees the forward progress of the computation as well as the memory
consistency of the event-based applications. In Section 4.4.3, we also demonstrate the
porting of existing computation-based benchmarking applications. Apart from injecting
time annotations (if required), all porting is handled by TICS automatically without any
manual intervention. Therefore, the evaluation results later on support and complement
this result.

4.4.2. TIME-SENSITIVE INTERMITTENT COMPUTATION
For the evaluation of time-sensitive execution of intermittent programs, we considered an
existing activity recognition (AR) application used in prior work [47, 136, 142] (this applica-
tion is also used for benchmarking in Section 4.4.3). The AR application obtains a window
of three-axis accelerometer sensor readings and determines whether the device is moving
or stationary. In the training phase, the mean and standard deviation features of a window
of samples are extracted. Then, in the recognition phase, the activity is determined by
performing a nearest neighbor classification. In order to observe the time consistency
violations described in Section 4.1, we provided two versions of the AR application: (i)
manual management of time (and using MementOS-like checkpoints); and (ii) TICS
annotated application. We run these applications by powering our MSP430FR5969 [224]
wirelessly with 915 MHz Powercast TX91501-3W transmitter [194]. The microcontroller
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Time Consistency Potential Count Observed Violations
Violation (during experiment) w/o TICS w/ TICS

Timely Branch 256 32 ✗ 0 ✓
Time Misalignment 870 78 ✗ 0 ✓

Data Expiration 870 173 ✗ 0 ✓

Table 4.2: Time consistency violation statistics for the AR application running intermittently. Our results
indicate that TICS eliminates these violations by demanding little modifications on the legacy software.

was connected to a Powercast P2110-EVB receiver (with on-bard 10µF storage capacitor).
We tested the execution of these applications at the same distances resulting in almost
the same (i) power failure rates, (ii) charging and (iii) off-time. We observed the number
of time consistency violations.

The lines of code where the accelerometer is sampled and the corresponding times-
tamp is assigned are the potential points for time misalignment violation. Specifically, a
timestamp can be assigned to the sensed data a relatively long time after the sensor sam-
pling, due to a power failure and long charging time—in both applications there were 870
accelerometer sampling where time misalignment violations could potentially occur. The
obtained samples are also subject to data expiration violation while they are consumed
for training and classification. In these applications, we considered data to be fresh and
useful if it is consumed within 200 ms time window—it is considered to be stale otherwise
(see Fig. 4.6). In order to keep track of the duration of the recognized activities, both
applications maintain timestamp. A timely branch that uses this timestamp is required
to alert about activity changes; e.g. if the duration of the activity is less than 200 ms this
indicates an activity switch. There were 256 points in the execution where a potential
timely branch violation could occur.

Results. Table 4.2 summarizes our results. We observed that TICS prevents all time
consistency violations, thanks to easily injected time annotations, whereas the other
application led to 32 timely branch violations, 78 time misalignment violations and 173
data expiration violations. Our results indicate that TICS ensures timely intermittent
execution by providing little modifications on the legacy software via its time annotations.

4.4.3. TICS SYSTEM EFFICIENCY
TICS supports all C language features—including pointers and recursion— thanks to
its memory consistency manager. This implementation eliminates system starvation
by allowing porting any kind of legacy software to the intermittent computing world—
breaking the limitations of the prior work. Here we provide a performance comparison of
TICS with the prior work to explore its execution overhead.

We have compared TICS against three state-of-the-art task-based systems: InK [250],
MayFly [86] and Alpaca [142]. In addition, we compared TICS against naïve checkpoint-
based system that logs the complete stack and all global variables (which closely resembles
what MementOS [203] does) and Chinchilla [143]—state-of-the-art checkpoint-based
system that promotes all variables to global data and statically logs these. Chinchilla was
re-compiled from its GitHub source [143] with LLVM version 3.8 (the strict requirement
for Chinchilla). InK, MayFly, and Alpaca were compiled with the standard GCC compiler
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(msp430-gcc version 6.2.1.16). Finally, for completeness, we compare all systems to plain
C.

Application Benchmarks. We chose three representative applications, used earlier by
most studies on systems for intermittently-powered devices: (i) bitcount (BC), (ii) Cuckoo
filter (Cuckoo) and (iii) Activity Recognition (AR) (as indicated in Section 4.4.2) [76]. BC
implements bit counting in a random string with seven different methods (including
recursion), later cross-verifying for correctness; Cuckoo implements cuckoo filter over a
set of pseudo-random numbers, then performs sequence recovery using the same filter;
AR implements physical activity recognition based on machine learning with locally
stored accelerometer data. For a fair comparison, the experiments were conducted using
a continuously-powered TI MSP-EXPFR5969 evaluation board [224]. Each application
was verified for correctness at the end of each execution. Cuckoo cannot be implemented
in MayFly since loops are not allowed in a MayFly task graph. Also, BC used for the
evaluation of Chinchilla, see e.g. [143, Fig. 8–10], was not the original one, as the authors
have manually removed the recursion to make it work with their system.

TICS AGAINST CHINCHILLA.
Chinchilla converts each local variable of a function to a corresponding global variable
in non-volatile memory at compile time. This conversion prevents stack manipulation
via pointers and in turn checkpointing the whole stack due to pointer manipulations.
Chinchilla must know in advance the local variables in order to allocate corresponding
global variables in non-volatile memory—recursive function calls and in turn, existing
applications that exploit recursive implementations cannot be supported. Moreover, due
to the local-to-global conversion via bypassing stack allocation of local variables, there
is an explosion in the number of global variables—decreasing the scalability of memory
requirements. Inline functions further complicate this issue: the corresponding global
variables are needed to be allocated per every line where the function is inlined. As an
example, if an inline function of one local variable is called 100 times, then 100 different
global variables need to be created. These issues are the major limitations of Chinchilla,
making it an incomplete system. Inspecting our results presented in Figure 4.7, TICS is
able to execute all benchmarks, while Chinchilla cannot run recursion-based code, i.e.
BC. Due to the dynamic memory logging employed by TICS, the execution time overhead
will vary per benchmark. Additionally, the compiler optimization level has a significant
effect because the runtime code is also affected by the lack of optimization.

MICRO-BENCHMARKING TICS.
The execution time overhead of TICS with the number of checkpoints for different work-
ing stack sizes is given in Figure 4.7. As the working stack size gets bigger, the number
of working stack change driven checkpoints decreases since the on-demand stack re-
quirement of the applications are fulfilled—S2 configuration did not lead to a working
stack changes and in turn checkpoints and S1 led to a considerable number of working
stack changes and therefore also more checkpoints. On the other hand, increasing the
working stack size also increases the overhead of a single checkpoint since the logged data
is bigger—there will always be a trade-off. Among benchmarking applications, AR led to
a considerable amount of working stack change driven checkpoints with configuration
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Figure 4.7: Benchmark performance. Firs: TICS to Chinchilla comparison; Second: micro-benchmarking of
TICS; Third: TICS to task-based systems comparison. V, CH, Alp, MF: TICS, Chinchilla, Alpaca, MayFly; LO0,
LO2: LLVM-compiled code with –O0, and –O2 optimization. L*: all compilations options of GCC and all of LLVM
except –O0. GO2: GCC-complied code with –O2 optimization. S1, S2: configurations with different working
stack sizes imposing a different checkpoint frequency and checkpoint time—S1=50 B, S2=256 B; S1∗, S2∗: the
same stack configurations as S1, S2 but with an additional timer checkpointing every 10 ms if there was no
checkpoint due to the working stack. ST denotes S2 with checkpoints at the task boundaries. Red cross (✗)
denotes the code did not compile with the chosen compiler/optimization.
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InK Chinchilla TICS
.text .data .text .data .text .data

AR 3442 4459 12870 8986 6878 1364
BC 2922 4433 10902 8658 5944 1488
CF 2648 4693 12128 9050 7178 1948

Table 4.3: The memory consumption (in B) for three applications written in InK, Chinchilla and TICS.

Operation Configuration Variables Duration (µs)

Stack grow/shrink max 345
Checkpoint logic 0 B seg. | 64 B seg. | 256 B seg. 264 | 464 | 656

Restore logic 0 B seg. | 64 B seg. | 256 B seg. 273 | 475 | 664
Pointer access no log | log 4 B (64 B) 13 | 308 (371)

Roll back from undo log 4 B | 64 B 234 | 294

Table 4.4: TICS overhead, split per runtime operation. Results obtained with GCC (optimization –O2) at 1 MHz.

S1 due to its varying stack size requirements. We also enabled timer-driven checkpoints
with a frequency of 10 ms that ensure the forward progress—configurations S1* and S2*
indicate the configurations S1 and S2 with timer-driven checkpoints enabled. TICS check-
points do not introduce significant overhead since only the working stack and registers
are logged.

TICS AGAINST TASK-BASED SYSTEMS.
We selected configurations S1* and S2* to asses the execution time performance of TICS
considering the task-based runtimes—right column of Figure 4.7. For the fairness of
comparison against task-based systems, apart from timer-driven checkpoints in S1* and
S2*, we placed checkpoints to configuration S2 at task-boundaries for TICS (shown as
ST) and our naïve MementOS-like [203] implementations. We observed that by selecting
a reasonable working stack size, TICS reaches almost the performance of existing task-
based systems.

TICS MEMORY OVERHEAD.
Table 4.3 presents a comparison of memory overhead of the benchmarking applications
implemented in InK (task-based system), Chinchilla (checkpoint-based system) and
TICS. The .data section overhead of TICS depends on the size of the configurable stack
segment array (which was 2048 B) and undo log (which was 2048 B). Both are excluded
from the .data section. The code size in selected applications is dependent on not
only the application source but also on the stack segmentation and memory consistency
management implementations in TICS. Overall, we see that for all benchmarks TICS has
significantly lower memory overhead than Chinchilla—more than twice .text and more
than six times for .data. compared to InK, TICS.data is also significantly lower, except
for .text.

TICS POINT-TO-POINT OVERHEADS.
Table 4.4 presents the detailed overhead of TICS runtime operations. The checkpoint

and restore operations include saving registers and working stack in non-volatile memory
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using a two-phase commit operation—the working stack size has a direct impact on the
checkpointing overhead. The constant checkpoint overhead without saving the working
stack segment is depicted as 0 B size in the table. The stack grow/shrink operations update
the working stack to point to another segment in the segment array. During pointer
manipulation, TICS checks the pointer address to see if the working stack is targeted. If
this is the case, there is no need for the undo logging and the working is stack directly
manipulated. Otherwise, TICS logs the original value in undo log—the overhead of
different variable sizes is depicted in the table. The time it takes to recover the original
value of a variable from the undo log depends on the variable sizes.

4.4.4. USER STUDY AND DEVELOPER EFFORT
We have designed a large online user study. The goal was to objectively assess the time to
design a TICS application.

Methodology. At the beginning of an online survey each participant was given an intro-
duction to intermittent execution and to TICS and InK [250]. Then, we have then asked
participants to find bugs in three simple programs: (i) swap of two variables (with no
use of a temporary variable), (ii) bubble sort, and (iii) program that considers variable
expiration based on time. Each program was written separately in TICS and in InK and
had exactly the same type of bug, at exactly one line of the program. Users were asked to
point to a line that contained that bug and specify the correct statement.

Each program with a bug was presented to a user on a separate page. Additionally,
time spent on finding a bug in each of the programs was measured. No corrections of the
given answers were possible once the answer was submitted. We randomized the order in
which each program appeared at the respondent’s screen in order to remove presentation
bias against one language and objectify bug finding time.

User Pool. A total of 90 responses were collected. 78% of all respondents had at least
two years of programming experience. Almost 83% of respondents had average or below
average knowledge of embedded systems powered by energy harvesting technologies.

Result. Results are shown in Figure 4.8. We observe that in all cases it was (i) harder to
find a bug and (ii) users were more prone to error when exposed to a task-based language.
Statistically, Wilcoxon T Test on all programs’ bug search time rejected the hypothesis that
TICS/InK results were the same with p-value below 0.001. In other words, TICS is a more
user-friendly system than a task-based one. As the complexity of a program increased
users had difficulty finding a bug in an InK program (for Bubble Sort in half of the cases
users were wrong). Regarding the subjective evaluation of TICS against InK, participants
considered TICS to be more intuitive, easier and more concise than InK.

4.5. RELATED WORK
In Table 4.5 key characteristics of TICS are compared to those of Mayfly [86], Alpaca [142],
Ratchet [235], Chinchilla [143] and InK [250]. In this section we compare some of these
characteristics from the state of the art to TICS.

Checkpointing Systems. Systems that automatically determine checkpoint placement
at compile-time like [235, 35, 143] are most closely related to this work. HarvOS parses
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Figure 4.8: TICS user study results. For all three test programs, Swap, Bubble and Timekeeping, users found
that it is easier with TICS to identify a bug and were more accurate in correcting the TICS program than that of
InK [250]. Whiskers in the right-hand side figure denote standard deviation.

Runtime
Pointer
Support

Recursion
Support

Timely
Execution

Porting
Effort

MSP430
Support

Mayfly [86] No ✗ No ✗ Yes ✓ High ✗ Yes ✓
Alpaca [142] No ✗ No ✗ No ✗ High ✗ Yes ✓
Ratchet [235] Yes ✓ Yes ✓ No ✗ Low ✓ No ✗
Chinchilla [143] Yes ✓ No ✗ No ✗ Low ✓ Yes ✓
Ink [250] No ✗ No ✗ Yes ✓ High ✗ Yes ✓
TICS (this work) Yes ✓ Yes ✓ Yes ✓ Low ✓ Yes ✓

Table 4.5: State of the art programming models.

the control flow graph of a program and instruments with energy-aware checkpoints,
requiring a small amount of programmer intervention to place effectively. Ratchet func-
tions by placing checkpoints at the boundaries of idempotent sequences of instructions.
Chinchilla over-instruments programs with checkpoints by storing some variables in
non-volatile memory, and disabling/enabling checkpoints heuristically. Apart from the
aforementioned studies, Mementos [203] was the first checkpointing scheme, using inter-
mittent voltage checks to decide when to save state. QuickRecall [103] and Hibernus [31]
extended this work with newer non-volatile memories. DINO [136] laid out the memory
consistency problems that will arise with intermittent computing for mixed-volatility pro-
cessors. TICS builds on these early techniques. However, these systems do not consider
timely execution of the applications.

Task-based Programming Models. Alpaca [142] and related works [47] focus on providing
control flow and data flow mechanisms while reducing the memory footprint from multi-
versioning. Mayfly [86] provides explicit semantics for specifying timing constraints on
sensor data in a task-based language. InK [250] provides a way to handle events and
interrupts from clock sources, sensors, and energy in the environment, despite power
failures. Task-based systems require a custom programming model, which leads to added
programmer intervention and complexity. Task decomposition is a manual process that is
error-prone and not resilient to changes in the availability of energy in the environment.

Non-volatile Processors. Integration of non-volatile components, e.g. non-volatile regis-
ters, to the processor architecture provides automatic management of forward progress
and memory consistency [139, 138]. This eliminates the need for handling these prop-
erties explicitly by the programmer. However, non-volatile architectures consume more
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power, and they have increased area and decreased frequency as compared to general-
purpose volatile processors with SRAM-based flip-flops [88]. TICS targets off-the-shelf
processors with hybrid volatile and non-volatile memory in the market.

4.6. DISCUSSION AND FUTURE WORK
In the future, we anticipate exploring ways to automatically import or infer timing seman-
tics and rules from legacy code in TinyOS or other systems. Additionally, virtualizing the
I/O interface across power failures could also lead to better ported applications.

4.7. CONCLUSIONS
TICS is a runtime for intermittently powered systems that enables the full use of C features
like pointers and recursion through a memory consistency management scheme (data ver-
sioning and stack segmentation) and provides semantics for easily porting time-sensitive
programs to the intermittent domain while maintaining correctness. Guarantees on worst
case checkpointing time are provided, ensuring TICS scales as applications become more
complex. We evaluated TICS against the state of the art, showing reasonable overhead
nearly matching the performance of task-based systems. We conducted a user study,
where participants found TICS more intuitive than the task-based approach.
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In the previous chapter, we introduced a method to undo modifications to the non-volatile
main memory by including part of it in the checkpoint through an active stack region
and logging all accesses outside of the active stack region, and undoing them when the
power fails. This method focused on restoring the main memory after a power failure and
creating fewer checkpoints. In turn, the approach in the previous chapter increased the
checkpoint time as more data needed to be copied to and from the non-volatile memory, as
the checkpoint also included the active stack segment in addition to the registers.

