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Abstract
Recent advances in the development of modular transport vehicles allow deploying multi-
purpose vehicles, which enable alternate transport of different demand types. In this study,
we propose a novel variant of the pickup and delivery problem, the multi-purpose pickup and
delivery problem, where multi-purpose vehicles are assigned to serve a multi-commodity
flow. We solve a series of use case scenarios using an exact optimization algorithm and an
adaptive large neighborhood search algorithm. We compare the performance of a multi-
purpose vehicle fleet to a mixed fleet of single-purpose vehicles. Depending on cost
parameters, our findings suggest that in certain scenarios, the total costs can be reduced
by an average of 13% when multi-purpose vehicles are deployed, while at the same time
reducing total vehicle trip duration and total distance traveled by on average 33% and 16%,
respectively. The required fleet size can be reduced by 35% on average when operating multi-
purpose vehicles. The results can be used by practitioners and policymakers to determine if
the combined service of passenger and freight demand flows with multi-purpose vehicles in
a given system will yield benefits compared to existing transport operations.
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Highlights

• proposing and solving the novel multi-purpose pickup and delivery problem
• analysis of urban scenarios with varied spatial and temporal demand
• cost savings by an average of 13%
• reduction of fleet size by an average of 35%
• reduction of total vehicle trip duration by an average of 33%
• reduction of total distance travelled by an average of 16%

Introduction

The ongoing trends of urbanization, increasing e-commerce and digitalization of supply chain
management challenge the efficiency and sustainability of existing transportation systems.
Savelsbergh and Woensel (2016) and Los et al. (2020) stress the importance of integrated
and collaborative transportation solutions to transform current systems to be more efficient
and sustainable. The authors specifically address the important role played by multi-purpose
vehicles in such a transformation.

Public transportation and urban freight delivery operations are conventionally designed
as two independent systems. Public transportation systems are primarily designed to satisfy
passenger demand (Ceder andWilson 1986), while logistic operations are primarily designed
to meet delivery times (Ghilas et al. 2016b). The separate planning of both systems [pas-
senger and freight] may lead to inefficiencies in both systems. One approach to improve the
planning of transportation systems is to consider the consolidation of multiple demand flows,
simultaneously serving both systems using multi-purpose vehicles. In this work we focus on
demand-responsive transportation systems and analyse their potential when consolidating
passenger and freight demand.

The concept of combining multiple demand flows in one transportation system is known
as integrated transportation. In the past, several projects have investigated and demonstrated
the successful integration of passenger and freight transportation in urban environments. In
Amsterdam, Netherlands (Marinov et al. 2013) a pilot project investigated the delivery of
consumer goods in specially designed trams. These trams transported goods from a suburban
depot to a shopping mall in the city center. The integration of flows was achieved by sharing
the same track network and infrastructure as the passenger trams. The service was operating
from 2007-2009 but had to be terminated since the operations could not be realized without
political and financial support. Another example of integrated transportation is the supply of
a vehicle production plant in Dresden, Germany (Mueller-Eberstein and Franke 2000). For
19 years, a tram operated there during off-peak hours between the production plant and at
the logistic center and used the same tracks as the passenger tram.

The consolidation of multiple demand flows can be realized in different ways (Mourad
et al. 2019). One concept is sequential integration, where different demand types are trans-
ported by the same vehicle but during different times. Another concept is the simultaneous
integration, where different demand types can be transported by the same vehicle at the same
time. Compared to simultaneous integration concepts, sequential integration requires vehi-
cles to be physically adjusted for each item type. However, the combined optimization of
multiple item types may still lead to an overall improved system compared to the independent
operation of single-purpose fleets. Additionally, different types of demand are not mixed, i.e.,
passenger requests are not mixed with freight items. This guarantees that the level of service
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for passengers is not compromised by the additional freight demand. Unlike for simultaneous
integration concepts, freight requests are not mixed with passenger requests and do not lead
to additional stops for the vehicles.

