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C E L L  B I O L O G Y

Coupling chromatin structure and dynamics by live 
super-resolution imaging
R. Barth1,2, K. Bystricky1,3, H. A. Shaban1,4*†

Chromatin conformation regulates gene expression and thus, constant remodeling of chromatin structure is 
essential to guarantee proper cell function. To gain insight into the spatiotemporal organization of the genome, 
we use high-density photoactivated localization microscopy and deep learning to obtain temporally resolved 
super-resolution images of chromatin in living cells. In combination with high-resolution dense motion reconstruc-
tion, we find elongated ~45- to 90-nm-wide chromatin “blobs.” A computational chromatin model suggests that 
these blobs are dynamically associating chromatin fragments in close physical and genomic proximity and adopt 
topologically associated domain–like interactions in the time-average limit. Experimentally, we found that chro-
matin exhibits a spatiotemporal correlation over ~4 m in space and tens of seconds in time, while chromatin dynam-
ics are correlated over ~6 m and last 40 s. Notably, chromatin structure and dynamics are closely related, which 
may constitute a mechanism to grant access to regions with high local chromatin concentration.

INTRODUCTION
The three-dimensional organization of the eukaryotic genome plays 
a central role in gene regulation (1). Its spatial organization has been 
prominently characterized by molecular and cellular approaches 
including high-throughput chromosome conformation capture (Hi-C) 
(2) and fluorescent in situ hybridization (3). Topologically associated 
domains (TADs), genomic regions that display a high degree of in-
teraction, were revealed and found to be a key architectural feature 
(4). Direct three-dimensional localization microscopy of the chro-
matin fiber at the nanoscale (5) confirmed the presence of TADs in 
single cells but also, among others, revealed great structural varia-
tion of chromatin architecture (3). To comprehensively resolve the 
spatial heterogeneity of chromatin, super-resolution microscopy 
must be used. Previous work showed that nucleosomes are distributed 
as segregated, nanometer-sized accumulations throughout the nu-
cleus (6–8) and that the epigenetic state of a locus has a large impact 
on its folding (9, 10). However, to resolve the fine structure of chro-
matin, high labeling densities, long acquisition times, and, often, 
cell fixation are required. This precludes capturing dynamic pro-
cesses of chromatin in single live cells, yet chromatin moves at dif-
ferent spatial and temporal scales.

The first efforts to relate chromatin organization and its dynamics 
were made using a combination of photoactivated localization mi-
croscopy (PALM) and tracking of single nucleosomes (11). It could 
be shown that nucleosomes mostly move coherently with their un-
derlying domains, in accordance with conventional microscopy data 
(12); however, a quantitative link between the observed dynamics 
and the surrounding chromatin structure could not yet be estab-
lished in real time. Although it is becoming increasingly clear that 
chromatin motion and long-range interactions are key to genome 
organization and gene regulation (13), tools to detect and to define 

bulk chromatin motion simultaneously at divergent spatiotemporal 
scales and high resolution are still missing.

Here, we apply deep learning–based PALM (Deep-PALM) for 
temporally resolved super-resolution imaging of chromatin in vivo. 
Deep-PALM acquires a single resolved image in a few hundred milli-
seconds with a spatial resolution of ~60 nm. We observed elongated 
~45- to 90-nm-wide chromatin domain “blobs.” Using a computa-
tional chromosome model, we inferred that blobs are highly dynamic 
entities, which dynamically assemble and disassemble. Consisting 
of chromatin in close physical and genomic proximity, our chromo-
some model indicates that blobs, nevertheless, adopt TAD-like 
interaction patterns when chromatin configurations are averaged 
over time. Using a combination of Deep-PALM and high-resolution 
dense motion reconstruction (14), we simultaneously analyzed both 
structural and dynamic properties of chromatin. Our analysis em-
phasizes the presence of spatiotemporal cross-correlations between 
chromatin structure and dynamics, extending several micrometers 
in space and tens of seconds in time. Furthermore, extraction and 
statistical mapping of multiple parameters from the dynamic be-
havior of chromatin blobs show that chromatin density regulates 
local chromatin dynamics.

RESULTS
Deep-PALM reveals dynamic chromatin remodeling 
in living cells
Super-resolution imaging of complex and compact macromolecules 
such as chromatin requires dense labeling of the chromatin fiber to 
resolve fine features. We use Deep-STORM, a method that uses a 
deep convolutional neural network (CNN) to predict super-resolution 
images from stochastically blinking emitters (Fig. 1A; see Materials 
and Methods) (15). The CNN was trained to specific labeling densities 
for live-cell chromatin imaging using a photoactivated fluorophore 
(PATagRFP); we therefore refer to the method as Deep-PALM. We 
chose three labeling densities 4, 6, and 9 emitters/m2 per frame 
in the ON-state to test on the basis of the comparison of simulated 
and experimental wide-field images (fig. S1A). The CNN trained with 
9 emitters/m2 performed significantly worse than the other CNNs 
and was thus excluded from further analysis (fig. S1B; see Materials 
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and Methods). We applied Deep-PALM to reconstruct an image set of 
labeled histone protein (H2B-PATagRFP) in human bone osteosarcoma 
(U2OS) cells using the networks trained on 4 and 6 emitters/m2 per 
frame (see Materials and Methods). A varying number of predic-
tions by the CNN of each frame of the input series were summed to 
reconstruct a temporal series of super-resolved images (fig. S1C). 
The predictions made by the CNN trained with 4 emitters/m2 show 
large spaces devoid of signal intensity, especially at the nuclear pe-
riphery, making this CNN inadequate for live-cell super-resolution 
imaging of chromatin. While collecting photons from long acquisi-
tions for super-resolution imaging is desirable in fixed cells, Deep-
PALM is a live imaging approach. Summing over many individual 
predictions leads to considerable motion blur and thus loss in reso-
lution. Quantitatively, the Nyquist criterion states that the image 
resolution ​R = 2 / ​√ 

_
  ​​ depends on , the localization density per 

second, and the time resolution  (16). In contrast, motion blur strictly 
depends on the diffusion constant D of the underlying structure ​
R = ​√ 

_
 4D ​​. There is thus an optimum resolution due to the trade-off 

between increased emitter sampling and the avoidance of motion 
blur, which was at a time resolution of 360 ms for our experiments 
(Fig. 1B and fig. S1D).