In this chapter, we introduce and improve upon an alternative approach. Instead of
restoring the non-volatile memory to match the state it was in when the checkpoint was
created upon a power failure, we place the checkpoints so that the memory never needs to
be restored. We do this by introducing checkpoints between each Write-After-Read (WAR)
operation to the non-volatile memory to create idempotent sections. Traditionally, this
technique introduces many more checkpoints compared to alternative approaches, but the
checkpoints only consist of the registers and thus are small. In this chapter, we significantly
reduce this overhead by introducing multiple compiler optimizations that reorder memory
accesses in such a way as to reduce the number of required checkpoints.

This chapter is based on the following publication:
Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and Przemysław Pawełczak.
WARio: Efficient Code Generation for Intermittent Computing. In Proceedings of the International Confer-
ence on Programming Language Design and Implementation (PLDI), pages 777–991, June 2022. https:
//doi.org/10.1145/3519939.3523454.
The accompanying archive containing all the software and data can be found at https://doi.org/10.5281/zenodo.
6413018.
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5.1. INTRODUCTION
As discussed in Chapter 1, capacitors hold orders of magnitude less energy than batteries,
which means that their energy supply is intermittent as they must recharge. Therefore,
power failures are common, causing computational intermittency [135]. The intermittent
operation causes the computational state to be lost unless explicitly saved in Non-Volatile
Memory before a power failure and restored afterward.

As discussed in the beginning of part two of this thesis, relying on Non-Volatile (NV)
memories (such as FRAM or MRAM) significantly reduces the cost of a single checkpoint
by saving only the (live) registers. However, state-of-the-art static solutions using NV
main memory require frequent checkpoints, often at the basic block level. Moreover,
selective (instruction-level) checkpoint placement must account for the unique problem
present in contemporary (and future) Microcontroller Unit (MCU) architectures that use
non-volatile main memory: Non-Volatile memory corruption in variable manipulations
with WAR dependencies caused by re-execution. This problem, often referred to as a
WAR violation [148, 235], was first observed in [202] and is schematically presented in
Figure 5.1. Throughout this chapter, we use the term WAR violation (or simply WAR) to
refer to these possible memory corruption locations which are caused by re-execution
following a power failure. When we refer to resolving a WAR, we refer to the placement of
a checkpoint between its ‘Read‘ and ‘Write‘ to create two distinct idempotent regions.

Problem Statement. A state-of-the-art approach is to detect idempotent regions
by looking for instruction sequences that perform a WAR to the same memory address,
and placing checkpoints at the boundaries of these regions [235], Figure 5.1 (middle).
Nonetheless, strategic checkpoint placement of [235], which performs this task automat-
ically at compile time, does not perform any transformations to reduce the number of
introduced checkpoints (which are often over-instrumented). Our fundamental insight is
that in a code region with many consecutive WAR violations, moving the ‘Write‘ opera-
tions belonging to these WARs to a later stage in the code, i.e., clustering them, will reduce
the number of checkpoints needed, thereby increasing the performance of intermittent
computing. The more consecutive (unrelated) WAR operations—the more benefit from
checkpoint reordering, which reduces the execution time. This reduction is clearly seen
in Figure 5.1 (right), halving the number of checkpoints inserted by [235] (Figure 5.1
(middle)). To implement the transformations mentioned above, we use NOELLE [152],
an LLVM [180] plugin that uses alias analysis [219, 19] to compute a PDG (among other
information).

Our Contributions. We present WARio, Write After Read Intermittent-computing
Optimizer, a set of compiler transformations for intermittently-executed programs to re-
duce checkpoint overhead. WARio builds upon the techniques introduced in Ratchet [235]
and operates both in the middle end and the back end of the compiler. In the middle end,
➀ WARio introduces two novel algorithms that cluster the ’Write’ operations of several
WARs to reduce the required number of checkpoints. In the back end, ➁ WARio reduces
the number of checkpoints by introducing a hitting set algorithm to select the checkpoint
locations to resolve back-end WARs (in addition to the existing hitting set in the middle
end [235]) and by ➂ protecting stack pointer modifications in a novel way that requires
fewer checkpoints.
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unoptimized codecode snippet
< ... >

Reg1 = a

a = Reg1 + 1
Reg2 = b

R

b = Reg2 + 1
{power off}
< ... >

R
W

W

< ... >
Reg1 = a
checkpoint()
a = Reg1 + 1
Reg2 = b
checkpoint()

R

b = Reg2 + 1
{power off}
< ... >

R
W

W

< ... >
Reg1 = a
Reg2 = b
checkpoint()

b = Reg2 + 1
{power off}
< ... >

a = Reg1 + 1

optimized code

R
R

W
W

WARio (this work)state of the art

initial state
Registers    Reg1 = ∅; Reg2 = ∅; 
NV variables a = 4; b = 2; 

Registers    Reg1 = 4; Reg2 = 2; 
NV variables a = 5; b = 3; 

aer restart
Registers    Reg1 = ∅; Reg2 = ∅; 
NV variables a = 5; b = 3; 

aer re-execution

restore location

incorrect increment aer restart

correct increment aer restart

power off location

error here, expected:  a = 5; b = 3; 

correct here:  a = 5; b = 3; 

Registers    Reg1 = 5; Reg2 = 3; 
NV variables a = 6; b = 4; 

power off

power on
capacitor voltageon

time

before power off

Figure 5.1: Three versions of the same code snippet demonstrating Non-Volatile Memory corruption, its
mitigation, and our optimization. A checkpoint records only the registers (Reg1 and Reg2). The variables (a and
b) are in NVM and not restored after a power failure. The unprotected code (left) executes until the power failure,
reading from and writing to the NV variables. A restart does not undo any modifications to NVM, resulting in
incorrect re-execution caused by a Write After Read to the NV variables. By placing a checkpoint of the registers
between the read (R) and write (W) of a WAR, state-of-the-art systems such as Ratchet [235] (center figure,
unoptimized code) avoid this memory corruption caused by re-execution. WARio (our work) aims to reduce the
number of required checkpoints by clustering writes to NVM, reducing the number of required checkpoints
(right figure, optimized code).
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Figure 5.2: WARio architecture. Input plain C code is transformed, through a set of middle and back end
compiler transformations described in Section 5.2, to an output Executable and Linkable Format (ELF) binary
file that can be executed (guaranteeing no NVM corruption caused by WARs) on an intermittently-powered
system. The complete WARio system consists of all the transformations marked with a W⃝; other combinations
are used to evaluate performance of individual transformations in Section 5.4.2. The transformations marked as
existing where introduced in prior work [235]. The transformations marked as optional are not needed to avoid
WAR violations, but improve the performance by reducing the number of inserted checkpoints.

The transformation steps ➀–➂ of WARio reduce checkpointing overhead for continuous-
checkpointing-based intermittent computation. Compared to Ratchet [235], a state of
the art system, WARio reduces the checkpoint overhead by up to 88%, and on average by
58%, considering a broad set of software benchmarks.

5.2. WARIO SYSTEM DESIGN

Addressing the problem presented in Section 5.1 we present WARio. During compila-
tion, WARio performs multiple optimizations targeted at reducing the number of WAR
violations in the C code. WARio possesses the following features.

➊ Support for General Purpose C Programs: WARio takes a regular embedded C
code and automatically transforms it to a WAR-protected executable;

➋ Oblivious to Energy Conditions: No prior information on the battery-free system’s
energy use or input harvested energy is needed prior (and during) compilation into
a WAR-protected executable;

➌ Support for Short Device Activity Times: WARio guarantees forward progress at
short device activity times, i.e. in the order of tens of milliseconds;

➍ No Programmer Involvement: WARio does not expect to restructure the program
manually to help resolve any WAR dependency; and

➎ Interrupt Support: During checkpoint placement WARio makes sure that there can
be no WAR violations caused by interrupts pushing information to the stack.

5.2.1. WARIO ARCHITECTURE

WARio targets the following platform: (i) a single processor embedded system (MCU); (ii)
direct physical memory access, i.e., no virtual memory; (iii) no data cache, (iv) register
access/‘bare metal’, i.e., no operating system; and (v) non-volatile byte-addressable main
memory.

WARio’s architecture consists of a set of Intermediate Representation (IR)-based
compiler transformations executed in a specific order, as presented in Figure 5.2. All of
the components of WARio are described in detail below.
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WARIO FRONT END

WARio takes the C code of a project aimed to be run on an intermittently-powered device
and converts it to LLVM IR, per each C source file. Subsequently, WARio merges individual
IR files into a single (combined) IR of the whole project. We note that both these steps are
standard front end compiler transformations (marked as the gray area in Figure 5.2).

WARIO MIDDLE END

The core tasks performed by WARio are executed in the middle end. Each of the steps
(listed within the light blue area in Figure 5.2) is explained below.

Loop Write Clusterer. This transformation aims at reducing the number of check-
points in a loop that contains one or more WAR violations. Algorithm 7 shows the pseu-
docode of this transformation, and Figure 5.3 the resulting IR after each step. Both figures
are used to explain the transformation in detail and provide a visual example.

Let us take as an example the unmodified loop code snippet in Figure 5.3. Directly
inserting checkpoints, represented by the orange box, results in one checkpoint per it-
eration i . After applying the Loop Write Clusterer transformation, the loop requires
only i /N checkpoints when executing, where N is the unroll factor used during the trans-
formation, provided during compilation1. It does so by postponing write operations to
NVM until the end of the unrolled loop—essentially combining the checkpoints required
for N iterations of the loop into a single checkpoint. First, the transformation analyzes the
input code using a PDG analyzer, such as [152], to collect all the memory dependencies in
the program. The transformation then collects all loops in the program (denoted as Lall in
Algorithm 7). For each input loop L ∈ Lall the Loop Write Clusterer checks whether
the loop is a candidate to be unrolled.

ÏCandidate Selection: Not all loops are candidates to have their writes clustered.
Most notably, to be a candidate (Line 3 in Algorithm 7), the loop must contain at least
one WAR violation to cluster (Line 11). Otherwise, the loop will not have any checkpoints
to remove. Additionally, the write cluster insertion point (the destination of the to-be-
moved WAR store instructions, i.e., the loop latch) must post-dominate all the relocated
store instructions in order not to change the semantics of the loop (Line 13). The final
requirement is that the loop does not contain any function calls, as those implicitly cause
checkpoints hindering our ability to cluster the writes (Line 11).

ÏLoop Unrolling: If a loop is a candidate, Loop Write Clusterer unrolls it N times
(Line 4 in Algorithm 7). The IR resulting from the unroll step is shown in Figure 5.3—
UnrollLoop for an unroll factor of N = 3.

ÏLoop Analysis: Loop analysis is a necessary operation of Loop Write Clusterer,
as simply moving all the writes to the loop latch is insufficient to retain the loop semantics.
Let us therefore proceed with introducing the analysis steps (Line 17 in Algorithm 7) that
will be needed to perform correct code transformation (Line 24 in Algorithm 7). The first
step is the obtainment of a loop dependency graph (Line 18 in Algorithm 7), from which

1The effect of N on the unrolling effectiveness will be a part of WARio evaluation presented in Section 5.4.2
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the WAR and Read After Write (RAW) dependencies are obtained (Line 19 and Line 20 in
Algorithm 7, respectively).

ÏClustering WAR Writes: Unrolled loops, denoted as L′, are passed for analysis
using the PDG information (Line 5 in Algorithm 7), which are later on transformed (Line 6
in Algorithm 7) resulting in a set of WARs that are postponed, resulting in moved WAR
writes (store instructions) shown in Figure 5.3—ClusterWarWrites.

ÏEarly-exit Handing: When moving all writes to the insertion point, i.e., the loop
latch, WARio potentially skips writing those values to NVM due to early exits, e.g., exits
introduced due to unrolling. The transformation must guarantee that any early exit
(ModifyExits in Algorithm 7) that follows a postponed write contains a copy of that post-
poned write. Otherwise, exiting a loop early (by reaching the desired number of iterations
during execution before the end of the unrolled loop) would not execute the postponed
write to NVM, invalidating the program execution. Figure 5.3—ModifyEarlyExits
shows the addition of these postponed writes (store instructions) to the early exits.

ÏDependent Read Handling: When postponing all the writes to the loop latch,
WARio might attempt to move write instructions past reads that depend on them, for
example, due to unrolled loop-carried dependencies. First, the transformation collects
the read instructions that might depend on a preceding write instruction, using RAW
dependency information collected earlier through the PDG. If any of the reads depend on
one or more of the postponed writes that are now no longer dominating the read (i.e., they
now happen after the read), they would result in reading incorrect information. Therefore,
if the read may depend on a postponed write, a runtime check is inserted that compares
the source address of the read (load) instruction and the destination address of the
postponed write (store) instruction (Line 37 in Algorithm 7). If these are equal, the read
is skipped (i.e., the value is not retrieved from memory), and the register containing the
content of the postponed write is copied into the read destination (Line 38 in Algorithm 7).
On the other hand, if the addresses are not equal, the original read is performed. It might
be the case that a read instruction may be dependent on multiple writes. In this case,
the transformation adds checks for each of the writes, passing its output as input to the
next check as shown in the InstrumentReads procedure in Algorithm 7. Figure 5.3—
InstrumentReads, shows an example where the load of variable c may depend on
the store to variables a and b, which were postponed (worst case). Adding a runtime
check introduces overhead, but it is minimal compared to the time it takes to perform
a complete checkpoint. However, there is a break-even point as the number of checks
added to each read instruction grows depending on the number of aliasing writes before
it.

ÏCheckpoint Placement: To illustrate the effect of the Loop Write Clusterer,
the last (dark blue) box in Figure 5.3, shows the final loop IR with the addition of check-
points. When the loop is executing, the three iterations from the original loop (now
unrolled), containing the three WAR violations, are resolved with only one checkpoint
instead of three.
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checkpoint placementInstrumentReadsModifyEarlyExitsClusterWARWritesUnrollLoop

unmodified loop

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br exit
  %1 = load b
  %y = add 1, %1
  if <cond>: br exit
  %2 = load c
  %z = add 1, %2
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br early_exit_a
  if &b == &a: %1 = %x
  else: %1 = load b
  %y = add 1, %1
  if <cond>: br early_exit_b
  if &c == &a: %2 = %x
  elif &c == &b: %2 = %y 
  else: %2 = load c
  %z = add 1, %2
  <checkpoint>
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop
 
early_exit_a:
  <checkpoint> 
  store %x, a
  br exit
 
early_exit_b:
  <checkpoint> 
  store %x, a
  store %y, b
  br exit

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br early_exit_a
  %1 = load b
  %y = add 1, %1
  if <cond>: br early_exit_b
  %2 = load c
  %z = add 1, %2
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop
 
early_exit_a:
  store %x, a
  br exit
 
early_exit_b:
  store %x, a
  store %y, b
  br exit

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br early_exit_a
  if &b == &a: %1 = %x
  else: %1 = load b
  %y = add 1, %1
  if <cond>: br early_exit_b
  if &c == &a: %2 = %x
  elif &c == &b: %2 = %y 
  else: %2 = load c
  %z = add 1, %2
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop
 
early_exit_a:
  store %x, a
  br exit
 
early_exit_b:
  store %x, a
  store %y, b
  br exit
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checkpoint placement
loop:
  %0 = load a
  %x = add 1, %0
  <checkpoint>
  store %x, a
  if <cond>: br exit
  else: br loop

loop:
  %0 = load a
  %x = add 1, %0
  store %x, a
  if <cond>: br exit
  %1 = load b
  %y = add 1, %1
  store %y, b
  if <cond>: br exit
  %2 = load c
  %z = add 1, %2
  store %z, c
  if <cond>: br exit
  else: br loop
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The loop is unrolled 3x The WAR writes are
moved to the end of the
loop

Early exit conditions are handled
by introducing additional stores
that are not executed in the
common case If the load from c may depend on

the clustered store to a and/or b a
runtime check is added for each
dependency

loop:
  %0 = load a
  %x = add 1, %0
  store %x, a
  if <cond>: br exit
  else: br loop

WA
R

One checkpoint for iter 1, iter 2 
and iter 3 in UnrollLoop 
(if there are no early exits)

start

WA
R

(state of the art)

1 2 3 4

Figure 5.3: Code blocks of a simplified version of the IR of the loop, where variables starting with a ’%’ denote
registers, ’<cond>’ is the condition that terminates the loop, ’br’ branches to a label. The ’exit’ label and
IR (not important for the transformation) are omitted. The unmodified loop is directly instrumented with
checkpoints (orange box) by Ratchet [235], i.e. the state of the art system. In this example WARio applies the
Loop Write Clusterer transformation (light blue) to reduce the required checkpoints from one per iteration
to one every three iterations, as shown in the last code block (dark blue).