In this study, we extend the pickup and delivery problem formulation to facilitate the
operation of multi-purpose vehicles, i.e., we propose the Multi-Purpose Pickup and Delivery
Problem (MP-PDP). In a series of experiments we analyze the potential benefits of this
vehicle concept over conventional systems. The proposed problem is a novel variation of
the heterogeneous routing problem (see Koç et al. 2016) and the truck-and-trailer routing
problem (seeDerigs et al. 2013). Thevehicle operations canbe explained as follows:Avehicle
operates on a route that starts and ends at a depot. A vehicle can either deliver goods from the
depot to a set of customers or transport passengers from their origins to their destinations. A
vehicle consists of two parts. The first part is the platform, which contains steering, engine,
and wheels. The second part is a functional module that determines the purpose of the vehicle
- either passenger transportation or freight delivery module. The module can be exchanged
at a depot or a special service depot, and thus change the purpose of the vehicle (see Fig. 1).
In the proposed problem two different modules can be used, one exclusively for passenger
transport (bus/ride-pooling operations) and the other for the exclusive delivery of freight
items (freight truck operation).

The contribution of this paper is threefold. First, the work addresses the research gap
of sequentially integrated transportation systems for combined passenger and freight trans-
portation on road networks. Hence, our work extends the sequential integration concepts
for road network-based operations by adding the concept of modularity and vehicle module
handling to the problem formulation. Second, the proposed problem formulation extends
the existing research on PDP by separating the assignment of platforms and modules to
requests, which allows the modelling of multiple changing processes at different locations
throughout a single route. For these problem-specific model characteristics additional heuris-
tics are implemented. This extends the truck-and-trailer routing problem in which the trailer
is dropped and connected to the truck at the same location. Third, the paper studies the impact
of multi-purpose vehicles through analyzing various large-scale scenarios.

The potential implications of the conducted research aremainly twofold. First, through the
consolidation of passenger and freight demand the level of service for both can be improved.
This implies that a transportation system which is designed considering multiple demand
types simultaneously can be superior to individually designed transportation systems. Sec-
ond, reusing vehicle platforms can increase the utilization of high cost vehicle supply, which
can allow for lower operation and investment costs compared to individually designed trans-
portation systems.

(a) Scania NXT vehicle concept (Scania, 2020) (b) U-Shift vehicle concept (DLR, 2021)

Fig. 1 Illustration of the multi-purpose vehicle concept
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The remainder of the paper is structured as follows. First, the relevant literature is reviewed
in “Literature review”. Then the problem formulation and methodology of this study are
described in “Methodology”. The experimental design and the results are discussed in “Exper-
imental design” and “Results”, respectively. The paper closes with a critical assessment of
the results, a conclusion, and an outlook for potential future studies in “Discussion and
conclusion”.

Literature review

The efficient planning of multiple vehicle routes is first envisioned and described in Dantzig
and Ramser (1959) as the truck dispatching problem. Since then numerous variations, exten-
sions, and solution algorithms have been developed (see Toth and Vigo 2014; Koç et al.
2016; Dündar et al. 2021 for recent comprehensive literature reviews). Two of the most
studied variations of the original problem formulation are the Pickup and Delivery Problem,
where each request has a pickup and delivery location; and the more general Dial-a-ride
Problem (DARP), in which routes are planned for on-demand requests (see Desrochers et al.
1988; Savelsbergh and Sol 1995, and Cordeau and Laporte 2007; Berbeglia et al. 2010).
For this work the following four VRP variations are most relevant. First, the heterogeneous
vehicle routing problem which is comprehensively reviewed in Koç et al. (2016); second, the
swap body vehicle routing problem (VeRoLog 2014); third, the trailers and transshipment
vehicle routing problem (Drexl 2013); and fourth, the share-a-ride problem. We elaborate on
the relation between the problem addressed in this study and each of the related problems in
the subsequent paragraphs.

