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Abstract

E-commerce is significantly growing amongst nowadays society and a lot of parcels have to be moved from
a depot to the locations specified by the end-users. Couriers need to serve a bigger demand and it is often
the case that receivers are not at the location when the parcels are delivered, which has an impact on the
efficiency of the delivery routing process.

The use of parcel lockers is seen as a good option for improving the problem of failed deliveries. However,
implementing a parcel locker network has an impact on both couriers and receivers, which still prevents
couriers from directly adopting this technology. The aim of this research is to develop a new tool that helps
couriers analyse the impact of using a parcel locker network taking also into account receiver preferences to
pick up parcels from lockers.

This research presents an optimization model combined with a choice behaviour model in order to determine
the trade-offs between delivering to parcel lockers or to the end-users, in terms of service level and total
transportation costs. Specifically, this trade-offs are evaluated with a Pareto Frontier.

In order to solve this model for large instances, an Adaptive Large Neighbourhood Search algorithm has been
adapted with operators and criteria specific for the problem presented. Computational experiments were
carried out in a set of the Solomon instances and show that the problem can be solved efficiently with the
proposed algorithm. Moreover, the algorithm was also applied in a small delivery area in Rotterdam, showing
the sensitivity of the model to the preferences of the receivers in the area and directing the next steps to
further research this aspect.
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1
Introduction

E-commerce is significantly growing amongst nowadays society and a lot of parcels have to be moved from
a depot to the locations specified by the receivers. This means that the business to consumer (B2C) couriers
need more vehicles and longer travelling distances to serve a bigger demand.

Moreover, it is often the case that the receiver is not at the location when the parcels are delivered and this
has an impact on the efficiency of the delivery routing process. If this is known in advance, the B2C courier
could save some traveling distance and time trying to meet that receiver.

There are different ways in which this issue can be tackled, for example, telling the receiver in advance the
delivery time period or asking the receiver beforehand during what time is possible to find him/her at the lo-
cation. However, there is always some probability of the receiver not being at the location at the given period
of time. For this reason, some research (Pan, Giannikas, Han, Grover-Silva, & Qiao, 2017; Voccia, Campbell,
& Thomas, 2013; Yang, Strauss, Currie, & Eglese, 2016) is already being done trying to take into account these
probabilities when defining the delivery routes.

Another line of research is focused on the Physical Internet concept (Montreuil, Meller, & Ballot, 2012) and
the use of parcel lockers (Deutsch & Golany, 2018; Morganti, Seidel, Blanquart, Dablanc, & Lenz, 2014). Us-
ing these parcel lockers is considered to be positive because the B2C couriers can serve multiple receivers
at a single point, which reduces travelling costs and at the same time eliminates the problem of failed deliv-
eries. On the receiver side, having to pick up the parcel from the locker means a little extra effort which is
compensated with the flexibility of doing it whenever it is more convenient for them.

Using these parcel lockers can make it easier to allow for a Self-Organising Logistics System (SOLS) (Pan,
Trentesaux, & Sallez, 2017) to occur, as these lockers would represent points where different type of agents
can enter or leave the system to move parcels with a set of simple rules, without the need of interaction.
For example, using parcel lockers makes it easier to have a system where crowd-sourcing can take place, as
occasional couriers could easily pick-up parcels from one locker and move it to another locker or even to the
end-receiver (Raviv & Tenzer, 2018).

Taking all the aforementioned into account and focusing on the transition to Self-Organizing Logistics(SOL),
the aim of this research is to develop a new tool that helps couriers see the impact of using a parcel locker
network taking into account preferences of receivers to pick up parcels from lockers.

1.1. Context
A new system is defined to allow for SOL in the last mile deliveries and overcome the challenges mentioned
in the paragraphs above. This system is based on a parcel locker network, where different agents (couriers or
people) take care of moving the parcels through the network. Moreover, in order to reduce kilometers driven
and have a more sustainable last mile delivery, receivers are expected to pick up the parcels from the lockers.
However, the option of home delivery is still considered as a possibility. For this reason, different levels of
vehicles are defined:

1



2 1. Introduction

1. Vehicles that move the parcels from the depot to the lockers.

2. Vehicles that move the parcels between lockers.

3. Vehicles that move the parcels from the lockers to the end-receivers.

Couriers are always in charge of the first level of vehicles, whereas in the other levels, multiple agents can enter
the system. For example, crowd-shipping can help to move parcels of receivers who would like to change their
delivery destination once the parcel is already at the locker, or bringing the parcel from the locker to the end-
receiver. Also, self-driving autonomous delivery robots can be part of the third level of vehicles. A sketch of
this system is presented in Figure 1.1.

Figure 1.1: Sketch of the system defined, where the different levels of the vehicles are represented.

Another important thing to take into account in this new system is the capacity of the locker infrastructure.
For this reason, the PI-boxes defined by Faugère and Montreuil (2017) are going to be considered for this
research. Within the context of PI, Faugère and Montreuil (2017) present a modular grid-wall to which PI-
boxes of different sizes can be attached. These PI-boxes can be described as small containers of different
sizes with the parcels inside. Their capacity modularity is seen as a better option than having rigid lockers.

As this new system is not yet existent, and it is common to define transition steps towards a big change, this
research assumes that the courier performs part of the 3 levels, delivering parcels to lockers but also to homes.

Using lockers allows for an aggregation of the demand, which is expected to reduce the total travel costs.
However, not all receivers are willing to go to any locker and therefore, the utility of the receiver picking up a
parcel in a specific locker is an important factor to take into account. For this reason, the main challenge of
this problem is basically incorporating these utilities in the decision making process.

Specifically, this research aims to find the trade-offs between delivering to parcel lockers or at homes, in terms
of service level offered, which is defined as the average of the probabilities of each receiver to go to the parcel
locker where its parcel is being delivered.

Hence, the problem is reduced to a B2C courier which has to distribute parcels from a depot to a set of parcel
lockers and homes. This courier owns a depot with an homogeneous fleet available to cover the daily demand
and there is an existing network of parcel lockers with limited capacity (as the PI-boxes will take some time
to be implemented) which can be rented by the courier. Therefore, every day, decisions about the tactical
planning activities have to be made, as the specific number of vehicles and the lockers to rent have to be
determined together with the delivery routes and all these taking into account the preferences of the receivers
for certain lockers.
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1.2. Research & Societal Relevance
The novelty of this research lies into defining a new system for the last mile deliveries within the context
of physical internet and self-organising logistics. Both these concepts are still under study and some steps
have to be done in order to see what are the implications of applying such systems and what would be the
transition from the current model to the new concept of logistics. This research investigates a possible step
towards allowing parcel deliveries to occur in an open network where different agents can work in order to
achieve a common goal, which is moving the parcels to the end-receiver.

Specifically, this research wants to solve a routing problem to deliver parcels from a depot to parcel lockers
with the aim of maximizing the utilities of the receivers going to the lockers. The objective of this type of
problems is different in the existing literature, where the main goal is to minimize the total travel costs.

The societal relevance of this research is related to having a more sustainable and efficient last mile delivery.
If it can be shown that using a different system can help to reduce the kilometers driven and the number
of delivery vehicles, not only couriers will benefit by reducing their operational costs but society will benefit
from having less congested cities, with less pollution and therefore reducing the impact of humanity in the
climate change, while allowing for e-commerce to take place.

1.3. Research Questions
The main research question is formulated as follows:

What is the impact of implementing a network of parcel lockers for the last mile delivery on couriers’ and
receivers’ costs?

Some sub-research questions are defined below to help to answer the main research question:

1. How to take receiver preferences into account when modelling the routing in a parcel locker network?

A new conceptual and mathematical model will be defined to combine a vehicle routing problem (VRP)
with a choice behaviour model.

2. How to represent the effect of providing a specific service level on total transportation costs?

Since multiple solutions are possible at different combinations of service level and total transportation
costs for a given network, a function will be used to represent the best solutions.

3. How to solve the proposed optimization model efficiently for large instances?

In general, VRP for large instances are too complex to be exactly solved in a short time period. An
heuristic algorithm will be proposed to reduce the computation time required.

4. What is the trade-off between accuracy and computation efficiency of the solution method?

A number of synthetic data sets will be used to compare the heuristic algorithm with exact methods in
terms of computational time and gap with the lower bound solutions.

5. What is the effect of the number and capacity of lockers, the renting cost and the type of receivers on the
total transportation costs and service level?

Scenarios have to be build in which the number, capacity and renting cost of the lockers are varied.
Also, other scenarios will be build where the choice behaviour model is adapted to represent different
types of receivers. The trends observed will help to see the effects of these parameters in the total
transportation costs and the service level.





2
Literature review

This section introduces the concepts of Physical Internet and Self-Organising Logistics with the aim to remark
the relation between the two. Later on, both concepts are key to explain the reasons for using parcel lockers
in the last mile delivery and a literature review on parcel lockers is presented at the end.

2.1. Physical Internet
The current global transportation network allows society to get products from all over the world within a
short time. However, this is not always done in the most efficient and sustainable way. For this reason, new
concepts like the Physical Internet (PI) are emerging in order to redefine the way goods are transported from
one place to another.

PI is a new concept that aims to define a new global logistics system based on the way digital internet works.
Montreuil (2011) is generally understood to be the first to talk formally about this concept, explaining that the
PI idea or concept initially appeared as a way to face the Global Logistics Sustainability challenge. This chal-
lenge consists essentially in finding a way to transport, store, supply and use physical objects in a sustainable
way in all of its senses: economically, socially and environmentally. Montreuil (2011) reports thirteen symp-
toms that characterise the unsustainability of the logistics around the world, which are presented in Table 2.1
.

Table 2.1: Unsustainability symptoms (Montreuil, 2011).

Montreuil (2011) describes the basic characteristics of the PI on the basis of the symptoms in Table 2.1. For
example, to improve the reliability (and speed) of intermodal transport symptom nr.9 he proposes to “en-
capsulate merchandise in world-standard smart modular containers” and “universal interconnectivity” as
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6 2. Literature review

basic characteristics of PI. Similarly, a more robust and secure network symptom nr.11 would be solved with
“distributed multi-segment intermodal transport” and an “open global supply web”.

Later on, Montreuil et al. (2012) use a web as analogy for the PI: a space where actors and networks are in-
terconnected in an open and global way. They define the PI as “an open global logistics system founded on
physical, digital and operational interconnectivity through encapsulation, interfaces and protocols”. In this
way, logistic chains are accessible from any place worldwide, allowing any actor to use any network.

The main idea is that each parcel that has to be transported will carry enough information to identify the
product and to route it to the proper destination. In this way, when parcels move from one network to an-
other, the new agent or system moving it will have all the necessary information. This allows for a higher
robustness of the system, as the parcel can move adapting to different disruptions occurring in real time. Of
course, to make these interchanges within networks possible, a standardization of the process is required.
For this reason, Montreuil (2011) also describes the concept of PI-containers, which are built up from smaller
unitary PI-containers of different sizes.

PI is still quite a new concept and is still under development by various experts. In fact, Faugère and Montreuil
(2017) try to conceptualise this concept within the last mile deliveries, which can be related to symptom nr.10
in Table 2.1 (“Getting things in and out of a city is a nightmare”). They assume that parcels are not delivered
directly to the end-customers but to a sort of lockers, PI-lockers. Specifically, they define a grid-wall (see
Figure 2.1) where the previously mentioned unitary PI-containers with the parcels inside can be attached.

Figure 2.1: Illustration of the grid-wall and PI-containers attached (Faugère & Montreuil, 2017).

The following section introduces the concept of SOLS in relation with PI. For example, the open network of
the PI can be directly linked to the concept of Self-Organizing Logistics.

2.2. Self Organising Logistics
Even though only limited literature about SOLS is available, it is not difficult to relate its main characteristics
to PI. In particular, it can be linked with solutions to some of the last unsustainable symptoms in Table 2.1.

Pan, Trentesaux, and Sallez (2017) define SOLS as an open, intelligent and holonic logistics system that aims
to harmonise and lead individuals within the system towards a system-wide common goal, without signifi-
cant human intervention from outside. In the same direction, Bartholdi, Eisenstein, and Lim (2009) compare
the SOLS with the way ants and bees behave, each of them doing a small task in order to achieve a common
goal.

Pan, Trentesaux, and Sallez (2017) try to give a deeper insight on the functionalities of such a system and
further describe its main characteristics:

• openness,

• intelligence, and

• decentralised control.
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Openness refers to having a system without rigid boundaries that allows agents to enter, interact or leave the
system when they want. For this to happen, connectivity between the agents and the environment needs to
be possible. Besides, adaptation is crucial for a good coordination between them as the system also needs to
be able to cope with disruptions. For example, in the case of deliveries, being able to reconfigure and fulfill
new requests. All this is common within the PI, which in fact is presented as an open global network.

Intelligence enhances the ability of the agents to make decisions and interact with other agents or the envi-
ronment. Agents should be able to collect, store and process information in order to make a decision and
later execute it by acting autonomously. This intelligence can also be related to PI, as each parcel is supposed
to store information, which is transmitted to the agents that are going to move them and interact with other
agents in order to be more efficient. However, in the case of the PI, the agents do not have to act autonomously
per se.

Decentralised control is based on a holonic multi-agent system, where a set of rules and protocols are defined
in order to allow an effective communication to achieve a common goal. This is the main difference that SOLS
has with PI, where decisions can also be taken with a centralised or hierarchical system control.

Taking into account the affinity of SOLS with PI, any step that helps defining SOLS also helps to define PI. For
example, Quak, Kempen, and Hopman (2018) aim to get more insights in the development of such a SOLS.
Their aim is to apply some of the previous SOLS ideas into practice. Specifically, in the way parcels are moved
within last-mile deliveries in distribution centers and later on delivered to the end customers. The results of
this project will help to see the possible effects towards SOLS and PI.

2.3. Parcel Lockers
Following on the previous two sections, the use of parcel lockers in the last mile delivery can make it easier
to allow for a SOLS to occur. These parcel lockers, would represent points where different type of agents can
enter or leave the system to move parcels with a set of simple rules, without the need of interaction. Moreover,
a modular system of parcel lockers, could easily be related to the grid-wall of unitary PI-container described
before.

In this section, the description of a parcel locker is presented together with the main insights given in the cur-
rent literature, which includes studies regarding the willingness of the end-user to use them but also studies
which define delivery networks including them.

As defined by Deutsch and Golany (2018), a parcel locker is a group of electronic lockers attached to each
other that can be easily opened with a code. The idea is to place them in locations accessible during the most
hours a day, such as train stations or supermarkets, so that the consumers have total freedom to pick their
parcels at any moment of the day.

Many companies have already implemented the use of parcel lockers for the last mile delivery in various
countries. Iwan, Kijewska, and Lemke (2016) state that InPost has installed more than 3000 parcel lockers
in different countries. In similar terms, Morganti et al. (2014) remark that DHL has also implemented in
Germany 2500 parcel lockers, which allows them to state that 90% of the German population is within 10
minutes of a parcel locker. Deutsch and Golany (2018) also mention the use of parcel lockers from Amazon
and the Canada Post. In the Netherlands, van Duin, Wiegmans, Arem, and van Amstel (2019) present a pilot
project of PostNL in Amsterdam.

On the one hand, the main advantage of delivering the parcels to these parcel lockers is that they allow couri-
ers to reduce the number of failed deliveries, as the customers do not have to be present at the moment of
delivery. At the same time they can consolidate the demand into a single point, which reduces the travel dis-
tance needed and therefore the routing costs. Moreover, parcel lockers are usually placed in locations opened
24h a day, giving consumers more flexibility. Not to forget, they also help to diminish congestion in cities and
make the last mile delivery more environmentally friendly (Deutsch & Golany, 2018; Iwan et al., 2016; Yuen,
Wang, Ng, & Wong, 2018).

On the other hand, the main consequence of parcel lockers is that consumers are the ones covering part of the
last mile delivery. Therefore, their willingness to go to the locker is an important factor to take into account.
For this reason, there is many research trying to find out more about the opinion of the consumers about this
innovative solution to improve the last mile delivery.
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Nguyen, de Leeuw, and Dullaert (2018) determine factors that are important for identifying the behaviour of
online consumers. Vakulenko, Hellström, and Hjort (2018) studied the value of parcel lockers for consumers
in Sweden, they mention that consumer value is created when a service of delivery or pick-up takes place
and they conclude that future interactions with the last mile delivery services are affected by the meaning
of previous services. Iwan et al. (2016) did a survey about the use of parcel lockers and concluded that their
location has an important effect on their efficiency. Their survey gives an overview of parcel locker users in
Poland.

In line with Iwan et al. (2016), Lachapelle, Burke, Brotherton, and Leung (2018) get some insights on the
locations of parcel lockers in Australia. They identify clusters within the current locations and state that the
majority of them are located on commercial streets and shopping centres. Deutsch and Golany (2018) focus
on the design of a parcel-network, which in the end, is also related to determine the best location of the
lockers. However, their research is from a quantitative perspective. They develop a mathematical model to
determine how many parcel lockers to open, where to locate them in order to maximise the profit of the
operating courier.

Following on the quantitative research on lockers, Veenstra, Roodbergen, Coelho, and Zhu (2018) define a
location-routing problem for delivering health care medication in the Netherlands. They determine which
lockers to open and the routes to visit the lockers and the routes that visit the patients, minimizing the routing
and opening costs.

2.4. Contribution to literature
In line with Veenstra et al. (2018), this research wants to solve a routing problem to deliver parcels from a de-
pot to parcel lockers or homes with the aim of reducing the impact on costs for the courier and the receivers.
Therefore, this research contributes to the current literature by taking into account the preferences of the re-
ceivers when deciding the routes. The objective of this type of problems is different in the existing literature,
where the main goal is to minimize the total travel costs for the couriers (Deutsch & Golany, 2018; Veenstra et
al., 2018).

Specifically, this research aims to combine a vehicle routing problem with a choice behaviour model, to de-
liver parcels from a depot to parcel lockers or homes, minimizing the total transportation costs and maximiz-
ing the utilities of receivers going to parcel lockers.

Besides, given the nature of the VRPt’s, solving them with an exact method usually requires a high com-
putational time which leads to the necessity of using heuristics, as shown by many references presented
in Lahyani, Khemakhem, and Semet (2015). This research uses the Adaptive Large Neighbourhood Search
(ALNS) heuristics (Pisinger & Ropke, 2007) for solving the optimization model and contributes with the de-
sign of repair and destroy operators specifics for this problem, which are different from the ones existing in
literature.

Lastly, this research aims at developing an algorithm able to solve the problem for large instances efficiently
and able to be implemented in real networks, helping couriers take tactical decisions about the specific lock-
ers to rent and receivers to visit together with the delivery routes.



3
Conceptual Model

3.1. Problem Description
The model from Veenstra et al. (2018) is used as a reference for developing the model presented in this
study. There are two main differences for this research: vehicle routes can visit both, parcel lockers and end-
consumers; and the optimization model is combined with a choice behaviour model, in order to account for
the preferences of the receivers to the different parcel lockers available.

The problem consists of a B2C courier which has to distribute a set of parcel requests (n ∈ R) from a depot to
a set of parcel lockers (l ∈ L) or to several home locations. Specifically, the depot has an homogeneous fleet of
vehicles (k ∈ K) with capacity QV available to cover the daily demand. The parcel requests are assumed to be
known in advance .

There is an existing network of lockers with a limited capacity QL which can be rented by the B2C courier, who
has to determine every day which lockers to use. Therefore, every day, decisions about the tactical planning
activities have to be done, as the specific lockers to rent have to be determined together with the delivery
routes.

The renting costs of the lockers are directly related to the amount and size of the parcels delivered to the
lockers every day. For simplicity, a fixed cost per request is assumed.

As not all receivers are willing to go to all the lockers, the utility of a receiver picking up a parcel in a spe-
cific locker is an important factor to take into account. Preferences of receivers are described in terms of
probabilities to go to a certain locker. These probabilities, as described later on, are a function of the utilities.