ÏCorrectness: When clustering—and therefore moving—the WAR writes, we need
to take appropriate steps to maintain correctness. First, when moving a write to a later
unrolled loop iteration, we must ensure that the postponed writes are written to NVM
when the unrolled loop terminates early. The Early-exit Handling step guarantees that
all writes are executed by adding writebacks to every loop exit. Second, when moving a
write, we have to resolve all reads that may depend on it, i.e., attempt to read memory
from the same address. The Dependent Read Handling step assures that no incorrect read
will occur by canceling the write rescheduling or adding runtime checks and handling to
aliasing reads. Together, these steps force the Loop Write Clusterer transformation
to be conservative and semantically correct.

Expander. A large number of checkpoints are caused by function calls. Each function
call must perform a checkpoint if it can modify any data on the callee stack. However,
more significantly, each function (regardless of the number of arguments) needs at least
one checkpoint when returning from a function that uses stack memory. The reason for
this is that an interrupt might trigger at any time, and the Interrupt Service Routine (ISR)
will automatically push (write) information on the stack causing a WAR violation (Sec-
tion 5.2.1—Paragraph Epilog Optmizer). Strategically inlining functions more aggres-
sively than usual results in fewer checkpoints caused by function calls and returns. In
addition, it aids the succeeding transformation by not having a forced checkpoint location
due to the function call.

Write Clusterer. The goal of the Write Clusterer, similar to that of the Loop
Write Clusterer, is to reduce the number of checkpoints inserted by clustering write
operations belonging to WAR violations together. Doing so will cause the Checkpoint
Inserter to resolve more WAR violations using a single checkpoint. Instead of the
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Algorithm 7: Loop Write Clusterer

1 Algorithm LoopWriteCluster() :
2 for L ∈ Lall do // Go through all program’s loops
3 if IsCandidate(L) then // See Line 7
4 L′ ← UnrollLoop(L, N) // See Section 5.2.1
5 Ws , Rs , E ← Analyze(L′) // See Line 17
6 Transform(Ws , Rs , E) // See Line 24

7 Procedure IsCandidate(L) :
8 D ← FindDependencies (L) // Use the PDG
9 W ← FindWARs (D) // Find initial WARs

10 C ← FindFunctionCalls (L) // Find any function calls
11 if W ̸=∅ and C =∅ then // If loop has WARs and no calls
12 for w ∈W do // For each WAR violation
13 if Llatch not post-dominates wwrite then
14 return false // Loop is not a candidate

15 return true // Loop is a candidate

16 return false // Loop is not a candidate

17 Procedure Analyze(L) :
18 D ← FindDependencies (L) // Use the PDG
19 W ← FindWARs (D) // Extract WAR violations
20 R ← FindRAWs (D) // Extract RAW dependencies
21 Rs ← ReadsToResolve (W , R) // Reads dependent on WAR writes
22 E ← ExitsToModify (Ws ) // Exit edges in the loop
23 return Ws , Rs , E

24 Procedure Transform(Ws , Rs , E) :
25 PostponeWARs (Ws ) // Move the WAR writes to loop latch
26 ModifyExits (E , Ws ) // Handle early exits (Line 28)
27 InstrumentReads (Rs ) // Handle dependent reads (Line 32)

28 Procedure ModifyExits(E, Ws) :
29 for w ∈Ws do // For each WAR violation

// Exit edges that follow the original write location
30 for e ∈ ExitEdges (E, wwrite) do
31 copy wwrite → e // Insert copy of write in exit

32 Procedure InstrumentReads(Rs) :
33 for r ∈ Rs do // Go through all the dependent reads
34 rfinal ← r // Track the last instrumented read
35 for w ∈ AliasingWrites (r ) do // Writes that alias read
36 if r depends on w then

// Create new instructions to handle the read
37 cmpinst = NewCompareInstruction(raddr, waddr)
38 selinst = NewSelectInstruction(selinst, wsrc, rfinal)
39 rfinal = selinst // Track the last read select

40 for u ∈ usages r do
41 replace u with rfinal // Replace with final read select
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aggressively clustering used by the Loop Write Clusterer, the write cluster does not
insert any runtime checks. The Write Clusterer analyses the individual basic blocks of
the IR and looks for instances such as in Figure 5.1 (left), where multiple WAR violations
are not dependent on each other. If this is the case, the Write Clusterer clusters the
writes of the WAR violations as in Figure 5.1 (right). Doing so reduces the number of
required checkpoints by handling multiple WAR violations with one checkpoint.

PDG Checkpoint Inserter. After transforming the IR during the previously described
transformations, the next and final step is to insert checkpoints to break all the remaining
WAR violations. The goal of a checkpoint is to save the current volatile state of the system
in a way that it can continue operation after a power failure at that point. A checkpoint
saves all the volatile-state of the system in NVM. For WARio, a checkpoint contains only
the state of the registers, as the main memory is completely NV. Doing this is a multi-step
process similar to that of [235]. For each function in the program, the transformation
collects all the WAR dependencies. Next, the transformation collects all the locations of
forced checkpoints, e.g., at function calls, and removes WAR violations resolved by these
forced checkpoints. The remaining WAR violations are resolved by inserting checkpoints
between the read and the write of a WAR violation. Where to place a checkpoint is a
crucial decision, as a single checkpoint can resolve multiple WAR violations if placed
correctly. The transformation converts each of the remaining WAR violations to a set of
locations that resolve that WAR violation. Next, a cost is associated with all the potential
checkpoint locations, primarily depending on the loop depth. The resulting sets of
potential locations are used in a greedy minimal hitting set algorithm [53, Section 4.2.1] to
find a set of checkpoint locations that resolve all the WAR violations. This technique was
also used by Ratchet [235]. Both write postponing transformations discussed before are
effective because they reschedule the write instructions so that the hitting set algorithm
can resolve multiple WAR violations with a single checkpoint. Therefore, the hitting set
algorithm would result in fewer overall checkpoint locations and is integral to the system’s
performance.

WARIO BACK END

The final steps of the code transformation are performed by the back end. All steps (listed
within the dark blue area in Figure 5.2) are explained below.

Hitting Set Stack Spill Checkpoint Inserter. Up to this point, WARio targeted
memory dependencies in the middle end of the compiler. However, to safely support
intermittent execution, all WARs to NVM must be handled with a checkpoint, including
those that arise in the compiler’s back end. During the register allocation phase, the back
end may run out of empty registers and move (spill) some of these registers to a stack slot
on the stack. The accesses to the NV stack can introduce new WAR violations. These WAR
violations are resolved by first forcing the compiler not to reuse any stack slot during the
register allocations phase; after this, only a loop can cause a write after a read to one of
these slots. Instead of placing a checkpoint before a write to a stack slot that causes a
WAR, as is the case in Ratchet [235]. WARio’s Hitting Set Stack Spill Checkpoint
Inserter handles inserting checkpoints by applying the same algorithm as the middle
end. A minimum hitting set algorithm [53, Section 4.2.1] selects the checkpoint locations,
not using memory information provided by the PDG, as this information is not available



5

114 5. AVOIDING CHECKPOINTS USING INSTRUCTION RESCHEDULING

during this compilation stage, but by using the known stack slot locations. Strategically
placing the checkpoints to handle more WAR violations per checkpoint dramatically
reduces the number of checkpoints introduced in the back end, caused by the register
pressure increases following Write Clusterer and Loop Write Clusterer transfor-
mations. It is, therefore, a vital component of WARio that allows the checkpoint reduction
achieved in the middle end to propagate through the back end.

Idempotent Stack Pop Converter. The remaining WAR violations caused in the
back end are due to pop instructions. When executing a pop instruction, the stack
variables are first loaded (read) into registers, and then the stack pointer is adjusted.
Assuming an interrupt happens, the processor will automatically push some registers on
the stack and jump to the interrupt service routine. The act of pushing (writing) data to
the stack causes a WAR violation concerning the stack. Resolving these WAR violations is
done the same way as in Ratchet [235], breaking all pop instructions into (i) first loading
the memory into registers, then (ii) performing a checkpoint, and finally (iii) adjusting
the stack pointer.

Epilog Optimizer. Because of the aforementioned checkpoints required to absolve
all the pop instructions from WAR violations, the epilog of any function contains at least
one checkpoint whenever it uses stack memory. However, often the stack pointer is not
adjusted in one go when a function returns. Factors such as the use of a frame pointer and
other back end implementation-specific causes can induce more stack pointer adjust-
ments, leading to an equal number of additional checkpoints. As a final transformation
just before the code generation phase, WARio analyzes the epilogs of all the functions and
will reduce the required number of checkpoints during the epilog to just one, whenever
possible. It does so by temporarily postponing any incoming interrupts until after the
stack adjustment, eliminating the chance of an interrupt allocating on the stack and
therefore eliminating WAR violations. Doing this will result in a longer delay between the
interrupt arrival and handling. However, the delay consists of only a small amount of
instructions.2 This epilog optimization results in only one inserted function epilog check-
point before the last stack pointer adjustment to avoid interrupt-related WAR violations,
instead of up to three in [235], reducing the penalty of function calls.

5.3. WARIO IMPLEMENTATION
We now proceed with the implementation details of WARio’s architecture presented in
Section 5.2.

5.3.1. TARGET ARCHITECTURE

We implemented WARio for the popular 32-bit ARM Cortex-M processor architecture [26],
but with on-chip mixed (volatile and non-volatile) main memory, such as the recent
Ambiq Apollo4 Blue [17]. WARio’s main memory resides in the NVM, including all global-
and stack-allocated variables. Only the processor configuration, e.g., peripheral configu-
rations, and the registers, are volatile. Therefore, only the register’s state is being stored

2As WARio targets intermittent computing, where the device might power off at any time, this delay in interrupt
handling is not a concern.
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during a checkpoint.3

5.3.2. SELECTED COMPILER AND PDG ANALYZER
We chose LLVM version 9.0.1 [180] as the compiler on top of which WARio is built. For the
PDG analysis and loop transformation abstractions WARio uses NOELLE [152] (commit
fc36051).

5.3.3. WARIO MIDDLE END TRANSFORMATIONS
We proceed with the description of all IR transformations performed by WARio.

Loop Write Clusterer. Using abstractions provided by NOELLE this transformation
iterates over all loops in the program. For each loop, it performs the algorithm described
in 5.2.1—Paragraph Loop Write Clusterer. The unrolling factor N is a compile-time
flag provided to WARio. The default unroll factor used to assess WARio performance is
N = 8, which we found experimentally—refer to Section 5.4.2.

Expander. This transformation goes over all the functions in the input program twice.
Firstly, it creates a list of functions containing pointers. These functions are candidates
to be inlined, as they might aid in the later transformations. Secondly, the Expander
goes through all the calls in every function. If a function call is in a loop without any
sub-loops—and appears in the list of candidate functions—the Expander inlines the
function call into the caller.

Write Clusterer. This transformation uses the WAR violation results from the PDG
to collect potential WAR clustering candidates. The WAR writes (store instructions of
LLVM) of these WAR violations are then clustered as described in Section 5.2.1—Paragraph
Write Clusterer.

PDG Checkpoint Insterter. Finding the checkpoint locations happens as described
in Section 5.2.1—Paragraph PDG Checkpoint Inserter. The transformation uses PDG
information provided by NOELLE to find the WAR violations in the program. Next, the
transformation inserts checkpoint intrinsics, i.e., special placeholder instructions that
signify the back end to insert a checkpoint at that location, at all the checkpoint locations
selected by the hitting set algorithm.

5.3.4. WARIO BACK END TRANSFORMATIONS
We need to stress that inserting checkpoints to avoid WAR violations to physical NVM
is a task ‘close’ to the actual hardware, which can only be handled by the back end. Not
all WAR violations can be discovered and resolved in the middle end of the compiler.
Therefore, the final step is to resolve all the WAR violations in the compiler’s back end.
The reason for not resolving all WARs directly in the back end is that information on, e.g.,
detailed memory dependency from the PDG, is accessible only in the middle end.

Hitting Set Stack Spill Checkpoint Inserter. The first cause of WAR violations
in the back end is handled by the Hitting Set Stack Spill Checkpoint Inserter,
which occurs after the register allocation. During the LLVM register allocation, as in
Ratchet [235], the -no-stack-slot-sharing option is used to disallow the reuse of stack

3We emphasize that peripherals are not addressed in this work. We refer to Section 5.5 for further discussion.
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slots. The remaining stack spills can only cause a WAR violation if they occur in a loop,
caused by re-executing a basic block that re-uses the stack slot. The transformation goes
through all the stack slot accesses in the LLVM Machine IR and checks for non-handled
WAR violations, i.e., violations not already handled by checkpoints inserted in the middle
end. Instead of inserting checkpoints before the stack slot writes of remaining WARs, as
in Ratchet [235, Section 4.1], WARio implements a minimum hitting set algorithm similar
to what is used in the middle end (Section 5.4—Paragraph PDG Checkpoint Inserter) to
reduce the required checkpoints needed to eliminate all WARs.

Idempotent Stack Pop Converter. The other cause of WAR violations in the back
end occurs during the final frame lowering step as discussed in Section 41—Paragraph
Idempotent Stack Pop Converter. WARio implements this step for the Thumb-2 [23]
back end in LLVM, instead of the Thumb back end used in Ratchet (as we found out in its
source code [89]), in order to support the Cortex-M [26].

Epilog Optimizer. The Thumb-2 back end in LLVM inserts up to three different
stack pointer modifications during the epilog of a function to restore (i) callee saved
registers, (ii) the frame pointer, and (iii) other allocated stack memory. To handle all
these potential WAR violations with a single checkpoint instead of three, we exploit a trait
of target Cortex-M architecture. Namely, (i) temporarily disabling the global interrupts
before the stack-pointer adjustment, and (ii) and re-enabling them afterwards. During the
period where the interrupts are disabled, which usually lasts a few instructions, interrupts
are not lost but set as pending. After the interrupts are re-enabled, any pending interrupt
will trigger.

5.3.5. CHECKPOINTS
All the previously discussed transformations do not actually insert checkpoint calls di-
rectly. Instead, they insert checkpoint intrinsics which happens just before the code
generation in the compiler’s back end. The checkpoints themselves are assembly routines.
As the main memory is NV, the checkpoint only includes the current state of the (live)
registers. However, one can not simply copy the content of the registers to a reserved
location in NVM, as this would lead to a corrupt checkpoint if the power fails during the
creation of said checkpoint. Instead, in order to be incorruptible, the checkpoint has to be
double buffered in NVM, as in other software support systems for intermittently-powered
devices, e.g. [119, Section 3], [250, Section 3.4].

5.3.6. COMPILATION PROCESS
Creating the intermittently-executable code is as simple as replacing LLVM’s clang [178]
with our dedicated WARio compilation script, denoted as iclang. iclang orchestrates
the different compiler transformations without any user intervention. Within iclang the
programmer can also specify a compilation path that can be selected from all possible
ones shown in Figure 5.2. iclang compiles the C program without any transforma-
tions using gllvm version 1.3.0 [184]. This compilation stage creates the whole-program
IR file from multiple C project files which is then used as an input to the WARio. Ad-
ditionally, before the Loop Write Clusterer, a basic inlining transformation (using
LLVM-specific opt -always-inline -inline command) is executed. Also, before the
Expander transformation the user-specified optimization level (e.g., -O2, -O3) is applied.
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After all needed transformations the WARio generates the ELF program binary, which can
be then executed on an intermittenlty-powered device.

