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Review of the Robustness and Applicability of Monocular
Pose Estimation Systems for Relative Navigation with an

Uncooperative Spacecraft

Lorenzo Pasqualetto Cassinisa,∗, Robert Fonoda, Eberhard Gilla

aDelft University of Technology, Kluyverweg 1 2629 HS, Delft, The Netherlands

Abstract

The relative pose estimation of an inactive target by an active servicer spacecraft is

a critical task in the design of current and planned space missions, due to its rele-

vance for close-proximity operations, i.e. the rendezvous with a space debris and/or

in-orbit servicing. Pose estimation systems based solely on a monocular camera

are recently becoming an attractive alternative to systems based on active sensors

or stereo cameras, due to their reduced mass, power consumption and system com-

plexity. In this framework, a review of the robustness and applicability of monocular

systems for the pose estimation of an uncooperative spacecraft is provided. Special

focus is put on the advantages of multispectral monocular systems as well as on

the improved robustness of novel image processing schemes and pose estimation

solvers. The limitations and drawbacks of the validation of current pose estima-

tion schemes with synthetic images are further discussed, together with the critical

trade-offs for the selection of visual-based navigation filters. The state-of-the-art

techniques are analyzed in order to provide an insight into the limitations involved

under adverse illumination and orbit scenarios, high image contrast, background

noise, and low signal-to-noise ratio, which characterize actual space imagery, and

which could jeopardize the image processing algorithms and affect the pose estima-

tion accuracy as well as the navigation filter’s robustness. Specifically, a comparative
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assessment of current solutions is given at different levels of the pose estimation

process, in order to bring a novel and broad perspective as compared to previous

works.
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1. Introduction

In the past years, advancements in the field of Distributed Space Systems (DSS)

have been made to cope with the increasing demand for robust and reliable engi-

neering solutions in challenging scenarios for Guidance, Navigation, and Control

(GNC), such as Formation Flying (FF) missions, In-Orbit Servicing (IOS), and Active5

Debris Removal (ADR).

Previous research in the context of FF has led to robust and reliable real-time

estimation of the position and velocity of a target object with respect to the main

spacecraft. Navigation architectures which combine absolute and relative measure-

ments have been designed and implemented in past and current missions that rely10

either on Radio Frequency (RF), Global Positioning System (GPS) sensors or on cam-

eras. As an example, the PRISMA mission provided the first in-orbit demonstration

of non-GPS RF-based metrology instruments for relative navigation [1], and recent

improvements have been made to use a Visual-Based System (VBS) as the main nav-

igation system in more recent missions [2]. Moreover, additional effort has been15

made in the recent years on IOS and assembly and Debris Removal [3, 4]. For these

close-proximity scenarios, the relative position and orientation, herewith referred

to as pose, of a target spacecraft with respect to a servicer spacecraft, represent a

key information for the navigation system. A proper characterization of the target

spacecraft is essential to determine its status and to plan the final strategy of the ap-20

proaching orbit during autonomous close-proximity operations. Notably, the pose

estimation problem is in this case complicated by the fact that the target satellite is,

especially in the context of ADR, uncooperative, namely retained as non functional

and/or not able to aid the relative navigation. In particular, the additional flexibility

required to deal with a non-functional and/or freely tumbling target has an impact25

on the navigation system. Compared to FF missions or more commonly to coop-

erative close-proximity missions, vision-based sensors should be preferred over RF
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sensors when the satellite is uncooperative. Additionally, the navigation system can-

not rely on known visual markers installed on the target spacecraft, and requires ad-

vanced Image Processing (IP) and pose estimation algorithms in order to cope with30

the lack of knowledge of the initial relative position and attitude. Moreover, if the

target is tumbling at a relatively high rate, additional challenges arise in the tracking

of the relative pose due to the fast relative dynamics.

From a high-level perspective, visual-based sensors can be divided into active

and passive devices, depending on whether they require power to function, i.e. LIght35

Detection And Ranging (LIDAR) sensors and Time-Of-Flight (TOF) cameras, or if

they passively acquire radiation, i.e. monocular and stereo cameras. Spacecraft rel-

ative navigation usually exploit Electro-Optical (EO) sensors such as stereo cameras

[5, 6] and/or a LIDAR sensor [7] in combination with one or more monocular cam-

eras, in order to overcome the partial observability that results from the lack of range40

information in these latter [8]. However, systems based solely on monocular cam-

eras are currently being investigated given the fact that monocular navigation en-

sures rapid pose determination under low power and mass requirements [9], which

is an asset given the constraints in the processing power available for in-flight pose

estimation, while on the other hand, stereo cameras and LIDAR sensors are less flex-45

ible and less convenient in terms of operational range, mass, power consumption

and processing power [10]. The range unobservability problem of monocular cam-

eras can indeed be tackled if a wireframe 3D model of the target is included in the

pose estimation, by matching it with features extracted from the 2D monocular im-

age and solving for the full relative pose, or alternatively if an offline database of50

images of the target is available together with their associated pose label. However,

given the low Signal-To-Noise Ratio (SNR) and the high contrast which characterize

space images, a significant effort is still required to comply with most of the de-

manding requirements for a robust and accurate monocular-based navigation sys-

tem.55

In the presented framework, the aim of this paper is to provide a detailed overview

of the robustness and applicability of state-of-the-art monocular-based pose esti-

mation systems for the relative navigation with an uncooperative target. Recent
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surveys on the topic focused on a comparative assessment of the pose estimation

solvers [11] or provided a broader review on cooperative as well as uncooperative60

targets by including monocular- as well as stereo- and LIDAR-based systems [10].

Furthermore, only monocular cameras operating in the visible spectrum where re-

viewed, and recent estimation methods based on deep learning techniques were

not included. The novelty of this work stands in extending the previous surveys in

mainly three directions. Firstly, focus is put on the applicability and robustness of65

multispectral monocular cameras. Secondly, both IP systems and pose estimation

algorithms are analyzed with particular emphasis on the relative range they were

tested on, the robustness with respect to the image background, and on the syn-

thetic and real images database adopted for their validation. Furthermore, novel

pose estimation schemes are reviewed which are based on Convolutional Neural70

Networks (CNN). Finally, a review is presented for the navigation filters currently

adopted. A distinction is made between known targets, for which mass and inertia

properties as well as a 3D model of the target are known and available, and partially

known targets, for which the uncertainty is constrained to the target center of mass

and moment of inertia, while a 3D model of the target is available. Notably, this dis-75

tinction impacts on the internal dynamics of the navigation filter rather than on the

image processing and pose estimation prior to the filter. The reader is referred to

Opromolla et al. [10] for an overview of the pose estimation of uncooperative un-

known targets, for which neither the target mass and inertia properties nor a 3D

model of the target are available prior to the on-line estimation.80

The paper is organized as follows. Section 2 presents a review of the robustness

and applicability of monocular cameras operating in the visible (VIS), Near Infrared

(NIR) and Mid/Long Wave Infrared (MWIR/LWIR), the latter type of cameras being

also referred to as Thermal Infrared (TIR) cameras. Section 3 contains a detailed re-

view of IP algorithms as well as pose estimation algorithms which have been devel-85

oped for uncooperative targets. Section 4 provides a review of visual-based naviga-

tion systems with focus on the navigation filters currently adopted. Finally, Section

5 lists the main conclusions and recommendations.
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2. Review of Monocular EO Sensors

One of the first applications of VIS cameras for the pose estimation of an unco-90

operative target is represented by the Relative Navigation Sensor which flew as part

of the Hubble Space Telescope (HST) Servicing Mission 4 (SM4). The camera suite

consisted of three monocular cameras operating at long (28 m - 260 m), medium

(6 m - 40 m) and short (2 m - 5.5 m) range [12] to aid the estimation of pose of the

target telescope, assumed to be unknown. Subsequently, inspired by the promising95

applications of existing visual-based systems for present and future FF missions and

in-orbit servicing missions, many authors continued with the investigation of the

feasibility of VIS cameras for the pose estimation of uncooperative spacecraft. Du

et al. [13] proposed a scheme which combines a singular VIS camera, in the closing

(15 m - 300 m) and mid-range (5 m - 15 m) phases, with two collaborative monocular100

VIS cameras in the final approach phase (1 m - 5 m), in order to increase the camera

FoV and aid the feature extraction within the IP system. The cameras were used to

estimate the pose of large non-cooperative satellites in Geostationary Earth Orbit

(GEO). Liu and Hu [14] evaluated the performance of a pose estimation method for

cylinder-shaped spacecraft which makes use of single images from a monocular VIS105

camera, whereas D’Amico et al. [15], Sharma and D’Amico [16] and Sharma et al.