Following this, the service level of a courier can be understood as the degree to which the courier adjusts to
the preferences of the receivers. In mathematical terms, the service level (SL = ∑

i∈R Pi j /n) offered by the
courier is defined as the average of the probability of each receiver to go to the locker where its parcel is being
delivered.

Therefore, in order to give a better service level, the aim of the courier will be to deliver the parcel to the locker
giving the maximum utility to the receiver or to deliver the parcel at their home. This reasoning is in line with
the utility maximization theory (McFadden, 2001).

The probability Pi j of a receiver i to go to one of the lockers j will be determined using a discrete choice
model, the Multinomial Logit (MNL), which has already been used in literature in the context of parcel lockers
by Collins (2015); Lyu and Teo (2019); Oliveira, Morganti, Dablanc, and Oliveira (2017), where they tried to
model the preferences of the people to go to the parcel lockers. Pi j is defined by the MNL model by Pi j =
eUi j /(

∑
j∈L eUi j + eUH ). Where Ui j is the utility of receiver i to go to locker j and UH is the utility of home

delivery.

The utility functions from Lyu and Teo (2019) are going to be used for the MNL model. Lyu and Teo (2019)
estimated the parameters for two different utility Ui j functions depending on whether the receiver is located
in a residential area or in a commercial area. The attributes included in them are travel distance di j and type

9



10 3. Conceptual Model

of locker t y pe j (t y pe j = 1 if locker j is located nearby a shopping center and a train/subway/tram station).
They defined the attraction Ai j of a locker j to receiver i as the exponential of the utility function. The utility
functions presented below were estimated with data of an area in Singapore and the lockers were located in
distances smaller than 1 km. They also estimated the attraction AH values of not going to any locker (home
delivery) for both type of receivers.

Resi denti al ar ea : Ui j = log (Ai j ) =−4.59 d 1/3
i j +1.5 t y pe j , AH = 7.06

Comer ci al ar ea : Ui j = log (Ai j ) =−4.47 d 1/3
i j +0.52 t y pe j , AH = 17.79

Each parcel request has a consideration set of lockers for the receiver Li ⊆ L. This set of lockers specific for
each receiver is used to limit the choices available to the receivers, as it is not expected that they want to go
to lockers which are located further away. Therefore, each consideration set of lockers is going to be limited
to the lockers that give at least a minimum attraction value of Ami n .

There is a service time s associated to the time spend to put a parcel in a locker, which has to be taken into
account when determining the total routing time and cannot exceed a specific amount of hours Tmax (driver
working hours).

There are two main objectives in this problem, 1) minimize the total transportation costs (TTC) of the courier
while 2) maximizing the utilities of each receiver. In most cases these are conflicting objectives because de-
livering the parcels to a locker where only a few people is willing to go comes with an additional cost for the
courier. Therefore, in order to balance the two objectives, obtaining a Pareto frontier (Sun & Lang, 2015) is
proposed.

The problem will first be solved with each of the objective functions independently. The results for the sec-
ond objective function in both cases are used to define the upper and lower boundaries of the Pareto frontier.
Then, the problem is solved with only the first objective function and adding the second objective as a con-
straint limited by an ε value. This ε is a value between the two boundaries previously found. In order to obtain
the Pareto Frontier, the difference between the two boundaries is divided by a number of intervals in order to
obtain multiple ε values with which to solve the problem.

3.2. Graphical Example
In this section, a small example created with the Solomon instances R101 is presented. The transportation
network consists of a depot and 5 parcel lockers available to cover a demand of 10 receivers. Therefore, the
problem is represented with a graph of 16 nodes in total, where the blue node is the depot, the light green
nodes are the parcel lockers and the dark green nodes are the receivers.

Figure 3.1 shows the solution of the problem solved for the first objective function. As can be seen in the
figure, the vehicle routes only visit lockers. This is expected to happen because the objective is to minimise
the total transportation costs. Contrarily, in figure 3.3, only receivers are visited, which happens as a result of
solving the problem with the second objective function.

Figure 3.2 illustrates another solution, where the trade-offs between the previous two cases can be observed.
In this case, the problem is solved for first objective function and having the second objective as a constraint
delimited by an ε. As a result, some receivers are assigned to lockers but others have home delivery.

Figure 3.1: Solution obtained
minimising the TTC.

Figure 3.2: Solution obtained
minimising the TTC with an ε

constraint.

Figure 3.3: Solution obtained
maximizing the utilities of the

receivers.
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3.3. Mathematical Model
This problem is defined under a directed graph G (N , A) where N = R ∪ L ∪O is the set of nodes and A =
A(R)∪ A(O)∪ A(L) is the set of arcs. A(R) = {(i , j )|i ∈ R ∪L ∧ j ∈ R ∪L}; A(O) = {(i , j )|i ∈ {0}∧ j ∈ R ∪L ∨ i ∈
R ∪ L ∧ j ∈ {1}}; A(L) = {(i , j )|i ∈ R ∧ j ∈ Li }. The sets R and L correspond to all the receivers and lockers
locations and set O = {0,1} includes two nodes that correspond to the depot (departure, arrival). Each arc
(i , j ) ∈ A has associated some cost, which is travel distance di j .

Sets

O Set of depot nodes. {0,1}
L Set of potential lockers. {2, ..., l +1} l ∈N
R Set of receivers. {l +2, ..., l +n +2} l ∈N,n ∈N
Li Consideration set of lockers for receiver i. { j ∈ L|Ai j ≤ Ami n ⊆ L} i ∈ R
K Set of vehicles. {1, ...,k} k ∈N

Parameters

QV Capacity of the vehicles
QL Capacity of the lockers
Ckm Cost of driving 1 km
Cr ent Cost of renting a locker
Tmax Maximum route duration
Ami n Minimum attraction considered for the subset Li
s Service time per parcel
di j Distance of moving from node i to j
v Velocity of the vehicles
Ai j Attraction of locker j to receiver i
AH Null attraction or Home delivery attraction
M Large constant

Decision Variables

y j Binary variable equal to 1 if locker j is rented.
wi Binary variable equal to 1 if receiver i has home delivery.
zi j Binary variable equal to 1 if receiver i is assigned to locker j.
g k

i Binary variable equal to 1 if parcel from request i is delivered by vehicle k.
r k

j Binary variable equal to 1 if node j is visited by vehicle k.

xk
i j Binary variable equal to 1 if vehicle k moves from i to j.

t k
j Accumulated time of vehicle k having served node j.

There are two objective functions, Function 3.1 minimizes the total transportation costs, which includes the
travelling distance costs and the rent of the lockers and Function 3.2 maximizes the attraction of the receivers,
which comes from a locker delivery or a home delivery.

mi ni mi ze
∑

(i , j )∈A
Ckm di j xk

i j +
∑
i∈R

∑
j∈Li

Cr ent zi j (3.1)

maxi mi ze
∑
i∈R

∑
j∈Li

Ai j zi j +
∑
i∈R

AH wi (3.2)

Subject to:

zi j ≤ y j ∀i ∈ R, j ∈ Li (3.3)

y j ≤
∑

(i , j )∈A(L)
zi j ∀ j ∈ L (3.4)∑

j∈Li

zi j +wi = 1 ∀i ∈ R (3.5)

Constraints (3.3) and (3.4) make sure that the receivers are only assigned to lockers that are rented and lockers
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can only be rented if there is at least one receiver assigned to it. Constraint (3.5) ensures that each receiver is
either assigned to one locker or has home delivery.

∑
j∈R∪L

xk
0 j −

∑
j∈R∪L

xk
j ,1 = 0 ∀k ∈ K (3.6)∑

j∈R∪L∪{1}
xk

i j −
∑

j∈R∪L∪{0}
xk

j i = 0 ∀k ∈ K , i ∈ R ∪L (3.7)∑
j∈R∪L

xk
0 j ≤ 1 ∀k ∈ K (3.8)

t k
j ≥ t k

i + di j

v
+ s

∑
n∈C

g k
n −M(1−xk

i j ) ∀i ∈ R ∪L∪ {0}, j ∈ R ∪L,k ∈ K (3.9)

t k
1 ≥ t k

i + di j

v
−M(1−xk

i j ) ∀i ∈ R ∪L,k ∈ K (3.10)

t k
1 ≤ Tmax ∀k ∈ K (3.11)

t k
0 = 0 ∀k ∈ K (3.12)

The flow conservation constraints are included in constraints (3.6 - 3.8). The consistency of the time variables
is ensured by constraints (3.9 - 3.12), which at the same time eliminate possible subtours. Constraint (3.11)
makes sure that the route duration does not exceed the working time Tmax .

∑
i∈R∪L∪{0}

xk
i j = r k

j ∀ j ∈ R ∪L,k ∈ K (3.13)

r k
j ≤ y j ∀ j ∈ L,k ∈ K (3.14)

y j ≤
∑

k∈K
r k

j ∀ j ∈ L (3.15)∑
k∈K

∑
j∈R∪L∪{1}

xk
i j = wi ∀ j ∈ R (3.16)

g k
i ≥ zi j + r k

j −1 ∀k ∈ K , i ∈ R, j ∈ Li (3.17)

g k
i ≥ wi + r k

i −1 ∀k ∈ K , i ∈ R, j ∈ Li (3.18)∑
k∈K

g k
i = 1 ∀i ∈ R (3.19)

Constraints (3.13 - 3.19) are the linking constraints. Specifically, constraints (3.14) and (3.15) enforce that
vehicles only visit lockers that are rented and constraint (3.16) ensures that receivers with home delivery are
visited by a vehicle. Constraint (3.19) forbids that a parcel for a receiver is carried for more than one vehicle.

∑
i∈R

g k
i ≤QV ∀k ∈ K (3.20)∑

i∈R| j∈Li
zi j ≤QL ∀ j ∈ L (3.21)

y j ∈ {0,1} ∀ j ∈ L (3.22)

wi ∈ {0,1} ∀i ∈ R (3.23)

zi j ∈ {0,1} ∀i ∈ R,∀ j ∈ Li (3.24)

g k
i ∈ {0,1} ∀i ∈ R ∪L,∀k ∈ K (3.25)

r k
j ∈ {0,1} ∀ j ∈ R ∪L,∀k ∈ K (3.26)

t k
j ≥ 0 ∀ j ∈ N ,∀k ∈ K (3.27)

xk
i j ∈ {0,1} ∀i ∈ N \{1},∀ j ∈ N \{0},∀k ∈ K (3.28)

Finally, constraints (3.20) and (3.21) enforce the vehicle and lockers capacity restrictions, respectively and
constraints (3.22 - 3.28) define the nature and range of the decision variables.



4
Multi-objective Adaptive Large

Neighborhood Search

The Mathematical Model presented in Section 3.3 is not possible to be solved for large instances within a short
time period. Therefore, an Adaptive Large Neighborhood Search (ALNS) heuristic is proposed as a solution
method.

4.1. Adaptive Large Neighbourhood Search
The ALNS described by Pisinger and Ropke (2007) is an adaptation of the Large Neighborhood Search (LNS),
where multiple destroy and repair heuristics are used in the same search. Hence, the main components of the
ALNS are: destroy operators, repair operators and an adaptive mechanism, which controls the usage of the
operators according to their performance in the previous iterations. These components are presented and
further described in the sections below.

The solution method starts by giving an initial solution xi , to which the ALNS algorithm is applied. This
means that part of the solution is destroyed and repaired. Later, the acceptance criteria is used to evaluate
whether the new solution is accepted and a weight is assigned to the destroy/repair operators used, to control
how they perform. This is an iterative process that searches for better solutions and finishes after N iterations.

The ALNS heuristics is presented in Algorithm 4.1, where the current solution xc given to the destroy operator
always has to be feasible. O−,O+ define the set of destroy (-) and repair (+) operators and f (x) represents the
value of the objective function given solution x. Specifically, f (x) = t (x)+r (x)+M u(x) is the sum of the total
routing costs t (x), the total renting costs r (x) and a penalization M that applies when the total utilities u(x)
are lower than an ε (introduced in Section 3.1).

Because there are two objectives functions(minimise total transportation f (x) costs and maximise total at-
tractions f2(x) ), the ALNS works with a pool of best solutions instead of only one best. This is because the
purpose is to find the Pareto Frontier.

Algorithm 4.1 Adaptive Large Neighborhood Search (ALNS)

1: Input: xi , O−,O+, N, λ, (ω1,ω2,ω3,ω4),T0,Tend ,α
2: pool b , xc ← xi

3: ρ−,ρ+ ← (1, ..,1)
4: for i = 1,2, . . . , N do
5: O−,O+ ← Select a destroy and repair operators
6: x ←O+(O−(xc )) Apply first O− and later O+ to xc

7: pool b , xc ,Ψ← Apply A&W criteria (pool b , x, xc , (ω1,ω2,ω3,ω4),Ti−1,Tend ,α)
8: ρ− ρ+ ←Upd ate(ρ−,ρ+,λ,Ψ)
9: end for

10: Output: pool b

13
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4.2. Adaptive Control
4.2.1. Acceptance Criterion
Among the different acceptance criteria used within literature, Simulated Annealing (SA) is the one mostly ap-
plied when using ALNS. As described by Hillier, Price, and Austin (2010), the temporary solution x is accepted
if f (x) ≤ f (xc ) and otherwise, it is accepted with probability P = e( f (xc )−( f (x))/T . The temperature (T > 0) is
updated at each iteration i using a cooling rate α {Ti = α Ti−1 | 0 ≤ α ≤ 1}. An initial and end temperature
must be given to the algorithm as well.

Algorithm 4.2 Simulated Annealing (SA)

1: input: x, xc ,Ti−1,Tend ,α
2: Ti ←α max(Ti−1,Tend )
3: z ← Accepted with P (x, xc ,Ti )
4: if z 6= Accepted then
5: z ← Rejected
6: end if
7: output: z

4.2.2. Adaptive selection and weight adjustments
Hillier et al. (2010) state that at each iteration, the repair and destroy operators are selected using a roulette
wheel. It consists on assigning a probability to each operator, which is updated at each iteration according to
its previous performance. The probability of selecting operator j from the set of operators Ω is:

P j =
ρ j∑

k∈|Ω|ρk
(4.1)

where ρ j is the vector of weights assigned to operator j.

As Hillier et al. (2010) describe, these weights are adjusted at each iteration based on the current performance
(with a score Ψ) and on the previous performance of the operator. They also use a λ ∈ [0,1] that controls the
sensitivity of the weights and it is called decay parameter.

Specifically, the weight ρi
j of operator j in iteration i is updated with the following equation:

ρi
j =λρi−1

j + (1−λ)Ψ (4.2)

where Ψ =

ω1 if the new solution is a new global best
ω2 if the new solution is better than the current one
ω3 if the new solution is accepted
ω4 if the new solution is rejected
ω1 ≥ω2 ≥ω3 ≥ω4 ≥ 0 are given parameters.

The Acceptance and Weight (A&W) criteria followed are presented in Algorithm 4.3.

4.3. Initial Solution
The initial solution given in order to start applying the ALNS algorithm is usually obtained by applying one of
the repair operators already defined for the algorithm. The aim is to start with a solution that can be obtained
fast but also that it is a high quality solution so that less iterations are needed. In this case, the Greedy receiver
insertion in lockers (one of the repair operators presented in Section 4.4.2) is considered to be the best option
to obtain the initial solution, as it gives a good solution quality within less time than other repair operators
defined that obtain higher quality solutions.

4.4. Destroy & Repair operators
As already mentioned at the end of Section 2, some of the following repair and destroy operators have been
designed specifically for solving the mathematical model presented in Section 3.3.
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Algorithm 4.3 A&W criteria

1: input: pool b , x, xc , (ω1,ω2,ω3,ω4),Ti−1,Tend ,α
2: if f (x) > f (xc )& f2(x) < f2(xc ) then
3: z ← S A(x, xc ,Ti−1,Tend ,α)
4: if z = Accepted then
5: xc ,Ψ← x,ω3 (ACC EPT ED)
6: else
7: xc ,Ψ← xc ,ω4 (RE JEC T ED)
8: end if
9: end if

10: for xb ∈ pool b do
11: if f (x) >= f (xb)& f2(x) <= f2(xb) then
12: S ← add(1)
13: end if
14: end for
15: if S >= 1 then
16: xc ,Ψ← x,ω2 (BET T ER)
17: else
18: xc ,Ψ← x,ω1 (BEST )
19: pool b ← add(x)
20: end if
21: Output: pool b , xc ,Ψ

4.4.1. Destroy operators
Receiver random removal: This operator randomly removes a number of receivers from the given solution.

The number is determined by the product of the number of receivers and the degree of destruction.
These receivers could be part of the route or inside a locker.

Receiver worst cost removal: This operator removes the receiver with the highest cost of having it in one of
the given solution routes. Having a receiver in a locker is given a zero cost value.

Receiver worst utility removal: This operator removes the receiver with the lowest utility of having it in one
of the lockers or visiting it.

Receiver related removal: This operator randomly chooses a receiver and removes all the receivers within
a given distance. This distance is determined by the product of the maximum distance between the
nodes and the degree of destruction.

Routes random removal: This operator randomly removes a number of routes from the given solution. The
number is determined by the product of the number of routes and the degree of destruction.

Routes worst cost removal: This operator removes the route with the highest cost in the given solution.

Routes worst utility removal: This operator removes the route with the lowest utilities in the given solution.

Routes cheapest cost removal: This operator removes the route with the lowest cost in the given solution.

Routes cheapest utility removal: This operator removes the route with the highest utilities in the given so-
lution.

Locker random removal: This operator randomly removes a number of lockers from the given solution. The
number is determined by the product of the number of lockers and the degree of destruction.

Locker worst cost removal: This operator removes the locker with the highest cost in the given solution.

Locker worst utility removal: This operator removes the locker with the lowest utilities in the given solution.

Locker random removal plus route: This operator randomly chooses a locker and removes the entire route
visiting it.
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For all these operators, if when removing a receiver a locker is emptied, this locker is taken out of the route.
If a route is removed and there were lockers in it, this ones are emptied. If a locker is removed, this one is
emptied.

4.4.2. Repair operators
Greedy receiver insertion in routes This operator inserts the receivers that are not in the given destroyed

solution by taking a receiver from the list, checking the cost of locating it in the less costly position at
each of the available routes and then choosing the route with the lowest insertion cost. Once the best
route is determined, the operator inserts the receiver in this route and repeats the procedure until all
receivers have been placed.

Best receiver insertion in routes This operator inserts the receivers that are not in the given destroyed so-
lution by checking the cost of locating each receiver in the less costly position at each of the available
routes and then choosing the receiver and the route with the lowest insertion cost. Later, the operator
inserts the receiver in the route and repeats the procedure until all receivers have been placed.

Regret receiver insertion in routes This operator inserts the receivers that are not in the given destroyed
solution by checking the regret of inserting each receiver. The regret of a receiver is defined as the
difference between the costs of locating the receiver in the two cheapest routes. Later, The operator
inserts the receiver with the highest regret in the route and repeats the procedure until all receivers
have been placed.

Greedy receiver insertion in maximum utility lockers This operator inserts the receivers that are not in the
given destroyed solution by taking a receiver from the list, checking the utility of locating it in each of
the available lockers and then choosing the locker giving the maximum utility. Once the best locker is
determined, the operator adds the receiver to this locker and repeats the procedure until all receivers
have been placed.

Greedy receiver insertion in cheapest lockers This operator inserts the receivers that are not in the given
destroyed solution by taking a receiver from the list, checking the cost of locating it in each of the avail-
able lockers and then choosing the cheapest locker. Once the best locker is determined, the operator
adds the receiver to this locker and repeats the procedure until all receivers have been placed.

Best receiver insertion in maximum utility lockers This operator inserts the receivers that are not in the
given destroyed solution by checking the utility of locating each receiver in each of the available lockers
and then choosing the receiver and the locker that give the maximum utility. Later, the operator adds
the receiver in the chosen locker and repeats the procedure until all receivers have been placed.