5.4. WARIO EVALUATION
We now proceed with the evaluation of WARio vis-á-vis state-of-the-art compiler-based
software systems for intermittently-powered devices. WARio, together with all support-
ing code to gather and process the evaluation results is available via an open-source
repository [174] and as an artifact [173].

5.4.1. EVALUATION SETUP
We begin with the outline. We will justify implementation choices aimed at the correct
assessment of WARio.

TARGET PROCESSOR PLATFORM

WARio performance was measured using a custom-built emulator for ARM Cortex-M
processors with on-chip byte addressable NVM. During WARio’s development, the only
such processor announced commercially was the Ambiq Apollo4 Blue [17], which was
not yet available at the time of writing this article due to the ongoing chip shortage that
started in 2021 [32].

Why Processor Emulation is Needed The reason for using emulation is threefold. First,
an emulator enables us to collect detailed information about the processor status without
inserting additional code for data collection (such as variable increments at a traced
event). Such code inserts would alter the evaluation results on actual hardware. Simply,
these new variables manipulations would introduce additional WAR dependencies to
resolve, which were not part of the input benchmark code and should therefore not be
counted. Second, emulation enables us to verify the absence of WAR violations during
execution by checking all memory accesses in the emulator. Finally, it allows us to evaluate
WARio without requiring the delayed Ambiq Apollo4 Blue. We emphasize that processor
emulation is a common assessment strategy in many works targeting software systems
for intermittently-powered devices. Examples are [235, Section 4.2], [88, Section 6], [148,
Section 5.1], and [147, Section 6.1].

Emulator Architecture The developed emulator is based on the Unicorn [183] CPU
emulator version 1.0.3, which itself is based on the QEMU emulator [181]. Unicorn was
selected for reasons of (i) native support of the ARM Cortex-M family [26], (ii) support of
the Thumb-2 instruction set [23, Section 1.2.1] (which is needed for ARM Cortex-M) and
(iii) ability to extend the emulator with new features. Specifically, the features we built on
top of Unicorn are as follows.

ÏPerformance Statistics Collection: The emulator enables to collect information on
(i) the number of executed clock cycles, (ii) the number and cause of checkpoints, (iii) the
number of clock cycles between two consecutive checkpoints, and (iv) where checkpoints
occurred in the code. For the pipeline refill-based instructions of ARM Cortex-M4 [15,
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Section 3.3.1] we calculate the approximate number of executed clock cycles using our
implementation of the three-stage instruction pipeline used by Cortex-M processors.

ÏWAR Violation Absence Verification: Our emulator performs the same verification
of the absence of WAR violations as in [148, Section 5.2] with one main modification. The
work of [148] checked only the middle end code, excluding the processor specific back
end. Our WAR violation verification is built into the emulator, which allows us to detect
WAR violations also in the back end and in any assembly code.

SOFTWARE BENCHMARKS

The first software benchmark used in the evaluation is CoreMark [59], an industry-grade
benchmark for measuring CPU performance in embedded systems. Additionally, we have
used the following programs from the MiBench [77] suite: CRC, SHA, and Dijkstra. We
have also used picojpeg [67] and Tiny AES [182] to represent two real-world libraries for
embedded platforms.

As described in Section 5.3.6, all benchmarks use the same compilation pipeline:
from plain C to complete WARio. When a certain transformation is disabled for a specific
benchmark compilation (see Section 5.4.1), the IR passes through this specific transforma-
tion without any modifications. All benchmarks are compiled using the -O3 optimization
level of LLVM. Furthermore, the loop unroll factor in the Loop Write Clusterer trans-
formation is N = 8, which we empirically found, as will be presented in Section 5.4.2.

SOFTWARE ENVIRONMENTS

We evaluate all benchmarks, listed in Section 5.4.1, in the following software environments.
Justification for our selection of these environments is outlined in Section 5.6.

WARio and its Components Benchmarks are evaluated by a WARio and by WARio
with Expander. We also evaluate individual transformations of WARio, as listed in
Figure 5.2, i.e. Loop Write Clusterer, Expander, Write Clusterer and Epilog
Optimizer. Note that the Checkpoint Inserter, the basic version of the Stack Spill
Checkpoint Inserter, and the Idempotent Stack Pop Converter transformations
are always required to create a program that can execute intermittently and are included
in all the other WARio transformations. In addition, the Hitting Set Stack Spill
Checkpoint Inserter includes optimized checkpoint placement algorithm that uses a
minimum hitting set to aid the write clustering transformations (Section 5.2.1—Paragraph
Stack Spill Checkpoint Inserter). This advanced version is enabled during all
WARio benchmarks, except for the Epilog Optimization (not to impact its results).

Ratchet Ratchet [235] is the only completely compiler-based software environment for
intermittently-powered devices, i.e. operating fully in the middle and back end of the
compiler, without runtime memory logging as e.g. [119, 143], or source instrumentation,
as e.g. [250, 142, 119]. Ratchet also addresses all features (➊–➎) listed at the beginning
of Section 5.2.1. During the evaluation we used an unaltered version of the Ratchet
middle end available via [89], and re-implemented the back end to support the Thumb-2
instruction set [23, Section 1.2.1] needed for ARM Cortex-M family [26], as we remarked
already in Section 5.4.1.
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R-PDG Additionally, we designed and implemented a version of Ratchet [235], denoted
as R-PDG, that uses the PDG information provided in NOELLE [152] for checkpoint
insertion, instead of the built-in aliasing information available in LLVM. This adaptation
to Ratchet is made to evaluate only the effect of WARio transformations while excluding
the added benefit of using PDG information.

Non-instrumented Plain C Code Finally, plain C (non-instrumented version) of all
benchmarks is executed. They will be treated as the ultimate reference to all benchmarks
run in all software environments listed above.

ENERGY TRACES

We evaluate WARio considering the following power supply cases.

ÏContinuous Power: This case is required to measure execution time overhead
from checkpoint insertions and code transformations for all software environments.

Ï Intermittent Power with Predefined Pattern: For a single scenario a fixed power
on period is repeated until a given benchmark completes its execution.

Ï Intermittent Power with Measured Traces: We have run our emulator following
two example empirical voltage traces measured at the output of an actual energy harvester
of a battery-free embedded device. The preexisting traces used in our evaluation, available
via [201], were initially used in the evaluation of Mementos [203]: one of the first software
frameworks for battery-free intermittently-powered devices.

5.4.2. EVALUATION RESULTS
With the evaluation setup introduced, we are ready to present the evaluation results of
WARio.

EXECUTION TIME

First, we measured the execution time for all benchmarks (listed in Section 5.4.1) executed
by all software environments (listed in Section 5.4.1). All results were normalized to the
execution time of non-instrumented plain C code versions of each benchmark.4 The
results are presented in Figure 5.4.

The core message of this evaluation is that the average execution time for all bench-
marks with WARio (blue dashed line in Figure 5.4) is reduced by 45.6% compared to
average execution time for Ratchet (gray dotted line in Figure 5.4) and 27.7% compared
to R-PDG (gray dashed line in Figure 5.4). Average per-benchmark overhead reduction
by using WARio was also significant. WARio with Expander reduced the overhead of
Ratchet and R-PDG by 58.1% and 44.3%, respectively. The above numbers demonstrate
that WARio reduces checkpointing overhead on intermittently powered devices.

4Note, however, that C-only code is incapable of maintaining forward progress on intermittently-powered
device with volatile/non-volatile memory architecture.
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Figure 5.4: Execution time for all benchmarks for Ratchet [89], R-PDG (i.e. improved PDG-based version of Ratchet, see Section 5.4.1) and various components of WARio
(per isolated WARio compiler transformation, complete WARio and WARio with Expander [see Section 5.2.1]). All results are normalized to the uninstrumented C
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CHECKPOINT CAUSE

Figure 5.4 shows also how beneficial each compiler transformation is (see Section 5.4.1).
We see that each benchmark benefits differently from each transformation. To shed
more light into this observation we gathered more statistics. For the same setup as in
Figure 5.4, we recorded the number of inserted checkpoints that were executed and what
caused them. The result is presented in Figure 5.5. Specifically, we gathered how many
checkpoints were caused by the (i) back end WAR dependency, (ii) middle end WAR
dependency, (iii) function entry, and (iv) function exit. Ratchet is not present in Figure 5.5
because the number of checkpoints compared to other software environments listed in
Section 5.4.1 is disproportionately high. In other words it is far worse than its improved
version R-PDG. Therefore we have used R-PDG as a reference point for the evaluation.
In Figure 5.5, R-PDG represents the starting point for each benchmark, i.e., it represents
100% of the checkpoints. Each WARio transformation aims to reduce the number of
executed checkpoints relative to R-PDG, represented by the total height of each stacked
bar.

Inspecting individual benchmarks, Dijkstra execution time is almost non-visible in
Figure 5.4. This is because few WAR violations occur in Dijkstra. This is shown by the data
gathered for Dijkstra seen in Figure 5.5, where the number of reduced checkpoints (except
for function exit) at each WARio transformation is not decreasing. For CRC, on the other
hand, there are no middle end checkpoints to optimize—this is the reason for the smallest
improvement from WARio with Expander compared to other benchmarks. Benchmarks
that benefit most from WARio’s write clustering are SHA and Tiny AES, because both
benchmarks contain many loop operations. Specifically, for SHA and Tiny AES reduction
of middle end WAR checkpoints after the Loop Write Clusterer is ≈60% and ≈70%,
respectively.

Inspecting individual compiler transformation, the gain from the use of Expander is
not significant, or is even slightly detrimental, as in the case for Tiny AES. The reason is
as follows. Expander attempts to guess what functions are good to inline and sometimes
this guess is inaccurate (see Section 5.2.1—Expander). To really benefit from Expander,
WARio would need a code profiling information. The Epilog Optimizer reduces check-
points for benchmarks with many exits; CRC benefits from this significantly.

The middle end is the main focus of WARio transformations. These, however, can
lead to an increase in register spills due to the increased register pressure. However, as we
observe, the reduction in the number of middle-end checkpoints heavily outweighs the
increased number of checkpoints in the back end. This is seen in Figure 5.5 for CoreMark,
SHA and Tiny AES, comparing the number of back end checkpoints with and without
the transformations.

CODE SIZE

Next, we measured the overhead in terms of extra .text size in the ELF of (i) Ratchet,
(ii) WARio, and (iii) WARio with the Expander transformation compared to the non-
instrumented (original C) versions. These measurements, presented in Table 5.2, show
the code-size penalty associated with WARio’s speedup demonstrated in Figure 5.4.

The average code-size increase of Ratchet and WARio are nearly identical. Per-
benchmark overhead mainly depends on the number of checkpoints inserted in the
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Table 5.1: The difference in total number of executed checkpoints by WARio compared to Ratchet.

WARio WARio + Expander

CoreMark -36.6% -56.0%
SHA -88.6% -87.8%
CRC -33.5% -33.5%
Tiny AES -74.5% -71.5%
Dijkstra -18.7% -18.7%
picojpeg -33.6% -33.7%

average -47.6% -50.2%

Table 5.2: Per-benchmark code-size increase compared to the original C version (without intermittent comput-
ing support).

Ratchet WARio WARio + Expander

CoreMark +39.6% +38.7% +67.9%
SHA +33.2% +33.4% +62.3%
CRC +8.4% +7.8% +7.8%
Tiny AES +16.2% +12.1% +37.7%
Dijkstra +7.9% +8.2% +8.2%
picojpeg +5.2% +11.9% +13.4%

average +18.4% +18.7% +32.9%

code and they are rather consistent between Ratchet and WARio (except for AES—
advantageous for WARio and for AES—advantageous for Ratchet). This suggests that
not only WARio performs better than Ratchet, and attains this without any extra code
footprint penalty. The code size is not significantly affected, even though WARio removes
many checkpoints (as demonstrated in Figure 5.5) because a checkpoint is a simple jump
instruction to the checkpoint routine. Hence, removing a checkpoint only removes a
single instruction from the executable. Additionally, WARio sometimes adds additional
instructions while executing the write clustering transformations. On the other hand,
adding the Expander transformation to WARio does increase in the average code size.
Note that Expander does not always translate to an increase in performance, as seen in
Figure 5.4. The reason for Expander increases the code is because of inlining function
duplicates.

Next, we investigate how large the loop unroll factor N should be. The result are pre-
sented in Figure 5.6. For this experiment we chose a subset of benchmarks that benefited
most from Loop Write Clusterer, i.e. SHA and Tiny AES, see again Figure 5.5. We
measured the total number of checkpoints (top part of the figure) and execution time
overhead reduction (bottom part of the figure) compared to benchmark with N = 1, i.e.
no unrolling, as a function of N .

LOOP UNROLL FACTOR

The first observation is that as N reaches a certain point, the percentage of checkpoint
reduction stalls. Simply, there need to be checkpoints for intermittent systems to work
correctly. However, unrolling a selected loop for loop write clustering. On average, a
steady state (for both number of checkpoints as well as overhead) is reached when the
number of checkpoints in the middle end is reduced from ≈80% to ≈40%. These factors
also cause the overhead to fluctuate when the unroll factor N becomes large, as these
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added checks and checkpoints in the back end will outweigh the reduction of checkpoints
in the middle end. The ideal unroll factor for these specific benchmarks appears to be
≈ N = 8. Therefore, N = 8 has been selected for all the other experiments, as we remarked
already in Section 5.4.1.

IMPACT OF POWER INTERMITTENCY

We measured the size of the idempotent sections, i.e., the number of CPU clock cycles
between two checkpoints during execution. Figure 5.7 shows the results for Ratchet,
R-PDG, and WARio (complete). The median (white line) does not increase significantly.
As expected, the 75th percentile (top of the box) and mean (white triangle) increase for
most benchmarks. Most importantly, we see that (on average) the maximum idempotent
region size is not significantly affected by the removal of over half of the checkpoints.
In some cases, e.g., SHA, the maximum idempotent section size did increase dramat-
ically. However, even with this increase, the required power on time is approximately
5.6 ms or 0.9 ms with a processor speed of 8 MHz or 50 MHz, respectively. WARio removes
checkpoints at locations where idempotent sections are generally small, e.g., in a loop
body or during the epilogue of a function, often leaving the large idempotent sections
unmodified. Therefore, WARio does not significantly increase a device’s required mini-
mum power-on time to maintain forward progress as compared with Ratchet [235]. We
note that additional research is needed to automatically reduce large regions to sustain
forward progress for systems requiring even lower minimum power on time. However,
the WARs remain protected, preventing inconsistencies due to power failures.

Furthermore, we executed the same benchmarks using different power on/power off
patterns, as specified in Section 5.4.1, until completion. The overhead the intermittent
execution introduces is composed of three factors: (i) the processor boot procedure
execution, (ii) the last successful checkpoint restoration, and (iii) re-execution of the code
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Figure 5.7: Idempotent region size for all considered benchmarks and software environments. Data is presented
as a box plot, where maximum values are given at the top of each benchmark’s result.

between the last checkpoint and the location of the power failure. The first two factors
are constant, but the third factor depends on where the power failure happened in the
idempotent region. Table 5.3 shows this overhead as a percentage of the total execution
time. For all the benchmarks, this overhead is minimal. Even with very short power on
times of 2 ms (at a processor clock speed of 50 MHz), the average overhead is less than 1%
compared to continuous power.
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Table 5.3: Code re-execution overhead in percentage for WARio with Expander compared to the continuously-powered version, O , and number of observed
power failures during benchmark execution, P , per different power on cycles.

power on duration CoreMark SHA CRC Tiny AES Dijkstra picojpeg
clock cycles time at {8 MHz, 50 MHz} O P O P O P O P O P O P

50000 {6.2ms, 1ms} 0.24% 127 2.87% 380 7.25% 1 0.23% 7 1.70% 1135 0.18% 2624

100000 {12.5ms, 2ms} 0.14% 63 2.87% 190 0.00% 0 0.09% 3 0.86% 563 0.09% 1310

1000000 {125ms, 20ms} 0.01% 6 2.78% 19 0.00% 0 0.00% 0 0.07% 55 0.01% 130

5000000 {625ms, 100ms} 0.00% 1 0.00% 3 0.00% 0 0.00% 0 0.02% 11 0.00% 26

traceα 0.00% 3 0.04% 8 0.00% 0 0.00% 0 0.04% 27 0.00% 66

trace β 0.00% 1 0.00% 2 0.00% 0 0.00% 0 0.01% 5 0.00% 13

✜ Time (for a given processor frequency) is provided as a reference for two example processor clock speeds—8 MHz (i.e. speed at which internal FRAM of
TI MSP430 [226] runs on a maximum speed) and 50 MHz.