Super-resolution imaging of H2B-PATagRFP in live cells at this 
temporal resolution shows a pronounced nuclear periphery, while 
fluorescent signals in the interior vary in intensity (Fig. 1C). This 
likely corresponds to chromatin-rich and chromatin-poor regions 

(8). These regions rearrange over time, reflecting the dynamic behav-
ior of bulk chromatin. Chromatin-rich and chromatin-poor regions 
were visible not only at the scale of the whole nucleus but also at the 
resolution of a few hundred nanometers (Fig. 1D). Within chromatin-
rich regions, the intensity distribution was not uniform but exhibited 
spatially segregated accumulations of labeled histones of variable shape 
and size, reminiscent of nucleosome clutches (6), nanodomains (9, 11), 
or TADs (17). At the nuclear periphery, prominent structures arise. 
Certain chromatin structures could be observed for ~1 s, which un-
derwent conformational changes during this period (Fig. 1E). The 
spatial resolution at which structural elements can be observed (see 
Materials and Methods) in time-resolved super-resolution data of 
chromatin was 63 ± 2 nm (Fig. 1E), slightly more optimistic than the 
theoretical prediction (Fig. 1B) (18).

We compared images of H2B reconstructed from 12 frames (super-
resolved images) by Deep-PALM in living cells to super-resolution 
images reconstructed by 8000 frames of H2B in fixed cells (fig. S2, A 
and B). Overall, the contrast in the fixed sample appears higher, and the 
nuclear periphery appears more prominent than in images from living 
cells. However, in accordance with the previous super-resolution 
images of chromatin in fixed cells (6, 8, 9, 11, 17) and Deep-PALM 
images, we observe segregated accumulations of signal throughout the 
nucleus. Thus, Deep-PALM identifies spatially heterogeneous cover-
age of chromatin, as previously reported (6, 8, 9, 11, 17). We further 
monitor chromatin temporally at the nanometer scale in living cells.
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Fig. 1. Temporally resolved super-resolution images of chromatin in U2OS nuclei. (A) Wide-field images of U2OS nuclei expressing H2B-PATagRFP are input to a 
trained CNN, and predictions from multiple input frames are summed to construct a super-resolved image of chromatin in vivo. (B) The resolution trade-off between the 
prolonged acquisition of emitter localizations (green line) and motion blur due to diffusion of the underlying diffusion processes (purple line). For our experimental data, 
the localization density per second is  = (2.4 ± 0.1) m−2s−1, the diffusion constant is D = (3.4 ± 0.8) · 10−3 m2s−1 (see fig. S8B), and the acquisition time per frame is  = 30 ms. 
The spatial resolution assumes a minimum (69 ± 5 nm) at a time resolution of 360 ms. (C) Super-resolution images of a single nucleus at time intervals of about 10 s. Scale 
bars, 2 m. (D) Magnification of segregated accumulations of H2B within a chromatin-rich region. Scale bar, 200 nm. (E) Magnification of a stable but dynamic structure 
(arrows) over three consecutive images. Scale bars, 500 nm. (F) Fourier ring correlation (FRC) for super-resolved images resulting in a spatial resolution of 63 ± 2 nm. FRC 
was conducted on the basis of 332 consecutive super-resolved images from two cells. a.u. arbitrary units.
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Chromatin appears in elongated nanometer-sized blobs 
with a nonrandom spatial distribution
To quantitatively assess the spatial distribution of H2B, we developed 
an image segmentation scheme (see Materials and Methods; fig. S3), 
which allowed us to segment spatially separated accumulations of 
H2B signal with high fidelity (note S1 and figs. S4 and S5). Applying 
our segmentation scheme, ~10,000 separable elements, blob-like 
structures were observed for each super-resolved image (166 re-
solved images per movie; Fig. 2A). The experimental resolution does 
not enable us to elucidate their origin and formation because tracking 
of blobs in three dimensions would be necessary to do so (see Discussion). 
We therefore turned to a transferable computational model introduced 
by Qi and Zhang (19), which is based on one-dimensional genomics 
and epigenomics data,  including histone modification profiles and 
binding sites of CTCF (CCCTC-binding factor). To compare our 
data to the simulations, super-resolution images were generated 

from the modeled chromosomes. Within these images, we could 
identify and characterize “chromatin blobs” analogously to those 
derived from experimental data (see Materials and Methods; Fig. 2B).

For imaged (in living and fixed cells) and modeled chromatin, we 
first computed the kth nearest-neighbor distance (NND; centroid-
to-centroid) distributions, taking into account the nearest 1st to 
40th neighbors (Fig. 2C and fig. S2, C and D, blue to red). Centroids 
of the nearest neighbors are (95 ± 30) nm (means ± SD) apart, con-
sistent with previous and our own super-resolution images of chro-
matin in fixed cells (9) and slightly further than what was found for 
clutches of nucleosomes (6). The envelope of all NND distributions 
(Fig. 2C, black line) shows several weak maxima at ~95, 235, 335, 
and 450 nm, which roughly coincide with the peaks of the 1st, 7th, 
14th, and 25th nearest neighbors, respectively (Fig. 2C, red dots). In 
contrast, simulated data exhibit a prominent first nearest-neighbor 
peak at a slightly smaller distance, and higher-order NND distribution 
decay quickly and appear washed out (Fig. 2D). This hints toward 
greater levels of spatial organization of chromatin in vivo, which is not 
readily recapitulated in the used state-of-the-art chromosome model.

Next, we were interested in the typical size of chromatin blobs. 
Their area distribution (Fig. 2E) fit a log-normal distribution with 
parameters (3.3 ± 2.8) × 10−3 m2 (means ± SD), which is in line 
with the area distribution derived from fixed samples (fig. S2E) and 
modeled chromosomes. Notably, blob areas vary considerably, as 
indicated by the high SD and the prominent tail of the area distribu-
tion toward large values. Following this, we calculated the eccen-
tricity of each blob to resolve their shape (Fig. 2F and fig. S2F). The 
eccentricity is a measure of the elongation of a region reflecting the 
ratio of the longest chord of the shape and the shortest chord per-
pendicular to it (Fig. 2F; illustrated shapes at selected eccentricity 
values). The distribution of eccentricity values shows an accumula-
tion of values close to 1, with a peak value of ~0.9, which shows that 
most blobs have an elongated, fiber-like shape and are not circular. 
In particular, the eccentricity value of 0.9 corresponds to a ratio be-
tween the short and long axes of the ellipse of 1:2 (see Materials and 
Methods), which results, considering the typical area of blobs in ex-
perimental and simulated data, in roughly 92-nm-long and 46-nm-
wide blobs on average. A highly similar value was found in fixed cells 
(fig. S2F). The length coincides with the value found for the typical 
NND [Fig. 2C; (95 ± 30) nm]. However, because of the segregation 
of chromatin into blobs, their elongated shape, and their random 
orientation (Fig. 2A), the blobs cannot be closely packed throughout 
the nucleus. We find that chromatin has a spatially heterogeneous 
density, occupying 5 to 60% of the nuclear area (fig. S6, A and B), 
which is supported by a previous electron microscopy study (20).