Regret receiver insertion in maximum utility lockers This operator inserts the receivers that are not in the
given destroyed solution by checking the regret of inserting each receiver. In this case, the regret of
a receiver is defined as the difference between the utilities of locating the receiver in the two lockers
with the highest utilities. Later, the operator adds the receiver in the chosen locker and repeats the
procedure until all receivers have been placed.

Regret receiver insertion in cheapest lockers This operator inserts the receivers that are not in the given de-
stroyed solution by checking the regret of inserting each receiver. In this case, the regret of a receiver is
defined as the difference between the costs of locating the receiver in the two cheapest lockers. Later,
the operator adds the receiver in the chosen locker and repeats the procedure until all receivers have
been placed.

For all the operators that insert receivers in lockers, the following applies. If there is any locker that is filled
with receivers and is not part of any route, then this locker is added to one of the available routes, taking into
account the amount of receivers inside it. If there are no available routes for that, all lockers are deleted from
the routes and are inserted following the greedy insertion method. Moreover, a check is done at the end, in
case the parcels could be rearranged to lockers with higher utilities, keeping the number of receivers in each
locker.



5
Experimental Setup

In this section a computational experiment is presented to check the computational efficiency of the ALNS
implementation explained in the previous section, which has been implemented in Python. Particularly, the
mathematical model defined in Section 3.3 has also been implemented in Python using the optimization
solver Gurobi (for 20 receivers) and Cplex (for 40 and 80 receivers).

In the following sections, the synthetic data and the parameters with the ALNS are presented followed by an
analysis on the computational performance and on the results given the different spacial distributions of the
data used.

5.1. Data description (synthetic data)
The performance of the exact method and the ALNS is evaluated on a set of the Solomon instances (Solomon,
1987), which have 100 requests. They are divided into different types depending on the distribution of the
nodes. Experiments have been performed with random instances (R) and with a mix of random and clustered
instances (RC) to verify the ALNS method. Specifically, the characteristics of the instances considered, are
summarised in Table 5.1.

Table 5.1: Characteristics of instances

Characteristic Values

Distribution type R; RC
Number of requests (r) 20; 40; 80
Number of lockers 0.25 r
Number of vehicles 0.2 r
Vehicle capacity 0.4 r
Locker capacity 0.3 r; 0.2 r

For all instances, a fictional driving cost of 0.5 AC/km is assumed together with a driving speed of 30 km/h.
The maximum duration of a route is limited to 8h in line with the drivers’ working hours. The service time is
assumed to be 2 min per parcel and the renting costs 0.005 AC/parcel. The attraction function for residential
areas presented in Section 3.1 is used, assuming that all receivers are nearby a supermarket or a bus station.
Moreover, only parcel lockers that give at least an attraction of 0.1 to the receivers are taken into account.

5.2. Parameters of ALNS
The parameters used for running the ALNS with the previously presented instances are shown in Table 5.2. In
the following sections, the effect of the number of iterations and epsilons are analysed as well as the effects
of the cooling rate and the initial temperature in the SA.

17
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Table 5.2: Parameters used in ALNS.

Parameter Description Value

λ decay parameter 0.95
N number of iterations 5000
e number of epsilons 6
M Penalty value for violating the Utility constraint 1000
ω1,ω2,ω3,ω4 Score weights (4, 3, 2, 0.5)
α cooling rate 0.9998

5.2.1. Number of iterations & epsilons
As explained in Section 3.1 epsilon values are used to add one of the objective functions as a constraint and
solve the mathematical model with an exact method. When running the ALNS for different epsilons, the
algorithm will only search solutions with an attraction higher than the epsilon given. For each of the epsilons,
a Pareto Frontier is obtained and later all of them are combined into a single one. Therefore, as can be seen
in Figure 5.1, the right-upper part of the Pareto Frontier is run for a larger number of iterations.

Figure 5.1: Pareto frontiers obtained for each epsilon in one run for instance R101_20req_8Ql

In Figure 5.2 the same case has been run with different number of iterations and the Pareto Frontiers are
compared to the exact method. The different curves represent the relative difference of each case with the
exact method (which is represented by the horizontal axis at 0). It can be observed that all curves are closer to
the 0 axis for higher attractions. One reason that explains this is that the repair operators that insert receivers
in lockers (associated with lower cost solutions) are less accurate than the ones that insert receivers in routes
(associated with higher attractions and higher costs). Therefore, it is not only enhanced for the number of
iterations run due to using the epsilons but also due to the specific operators used.

Figure 5.2: Cost relative differences with the exact method Pareto Frontier from running instance R101_20rec_8Ql with
different iterations.
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Moreover, the running time for the higher epsilons is shorter (23 seconds) than for the lowest epsilons (133
seconds). This is due to the repair operators used. In order to obtain solutions that give higher attraction
values, the ALNS enhances the use of repair operators that insert receivers in routes rather than lockers and
those ones have lower running times. Therefore, using the epsilons can be useful in order to reduce the
running time.

For each cost value, the difference between the minimum and the maximum attraction obtained from 5 runs
is computed. Then the mean of all the differences is obtained and that is the value presented in Table 5.3.
From this, it is shown that the running time with the epsilons is shorter and that the more iterations, the
lowest is the deviation with different runs.

Therefore, the number of epsilons used can be reduced and it does not need to be the same as in the exact
method. However, it is still beneficial to use a reduced number of epsilons because they help to reduce the
running time. Finally, it is decided to run each of the cases with 6 epsilons and 5000 iterations.

Table 5.3: Statistics from running instance R101_20rec_8Ql with different iterations.

1,000it 5,000it 10,000it 20,000it
11 ep x 1000it

(11,000it)
6 ep x 5000it

(35,000it)
11 ep x 5000it

(55,000it)

Average run time [sec] 111 329 954 2254 692 1161 2150
ATTRACTIONS
Mean differences 19.98 11.52 11.19 9.52 12.67 10.06 10.51
st.dv. 9.08 7.66 7.20 6.04 7.57 6.58 7.16
Percentage from maximum 14.1% 8.2% 7.9% 6.7% 9.0% 7.1% 7.4%
COSTS
Mean differences 0.27 0.17 0.15 0.16 0.17 0.15 0.14
st.dv. 0.12 0.08 0.08 0.06 0.08 0.06 0.08
Percentage from maximum 7.4% 5.1% 4.5% 4.7% 4.9% 4.6% 4.3%

5.2.2. Initial temperature & Cooling rate
In order to understand how the acceptance criterion (simulated annealing) behaves, the following Figures 5.3,
5.4 and 5.5 are presented. The different lines in the legend represent the difference between the candidate
solution and the current solution.

When comparing Figure 5.3 with 5.4, it can be observed that the distance between the lines is bigger when
having a higher starting temperature. This shifted the lines in Figure 5.3 down, reducing the probability of ac-
cepting a worst solution. This can be clearly observed looking at line 4: with 2000 iterations has a probability
of acceptance of 0.47 while in Figure 5.4 it is 0.62.

Figure 5.3: Behaviour of the acceptance criterion with
α= 0.9998 and Ti = 8.

Figure 5.4: Behaviour of the acceptance criterion with
α= 0.9998 and Ti = 12.5.

Another important parameter that affects the acceptance criterion is the cooling rate. As can be observed
when comparing Figures 5.4 and 5.5, the slope of the curves in Figure 5.5 is steeper than in Figure 5.5. This
means that when the cooling rate is lower, the probability of accepting a worst solution is reduced faster with
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Figure 5.5: Behaviour of acceptance criterion with α= 0.999 and Ti = 12.5.

the number of iterations. The aim of using a cooling rate is to allow more or less the ALNS to search solutions
in various neighbourhoods in the first iterations.

For this research, the initial temperature is set in such a way that the probability of accepting a two times worst
solution than the initial solution is 50%, which gives the value of 12.5 for instances with 20 receivers. And the
cooling rate of 0.9998 was preferred over 0.999, as this last one quickly penalises solutions with smaller dif-
ferences that could lead to better neighbourhoods. For solving the given model with two objective functions,
it it important to allow enough movement in the solution space for improving the two and both chosen pa-
rameters seem to work good with the instances presented in the following sections.

5.3. Computational Performance
In this section the software implementation of the exact method and the ALNS algorithm are compared.

Because solving the model with the exact method requires a considerable amount of computational time, a
time limit was used. Specifically, 1 hour per epsilon with the instances of 20 receivers (using Gurobi). For
instances with 40 and 80 receivers, the Cplex runs were performed with different strategies, to achieve the
best lower bound (LB) with a time limit of 12h per epsilon and to achieve the best solution with a time limit
of 3 hours per epsilon. This was done in order to get better results combining the two.

However, it is important to keep in mind that the exact method was stopped with a time limit and the gaps
with the LB are rather high in general.

Table 5.4 presents an average of the differences between the gaps of the ALNS minus the gaps of the exact
method, which gives the general improvements achieved with the ALNS for each Pareto Frontier. The positive
improvements mean that the ALNS performs better than the exact method and the negative improvements
mean the that the ALNS performed indeed worse.

Table 5.4: ALNS average run time and improvement achieved with respect to the exact method for R and RC instances.

Instances
R results RC results

Run Time Improvement Run Time Improvement

20rec_8Ql 3.4% -9.8% 2.6% -4.0%
20rec_6Ql 3.4% -10.8% 6.4% -4.8%
40rec_16Ql 1.5% -50.5% 7.8% -74.2%
40rec_12Ql 3.6% -46.9% 18.8% -79.7%
80rec_32Ql 19.5% 144.4% 13.4% 143.2%
80rec_24Ql 8.5% 82.1% 21.7% 48.2%

Therefore, for the 20 receivers instances, within a 2.4%-6.4% of the Gurobi running time, the ALNS is able to
find a solution that is only 4.0%-10.8% worst than the exact model. For the 40 receiver instances, the ALNS
run time varies more, from 1.5% -18.8% and the results from the ALNS are further away from the solutions
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of the exact method. For the 80 receiver instances, the ALNS is able to find a solution for all the epsilons
within 8.5%-21.7% of the exact running time, while the exact method was not able to find solutions for all
the epsilons given the computation time limit. Moreover, on average the ALNS improves significantly the
solutions from the exact method.

Appendix A contains the results of running the instances presented in Section 5.1 in a series of tables. It
should be noted that all gaps are calculated with respect to the best LB.

Figures 5.6 to 5.8 present the results in the form of Pareto Frontiers for a number of representative cases
only, as there are no significant differences between the results for the same number of receivers but different
locker capacities.

Figure 5.6 shows the Pareto Frontiers for one of the 20 receiver instances, where the ALNS is really close to
the exact solutions. However, Figure 5.7 confirms what was observed in the previous tables, that the ALNS
solutions are at a further distance from the exact method solutions. Figure 5.8 shows that the exact method
is not able to find good solutions within the given time limit whereas the ALNS can find better solutions than
the exact method.

Figure 5.6: Pareto Frontiers obtained for instance
R101_20rec_8Ql.

Figure 5.7: Pareto Frontiers obtained for instance
R101_40rec_16Ql.

Figure 5.8: Pareto Frontiers obtained for instance R101_80rec_24Ql.

Figures 5.6, 5.7 also show that the exact model finds smoother Pareto Frontiers, meaning that probably the
ALNS operators are not able to find all possible solutions.

To conclude, the ALNS can be used for solving the mathematical problem presented previously in Section 3.3.
The ALNS algorithm is not able to find better solutions than the exact method for the smaller instances - at
least for the selected running times - whereas it is able to find some better solutions for the bigger instances.
Therefore, for instances equal or bigger than 80 receivers, the ALNS improves the performance of the exact
method with a significant reduction of the running time, given the time limitation of 12h per epsilon in the
exact method.
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5.4. The impact of spatial distribution on delivery performance
In this section some general observations regarding differences between the R (uniformly distributed) and
RC (mixed of uniformly distributed and clusters) are pointed out.

First, R instances costs are lower than the RC instances. Figures 5.9 and 5.10 show that the difference of
cost between R and RC instances is due to the spatial distribution, as for RC there are more receivers located
further away from the center than in R.

Figure 5.11 shows that the RC Pareto Frontiers are steeper than the ones from R. This means that adding home
deliveries is cheaper for the courier delivering to RC distribution networks.

In general, the lockers are used at low capacity and the number of lockers used does not seem to differ much
regarding the different distributions as well(e.g. in Figure 5.12). Therefore, these parameters are not affected
for having different receiver distributions.

Finally, when the lockers are located in the clusters, receivers have to travel shorter distances to pick up their
parcels, whereas in the R instances they have to travel longer distances.

Figure 5.9: Spatial distribution of R instances with 80
receivers.

Figure 5.10: Spatial distribution of RC instances with
80 receivers.

Figure 5.11: Pareto Frontiers obtained for instances
with 20 receivers.

Figure 5.12: Number of lockers used for each of the 40
receivers instances vs Total Transportation costs.
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Case study - DPD Netherlands

6.1. Implementation
In this section, the previous ALNS metaheuristics algorithm is applied to a case study. Specifically, data from
the company DPD has been provided from year 2018. Some delivery companies have parcel lockers already
in the Netherlands, however that is not the case of DPD. For this reason, they are planning to locate some
parcel lockers in the city of Rotterdam and this is the reason of locating the case study in the Rotterdam area.
DPD has 9 depots in the Netherlands and the closest one is the Rotterdam depot. The average number of
requests being handled at this depot is 20.000 per day.

This amount of requests is too big for the current implementation of the ALNS algorithm presented. There-
fore, a smaller area is chosen for the case study. An average day (18th September 2018) has been chosen and
the number of requests has been limited to 80 parcels. The area shown in Figure 6.1 in the city center of Rot-
terdam represents the case study. In this case, the depot is not located inside the area where the requests are
located but around 5.5 km North from the study area.

Figure 6.1: Map with the location requests on day 18-09-2018 in the North site of Rotterdam Central. In squares there is a
random location for the parcel lockers.
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First, a Base Scenario with a selected set of parameters is discussed. A total of 20 lockers with a capacity
of 10 parcels are randomly located in the area, so that the algorithm has enough freedom to use more or
less lockers, more or less full. The attraction function for residential areas presented in Section 3.1 is used,
assuming that all receivers are nearby a supermarket or a bus station. Given the dimensions of the study area,
a fleet of 6 vehicles with a capacity of 20 parcels each, was considered.

Lastly, the ALNS has been slightly modified, as for the case study, the renting cost is per locker instead of
per parcel (inside the locker). A rent cost of 0.02 AC/locker is used. This value was chosen because the Pareto
Frontier is sensitive to the rent. For cases where the rent is high in comparison with the distances between
receivers, the cheapest result with the highest service level would always be delivering all the parcels at home.

Different scenarios are created to see the effect on the whole system of the renting costs of the lockers, the
number of lockers and their capacity and a change in preferences of end-users. For each of these scenarios,
two different cases are created as shown in Table 6.1. For all scenarios, lockers are located randomly but
uniformly spread in the study area in order to simulate the potential locations for the lockers.

Table 6.1: Scenarios considered for the case study.

Parameter to Change Base Scenario Variations

Rent [AC/locker] 0.02 0.05; 0.0
Number of lockers [lockers] 20 15; 10
Locker capacity [parcels/locker] 20 15; 20
Home delivery [home attraction] 7.06 0.8; 0.3
Distance factor [distance parameter] -4.59 -1.5; -0.5

For all scenarios, a fictional driving cost of 0.6 AC/km is assumed together with a driving speed of 30 km/h
inside the study area (between receivers and/or lockers) and 80 km/h between the depot and the study area.
The maximum duration of a route is limited to 8h in line with the drivers’ working hours. The service time
is assumed to be 2 min per parcel. Moreover, only parcel lockers that give at least an attraction of 0.1 to the
receivers are taken into account (as explained in Section 3.1).

For the scenarios where the distance parameter is different, the attraction functions have a different curve.
This is shown in Figure 6.2, where the base scenario (distance parameter = -4.59) is represented in blue. For
the base case, the end-user would still prefer to receive the parcel at home rather than at a parcel locker
located at “0m”, as the home attraction (7.06) is still much higher than the maximum attraction obtained
when going to a locker(2.8). Therefore, home attraction has an important effect and that is why another
scenario has been added, giving a lower home attraction to the end-user. For the base scenario curve and a
home attraction of 0.3, the end-user will prefer going to a parcel locker at 100m from home (attraction of 0.5)
rather than having home delivery.

Figure 6.2: Three attraction curves with different distance parameters (base scenario in blue).
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6.2. Results & Discussion
After running the different scenarios with the ALNS heuristics, some post-processing is required in order to
obtain the probabilities and the service level (SL) described in Section 3.1. The final results for each scenario
can be found in Appendix B and include the following performance indicators for each of the points of the
corresponding Pareto Frontiers: total transportation costs (TTC), total attraction, service level, transporta-
tion distance, locker rent, lockers in use, lockers capacity usage, number of home deliveries and number of
receivers travelling a specific distance to the locker.

It is to be remarked that the cloud of current solutions (as defined in Section 4.2) obtained for the case study
scenarios are different than the ones obtained with the Solomon instances. Figure 6.3 presents the cloud
of current (blue) and best (red) solutions obtained for a Solomon Instance. Figure 6.4 shows the cloud of
solutions for the Base Scenario, which in this case is split in two clusters of points. The distance between
the two clusters can be explained by the fact that the depot of DPD is not located inside the delivery area –
which was the case for the Solomon instances. When the algorithm adds a new route (vehicle) to the solution,
the additional travelling costs of driving from and to the depot corresponds with the space between the two
clusters in Figure 6.4.

Figure 6.3: Plot of all current solutions(in blue) and
best solutions (in red) for an instance.

Figure 6.4: Plot of all current solutions(in blue) and
best solutions (in red) for the scenario of 10 lockers.

6.2.1. Base Scenario
The SL curve of the base scenario is presented in Figure 6.5. The SL increases with the cost spent for the
courier to deliver the parcels. Specifically, there are three steep steps in the Pareto Frontier (A-B; D-E; F-G)
where the courier can increase around 20% of the SL with a very small increase in costs. These steps in the SL
curve are directly related to an increase of the home deliveries, which can be observed with the shape of the
orange line in Figure 6.6.

Another observation can be made regarding the flat curve between points B and C in the SL curve. This is
caused by an increase of approximately 1km in the routing distances. Under this circumstances, the courier
needs to spend an important amount of money to continue increasing the SL.

Figure 6.6 presents the distribution of distances that the receivers have to move in order to pick up their
parcel. For the base scenario, the majority of parcels are put in lockers at a distance of 0.1-0.2km for the
lower total transportation costs. For higher total transportation costs (and higher SL), the amount of home
deliveries increases predominating over locker usage.

Figure 6.7 presents the number of lockers used and the occupancy rate of these lockers. A network with higher
TTC is characterised for having more home deliveries and using less lockers. Having more home deliveries
requires longer routes which are responsible of increasing the costs.

Nonetheless, looking at points C and D from Figure 6.7, with a small difference in costs, point C has 7 lockers
opened at a high average capacity usage and point D has 11 lockers opened with a low average capacity
usage. However, they have almost the same TTC and SL values. The differences can also be observed from
the solution routes obtained at points C and D, shown in Figures 6.8 and 6.9.
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Figure 6.5: Service level vs Total Transportation Costs
from the Pareto Frontiers of the base scenario.

Figure 6.6: Receiver distribution by distance to locker
for the Base scenario.

Figure 6.7: Number of lockers used and average
capacity usage trends for the base scenario.

Figure 6.8: Courier routes(blue) and receivers to
lockers(red) for point C from Figure 6.7.

Figure 6.9: Courier routes(blue) and receivers to
lockers(red) for point D from Figure 6.7.

This behaviour highlights the complexity of this problem: the large amount of possible solutions lead to the
possibility of having solutions very similar in terms of transportation costs and total attractions, coming from
significantly different route layouts.