Table 5.4: WARio compared against state-of-the-art intermittent execution support systems.

system
non-volatile

main memory
register-only
checkpoint

no runtime
memory log incorruptible C language

support
compiler-

based
code-
aware

code-
transf.

ARM
support

Mementos [203] ✗ no ✗ no ✓ yes ✓ yes ✓ yes ✗ no ✗ no ✗ no ✓ yes
MPatch [Chapter 3] ✗ no ✗ no ✗ no ✓ yes ✓ yes ✗ no ✗ no ✗ no ✓ yes

Chinchilla [143] ✓ yes ✓ yes ✗ no ✓ yes ∼partially† ✓ yes ✗ no ∼partially ✗ no
TICS [Chapter 4] ✓ yes ✗ no‡ ✗ no ✓ yes ✓ yes ✓ yes♠ ✗ no ✗ no ✗ no

InK [250] ∼partially ✓ yes ∼partially ✓ yes ✗ no✿ ✗ no ✗ no ✗ no ✗ no
Rachet [235] ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✗ no ✓ yes✤

WARio ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes ✓ yes
† Does not support any form of recursion [119]. ‡ The active stack segment is included in the checkpoint. ♠ Source code instrumentation combined with a segmented

stack implementation in the TI MSP430 [226] GCC [179] back end [119]. ✿ A C-style domain specific language for energy-task programming [119, Section 5.4]. ✤ Only
Thumb instruction subset, no Thumb-2 support [89].
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5.5. DISCUSSION

Location-specific Checkpoints. WARio does not place checkpoints that are user- or
application-specific, e.g. to guarantee that inter-checkpoint (idempotent region) time is
not larger than certain number of cycles. On the other hand, the number of checkpoints
placed by WARio is great enough that extra checkpoints might not be necessary, see
Figure 5.7.

Sensing Applications and Use of Peripherals. WARio does not target sensing-based
applications, that require interaction with the peripherals. This is a problem that needs to
be solved separately, for example using special libraries [117, Section 3.4], which can be
used in combination with WARio.

Code Profiling. WARio would benefit from a code profiler. Specifically, code profiling
would improve both checkpoint placement and the effectiveness of the Expander. We
leave the design of code profiling for the future.

Just In Time Checkpoints. Instead of inserting checkpoints to resolve WAR violations,
the Just In Time strategy inserts them based on the developer-specified storage capacitor
voltage threshold. This strategy brings some downsides. The incoming energy can be
highly unpredictable [203, Figure 1], which means that the configured voltage level does
not directly correlate to the amount of execution time left.5 In such a system, the config-
ured voltage threshold must be set to the worst case, as even one missed checkpoint can
cause a WAR violation, corrupting the system’s memory.

5.6. RELATED WORK

The main (and only) system we can compare WARio to was Ratchet [235]. Nonetheless,
this is not the only system available. The most concrete comparison is given in Table 5.4.

Loop Transformations. Early works considering the macro-level idea of instruction
relocation and loop unrolling, however with specifics different from WARio, include [57]
(in the context of an automatic coarsening of the granularity of locks [by making one lock
for multiple objects that can be accessed together] for the data manipulated by a program
in a parallel computing system) and [134] (in the context of increasing instruction-level
parallelism for processor instruction scheduling). Some volatile memory-based systems,
e.g., [248], have introduced counters into loops to check when to create a checkpoint.
Sadly, this does not work when the main memory is NV. Some form of loop-result
buffering for task-based AI systems programmed using a special Domain-Specific Lan-
guage (DSL) was introduced in [70]. However, this approach does not work for general-
purpose C-based applications.

Extensions of WARio. Other works can enhance WARio by tackling other optimiza-
tions. For instance, WARio can ’cache’ some data in volatile memory if that data is both
generated and used in one idempotent section, as in [147].

5The time between reaching the configured voltage level of the comparator, and when the system experiences a
power failure, can highly fluctuate, even for a predictable energy harvesting source [117, Section 6.4].
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5.7. CONCLUSIONS
We have presented WARio: a set of compiler transformations that generate a binary
that can be safely executed on intermittently-powered platforms with non-volatile main
memory. WARio injects checkpoints to resolve WAR violations but does it only after
transforming the input code. WARio moves ‘Write‘ operations from individual WAR oper-
ations closer together, and for loops, it applies a novel unrolling algorithm to make this
rescheduling of ‘Write‘ operations more impactful. Additionally, WARio adds a hitting-
set-based checkpoint placement algorithm in the back end and protects stack pointer
modifications by temporarily disabling interrupts. Together these transformations signif-
icantly reduce the number of required checkpoints, reducing checkpointing overhead.
Nonetheless, there is still a considerable overhead, often around double the execution
time or more than running plain, uninstrumented C code. However, this is currently the
required cost to allow incorruptible intermittent execution of battery-free applications
without additional hardware support.
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6
AVOIDING CHECKPOINTS USING A

DATA CACHE

We introduced two compiler-based methods to support intermittent computing in the
previous two chapters. These systems both work with standard microcontroller systems,
with the only exception being that they contain non-volatile main memory. Both systems
are software-only approaches and, therefore, still have a non-negligible overhead despite
our successful efforts to reduce it. Chapter 4 introduced runtime logging that introduces a
check for each memory access and stack segment management that increases the size of a
checkpoint by including the active stack. Chapter 5 introduced checkpoints for WAR depen-
dencies that are identified during compile time, which is a very conservative approach as
many WAR dependencies will depend on the program’s execution. This conservativeness is
because compiler-based approaches rely on alias analysis and must insert checkpoints to
break all potential WAR violations, even if they don’t appear during execution.

In this chapter, we take a different approach. Instead of directly monitoring accesses to
the non-volatile main memory, we explore the principle of locality as done in Chapter 4.
We take advantage of this principle by introducing a volatile data cache that also addresses
the higher memory access cost of non-volatile memory in terms of both energy and latency.
We introduce a hardware component that can dynamically detect WAR dependencies,
significantly reducing the leading cause of overhead in both software-based approaches.
Additionally, we present a novel method to closely integrate WAR detection within the data
cache, eliminating the need for additional memory tracking and significantly reducing
the number of checkpoints. Finally, we tightly couple this new data cache to the program’s
execution behavior by tracking the program’s stack pointer to further reduce the amount of
data written to non-volatile memory.

Vito Kortbeek, Sourav Mohapatra, Saad Ahmed, and Przemysław Pawełczak.
A Data Cache for Intermittent Computing Systems with Non-Volatile Main Memory. Under submission.
The accompanying archive containing all the software and data can be found at https://doi.org/10.4121/
22259011.
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6.1. INTRODUCTION

One way to mitigate the problem caused by re-execution is to create a checkpoint between
the read and write of all WAR dependencies, such as in Chapter 5. However, using NVM as
the main memory of intermittently-powered devices brings several downsides that greatly
reduce the system’s performance. First, as discussed in Chapter 1 and at the beginning of
Part two of this thesis, WAR dependencies are a common memory phenomenon during
the execution of a program. Thus many checkpoints are required to protect the program
from power failures—significantly more than are needed to allow just the forward progress
of the program. These extra checkpoints are due to the conservativeness of compiler-
based approaches. Compiler-based approaches must insert checkpoints to break all
potential WAR violations because missing one WAR could cause incorrect re-execution.
However, not all these speculated WAR violations result in actual WAR violations during
execution because the compiler uses alias analysis to find all possible WAR violations.
When the compiler detects that a pair of memory access may cause a WAR, the compiler
must insert a checkpoint, even if this sequence of memory accesses might not (always)
result in a WAR violation during execution. Additionally, a necessary feature for any
intermittent computing framework is to be incorruptible. That is, even if the power fails
at any time during execution—including during the creation of a checkpoint—the system
should continue correctly from the most recent successfully completed checkpoint. Look-
ing at the results of Chapter 5, even an optimized solution has double the execution time
compared to native unmodified binaries without checkpoints (while still using NVM as
the main memory). Using hardware detection of power failure, such as [88], results in less
overhead, as the program does not require to be over-instrumented with checkpoints by
the compiler. However, NVMs such as FRAM and MRAM are still considerably slower and
require more energy to access than their volatile counterpart SRAM [71, Section 2], [96,
Section 8.4]. Therefore the execution time and energy consumption of systems using
non-volatile main memory will be considerably higher compared to volatile systems.
Hence, intermittent systems would benefit from finding a balance between using volatile
and non-volatile memory.

Problem Statement: Previous works attempted to achieve this balance by reduc-
ing the size of checkpoints while still using volatile components, i.e., a mixed-memory
model [147]. Another direction is using a volatile data cache in combination with non-
volatile main memory. Adding a data cache will decrease the cost of using non-volatile
main memory by allowing for faster access speeds and fewer NVM accesses. However,
integrating a data cache with intermittent systems is not straightforward. The system still
needs to address WAR hazards, which become even more complicated in the presence of
a cache [252], as the cache delays the actual writeback to NVM. Then, the cache eviction
policy that determines which cache block must be evicted to make space for new data (i)
must be aware of when the checkpoint will happen and (ii) how to proceed whilst main-
taining consistency. Furthermore, since the cache is a volatile entity, it must be written to
NVM before a checkpoint. The current state of the art cache-based system, PROWL [91],
avoids the chances for memory corruption by creating a checkpoint whenever memory
must be written from the cache to the NVM but uses a computationally intensive cache
architecture (skew-associative cache with cuckoo-hashing-based eviction policy) that is
complicated to implement and potentially energy-consuming.
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Our Fundamental Insight: We argue that simply applying existing data cache meth-
ods [80, Appendix B] to intermittent computing architectures is inefficient. We take a
different position and propose modifications to the cache’s workings to better align with
intermittent computing. We found that by adding just two bits to the data cache lines and
using this information to detect whether a writeback to the NVM is safe, we can directly
use the cache for WAR detection and mitigation to break up WAR dependencies, instead
of relying on additional WAR detection hardware [88] or software systems, such the ones
presented in chapters 4 and 5. Utilizing the cache as WAR detection reduces the total
number of checkpoints, NVM memory accesses, and execution time.

Our Contributions: Based on our insight, we present a new data cache architecture
for intermittent computing systems, named NACHO, with the following contributions.
1 We define the requirements for a safe data cache in an intermittent computing system

with non-volatile main memory. These requirements form the basis of NACHO.
2 NACHO, by adding only two extra bits per cache entry combined with a novel al-

gorithm to detect if a write back to memory is safe, i.e., not a read-dominated WAR
dependency, reduces the number of checkpoints and NVM accesses compared to the
state of the art systems.

3 NACHO reduces the checkpoint size by tracking the stack of the executing program
and avoids writing memory that is no longer valid to the NVM. All of this reduces
checkpointing costs—both in terms of size and time.

Through these contributions we reduce the overhead introduced by supporting inter-
mittent computing on average by 77% compared to Clank [88] and by 67% compared
to PROWL [91], the state of the art cache-based solution. Additionally, the number of
NVM accesses is, on average, reduced by 86% compared to Clank and 55% compared to
PROWL.
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Table 6.1: Features of state of the art intermittent computing systems focussing on ones with a data cache.

Clank [88] COACH [92] ReplayCache [252] NvMR [34] PROWL [91] NACHO (this work)

supports data cache ✗ ✓ ✓ ✓ ✓ ✓
low checkpoint count ✗ ✗ ✓ ✓ ✓ ✓
low NVM reads/writes ✗ ✗ ✗ ✓ ✓ ✓

incorruptible ✓ partially† ✗ ✓ ✓ ✓
no compiler transformations ✓ ✓ ✗ ✓ ✓ ✓

cache-agnostic n/a ✓ ✗ ✓ ✗ ✓
no extra memory tracker required n/a ✗ ✓ ✗ ✓ ✓

tight data cache integration n/a ✗ ✗ ✗ ✗ ✓
considers program execution flow n/a ✗ ✗ ✗ ✗ ✓

Yes: ✓ , No: ✗ † The work relies on existing checkpointing strategies, thus it can be as incorruptible as the choice of strategy.
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6.2. CACHE AND INTERMITTENCY
The size of volatile and non-volatile memory components in an embedded battery-free
system greatly impacts the total execution time and consumed energy [91, Table 1].
Finding the right trade-off between the number of volatile and non-volatile components
motivates using cache for fast and energy-efficient intermittent system architectures.

6.2.1. TRADE-OFF IN MEMORY PERSISTENCY
In the case of completely non-volatile systems such as a non-volatile processor [138],
everything is in persistent storage, and the need to create checkpoints and restore them
in case of power failure disappears. However, the energy consumed to perform memory
accesses becomes high, diminishing the gains resulting from memory non-volatility.
As we move towards the opposite spectrum of fully volatile architectures, the energy
consumed per cycle decreases, but the size and number of the checkpoints and the
cost of re-execution increase. Everything needs to be saved and restored to/from a fully
volatile system, again skewing the associated costs. The desired solution is thus a balance
between the volatile and non-volatile systems. That is, we should seek a solution where a
volatile SRAM-based data cache provides high access speeds—while being small enough
to ensure low checkpointing overheads—and where a non-volatile main memory acts as
the persistent entity to ensure data retention across power failures.

6.2.2. CHALLENGES OF INTERMITTENCY AND CACHE
Integrating a cache into an intermittent system is not straightforward. Let us look at an
example in Figure 6.1, where we compare a traditional system supporting intermittent
operation with a data cache-based system. In Figure 6.1, case ②, because the checkpoint
placement logic depends on when a “write” to NVM is performed, having a cache that
buffers the memory accesses delays the write operation to NVM. This is a runtime
phenomenon that the compiler cannot predict, thus rendering the checkpoint placement
incorrect.

One might ask, why not use a more complex compiler-directed cache-based system,
like ReplayCache [252]. With ReplayCache, compiler transformations create idempotent
regions in combination with a parallel cache writeback instruction, replaying cache
modification after a failure. However, the ReplayCache-based method limits the use of
legacy code and adds a significant amount of complexity in addition to a customized
cache while adding many instructions to interact with the parallel writeback mechanism.
One could propose using a dedicated hardware memory tracker, such as Clank [88], which
could be deployed in addition to a data cache. This approach, however, increases the
overall cost and latency of the system (as one ends up with two extra memory units—cache
and memory tracker—instead of one).

We state that integration between intermittent computing systems using non-volatile
main memory and a data cache should not merely utilize an existing cache architec-
ture but rather tightly couple it with detecting WAR violations. Additionally, it should
actively attempt to minimize the number of NVM accesses by considering the behavior
of the execution flow of a program running on battery-free, intermittently powered sys-
tems. Looking at Table 6.1, which compares the most relevant systems for intermittent
computation, no existing solution addresses all system requirements.
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Figure 6.1: An example program performing memory accesses R(x) (a read operation at the memory location x)
and W(x) (corresponding write operation) on two variables, for two systems. System ① is a cache-less (de facto
standard, e.g. [235]), where read and write operations interact with NVM—note a compulsory checkpoint at
WAR of variable ‘a’ inserted at compile time. System ② is based on a regular cache which cannot support WAR
tracking by design, i.e., a simple direct mapped write-back [80, Appendix B] cache of two lines. In ②, checkpoints
cannot be inserted at compile time because the compiler will not know when the eviction of cache-located
variable ‘a’ back to NVM will take place.
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Figure 6.2: Cache and NVM accesses for an example program. A NVM access is a read from the NVM to the cache
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sets. In some cases, this can cause a checkpoint signal to be raised, which is sent to the processor. In this case,
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c, d that are assigned to two cache sets as follows: a, b → set 1 and c, d → set 2.
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6.3. CACHE FOR INTERMITTENT SYSTEMS
We propose a fundamentally different approach to overcome the challenge mentioned
in Section 6.2.2. Our data cache will be tasked with (i) avoiding WAR (Section 6.3.1), (ii)
optimizing WAR detection (Section 6.3.2), and (iii) reducing the number of NVM writes
(Section 6.3.3).