Blob dimensions derived from live-cell super-resolution imaging 
using Deep-PALM are consistent with those found in fixed cells, thereby 
further validating our method, and in agreement with previously 
determined size ranges (6, 9). A previously published chromosome 
model based on Hi-C data (and thus not tuned to display blob-like 
structures per se) also displays blobs with dimensions comparable 
to those found here, in living cells. Together, these data strongly 
suggest the existence of spatially segregated chromatin structures in 
the sub–100-nm range.

Chromatin blobs identified by Deep-PALM are coherent 
with sub-TADs
The simulations offer to track each monomer (chromatin locus) un-
ambiguously, which is currently not possible to do from experimental 
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Fig. 2. Chromatin blob identification and characterization of imaged and 
modeled chromatin. (A) Super-resolved images show blobs of chromatin (left). 
These blobs are segmented (see Materials and Methods and note S1) and individually 
labeled by random color (right). Magnifications of the boxed regions are shown. 
Scale bars, 2 m (whole nucleus); magnifications, 200 nm. (B) Generation of super-
resolution images and blob identification and characterization for a 25–million 
base pair (Mbp) segment of chromosome 1 from GM12878 cells, as simulated in Qi 
and Zhang (19). Beads (5-kb genomic length) of a simulated polymer configuration 
within a 200-nm-thick slab are projected to the imaging plane, resembling experi-
mental super-resolved images of live chromatin. Blobs are identified as on experi-
mental data. (C) From the centroid positions, the NND distributions are computed 
for up to 40 nearest neighbors (blue to red). The envelope of the k-NND distributions 
(black line) shows peaks at approximately 95, 235, 335, and 450 nm (red dots). (D) k-NND 
distributions as in (B) for simulated data. (E)  Area distribution of experimental and simulated 
blobs. The distribution is, in both cases, well described by a lognormal distribution with 
parameters (3.3 ± 2.8) × 10−3 m2 for experimental blobs and (3.1 ± 3.2) × 10−3 m2 for 
simulated blobs (means ± SD). PDF, probability density function. (F) Eccentricity dis-
tribution for experimental and simulated chromatin blobs. Selected eccentricity values 
are illustrated by ellipses with the corresponding eccentricity. Eccentricity values range 
from 0, describing a circle, to 1, describing a line. Prominent peaks arise because of 
the discretization of chromatin blobs in pixels. The data are based on 332 consecutive 
super-resolved images from two cells, in each of with ~10,000 blobs were identified.
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data. Since the simulations show blobs comparable to those found 
in experiment (Fig. 2), simulations help to indicate possible mecha-
nisms leading to the observation of chromatin blobs. For instance, 
because of the projection of the nuclear volume onto the imaging 
plane, the observed blobs could simply be overlays of distant, along 
the one-dimensional genome, noninteracting genomic loci. To ex-
amine this possibility, we analyzed the gap length between beads 
belonging to the same blob along the simulated chromosome. Beads 
constitute the monomers of the simulated chromosome, and each 
bead represents roughly 5 kb (19).

The analysis showed that the blobs are mostly made of consecutive 
beads along the genome, thus implying an underlying domain-like 
structure, similar to TADs (Fig. 3A). Using the affiliation of each 

bead to an intrinsic chromatin state of the model (Fig. 3B), it be-
came apparent that blobs along the simulated chromosome consist-
ing mostly of active chromatin are significantly larger than those 
formed by inactive and repressive chromatin (Fig. 3C). These find-
ings are in line with experimental results (10) and results from the 
simulations directly (19), thereby validating the projection and seg-
mentation process.

Since chromatin is dynamic in vivo and in computer simula-
tions, each bead can diffuse in and out of the imaging volume from 
frame to frame. We estimated that, on average, each bead spent ap-
proximately 1.5 s continuously within a slab of 200-nm thickness 
(Fig. 3D). Furthermore, a bead is, on average, found only 0.55 ± 0.33 s 
continuously within a blob, which corresponds to one to two ex-
perimental super-resolved images (Fig. 3D). These results suggest 
that chromatin blobs are highly dynamic entities, which usually 
form and dissemble within less than 1 s. We thus constructed a 
time-averaged association map for the modeled chromosomes, 
quantifying the frequency at which each locus is found with any 
other locus within one blob. The association map is comparable to 
interaction maps derived from Hi-C (Fig. 3E). Notably, interlocus 
association and Hi-C maps are strongly correlated, and the associa-
tion map shows similar patterns as those identified as TADs in Hi-C 
maps, even for relatively distant genomic loci [>1 million base pairs 
(Mbp)]. A similar TAD-like organization is also apparent when the 
average inverse distance between loci is considered (Fig. 3F, top), 
suggesting that blobs could be identified in super-resolved images 
because of the proximity of loci within blobs in physical space. The 
computational chromosome model indicates that chromatin blobs 
identified by Deep-PALM are mostly made of continuous regions 
along the genome and cannot be attributed to artifacts originating 
from the projection of the three-dimensional genome structure to 
the imaging plane. The simulations further indicate that the blobs 
associate and dissociate within less than 1 s, but loci within blobs are 
likely to belong to the same TAD. Their average genomic content is 
75 kb, only a fraction of typical TAD lengths in mammalian cells 
(average size, 880 kb) (4), suggesting that blobs likely correspond to 
sub-TADs or TAD nanocompartments (17).