[9, 17] used images collected by the monocular VIS camera onboard the PRISMA

mission to investigate the robustness of several pose estimation schemes with re-

spect to image noise, illumination conditions and Earth in the background geome-

tries. Furthermore, Schnitzer et al. [18] included two monocular VIS cameras in the110

sensors suite adopted in their on-ground testing of image-based non-cooperative

rendezvous navigation, and Pesce et al. [19] adopted a single passive monocular

camera to reconstruct the pose of an uncooperative, known target. Despite the

differences in the experimental setup, as well as in the pose estimation schemes, a

common feature that was found for VIS cameras, even for cooperative pose estima-115

tion, is their strong dependency on the Solar or Earth illumination, which becomes

more severe when the target does not have any fiducial marker.

On the other hand, TIR cameras are infrared cameras sensitive to the mid- and
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far-infrared spectral ranges (3 µm - 14 µm). Due to size, complexity, and power con-

sumption of cryogenically-cooled infrared sensors, the current state-of-the-art on120

TIR cameras for spacecraft relative navigation relies on uncooled microbolometers

operating in the range 8 µm - 14 µm, as they can provide sufficient sensitivity at

low cost [20]. This type of sensor was flight-tested as part of the LIRIS demonstrator

during the ATV5 Mission [21] as well as part of the Raven ISS Hosted Payload [22],

and it has been used in [23] as well as in [24] and in [18] to assess the robustness of125

a TIR-based navigation system for ADR and to validate a pose estimation method

based on feature extraction, respectively. Also, Shi et al. [25, 26, 27] used synthetic

and real TIR camera images to validate a model-based and an appearance-based

pose estimation methods, respectively. Notably, the TIR camera in [22] was fused

with a visual camera and a flash LIDAR in order to improve the overall sensors per-130

formance.

When compared to VIS cameras, TIR cameras do not depend on external light

sources but rather on the emitted thermal radiation of the target spacecraft, thus

avoiding any saturation due to Sun presence in the camera FoV or Earth in the back-

ground. This makes the sensor more robust against the different illumination con-135

ditions, typical of an ADR scenario [28]. On the other hand, their image resolution

is usually much lower than VIS camera. As reported in [23], the amount of blur in

the image can significantly affect the performance of feature detection algorithms

within the IP system. Also, the results of the tests with real TIR camera images in

[18], in which a scaled model of the Envisat was heated through resistors mounted140

on the rear of the plates and a Halogen lamp was used for the illumination, demon-

strated that real TIR images clearly differ from synthetic images. More in particular,

Barrel distorsion was found to be more severe than the one modelled in the syn-

thetic dataset, and the edges of the spacecraft silhouette were found more faded in

the real images compared to the synthetic ones. Furthermore, the different thermal145

dynamics encountered during an ADR mission due to varying temperature profile

of the target over one orbit, as well as the different thermal surface coatings of the

target, introduce some challenges in the imaging. As an example, the performance

of the method proposed in [25] cannot be evaluated due to the too optimistic as-
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Table 1: Advantages and disadvantages of TIR/NIR/VIS cameras for space applications, based on the

reviewed papers. Here, the characteristics of VIS cameras are referred to as ’Nominal’ for clarity of the

comparison.

Saturation due

to the Sun

Robustness

w.r.t. Eclipse

Robustness w.r.t. Earth

in background Image quality

Robustness w.r.t

thermal dynamics

VIS Nominal Nominal Nominal Nominal Nominal

TIR Superior Superior Superior Inferior Inferior

NIR Nominal Superior Nominal Nominal Inferior

sumptions of the thermal environment of the target. Furthermore, as stated in [27],150

the resolution of TIR images sensibly affects the accuracy of the pose determination

in the training phase of a non-model based method.

Finally, NIR cameras are cameras which operate in the spectral range from 780 to

2500 nm. As such, current CMOS/CCD technologies can be adopted to sense the in-

coming NIR radiation, and a superior image quality compared to TIR microbolome-155

ters can be achieved. To the best of the authors’ knowledge, the only pose estima-

tion scheme so far tested with NIR images is based on a model-based IP in which the

camera suite combines VIS/NIR/TIR images to increase the robustness of the pose

estimation 1. This work was part of a Technology Research Programme (TRP) study,

sponsored by the European Space Agency (ESA) and called Multi-spectral Sensing160

for Relative Navigation (MSRN), which focused on the design of a multispectral cam-

era that can be used for navigation purposes in a wide variety of scenarios. This

activity focused on increasing the accuracy and robustness of normal multispec-

tral cameras by combining a Visual-Near Infra-Red (VNIR) spectral channel to a TIR

spectral channel [29]. In this way, the benefits of each single camera type, listed165

in Table 1, can be combined to return a superior performance of the camera suite.

Figure 1 illustrates the different coupling schemes proposed. Data fusion both at

1https://www.esa.int/Our_Activities/Space_Engineering_Technology/Shaping_the_

Future/Multispectral_Sensing_for_Relative_Navigation
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image and image processing levels was investigated in order to comply with the re-

quirements of a robust and computationally fast IP prior to the navigation filter.

170

The current state of the art on monocular cameras is further reviewed by focus-

ing on the applicability of the proposed camera suites for the desired operational

range, considering the requirement to have a robust pose estimation of an uncoop-

erative target from several hundreds of meters down to docking, which characterises

most of the close-proximity rendezvous missions. Table 2 lists some relevant char-175

acteristics of the camera suites and reports the tested range of the pose estimation

simulations. Naasz et al. [12] and Cavrois et al. [21] tested monocular cameras down

to 0.5 meters from the target and down to actual docking, respectively. However,

the challenges of feature extraction within the IP at close range were not investi-

gated. As an example, with a FoV of around 23 degrees and a distance from the180

target of around 0.5 meters, the IP would need to extract features from a portion

of the spacecraft as small as a 0.2 m-by-0.2 m rectangle, which can be challenging

if the satellite is relatively large. On the other hand, the claim in [13] that collabo-

rative cameras are strictly required for the close approach phase relates to the fact

that their selected IP scheme is based on the extraction of large rectangular features185

of large communication GEO satellites. Other authors investigated several different

pose estimation schemes which rely on more flexible feature extractions. However,

their pose estimation systems were not tested for relative ranges below 5 meters. It

can be concluded that some effort is still required to assess whether a single monoc-

ular camera can be used for close-proximity pose estimation of an uncooperative190

target or if collaborative cameras are needed. As a general remark, it should in prin-

ciple be possible to rely on a single monocular camera when the target is fully in

the camera FoV, and switch to the feature tracking of the desired docking port for

closer ranges, as performed in [18]. Furthermore, several orbit scenarios should be

recreated in future tests in order to investigate the robustness and applicability of195

each type of monocular camera as well as a combined VNIR/TIR camera suite for

multispectral imaging. The scheme in Figure 1, as well as the one proposed in [22]

provided that no LIDAR systems are considered, shall be investigated. Finally, the
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Figure 1: Illustration of the cameras coupling schemes investigated during ESA’s MSRN programme. The

selected third scheme combines the advantages of relying on data fusion prior to the IP (scheme 1) with

the benefits of having separate channels, which improves the system robustness in case of failure in either

the VNIR or in the TIR band (scheme 2).

infrared characteristics of the target spacecraft should be fully understood in order

to maximize the performance of the NIR/TIR cameras. Although Yilmaz et al. [30]200

proposed an infrared signature estimation method capable of characterizing the dy-

namical thermal behaviour of space debris, some effort is still required to assess its

validity and to confirm whether an exact infrared appearance model of the target is

needed for a robust relative navigation solution which relies on IR images.