6.3.1. CACHE FOR AVOIDING WRITE AFTER READS

First, we observe that a data cache delays the write to NVM, until a cache eviction forces a
write to the underlying NVM. A WAR violation can only occur when a write is performed
after a read at a NVM location. Therefore, the cache effectively determines when a WAR
can occur by tracking the presence of such access patterns in a given cache line. In
other words, we take advantage of the fact that a WAR violation is only possible when
a cache block is written back to the NVM. We term this event, i.e. a cache line being
written back to the NVM, as a Cache Write Back (CWB).1 Upon detecting a CWB, the
cache generates a checkpoint signal and instructs the processor to create a checkpoint.
During the checkpoint, the processor not only copies the registers to the NVM but also the
volatile data cache (otherwise, the volatile data would be lost). To this end, all modified,
i.e., dirty, memory blocks are copied (i.e., flushed) to the NVM during a checkpoint. By
creating a checkpoint in this way, we ensure that the system remains consistent. An added
advantage is clearing the cache of all dirty lines during the checkpoint, which decreases
the possibility of a future WAR and thus reduces the number of created checkpoints and
NVM accesses. We illustrate this process in Figure 6.2 1 .

6.3.2. CACHE FOR OPTIMIZING WAR DETECTION

As explained above, a CWB can lead to a WAR violation. However, some of these CWBs may
not. This can be understood more formally as the memory being read-dominated or write-
dominated as introduced in [88, Section 3.1.1]. In a sequence of memory instructions,
if the first access to memory addresses is a write, then this location is write-dominated.
Conversely, if the first access to a memory address (in a given sequence of instructions) is
read, then this location is read-dominated. An idempotency violation can then be defined
as a write to a read-dominated memory location. Any other form of access is safe and will
not cause a WAR violation. Since any given memory sequence can be read-dominated or
write-dominated, this condition bounds all possible idempotency violations. With this
understanding, Clank [88] used dedicated hardware to track whether memory accesses
are read- or write-dominated. In contrast, we use the cache to perform the same tracking,
eliminating the need for an additional hardware component. Henceforth, we will denote
write-dominated WARs as safe WARs, and read-dominated WARs as WAR violations.

To help understand the above, we redefine read-dominated and write-dominated se-
quences to track a cache line instead of a memory address. A cache line is read-dominated
when the first access to the line is a read and write-dominated when the first access is a
write. A CWB does not result in a WAR violation, and therefore does not require special ac-
tion, if it comes from a write-dominated cache line. We term this write-back as a safe write.
A CWB can only result in a violation if the associated cache way is read-dominated, which

1Similar to Intel x86 Cache Line Write Back instruction [97, Page 744].
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we term as an unsafe write. We track these memory sequences to all cache lines during
the program execution and create a checkpoint only if an unsafe write is encountered.
The exact functionality of this tracking is discussed in Section 6.4.

The above process is shown in Figure 6.2 2 . Compared to Figure 6.2 1 , we notice a
reduction in the number of checkpoints and NVM writes. An important thing to note is
that since the cache stores data based on a hash of the memory address, the distinction
between safe-write and unsafe-write is also based on the hashed address. This implies
that the WAR detection is not exact, and although it can never contain false negatives, it
does lead to few false positives. This is a trade-off in using the cache (and not a dedicated
hardware module) as a memory tracker. However, we show later (Section 6.6) that this
impact is negligible.

6.3.3. REDUCING UNNECESSARY NVM WRITES
Not all memory in the system is still in use (live) during a checkpoint. This is most notable
when considering the stack memory of the program. Stack is allocated/deallocated
constantly during execution when entering/leaving functions. However, stack memory
that is no longer in use, i.e., has been deallocated, will never be read first during execution
but is still marked as dirty in the data cache. This insight is based on the fact that
deallocated stack is first written to when allocated. Hence the unallocated stack does not
need to be written to NVM when creating a checkpoint, potentially reducing the number
of WAR violations and reducing the number of writes to the NVM during a checkpoint.

6.4. SYSTEM ARCHITECTURE
We present NACHO: an architecture based on the data cache design presented in Sec-
tion 6.3. NACHO ensures system incorruptibility during intermittent operation.

6.4.1. SYSTEM REQUIREMENTS
Along with supporting intermittent computing, NACHO has the following requirements.

Incorruptibility: NACHO ensures that the program’s state is correct. As shown in
Table 6.1, state of the art systems do not always guarantee incorruptibility. By using
the data cache as a WAR detector, we guarantee memory consistency without energy
prediction to create checkpoints.2

Cache Architecture Agnostic: Even though our system incorporates a custom data
cache, NACHO is agnostic to the cache architecture (with any placement/replacement
policies). Our additions are two extra bits that can be integrated seamlessly with most
cache architectures.

2Energy detection consumes energy, estimating the threshold for the system is not accurate [203, Figure 1] and
is difficult as system’s complexity grows.
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Figure 6.3: Six memory sequences and their corresponding bit patterns, including their decimal representation
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omitted. Only the cache line’s three bits of interest are shown: pw (possible-war), rd (read-dominated), and d
(dirty). The figure depicts all possible bit patterns. Note that configuration ➍ (only the pw bit set) is invalid and
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6.4.2. DATA CACHE CONTROLLER

The WAR violation detection mechanism introduced in Section 6.3.2 glosses over real-
world obstacles that prevent it from working in a fully-functioning data cache. In this
section, we address the simplifications made and describe the exact workings of the
optimized WAR detector.

CACHE LINE BITS

In Section 6.3 we introduced the concept of read-dominated and write-dominated bits in
the cache line in order to detect WAR violations. We still track both these classifications
but reduce the number of bits required to represent them. We express the write-dominated
bit as a combination of the dirty bit (which already exists in a standard data cache) and
the read-dominated bit because a line can only be write-dominated after it is written to,
which sets the dirty bit. Additionally, we introduce the possible-war bit to reduce the
conservativeness when detecting WAR violations by introducing history information into
the cache line. In total, this results in just two additional bits compared to a standard
data cache line, possible-war and read-dominated. Figure 6.3 shows all the possible bit
patterns and the memory sequences required to reach them.
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THE POSSIBLE WAR BIT

The possible-war bit is set when the cache line is read-dominated and the data in a cache
line is replaced. Multiple memory addresses are mapped to the same cache line when
using a cache. While the read-dominated and write-dominated bits are a good start, they
fall short when considering a memory location that is read into the cache, then evicted,
and later written to (scenario “pw & write dominated w/ WAR” in Figure 6.3). In this
scenario, the cache line would not be marked as read-dominated if the possible-war was
not set (scenario “pw & read dominated w/ WAR”). Without the possible-war bit, all
writes after a read to the data cache must be marked as read-dominated, leading to more
checkpoints. However, this scenario could never be a WAR violation, as the incoming
write must be to another memory address to evict the original entry. Thus the possible-
war bit functions as a one-bit history, recording if there was a read-dominated cache
entry in the block since the last checkpoint. But since the possible-war bit is set last, it
will not be taken into consideration during the first transition from a read-dominated to a
write-dominated cache line.

POSSIBLE WAR AND CACHE ASSOCIATIVITY

When applying the cache bits to track WAR violations, we must consider the data cache
associativity, i.e., the number of “ways” in the cache. Assuming an n-way cache, the
cache controller can map a memory location to n different cache lines. At which cache
line the memory location is placed depends on the cache replacement policy, e.g., least
recently used. Now, consider a memory read to location m, marking the cache block
as read-dominated. Next, the line containing m is evicted, removing it from the cache.
Finally, memory location m is written to; however, this time, the data is written to another
cache block for the same hash (which is possible when n is greater than one, i.e., the cache
is not directly mapped). If this final cache line does not have its possible-war bit set, it will
be marked write-dominated. Because the same memory location m was read before—but
it was not detected because it occurred in a different cache line—this can lead to a WAR
violation since the cache line is mismarked as write-dominated. To avoid marking cache
lines incorrectly as write-domianted, we must slightly change our approach to set the
possible-war bit. Instead of considering the possible-war bit of only the cache line to
which data is moved, we must consider all the n cache lines in the set when deciding if it
can be marked as write-dominated.

STACK TRACKING

To both improve the execution time and lower the energy consumption, writing to the
NVM should be avoided as much as possible. One situation where data in the cache is
written back to NVM without it ever being read again is when a deallocated stack frame,
i.e., a stack frame no longer in use because the function completed, is written back to
NVM. To avoid writing this data back to NVM, we need to track the stack movement
of the program. This can be straightforward, as the top of the stack is constantly being
tracked by the Central Processing Unit (CPU)’s stack pointer sp. By also tracking spmi n ,
i.e., the lowest address the stack pointer reaches between two checkpoints (assuming the
stack memory grows downwards in memory), we can discard all memory between sp and
spmi n . By applying this technique, we avoid writing a dirty cache line to NVM during a
checkpoint or cache eviction.



6.4. SYSTEM ARCHITECTURE

6

139

DATA CACHE CONTROLLER ALGORITHM

Algorithm 8 shows the manipulation of the two extra bits introduced by this work: possible-
war (pw) and read-dominated (rd), in addition to the dirty bit (d), for each memory
request. The other cache line-related bits (e.g., valid) and functionality (e.g., details
regarding the ReplacementPolicy) are not shown in Algorithm 8 for the sake of brevity. We
will now go through this algorithm, discussing each procedure in detail.

MemoryAccess: During a memory request (Line 1), the default data cache behavior
is first to check if the request is a miss (Line 3). If the request results in a miss, an existing
cache line must be evicted to make room for the new request. If the request is a hit, the
memory location requested already resides in the cache. When a hit occurs, we introduce
one special case. If this is the first hit for this cache line after a checkpoint was created,
the cache line bits must be updated using the UpdateLine procedure (Line 20). We can
identify this is the first hit by checking if all the considered flags are cleared (Line 5). If the
cache line was already visited before, bit changes are needed, and the cache hit continues
as usual.

CacheMiss: When a cache miss occurs (Line 8), we use a standard cache replacement
policy, e.g., least recently used, to select the line that must be evicted to make room for
the new request (Line 9). If the current line is not dirty, i.e., it was only read and never
written to (Line 10), we can safely discard the data in the cache line and finish the request
by updating the bits (Line 18). Later we update the cache line with data from the NVM
(Line 7). If the cache line to be evicted is dirty, we can not simply write back the current
content of the line to NVM, as this could cause a WAR violation. Instead, we first check if
we can ignore the data because it is in a region of the stack that is no longer live (Line 11),
in which case we can reset the cache line (Line 17). After all, the data does not need to be
written back to NVM.

If the memory might still be in use, we check whether the memory accesses could have
been read-dominated by checking the rd flag associated with the cache line (Line 12). If
the cache line could be read-dominated, writing the memory back to NVM could cause a
WAR violation, so we must create a checkpoint (Line 13). However, if we know for sure that
the cache line is write-dominated, which must be the case if the cache line is dirty and not
read-dominated, we can safely write (evict) the data directly to the NVM without creating
a checkpoint (Line 15). Finally, we can continue the cache miss as usual by updating the
cache line (Line 18) and returning the updated line to the MemoryAccess procedure.

UpdateLine: If the cache line is currently read-dominated, we store this fact, because
this means that the possible-war bit must be set after updating the other bits to indicate
that the next access could be read-dominated even if the request is a write (Line 33). If
the request is a read (Line 22), only the read-dominated flag has to be set. However, if
the request is instead a write (Line 24), we consider if any of the lines in the set have
their possible-war bit set (Line 29), or the size if not equal to the size of the cache line
(four bytes), in which case we must mark the current line as read-dominated (Line 32).
Otherwise the read-dominated bit is cleared, marking it as write-dominated. The size
requirement is introduced because a write request smaller than the cache line will first
read from the NVM, which could lead to a WAR violation.

Checkpoint: The Checkpoint procedure (Line 35) performs a double-buffered write-
back to NVM for all the dirty bits in the cache (abstracted for brevity as SafeEvict, Line 39)
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Algorithm 8: Data cache controller

1 Algorithm MemoryAccess(address, type, value, size) :
2 line, miss ← CacheLine(address)
3 if miss is true then
4 line = CacheMiss(address, type, size)
5 else if (linepw is false) and (linerd is false) and (linedirty is false) then
6 UpdateLine(line, type, size) // 1st hit after checkpt

7 UpdateData(line, value) // Fill cache line with data

8 Procedure CacheMiss(address, type, size) :
9 line ← ReplacementPolicy(address) // Evicting line

10 if linedirty is true then
11 if InUnusedStack(address) is false then
12 if linerd is true then
13 Checkpoint()
14 else
15 Evict(line) // Writeback without a checkpoint

16 else
17 ResetLine(line) // No need for a writeback

18 UpdateLine(line, type, size) // Update new cache line
19 return line

20 Procedure UpdateLine(line, type, size) :
21 was-read-dominated ← linerd
22 if type is Read then
23 linerd ← true // Mark line as read-dominated
24 else if type is Write then
25 possible-WAR ← false
26 Set = GetSet(line) // Get set associated with line
27 for line in Set do // For each line in the set
28 possible-WAR ← (possible-WAR or linepw)

29 if (possibe-WAR is false) and (size is 4) then
30 linerd ← false // Mark line as write-dominated
31 else
32 linerd ← true // Mark line as read-dominated

33 if was-read-dominated then
34 linepw ← true // Mark line as possible WAR

35 Procedure Checkpoint() :
36 for line in Cache do // For each line in the cache
37 if linedirty then
38 if InUnusedStack(address) is false then
39 SafeEvict(line) // Double buffered evict

40 ResetLine(line) // Clear all the bits in the line

41 CheckpointRegisters() // Checkpoint CPU registers

that are in use (Line 38). After the checkpoint is completed, the data still resides in the
cache, but the WAR detection bits are cleared (Line 40) because the detection must be
performed from one checkpoint to the next.
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6.5. IMPLEMENTATION
We employ RISC-V [98] as the target Instruction Set Architecture (ISA) of NACHO, due
to RISC-V’s configurability and open-source nature. The evaluation of NACHO was per-
formed using ICEmu [186], an emulator designed to evaluate intermittent computing
systems, built around the QEMU-based [181] Unicorn CPU emulator [183]. For the
purpose of NACHO evaluation we extended ICEmu to closely represent the SiFive E21
standard core processor [214]—by modeling its pipeline [214, Section 3.3]—as this is a
basic 32-bit embedded processor. We note that NACHO code will be open source [174].

6.5.1. PROCESSOR EMULATION
We chose emulation instead of a hardware-based implementation of NACHO. The em-
ulation enables us to evaluate the correctness of NACHO and all other systems used as
NACHO’s benchmark (introduced in Section 6.6.1), which will be hard to accomplish
with an MCU implementation. This correctness evaluation is done as follows. As the first
safety measure, the emulator duplicates the same access to a shadow memory for every
memory access generated by the processor. This way, a correct memory access request
handled by NACHO must return the same value as contained in the shadow memory. As
the second safety measure, the emulator performs WAR detection to verify the absence
of any WAR violation, as done in [148, Section 5.2] and [118, Section 5.1.1] by using read-
and write-specific address lists and observing memory access patterns. Additionally,
emulation allows us to collect detailed metrics without interfering with the program’s
execution.

6.5.2. MEMORY ACCESS COST MODEL
For the purpose of this evaluation, we assume a processor speed of 50 MHz. Additionally,
we assume an access latency of a common onboard NVM of 125 ns [91, Table 1], [71, Sec-
tion 2]. Furthermore, we assume that a data cache hit induces a two-cycle latency to the
pipeline [214, Section 3.1] and an NVM access induces a six-cycle latency (rounded down).
Note that all the above values are chosen conservativly3, as a higher processor speed
results in a larger difference between the data cache latency and the NVM latency, leading
to an even better performance of NACHO than shown in this chapter (see Section 6.6).