Quantitative chromatin dynamics at nanoscale resolution
To quantify the experimentally observed chromatin dynamics at 
the nanoscale, down to the size of one pixel (13.5 nm), we used a 
dense reconstruction of flow fields, optical flow (Fig. 4A; see Mate-
rials and Methods), which was previously used to analyze images 
taken on confocal (12, 14), and structured illumination microscopes 
(8). We examined the suitability of optical flow for super-resolution 
on the basis of single-molecule localization images using simula-
tions. We find that the accuracy of optical flow is slightly enhanced 
on super-resolved images compared to conventional fluorescence 
microscopy images (note S2 and fig. S7, A to C). Experimental 
super-resolution flow fields are illustrated on the basis of two subse-
quent images, between which the dynamics of structural features 
are apparent to the eye (fig. S7, D and E). On the nuclear periphery, 
connected regions spanning up to ~500 nm can be observed [fig. 
S7D (i and ii), marked by arrows]. These structures are stable for at 
least 360 ms but move from frame to frame. The flow field is shown 
on top of an overlay of the two super-resolved images and color-
coded [fig. S7D (iii); the intensity in frame 1 is shown in green, 
the intensity in frame 2 is shown in purple, and colocalization of both 
is white]. Displacement vectors closely follow the redistribution of 
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Fig. 3. Chromatin blobs on modeled chromosomes consist of continuous loci 
along the genome and exhibit a TAD-like time-averaged conformation. (A) Gap 
length between beads belonging to the same blob. An exemplary blob with small 
gap length is shown. The blob is mostly made of consecutive beads being in close 
spatial proximity. (B) A representative polymer configuration is colored according to 
chromatin states (red, active; green, inactive; and blue, repressive). (C) The cumula-
tive distribution function (CDF) of clusters within active, inactive, and repressive 
chromatin. Inset: Mean area of clusters within the three types of chromatin. The 
distributions are all significantly different from each other, as determined by a two-
sample Kolmogorov-Smirnov test (P < 10−50). (D) Distribution of the continuous 
residence time of any monomer within a cluster (0.5 ± 0.3 s; means ± SD). Inset: Con-
tinuous residence time of any monomer within a slab of 200-nm thickness (1.5 ± 1.6 s; 
means ± SD). (E) The blob association strength between any two beads is measured 
as the frequency at which any two beads are found in one blob. The association map 
is averaged over all simulated configurations (upper triangular matrix; from simula-
tions), and experimental Hi-C counts are shown for the same chromosome segment 
[lower triangular matrix; from Rao et al. (40)]. The association and Hi-C maps are 
strongly correlated [Pearson’s correlation coefficient (PCC) = 0.76]. (F) Close-up views 
around the diagonal of Hi-C–like matrices. The association strength is shown together 
with the inverse distance between beads (top; PCC = 0.85) and with experimental 
Hi-C counts [bottom; as in (E)]. The data are based on 20,000 polymer configurations.
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intensity from frame to frame (roughly from green to purple). Simi-
larly, structures within the nuclear interior (fig. S7E) can be followed by 
eye, thus further validating and justifying the use of a dense motion re-
construction as a quantification tool of super-resolved chromatin motion.

Using optical flow fields, we linked the spatial appearance of chro-
matin to their dynamics. Effectively, the blobs were characterized with 
two structural parameters (NND and area) and their flow magnitude 
(Fig. 4B). Movie S1 shows the time evolution of those parameters for 
an exemplary nucleus. Blobs at the nuclear periphery showed a distinct 
behavior from those in the nuclear interior. In particular, the pe-
riphery exhibits a lower density of blobs, but those appear slightly 
larger and are less mobile than in the nuclear interior (Fig. 4, C to F), 
in line with previous findings using conventional microscopy (14). 
The peripheral blobs are reminiscent of dense and relatively immobile 
heterochromatin and lamina-associated domains (21), which extend 
only up to 0.5 m inside the nuclear interior. In contrast, blob dy-
namics increase gradually within 1 to 2 m from the nuclear rim.

Chromatin structure and dynamics are linked
To further elucidate the relationship between chromatin structure 
and dynamics, we analyzed the correlation between each pair of pa-
rameters in space and time. Therefore, we computed the auto- and 

cross-correlation of parameter maps with a given time lag across the 
entire nucleus (in space) (Fig. 5A). In general, a positive correlation 
denotes a low-low or a high-high relationship (a variable de-/increases 
when another variable de-/increases), while, analogously, a negative 
correlation denotes a high-low relationship. The autocorrelation 
of NND maps [Fig. 5A (i)] shows a positive correlation; thus, re-
gions exist spanning 2 to 4 m, in which chromatin is either closely 
packed (low-low) or widely dispersed (high-high). Likewise, blobs 
of similar size tend to be in spatial proximity [Fig. 5A (iii)]. These 
regions are not stable over time but rearrange continuously, an 
observation bolstered by the fact that the autocorrelation diminishes 
with increasing time lag. The cross-correlation between NND and 
area [Fig. 5A (ii)] shows a negative correlation for short time lags, 
suggesting that large blobs appear with a high local density while 
small ones are more isolated. The correlation becomes slightly pos-
itive for time lags ≥20 s, indicating that big blobs are present in re-
gions that were sparsely populated before and small blobs tend to 
accumulate in previously densely populated regions. This is in line 
with dynamic reorganization and reshaping of chromatin domains 
on a global scale, as observed in snapshots of the Deep-PALM image 
series (Fig. 1A).

The flow magnitude is positively correlated for all time lags, 
while the correlation displays a slight increase for time lags ≤20 s 
[Fig. 5A (vi)], which has also been observed previously (8, 12, 22). 
The spatial autocorrelation of dynamic and structural properties of 
chromatin are in stark contrast. While structural parameters are 
highly correlated at short but not at long time scales, chromatin mo-
tion is still correlated at a time scale exceeding 30 s. At very short 
time scales (<100 ms), stochastic fluctuations determine the local 
motion of the chromatin fiber, while coherent motion becomes appar-
ent at longer times (22). However, there exists a strong cross-correlation 
between structural and dynamic parameters: The cross-correlation 
between the NND and flow magnitude shows notable negative cor-
relation at all time lags [Fig. 5A (iv)], strongly suggesting that sparsely 
distributed blobs appear less mobile than densely packed ones. The 
area seems to play a negligible role for short time lags, but there is a 
modest tendency that regions with large blobs tend to exhibit in-
creased dynamics at later time points [≥10 s; Fig. 5A (v)], likely due 
to the strong relationship between area and NND.