3. Monocular Pose Estimation205

Monocular pose estimation consists in estimating the relative pose of a target

spacecraft with respect to the servicer spacecraft by only using 2D images, either

taken by a monocular camera or fused from more monocular cameras (Figure 1),

as measurements. In other words, monocular pose estimation is associated to the

computation of pseudomeasurements of the relative pose from the input image, prior210

to the navigation filter. From a high level perspective, the architecture of the pose

estimation process usually involves an acquisition step, or initialization, in which

there is no a-priori information on the target pose, and a tracking step, in which

12



Table 2: Characteristics of the camera suites adopted in different pose estimation schemes and their

tested range.

Ref. Camera Suite Tested range FoV [deg]

[12] 3 monocular VIS cameras 150 m - 1 m 11/23/23

[13]
monocular + collaborative

VIS cameras
300 m - 1 m 55

[14] Monocular VIS camera 40 m - 5 m -

[15, 16, 9, 17] Monocular VIS camera 13 m - 8 m 22.3 - 16.8

[21] 3 Monocular VIS/TIR cameras
70 km - 8 km

3.5 km - docking
60x45

[25, 27, 26] Monocular TIR camera ∼5 m 40

- Monocular VNIR/TIR camera1 far range - 7 m
40x40 VNIR

40x30 TIR

[23] Monocular TIR camera - 30

[18] 2 Monocular VIS/TIR cameras 100 m - docking -

[24] Monocular TIR camera 70 m - 21 m -

[19] Monocular VIS camera < 30 m -

13



knowledge from the previous estimates is used when new images of the target are

acquired. In both cases, estimation methods can be divided into model-based and215

non-model based. Model-based pose estimation makes use of a simplified wire-

frame 3D model of the target and it is described in detail in Section 3.1. On the other

hand, non-model based methods estimate the spacecraft pose without using an ex-

isting 3D model of the target. In this review, appearance-based and feature-based

methods are considered. In appearance-based methods, the pose estimation is per-220

formed by comparing the 2D image with a pre-stored database of images and by

minimizing the matching error between the in-flight image and each of the images

in the database. As such, no feature extraction is required and thus no IP system is

needed. Appearance-based methods are reviewed in Section 3.2.

In addition to the above-mentioned methods, CNNs are recently becoming a225

promising solution for the pose initialization of a target spacecraft. In a CNN-based

method, the monocular image is fed into a pre-trained neural network, which solves

a regression and/or a classification problem to return the predicted pose. Depend-

ing on the selected architecture adopted to solve for the relative pose, these methods

can either rely on a wireframe 3D model of the target spacecraft or solely on the 2D230

images used in the training, and hence they can either be referred to as non-model

based or model-based. Figure 2 illustrates a high level representation of the monoc-

ular pose estimation methods reviewed in this paper. Feature-based methods are

included beside the other pose estimation methods to underline that the features

extracted by the IP algorithms could also represent input measurements for the nav-235

igation filter.

3.1. Model-based Pose Estimation

Model-based monocular pose estimation methods receive as input a 2D image

and match it with an existing wireframe 3D model of the target spacecraft to esti-

mate the pose of such target with respect to the servicer camera by extracting some240

features from the 2D image (IP system, described in Section 3.1.1) and by match-

ing these features to the corresponding elements of the 3D model. Then, the rela-

tive pose is obtained by solving the Perspective-n-Points (PnP) Problem described

14



Figure 2: High level architecture of monocular pose estimation methods reviewed in this paper.

in Section 3.1.2. Interested readers are referred to [10] for a more detailed overview

on template matching as an alternative to solving the PnP problem.245

3.1.1. IP Algorithms

The IP system is a fundamental step for feature-based pose estimation, and sev-

eral methods exist in literature to extract and detect target features from a monocu-

lar 2D image, based on the specific application. From a high-level perspective, the

target features can be divided into keypoints (or interest points), corners, edges and250

depth maps. Table 3 provides a list of the IP schemes reviewed in this Section.

Naasz et al. [12] accomodated two different IP within their Relative Navigation

Sensor (RNS) system: a Sobel edge-enhancing image filter to process a 10-bit cam-

era image and perform the edge extraction, also adopted in [22], and a digital corre-

lation image processing technique which computed the position of certain features255

of the target spacecraft. These two methods were used separately by different pose

estimation systems which were tested during the HST-SM4. Several realistic light-

15



Table 3: Characteristics of state-of-the-art IP algorithms. Here, NA refers to the fact that no robustness

test could be found in the reference. Notice that no information on the robustness is reported for TIR-

based systems, given the negligible Earth’s emittance in the TIR band.

Ref. IP Tested Range

Robust w.r.t.

Earth in the background

Offline Database

required

[12]
Digital corr./

Sobel
150 m - 1 m NA No

[13] Canny + HT 300 m - 1 m NA No

[14] Ellipses extraction 40 m - 5 m NA No

[15] LPF + Canny + HT 13 m- 8 m NA No

[25] RCM + HCD ∼5m - No

[22] Sobel NA NA No

[26]
CLAHE + SIFT/

BRIEF + RANSAC
- - Yes

[24] Canny 100 m - 21 m - Yes

[31] FREAK + EDL NA NA Yes

[9] WGE + S/HT 13 m - 8 m
Robust when Earth’s horizon

is not in the FoV
No

[19] GFTT < 30 m NA No

[32]
Prewitt + gradient filter

ST+HT+LSD
45 m - 5 m

Robustness proven

(including Earth’s horizon in FoV)
No
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ing conditions were recreated to validate the robustness of the IP algorithms with

respect to illumination. Du et al. [13] included a median filter before the other steps

of the IP to cope with image noise and smooth the data. The Canny edge detection260

algorithm was selected to detect edges in the image, and a subsequent Hough trans-

form (HT) [33] was used to extract the detected lines. Several tests were conducted

to assess the robustness of the IP with respect to image noise at different variance

levels. However, a limitation of their method was that it focused on the extraction

of rectangular structures on a large target spacecraft. Liu and Hu [14] presented a265

robust method based on ellipses extraction for cylinder-shaped spacecraft, but its

application is not feasible for the pose estimation of a spacecraft of generic shape.

D’Amico et al. [15] used the same feature detection and extraction methods in

[13] in combination with a Low-Pass Filter (LPF). Its method was tested with the

PRISMA image dataset and proved to be flexible with respect to the spacecraft shape,270

but it lacked of robustness to illumination and background conditions. Further-

more, it did not prove to be robust with respect to the spacecraft symmetry. Shi

et al. [25] selected the Roberts Cross Method (RCM) in combination with the Har-

ris Corner Detection (HCD) method to improve the computational time of the IP.

However, the limitations of the RCM in producing less edges than the Canny’s were275

not assessed. Shi et al. [26] implemented a Contrast Limited Adaptive Histogram

Equalization (CLAHE) to clean and restore blurred TIR images. A Scale Invariant

Feature Transform (SIFT) [34], in combination with the Binary Robust Independent

Elementary Features (BRIEF) method [35], was used to extract the target interest

points from the denoised image. The RANdom SAmple Consensus (RANSAC) [36]280

algorithm was further included in the IP scheme in order to quickly extract image

features and descriptors by using some internally pre-stored test image features for

feature matching.

Yilmaz et al. [37] performed an evaluation of the invariance of edge and corner

detectors applied to TIR images. The Good Feature to Track (GFTT), Speeded Up Ro-285

bust Features (SURF) and Phase Congruency Point (PC-P) edge algorithms, as well

as edge detectors such as the Sobel, were traded-off based on their robustness under

different thermal conditions representative of the dynamic space thermal environ-
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ment. Their results showed that thermal variations can cause significant variation in

the thermal signatures, and thus challenge the robustness of pose estimation meth-290

ods based on feature extraction. Rondao et al. [38] also investigated the performance

of several keypoint detectors applied to VIS/TIR synthetic images. In their work, the

combination of the Fast-Hessian feature detector with the Binary Robust Invariant

Scalable Keypoints (BRISK) descriptor proved to have comparable performance in

both spectra, resulting in a promising option when reduced memory usage repre-295

sent a key requirement.