Finally, if the courier wants to give a specific service level at a lower cost, this can be achieved by reducing the
routing distance, which in the end is achieved by using more lockers. On the other hand if the courier wants
to maintain the costs but give a higher service level, they have to increase the number of home deliveries and
reduce the number of lockers.
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6.2.2. Effect of locker rent cost
Given the limited size of the study area, the rent of each locker is a parameter that can have a significant effect
on the total transportation costs. If renting costs were too high, using the lockers would always be avoided
as a solution because the travelling distances between the receivers are relatively small in this network. The
purpose of this research is to see the effects of using lockers and therefore, it was decided to use relatively low
renting costs in the Base Scenario (0.02AC/locker).

To analyse the effect of the renting costs, two other scenarios were run with a rent of 0 AC/locker and 0.05
AC/locker. Figure 6.10 shows the SL curves comparing the three scenarios. It shows that the 0.05 AC scenario
has a similar curve than the base scenario. Besides, looking at Figures 6.12 and 6.13, the number of home
deliveries can be directly related to the SL curves as well.

For a 0 AC rent, less lockers are used than the base case and they are almost at a constant capacity usage of
30-50% for the cost range, as can be seen in Figure 6.11. Moreover, the number of receivers having to travel
longer distances to the lockers is higher for the 0AC scenario, which reduces the SL of the receivers that do not
have home deliveries even more. However, as the number of home deliveries is higher in this scenario, the SL
curve is shifted to the left.

Finally, working with lower renting costs is beneficial for the courier, who will be able to provide a specific SL
at a lower cost, as the routing distance will decrease with the use of more lockers.

Figure 6.10: SL curves for the base scenario (0.02AC)
and two other scenarios of 0AC and 0.05AC.

Figure 6.11: Number of lockers used and their average
capacity for the 0AC rent scenario.

Figure 6.12: Receiver distribution by distance to locker
for 0.05AC/locker.

Figure 6.13: Receiver distribution by distance to locker
for 0AC/locker.
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6.2.3. Effect of number of lockers
Apart from the Base scenario with 20 lockers, two other scenarios have been run with 15 and 10 lockers.
Looking at Figure 6.14, the SL curves of the base scenario and the 15 lockers are very similar. Differently, the
10 lockers SL curve is slightly shifted to the left, having lower costs for a given SL compared to the other two.
Figure 6.15 shows that in general for this scenario with 10 lockers, these are used at higher capacities (around
70% full) than the base case.

Looking at Figures 6.16 and 6.17, having less lockers enhances home deliveries to the receivers located further
away from the lockers.

To sum up, having a lower number of lockers reduces the total transportation costs of the network given the
same SL. Moreover, more importance should be given to the location of this lockers rather than the amount
of them.

Figure 6.14: SL curves for the base scenario (20 lockers)
and two other scenarios of 15 and 10 lockers.

Figure 6.15: Number of lockers used and their average
capacity for the 10 lockers scenario.

Figure 6.16: Receiver distribution by distance to locker
for 15 lockers.

Figure 6.17: Receiver distribution by distance to locker
for 10 lockers.
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6.2.4. Effect of locker capacity
To analyse the effect of the locker capacity, two other scenarios were run with lower capacities, 15 parcels/locker
and 20 parcels/locker. Looking at Figure 6.19, when increasing the capacity to 20 parcels, the minimum cost
is achieved by using almost all lockers at a 20% capacity only. In this case, the majority of the receivers are
located at less than 200 m from the lockers where they have to go as shown in 6.21.

With a lower capacity of 15 parcels, more home deliveries occur and receivers are sent to further away lockers
because less lockers are used, which leads to a slightly move to the left of the SL curve in Figure 6.18. This
shows that the home deliveries compensate the fact of sending receivers further away in this network.

When reducing even more the capacity, 10 parcels for the base case, more lockers are used again with an
increase in the average capacity usage, as seen in Figure 6.7.

Therefore, it can be assumed that the Pareto Frontier is quite robust regarding this parameter as the SL curves
from the scenarios where the capacity of the lockers is changed are both steep and similar.

Figure 6.18: SL curves for the base scenario (10
parcels/locker) and two other scenarios of 15 and 20

parcels/locker.
Figure 6.19: Number of lockers used and their average

capacity for the 20 parcels/locker scenario.

Figure 6.20: Receiver distribution by distance to locker
for 15 parcels/locker.

Figure 6.21: Receiver distribution by distance to locker
for 20 parcels/locker.
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6.2.5. Effect of home delivery attraction
When calculating the probabilities of a receiver to go to a specific locker, the probability function (Section
3.1) takes into account the attraction of all the lockers that are opened, as well as the attraction of home
delivery. For this reason, the probabilities obtained tend to be low when there are many lockers opened or
when the home attraction is high compared to the locker attractions, as they are competing options from
which the receiver could choose from. For the same reason, when all the parcels are delivered at home, the
receivers have no other option to choose from as there are no lockers opened. Therefore, the probability of
them choosing the home delivery option is 1.

Due to this behaviour, an adjustment of the service level was needed (see Figure 6.22 and 6.23) to show the
effect of the attraction function variations. This adjusted SL is the average of the attraction of each receiver
with respect to the possible attraction range. Particularly, this is required for two scenarios: when varying the
home delivery attraction and the distance parameter (next subsection).

To see the effect of the home delivery attraction, two cases were tested: reducing this parameter from 7.06 in
the base scenario to 0.8 and 0.3. For the locker attraction to be higher than 0.8 home attraction, the locker
needs to be located at less than 50 m from the receiver according to the attraction function presented in
Section 6.2. As in the given network the majority of the lockers are located at longer distances, the 0.8 home
delivery attraction still is the best option for the receivers. For this reason, the SL curve is partially similar to
the base scenario in Figure 6.23 and it is directly related to the number of home deliveries observed in Figure
6.24. However, the adjusted SL shows that it is possible to provide a higher SL than the base scenario given
the same cost.

On the other hand, to get an attraction higher than 0.3 going to a locker, the receiver only needs to be closer
than 200m from the locker, which is easier to happen in the network of the case study. In this scenario, the
lockers can compete with the home delivery and that is why the SL curve is different. Contrarily to the other
two cases, where the maximum SL is provided when delivering all the parcels at homes, in this scenario, the
maximum SL is provided delivering all the parcels to lockers located at less than 200m from the receivers. This
can be observed in Figure 6.25 and it is achieved by using all the 20 lockers available at a 20% of the capacity
(see Table B.8 in Appendix).

From this, the courier can see the importance of knowing the type of receivers present in their network. For
example, if the receivers are willing to make the extra effort of going to a locker further away over receiving
the parcel at home – which can be associated with sustainability consciousness or convenience of the parcel
locker system – the courier will be able to provide a high SL while reducing the kilometers driven to serve the
same network. Couriers can improve the SL by enhancing the positive effects of parcel lockers mentioned in
Section 2.3.

Figure 6.22: SL curves for the base scenario (7.06 Home
attraction) and two other scenarios of 0.3 and 0.8

Home attraction.

Figure 6.23: Adjusted SL for the base scenario (7.06
Home attraction) and two other scenarios of 0.3 and

0.8 Home attraction.
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Figure 6.24: Receiver distribution by distance to locker
for 0.8 Home attraction.

Figure 6.25: Receiver distribution by distance to locker
for 0.3 Home attraction.

6.2.6. Effect of distance parameter in attraction
As explained in the previous subsection, an adjustment of the service level was needed in order to show better
the effect of the distance parameter of the attraction function. Particularly, two cases were tested, reducing
this parameter from -4.59 in the base scenario to -1.5 and -0.5.

When reducing the distance parameters, the adjusted SL curves become less steep than the base scenario
as can be seen in Figure 6.27. This implies that the courier needs to invest a little more in order to see a
significant improvement on the SL. However, this figure also shows that even though any change is applied
to the network, the courier is able to provide a higher SL with the same cost if the receivers are less sensitive
to the distance (-0.5 utility). Just to provide a 50% SL in the -0.5 utility case, the courier reduces the travelling
distance 5km and the total transportation costs 3AC from the base scenario.

More parcels will be delivered to lockers that are further away from the receivers, allowing to reduce the rout-
ing distances, but still getting a similar service level. The fact that the parcels are located to lockers that are
further away is shown with Figures 6.28 and 6.29, where the dark green area has significantly increased from
the previous cases. Still, home delivery is preferred because the difference in attraction is high (maximum
locker attraction 2.8 vs home attraction 7.06).

Seeing the significant effect this parameter has on the SL provided, it is shown the importance for the courier
to study what type of receivers does their network have. For example, if there is more elderly people, they will
be more sensitive to the distance and therefore, in order to offer a specific SL, more money will need to be
invested.

Figure 6.26: SL curves for the base scenario (-4.59 dist.
param.) and two other scenarios of -1.5 and -0.5

dist.param. .

Figure 6.27: Adjusted SL for the base scenario (-4.59
dist. param.) and two other scenarios of -1.5 and -0.5

dist.param. .
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Figure 6.28: Receiver distribution by distance to locker
for -0.5 distance parameter.

Figure 6.29: Receiver distribution by distance to locker
for -1.5 distance parameter.

6.3. Key findings
Some remarks for the couriers are highlighted in this section, based on the analysis of the results presented in
the previous paragraphs. First of all, it is important to keep in mind that similar SL and TTC can be obtained
for significantly different routes, making this a complex system to analyse. When looking at the shape of the
Pareto Frontiers, a steep slope means that the SL can be easily improved with a small impact on the total
costs. On the other hand, a flat section in the Pareto Frontier means that a significant amount of money is
required to further increase the SL. When looking at the relevance of the parameters analysed, the percentage
of home deliveries is one of the main drivers for increasing the SL when home delivery attraction is high. The
capacity of lockers does not have a big impact on the results, while low renting costs help to provide a specific
SL at lower TTC. In general, using less lockers at a higher capacity helps to reduce costs.

It is crucial for the couriers to study what type of receivers belong to their delivery network before deciding
on the implementation of parcel lockers. For example, if receivers are more sustainable, the resulting parcel
locker network will enhance the use of more lockers, reducing the general distance from the receivers to the
lockers. Also, if receivers are less sensitive to the distance to the lockers, the resulting parcel locker network
will reduce the number of lockers used, increasing the distance to the lockers from the receivers side.



7
Conclusions and Further Research

In this section the conclusions of this research are presented. Firstly, the sub-research questions are answered
followed by the main research question. Furthermore, the limitations of the given research are discussed and
some further research is proposed.

7.1. Conclusions
The use of parcel lockers is regarded in literature as a good option for improving the problem of missing the
receiver in home deliveries and enabling a transition towards self-organizing logistics. However, implement-
ing a parcel locker network has an impact on both couriers and receivers, which still prevents couriers from
directly adopting this technology.

This research proposes a model that provides a nuanced view on the relations between receiver attractions,
service levels, lockers and total transportation costs. Moreover, it provides a tool for couriers to simulate
different options before implementing such a network system with parcel lockers.

This research has been structured with one main research question and a number of sub-research questions.
All of them are answered below:

1. How to take receiver preferences into account when modelling the routing in a parcel locker network?

On the one hand, the vehicle routing problem in this network can be solved with an optimization
model. On the other hand, receiver preferences can be considered with a choice behaviour model.
To combine both, this research has described a mathematical model that contains two objective func-
tions: one that minimizes the total transportation costs (i.e. the vehicle routing problem) and a second
one that incorporates the choice behaviour model by maximizing the total attractions of the receivers
to go pick up the parcel in a specific locker.

2. How to represent the effect of providing a specific service level on total transportation costs?

Service level reflects the level to which all receiver preferences are fulfilled when deciding on a specific
routing. As described in Section 3.1, maximizing service level while minimizing routing costs is usually
contradictory and, therefore, it is not possible to find a single solution for a given network. This research
uses Pareto Frontiers as an effective way to represent the cost impact of providing any given service
level.

3. How to solve the proposed optimization model efficiently for large instances?

Solving the given mathematical model for small instances is possible with an exact method. However,
that is not the case for large instances (15 nodes or more) in a short computational time. For this reason,
heuristics need to be used and an Adaptive Large Neighbourhood Search algorithm is implemented in
this research. The ALNS destroy and repair operators have been specifically designed for this particular
model.
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4. What is the trade-off between accuracy and computation efficiency of the solution method?

When applied to the Solomon instances, the ALNS algorithm is able to improve the solutions of the
exact method with just 10-20% of the computational time, demonstrating that this algorithm can be
effectively applied for solving the mathematical model. However, the Pareto Frontiers from the exact
method are smoother and present lower gaps with the lower bounds, which shows that ALNS compro-
mises the accuracy of the solutions at a cost of reducing the computational time.

Nonetheless, it is important to note that while the exact method can only provide one point of the
Pareto Frontier per run, the implementation of the ALNS heuristics developed in this research is able
to find a pool of best solutions that represent the whole Pareto Frontier in a single run. To define more
points of the Pareto Frontier, the exact method requires more runs and therefore higher running times.
On the other hand, increasing the iterations of the ALNS algorithm directly improves the whole Pareto
Frontier.

5. What is the effect of the number and capacity of lockers, the renting cost and the type of receivers on the
total transportation costs and service level?

The ALNS algorithm has been applied in a parcel delivery network of a small urban area in Rotterdam
and changes where made in the parameters under study. The most critical parameter for the system is
the type of receivers: If receivers are more sustainable, the resulting parcel locker network will enhance
the use of more lockers, resulting in a reduction of the average distance from the receivers to the lock-
ers. If receivers are less sensitive to the distance to the lockers, the resulting parcel locker network will
reduce the number of lockers used, increasing the distance to the lockers from the receivers side.

When looking at the other parameters, with relatively smaller effects on the results, using less lockers
(with higher occupancy rate) proved to help reducing costs in order to provide the same SL. The same
occurs when working with lower renting costs. On the other hand, varying the capacity of the lockers
did not show a significant impact on the results.

What is the impact of implementing a network of parcel lockers for the last mile delivery on couriers’ and
receivers’ costs?

A network of parcel lockers for the last mile delivery has been modeled for a case study in a small urban area
in Rotterdam. The impact of using parcel lockers on both couriers and receivers is evaluated from the Pareto
Frontier obtained from implementing an ALNS algorithm to this case study.

As a result, implementing a network of parcel lockers has a positive impact on the courier’s costs as it helps
to reduce their total transportation costs and by reducing the amount of home deliveries it also reduces the
success-rate problem introduced at the beginning of this research. On the other hand, the impact for the
receiver implies a reduction of the service level, depending on their preferences and the available lockers in
the system.

It is important to highlight that changes in the network characteristics have a complex effect on the possible
solutions, reflected in changes in the shape of the Pareto Frontier. Numerical models are essential to study
this behaviour in a specific network, allowing decision makers evaluate the impact on couriers’ and receivers’
costs of implementing such a network. Therefore, this research contributed by providing a tool for logistics
practitioners, such as DPD, to simulate different operations before implementation.

7.2. Key Contributions
This research has helped with several contributions to science but also to logistics practitioners. These are
listed below:

• A new problem has been described, incorporating receivers’ choice behaviour into a vehicle routing
problem.

• This problem has been formulated in a Mathematical Model that can be solved numerically.

• A new ALNS algorithm implementation has been designed to suit this specific problem description and
formulation.

• This algorithm is able to solve the problem for large instances efficiently.
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• This algorithm can be implemented directly in real networks and extended to incorporate additional
constraints.

• This algorithm can be used by couriers for taking tactical decisions about where to locate parcel lockers
but also to determine the receivers to whom deliver at home.

• It is crucial for the couriers to study what type of receivers belong to their delivery network before
deciding on the implementation of parcel lockers.

7.3. Limitations & further research
This research presents an initial effort to model a complex network system, setting the basis for further re-
search. The assumptions made during this study can be linked to limitations of the model. These are pre-
sented below followed by suggestions for further improvements.

The network characteristics were simplified when defining the delivery structure. For example, the size of
the parcels and time windows have not been introduced. Also, lockers can only be visited by one vehicle.
These are aspects that could be added to the model in order to make the problem more realistic. Besides,
the problem was solved with different network distributions, however it would also be interesting to see the
effect of the lockers distribution as well.

The preferences of the receivers to go to different lockers are modelled with attraction functions from a case
study located in Singapore, as this type of data is very scarce in literature. Taking into account the sensitivity
of the model to these functions, it is recommended to do a survey to the receivers of the study area, to better
estimate their choices and allow the courier to take adequate decisions from the obtained Pareto Frontiers.
This would have an impact on both the attraction of home delivery and the considered set of lockers for
each receiver. Additionally, in some cases (as explained in Section 6.2.5) the service level definition proposed
initially does not reflect the actual effect of the attraction. In these cases the adjusted SL seems to work better.

There are a series of computational improvements to remark regarding the implementation of the ALNS:

• Firstly, the repair operators that insert receivers to lockers instead of routes have longer running times
and also find solutions further away from the exact method. Therefore, efforts could be invested in
improving these operators, which will help reducing the total running time of the ALNS algorithm.

• Secondly, the candidate weight criteria in the ALNS evaluates at each iteration the candidate solution
with each of the best solutions inside the pool. Once a best solution is found, this one is simply added
to the pool. At the end, the pool is checked and the Pareto Frontier is obtained. Updating the pool of
bests inside the algorithm instead of post processing it, would increase the computational efficiency of
the algorithm as well.

• Thirdly, the use of the epsilons in the ALNS results in running more iterations for the upper side of the
Pareto Frontiers, Therefore, it would be interesting to not only use the epsilons as lower boundaries
but also as upper boundaries, so that the same number of iterations is run in each part of the Pareto
Frontier.

• Lastly, the resulting pool of bests from an epsilon could be used as the initial solution given to the next
epsilon.

Moreover, it should be mentioned that the exact method was stopped with a time limitation of 12h and not
with a minimum gap with the lower bound. Letting the model run for a longer time period will provide more
accurate solutions to compare with the ALNS algorithm results and verify the accuracy of these last one as
well.