In general, parameter pairs involving chromatin dynamics ex-
hibit an extended spatial auto- or cross-correlation (up to ~6 m; 
the lower row of Fig. 5A) compared to correlation curves including 
solely structural parameters (up to 3 to 4 m). Furthermore, the 
cross-correlation of flow magnitude and NND does not consider-
ably change for increasing time lag, suggesting that the coupling 
between those parameters is characterized by an unexpectedly resilient 
memory, lasting for at least tens of seconds (23). Concomitantly, the 
spatial correlation of time-averaged NND maps and maps of the 
local diffusion constant of chromatin for the entire acquisition time 
enforces their negative correlation at the time scale of ~1 min (fig. 
S8). Such resilient memory was also proposed by a computational 
study that observed that interphase nuclei behave similar to con-
centrated solutions of unentangled ring polymers (24). Our data 
support the view that chromatin is mostly unentangled since entan-
glement would influence the anomalous exponent of genomic loci 
in regions of varying chromatin density (24). However, our data do 
not reveal a correlation between the anomalous exponent and the 
time-averaged chromatin density (fig. S8), in line with our previous 
results using conventional microscopy (14).
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Fig. 4. Structural and dynamics blob characteristics dependent on the proximity 
to the nuclear periphery. (A) A time series of super-resolution images (left) is sub-
ject to optical flow (right). (B) Blobs of a representative nucleus (see movie S1) are 
labeled by their NND (left), area (middle), and flow magnitude (right). Colors denote 
the corresponding parameter magnitude. (C) The average blob area, (D) NND, 
(E) density, and (F) flow magnitude are shown versus the normalized distance from the 
nuclear periphery (lower x axis; 0 is on the periphery and 1 is at the center of the 
nucleus) and versus the absolute distance (upper x axis). Line and shaded area denote 
the means ± SE from 322 super-resolved images of two cells. Scale bar, (A) and (B): 3 µm. 
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Overall, the spatial cross-correlation between chromatin structure 
and dynamics indicates that the NND between blobs and their mo-
bility stand in a strong mutual, negative relationship. This relationship, 
however, concerns chromatin density variations at the nanoscale, 
but not global spatial density variations such as in euchromatin or 
heterochromatin (14). These results support a model in which re-
gions with high local chromatin density, i.e., larger blobs are more 
prevalent and are mobile, while small blobs are sparsely distributed 
and less mobile (Fig. 5B). Blob density and dynamics in the long-
time limit are, to an unexpectedly large extent, influenced by pre-
ceding chromatin conformations.

The local chromatin density is a key regulator 
of instantaneous chromatin dynamics
The spatial correlations above were only evaluated pairwise, while 
the behavior of every blob is likely determined by a multitude of 
factors in the complex energy landscape of chromatin (19, 22). Here, 
we aim to take a wider range of available information into account 
to reveal the principle parameters, driving the observed chromatin 
structure and dynamics. Using a microscopy-based approach, we 
have access to a total of six relevant structural, dynamic, and global 
parameters, which potentially shape the chromatin landscape in 
space and time (Fig. 6A). In addition to the parameters used above, 
we included the confinement level as a relative measure, allowing the 
quantification of transient confinement (see Materials and Methods). 
We further included the bare signal intensity of super-resolved 
images and, as the only static parameter, the distance from the pe-
riphery since it was shown that dynamic and structural parameters 

show some dependence on this parameter (Fig. 4). We then used 
t-distributed stochastic neighbor embedding (t-SNE) (25), a state-
of-the-art dimensionality reduction technique, to map the six-
dimensional chromatin “features” (the six input parameters) into 
two dimensions (Fig. 6A and see note S3). The t-SNE algorithm 
projects data points such that neighbors in high-dimensional space 
likely stay neighbors in two-dimensional space (25). Visually appar-
ent grouping of points (Fig. 6B) implies that grouped points exhibit 
great similarity with respect to all input features, and it is of interest 
to reveal which subset of the input features can explain the similarity 
among chromatin blobs best. It is likely that points appear grouped 
because their value of a certain input feature is considerably higher 
or lower than the corresponding value of other data points. We 
hence labeled points in t-SNE maps which are smaller than the 
first quartile point or larger than the third quartile point. Data 
points falling in either of the low/high partition of one input fea-
ture are colored accordingly for visualization (Fig. 6D; blue/red 
points, respectively). We then assigned a rank to each of the input 
features according to their nearest-neighbor fraction (n-n fraction): 
Since the t-SNE algorithm conserves nearest neighbors, we de-
scribed the extent of grouping in t-SNE maps by the fraction of 
nearest neighbors, which fall in either one of the subpopulations of 
low or high points (illustrated in fig. S9). A high n-n fraction (Fig. 6C) 
therefore indicates that many points marked as low/high are indeed 
grouped by t-SNE and are therefore similar. The ranking (from 
low to high n-n fraction) reflects the potency of a given parameter 
to induce similar behavior between chromatin blobs with respect to 
all input features.
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Fig. 5. Spatiotemporal correlations between structural and dynamic parameters. (A) The spatial auto- and cross-correlation between parameters were computed for 
different time lags. The graphs depict the correlation over space lag for each parameter pair, and different colors denote the time lag (increasing from blue to red). 
(B) Illustration of the instantaneous relationship between local chromatin density and dynamics. The blob density is shown in blue; the magnitude of chromatin dynamics 
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The relative frequency at which each parameter ranked first pro-
vides an intuitive feeling for the most “influential” parameters in 
the dataset (Fig. 6E). The signal intensity plays a negligible role, sug-
gesting that our data are free of potential artifacts related to the bare 
signal intensity. Furthermore, the blob area and the distance from 
the periphery likewise do not considerably shape chromatin blobs. 
In contrast, the NND between blobs was found to be the main factor 
inducing the observed characteristics in 67% of all-time frames 
across all nuclei. The flow magnitude and confinement level together 
rank first in 26% of all cases (11 and 17%, respectively). These 

numbers suggest that the local chromatin density is a universal key 
regulator of instantaneous chromatin dynamics. Note that no tem-
poral dependency is included in the t-SNE analysis and, thus, the 
feature extraction concerns only short-term (≤360 ms) relation-
ships. The characteristics of roughly one-fourth of all blobs at each 
time point are mainly determined by similar dynamical features. 
Mapping chromatin blobs as marked in Fig. 6 (C and D) back to 
their respective positions inside the nucleus (Fig. 6F) shows that blobs 
with low/high flow magnitude or confinement level markedly also 
grouped in physical space, which is highly reminiscent of coherent 
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motion of chromatin (12). In contrast, blobs with extraordinary low 
or high NND were found interspersed throughout the nucleus, in 
line with spatial correlation analysis between structural and dynamic 
features (Fig. 5). Our results point toward a large influence of the 
local chromatin density on the dynamics of chromatin at the scale 
of a few hundred nanometers and within a few hundred milliseconds. 
At longer time and length scales, however, previous results suggest 
that this relationship is lost (14).

DISCUSSION
With Deep-PALM, we present temporally resolved super-resolution 
images of chromatin in living cells. Our technique identified chro-
matin nanodomains, named blobs, which mostly have an elongated 
shape, consistent with the curvilinear arrangement of chromatin, as 
revealed by structured illumination microscopy (8) with typical axes 
lengths of 45 to 90 nm. A previous study reported ~30-nm-wide 
“clutches of nucleosomes” in fixed mammalian cells using STORM 
nanoscopy (6), while the larger value obtained using Deep-PALM 
may be attributed to the motion blurring effect in live-cell imaging. 
However, histone acetylation and methylation marks were shown 
to form nanodomains of diameter 60 to 140 nm, respectively (9), 
which includes the computed dimensions for histone H2B using 
Deep-PALM.