6.5.3. CACHE CONTROLLER
We extended ICEmu with non-volatile main memory, and implemented NACHO’s cache
controller as an ICEmu memory subsystem. Within this subsystem, we implemented a
data cache with a least recently used replacement policy and four bytes of data per cache
line. Moreover, we enable the configuration of the data cache size and associativity. The
additional bits introduced in Section 6.4 are implemented together with existing data
cache bits to emulate a fully functional cache. On every memory access, the algorithm
outlined in Algorithm 8 is executed, and the execution pipeline is updated using the
cost model given in Section 6.5.2 to maintain an accurate cycle count. To enable the
stack tracking (Section 6.4.2) the stack pointer is tracked during execution, storing the
minimum address since the last checkpoint.

3Current MCUs targetting ultra-low-power applications often operate at speeds over 100 MHz, e.g. [18].
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6.6. EVALUATION
We compare NACHO against existing prior works and show that NACHO reduces the
number of NVM and cache accesses, thus ensuring energy-efficient execution of inter-
mittently powered applications. We further dissect NACHO’s performance to show that
NACHO’s energy-efficient design choices incur very low computational overhead.

6.6.1. EVALUATION SETUP

We compare NACHO against reference systems using multiple benchmark applications
and record various performance metrics to show the benefit of NACHO. We begin with
the outline of our setup.

BENCHMARKS

We use CoreMark [59], an industry-grade benchmark for measuring embedded systems’
CPU performance, to evaluate NACHO. Additionally, we use the CRC, SHA, and Dijk-
stra from the MiBench suite [77] to broaden the set of benchmarks. Finally, we use
TinyAES [182] and picojpeg [68] to represent two real-life embedded applications. All
benchmarks are compiled using version 9.1 of the clang [185] compiler using the -O1
optimization level.

SYSTEMS

We compare NACHO against intermittent computing systems employing NVM as main
memory. We ensure that our choice of systems covers both software and hardware support
to solve the challenges arising from NVM main memory, as it would help establish the
benefit of our system. These systems are as follows.

Ï Clank [88]: A memory-tracking hardware module that detects data inconsistencies
during execution time. Our implementation is an ideal version of Clank, as it does not
utilize any memory buffers that can fill up during the WAR detection [88, Section 3.1], nor
does it count any memory access cost to these buffers. Since NACHO also performs WAR
detection (but using just the data cache), we include Clank as a baseline to compare the
performance metrics.

Ï PROWL [91]: A data cache implementation reducing NVM accesses, which avoids
frequent checkpoints due to WARs by employing a custom cache replacement policy that
delays the eviction of a dirty cache block. We include PROWL as another reference, in
addition to Clank, as it relates most closely to NACHO, as they both introduce data cache
modifications for intermittent systems.

Ï Naive NACHO: A basic version of NACHO, as described in Section 6.3.1, that does
not have a WAR detector and no stack tracking support. The use of naive NACHO helps
us dissect the performance gains achieved by each component of the ultimate NACHO.

Ï Oracle NACHO: An ideal version of NACHO that acts as its theoretical lower bound.
The key difference between Oracle NACHO and NACHO lies in the detection of WARs
based on the cache line addresses. While NACHO detects WAR using read/write-dominated
cache lines, Oracle NACHO makes this detection using exact addresses, thus making it
a perfect WAR violation detector. However, implementing such a system increases the
hardware cost and complexity, thus making it impractical to implement.
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All evaluations (for NACHO and for the above four systems, except for Clank, as this is
a cache-less system) are performed for two different cache sizes (256 and 512 bytes [91])
of a 2-way set associative cache, to show the impact of the cache size on performance.

METRICS

We consider five evaluation metrics: (1) Execution time: the time required to complete a
given workload along with performing the checkpoint; (2) Checkpoints: Number of times
the device had to checkpoint its state due to a WAR violation; (3) Number of NVM accesses:
the number of times a NVM memory read/write occurs during program execution; (4)
Number of cache accesses: the number of times a cache read/write occurs during program
execution; (5) Interrmittent execution overhead: the percentage computational overhead
incurred when running on an intermittent energy.

6.6.2. EVALUATION RESULTS
We now proceed with the evaluation of NACHO.

EXECUTION TIME

Figure 6.4 shows the execution time of all systems for each of the considered benchmarks
for two different cache configurations, normalized to a system with fully volatile memory
of the respective benchmark. Note that the volatile memory system does not support
intermittent computing and assumes the same memory technology for the main memory
as the one used for the data cache. We can see that, on average, the normalized execution
time for NACHO is 78% and 82% lower compared to Clank when using a 256 B and 512 B
data cache, respectively. When compared against PROWL, NACHO’s execution time is
54% and 43% lower for, respectively, 256 B and 512 B data cache (using the same cache size
for both systems). On average, NACHO is within 4% and 1% of Oracle NACHO’s execution
time when using a 256 B and 512 B cache, respectively.

If we further dissect the numbers by removing the baseline program execution cost
from all benchmarks, the overhead of all systems becomes even more apparent. Com-
pared to PROWL, NACHO’s overhead is, on average, 67% lower, with a maximum overhead
reduction of 95% (CoreMark 512 B). Lower execution times for 512 B cache size are because
of the cache’s ability to retain more addresses, thus delaying the eviction, as explained in
Section 6.6.2.

NUMBER OF CHECKPOINTS

Figure 6.5 shows a significant decrease in the number of checkpoints of both PROWL and
NACHO compared to Clank. It must be noted that a checkpoint in Clank only consists
of the registers, whereas in both PROWL and NACHO, the cache has to be written back
to the NVM in a double-buffered manner during a checkpoint, making it significantly
more costly. In other words, even though NACHO had a larger update size at the time of
checkpoint, NACHO is able to significantly reduce the need for checkpoints due to its
efficient detection of idempotence violations. Additionally, we can also see a decrease
in the number of checkpoints for a larger cache size for all the systems. This is primarily
because of the ability of the cache to retain more data, thus reducing the need for eviction
and, in turn, the checkpoint. We evaluate this effect further in Section 6.6.2.
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Figure 6.4: Execution time for all benchmarks for Clank [88], PROWL [91], NACHO, and Oracle NACHO. All
results are normalized to the execution time of a system containing only volatile memory, i.e., a system without
non-volatile main memory and intermittent computing support. Oracle NACHO is shown as the hypothetical
lower bound that NACHO could reach if NACHO utilized perfect memory tracking. The cache configuration
used is a 2-way set-associative for two cache sizes: 256 B and 512 B. Note that Clank is a cacheless system and is
thus not affected by cache configuration.
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Figure 6.5: Number of checkpoints created during all benchmarks for Clank [88], PROWL [91], NACHO, and
Oracle NACHO. All results are normalized to Clank. The system configurations are identical to those in Figure 6.4.
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Figure 6.6: Number of non-volatile memory accesses—both reads and writes using a stacked bar plot—during
all the benchmarks for Clank [88], PROWL [91], NACHO, and Oracle NACHO. All results are normalized to Clank.
PROWL and NACHO are configured with a 512 B data cache.

NUMBER OF NVM ACCESSES

Figure 6.6 shows both the number of read and write accesses during the execution of each
benchmark normalized to the numbers reported for Clank (which exclusively uses NVM).
We can observe that NACHO significantly reduces the number of NVM accesses for almost
all benchmarks, with 95% reduction for CoreMark being the maximum and the trend
holds for most benchmarks. On average, NACHO reduces the number of NVM accesses by
over 85% and 55% compared to Clank and PROWL, respectively. While the trend holds for
most benchmarks, Dijkstra is an extreme outlier as NACHO has 18% more NVM accesses,
most likely caused by an unfortunate cache access pattern that causes many checkpoints
in NACHO, therefore benefitting from the cache relocation strategy of PROWL. All of these
numbers include the double-buffering cost associated with checkpoints for both PROWL
and NACHO, demonstrating the effectiveness of adding a data cache.

NUMBER OF CACHE ACCESSES

Figure 6.7 shows the number of data cache accesses required by each system. We observe
that, on average, NACHO has 58% fewer cache accesses than PROWL. The higher number
of cache accesses for PROWL stems from its custom cache line replacement policy. On
every cache miss, PROWL performs cuckoo hashing in an attempt to avoid a memory
eviction, leading to a much higher number of cache accesses (see the cuckoo bar stack in
Figure 6.7) compared to NACHO.

RE-EXECUTION OVERHEAD

An important metric to evaluate for any intermittently powered device is the cost of
re-execution, i.e., the cost associated with a power failure. On every power failure, check-
pointed system state must be restored whenever energy is available to resume application
execution. Resuming the execution incurs an additional cost as the data cache loses
its content after a power failure, resulting in cache misses. Furthermore, checkpoints
are not created precisely before a power failure occurs, so there is a limited amount of
code re-execution that adds to the computational overhead. Lastly, to guarantee forward
progress, the system must introduce periodic checkpoints to guarantee that at least one
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Figure 6.7: Number of data cache accesses—reads, writes, checkpoints (cache accesses during a checkpoint),
and cuckoo (cache accesses by PROWL to move data within the cache) using a stacked bar plot—during all the
benchmarks for PROWL [91], NACHO, and Oracle NACHO. All results are normalized to NACHO. PROWL and
NACHO are configured with a 512 B data cache. Clank [88] is excluded from this plot as it does not have a data
cache.

checkpoint is created during the on-duration.
Table 6.2 shows the re-execution cost with different power interruption intervals

(on-duration), executing at a processor frequency of 50 MHz. The shorter the power
interruption interval, the higher the cost of the overall cost of re-execution to complete
the workload. For every on-duration n, we configure a periodic checkpoint to occur every
n/2 ms to guarantee forward progress. We can observe that even with the shortest power
interruption interval, the additional cost is less than 2% on average for all benchmarks,
with CoreMark being the outlier with nearly 6%—which is still relatively low for such
a worst-case operating scenario. With more reasonable interruption intervals, such as
a power failure every 50 ms, we can see that the average additional cost is less than
0.2%. The low overhead can be attributed to the fact that five milliseconds is still a
considerable amount of clock cycles and memory accesses, masking the cost of some
additional periodic checkpoints, refilling the cache, and re-execution.

NACHO’S COMPONENTS EVALUATION

Table 6.3 shows the percentage reduction achieved by WAR violation detection (PW) and
stack-tracking approaches (ST) individually as well as the NACHO (N) overall. We see
that for all benchmarks and considered metrics, the overall improvement of NACHO over
Naive NACHO is significant, with an average overhead reduction of nearly 30% and a
reduction in the number of NVM writes of almost 35%. It must be noted here that the
reduction achieved by each component individually can not be summed to the overall
reduction achieved, as both techniques (WAR violation detection and stack-tracking) can
target similar memory access patterns.
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Table 6.2: Re-execution overhead of NACHO, running at 50 MHz. The overhead consists of periodic checkpoints with half the period of the on-duration (to guarantee
forward progress) and the re-execution cost of power failures.

On-duration CoreMark picojpeg Tiny AES CRC Dijkstra SHA

5 ms 5.75% 1.33% 0.69% 0.00% 0.72% 1.99%

10 ms 4.93% 0.67% 0.57% 0.00% 0.38% 1.41%

50 ms 0.20% 0.16% 0.35% 0.00% 0.07% 0.19%

100 ms 0.00% 0.07% 0.03% 0.00% 0.03% 0.19%

Table 6.3: Percental reduction of selected metrics compared to Naive NACHO for the two individual NACHO components, possible war (PW) and stack-tracking (ST),
and finally the complete system—NACHO (N).

CoreMark picojpeg Tiny AES CRC Dijkstra SHA
Metric PW ST N PW ST N PW ST N PW ST N PW ST N PW ST N
overhead 13% 7% 21% 10% 8% 12% 39% 40% 46% 16% 10% 33% 2% 0% 3% 38% 30% 58%

checkpoints 26% 4% 31% 8% 5% 8% 59% 48% 59% 33% 17% 33% 6% 0% 6% 40% 20% 60%

NVM reads 11% 6% 18% 9% 7% 11% 32% 32% 37% 14% 8% 27% 1% 0% 1% 33% 25% 50%

NVM writes 16% 9% 25% 11% 8% 13% 47% 47% 54% 18% 11% 37% 6% 0% 6% 41% 33% 64%
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Figure 6.8: Cache configurations design space exploration of NACHO. All results are normalized to a 2-way 256 B
cache.

DESIGN SPACE EXPLORATION

We now evaluate the effect of cache configurations on NACHO. Figure 6.8 shows NACHO’s
execution time in different cache configurations with varying sizes and associativity.

Cache Size: As we have shown, increasing the data cache size improves NACHO
performance as a larger data cache can store more dirty blocks, effectively increasing the
time between WARs and, therefore, checkpoints. Also, a larger data cache creates smaller
mappings between cache lines and program memory, which gives higher accuracy to
per-line WAR detection. However, as can be seen in Figure 6.8, at least for the considered
benchmarks, the jump in performance between a data cache size of 512 B and 1024 B is
not as significant as the jump from 256 B to 512 B.

Cache Associativity: A higher cache associativity implies that the cache can store more
blocks for a given mapping before it evicts to make space. Similar to cache size, cache
associativity also improves NACHO’s performance as increasing the cache associativity
decreases the probability of a cache collision. However, the increase in performance due
to the increase in associativity is not as significant as it is with the change in size (it even
reduced the performance in the case of SHA). NACHO must consider all cache blocks
associated with a hash, reducing the benefits of higher associativity.

We conclude that, with NACHO, a 2-way set associative data cache is preferred over a
more complicated 4-way cache implementation. The marginal increase in performance
when utilizing a 4-way cache does not outweigh the additional complexity. Hence, during
our evaluation, we configured NACHO with a 2-way set associative data cache4.

6.7. RELATED WORK
We now briefly review related works not listed in Section 6.1 or Chapter 1.

Energy-efficient Program Execution: Other works optimize the energy consumption
of intermittently executing programs. Work of [13] proposes a dynamic voltage and
frequency scaling approach to reduce the cost of program execution by allowing an
intermittent system to dynamically regulate its operating voltage based on the changing

4Another reason is to aid comparisons against PROWL, which only provides hashing functions for a 2-way set
associative data cache.
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energy conditions, thus reducing the cost of program execution.
Static Volatile Memory Mapping: Another approach integrating volatile memory is a

virtual memory manager that automatically maps data to either volatile or non-volatile
memory during compilation [147]. However, only a limited number of accesses can be
made volatile using this approach.

6.8. DISCUSSION AND FUTURE WORK
Integration with Other Systems: NACHO takes a different approach than PROWL [91], Re-
playCache [252], and NvMR [34]. Even though all these systems utilize a data cache, their
cache is not tightly integrated with WAR violation detection. PROWL and ReplayCache do
not use WAR violation detection, and NvMR focuses on renaming NVM accesses to avoid
WAR violations as much as possible and uses a detection mechanism similar to Clank [88].
These systems could incorporate NACHO, profiting from the techniques introduced in
this chapter. This stems from the observation that NACHO focuses on an efficient way
to detect and avoid WAR violations using the data cache instead of requiring a separate
hardware module that introduces complexity and increases latency.

Chip Area and Energy Cost: Because NACHO is implemented as a memory subsystem
in an emulator, it is impossible to gather information regarding the additional area or
energy cost of the module. However, NACHO introduces just two additional bits per cache
line in addition to some novel but small algorithmic changes to update these bits.

Energy Prediction: NACHO is incorruptible through double buffering. However, if the
system can guarantee that enough energy is available to complete the cache writeback
and register checkpoint, double buffering is not needed, halving the number of NVM
writes during a checkpoint.

Peripherals: NACHO does not focus on supporting peripherals or other input/output
operations needed to communicate with sensors and actuators. Rather, we consider this
a separate topic addressed by other research [144, 250, 117] whose techniques could be
integrated into NACHO.