Finally, the probability of a receiver to be at home could be taken into account explicitly to assess the impact
of the hit-rate problem described in the introduction of this research. A new policy of assigning receivers with
low probability of being at home to lockers could then be further investigated. The model can also be adapted
to consider declared preferences of some receivers–when the courier knows in advance their real preference.
The model can also be extended by adding a third level of vehicles from parcel lockers to homes (as described
in Section 1.1). This could be implemented in the same model or defining a multi-echelon problem.
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Table A.1: Computational results for Solomon R instances

Total Epsilon 1 Epsilon 2 Epsilon 3 Epsilon 4 Epsilon 5 Epsilon 6 Epsilon 7 Epsilon 8 Epsilon 9 Epsilon 10 Epsilon 11

R
10

1_
20

re
c_

8Q
l

Epsilon 1.09 15.10 29.11 43.12 57.13 71.14 85.15 99.17 113.18 127.19 141.20

G
u

ro
b

i

True attraction 3.66 17.62 31.22 45.16 58.52 72.26 86.05 99.94 113.85 127.42 141.20
Best LB 1.39 1.42 1.39 1.46 1.52 1.74 1.87 2.09 2.36 2.68 2.97
Best 1.39 1.42 1.51 1.69 1.97 2.13 2.39 2.67 2.81 3.06 3.28
Gap LB 0.0% 0.0% 8.8% 16.0% 30.1% 22.4% 27.8% 28.0% 18.8% 14.3% 10.4%
Run Time [sec] 34,704

A
LN

S

True attraction 11.19 17.99 31.58 58.72 58.72 72.53 85.92 100.44 113.60 127.59 141.20
Best 1.51 1.65 1.88 2.03 2.03 2.34 2.41 2.84 2.95 3.16 3.28
Average 1.61 1.76 1.92 2.08 2.14 2.36 2.45 2.87 2.99 3.19 3.29
Gap LB 8.0% 16.6% 35.5% 38.7% 33.4% 34.6% 28.8% 36.0% 24.6% 18.0% 10.4%
Avg. Run Time [sec] 1,191

Improvement ALNS - Gurobi 8.0% 16.6% 26.7% 22.8% 3.4% 12.2% 1.0% 8.0% 5.9% 3.7% 0.0%

R
10

1_
20

re
c_

6Q
l

Epsilon 1.09 15.10 29.11 43.12 57.13 71.14 85.15 99.17 113.18 127.19 141.20

G
u

ro
b

i

True attraction 3.66 17.62 31.22 45.16 58.52 72.26 86.05 99.94 113.85 127.42 141.20
Best LB 1.32 1.35 1.39 1.46 1.52 1.74 1.87 2.09 2.36 2.67 2.97
Best 1.39 1.42 1.51 1.69 1.97 2.13 2.39 2.67 2.81 3.06 3.28
Gap LB 5.3% 5.2% 8.3% 15.9% 30.0% 22.4% 27.7% 28.0% 18.8% 14.3% 10.4%
Run Time [sec] 34,577

A
LN

S

True attraction 4.59 18.21 38.37 45.38 58.87 73.09 86.17 100.34 113.70 127.48 141.20
Best 1.67 1.67 1.79 1.91 2.12 2.38 2.56 2.74 2.95 3.13 3.28
Average 1.67 1.75 1.87 1.96 2.22 2.43 2.60 2.80 2.99 3.16 3.29
Gap LB 25.8% 24.1% 28.3% 31.0% 39.7% 36.4% 36.4% 31.2% 24.7% 17.0% 10.4%
Avg. Run Time [sec] 1,184

Improvement ALNS - Gurobi 20.6% 18.9% 20.1% 15.1% 9.7% 14.1% 8.7% 3.2% 5.9% 2.6% 0.0%

R
10

1_
40

re
c_

16
Q

l

Epsilon 1.81 29.87 57.93 85.99 114.05 142.11 170.17 198.22 226.28 254.34 282.40

C
p

le
x

True attraction 14.56 35.55 63.12 89.64 117.66 144.37 172.41 200.14 227.09 254.97 282.40
Best LB 0.99 1.09 1.16 1.41 1.70 2.04 2.36 2.71 3.06 3.49 4.10
Best 1.63 1.63 1.93 2.10 2.32 2.64 3.02 3.42 3.81 4.05 4.48
Gap LB 64.1% 49.4% 66.8% 49.4% 36.1% 29.5% 27.8% 26.4% 24.2% 16.1% 9.4%
Run Time [sec] 252,313

A
LN

S

True attraction 11.18 51.47 78.52 105.53 119.37 146.39 207.22 207.22 234.50 275.45 282.40
Best 2.58 2.85 2.88 3.11 3.47 3.55 3.76 3.76 4.28 4.62 4.76
Average 2.60 2.91 2.98 3.25 3.51 3.69 3.88 4.04 4.40 4.65 4.77
Gap LB 159.8% 161.5% 148.5% 121.1% 103.8% 74.1% 59.0% 38.7% 39.7% 32.2% 16.1%
Avg. Run Time [sec] 3,736

Improvement ALNS - Cplex 95.7% 112.1% 81.6% 71.7% 67.7% 44.6% 31.2% 12.3% 15.5% 16.1% 6.7%

R
10

1_
40

re
c_

12
Q

l

Epsilon 1.81 29.87 57.93 85.99 114.05 142.11 170.17 198.22 226.28 254.34 282.40

C
p

le
x

True attraction 21.18 35.17 62.13 89.98 117.50 144.74 172.72 199.84 227.31 254.77 282.40
Best LB 1.08 1.02 1.19 1.42 1.74 1.99 2.36 2.71 3.10 3.48 4.10
Best 1.61 1.63 1.80 2.10 2.43 2.66 3.06 3.42 3.70 4.08 4.48
Gap LB 48.6% 59.3% 51.0% 48.1% 39.7% 33.7% 29.6% 26.2% 19.4% 17.2% 9.4%
Run Time [sec] 283,556

A
LN

S

True attraction 11.18 51.56 65.23 92.16 132.80 146.30 200.19 200.19 228.01 254.91 282.40
Best 2.45 2.65 2.92 3.13 3.23 3.61 3.77 3.77 4.26 4.41 4.80
Average 2.55 2.73 3.00 3.20 3.34 3.67 3.84 3.95 4.33 4.60 4.82
Gap LB 125.9% 159.9% 145.3% 121.1% 85.8% 81.1% 59.3% 38.9% 37.6% 26.6% 17.2%
Avg. Run Time [sec] 10,181

Improvement ALNS - Cplex 77.3% 100.6% 94.3% 72.9% 46.1% 47.4% 29.7% 12.8% 18.2% 9.3% 7.8%

R
10

1_
80

re
c_

32
Q

l

Epsilon 3.24 59.39 115.55 171.71 227.86 284.02 340.18 396.33 452.49 508.64 564.80

C
p

le
x

True attraction 32.42 60.26 116.21 174.67 331.06 - 352.55 399.61 454.52 509.83 564.80
Best LB 0.86 0.88 1.03 1.26 1.67 - 2.24 2.94 3.43 3.98 4.96
Best 2.37 2.49 2.66 2.67 21.62 - 6.27 12.82 22.78 13.00 9.74
Gap LB 174.5% 183.7% 157.8% 111.6% 1195.7% - 179.8% 336.3% 564.6% 226.5% 96.6%
Run Time [sec] 133,811

A
LN

S

True attraction 31.33 91.23 137.49 177.07 249.38 316.24 350.15 423.25 463.59 510.70 564.80
Best 3.79 4.00 4.26 4.37 4.56 4.80 5.05 5.33 5.65 6.05 6.60
Average 4.00 4.18 4.33 4.54 4.73 4.96 5.21 5.58 5.86 6.33 6.73
Gap LB 338.7% 355.2% 312.5% 246.1% 173.5% - 125.6% 81.4% 64.8% 52.1% 33.1%
Avg. Run Time [sec] 26,159

Improvement ALNS - Cplex 164.2% 171.5% 154.7% 134.5% -1022.2% - -54.3% -254.8% -499.8% -174.4% -63.5%

R
10

1_
80

re
c_

24
Q

l

Epsilon 3.24 59.39 115.55 171.71 227.86 284.02 340.18 396.33 452.49 508.64 564.80

C
p

le
x

True attraction 38.12 59.98 115.74 171.72 230.07 366.38 340.34 402.49 454.86 509.65 564.80
Best LB 0.99 0.94 1.10 1.35 1.62 2.06 2.27 2.96 3.60 3.98 4.96
Best 2.37 2.46 2.54 3.08 3.57 20.41 3.89 10.41 22.86 11.38 8.19
Gap LB 139.7% 161.1% 131.8% 128.3% 120.1% 891.2% 71.2% 251.2% 535.4% 185.9% 65.4%
Run Time [sec] 302,698

A
LN

S

True attraction 31.33 71.05 137.52 177.87 230.91 289.29 396.21 402.90 477.28 557.96 564.80
Best 3.79 3.85 4.24 4.34 4.44 4.86 5.14 5.62 6.03 6.27 6.29
Average 3.92 4.17 4.33 4.52 4.63 4.99 5.40 5.65 6.15 6.44 6.49
Gap LB 283.3% 308.7% 286.2% 222.0% 174.1% 136.2% 125.9% 89.6% 67.6% 57.5% 26.9%
Avg. Run Time [sec] 25,807

Improvement ALNS - Cplex 15.6% 13.8% 17.2% 12.7% 9.0% -32.3% 14.1% -24.3% -43.9% -28.5% -18.4%
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Table A.2: Computational results for Solomon RC instances

Total Epsilon 1 Epsilon 2 Epsilon 3 Epsilon 4 Epsilon 5 Epsilon 6 Epsilon 7 Epsilon 8 Epsilon 9 Epsilon 10 Epsilon 11

R
C

10
1_

20
re

c_
8Q

l

Epsilon 0.52 14.58 28.65 42.72 56.79 70.86 84.93 98.99 113.06 127.13 141.20

G
u

ro
b

i

True attraction 27.47 27.49 34.31 47.78 61.02 74.08 88.32 100.79 113.93 127.38 141.20
Best LB 1.65 1.52 1.65 1.70 1.68 1.55 1.63 1.81 2.18 2.54 2.86
Best 3.27 3.27 3.28 3.30 3.35 3.43 3.67 3.61 3.74 3.86 4.13
Gap LB 98.3% 114.8% 98.9% 93.4% 99.4% 122.0% 124.9% 100.0% 71.5% 51.9% 44.4%
Run Time [sec] 39,612

A
LN

S

True attraction 8.25 14.87 35.44 47.55 60.79 73.81 88.48 107.98 114.30 127.70 141.20
Best 3.28 3.29 3.35 3.42 3.49 3.53 3.60 3.82 3.86 3.96 4.13
Average 3.28 3.30 3.37 3.45 3.51 3.60 3.71 3.84 3.93 3.97 4.14
Gap LB 98.9% 116.1% 103.3% 100.5% 107.5% 128.1% 120.9% 111.5% 76.9% 55.8% 44.4%
Avg. Run Time [sec] 1,037

Improvement ALNS - Gurobi 0.6% 1.3% 4.4% 7.0% 8.1% 6.0% -4.0% 11.5% 5.4% 4.0% 0.0%

R
C

10
1_

20
re

c_
6Q

l

Epsilon 0.52 14.58 28.65 42.72 56.79 70.86 84.93 98.99 113.06 127.13 141.20

G
u

ro
b

i

True attraction 27.47 27.49 34.31 47.78 61.02 74.08 88.32 100.79 113.93 127.38 141.20
Best LB 1.65 1.52 1.65 1.70 1.68 1.55 1.63 1.81 2.18 2.55 2.86
Best 3.27 3.27 3.28 3.30 3.35 3.43 3.67 3.61 3.74 3.86 4.13
Gap LB 98.6% 114.9% 99.0% 93.9% 99.1% 121.9% 124.5% 99.3% 71.2% 51.7% 44.5%
Run Time [sec] 39,615

A
LN

S

True attraction 14.38 15.17 34.10 47.21 67.11 80.26 88.44 100.71 113.93 127.73 141.20
Best 3.28 3.30 3.37 3.43 3.48 3.52 3.75 3.81 3.84 3.91 4.13
Average 3.28 3.31 3.38 3.44 3.50 3.56 3.77 3.85 3.88 3.96 4.15
Gap LB 98.9% 116.8% 104.9% 101.8% 106.7% 127.7% 129.7% 110.2% 76.1% 53.7% 44.5%
Avg. Run Time [sec] 2,519

Improvement ALNS - Gurobi 0.3% 1.8% 5.9% 7.9% 7.6% 5.8% 5.2% 11.0% 4.9% 2.0% 0.0%

R
C

10
1_

40
re

c_
16

Q
l

Epsilon 1.04 29.17 57.31 85.45 113.58 141.72 169.85 197.99 226.13 254.26 282.40

C
p

le
x

True attraction 43.88 57.77 58.66 91.78 116.81 146.17 173.53 200.09 227.46 254.80 282.40
Best LB 0.99 1.02 1.05 1.02 1.08 1.15 1.44 1.88 2.32 2.81 3.76
Best 2.50 2.62 2.67 2.68 2.77 3.73 4.18 3.97 4.28 4.67 5.24
Gap LB 152.0% 156.6% 153.1% 162.2% 155.5% 224.9% 190.0% 111.8% 84.4% 66.5% 39.4%
Run Time [sec] 45,769

A
LN

S

True attraction 17.82 76.98 76.98 97.28 116.95 149.62 176.47 223.40 229.10 275.49 282.40
Best 3.83 3.93 3.93 4.01 4.25 4.40 4.56 4.72 4.83 5.16 5.25
Average 3.91 3.97 4.00 4.16 4.29 4.45 4.61 4.82 4.89 5.20 5.32
Gap LB 286.8% 285.5% 273.0% 292.2% 291.9% 283.2% 216.2% 151.9% 108.1% 83.9% 39.5%
Avg. Run Time [sec] 3,588

Improvement ALNS - Cplex 134.8% 128.9% 119.9% 130.0% 136.4% 58.3% 26.2% 40.1% 23.7% 17.4% 0.2%

R
C

10
1_

40
re

c_
12

Q
l

Epsilon 1.04 29.17 57.31 85.45 113.58 141.72 169.85 197.99 226.13 254.26 282.40

C
p

le
x

True attraction 44.45 43.85 57.90 91.00 117.82 144.13 172.23 199.57 227.41 254.85 282.40
Best LB 1.14 0.99 1.03 1.02 1.08 1.19 1.46 1.81 2.24 2.80 3.76
Best 2.50 2.50 2.62 2.62 3.02 3.23 3.53 4.05 4.19 4.52 5.24
Gap LB 118.8% 153.2% 153.1% 156.2% 180.6% 170.8% 142.7% 124.0% 86.8% 61.5% 39.3%
Run Time [sec] 47,255

A
LN

S

True attraction 17.82 37.43 70.59 110.47 117.17 156.73 176.92 202.25 229.03 255.92 282.40
Best 3.83 3.87 4.02 4.04 4.24 4.33 4.42 4.60 4.79 5.09 5.34
Average 3.97 4.02 4.08 4.15 4.35 4.45 4.52 4.67 4.87 5.19 5.41
Gap LB 235.8% 292.3% 288.9% 294.4% 293.3% 263.1% 203.5% 154.7% 113.6% 81.9% 41.8%
Avg. Run Time [sec] 8,877

Improvement ALNS - Cplex 117.1% 139.1% 135.8% 138.2% 112.7% 92.3% 60.8% 30.7% 26.8% 20.5% 2.5%

R
C

10
1_

80
re

c_
32

Q
l

Epsilon 1.87 30.01 58.14 86.28 114.42 142.55 170.69 198.83 226.96 255.10 564.80

C
p

le
x

True attraction 62.88 76.40 125.58 - - 285.21 339.84 404.94 509.85 510.35 564.80
Best LB 1.06 0.88 1.10 - - 1.88 2.08 2.61 3.94 3.29 4.87
Best 4.19 4.70 5.85 - - 7.90 8.87 25.53 13.60 11.45 10.16
Gap LB 293.8% 434.2% 431.4% - - 320.2% 327.0% 876.5% 245.4% 247.7% 108.8%
Run Time [sec] 172,419

A
LN

S

True attraction 39.19 39.19 84.69 137.31 137.31 193.47 193.47 241.06 241.06 262.17 564.80
Best 5.39 5.39 5.52 5.56 5.56 5.74 5.74 5.78 5.78 5.92 7.09
Average 5.53 5.53 5.71 5.72 5.72 5.80 5.80 5.94 5.95 6.16 7.23
Gap LB 406.8% 512.9% 401.3% - - 205.5% 176.4% 121.0% 46.7% 79.7% 45.8%
Avg. Run Time [sec] 23,069

Improvement ALNS - Cplex 112.9% 78.7% -30.0% - - -114.7% -755.5% -198.7% -168.0% -63.1%

R
C

10
1_

80
re

c_
24

Q
l

Epsilon 1.87 30.01 58.14 86.28 114.42 142.55 170.69 198.83 226.96 255.10 564.80

C
p

le
x

True attraction 56.88 82.31 138.45 172.28 - 284.70 - 401.60 455.75 509.55 564.80
Best LB 0.95 0.92 1.05 1.35 - 1.88 - 2.99 3.38 3.90 4.87
Best 4.17 4.23 3.69 8.46 - 6.44 - 11.86 21.75 6.74 9.51
Gap LB 338.0% 359.7% 252.5% 528.7% - 242.1% - 296.8% 543.8% 72.9% 95.5%
Run Time [sec] 187,097

A
LN

S

True attraction 138.04 138.04 138.04 138.04 138.04 216.09 216.09 216.09 229.16 334.66 564.80
Best 5.78 5.78 5.78 5.78 5.78 5.83 5.83 5.83 5.93 5.96 7.20
Average 5.84 5.84 5.84 5.84 5.84 5.89 5.91 5.94 5.99 6.06 7.37
Gap LB 506.6% 527.4% 452.0% 329.2% - 210.0% - 95.2% 75.4% 52.9% 47.9%
Avg. Run Time [sec] 40,589

Improvement ALNS - Cplex 168.6% 167.7% 199.5% -199.4% - -32.1% - -201.6% -468.4% -20.0% -47.6%



B
Results Case Study

B.1. Base Scenario
Table B.1: Results for Base Scenario

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 27.95 67.5 10.3% 46.2 0.22 11 34.1% 5 14 42 11 5 3 0
1 28.65 174.3 28.4% 47.5 0.16 8 36.9% 21 12 32 9 4 2 0
2 28.82 304.5 51.1% 47.8 0.16 8 24.4% 41 5 22 5 4 2 1
3 29.21 311.0 52.5% 48.5 0.12 6 31.7% 42 6 20 6 4 2 0
4 29.67 311.8 52.0% 49.2 0.14 7 27.1% 42 7 21 4 4 2 0
5 29.71 349.2 54.7% 49.1 0.22 11 15.0% 47 10 23 0 0 0 0
6 29.80 442.8 76.4% 49.6 0.04 2 45.0% 62 0 9 4 3 2 0
7 29.94 466.8 79.5% 49.7 0.10 5 15.0% 65 6 9 0 0 0 0
8 29.98 558.1 97.8% 49.9 0.02 1 5.0% 79 0 1 0 0 0 0
9 30.14 564.8 100% 50.2 0.00 0 0.0% 80 0 0 0 0 0 0

B.2. Locker Capacity
Table B.2: Results for 15 Locker Capacity

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 29.06 233.8 35.9% 48.0 0.28 14 17.9% 30 11 27 6 3 2 1
1 29.30 337.5 57.6% 48.7 0.10 5 34.0% 46 7 11 6 4 4 2
2 29.39 356.5 61.3% 48.9 0.08 4 38.8% 49 5 10 6 4 4 2
3 29.82 551.7 95.2% 49.6 0.04 2 5.0% 78 1 1 0 0 0 0
4 29.85 564.8 100% 49.7 0.00 0 0.0% 80 0 0 0 0 0 0

Table B.3: Results for 20 Locker Capacity

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 29.15 125.8 18.9% 48.0 0.32 16 20.9% 13 20 44 3 0 0 0
1 29.21 139.0 21.0% 48.2 0.30 15 21.7% 15 20 42 3 0 0 0
2 29.22 145.6 22.1% 48.2 0.30 15 21.3% 16 19 42 2 1 0 0
3 29.51 204.9 32.0% 48.8 0.24 12 22.9% 25 17 36 1 0 1 0
4 29.53 211.8 33.0% 48.8 0.24 12 22.5% 26 17 36 1 0 0 0
5 29.70 218.1 34.7% 49.1 0.22 11 24.1% 27 16 36 1 0 0 0
6 29.74 230.2 36.3% 49.2 0.24 12 21.3% 29 14 35 1 1 0 0
7 29.79 301.5 48.8% 49.2 0.24 12 16.7% 40 10 26 0 1 3 0
8 29.79 359.4 55.3% 49.2 0.26 13 11.9% 49 4 27 0 0 0 0
9 29.98 472.4 77.5% 49.7 0.14 7 10.0% 66 3 11 0 0 0 0

10 30.02 564.8 100% 50.0 0.00 0 0.0% 80 0 0 0 0 0 0
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B.3. Number of Lockers
Table B.4: Results for 15 Lockers

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 28.26 118.4 19.3% 46.8 0.18 9 49.6% 13 8 38 16 1 2 2
1 28.67 119.0 19.1% 47.4 0.20 10 44.7% 13 9 38 16 1 2 1
2 28.79 150.2 23.4% 47.6 0.26 13 32.3% 17 16 41 6 0 0 0
3 28.93 304.3 52.3% 48.1 0.08 4 65.0% 41 7 14 10 4 3 1
4 29.22 305.0 52.4% 48.5 0.10 5 52.0% 41 8 14 10 3 4 0
5 29.26 311.9 53.5% 48.6 0.10 5 50.7% 42 8 14 10 3 3 0
6 29.59 315.5 52.6% 49.0 0.16 8 31.7% 42 10 26 2 0 0 0
7 29.63 387.6 63.7% 49.1 0.16 8 22.5% 53 7 19 1 0 0 0
8 29.64 419.9 69.2% 49.2 0.14 7 21.0% 58 6 12 2 1 1 0
9 29.77 425.1 68.0% 49.3 0.18 9 15.6% 59 1 18 2 0 0 0