To elucidate the origin of chromatin blobs, we turned to a simu-
lated chromosome model, which displays chromatin blobs similar 
to our experimental data when seen in a super-resolution recon-
struction. The simulations suggest that chromatin blobs consist of 
continuous genomic regions with an average length of 75 kb, assem-
bling and disassembling dynamically within less than 1 s. Monomers 
within blobs display a distinct TAD-like association pattern in the 
long-time limit, suggesting that the identified blobs represent sub-
TADs. Transient formation is consistent with recent findings that 
TADs are not stable structural elements but exhibit extensive hetero-
geneity and dynamics (3, 5). To experimentally probe the transient 
assembly of chromatin blobs, it would be interesting to track indi-
vidual blobs over time. However, this is a nontrivial task. While the 
size (area/volume) or shape of blobs could be used to establish cor-
respondences between blobs in subsequent frames, the framework 
needs to be flexible enough to allow for blob deformations since 
blobs likely arise stochastically and are not rigid bodies. Achieving 
an even shorter acquisition time per frame in the future could help 
minimize the influence of blob deformations and make tracking 
feasible. The second challenge is to distinguish between disassembly 
and out-of-focus diffusion of a blob. The three-dimensional imaging 
at sufficient spatial and temporal resolution will be helpful in the 
future to overcome this hurdle.

Using an optical flow approach to determine the blob dynamics 
instead, we found that structural and dynamic parameters exhibit 
extended spatial and temporal (cross-) correlations. Structural pa-
rameters such as the local chromatin density (expressed as the NND 
between blobs) and area lose their correlation after 3 to 4 m and 
roughly 40 s in the spatial and temporal dimension, respectively. In 
contrast, chromatin mobility correlations extend over ~6 m and 
persist during the whole acquisition period (≥40 s). Extensive spa-
tiotemporal correlation of chromatin dynamics has been presented 
previously, both experimentally (12) and in simulations (22), but 
was not linked to the spatiotemporal behavior of the underlying 
chromatin structure until now. We found that the chromatin dy-

namics are closely linked to the instantaneous but also to past local 
structural characterization of chromatin. In other words, the instan-
taneous local chromatin density influences chromatin dynamics in 
the future and vice versa. On the basis of these findings, we suggest 
that chromatin dynamics exhibit an extraordinary long memory. This 
strong temporal relationship might be established by the fact that 
stress propagation is affected by the folded chromosome organization 
(26). Fiber displacements cause structural reconfiguration, ultimately 
leading to a local amplification of chromatin motion in local high-
density environments. This observation is also supported by the fact 
that increased nucleosome mobility grants chromatin accessibility 
even within regions of high nucleosome density (27).

Given the persistence at which correlations of chromatin struc-
ture and, foremost, dynamics occur in a spatiotemporal manner, we 
speculate that the interplay of chromatin structure and dynamics 
could involve a functional relationship (28): Transcriptional activity 
is closely linked to chromatin accessibility and the epigenomic state 
(29). Because chromatin structure and dynamics are related, dy-
namics could also correlate with transcriptional activity (14, 30, 31). 
However, it is currently unknown whether the structure-dynamics 
relationship revealed here is strictly mutual or whether it may be 
causal. Simulations hint that chromatin dynamics follows from struc-
ture (22, 23); this question will be exciting to answer experimentally 
and in the light of active chromatin remodelers to elucidate a poten-
tial functional relationship to transcription. Chromatin regions that 
are switched from inactive to actively transcribing, for instance, under-
go a structural reorganization accompanied by epigenetic modifications 
(32). The mechanisms driving recruitment of enzymes inducing 
histone modifications such as histone acetyltransferases, deacetylases, 
or methyltransferases are largely unknown but often involve the as-
sociation to proteins (33). Their accessibility to the chromatin fiber 
is inter alia determined by local dynamics (27). Such a structure-
dynamics feedback loop would constitute a quick and flexible way 
to transiently alter gene expression patterns upon reaction to external 
stimuli or to coregulate distant genes (1). Future work will study 
how structure-dynamics correlations differ in regions of different 
transcriptional activity and/or epigenomic states. Furthermore, prob-
ing the interactions between key transcriptional machines such as 
RNA polymerases with the local chromatin structure and recording 
their (possibly collective) dynamics could shed light into the target 
search and binding mechanisms of RNA polymerases with respect 
to the local chromatin structure. Deep-PALM in combination with 
optical flow paves the way to answer these questions by enabling the 
analysis of time-resolved super-resolution images of chromatin in 
living cells.

MATERIALS AND METHODS
Cell culture
Human osteosarcoma U2OS expressing H2B-PATagRFP cells 
were a gift from S. Huet (CNRS, UMR 6290, Institut Génétique et 
Développement de Rennes, Rennes, France); the histone H2B was 
cloned, as described previously (34). U2OS cells were cultured in 
Dulbecco’s modified Eagle’s medium [with glucose (4.5 g/liter)] 
supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 
penicillin (100 g/ml), and streptomycin (100 U/ml) in 5% CO2 at 
37°C. Cells were plated 24 hours before imaging on 35-mm petri dishes 
with a no. 1.5 coverslip-like bottom (ibidi, Biovalley) with a density 
of 2 × 105 cells per dish. Just before imaging, the growth medium 
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was replaced by Leibovitz’s L-15 medium (Life Technologies) sup-
plemented with 20% FBS, 2 mM glutamine, penicillin (100 g/ml), 
and streptomycin (100 U/ml).

PALM imaging in living cells
Imaging of H2B-PAtagRFP in living U2OS cells was carried out on 
a fully automated Nikon Ti-E/B PALM (Nikon Instruments) micro-
scope. The microscope is equipped with a full incubator enclosure 
with gas regulation to maintain a temperature of ~37°C for normal 
cell growth during live-cell imaging. Image sequences of 2000 frames 
were recorded with an exposure time of 30 ms per frame (33.3 frames/s). 
For Deep-PALM imaging, a relatively low power (~50 W/cm2 at the 
sample) was applied for H2B-PATagRFP excitation at 561 nm and 
then combined with the 405 nm (~2 W/cm2 at the sample) to 
photoactivate the molecules between the states. Note that for Deep-
PALM imaging, switched fluorophores are not required to stay as 
long in the dark state as for conventional PALM imaging. We used 
oblique illumination microscopy (11) combined with total internal 
reflection fluorescence (TIRF) mode to illuminate a thin layer of 
200 nm (axial resolution) across the nucleus. The reconstruction of 
super-resolved images improves the axial resolution only marginally 
(fig. S1, E and F). Laser beam powers were controlled by acoustic 
optic-modulators (AA Opto-Electronic). Both wavelengths were 
united into an oil immersion 1.49-NA (numerical aperture) TIRF 
objective (100×; Nikon). An oblique illumination was applied to 
acquire image series with a high signal-to-noise ratio. The fluores-
cence emission signal was collected by using the same objective and 
spectrally filtered by a Quad-Band beam splitter (ZT405/488/​
561/647rpc-UF2, Chroma Technology) with a Quad-Band emission 
filter (ZET405/488/561/647m-TRF, Chroma Technology). The signal 
was recorded on an electron-multiplying charge-coupled device 
camera (Andor iXon X3 DU-897, Andor Technology) with a pixel 
size of 108 nm. For axial correction, Perfect Focus System was 
applied to correct for defocusing. NIS-Elements software was used 
for acquiring the images.