Gansmann et al. [24] adopted the Canny algorithm to extract edges from TIR im-

ages and from a 2D rendered representation of the target, obtained by projecting a

3D model. The variation in brightness and the variation in depth were used to ex-

tract the edges from the TIR images and from the render, respectively. Furthermore,300

Rondao and Aouf [31] adopted a Fast Retina Keypoint (FREAK) descriptor in com-

bination with the Edge Drawing Lines (EDL) detector to extract keypoints, corners,

and edges to find the correspondence between features. In their method, a depth

mapping was further performed which aided the features extraction. The limitation

of these two latter methods is that they require an offline database for image match-305

ing.

More recently, Sharma et al. [9] proposed a novel technique to eliminate the back-

ground of images, called Weak Gradient Elimination (WGE). After using a Gauss

filter to blur the original image and aid the feature extraction, the image gradient

intensities were computed, and the WGE was used to threshold the weak gradient310

intensities corresponding to the Earth in the background. In the next step, the Sobel

algorithm and the Hough Transform (S/HT) were used to extract and detect fea-

tures. Notably, the WGE technique can also be used to identify a rectangular region

of interest (ROI) in the image which can allow an automated selection of the hyper-

parameters required by the HT. In this way, the hyperparameters are automatically315

scaled based on the varying distance from the target. By creating two parallel pro-

cessing flows, the method proved to be able to extract main body features as well

as particular structures such as antennas, and thus to solve the symmetry ambi-

guity which characterized other IP schemes. Furthermore, the implementation of
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(a) (b) (c)

Figure 3: Examples of feature synthesis schemes. (a) [31], (b) [9], (c) [32].

the WGE method returned a much higher robustness with respect to Earth in the320

background compared to the other methods. However, scenarios in which the Earth

horizon is present in the background represented a challenge for the IP due to an

improper ROI detection.

Alternatively, Capuano et al. [32] introduced a new IP scheme in which three

different parallel processing streams, which use the Shi-Tommasi (ST) corners de-325

tector, the HT, and the Line Segment Detector (LSD), are exploited in order to fil-

ter three sets of points and improve the robustness of the feature detection. This

was performed in order to overcome the different drawbacks of each single method.

Feature fusion was then used to synthesise the detected points into polylines which

resemble parts of the spacecraft body. By including a background removal step sim-330

ilar to the WGE in [9], which makes use of a Prewitt operator in combination with

a gradient filter, the authors could also demonstrate the robustness of their IP with

respect to the Earth in the background. Furthermore, the scenarios with the Earth

horizon were tackled by tuning the threshold of gradient filter to a more selective

value. The last three feature extraction schemes [31, 9, 32], which combine several335

keypoints, edges and corners detectors, are depicted in Figure 3.

Finally, Pasqualetto et al. [39] investigated the potentials of using a hourglass

neural network [40] to extract the corners of a target spacecraft prior to the pose es-

timation. In this method, the output of neural network is a set of so called heatmaps

around the features used in the offline training. The coordinates of each heatmap’s340
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peak intensity characterize the predicted feature location, with the intensity indicat-

ing the confidence of locating the corresponding keypoint at this position. Despite a

lack of actual space imagery to test the network performance, the proposed method

proved to be capable of detecting features which are either not visible due to adverse

illumination or occulted by other parts of the target, when trained and tested with345

synthetic images. Due to these characteristics, the proposed method could emerge

as a promising alternative to state-of-the-art IP algorithms. However, the robustness

of the features extraction with respect to the Earth in the background was not fully

proven, and the impact of an inaccurate detection on the pose estimation accuracy

was not assessed.350

As a general remark, IP algorithms based on keypoint features detectors present

some advantages compared to algorithms based on edge and corner detectors, given

their invariance to perspective, scale and illumination changes [34, 41]. However,

they could still be sensitive to extreme illumination scenarios. Moreover, their ro-355

bustness with respect to outliers, which would be present when the Earth is in the

image background, has not been fully proved yet in the framework of relative pose

estimation in space. On the other hand, the recent advancements in the IP algo-

rithms based on corners/edges detection showed an improvement in the robust-

ness of such methods with respect to the Earth in the background [9]. Furthermore,360

edges and corners detectors are retained to be more robust than features detectors

in case of partial occlusion of the target, especially during tracking [42]. Future

works should focus on the assessment of the robustness of keypoint features de-

tectors to outliers in space imagery, as well as in combining such IP methods with

edges/corners detectors in order to benefit from the advantages in both algorithms,365

similarly to what has been proposed in [31]. Moreover, more investigation should be

performed to assess the performance of feature detection methods based on neu-

ral networks, especially given their robustness with respect to adverse illumination

conditions and partial occultation of the target.
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Figure 4: Schematic representation of the pose estimation problem using a monocular image [9].

3.1.2. Pose Estimation Methods370

The features detected by the IP algorithms described in Section 3.1.1 can be di-

rectly used as measurements in a navigation filter to solve for the pose of the target

spacecraft. This is usually performed when the extracted features are represented by

points. However, pseudomeasurements of the relative pose are usually computed

from the extracted features and a wireframe 3D model of the target by solving a pose375

initialization problem. Referring to Figure 4, the pose initialization problem consists

in determining the position of the target’s centre of mass tC and its orientation with

respect to the camera frame C, represented by the rotation matrix RC
B . The 3D/2D

true perspective equations,

rC = RC
B qB + tC , (1)
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p = (ui , vi ) =
(

xC

zC
fx +Cx ,

yC

zC
fy +Cy

)
, (2)

relate the unknown pose with the corresponding point p in the image plane. Here,380

qB is a point in the 3D model, expressed in the body-frame coordinate system B,

whereas fx and fy denote the focal lengths of the camera and (Cx ,Cy ) are the princi-

pal points of the image. Since solving the PnP problem requires an image processing

suite that extracts target features from a given image, Eqn. 1 and 2 do not have to be

solved for non-model based estimators such as CNN-based or appearance-based.385

Several methods exist in the literature to solve for the initial pose of an uncoop-

erative target. Based on two different surveys by Opromolla et al. [10] and Sharma

and D’Amico [11], the most commonly used solvers can be identified as the PosIt

[43] and Coplanar PosIt [44], the SoftPOSIT [45], the EPnP [46] and the Newton390

Raphson Method (NRM). In [31], the EPnP solver was used to initialize the relative

pose, which was further refined by means of an M-Estimator minimization to in-

crease the robustness with respect to erroneous correspondences between features.

In their method, the Rodrigues parameters were used to represent the relative atti-

tude in order to handle a 6×1 pose vector. In a recent effort, Sharma et al. [9] further395

proved that the EPnP method has the highest success rate and offers a superior per-

formance in terms of both pose accuracy and runtime when compared with other

state-of-the-art PnP solvers. In their estimation scheme, the NRM was also used af-

ter the EPnP to refine the final pose estimation. The idea behind such PnP solver

switch is that, since EPnP has the lowest runtime, it can be used when large num-400

ber of correspondence hypotheses need to be validated within the first iterations.

Once the search space for correct feature correspondence has been reduced, NRM

can be used due to its better accuracy in the presence of outliers and noise [11]. Fur-

thermore, Pesce et al. [19] proposed a novel pose estimation scheme in which the

RANSAC algorithm is used in combination with the Principal Component Analy-405

sis (PCA) to generate subsets of image-model correspondences, so called consensus

sets. For this purpose, the features extracted with the GFTT algorithm were com-

22



pared with an off-line feature point classification of a simplified 3D model. Once

the correspondences are set, the EPnP is used to solve for the pose initialization.

The SoftPosIt algorithm was further included to solve for the pose tracking. Due to410

the capability to detect particular spacecraft components, their estimation scheme

proved to be robust with respect to spacecraft symmetry.