The heterogeneous routing problem describes logistic/routing operations with different
types of demand and demand type specific vehicles. A common practical application of
this routing problem is found in healthcare transportation. Parragh (2011) and Parragh et al.
(2012) describe a DARP with heterogeneous demand and vehicles for the transportation of
patients. In their model vehicles may be equippedwith staff seats, patient seats, stretchers and
wheelchairswhich in turn define the demand type and capacity for each vehicle. Another form
of heterogeneous routing problems is considered by Rekiek et al. (2006) andMelachrinoudis
et al. (2007), where vehicles with different capacities are utilized to serve a single type of
demand. This problem is closely related to mixed vehicle routing problems, which do not
consider pickup and drop off positions for each request. In comparison to these heterogeneous
routing problems the model proposed in this work allows for an en-route change of the
vehicle configuration. In the previously studied heterogeneous routing problems, the vehicle
configuration is decided upon before the depot departure and remains unchanged until the
vehicle returns to the depot. Additionally, the number of configuration changes is not limited,
allowing for several different configurations for a given route. In Qu and Bard (2013) and
Tellez et al. (2018) the authors present heterogeneous PDP and DARP with configurable
vehicles, respectively. In these works vehicles can reconfigure their interior and, by that,
change the capacity of the vehicle. The authors propose a mixed-integer program which
is solved using an adaptive large neigborhood search (ALNS) algorithm. In Qu and Bard
(2013) the authors analyze several scenarios and conclude that cost savings of 30%-40% can
be achieved by changing the configuration of the vehicles.

The Swap Body Vehicle Routing Problem (SB-VRP) was introduced in a computation
challenge and several research teams have developed solution algorithms, for example Huber
and Geiger (2017), Todosijević et al. (2017) and Toffolo et al. (2018). The problem considers
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the routing of trucks, which can attach or remove trailers of a certain length. The nature of
this problem is similar to MP-PDP proposed here. However, in the SB-VRP the start and end
location of a trailer has to be one and the same depot, whereas in theMP-PDP amodule can be
loaded and dropped at any depot or service depot. Furthermore, no multi-depot functionality
is implemented in the SB-VRP problem formulation. Additionally, the SB-VRP can deal
with only two different types/sizes of trailers whereas the proposed problem formulation
can consider more vehicle types, e.g., passenger, freight, and waste transportation. Finally,
the proposed vehicle routing problem extends the SB-VRP by adding additional constraints,
such as maximum range per platform.

The third group of related vehicle routing problems are trailer and transshipment problems
(Drexl 2013). In addition to an adjusted objective function formulation, several additional
constraints capturing the multi-depot considerations in the proposed MP-PDP formulation
create a new problem variant. In truck-and-trailer routing problems only freight demand
is considered (Derigs et al. 2013 and Parragh and Cordeau 2017). Moreover, the types of
trailer are limited to one; hence, the model is limited to consider hooking and unhooking of
trailers. In contrast, the MP-PDP allows for the investigation of several demand type-specific
modules, with different capacities.

Li et al. (2014) investigate if anothermode of passenger transportation, namely private taxi
rides, can be used for integrated urban transportation. The authors propose a reduced version
of the Share-a-Ride problem and the Freight Insertion problem. The problem minimizes the
additional operating costs of adding freight items in a set of planned taxi trips. The authors
solve their proposed mixed-integer linear program for static and dynamic demand scenarios.
The numerical results are sensitive to the spatial distribution of the freight demand. The
authors conclude that the integration of freight items into taxi services is a promising solution
for urban areas. However, this new integrated mode should be complemented by a traditional
truck service to guarantee the delivery of all packages. In their problem the authors consider
the taxi trips as pre-planed and identify how to best insert freight requests into these. By this
the authors limit the problem complexity to an insertion problem which does not consider
the simultaneous planning of already existing routes. In our proposed problem routes and
different demand types are planned for simultaneously. Schröder and Liedtke (2017) present
a multi-agent simulation model for passenger and freight transportation. They investigate the
impacts of various policy measures, i.e. special vehicle tolls.

In a related study by Hatzenbühler et al. (2023), the authors propose an extension of the
PDP using modular multi-purpose vehicles which can serve multiple demand types simulta-
neously by forming platoons. The authors analyze several scenarios in Stockholm, Sweden
and could find cost savings of over 50% when compared to traditional vehicle operations. In
addition empty vehicle kilometers could be reduced by over 60% in some scenarios.