PALM imaging and PALM data analysis in fixed cells
The same cell line (U2OS expressing H2B-PAtagRFP), as in live-cell 
imaging, was used for conventional PALM imaging. Before fixation, 
cells were washed with phosphate-buffered saline (PBS) (three 
times for 5 min each) and then fixed with 4% paraformaldehyde 
(Sigma-Aldrich) diluted in PBS for 15 min at room temperature. A 
movie of 8000 frames was acquired with an exposure time of 30 ms 
per frame (33.3 frames/s). In comparison to Deep-PALM imaging, 
a relatively higher excitation laser of 561 nm (~60 W/cm2 at the 
sample) was applied to photobleach H2B-PATagRFP and then 
combined with the 405 nm (~2.5 W/cm2 at the sample) for photo-
activating the molecules. We used the same oblique illumination 
microscopy combined with TIRF system, as applied in live-cell imaging.

PALM images from fixed cells were analyzed using ThunderSTORM 
(35). Super-resolution images were constructed by binning emitter 
localizations into 13.5 × 13.5 nm pixels and blurred by a Gaussian 
to match Deep-PALM images. The image segmentation was carried 
out as on images from living cells (see below).

Deep-PALM analysis
The CNN was trained using simulated data following Nehme et al. 
(15) for three labeling densities (4, 6, and 9 emitters/m2 per frame). 
Raw imaging data were checked for drift, as previously described 

(12). The detected drift in raw images is in the range of <10 nm and 
therefore negligible. The accuracy of the trained net was evaluated 
by constructing ground truth images from the simulated emitter 
positions. The structural similarity index is computed to assess the 
similarity between reconstructed and ground truth images (36)

	​ SSIM = ​∑ 
x,y

​ ​​ ​ 
(2 ​​ x​​ ​​ x​​ + ​C​ 1​​ ) (2 ​​ xy​​ + ​C​ 2​​)

  ───────────────   
​(​​ ​​x​ 2​ + ​​y​ 2​ + ​C​ 1​​​)​​​(​​ ​​x​ 2​ + ​​y​ 2​ + ​C​ 2​​​)​​

 ​​	 (1)

where x and y are windows of the predicted and ground truth imag-
es, respectively,  and  denote their local means and SD, respec-
tively, and xy denotes their cross-variance. C1 = (0.01L)2 and C2 = 
(0.03L)2 are regularization constants, where L is the dynamic range 
of the input images. The second quantity to assess CNN accuracy is 
the root mean square error between the ground truth G and recon-
structed image R

	​ RMSE  = ​ √ 
___________

 ​ 1 ─ N ​ ​∑ 
N

​ ​​ ​(R − G)​​ 2​ ​​	 (2)

where N is the number of pixels in the images. After training, 
sequences of all experimental images were compared to the trained 
network, and predictions of single Deep-PALM images were 
summed to obtain a final super-resolved image. An up-sampling 
factor of 8 was used, resulting in an effective pixel size of 108 nm/8 = 
13.5 nm. A blind/referenceless image spatial quality evaluator (37) 
was used to determine the optimal number of predictions to be 
summed. For visualization, super-resolved images were convolved 
with a Gaussian kernel ( = 1 pixel) and represented using a false 
red, green, and blue colormap. The parameters of the three trained 
networks are available at https://github.com/romanbarth/DeepPALM-
trained-models.

Fourier ring correlation analysis
Fourier ring correlation (FRC) is an unbiased method to estimate 
the spatial resolution in microscopy images. We follow an approach 
similar to the one described by Nieuwenhuizen et al. (38). For 
localization-based super-resolution techniques, the set of localiza-
tions is divided into two statistically independent subsets, and two 
images from these subsets are generated. The FRC is computed as 
the statistical correlation of the Fourier transforms of both sub-
images over the perimeter of circles of constant frequency in the 
frequency domain. Deep-PALM, however, does not result in a list 
of localizations, but in predicted images directly. The set of 12 pre-
dictions from Deep-PALM were thus split into two statistically inde-
pendent subsets, and the method described by Nieuwenhuizen et al. 
(38) was applied.

Chromatin blob identification
The super-resolved images displayed isolated regions of accumulated 
emitter density. To quantitatively assess the structural information 
implied by this accumulation of emitters in the focal plane, we 
developed a segmentation scheme that aims to identify individual 
blobs (fig. S3). A marker-assisted watershed segmentation was 
adapted to accurately determine blob boundaries. For this purpose, 
we use the raw predictions from the deep CNN without convolu-
tion (fig. S3A). The foreground in this image is marked by regional 
maxima and pixels with very high density (i.e., those with I > 0.99 Imax; 
fig. S3B). Since blobs are characterized by surrounding pixels of 
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considerably less density, the Euclidian distance transform is com-
puted on the binary foreground markers. Background pixels (i.e., 
those pixels not belonging to any blobs) are expected to lie far away 
from any blob center, and thus, a good estimate for background 
markers are those pixels being furthest from any foreground pixel. 
We hence compute the watershed transform on the distance trans-
form of foreground markers, and the resulting watershed lines 
depict background pixels (fig. S3C). Equipped with fore- and back-
ground markers (fig. S3D), we apply a marker-controlled watershed 
transform on the gradient of the input image (fig. S3E). The marker-
controlled watershed imposes minima on marker pixels, preventing 
the formation of watershed lines across marker pixels. Therefore, 
the marker-controlled watershed accurately detects boundaries and 
blobs that might not have been previously marked as foreground 
(fig. S3F). Last, spurious blobs whose median- or mean intensity is 
below 10% of the maximum intensity are discarded, and each blob 
is assigned a unique label for further correspondence (fig. S3G). The 
area and centroid position are computed for each identified blob for 
further analysis. This automated segmentation scheme performs consider-
ably better than other state-of-the-art algorithms for image segmenta-
tion because of the reliable identification of fore- and background 
markers accompanied by the watershed transform (note S1).