Aside from the listed solvers adopted to solve the pose initialization problem,

other authors [12, 22] implemented the technique proposed in [47] and the ULTOR

engine [48] in their Goddard Natural Feature Image Recognition (GNFIR) and UL-415

TOR algorithms, respectively, for the pose tracking. As opposed to PnP solvers, this

technique makes use of the Lie group SO(3) to find and measure the distance be-

tween a rendered model of the target and the matching nearby edges in the image.

In their works, the GNFIR algorithm was adopted to perform edge tracking once the

pose initialization is acquired, whereas ULTOR could be used for both pose initial-420

ization and tracking. Additionally, Gansmann et al. [24] assumed the initialization

to be known and implemented a tracking method based on [47] which uses an It-

eratively Re-Weighted Least Squares (IRLS) to get an a-posteriori pose via the inter-

frame motion. Their algorithm minimized the squared residuals of model template

edges, extracted from a 3D rendering of the target, to image query edges, extracted425

from each TIR image. Their tracking algorithm was tested for the distance of 100m

until 21m and proved to return centimetric and sub-degree accuracy for the rela-

tive pose. However, convergence to local minima associated to a wrong pose rep-

resented an issue with the algorithm. A proposed solution to this problem was to

perform a re-initialization of the pose estimation with an acquisition algorithm, as a430

sudden jump in the estimated pose would be easily detected due to the smoothness

of the relative motion.

The comparative assessment of the different PnP solvers in [11] is reported in

Table 4. Table 5 lists some characteristics of the different pose estimation solvers435

in relation to the IP methods described in Section 3.1.1. From the comparison, it

can be concluded that the pose estimation scheme proposed in [9] is a good can-

didate for the pose initialization, given the robustness of its IP system and the fact
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Table 4: Comparative assessment results from simulations as a qualitative decision matrix in [11]. Here,

PosIt+ refers to a solver that can switch between Coplanar PosIt and PosIt.

Solver Number of Features Noise Outliers Distance to Camera

PosIt Nominal Superior Inferior Nominal

EPnP Superior Par Inferior Inferior

PosIt+ Nominal Superior Inferior Nominal

NRM Superior Superior Nominal Nominal

Figure 5: Novel pose determination subsystem proposed in [9].

that it has been tested for several illumination conditions as well as with the Earth

in the background. The proposed system is in fact robust to the background of the440

images due to the WGE, it requires no a-priori knowledge of the target spacecraft’s

pose, and it is computationally efficient. In particular, this architecture shows im-

provements with respect to previous IP and pose estimation techniques [15, 11, 10].

Figure 5 illustrates the main steps of the pose determination subsystem. However,

some remarks shall be made about the images used for the validation of the pose445

estimation schemes. As reported in Table 4, most of the pose estimation schemes

were tested with synthetic images in which the different reflectivities of spacecraft

materials were not included. As such, the robustness of the algorithms with respect

to realistic illumination conditions could not be assessed. Also, the limited amount

of realistic space images available in [15], [24] and [9] could not represent all the450

challenging orbital scenarios for which a specific camera-target-Sun-Earth geome-

try would affect the pose estimation accuracy.

Following the recommendations in [18], real VIS/TIR/NIR images should be ac-
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Table 5: Characteristics of state-of-the-art model-based pose estimation schemes. Here, NA refers to the

fact that no robustness tests could be found in the reference.

Ref. IP

Pose Initialization/

Tracking Tested Range

Robust w.r.t.

symmetry

Validation

Database

[12]
Digital corr./

Sobel

ULTOR/

GNFIR
150 m - 1 m NA

Flight spare cameras/

Lab pictures

[13] Canny + HT Analytical 300 m - 1 m NA

Synthetic images

Realistic camera model

No materials’ reflectivity

[14]
Ellipses

extraction
NRM 40 m - 5 m Yes

Synthetic images

Ideal camera model

No materials’ reflectivity

[15]
LPF + Canny +

HT

Perceptual Groups

+ NRM
13 m- 8 m No

Actual space imagery

(PRISMA)

[25] RCM + HCD SoftPosIt ∼5m NA

Synthetic images

Camera model not given

No materials’ reflectivity

[22] Sobel GNFIR NA - -

[26]

CLAHE +

SIFT/BRIEF +

RANSAC

EPnP/SoftPosit - NA

Synthetic and lab TIR images

Camera model not given

No materials’ reflectivity

[24] Canny IRLS 100 m - 21 m NA
Actual space imagery

(ISS)

[31] FREAK + EDL
EPnP/RANSAC +

M-estimator
NA Yes

Synthetic images

Camera model not given

Materials’ reflectivity included

[9] WGE + S/HT EPnP + NRM 13 m - 8 m Yes
Actual space imagery

(PRISMA)

[19] GFTT
RANSAC + PCA +

EPnP/SoftPosIt
< 30 m Yes -
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counted for early in an activity to avoid validating navigation algorithms with syn-

thetic images which considerably differ from the ones taken in orbit. In the future,455

image acquisition tests should be conducted on ground with real cameras and S/C

mock-ups, in order to solve both the low representativeness of synthetic images

and the limited amount of actual space imagery. Furthermore, since the genera-

tion of representative TIR images in a laboratory environment requires the space-

craft model to have thermal signatures which are usually difficult to reproduce, an460

additional effort will be required in order to account for thermal effects as well as to

hide the image background. It is worth mentioning that, due to the fast variation in

the space thermal environment, a model-based method could be unfeasible when

using TIR images. As anticipated in [37] and [23], the different thermal inertia of

spacecraft materials could result in a mismatch between the off-line TIR model and465

the time-varying extracted features and could thus lead to inaccurate relative pose

estimates. An idea could be to adopt a model-based pose estimation which uses im-

ages from a VIS camera in combination with a non-model based method which uses

images from a TIR camera. In this way, the limited observability which results from

the TIR-based estimation could be solved, and both the robustness and the accuracy470

of the pose estimation improved.

3.2. Appearance-based Pose Estimation

Compared to feature-based methods, in which the IP is used to extract features

such as corners and edges, only the spacecraft appearance is used in appearance-

based methods. Depending on whether a 3D model of the target spacecraft is used475

or not, appearance-based methods can be classified as model-based and non-model

based, respectively. Opromolla et al. [49] proposed a model-based pose framework

for spacecraft pose estimation. However, the framework was designed to process

3D point clouds and thus its application was constrained to LIDARs or stereovision

systems. To the best of the author’s knowledge, the only appearance-based method480

for spacecraft pose estimation based on a monocular camera was proposed by Shi

et al. [27], and it is based on PCA.

The pose matching algorithm is separated into an off-line training portion and
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a testing portion that computes the pose of the spacecraft in-flight. The PCA algo-

rithm matches the object from the camera image (test image) to a stored matrix of485

images that has been transformed to its eigenspaces during the training phase. The

advantage of PCA stands in the fact that the dimension of the training dataset can

be drastically reduced by considering only the principal eigenvectors of the training

data matrix. However, the test image needs to be compared to each image of the

training dataset at each pose solution, which still requires a considerable computa-490

tional effort if the number of training frames is large. In [27], the validation of the

algorithm was performed with M = 12.660 frames as a result of a trade-off between

the computational time and the estimation accuracy. The resulting mean search

time was found to be approximately 62.8 ms, which is relatively low for uncoopera-

tive pose estimation.495

However, the PCA algorithm performance was proved to degrade with the image

noise, which is unwanted due to the noisyness of actual space imagery. Further-

more, one of the assumptions for the PCA is that the object must be completely

visible, which might not be the case if part of the spacecraft falls outside the camera

FoV. Finally, as the validation was not performed with the Earth in the background,500

it is unclear whether the pose estimation is robust against other objects present in

the camera image, as one of the main requirements of PCA is that each image shall

contain a single, non-occulted object.