10 29.78 433.3 74.5% 49.5 0.10 5 26.7% 60 5 13 2 0 0 0
11 29.79 440.0 73.1% 49.4 0.12 6 21.1% 61 6 11 0 1 1 0
12 29.82 451.2 72.7% 49.4 0.16 8 14.2% 63 0 15 2 0 0 0
13 29.92 498.6 82.2% 49.7 0.12 6 11.1% 70 3 4 1 1 0 1
14 29.98 525.1 88.4% 49.8 0.08 4 10.0% 74 1 4 1 0 0 0
15 30.01 558.1 97.9% 50.0 0.02 1 6.7% 79 0 1 0 0 0 0
16 30.09 564.8 100% 50.2 0.00 0 0.0% 80 0 0 0 0 0 0

Table B.5: Results for 10 Lockers

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 27.38 89.0 14.4% 45.3 0.18 9 80.0% 8 16 39 15 2 0 0
1 27.64 127.9 21.2% 45.8 0.16 8 82.5% 14 13 38 15 0 0 0
2 27.65 154.9 24.5% 45.8 0.18 9 68.9% 18 14 33 14 1 0 0
3 27.72 166.7 27.2% 45.9 0.16 8 75.0% 20 11 35 12 2 0 0
4 27.77 182.6 30.2% 46.0 0.14 7 82.9% 22 15 32 10 1 0 0
5 27.85 200.4 33.5% 46.2 0.14 7 78.6% 25 10 32 12 1 0 0
6 28.00 266.5 44.2% 46.4 0.14 7 64.3% 35 9 22 14 0 0 0
7 28.45 287.9 48.5% 47.2 0.10 5 84.0% 38 11 24 6 1 0 0
8 28.48 300.2 51.3% 47.3 0.10 5 80.0% 40 9 22 7 1 1 0
9 28.55 333.0 56.0% 47.4 0.12 6 58.3% 45 7 17 11 0 0 0

10 28.73 333.2 55.9% 47.7 0.10 5 70.0% 45 8 19 6 2 0 0
11 28.76 367.2 63.0% 47.8 0.08 4 75.0% 50 8 16 6 0 0 0
12 28.90 374.0 64.1% 48.0 0.08 4 72.5% 51 8 16 5 0 0 0
13 29.12 386.3 66.4% 48.4 0.08 4 67.5% 53 6 13 7 1 0 0
14 29.19 399.9 68.9% 48.5 0.06 3 83.3% 55 6 13 6 0 0 0
15 29.21 492.7 85.5% 48.6 0.04 2 55.0% 69 3 5 3 0 0 0
16 29.45 498.4 87.9% 49.1 0.02 1 100.0% 70 2 5 3 0 0 0
17 29.60 499.2 85.6% 49.2 0.06 3 33.3% 70 3 5 2 0 0 0
18 29.67 518.4 89.6% 49.4 0.04 2 35.0% 73 1 4 2 0 0 0
19 29.71 525.1 92.0% 49.5 0.02 1 60.0% 74 1 3 2 0 0 0
20 29.94 564.8 100% 49.9 0.00 0 0.0% 80 0 0 0 0 0 0
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B.4. Locker Rent
Table B.6: Results for 0.05 Rent

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 28.67 145.7 22.3% 46.9 0.55 11 28.6% 17 10 32 14 3 4 0
1 28.71 289.4 48.5% 47.4 0.25 5 41.0% 39 4 22 6 4 2 3
2 28.86 302.8 51.1% 47.7 0.25 5 39.0% 41 3 21 7 4 2 2
3 29.59 313.5 52.8% 48.8 0.30 6 31.7% 42 7 25 4 2 0 0
4 29.92 349.5 59.4% 49.5 0.20 4 40.0% 48 2 17 7 5 1 0
5 29.96 564.8 100% 49.9 0.00 0 0.0% 80 0 0 0 0 0 0

Table B.7: Results for 0 Rent

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 24.99 27.2 4.1% 41.6 0.00 8 50.0% 0 14 32 5 4 6 19
1 25.35 33.6 5.2% 42.3 0.00 8 49.4% 1 13 29 13 4 4 16
2 25.59 47.5 7.5% 42.7 0.00 9 42.8% 3 14 30 9 3 2 19
3 25.67 94.5 15.7% 42.8 0.00 7 50.0% 10 13 26 6 5 3 17
4 25.67 94.5 15.7% 42.8 0.00 7 50.0% 10 13 26 6 5 3 17
5 25.95 156.1 25.1% 43.3 0.00 6 50.0% 20 5 17 9 5 4 20
6 26.12 161.2 27.1% 43.5 0.00 6 50.0% 20 10 26 3 1 3 17
7 26.18 163.1 27.8% 43.6 0.00 6 50.0% 20 11 28 6 2 1 12
8 26.51 163.1 27.1% 44.2 0.00 8 37.5% 20 12 26 3 2 0 17
9 26.65 285.7 46.0% 44.4 0.00 4 50.0% 40 0 0 1 2 4 33

10 26.98 285.7 46.4% 45.0 0.00 4 50.0% 40 0 0 2 2 3 33
11 27.28 288.2 46.9% 45.5 0.00 4 50.0% 40 1 6 3 1 0 29
12 27.33 290.6 48.7% 45.6 0.00 4 50.0% 40 3 7 4 2 2 22
13 27.54 291.5 49.0% 45.9 0.00 4 50.0% 40 4 9 2 4 1 20
14 27.65 342.0 55.3% 46.1 0.00 5 32.0% 48 2 0 0 1 0 29
15 27.65 348.4 57.4% 46.1 0.00 4 38.8% 49 1 0 0 1 0 29
16 28.01 357.8 60.8% 46.7 0.00 3 50.0% 50 1 5 0 3 0 21
17 28.34 417.9 70.7% 47.2 0.00 3 35.0% 59 0 0 0 2 0 19
18 28.43 425.9 73.2% 47.4 0.00 2 50.0% 60 0 2 2 1 1 14
19 28.47 426.6 73.0% 47.5 0.00 2 50.0% 60 1 2 2 1 1 13
20 28.56 428.0 74.0% 47.6 0.00 2 50.0% 60 2 3 1 3 0 11
21 28.59 432.8 74.3% 47.6 0.00 2 47.5% 61 1 0 1 0 1 16
22 28.83 439.7 75.5% 48.0 0.00 2 45.0% 62 1 0 1 0 0 16
23 29.31 445.5 76.4% 48.9 0.00 2 42.5% 63 0 0 0 0 0 17
24 29.67 455.3 78.6% 49.4 0.00 2 40.0% 64 2 2 2 0 1 9
25 29.68 465.5 76.1% 49.5 0.00 7 10.7% 65 2 11 0 0 0 2
26 29.75 494.8 86.3% 49.6 0.00 1 50.0% 70 0 0 0 0 0 10
27 29.89 495.3 86.6% 49.8 0.00 1 50.0% 70 0 1 1 0 0 8
28 29.90 497.1 86.0% 49.8 0.00 2 25.0% 70 0 4 3 2 1 0
29 30.00 558.3 97.0% 50.0 0.00 1 5.0% 79 1 0 0 0 0 0
30 30.00 564.8 100% 50.0 0.00 0 0.0% 80 0 0 0 0 0 0
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B.5. Home Delivery Attraction
Table B.8: Results for 0.3 Un

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 29.10 34.4 28.0% 48.0 0.30 15 23.7% 9 16 43 4 6 1 1
1 29.16 34.8 31.4% 48.2 0.24 12 20.4% 31 14 35 0 0 0 0
2 29.36 40.1 25.2% 48.3 0.40 20 19.8% 1 22 55 1 0 1 0
3 29.48 40.3 25.5% 48.5 0.40 20 20.0% 0 22 56 2 0 0 0
4 34.88 40.4 25.6% 57.5 0.40 20 19.8% 1 22 56 1 0 0 0
5 35.43 40.4 25.6% 58.4 0.40 20 19.5% 2 22 56 0 0 0 0

Table B.9: Results for 0.8 Un

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 27.86 30.0 21.5% 46.1 0.20 10 40.0% 0 10 42 16 9 3 0
1 27.88 30.7 22.3% 46.1 0.20 10 39.5% 1 10 42 16 9 2 0
2 28.37 38.0 35.2% 47.1 0.12 6 49.2% 21 5 33 11 8 2 0
3 28.93 44.9 25.2% 47.7 0.34 17 19.7% 13 19 47 1 0 0 0
4 29.10 47.2 29.0% 48.0 0.30 15 20.0% 20 18 41 1 0 0 0
5 29.42 48.1 32.9% 48.6 0.24 12 23.3% 24 17 37 1 0 1 0
6 29.60 50.2 36.1% 49.0 0.22 11 22.3% 31 15 34 0 0 0 0
7 29.74 52.1 38.3% 49.2 0.20 10 22.5% 35 15 30 0 0 0 0
8 29.85 54.7 42.7% 49.4 0.20 10 15.5% 49 7 24 0 0 0 0
9 29.86 57.0 46.0% 49.5 0.18 9 13.3% 56 5 19 0 0 0 0

10 29.89 64.0 100% 49.8 0.00 0 0.0% 80 0 0 0 0 0 0
11 30.58 64.0 90.8% 50.9 0.02 1 5.0% 79 1 0 0 0 0 0
12 30.64 64.1 91.9% 51.0 0.02 1 5.0% 79 1 0 0 0 0 0
13 30.82 64.1 88.3% 51.3 0.02 1 5.0% 79 1 0 0 0 0 0
14 31.26 64.2 95.0% 52.1 0.02 1 5.0% 79 1 0 0 0 0 0
15 32.39 64.2 93.8% 54.0 0.02 1 5.0% 79 1 0 0 0 0 0
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B.6. Distance Factor
Table B.10: Results for -1.5 utility

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 24.95 141.8 9.9% 41.3 0.16 8 50.0% 0 14 28 8 4 5 21
1 25.01 141.8 9.9% 41.4 0.16 8 50.0% 0 14 28 8 4 5 21
2 25.15 143.8 9.9% 41.6 0.16 8 50.0% 0 14 31 6 5 5 19
3 25.41 146.9 10.2% 42.1 0.16 8 49.4% 1 13 29 7 5 4 21
4 25.73 147.7 10.4% 42.6 0.16 8 49.4% 1 14 28 8 4 5 20
5 25.80 153.6 10.9% 42.7 0.16 8 48.8% 2 14 28 8 4 4 20
6 25.81 193.6 14.6% 42.8 0.14 7 50.0% 10 11 25 7 5 4 18
7 25.83 233.9 19.3% 42.9 0.12 6 50.0% 20 6 15 2 3 5 29
8 26.13 246.3 21.0% 43.3 0.12 6 50.0% 20 10 23 6 1 2 18
9 26.32 246.6 21.0% 43.7 0.12 6 50.0% 20 9 21 12 3 2 13

10 26.48 248.0 21.0% 43.9 0.12 6 50.0% 20 12 21 3 3 3 18
11 26.56 249.4 21.2% 44.1 0.12 6 50.0% 20 12 21 5 3 4 15
12 26.68 295.2 25.0% 44.3 0.12 6 42.5% 29 9 19 7 1 1 14
13 26.89 300.6 27.9% 44.7 0.10 5 50.0% 30 9 20 5 1 0 15
14 26.98 329.2 32.4% 44.8 0.08 4 50.0% 40 0 0 2 2 3 33
15 27.18 343.8 34.7% 45.2 0.08 4 50.0% 40 4 9 2 2 3 20
16 27.46 348.6 36.5% 45.6 0.08 4 50.0% 40 5 13 2 2 5 13
17 27.70 352.5 36.3% 46.0 0.08 4 50.0% 40 8 16 1 0 0 15
18 28.09 353.6 30.5% 46.6 0.12 6 33.3% 40 8 15 3 1 2 11
19 28.17 394.2 45.0% 46.9 0.06 3 50.0% 50 2 5 1 2 0 20
20 28.43 439.5 50.0% 47.3 0.06 3 35.0% 59 0 0 0 2 0 19
21 28.56 443.7 56.4% 47.5 0.04 2 50.0% 60 0 0 0 0 0 20
22 28.61 444.6 57.0% 47.6 0.04 2 50.0% 60 0 0 0 0 0 20
23 28.70 450.3 58.4% 47.8 0.04 2 50.0% 60 1 3 1 1 0 14
24 28.72 450.3 52.3% 47.8 0.06 3 35.0% 59 2 6 3 0 2 8
25 28.81 450.5 58.4% 47.9 0.04 2 50.0% 60 1 3 1 2 1 12
26 28.83 455.3 59.5% 48.0 0.04 2 50.0% 60 2 5 3 0 2 8
27 28.97 460.8 59.7% 48.2 0.04 2 45.0% 62 0 2 2 1 1 12
28 29.50 469.9 61.3% 49.1 0.04 2 42.5% 63 1 3 2 1 2 8
29 29.55 475.9 62.0% 49.2 0.04 2 40.0% 64 1 3 2 1 2 7
30 30.00 497.8 56.6% 49.9 0.06 3 21.7% 67 2 4 3 3 1 0
31 30.01 505.1 64.9% 49.9 0.04 2 27.5% 69 1 3 2 2 0 3
32 30.09 516.0 77.0% 50.1 0.02 1 40.0% 72 0 0 0 0 0 8
33 30.13 559.6 84.7% 50.2 0.02 1 5.0% 79 0 1 0 0 0 0
34 30.20 564.8 100% 50.3 0.00 0 0.0% 80 0 0 0 0 0 0
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Table B.11: Results for -0.5 utility

Index in
Pareto

Frontier

Total
Cost

Total
Attraction

Service
Level

Transportation
Distance

Locker
Rent

Lockers
In Use

Locker
Capacity Usage

Number of receivers traveling a distance (in km) of

(EUR) (-) (%) (km) (EUR) (num.) (%) 0 km* 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 > 0.5

0 24.97 261.9 10.6% 41.4 0.16 8 50.0% 0 14 31 6 5 5 19
1 25.51 262.3 10.6% 42.3 0.16 8 50.0% 0 10 29 19 3 5 14
2 25.73 264.8 10.7% 42.6 0.16 8 49.4% 1 14 28 8 4 4 21
3 25.77 324.1 14.5% 42.7 0.14 7 43.6% 19 6 17 2 3 4 29
4 25.92 327.4 16.5% 43.0 0.12 6 50.0% 20 6 15 2 3 4 30
5 26.07 333.5 16.9% 43.3 0.12 6 50.0% 20 9 21 6 2 3 19
6 26.13 335.7 17.0% 43.3 0.12 6 50.0% 20 10 23 6 1 1 19
7 26.13 335.8 17.0% 43.3 0.12 6 50.0% 20 10 23 6 1 1 19
8 26.23 338.0 17.0% 43.5 0.12 6 50.0% 20 10 27 5 2 1 15
9 26.35 339.9 17.0% 43.7 0.12 6 50.0% 20 11 29 6 3 0 11

10 26.39 361.1 18.1% 43.8 0.12 6 42.5% 29 4 13 1 2 3 28
11 26.63 396.8 26.1% 44.2 0.08 4 50.0% 40 0 1 2 2 2 33
12 27.01 406.1 26.8% 44.9 0.08 4 50.0% 40 3 11 4 2 1 19
13 27.45 412.8 27.4% 45.6 0.08 4 50.0% 40 8 16 3 0 1 12
14 27.87 413.1 27.5% 46.3 0.08 4 50.0% 40 8 16 3 0 2 11
15 27.94 440.5 34.6% 46.5 0.06 3 50.0% 50 0 1 2 2 2 23
16 28.13 443.0 29.2% 46.7 0.08 4 38.8% 49 3 10 1 1 3 13
17 28.32 481.9 46.5% 47.1 0.04 2 50.0% 60 1 2 1 0 1 15
18 28.44 482.5 46.6% 47.3 0.04 2 50.0% 60 1 2 2 1 1 13
19 28.58 485.0 47.0% 47.6 0.04 2 50.0% 60 2 5 1 1 0 11
20 29.01 485.2 47.0% 48.3 0.04 2 50.0% 60 2 3 2 3 1 9
21 29.23 489.4 47.6% 48.7 0.04 2 50.0% 60 4 6 1 2 2 5
22 29.26 489.9 47.7% 48.7 0.04 2 50.0% 60 4 5 3 4 1 3
23 29.46 499.4 48.3% 49.0 0.04 2 40.0% 64 1 3 0 2 1 9
24 29.60 517.6 49.7% 49.3 0.04 2 27.5% 69 0 0 1 0 0 10
25 29.90 524.6 65.7% 49.8 0.02 1 50.0% 70 1 1 1 0 1 6
26 30.02 530.5 51.2% 50.0 0.04 2 22.5% 71 1 1 2 1 2 2
27 30.06 560.3 70.1% 50.1 0.02 1 5.0% 79 0 0 0 0 0 1
28 30.10 561.1 70.6% 50.1 0.02 1 5.0% 79 0 1 0 0 0 0
29 30.18 564.8 100% 50.3 0.00 0 0.0% 80 0 0 0 0 0 0



C
Pseudocode for Destroy & Repair Operators

Pseudocode Destroy Operators

Algorithm C.1 Receivers random removal
1: input: xc

2: x ← xc

3: n ← random_number(r ec)
4: M ← random_sample(r ec,n)
5: for i ∈ M do
6: x ← remove(i , x)
7: end for
8: for l ∈ L do
9: if l =; then
10: x ← remove(l , x)
11: end if
12: end for
13: output: x

Algorithm C.2 Receiver worst cost removal
1: input: xc

2: x ← xc

3: c ← removal_costs(x)
4: i ← choose_max(c)
5: x ← remove(i , x)
6: for l ∈ L do
7: if r ∈ l then
8: l ←;
9: end if
10: end for
11: output: x

Algorithm C.3 Receiver worst utility removal
1: input: xc

2: x ← xc

3: u ← removal_utilities(x)
4: i ← choose_min(u)
5: x ← remove(i , x)
6: for r ∈ M do
7: for l ∈ L do
8: if l ∈ r then
9: l ←;
10: end if
11: end for
12: x ← remove(r, x)
13: end for
14: output: x
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Algorithm C.4 Receiver elated removal
1: input: xc

2: x ← xc

3: n ← random_number(x)
4: di s ← max(di st ances)*degree_destruction
5: N ← receivers_in(dis,rec)
6: for i ∈ N do
7: x ← remove(i , x)
8: end for
9: for r ∈ M do
10: for l ∈ L do
11: if l ∈ r then
12: l ←;
13: end if
14: end for
15: x ← remove(r, x)
16: end for
17: output: x

Algorithm C.5 Route random removal
1: input: xc

2: x ← xc

3: n ← random_number(r ou)
4: M ← random_sample(rou, n)
5: for r ∈ M do
6: x ← remove(r, x)
7: for l ∈ L do
8: if l ∈ r then
9: l ←;
10: end if
11: end for
12: end for
13: output: x

Algorithm C.6 Route worst cost removal
1: input: xc

2: x ← xc

3: c ← removal_costs(x)
4: r ← choose_max(c)
5: x ← remove(r, x)
6: for l ∈ L do
7: if l ∈ r then
8: l ←;
9: end if
10: end for
11: output: x

Algorithm C.7 Route worst utility removal
1: input: xc

2: x ← xc

3: u ← removal_utilities(x)
4: r ← choose_min(u)
5: x ← remove(r, x)
6: for l ∈ L do
7: if l ∈ r then
8: l ←;
9: end if
10: end for
11: output: x