Chromatin blob properties
Centroid position, area, and eccentricity were computed. The 
eccentricity is computed by describing the blobs as an ellipse

	​ E = ​√ 
_

 1 − ​a​​ 2​ / ​b​​ 2​  ​​	 (3)

where a and b are the short and long axes of the ellipse, respectively.

Chromatin blob identification from a computational 
chromatin model
We chose to use a computational chromatin model, recently intro-
duced by Qi and Zhang (19), to elucidate the origin of experimen-
tally determined chromatin blobs. Each bead of the model covers a 
sequence length of 5 kb and is assigned 1 of 15 chromatin states to 
distinguish promoters, enhancers, quiescent chromatin, etc. Starting 
from the simulated polymer configurations, we consider monomers 
within a 200-nm-thick slab through the center of the simulated 
chromosome. To generate super-resolved images as those from 
Deep-PALM analysis, fluorescence intensity is ascribed to each 
monomer. Monomer positions are subsequently discretized on a 
grid with 13.5-nm spacing and convolved with a narrow point-
spread function, which results in images closely resembling experi-
mental Deep-PALM images of chromatin. Chromatin blobs were then 
be identified and characterized as on experimental data (Fig. 2, A and B). 
Mapping back the association of each bead to a blob (if any) allows us 
to analyze principles of blob formation and maintenance using the 
distance and the association strength between each pair of mono-
mers, averaged over all 20,000 simulated polymer configurations.

Radial distribution function
The radial distribution function g(r) (also pair correlation function) 
is calculated (in two dimensions) by counting the number of blobs 
in an annulus of radius r and thickness dr. The result is normalized 
by the bulk density  = n/A, with the total number of blobs n and, A, 
the area of the nucleus, and the area of the annulus, 2r dr

	​ dn(r ) =  · g(r ) · 2r dr​	 (4)

Quantification of chromatin dynamics
Super-resolved images of chromatin showed spatially distributed 
blobs of varying size, but the resolved structure is too dense for 
state-of-the-art single-particle tracking methods to track. Further-
more are highly dynamic structures, assembling and dissembling 
within one to two super-resolved frames (Fig. 3D), which makes a 
single-particle tracking approach unsuitable. Instead, we used a 
method for dynamics reconstruction of bulk macromolecules with 
dense labeling, optical flow. Optical flow builds on the computation 
of flow fields between two successive frames of an image series. The 
integration of these flow fields from super-resolution images results 
in trajectories displaying the local motion of bulk chromatin with 
temporal and high spatial resolution. Further, the trajectories are 
classified into various diffusion models, and parameters describing 
the underlying motion are computed (14). Here, we use the effec-
tive diffusion coefficient D (in units of m2/s), which reflects the 
magnitude of displacements between successive frames (the velocity 
of particles or monomers in the continuous limit) and the anomalous 
exponent  (14). The anomalous exponent reflects whether the dif-
fusion is free ( = 1, e.g., for noninteracting particles in solution), 
directed ( > 1, e.g., as the result from active processes), or hindered 
( < 1, e.g., because of obstacles or an effective back-driving force). 
Furthermore, we compute the length of constraint Lc, which is 
defined as the SD of the trajectory positions with respect to its 
time-averaged position. Denoting R(t; R0), the trajectory at time t 
originating from R0, the expression reads Lc(R0) = var(R(t; R0))1/2, 
where var denotes the variance. The length of constraint is a measure 
of the length scale explored of the monomer during the observation 
period. A complementary measure is the confinement level (39), 
which computes the inverse of the variance of displacements within 
a sliding window of length : C ∝ / var(R(t; R0)), where the sliding 
window length is set to four frames (1.44 s). Larger values of C 
denote a more confined state than small ones.

Spatial correlation for temporally varying parameters
The NND and the area, as well as the flow magnitude, were calculated 
and assigned to the blobs’ centroid position. To calculate the spatial 
correlation between parameters, the parameters were interpolated 
from the scattered centroid positions onto a regular grid spanning 
the entire nucleus. Because not every pixel in the original super-
resolved images is assigned a parameter value, we chose an effective 
grid spacing of five pixels (67.5 nm) for the interpolated parameter 
maps. After interpolation, the spatial correlation was computed 
between parameter pairs: Let r = (x, y)T denote a position on a regular 
two-dimensional grid and f(r, t) and g(r, t) two scalar fields with 
mean zero and variance one, at time t on that grid. The time series 
of parameter fields consist of N time points. The spatial cross-
correlation between the fields f and g, which lie a lag time  apart, is 
then calculated as

	​ C(𝛒, τ) = ​ 1 ─ N ​ ​∑ 
t
​ ​​ ​ 

​∑ x,y​ ​​ f(r, t) g(r + 𝝆, t + τ)
  ──────────────  

​∑ x,y​ ​​ f(r, t) g(r, t + τ)
 ​​	  (5)

where the space lag  is a two-dimensional vector  = (x, y)T. The 
sums in the numerator and denominator are taken over the spatial 
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dimensions; the first sum is taken over time. The average is thus 
taken over all time points that are compliant with time lag . Sub-
sequently, the radial average in space is taken over the correlation, 
thus effectively calculating the spatial correlation C(, ) over the 
space lag ​ = ​√ 

_
  ​x​​ 2​ +  ​y​​ 2​ ​​. If f = g, then the spatial autocorrelation is 

computed.

Spatial correlation for static parameters
We denote as global parameters those that reflect the structural and 
dynamic behavior of chromatin spatially resolved in a time-averaged 
manner. Examples involve the diffusion constant, the anomalous 
exponent, the length of constraint, but also time-averaged NND 
maps, etc. (fig. S8). Those parameters are useful to determine 
time-universal characteristics. The spatial correlation between those 
parameters is equivalent to the expression given for temporally 
varying parameters when the temporal dimension is omitted, effec-
tively resulting in a correlation curve C().

t-distributed stochastic neighbor embedding
The distance from the periphery, intensity, their NND, area, flow 
magnitude, and confinement level of each identified blob form the 
six-dimensional–input feature space for t-SNE analysis. The 
parameters for each blob (n = 3,260,232; divided into subsets of 
approximately 10,000) were z-transformed before the t-SNE analysis. 
The t-SNE analysis was performed using MATLAB and the Statistics 
and Machine Learning Toolbox (Release 2017b; The MathWorks 
Inc., Natick, MA, USA) with the Barnes-Hut approximation. The 
algorithm was tested using different distance metrics and perplexity 
values and showed robust results within the examined ranges (note S3 
and fig. S10).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/27/eaaz2196/DC1

View/request a protocol for this paper from Bio-protocol.
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