3.3. CNN-based Pose Estimation

From a high-level perspective, CNNs are neural networks built from multiple505

dual-layers of convolutional masks which were inspired by the human visual cor-

tex. Given their capability of classifying images, their implementation in monocu-

lar pose estimation has become attractive in recent years [50]. A pose estimation

architecture based on CNNs does not distinguish between an IP subsystem and a

pose estimation subsystem, but rather between an off-line training phase and an510

in-flight test phase. The advantage of CNNs over feature-based algorithms is an in-

crease in the robustness for adverse illumination condition, as well as a reduction in

the computational complexity. However, compared to terrestrial applications, space
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imagery are characterized by high contrast, low signal-to-noise-ratio and low sensor

resolution. As such, their accuracy is expected to be lower. Usually, due to the lack515

of a large synthetic dataset of space images, which is usually required to fully train

a CNN, a network which has been pretrained on a dataset of terrestrial images is

used, and transfer learning is applied to train only a limited number of layers of the

convolutional network.

A CNN architecture for pose estimation for uncooperative spacecraft has been520

proposed in [17]. Synthetic datasets of up to 125.000 space images were created, for

which a 3D texture model of the target spacecraft was required. The architecture of

the AlexNet network [51] was then adopted as the baseline architecture, and a clas-

sification problem was solved to return the relative pose of the target spacecraft as-

sociated to each image. Transfer learning was used to train the last fully-connected525

layers using a subset of up to 75.000 images from the synthetic datasets (Figure 6),

while the first layers were trained with the ImageNet dataset. This was performed

by means of transfer learning on the last three fully-connected layers. Shi et al. [52]

used two state-of-the-art CNNs, namely Inception-ResNet-V2 [53] and ResNet-101

[54], in combination with an object detection engine [55] to improve their reliabil-530

ity. Synthetic images generated in the 3DS-Max software were used in combination

with real images to train and test the two networks, specifically 400 and 100 images,

of which 8% were real images, were used for training and testing the networks, re-

spectively. Transfer learning was also performed to adapt the pre-trained networks

to the pose classification of a target spacecraft.535

In a recent effort, Sharma and D’Amico [56] proposed a novel network based on

five convolutional layers and three separate branches (Figure 7). In the first branch,

the Region Proposal Network (RPN) proposed in [55] detects a 2D bounding box

around the target spacecraft. In the other two branches, three fully-connected lay-

ers are used to solve a classification and a regression problem, respectively, and to540

output the relative attitude of the target spacecraft. Then, the bounding box infor-

mation is used together with the attitude information to solve for the relative posi-

tion by minimizing the distance between the corners of the bounding box and the

extremal points of a wireframe 3D model of the target. The training was performed

28



Figure 6: Illustration of the AlexNet architecture adopted in [17].

Figure 7: Illustration of the CNN architecture adopted in [56].

with 12.000 synthetic images of the TANGO spacecraft, whereas two test sets were545

created with 3.000 synthetic images and 300 actual camera images, respectively. Fur-

thermore, half of the synthetic images included the Earth in the background.

The CNN-based algorithm in [17] has been extensively tested against the num-

ber of synthetic images used in the training, different levels of image noise and the

amount of displacement of the target from the center of the image plane, which has550

not been tested in the validation of other pose estimation algorithms. However, sev-

eral improvements are proposed in the paper. First of all, the CNN should be trained

with actual space imagery. This can be clearly seen in Table 6, in which the pose er-

rors considerably increase when the network is tested with real images. Also, larger
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datasets shall be considered for a comprehensive comparative assessment of the555

CNN architecture with the conventional pose determination architectures. Further-

more, assumptions on the illumination environment, target texture and reflectance

properties shall be investigated to increase the robustness of the pose estimation,

and different CNNs, such as the GoogLeNet, the ResNets and the DenseNet, shall

be traded-off with respect to computational time and accuracy in the pose estima-560

tion, following the promising results reported in [52] for the Inception-ResNet-V2

and ResNet-101. The scheme proposed in [56] proved to return better pose estimates

than the AlexNet scheme while at the same decreasing the size of the training set, as

well as a comparable accuracy in the 2D bounding box detection compared to the

architecture in [56]. Furthermore, it proved to be robust with respect to the Earth in565

the background. However, its performance was found to drop-off at relatively close

distances for which the target is not fully in the camera FoV as well as during poor

illumination conditions close to eclipse, due to inaccurate box detections. Notice

also that, since the training in [17] and [56] has been performed with relative dis-

tances from 3 up to 50 meters as labels, the estimation system for close-proximity570

operations down to docking could not be validated.

Despite the relatively coarse accuracies in the pose estimation, especially in the

relative attitude, neural networks could still improve the pose initialization. As men-

tioned in [17], a feature-based algorithm with a CNN-based pose estimation, which

provides a coarse initial guess, could increase the robustness of the pose initializa-575

tion with respect to scenarios in which the IP fails in extracting the target features

from the image background.

Finally, none of the previous CNN-based pose estimation methods were tested

in a navigation filter, and some effort is still required in the modeling of the mea-

surement noise when neural networks are adopted prior to the filter estimation. It is580

also important to notice that, if the target shape during operation considerably dif-

fers from the one assumed during the training phase, the reliability of CNNs might

be affected. Future works shall assess the impact of such uncertainty in the target

shape on the pose estimation accuracy, as well as investigate the benefits of CNN-

based schemes over feature-based schemes.585
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Table 6: Comparison of CNN architectures for relative pose estimation. Here, the mean position and

attitude errors, ET and ER , are reported together with the Intersection-Over-Union (IoU) metric, which

measures the accuracy of the 2D bounding box detection.

Ref. Architecture
Training/Test Set

Images

ET [m] ER [deg] IoU

[17]
AlexNet

(3.000 pose labels)

75.000/50.000 synthetic

75.000/25 real

0.12

1.12

11.94

30.75
-

[52]

101-layer ResNet

Inception ResNet V2

(with RPN)

400/100 - -
0.88

0.88

[56]
Convolutional layers + RPN +

Fully-connected layers

12000/3000 synthetic

12000/300 real

[0.055,0.046,0.78]

[0.036,0.015,0.189]

8.4

18.19

0.8582

0.8596

4. Visual-based Navigation Filters

The relative pose estimation schemes described in Section 3 provide an initial

estimate of the relative position and attitude of a target spacecraft with respect to

the servicer spacecraft for lost-in-space scenarios, in which no a-priori information

of the relative state is available. This is referred to as the pose initialization subsys-590

tem. Once the initial guess on the relative state is computed from the estimation

scheme, pose tracking can be performed by collecting a new camera image and us-

ing the previous state as the new initial state for a subsequent pose initialization

problem. However, the pose initialization routines are not well suited to produce

pose estimates at high frequencies, especially due to the computationally expensive595

IP in combination with the PnP solvers. Therefore, a relative navigation filter shall

be used in combination with the camera measurements and the pose estimation

suite in order to return relative state solutions at high frequency [16]. Furthermore,

the internal dynamics of the filter improve the accuracy of the predicted relative

state from measurements and allow a more robust pose tracking. From a high level600

perspective, two different relative navigation architectures are usually exploited in
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the framework of the relative pose estimation of an uncooperative target. A tightly-

coupled architecture, where the extracted features are directly processed by the nav-

igation filter without exploiting any model-based method, and a loosely-coupled ar-

chitecture, in which the relative pose is already determined prior to the navigation605

filter, i.e. by adopting a model-based method. When dealing with uncooperative

tumbling targets, a loosely-coupled approach is usually preferred since the fast rel-

ative dynamics could jeopardize the robustness of features tracking, provided that a

simplified geometrical model of the target is available. On the other hand a tightly-

coupled approach is the best option when dealing with unknown targets, since it610

does not rely on any a-priory knowledge of the target geometrical model.

In the framework of spacecraft relative motion, several representations of a lin-

earized relative state exist based on the intersatellite range, orbital eccentricity and

perturbation forces involved. Linearized models are required when the filter inter-

nal dynamics needs to be linearized, as it is the case for linear Kalman FIlter (KF) and615

Extended Kalman Filter (EKF). Ref. [57] provides a detailed overview on closed-form

dynamics model suited for onboard relative navigation. Notice that, for ADR and

On-orbit servicing, the target orbit can usually be assumed to be circular, thus sim-

plifying the computational burden that results from not neglecting the orbital ec-

centricity of satellite orbits. Generally, a distinction is made between models which620

make use of a Cartesian representation of the relative state (position and velocity)

and models which consider a set of the Relative Orbital Elements (ROE). Notably,

perturbation models can be easily accommodated in the filter dynamics in the lat-

ter case [58, 59, 60]. Clearly, a linearized model is not required if nonlinear filters

are adopted. On the other hand, in the context of spacecraft relative attitude, sev-625

eral linear and nonlinear models exist based on either Euler angles, quaternions and

Modified Rodrigues Parameters (MRP) [61, 62, 63].