6.9. CONCLUSIONS
We presented NACHO, a system where a data cache is coupled with the intermittent com-
puting paradigm. NACHO, with the cache as a WAR violation detection entity, removes
the need for additional memory tracking. NACHO accomplishes this by introducing two
extra bits per cache line combined with a novel cache controller algorithm. Using these
techniques, NACHO achieves significantly better performance than the state of the art
solutions by reducing both the number of required checkpoints and accesses to slow,
non-volatile memory, while offering support for different data cache architectures.
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7
CONCLUSION

In this thesis, we examined and addressed multiple limitations brought forth by intermit-
tent computing. In particular, we addressed ways to enable and speed up programmer-
friendly intermittent computing. We did this both for traditional embedded systems and
those with non-volatile main memory. In this chapter, we briefly conclude each of the
introduced solutions, reflect on their differences, address the research questions, and
finally look at the future of intermittent computing.

7.1. CONTRIBUTIONS
The contributions presented in this thesis were split into two distinct parts: intermittently
powered systems with volatile and ones with non-volatile main memory. Although the
goal remained the same, improving intermittent computing, both memory architectures
have unique challenges that differentiate them, leading to different approaches and
solutions.

7.1.1. CONTRIBUTIONS TO SYSTEMS WITH VOLATILE MAIN MEMORY
In the first part of this thesis, we tackled challenges related to enabling intermittent
computing on conventional embedded systems.

BATTERY-FREE PROTOTYPING

Before attempting to optimize intermittently powered systems, we first explored the
challenges associated with converting a battery-operated embedded system to work
intermittently and allow for rapid prototyping. To this end, we introduced BFree in
Chapter 2. BFree is a complete intermittent-computing prototyping platform with out-
of-the-box support for a plethora of sensors and actuators through existing libraries.
This massive set of libraries is thanks to it being based upon CircuitPython [6], a Python
interpreter targeting embedded systems. Because the interpreter introduces a layer of
abstraction between the executing code and the hardware, it is ideally suited to support
intermittent computing by modifying the interpreter.

151
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Two major goals with BFree were supporting existing Python code and requiring as
little programmer input as possible. BFree achieves this by starting with a very aggressive
periodic checkpointing scheme. If the programmer chooses, they can dynamically tune
the frequency and strategy of the checkpoints to their liking with a built-in API without
risking corruption. However, the programmer can configure the system in a way that
results in a lack of forward progress. To demonstrate the flexibility of BFree, we created
two battery-free applications. One application measures the temperature and displays
it on an E-Ink display. The other application measures the temperature and humidity,
then applies some processing, and periodically sends the result over LoRa to a constantly-
powered base station.

With BFree, we have shown that enabling programmer-friendly rapid prototyping for
intermittently-powered embedded devices is possible, including the use of peripherals,
all without requiring changes to existing embedded Python programs. Additionally, user
studies have shown that quick prototyping using Python is preferable over task-based
intermittent computing solutions and that many subjects would select BFree to create
their intermittently-powered applications.

DIFFERENTIAL CHECKPOINTS

Although highly convenient for prototyping, BFree lacks the performance required to be
suited for more demanding applications because it saves the complete memory during
each checkpoint. In Chapter 3, we no longer targeted Python and focused on a more
performance-oriented scenario. We introduced MPatch to address the high checkpointing
cost by introducing a differential checkpoint mechanism that only stores the changes
made to the memory since the previous checkpoint.

What makes MPatch unique is that it creates differential checkpoints while being
incorruptible, because it never overwrites content from the previous checkpoint. MPatch
achieves this by creating memory patches that contain the changes in memory when
making a checkpoint. The restoration process can successively apply these patches to
rebuild the memory state completely. We demonstrated MPatch as part of a battery-free
GameBoy emulator named ENGAGE. Emulation is a computationally intensive process.
Applying a checkpoint technique similar to the one introduced in BFree would create
perceivable delays when playing games which would diminish the gaming experience.
MPatch significantly reduces the time it takes to make a checkpoint. Because of this,
MPatch also allows for more frequent checkpoints because the time it takes to create a
checkpoint is directly related to the amount of memory changed between checkpoints.

With MPatch, we have shown that differential checkpoints are possible while remain-
ing incorruptible by utilizing memory patches that do not overwrite the content of the
previous checkpoint.

7.1.2. CONTRIBUTIONS TO SYSTEMS WITH NON-VOLATILE MAIN MEMORY
The second part of the thesis addressed a less common embedded system architecture,
namely one with non-volatile main memory. In such architectures, the non-volatile
memory can be accessed like traditional SRAM in a microcontroller, allowing it to be
used as the system’s main memory. Using non-volatile main memory reduces the size
of checkpoints by not including the main memory. However, not including the main
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memory in the checkpoint also introduces a new problem, as introduced in Chapter 1,
where registers are restored from a checkpoint, but the memory is not, which can lead
to desynchronization of the memory and register state, potentially causing corruption
during re-execution.

REDUCING CHECKPOINTS USING A SEGMENTED STACK AND UNDO-LOGGING

A big problem with existing automated checkpointing solutions was the number of check-
points that must be created during execution to avoid WAR violations (Section 1.2.2).
Each WAR violation must be broken using a checkpoint (i.e., a checkpoint must be placed
between the Read and Write of the WAR) to avoid corrupting the memory during re-
execution. All these checkpoints introduce significant overhead; therefore, other methods
have been introduced that instead rely on logging the changed memory. This way, mem-
ory modifications can be undone as part of the restoration process, removing the need to
break all WAR violations, reducing the number of required checkpoints. However, this
introduces another source of overhead because logging memory access in software is
costly. Additionally, placing checkpoints to break the remaining WAR violations intro-
duces additional complexity for some architectures. In register–memory architectures,
some instructions can directly read from, modify, and write to memory. These instruc-
tions can introduce implicit WAR violations, where the same instruction causes both
the read and the write in a WAR. These WAR violations must be artificially broken up to
resemble a load-store architecture scheme, adding even more overhead.

Despite its limitation, we chose the less well-suited MSP40FR microcontroller that has
instructions that can cause implicit WAR violations [1] because, at the time of publishing,
it was the only commercially available microcontroller with byte-addressable memory—
in the case of the MSP40FR in the form of FRAM. We introduced TICS to overcome these
limitations, targeting the MSP40FR microcontroller series. TICS takes a hybrid approach,
where part of the memory accesses are logged and undone during the restoration process,
and part of the memory is included in the checkpoint. TICS achieves this by introducing
a segmented stack, where the active stack segment is checkpointed together with the reg-
isters and can therefore be freely modified without risking memory corruption. Memory
accesses outside the active stack are logged and undone during restoration. Where the
active stack is in memory depends on the stack pointer and is assumed to be the most
frequently accessed region of memory due to the principle of locality. Because the active
stack is included in a checkpoint, the time it takes to create a checkpoint increases. In
return, TICS avoids many costly log operations and checkpoints to break WAR violations.

With TICS, we have shown that it is possible to enable intermittent computing on
register-memory architectures without requiring instructions to be split to avoid implicit
WARs. We demonstrated that logging-based intermittent computing utilizing recursion
is possible while achieving similar performance compared to the related work. We have
shown that introducing a segmented stack can reduce the overhead introduced by undo
logging while allowing the execution of unmodified C-based programs.

REDUCING CHECKPOINTS USING INSTRUCTION RESCHEDULING

Although TICS avoids checkpoints, it does so by introducing a segmented stack, and
an undo log, both of which need their size to be configured by the programmer. Addi-
tionally, the logging adds uncertainty regarding execution time to the system, which can
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be problematic for some applications (e.g., if they rely on a region of code executing
without a checkpoint or in a predictable amount of time). Finally, because of the runtime
aspect, the performance of TICS heavily depends on the memory access characteristics
of the application. Suppose we target a load-store architecture such as ARM instead of
the MSP40FR. ARM-based processors are a lot more common in the IoT world [27], and
ARM processors [17] offer significant benefits in terms of power consumption compared
to the relatively outdated MSP430FR [226]. In that case, we can apply the alternative
method to reduce the checkpointing overhead—placing a checkpoint to break all WAR
violations. However, this approach, as noted, comes with many mandatory checkpoints.
We developed WARio to reduce the number of these mandatory checkpoints.

WARio uses compiler analysis and transformations to reduce the number of manda-
tory checkpoints. WARio reduces checkpoints while preserving predictability and sim-
plicity, as there is no need for a logging runtime. WARio achieves checkpoint reduction
by introducing multiple optimizations to reschedule memory operations to break as
many WAR violations as possible with a single checkpoint. The most influential opti-
mization is the custom loop unrolling that allows WAR violations from multiple loop
iterations to be rescheduled so they can be broken using a single checkpoint. Additionally,
WARio employs more sophisticated alias analysis techniques to reduce the number of
required checkpoints even further. We have also shown that enabling hitting-set check-
point placement in the back end, in addition to the front end, can further reduce the
number of checkpoints. Finally, we have shown that we can further reduce the number
of checkpoints required when performing stack modifications by temporarily disabling
interrupts.

AVOIDING WAR VIOLATIONS USING A DATA CACHE

Until now, all the methods introduced in this thesis support intermittent computing
primarily through software. Doing so allows us to target existing microcontroller ar-
chitectures without needing specialized microcontroller hardware architectures, which
could limit the adoption of intermittent computing. However, one may argue that the
intermittent computing consistency problem is better suited to be solved in hardware
instead.

We introduced NACHO in Chapter 6 to explore hardware-based support for intermit-
tent computing. NACHO combines concepts from chapters 4 and 5 but realizes some
of their concepts in hardware while also addressing another downside of intermittent
computing, costly non-volatile memory accesses. Even though non-volatile memory
architectures like MRAM, FRAM, and ReRAM are functionally very close to SRAM, the
energy consumption when accessing memory is currently still higher, and the access
speeds are slower. NACHO addresses this problem by introducing a volatile data cache
and addresses the consistency problem by making novel modifications to both the cache
entries (lines) and the cache controller algorithm to detect WAR violations. When using
NACHO, the code can freely modify data in the volatile memory without risking corrup-
tion because the volatile cache is part of the checkpoint, similar to the active stack in
TICS. When memory needs to be evicted from the cache, NACHO uses custom cache line
bits to determine if this could cause a WAR, in which case NACHO creates a checkpoint
first, breaking the WAR violations as done in WARio.
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With NACHO, we have shown that we can merge the detection and avoidance of WAR
violations with the functionality of a data cache. We have demonstrated that avoiding
WAR violations using a data cache is possible by adding two additional bits per cache line
and a novel cache controller algorithm that initiates checkpoints when a potential WAR
violation is detected. By utilizing a volatile data cache in combination with non-volatile
memory, we have demonstrated a significant increase in performance and a reduction in
the number of checkpoints forced by WARs.

7.2. LOOKING BACK

A significant benefit of using software-based approaches to support intermittent comput-
ing is that no dedicated intermittent-computing-specific hardware is required. Even if
the method requires non-volatile main memory such as FRAM, MRAM or ReRAM, these
memories already replace flash in some microcontrollers due to their lower power con-
sumption. Therefore, these non-volatile memories do not need to be included for the sole
purpose of enabling intermittent computing. However, even though our software-based
approaches reduce the checkpointing overhead, a hardware-based solution—utilizing an
architecture especially designed to support intermittent computing—can reduce it even
further.

By introducing a volatile data cache and monitoring memory accesses in hardware,
we combine the best of the previous two approaches in Chapter 6. Memory residing in
the volatile data cache can be modified freely without requiring checkpoints, just like in
the active stack segment in Chapter 4. And just like discussed in Chapter 5, a checkpoint
is inserted whenever a modification to the non-volatile main memory can cause a WAR
violation, although this time dynamically instead of at compile time. NACHO is the most
performant system introduced in this thesis because it uses a modified architecture. How-
ever, as mentioned, the need for a dedicated architecture might result in limited adoption.
Typical microcontrollers are applicable in many different situations and use cases, which
is not true for NACHO or any other intermittent-computing specific processor. For such
solutions to take off, the number of intermittently powered applications deployed in
practice must increase dramatically. However, this dramatic increase may happen shortly,
as intermittent computing is still a relatively new concept and has only recently started to
mature. Until the market is ready, software-based approaches like the ones demonstrated
in this thesis will show the importance and value of intermittent computing without
needing specialized hardware.

7.3. FUTURE WORK AND CHALLENGES

Research into intermittent computing has become more mature over the last few years,
but there are still more improvements and innovations to be made in the domain. Much
research has been dedicated to enabling intermittent computing with as little effort as
possible for application developers to “do their thing.” But even with all that effort, we are
not quite there yet.
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7.3.1. INTERACTING WITH THE OUTSIDE WORLD

Even though computation on intermittently powered platforms is now possible using
checkpoint-based systems like the ones presented in this thesis or task-based methods,
communicating with the outside world remains difficult and understudied. Interacting
with the outside world is complicated because once an action is performed, it can not
be undone. For most existing systems, this is abnormal behavior, so there are often no
mechanisms to handle these situations gracefully. Moreover, it is sometimes unclear
how to handle such a scenario. In the case of radio transmissions, one might want to
retransmit a whole packet or perhaps restart the handshaking procedure altogether. For
different actuators or situations, there might be different desired responses. Because of all
these different approaches, it is nearly impossible for an intermittently powered system
to independently deal with these situations. Therefore, to successfully interact with the
outside world, the constantly powered systems must be made aware of the limitations
associated with intermittently powered systems. Hence, more research is needed into
interaction with constantly-powered systems and the outside world.

7.3.2. HARDWARE SUPPORT

Most of this thesis introduces software-based solutions, but even then, Part Two of this
thesis relies on having non-volatile memory. Although byte-addressable non-volatile
memory like MRAM and FRAM is already present in some microcontrollers, it is far from
the level of adoption needed to allow intermittent computing to catch on as a mainstream
concept. Additionally, systems with these non-volatile technologies do not expect them
to be utilized as the system’s main memory but rather as a location to store the program
and perhaps some logging data instead of using flash. Microcontroller designers must
be aware of intermittent computing to adopt the software-based approaches introduced
in this thesis or any other work based on non-volatile main memory. More importantly,
microcontroller designers must adopt intermittent computing as a possible use case for
their devices by including byte-addressable non-volatile memory on their chips.

In this thesis, we also explored a hardware-based solution to support intermittent
computing in Chapter 6. Hardware support would be ideal, as it removes most of the
checkpointing overhead and even reduces the additional cost of using non-volatile mem-
ory. However, full hardware support is challenging to realize. Intermittent computing is
still a niche, with few existing applications operating in the real world. Therefore, con-
vincing a microcontroller manufacturer to produce chips solely targetting intermittent
computing will likely not make financial sense soon and will only make sense when there
already is widespread adoption. On the other hand, hardware adoption can kickstart the
adoption of intermittent computing if a company is willing to take the risk to produce a
dedicated architecture. However, there is still a long way to go to realize such an archi-
tecture on actual silicon. To this end, we targeted our hardware-based solution toward
the RISC-V architecture, as it is open source and provides the lowest barrier of entry for a
company to produce a microcontroller that supports intermittent computing.

7.3.3. APPLICATIONS AND ADOPTION

As already alluded to, intermittently powered applications are still in their infancy. There
have been more and more applications in research, but real-world applications that are
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truly intermittently operating are still few and far between. Part of the reluctance to adopt
intermittent computing comes from the fact that we are used to constantly powered
systems that can sense or actuate at any time. For a company to let potential users know
that their monitoring system might miss readings in certain scenarios will lead them to
stray away from battery-free systems and opt to use traditional battery-based approaches.
Even though the scenarios where no energy can be harvested are rare, and missing some
sensor reading for a short period often does not affect the overall result, the fact that these
(brief) periods of downtime exist introduces uncertainty that many people and businesses
are unwilling to accept–even if using intermittently powered systems keep batteries out
of landfills and reduces the workload of employees who have to replace batteries. To
this end, research must be targeted toward distributed intermittent computing to aid the
adoption of intermittently powered applications to reduce the effect of downtime. In
addition, more real-world experiments must be performed to demonstrate that this is
either a non-issue or novel techniques that mitigate the effect of intermittent operation
must be researched and introduced.
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