In contrast to this work, in their model all vehicles can be driven individually and transport
either passenger or freight requests. In contrast to this paper a vehicle can never change what
type of request it can serve. In this paper the same vehicle can i.e. transport passengers at
the beginning of its route and freight at the end of its route. This is a fundamental difference
which has consequences for modelling and applications. In addition, multiple vehicles can
connect to each other to form platoons. These platoons remain unchanged for the entire trip
but can be freely re-configured (number of vehicles and types of vehicles) at each depot. In
this paper vehicles cannot form platoons and always operate as individual vehicles. Finally,
the vehicles do not consist of a platform and a module but rather just the vehicle, hence the
range and cost of the vehicles are modelled differently.

Since the computational complexity of vehicle routing and scheduling problems has
proven to be NP-hard (Lenstra and Kan 1981), it is challenging to efficiently solve these
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problems for larger scenarios. Two general approaches are typically used to solve the VRP
and its variants: (i) the utilization of exact algorithms (e.g. Branch-and-Cut, Branch-and-
Bound) and, (ii) the development of problem-specific heuristics or meta-heuristic algorithms
(e.g. Simulated Annealing, Artificial Bee Colony, Genetic Algorithm or Large Neighborhood
Search). In Arslan et al. (2016) a crowd-sourced delivery system for parcels and passengers
is solved using an exact solution approach. An exact algorithm for the shared ride problem
is presented by Beirigo et al. (2018), while Ghilas et al. (2016b) solve the PDP with time
windows and scheduled lines using CPLEX.

Due to the computational complexity of VRP problems, most researchers implement
heuristic algorithms to solve large problems. Chew et al. (2013) develop a bi-objective genetic
algorithm (GA) for the VRP and show its ability to reach improved objective values over
previously published algorithms for Mandl’s benchmark problems. Alizadeh Foroutan et al.
(2020) apply a similar genetic algorithm as well as simulated annealing (SA) algorithm to
the green routing problem. The authors show that GA converges faster, whereas SA results
in better solution robustness and qualities. In Ropke and Pisinger (2006) the ALNS is pre-
sented. It is shown that the ALNS improves the best known solutions for VRP problems by
around 50%. Additional computational experiments indicate convergence robustness and its
adaptability to various problem formulations. These results are confirmed in a later study by
Pisinger and Røpke (2010) which shows that large-scale neighborhood search methods lead
to fast and robust convergence for complex combinatorial problems. The authors propose
variable local search algorithms and adaptive neighborhood definitions to further improve
the computational efficiency of the algorithm. In the works of Masson et al. (2013), Ghilas
et al. (2016a) and Li et al. (2016) the authors apply the ALNS to a variety of VRPs.

Based on the reviewed literature, we conclude that in recent years the integration and com-
bination of multiple demand types in different transportation modes have been investigated.
Studies have shown benefits of simultaneous combination problems. Several authors pro-
posed novel meta-/heuristic algorithms to solve complex VRP problems and showed their
superiority in computation time and objective value over exact algorithms. Therefore, we
have used a meta-heuristic optimization algorithm to solve the novel MP-PDP.

Methodology

The main characteristics of the pickup and delivery problem as proposed in this work is the
multi-purpose vehicle concept and the consolidation of passenger and freight requests. In
this section, the detailed problem formulation and solution algorithm are presented.

Proof of concept

In Fig. 2 a simple example is given to showcase the theoretical benefits of multi-purpose
vehicles over conventional vehicles. Figure 2a shows the conventional case. The solution is
optimal and utilizes two vehicles, one serving the freight requests (blue), while the second
vehicle serves the passenger requests (red). Therefore, this solution uses two platforms and
two modules to serve the requests. In Fig. 2b the same demand is served on a single route
(blue). This solution utilizes the additional service depot to change the module and hence
the purpose of the vehicle. Therefore, this solution uses one platform and two modules. The
number of platforms is thus reduced at the cost of exchanging modules once. Additionally,
the total vehicle operation time is reduced from 20min+20min+30min+30min+40min+
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(a) Routing solution with conventional vehicles

Service depot

(b) Routing solution with multi-purpose vehicles

Fig. 2 An illustration of conventional vehicle operations and multi-purpose vehicle operations

20min+30min = 190min to 20min+20min+30min+10min+10min+20min+30min =
140min.

Finally, empty time can be reduced from 30min + 40min + 30min + 20min = 120min
(either leaving or returning to the depot) to 30min + 10min + 10min + 20min = 70min,
thus producing a higher utilization of vehicle capacity, while serving all the demand in the
same time as conventional vehicles.