Navigation systems for close-proximity operations have been extensively vali-

dated in the context of RF and monocular vision navigation for FF and on-orbit ser-630

vicing, when the target is cooperative [64, 1, 65, 61, 66]. However, there is still a

lack of a comprehensive validation of navigation systems for the pose estimation of
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an uncooperative target. As an example, the EKF and the Unscented Kalman Filter

(UKF) presented in [61] and [66], respectively, rely on the availability of gyro mea-

surements from each spacecraft, which is usually not the case for uncooperative635

spacecraft in ADR scenarios. When the uncooperative target is known, it is assumed

that a simplified geometrical model of the target is available and representative of

the target state in orbit. As such, when a model-based pose estimation method is

adopted prior to the navigation filter, the 3D model of the target can be assumed

to be reliable, and the navigation system can estimate the relative pose based on640

the pseudomeasurements derived from the extracted features of the target without

including uncertainty in the geometrical model. However, if the shape of the target

has changed due to orbit degradation and/or due to unforeseen events, the assump-

tions on its state made in the simplified geometrical model might differ from its real

conditions in orbit. Furthermore, the target’s mass and moment of inertia, together645

with other relevant parameters, might differ from the assumed values. As such, the

navigation filter might have to estimate additional parameters aside from the rela-

tive pose.

4.1. Design and Validation of Monocular Navigation Systems: known targets

When dealing with uncooperative known targets, the state vector to be estimated650

in the navigation filter consists in the relative position, velocity, attitude and angular

velocity between the chaser and the target. Additionally, if the relative dynamics be-

tween the servicer and the target spacecraft, modeled in the relative navigation sys-

tem, account for perturbation models which might be inaccurate, key perturbation

parameters should be included given the uncertainty of the dynamics models. As655

already mentioned, loosely-coupled navigation architectures are usually preferred

when the target is known.

Table 7 lists the state-of-the-art for the navigation filters adopted in the frame-

work of pose estimation of uncooperative known targets. Naasz et al. [12] imple-

mented a Multiplicative Extended Kalman Filter (MEKF) [63] for attitude estimation660

and a linear KF for translation to estimate the pose of the HST, assumed to be un-

cooperative. Furthermore, Sharma and D’Amico [16] proposed a reduced-dynamics
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Table 7: Comparison of navigation filters for relative pose estimation, together with the adopted perfor-

mance validation method. Here, NS refers to papers in which the adopted filters were not specified

Ref. Translational filter Rotational filter Performance Validation Method

[12] Linear KF MEKF Ground-based test on HST mockup

[16] MEKF MEKF Numerical simulations

[67] Linear KF Linear KF HIL in closed GNC loop

[22]
MEKF/

Schmidt KF

MEKF/

Schmidt KF
Numerical simulations

[68] D-Q MEKF D-Q MEKF Ground-based experimental test

[69] NS NS SIL/HIL in closed GNC loop

[70] DA filters DA filters Numerical simulations

[71] -

Minimum Energy Filter

Attitude Observer

2nd Order Minimum Energy Filter

MEKF

Numerical simulations

[19] H∞ filter 2nd Order Minimum Energy Filter Numerical simulations
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pose estimation in which a MEKF is formulated, validated and stress-tested with the

PRISMA dataset. The measurement model was computed from pseudomeasure-

ments, derived from the line segments detected from the image by the IP, by express-665

ing each line segment as a function of the ROE and of the relative attitude quater-

nion. However, in both implementations the filter dynamics were highly simplified

and no perturbation models were included. Moreover, the initial conditions for the

relative state in [16] were assumed from the separate results of the pose initialization

subsystem, without modeling the interface between the initial pose estimation and670

the filter itself, and no SIL/HIL tests were conducted. Gasbarri et al. [67] performed

a Hardware-In-the-Loop (HIL) experiment in a closed GNC loop using the camera

as a standalone sensor. However, no perturbation models were included in the filter

dynamics and only a simplified linear KF was implemented. Galante et al. [22] pro-

posed the fusion of several measurements from different types of monocular sensors675

and a LIDAR in a MEKF. Their navigation filter was designed assuming that no infor-

mation about the servicer absolute position and velocity is available. As such, they

neglected orbital dynamics in the filter propagation step, and considered a Schmidt

KF [72] to counteract the limited system observability, which results from the lack of

sufficient richness in the relative motion dynamics. Furthermore, the filter state was680

augmented with sensor biases to account for the different optical spectra of the pose

measurement sensors. Filipe et al. [68] validated experimentally a Dual Quaternion

MEKF (DQ-MEKF) [63] suitable for uncooperative satellite proximity operation sce-

narios, in which the pose measurements are rearranged in a dual quaternion form

and fed into the navigation filter. Their filter proved to be fast enough for operational685

use and insensitive to singularity problems, due to its error formulation. However,

only limited scenarios were simulated in the tests. Colmenarejo et al. [69] performed

a comprehensive ground testing to investigate system, as well as subsystems, level

considerations related to several ADR scenarios. A complete GNC model designed in

a FES was Software-In-the-Loop (SIL)/HIL-tested, thus accounting for the interfaces690

between the navigation filter, the IP and the initial pose estimator. Results validated

several aspects of the filter robustness, such as information about the illumination

quality and sensitivity to blackouts. However, several challenges behind fusing dif-
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ferent absolute and relative sensors in the navigation filter were not solved, and the

robustness of the navigation filter was not fully investigated. Furthermore, the test-695

ing did not account for recent IP methods, and the robustness of the filter with re-

spect to a tumbling scenario was not assessed. Cavenago et al. [70] proposed two

innovative nonlinear filters based on Differential Algebra (DA) to limit the compu-

tational time while preserving the filter performance. Their design included relative

rotational dynamics which account for the apparent torques, the servicer-inertial700

torques and the target inertia matrix, thus improving other models which assumed

simplified, unperturbed relative rotational motion. However, only a simplified soft-

ware was used for the validation of the navigation system. In a recent effort, Pesce

et al. [71] decoupled the translational and rotational motion, and compared nonlin-

ear filtering techniques to a MEKF for the relative attitude estimation of an unco-705

operative target. Nonlinear filtering algorithms such as the Minimum Energy Filter,

the Attitude Observer [73, 74], and the 2nd Order Minimum Energy Filter [75] were

adapted for the specific application. Compared to the analysis conducted in [70],

the filters performance was assessed by considering limited knowledge on the tar-

get inertia matrix by neglecting the relative dynamics in their formulation. Their710

results showed that, despite a quicker convergence in transient, the MEKF has a

lower performance at steady-state when compared to the nonlinear filters. Further-

more, the second-order minimum energy filter without dynamics was proposed as

the best option in scenarios where neither the angular velocity nor the inertia matrix

of the target are fully known. Furthermore, Pesce et al. [19] proposed a novel nav-715

igation system in which a H∞ Filter [76] was selected for the translational motion

estimation and the 2nd Order Minimum Energy Filter for the rotation motion esti-

mation, respectively. The translational filter implemented the Yamanaka-Ankersen

[77] formulation of satellite relative motion, and it was chosen based on the claim

that assumptions of KF are usually not satisfied when dealing with optical systems,720

and on the fact that the absolute position of the servicer, together with the illumi-

nation conditions, can strongly affect the process and measurement noise if a KF

is selected. Their design returned a navigation system for which filter robustness is

preferred rather than filter optimality. On the other hand, the selected rotation filter
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was characterized by a null derivative of the angular acceleration, in order to avoid725

the dependence of the filter accuracy on the knowledge of the inertia matrix of the

target spacecraft. Despite the worse performance compared to filters that include

the relative dynamics, and thus the inertia matrix of the target, the proposed for-

mulation could be extended for the pose estimation of partially known targets. Re-

sults obtained by considering Low Earth Orbit (LEO), Highly Elliptical Orbit (HEO)730

and GEO scenarios showed a steady state relative position and attitude Root-Mean-

Square Error (RMSE) lower than 3 cm (except for HEO) and 1 degree, respectively.