Algorithm C.8 Route cheapest cost removal
1: input: xc

2: x ← xc

3: c ← removal_costs(x)
4: r ← choose_min(c)
5: x ← remove(r, x)
6: for l ∈ L do
7: if l ∈ r then
8: l ←;
9: end if
10: end for
11: output: x
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Algorithm C.9 Route cheapest utility removal
1: input: xc

2: x ← xc

3: u ← removal_utilities(x)
4: r ← choose_max(u)
5: x ← remove(r, x)
6: for l ∈ L do
7: if l ∈ r then
8: l ←;
9: end if
10: end for
11: output: x

Algorithm C.10 Locker random removal
1: input: xc

2: x ← xc

3: n ← random_number(loc)
4: M ← random_sample(loc, n)
5: for l ∈ M do
6: l ← remove(l , x)
7: l ←;
8: end for
9: output: x

Algorithm C.11 Locker worst cost removal
1: input: xc

2: x ← xc

3: c ← removal_costs(x)
4: l ← choose_max(c)
5: x ← remove(l , x)
6: l ←;
7: output: x

Algorithm C.12 Locker worst utility removal
1: input: xc

2: x ← xc

3: u ← removal_costs(x)
4: l ← choose_min(u)
5: x ← remove(l , x)
6: l ←;
7: output: x

Algorithm C.13 Locker random removal
1: input: xc

2: x ← xc

3: l ← random_choice(loc)
4: l ←;
5: for r ∈ R do
6: if l ∈ r then
7: x ← remove(r, x)
8: end if
9: end for
10: output: x

Pseudocode Repair Operators

Algorithm C.14 Greedy receiver insertion in routes
1: input: x
2: M ← relocate(x)
3: for i ∈ M do
4: Ra ← available_routes (x)
5: r, p ← greedy_insert_route (Ra)
6: x ← insert (i ,r, p)
7: end for
8: output: x
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Algorithm C.15 Best receiver insertion in routes
1: input: x
2: M ← relocate(x)
3: while M 6= ; do
4: Ra ← available_routes (x)
5: i ,r, p ← best_insert_route (Ra)
6: x ← insert (i ,r, p)
7: end while
8: output: x

Algorithm C.16 Regret receiver insertion in routes
1: input: x
2: M ← relocate(x)
3: while M 6= ; do
4: Ra ← available_routes (x)
5: i ,r, p ← regret_insert_route (Ra)
6: x ← insert (i ,r, p)
7: end while
8: output: x

Algorithm C.17 Greedy receiver insertion in maximum utility locker
1: input: x
2: M ← relocate(x)
3: for i ∈ M do
4: La ← available_lockers (x)
5: l ← greedy_locker (La)
6: x ← insert(i , l )
7: end for
8: if cap(R) violated then
9: x ← delete_lockers(x)
10: end if
11: for l ∈ L do
12: if l 6= ; then
13: if l ∉ R then
14: Ra ← available_routes_for_locker(x, l )
15: r, p ← greedy_insert_route (Ra)
16: x ← insert (l ,r, p)
17: end if
18: end if
19: end for
20: output: x

Algorithm C.18 Best receiver insertion in maximum utility lockers
1: input: x
2: M ← relocate(x)
3: while M 6= ; do
4: La ← available_lockers (x)
5: i , l ← best_maxU_locker (La)
6: x ← insert(i , l )
7: end while
8: if cap(R) violated then
9: x ← delete_lockers(x)
10: end if
11: for l ∈ L do
12: if l 6= ; then
13: if l ∉ R then
14: Ra ← available_routes_for_locker(x, l )
15: r, p ← greedy_insert_route (Ra)
16: x ← insert (l ,r, p)
17: end if
18: end if
19: end for
20: output: x
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Algorithm C.19 Regret receiver insertion in maximum utility lockers
1: input: x
2: M ← relocate(x)
3: while M 6= ; do
4: La ← available_lockers (x)
5: i , l ← regret_maxU_locker (La)
6: x ← insert(i , l )
7: end while
8: if cap(R) violated then
9: x ← delete_lockers(x)
10: end if
11: for l ∈ L do
12: if l 6= ; then
13: if l ∉ R then
14: Ra ← available_routes_for_locker(x, l )
15: r, p ← greedy_insert_route (Ra)
16: x ← insert (l ,r, p)
17: end if
18: end if
19: end for
20: output: x

Algorithm C.20 Greedy receiver insertion in cheapest lockers
1: input: x
2: M ← relocate(x)
3: for i ∈ M do
4: La ← available_lockers (x)
5: l ← greedy_cheapest_locker (La)
6: x ← insert(i , l )
7: end for
8: if cap(R) violated then
9: x ← delete_lockers(x)
10: end if
11: for l ∈ L do
12: if l 6= ; then
13: if l ∉ R then
14: Ra ← available_routes_for_locker(x, l )
15: r, p ← greedy_insert_route (Ra)
16: x ← insert (l ,r, p)
17: end if
18: end if
19: end for
20: output: x

Algorithm C.21 Regret receiver insertion in cheapest lockers
1: input: x
2: M ← relocate(x)
3: while M 6= ; do
4: La ← available_lockers (x)
5: i , l ← regret_cheapest_locker (La)
6: x ← insert(i , l )
7: end while
8: if cap(R) violated then
9: x ← delete_lockers(x)
10: end if
11: for l ∈ L do
12: if l 6= ; then
13: if l ∉ R then
14: Ra ← available_routes_for_locker(x, l )
15: r, p ← greedy_insert_route (Ra)
16: x ← insert (l ,r, p)
17: end if
18: end if
19: end for
20: output: x
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Implementation of Receiver Preferences in a Parcel Locker
Network for Last Miles Deliveries

Alba Genius Coca

Delft University of Technology

Abstract. With the current growth of e-commerce, couriers need to serve a bigger demand
and it is often the case that receivers are not at the location when their parcel is delivered. The
use of parcel lockers is seen as a good option for improving the problem of failed deliveries.
However, implementing a parcel locker network has an impact on both couriers and receivers,
which still prevents couriers from directly adopting this technology. The aim of this research
is to develop a new tool that helps couriers analyse the impact of using a parcel locker
network taking also into account receiver preferences to pick up parcels from lockers. An
optimization model is combined with a choice behaviour model to determine the trade-
offs between delivering to parcel lockers or to end-users, in terms of service level and total
transportation costs. In order to solve this model for large instances, an Adaptive Large
Neighbourhood Search algorithm has been adapted with operators and criteria specific for
the problem presented. Computational experiments were carried in a set of the Solomon
instances and show that the problem can be solved efficiently with the proposed algorithm.
Moreover, the algorithm was applied in a small delivery area in Rotterdam, showing the
sensitivity of the model to the preferences of receivers in the area.

Keywords: parcel locker, routing, choice behaviour, ALNS

1 Introduction

E-commerce is significantly growing amongst nowadays society and a lot of parcels have to be
moved from a depot to the locations specified by the receivers. This means that the B2C couriers
need more vehicles and longer travelling distances to serve a bigger demand. Moreover, it is often
the case that the receiver is not at the location when the parcels are delivered and this has an
impact on the efficiency of the delivery routing process.

There are different ways in which this issue can be tackled, for example, telling the receiver in
advance the delivery time period or asking the receiver beforehand during what time is possible to
find him/her at the location. However, there is always some probability of the receiver not being
at the location at the given period of time. For this reason, some research [13, 19, 20] is already
being done trying to take into account these probabilities when defining the delivery routes.

Another line of research is focused on the Physical Internet concept [9] and the use of parcel
lockers [2, 10]. Using these parcel lockers is considered to be positive because the B2C couriers
can serve multiple receivers at a single point, which reduces travelling costs and at the same time
eliminates the problem of failed deliveries. Moreover, parcel lockers are usually placed in locations
opened 24h a day, giving consumers more flexibility. Not to forget, they also help to diminish
congestion in cities and make the last mile delivery more environmentally friendly [2, 5, 21]. On
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the other hand, the main consequence is that consumers are the ones covering part of the last mile
delivery. Therefore, their willingness to go to the locker is an important factor to take into account.

Many companies have already implemented the use of parcel lockers for the last mile delivery
in various countries. [5] state that InPost has installed more than 3000 parcel lockers in different
countries. In similar terms, [10] remarks that DHL has also implemented in Germany 2500 parcel
lockers, which allows them to state that 90% of the German population is within 10 minutes of a
parcel-locker. [2] also mention the use of parcel-lockers from Amazon and the Canada Post. In the
Netherlands, [3] present a pilot project of PostNL in Amsterdam.

[11] determine factors that are important for identifying the behaviour of online consumers. [17]
studied the value of parcel-lockers for consumers in Sweden, they mention that consumer value is
created when a service of delivery or pick-up takes place and they conclude that future interactions
with the last mile delivery services are affected by the meaning of previous services. [5] did a survey
about the use of parcel-lockers and concluded that their location has an important effect on their
efficiency. Their survey gives an overview of parcel-locker users in Poland. [6] get some insights
on the locations of parcel-lockers in Australia. They identify clusters within the current locations
and state that the majority of them are located on commercial streets and shopping centres.[2]
focus on the design of a parcel-network, which in the end, is also related to determine the best
location of the lockers. However, their research is from a quantitative perspective. They develop a
mathematical model to determine how many parcel-lockers to open, where to locate them in order
to maximise the profit of the operating courier.

Following on the quantitative research on lockers, [18] define a location-routing problem for
delivering health care medication in the Netherlands. They determine which lockers to open and
the routes to visit the lockers and the routes that visit the patients, minimizing the routing and
opening costs.

In line with [18], this research wants to solve a routing problem to deliver parcels from a depot
to parcel lockers or homes with the aim of reducing the impact on costs for the courier and the
receivers. Therefore, this research contributes to the current literature by taking into account the
preferences of the receivers when deciding the routes. The objective of this type of problems is
different in the existing literature, where the main goal is to minimize the total transportation
costs (TTC) for the couriers.

Specifically, a routing problem is combined with a choice behaviour model, to deliver parcels
from a depot to parcel lockers or homes, minimizing the total travel costs and maximizing the
utilities of the receivers going to the parcel lockers. Besides, given the nature of the routing prob-
lems, solving them with an exact method usually requires a high computational time which leads
to the necessity of using heuristics. This research uses the Adaptive Large Neighbourhood Search
(ALNS) heuristics [14] for solving the optimization model and contributes with the design of repair
and destroy operators specifics for this model.

2 Problem Description

The problem consists of a B2C courier which has to distribute a set of parcel requests (n ∈ R) from
a depot to a set of parcel lockers (l ∈ L) or to several home locations. Specifically, the depot has
an homogeneous fleet of vehicles (k ∈ K) with capacity QV available to cover the daily demand.
There is an existing network of lockers with a limited capacity QL which can be rented by the
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B2C courier, who has to determine which lockers to use together with the delivery routes. A fixed
renting cost Crent per request is assumed.

As not all receivers are willing to go to all the lockers, the utility of a receiver picking up a
parcel in a specific locker is an important factor to take into account. Preferences of receivers are
described in terms of probabilities to go to a certain locker. These probabilities, as described later
on, are a function of the utilities.

Following this, the service level of a courier can be understood as the degree to which the
courier adjusts to the preferences of the receivers. In mathematical terms, the service level SL =∑

i∈R Pij/n offered by the courier is defined as the average of the probability of each receiver to
go to the locker where its parcel is being delivered. Therefore, in order to give a better service
level, the aim of the courier will be to deliver the parcel to the locker giving the maximum utility
to the receiver or to deliver the parcel at their home. This reasoning is in line with the utility
maximization theory [8].

The probability Pij of a receiver i to go to one of the lockers j will be determined using a
discrete choice model, the Multinomial Logit (MNL), which has already been used in literature in
the context of parcel lockers by [1, 7, 12], where they tried to model the preferences of the people
to go to the parcel lockers. Pij is defined by the MNL model by Pij = eUij/(

∑
j∈L e

Uij + eUH ),
where Uij is the utility of receiver i to go to locker j and UH is the utility of home delivery.

The utility functions from [7] are going to be used for the MNL model. [7] estimated the
parameters for two different utility Uij functions depending on whether the receiver is located in
a residential area or in a commercial area. The attributes included in them are travel distance dij

and type of locker typej (typej = 1 if locker j is located nearby a shopping center and a train/
subway/ tram station). They defined the attraction Aij of a locker j to receiver i as the exponential
of the utility function. The utility functions were estimated with data of an area in Singapore and
the lockers were located in distances smaller than 1 km. They also estimated the attraction AH

values of not going to any locker (home delivery) for both type of receivers.

Residential area : Uij = log(Aij) = −4.59 d1/3
ij + 1.5 typej , AH = 7.06

Comercial area : Uij = log(Aij) = −4.47 d1/3
ij + 0.52 typej , AH = 17.79

Each parcel request has a consideration set of lockers for the receiver Li ⊆ L. This set of lockers
specific for each receiver is used to limit the choices available to the receivers, as it is not expected
that they want to go to lockers which are located further away. Therefore, the consideration sets
of lockers are going to be limited to the lockers that give a minimum attraction value of Amin.

There is a service time s associated to the time spend to put a parcel in a locker, which has
to be taken into account when determining the total routing time and cannot exceed a specific
amount of hours Tmax (driver working hours).

There are two main objectives in this problem, 1) minimize the total transportation costs of
the courier while 2) maximizing the utilities of each receiver. In most cases these are conflicting
objectives because delivering the parcels to a locker where only a few people is willing to go comes
with an additional cost for the courier. Therefore, in order to balance the two objectives, obtaining
a Pareto frontier [16] is proposed.

The problem is first solved with each of the objective functions independently. The results for
the second objective function in both cases are used to define the upper and lower boundaries of the
Pareto frontier. Then, the problem is solved with only the first objective function and adding the
second objective as a constraint limited by an ε value. This ε is a value between the two boundaries
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previously found. In order to obtain the Pareto Frontier, the difference between the two boundaries
is divided by a number of intervals in order to obtain multiple ε with which to solve the problem.

2.1 Graphical example

In this section, a small example is presented. The transportation network consists of a depot and
5 parcel-lockers available to cover a demand of 10 receivers. Therefore, the problem is represented
with a graph of 17 nodes in total, where the blue node is the depot, the light green nodes are the
parcel-lockers and the dark green nodes are the receivers.

Figure 1 shows the solution of the problem solved for the first objective function. As can be
seen in the figure, only lockers are visited by vehicles. This is expected to happen because the
objective is to minimise the total transportation costs. Contrarily, in figure 3, only receivers are
visited, which happens as a result of solving the problem with the second objective function.

Figure 2 illustrates another solution, where the trade-offs between the previous two cases can be
observed. In this case, the problem is solved for the first objective function and having the second
objective as a constraint delimited by an ε. As a result, some receivers are assigned to lockers but
others have home delivery.

Fig. 1: Solution obtained min-
imising the TTC.

Fig. 2: Solution obtained min-
imising the TTC with an ε
constraint.

Fig. 3: Solution obtained
maximizing the utilities of
the receivers.

2.2 Mathematical Model

This problem is defined under a directed graph G(N,A) where N = R ∪ L ∪ O is the set of
nodes and A = A(R) ∪ A(O) ∪ A(L) is the set of arcs. A(R) = {(i, j)|i ∈ R ∪ L ∧ j ∈ R ∪ L};
A(O) = {(i, j)|i ∈ {0} ∧ j ∈ R ∪ L ∨ i ∈ R ∪ L ∧ j ∈ {1}}; A(L) = {(i, j)|i ∈ R ∧ j ∈ Li}. The
sets R and L correspond to all the receivers and lockers locations and set O = {0, 1} includes two
nodes that correspond to the depot (departure, arrival). Each arc (i, j) ∈ A has associated some
cost, which is travel distance dij .

Let binary variables yj be equal to 1 if locker j is rented, wi be equal to 1 if receiver i has home
delivery, zij be equal to 1 if receiver i is assigned to locker j, gk

i be equal to 1 if parcel from request
i is delivered by vehicle k, rk

j be equal to 1 if node j is visited by vehicle k, xk
ij be equal to 1 if

vehicle k moves from i to j. Lastly, tkj is the accumulated time of vehicle k having served node j.
The problem consists of two objective functions, Function (1) minimizes the total travelling

costs, which includes the travelling distance costs (Ckm) and the rent of the lockers (Crent) and
Function (2) maximizes the attraction of the receivers, which comes from a locker delivery(Aij) or
a home delivery(AH).
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minimize
∑

(i,j)∈A

Ckm dij x
k
ij +

∑
i∈R

∑
j∈Li

Crent zij (1)

maximize
∑
i∈R

∑
j∈Li

Aij zij +
∑
i∈R

AH wi (2)

Subject to:

zij ≤ yj ∀i ∈ R, j ∈ Li (3)

yj ≤
∑

(i,j)∈A(L)

zij ∀j ∈ L (4)

∑
j∈Li

zij + wi = 1 ∀i ∈ R (5)

Constraints (3) and (4) make sure that the receivers are only assigned to lockers that are rented
and lockers can only be rented if there is at least one receiver assigned to it. Constraint (5) ensures
that each receiver is either assigned to one locker or has home delivery.∑
j∈R∪L

xk
0j −

∑
j∈R∪L

xk
j,1 = 0 ∀k ∈ K (6)

∑
j∈R∪L∪{1}

xk
ij −

∑
j∈R∪L∪{0}

xk
ji = 0 ∀k ∈ K, i ∈ R ∪ L (7)

∑
j∈R∪L

xk
0j ≤ 1 ∀k ∈ K (8)

tkj ≥ tki + dij

v
+ s

∑
n∈C

gk
n −M(1− xk

ij) ∀i ∈ R ∪ L ∪ {0}, j ∈ R ∪ L, k ∈ K (9)

tk1 ≥ tki + dij

v
−M(1− xk

ij) ∀i ∈ R ∪ L, k ∈ K (10)

tk1 ≤ Tmax ∀k ∈ K (11)
tk0 = 0 ∀k ∈ K (12)

The flow conservation constraints are included in constraints (6 - 8). The consistency of the time
variables is ensured by constraints (9 - 12), which at the same time eliminate possible subtours.
Constraint (11) makes sure that the route duration does not exceed the working time Tmax.∑
i∈R∪L∪{0}

xk
ij = rk

j ∀j ∈ R ∪ L, k ∈ K (13)

rk
j ≤ yj ∀j ∈ L, k ∈ K (14)

yj ≤
∑
k∈K

rk
j ∀j ∈ L (15)∑

k∈K

∑
j∈R∪L∪{1}

xk
ij = wi ∀j ∈ R (16)

(17)
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gk
i ≥ zij + rk

j − 1 ∀k ∈ K, i ∈ R, j ∈ Li (18)
gk

i ≥ wi + rk
i − 1 ∀k ∈ K, i ∈ R, j ∈ Li (19)∑

k∈K

gk
i = 1 ∀i ∈ R (20)

Constraints (13 - 20) are the linking constraints. Specifically, constraints (14) and (15) enforce
that vehicles only visit lockers that are rented and constraint (16) ensures that receivers with home
delivery are visited by a vehicle. Constraint (20) forbids that a parcel for a receiver is carried for
more than one vehicle.∑
i∈R

gk
i ≤ QV ∀k ∈ K (21)∑

i∈R|j∈Li

zij ≤ QL ∀j ∈ L (22)

yj ∈ {0, 1} ∀j ∈ L (23)
wi ∈ {0, 1} ∀i ∈ R (24)
zij ∈ {0, 1} ∀i ∈ R,∀j ∈ Li (25)
gk

i ∈ {0, 1} ∀i ∈ R ∪ L,∀k ∈ K (26)
rk

j ∈ {0, 1} ∀j ∈ R ∪ L,∀k ∈ K (27)
tkj ≥ 0 ∀j ∈ N, ∀k ∈ K (28)
xk

ij ∈ {0, 1} ∀i ∈ N\{1},∀j ∈ N\{0},∀k ∈ K (29)

Finally, constraints (21) and (22) enforce the vehicle and lockers capacity restrictions, respec-
tively and constraints (23 - 29) define the nature and range of the decision variables.