Notice also that no perturbation models were included in both filters.

An important aspect of the relative navigation filter reviewed so far relates to

whether the absolute state of the servicer spacecraft is required to estimate the rel-735

ative state between the servicer and the target. Except for the design in [22], the re-

viewed filter designs assumed that the absolute state of the servicer is known, which

implies that absolute sensors such as GPS and/or Inertia Measurement Units (IMU)

shall be included in the absolute filter. However, GPS can increase complexity to

the system and it is not being considered in some of the current designs for close-740

proximity rendezvous missions. On the other hand, the limited accuracy of the ab-

solute position and velocity information from an IMU onboard the servicer would

probably result in a decreased accuracy in the estimated relative state, when com-

pared to the estimation accuracy results obtained by assuming no noise in the ab-

solute position and velocity. It can be stated that the interface between the relative745

and absolute navigation filters onboard the servicer spacecraft still presents open

issues. Future research should investigate more filter designs which do not rely on

the servicer absolute position (and velocity) by solving the challenges of a simplified

orbital dynamics model. At the same time, the impact of the measurement noise

of the servicer position on the relative navigation filter should be assessed for those750

designs which include the servicer absolute position (and velocity).
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4.2. Design and Validation of Monocular Navigation Systems: partially known tar-

gets

During close-range rendezvous, the relative attitude dynamics is strongly de-

pendent on the target’s moment of inertia, which might be partially unknown for755

inactive satellites. At the same time, the knowledge of the location of the center of

mass is critical for a safe approach to the target. As such, it is important to include

the estimation of these parameters in the navigation filter, in order to improve the

knowledge of the target state as well as of its orbit relative to the servicer.

The position and velocity of the center of mass can be estimated by solving a760

least squares problem in which the position and velocity of the geometrical center,

or of a feature point, on the target body are measured by a monocular camera [78,

79]. Alternatively, Al-Isawi and Sasiadek [80] calculated the location of the center of

mass using kinematic equations and an Iterative Closest Point (ICP) algorithm, and

Meng et al. [81] implemented an EKF and additionally estimated the target body765

mass by applying an impulse to the target.

Several approaches exist in literature to estimate the target moment of inertia

with stereo cameras or other active sensors such as LIDARs. The interested readers

are referred to the survey in [10] for a comprehensive overview. However, there are

more restrictions on system observability when monocular cameras are adopted.770

Sheinfeld and Rock [79] presented a framework for rigid body inertia estimation

for torque-free and non torque-free motion applicable to monocular vision. Fol-

lowing these findings, Benninghoff and Boge [78] and Qiu et al. [82] proposed two

methods based on kinematic equations and the conservation of angular momen-

tum, in combination with a constrained least squares method, to ensure positive775

diagonal values of the inertia matrix. Additionally, Hou et al. [83] proposed a dual

vector quaternions-based EKF and a dual vector quaternions-based adaptive fading

factors EKF to estimate the ratios of the inertia parameters of a free-floating tum-

bling space target. In all these methods, only normalized moments of inertia were

estimated, since no external torques were applied on the target spacecraft. Setter-780

field et al. [84] proposed a method to additionally estimate the three principal axes

together with the inertia ratios through the analysis of the target object’s polhode in
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an arbitrary target-fixed geometric frame. Felicetti et al. [85] analyzed the estimation

of the full inertia matrix by exerting a control torque on the object and by adopting

an EKF. However, their method is applicable only to estimate the moment inertia785

of the multibody system once the chasing and the grasping phases have occurred.

Xu and Wang [86] investigated the possibility to estimate the target inertia by using

the information of the mass and velocity of a bullet shot to the target to change its

angular momentum. Recently, Meng et al. [81] proposed a different method based

on the application of a number of impulses to the target in order to observe the re-790

sulting motion changes and solve for all the inertia parameters. An EKF was used

to estimate the normalized inertia matrix together with the target mass, and a least

squares method was added to estimate the full set of inertial parameters.

5. Conclusions and Recommendations

This paper presented a detailed review of the robustness and applicability of795

state-of-the-art monocular pose estimation systems for the relative navigation with

an uncooperative spacecraft. The research is motivated by the applicability of rela-

tive pose estimation in future space missions, i.e. ADR and IOS, which involve close-

proximity operations of a servicer spacecraft around a target. Monocular systems

were reviewed due to the strict power, mass, and operational range requirements800

driving the current design of these missions, which are usually killer requirements

for active, as well as stereo, systems.

First, a review of monocular EO systems is given in which VIS, TIR and NIR cam-

era suites are traded-off against image quality and robustness with respect to the

space environment. Due to the limited robustness of VIS/NIR cameras against harsh805

illumination conditions and the presence of the Sun or the Earth in the background,

and the limited image quality which characterizes TIR cameras, multispectral sys-

tems are identified as a promising solution capable of increasing the overall system

robustness, while at the same time preserving system accuracy. Furthermore, the

applicability of the state-of-the-art camera suites to operational ranges from several810

hundreds of meters down to docking is analyzed in order to assess whether only a
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single monocular camera could be used during close-proximity operations. In prin-

ciple, collaborative cameras could be avoided by switching to feature tracking as

soon as the target is not fully in the camera FoV.

Monocular pose estimation is analyzed by firstly focusing on the IP algorithms815

adopted prior to the actual estimation. Three main feature synthesis schemes are

identified which are able to combine the advantages of several feature detectors into

a more robust system. Furthermore, it is foreseen that the combination of keypoint

detectors with edge and corner detectors will represent an additional step forward

in the design of robust and reliable IP systems, provided that keypoint detectors are820

validated against scenarios in which the Earth is in the image background. Besides,

it is expected that feature detection methods based on neural networks will improve

the system robustness against adverse illumination conditions as well as partial oc-

cultation of the target.

The different techniques adopted for the pose initialization and tracking are then825

reviewed. A comparative assessment of several PnP solver is presented, from which

it is concluded that a combination of different solvers should, in principle, improve

the pose estimation accuracy. Furthermore, the challenges involved in VIS-based

and TIR-based estimation systems are listed in terms of the image database adopted

for the validation, the robustness against image background and spacecraft symme-830

try, and the associated IP system adopted. The comparison suggests to investigate a

pose estimation system in which model-based and non-model based methods are

used to estimate the pose from VIS and TIR images, respectively. This follows from

the challenges in relying on an off-line TIR model of the target spacecraft, due to fast

variations in the space thermal environment.835

A review of recent pose estimation systems based on CNNs is provided in or-

der to investigate the level of accuracy that could be achieved by exploiting them

during pose initialization. Three novel methods are reviewed which adopt transfer

learning of pre-trained networks to solve for the relative pose. In particular, the com-

parative assessment showed that a relatively small training database could be used840

without affecting the network performance, provided that suitable network layers

are selected. Additionally, it is suggested that the coarse accuracy, which charac-
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terises the networks reviewed in this paper, could be compensated by including a

PnP solver which uses the CNN solution as initial guess for the relative pose. Still,

the drop in performance when the target spacecraft is not fully in the camera FoV,845

together with the amount of realistic images to use during training and/or testing,

represent unanswered questions which will require further analyses.

Finally, visual-based navigation filters are reviewed by assessing their applicabil-

ity to scenarios in which the target spacecraft is fully or partially known. The com-

parison between different filters shows that filter selection for the pose estimation850

of an uncooperative target is, from a high-level perspective, driven by a trade-off be-

tween filter robustness and filter optimality. In particular, when the target is partially

known, the dependence of the filter on the target inertia matrix could be tackled by

simplifying the filter internal dynamics, or by estimating the target mass and inertia

in-flight. Furthermore, the qualitative comparison suggests that the impact of the855

absolute filter’s solution on the relative pose estimation should be accounted for in

the design of the navigation filter.
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