3 Multi-objective Adaptive Large Neighborhood Search

The Mathematical Model presented in Section 2.2 is not possible to be solved for large instances
within a short time period. Therefore, an Adaptive Large Neighborhood Search (ALNS) heuristic
is proposed as a solution method.

The ALNS described by [14] is an adaptation of the Large Neighborhood Search (LNS), where
multiple destroy and repair heuristics are used in the same search. Hence, the main components
of the ALNS are: destroy operators, repair operators and an adaptive mechanism, which controls
the usage of the operators according to their performance in the previous iterations.

The solution method starts by giving an initial solution xi, to which the ALNS algorithm is
applied. This means that part of the solution is destroyed and repaired. Later, the acceptance
criteria is used to evaluate whether the new solution is accepted and a weight is assigned to
the destroy/repair operators used, to control how they perform. This is an iterative process that
searches for better solutions and finishes after N iterations [4].

The initial solution given in order to start applying the ALNS algorithm is usually obtained by
applying one of the repair operators (in this case: Greedy receiver insertion in lockers).
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Among the different acceptance criteria used within literature, Simulated Annealing (SA) is the
one mostly applied when using ALNS. As described by [4], the temporary solution x is accepted if
f(x) ≤ f(xc) and otherwise, it is accepted with probability P = e(f(xc)−(f(x))/T . The temperature
(T > 0) is updated at each iteration i using a cooling rate α {Ti = α Ti−1 | 0 ≤ α ≤ 1}. An initial
and end temperature must be given to the algorithm as well.

The adaptive selection and weight adjustments described by [4] are used for the ALNS algo-
rithm. In this case, as there are two objectives functions (minimise total transportation f(x) costs
and maximise total attractionsf2(x)), the ALNS works with a pool of best solutions instead of only
one best. This is because the purpose is to find a Pareto Frontier. The Acceptance and Weight
(A&W) criteria followed are presented in Algorithm 1.

Algorithm 1 A&W criteria
1: input: poolb, x, xc, (ω1, ω2, ω3, ω4), Ti−1, Tend, α
2: if f(x) > f(xc)&f2(x) < f2(xc) then
3: z ← SA(x, xc, Ti−1, Tend, α)
4: if z = Accepted then
5: xc, Ψ ← x, ω3 (ACCEPTED)
6: else
7: xc, Ψ ← xc, ω4 (REJECTED)
8: end if
9: end if
10: for xb ∈ poolb do
11: if f(x) >= f(xb)&f2(x) <= f2(xb) then
12: S ← add(1)
13: end if
14: end for
15: if S >= 1 then
16: xc, Ψ ← x, ω2 (BETTER)
17: else
18: xc, Ψ ← x, ω1 (BEST )
19: poolb ← add(x)
20: end if
21: Output: poolb, xc, Ψ

As already mentioned, some of the following repair and destroy operators have been designed
specifically for solving the mathematical model presented in Section 2.2.

3.1 Destroy operators

Receiver random removal: Randomly removes a number of receivers from the given solution.
The number is determined by the product of the number of receivers and the degree of de-
struction. These receivers could be part of the route or inside a locker.

Receiver worst cost removal: Removes the receiver with the highest cost of having it in one
of the given solution routes. Having a receiver in a locker is given a zero cost value.

Receiver worst utility removal: Removes the receiver with the lowest utility of having it in
one of the lockers or visiting it.
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Receiver related removal: Randomly chooses a receiver and removes all the receivers within a
given distance. This distance is determined by the product of the maximum distance between
the nodes and the degree of destruction.

Routes random removal: Randomly removes a number of routes from the given solution. The
number is determined by the product of the number of routes and the degree of destruction.

Routes worst cost removal: Removes the route with the highest cost in the given solution.
Routes worst utility removal: Removes the route with the lowest utilities in the given solution.
Routes cheapest cost removal: Removes the route with the lowest cost in the given solution.
Routes cheapest utility removal: Removes the route with the highest utilities in the given

solution.
Locker random removal: Randomly removes a number of lockers from the given solution. The

number is determined by the product of the number of lockers and the degree of destruction.
Locker worst cost removal: Removes the locker with the highest cost in the given solution.
Locker worst utility removal: Removes the locker with the lowest utilities in the given solution.
Locker random removal plus route: Randomly chooses a locker and removes the entire route

visiting it.

For all these operators, if when removing a receiver a locker is emptied, this locker is taken out
of the route. If a route is removed and there were lockers in it, these ones are emptied. If a locker
is removed, this one is emptied.

3.2 Repair operators

Greedy receiver insertion in routes Inserts the receivers that are not in the given destroyed
solution by taking a receiver from the list, checking the cost of locating it in the less costly
position at each of the available routes and then choosing the route with the lowest insertion
cost. Once the best route is determined, the operator inserts the receiver in this route and
repeats the procedure until all receivers have been placed.

Best receiver insertion in routes Inserts the receivers that are not in the given destroyed so-
lution by checking the cost of locating each receiver in the less costly position at each of the
available routes and then choosing the receiver and the route with the lowest insertion cost.
Later, the operator inserts the receiver in the route and repeats the procedure until all receivers
have been placed.

Regret receiver insertion in routes Inserts the receivers that are not in the given destroyed
solution by checking the regret of inserting each receiver. The regret of a receiver is defined as
the difference between the costs of locating the receiver in the two cheapest routes. Later, The
operator inserts the receiver with the highest regret in the route and repeats the procedure
until all receivers have been placed.

Greedy receiver insertion in maximum utility lockers Inserts the receivers that are not in
the given destroyed solution by taking a receiver from the list, checking the utility of locating
it in each of the available lockers and then choosing the locker giving the maximum utility.
Once the best locker is determined, the operator adds the receiver to this locker and repeats
the procedure until all receivers have been placed.

Greedy receiver insertion in cheapest lockers Inserts the receivers that are not in the given
destroyed solution by taking a receiver from the list, checking the cost of locating it in each of
the available lockers and then choosing the cheapest locker. Once the best locker is determined,
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the operator adds the receiver to this locker and repeats the procedure until all receivers have
been placed.

Best receiver insertion in maximum utility lockers Inserts the receivers that are not in the
given destroyed solution by checking the utility of locating each receiver in each of the available
lockers and then choosing the receiver and the locker that give the maximum utility. Later, the
operator adds the receiver in the chosen locker and repeats the procedure until all receivers
have been placed.

Regret receiver insertion in maximum utility lockers Inserts the receivers that are not in
the given destroyed solution by checking the regret of inserting each receiver. In this case, the
regret of a receiver is defined as the difference between the utilities of locating the receiver in
the two lockers with the highest utilities. Later, the operator adds the receiver in the chosen
locker and repeats the procedure until all receivers have been placed.

Regret receiver insertion in cheapest lockers Inserts the receivers that are not in the given
destroyed solution by checking the regret of inserting each receiver. In this case, the regret
of a receiver is defined as the difference between the costs of locating the receiver in the two
cheapest lockers. Later, the operator adds the receiver in the chosen locker and repeats the
procedure until all receivers have been placed.

For all the operators that insert receivers in lockers, the following applies. If there is any locker
that is filled with receivers and is not part of any route, then this locker is added to one of
the available routes, taking into account the amount of receivers inside it. If there are no available
routes for that, all lockers are deleted from the routes and are inserted following the greedy insertion
method. Moreover, a check is done at the end, in case the parcels could be rearranged to lockers
with higher utilities, keeping the number of receivers in each locker.

4 Experimental Setup

In this section a computational experiment is presented to check the computational efficiency of the
ALNS implementation explained in the previous section. Particularly, the software implementation
of the exact method and the ALNS algorithm are compared. The ALNS has been implemented in
Python and the mathematical model defined in Section 2.2 has also been implemented in Python
using the optimization solver Gurobi (for 20 receivers) and Cplex (for 40 and 80 receivers).

4.1 Data description and parameters of ALNS

The performance of the exact method and the ALNS is evaluated on a set of the Solomon instances
[15], which have 80 requests. They are divided into different types depending on the distribution
of the nodes. Experiments have been performed with R (random) and RC (mix of random and
clustered) instances to verify the ALNS method. Specifically, instances with three different sizes
(20, 40 and 80 requests) were considered. The following characteristics of the instances are defined
as a proportion of the requests(r). A total of 0.25r number of lockers with a capacity of 0.3r or
0.2r, and a total of 0.2r vehicles available with a capacity of 0.4r.

The parameters used for running the ALNS with the previously presented instances are shown
in Table 1. For Simulated Annealing, the initial temperature is set in such a way that the probability
of accepting a 2 times worst solution than the initial solution is 50% and the final temperature is
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determined with the following function Te = Ti α
#iterations. Each instance is run three times for

a total of 5,000 iterations x 6 epsilons. That means that a total of 35,000 iterations are executed
for each instance and run. For each of the epsilons, a Pareto Frontier is obtained and later all of
them are combined into a single one.

Table 1: Parameters used in ALNS.

Parameter Description Value

λ decay parameter 0.95
N number of iterations 5000
e number of epsilons 6
ε Penalty value for violating the Utility constraint 1000
ω1, ω2, ω3, ω4 Score weights (4, 3, 2, 0.5)
α cooling rate 0.9998

4.2 Computational Performance
In this section the software implementation of the exact method and the ALNS algorithm are
compared. Because solving the model with the exact method requires a considerable amount of
computational time, a time limit was used. Specifically, 1 hour per epsilon with the instances of 20
receivers (using Gurobi). For instances with 40 and 80 receivers, the Cplex runs were performed
with different strategies, to achieve the best lower bound (LB) with a time limit of 12h per epsilon
and to achieve the best solution with a time limit of 3 hours per epsilon. This was done in order
to get better results combining the two. However, it is important to keep in mind that the exact
method was stopped with a time limit and the gaps with the LB are rather high in general.

Table 2 presents an average of the differences between the gaps of the ALNS minus the gaps of
the exact method, which gives the general improvements achieved with the ALNS for each Pareto
Frontier. It should be noted that all gaps are calculated with respect to the best LB. The positive
improvements mean that the ALNS performs better than the exact method and the negative
improvements mean the that the ALNS performed indeed worse.

Table 2: ALNS average run time and improvement achieved with respect to the exact method for
R and RC instances.

Instances
R results RC results

Run Time Improvement Run Time Improvement

20rec_8Ql 3.4% -9.8% 2.6% -4.0%
20rec_6Ql 3.4% -10.8% 6.4% -4.8%
40rec_16Ql 1.5% -50.5% 7.8% -74.2%
40rec_12Ql 3.6% -46.9% 18.8% -79.7%
80rec_32Ql 19.5% 144.4% 13.4% 143.2%
80rec_24Ql 8.5% 82.1% 21.7% 48.2%

Therefore, for the 20 receivers instances, within a 2.4%-6.4% of the Gurobi running time, the
ALNS is able to find a solution that is only 4.0%-10.8% worst than the exact model. For the 40
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receiver instances, the ALNS run time varies more, from 1.5% -18.8% and the results from the
ALNS are further away from the solutions of the exact method. For the 80 receiver instances, the
ALNS is able to find a solution for all the epsilons within 8.5%-21.7% of the exact running time,
while the exact method was not able to find solutions for all the epsilons given the computation
time limit. Moreover, on average the ALNS improves significantly the solutions from the exact
method.

Figures 4 to 6 present the results in the form of Pareto Frontiers for a number of representative
cases only, as there are no significant differences between the results for the same number of
receivers but different locker capacities.

Figure 4 shows the Pareto Frontiers for one of the 20 receiver instances, where the ALNS is
really close to the exact solutions. However, Figure 5 confirms what was observed in the previous
tables, that the ALNS solutions are at a further distance from the exact method solutions. Figure 6
shows that the exact method is not able to find good solutions within the given time limit whereas
the ALNS can find better solutions than the exact method.

Fig. 4: Pareto Frontiers obtained for instance
R101_20rec_8Ql.

Fig. 5: Pareto Frontiers obtained for instance
R101_40rec_16Ql.

Fig. 6: Pareto Frontiers obtained for instance R101_80rec_24Ql.
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Figures 4, 5 also show that the exact model finds smoother Pareto Frontiers, meaning that
probably the ALNS operators are not able to find all possible solutions. This shows room for
improving the ALNS algorithm.

To conclude, the ALNS can be used for solving the mathematical problem presented previously
in Section 2.2. The ALNS algorithm is not able to find better solutions than the exact method for
the smaller instances - at least for the selected running times - whereas it is able to find some better
solutions for the bigger instances. Therefore, for instances equal or bigger than 80 receivers, the
ALNS improves the performance of the exact method with a significant reduction of the running
time, given the time limitation of 12h per epsilon in the exact method.

4.3 Impact of spatial distribution on delivery performance

In this section some general observations regarding differences between the R (uniformly dis-
tributed) and RC (mixed of uniformly distributed and clusters) are pointed out.

First, R instances costs are lower than the RC instances. This difference of cost is due to the
spatial distribution, as for RC there are more receivers located further away from the center than
in R. The RC Pareto Frontiers are steeper than the ones from R. This means that adding home
deliveries is cheaper for the courier delivering to RC distribution networks.

In general, the lockers are used at low capacity and the number of lockers used does not seem
to differ much regarding the different distributions as well. Therefore, these parameters are not
affected for having different receivers distributions.

Finally, when the lockers are located in the clusters, receivers have to travel shorter distances
to pick up their parcels, whereas in the R instances they have to travel longer distances.

5 Case study

The previous ALNS heuristics algorithm has been applied to a case study using data from the
company DPD, in The Netherlands. Specifically, a small area in the city center of Rotterdam was
chosen and the number of requests was limited to 80 parcels. In this case, the DPD depot is not
located inside the area where the requests are located but around 5.5 km to the North of the study
area.

The following parameters have been selected for a base scenario. 20 lockers with a capacity of
10 parcels, so that the algorithm has enough freedom to use more or less lockers, more or less full.
The attraction function of a residential area presented in Section 2 is used. Given the dimensions
of the study area, a fleet of 6 vehicles with a capacity of 20 parcels each, was considered. A fictional
driving cost of 0.6 ¤/km is assumed together with a driving speed of 30 km/h inside the study
area (between receivers and/or lockers) and 80 km/h between the depot and the study area. The
maximum duration of a route is limited to 8h in line with the drivers’ working hours. The service
time is assumed to be 2 min per parcel. Moreover, only parcel lockers that give an attraction higher
than 0.1 to the receivers are taken into account.

Lastly, the ALNS has been slightly modified, as for the case study, the renting cost is per
locker instead of per parcel (inside the locker). A rent cost of 0.02 ¤/locker is used. This value
was chosen because the Pareto Frontier is sensitive to the rent. For cases where the rent is high in
comparison with the distances between receivers, the cheapest result with the highest service level
would always be delivering all the parcels at home.
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Different scenarios were created to see the effect on the whole system of the renting costs of
the lockers, the number of lockers and their capacity and a change in preferences of the end-
users. The parameter with the most significant effect is the preferences of the end-users, which
is represented with variations on the home delivery attraction and the distance parameter in the
attraction function. This effect is presented below.

5.1 Effect of home delivery attraction and distance parameter

When calculating the probabilities of a receiver to go to a specific locker, the probability function
(Section 2) takes into account the attraction of all the lockers that are opened, as well as the
attraction of home delivery. For this reason, the probabilities obtained tend to be low when there
are many lockers opened or when the home attraction is high compared to the locker attractions,
as they are competing options from which the receiver could choose from. For the same reason,
when all the parcels are delivered at home, the receivers have no other option to choose from as
there are no lockers opened. Therefore, the probability of them choosing the home delivery option
is 1.

Due to this behaviour, an adjustment of the service level was needed (see Figure 8) to show
the effect of the attraction function variations. This adjusted SL is the average of the attraction
of each receiver with respect to the possible attraction range. Particularly, this is required for two
scenarios: when varying the home delivery attraction and the distance parameter.

To see the effect of the home delivery attraction, two scenarios were tested: reducing this
parameter from 7.06 in the base scenario to 0.8 and 0.3, and to see the effect of the distance
parameter, two other scenarios were tested: reducing this parameter from -4.59 in the base scenario
to -1.5 and -0.5.

When reducing the distance parameters, the adjusted SL curves become less steep than the
base scenario as can be seen in Figure 7. This implies that the courier needs to invest a little more
in order to see a significant improvement on the SL. However, this figure also shows that even
though any change is applied to the network, the courier is able to provide a higher SL with the
same cost if the receivers are less sensitive to the distance (-0.5 utility). Just to provide a 50% SL
in the -0.5 utility case, the courier reduces the travelling distance 5km and the total transportation
costs 3¤ from the base scenario.

More parcels will be delivered to lockers that are further away from the receivers, allowing to
reduce the routing distances, but still getting a similar service level. The fact that the parcels are
located to lockers that are further away is shown with Figure 9, where the dark green area is quite
significant. In these scenarios, still, home delivery is preferred because the difference in attraction
is high (maximum locker attraction 2.8 vs home attraction 7.06).

On the other hand, when reducing the value of home delivery attraction, the lockers can compete
with the home delivery and that is why the SL curve is different. Contrarily to the other two cases,
where the maximum SL is provided when delivering all the parcels at homes, in this scenario, the
maximum SL is provided delivering all the parcels to lockers. Specifically, to lockers located at less
than 200m from the receivers, as observed in Figure 10.

From this, the courier can see the importance of knowing the type of receivers present in their
network. For example, if the receivers are willing to make the extra effort of going to a locker further
away over receiving the parcel at home – which can be associated with sustainability consciousness
or convenience of the parcel locker system – the courier will be able to provide a high SL while
reducing the TTC to serve the same network.
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Fig. 7: Adjusted SL for the base scenario (-
4.59 dist. param.) and two other scenarios of
-1.5 and -0.5 dist.param.

Fig. 8: Adjusted SL for the base scenario
(7.06 Home attraction) and two other sce-
narios of 0.3 and 0.8 home attraction.

Fig. 9: Receiver distribution by distance to
locker for -0.5 distance parameter.

Fig. 10: Receiver distribution by distance to
locker for 0.3 home attraction.

5.2 Key findings

The following remarks can be highlighted based on the analysis of the results. First of all, it
is important to keep in mind that similar SL and TTC can be obtained for significantly different
routes, making this a complex system to analyse. When looking at the shape of the Pareto Frontiers,
a steep slope means that the SL can be easily improved with a small impact on the total costs. On
the other hand, a flat section in the Pareto Frontier means that a significant amount of money is
required to further increase the SL. When looking at the relevance of the parameters analysed, the
percentage of home deliveries is one of the main drivers for increasing the SL when home delivery
attraction is high. The capacity of lockers does not have a big impact on the results, while low
renting costs help to provide a specific SL at lower TTC. In general, using less lockers at a higher
capacity helps to reduce costs.

It is crucial for the couriers to study what type of receivers belong to their delivery network
before deciding on the implementation of parcel lockers. For example, if receivers are more sustain-
able, the resulting parcel locker network will enhance the use of more lockers, reducing the general
distance from the receivers to the lockers. Also, if receivers are less sensitive to the distance to the
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lockers, the resulting parcel locker network will reduce the number of lockers used, increasing the
distance to the lockers from the receivers side.

6 Conclusions

A new problem has been defined incorporating receivers’ choice behaviour into a vehicle routing
problem. This problem has been formulated in a Mathematical Model that can be solved numeri-
cally. A multi-objective ALNS algorithm with some operators specific for this problem is proposed.
This heuristics were compared with an exact method and the ALNS algorithm proved to be able
to solve the problem for large instances (100 nodes) efficiently.

A network of parcel lockers for the last mile delivery has been modeled for a case study in a
small urban area in Rotterdam. The impact of using parcel lockers on both couriers and receivers
is evaluated with a Pareto Frontier obtained from implementing the proposed ALNS algorithm.
The results proved to be significantly sensitive to the utility functions. Therefore, it is crucial for
the couriers to study what type of receivers belong to their delivery network before deciding on
the implementation of parcel lockers.
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