Problem formulation

The problem formulation uses the nomenclature and parameter settings summarized in
Table 1. The parameter values as stated in Table 1 are used in the experiments.

The MP-PDP is formulated as follows. Let G = (N , A) be a directed graph where N is
a set of nodes and A is a set of arcs. ND = Nd ∪ Nr ∪ Nsd is the union of all depot nodes
Nd , request nodes Nr , and service depot nodes Nsd . The set of depot nodes is defined as
Nd = N+

d ∪ N−
d , where N+

d are the origin depot nodes and N−
d are the destination depot

nodes. For each depot, there is one pair of nodes from Nd in graph G. Similarly, the set of
request nodes is defined as Nr = N+

r ∪ N−
r , with the pickup nodes N+

r = N+
r ,p ∪ N+

r , f for

passenger and freight requests, respectively, and the drop off nodes N−
r = N−

r ,p ∪ N−
r , f for

passenger and freight requests, respectively.
To simplify the mathematical problem formulation (compare Eqs. 1 - 49) each pair of

depot nodes is duplicated by the maximum number of available platforms (κ). This ensures
that at maximum all platforms can depart / arrive from / at the same physical depot but not
at the same node in G. Similarly, the service depot nodes are duplicated by the maximum
number of service depot visits (ϑ), which is an input parameter determining how often the
same service depot can be visited by a platform. This formulation implies that a maximum
number of ϑ modules per type must be available at each physical service depot location
to facilitate feasible operations. With hr = |Nr |/2 and hd = κ · |Nd |/2 as the number
of requests and the number of depots, respectively, N can be defined as the set of nodes
N = {1, ..., hd , hd + 1, ..., hd + hr , hd + hr + 1, ..., hd + 2 · hr , hd + 2 · hr + 1, ..., 2 · hd +
2 · hr , 2 · hd + 2 · hr + 1, ..., 2 · hd + 2 · hr + ϑ · nsd}. The set of origin depot nodes (N+

d ) is
{h1, ..., hd}, the set of destination depot nodes (N−

d ) is {hd + 2 · hr + 1, ..., 2 · hd + 2 · hr },
the set of request pickup nodes (N+

r ) is {hd + 1, ..., hd + hr }, the set of request drop off
nodes (N−

r ) is {hd + hr + 1, ..., hd + 2 · hr }, and the set of service depot nodes (Nsd )
is {2 · hd + 2 · hr + 1, ..., 2 · hd + 2 · hr + ϑ · nsd}. The corresponding pickup/drop off
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Table 1 Nomenclature and parameter values for the multi-purpose pickup and delivery problem

Notation Description Unit Value

i, j Node index - -

k Platform index - -

m Module index - -

u Module usage index - -

l Depot group index - -

xi, j,k Binary decision variable platform assignment - -

yi, j,m Binary decision variable module assignment - -

si,k Continuous decision variable platform arrival time - -

ek,u Binary decision variable module usage - -

ci Continuous decision variable module capacity - -

N Set of all nodes in the graph (requests, depots and service depots)
ND = Nr ∪ Nd ∪ Nsd

- -

Nr Set of all request nodes N = N+ ∪ N− - -

N+
r Set of all requests pickup nodes - -

N−
r Set of all requests drop off nodes - -

N+
d Set of all origin nodes - -

N−
d Set of all destination nodes - -

Nsd Set of all service depot nodes - -

M Set of all available modules M = Mp ∪ M f - -

Mp Set of all available passenger modules - -

M f Set of all available freight modules - -

K Set of all available platforms - -

Gl Set of depots in depot group l ∈ N+
d - -

ai Lower time window bound for node i ∈ ND sec -

bi Upper time window bound for node i ∈ ND sec -

ti, j Travel time including service time at node i from node i to j for
i, j ∈ ND

sec -

qi Demand for node i ∈ ND - -

wi, j Travel distance from node i to j for i, j ∈ ND m -

hr Number of requests - -

hd Number of depots - -

v Travel speed km/h 20

κ Max. number of platforms - -

μp Max. number of passenger modules - -

μ f Max. number freight modules - -

η Max. range per platform km 100

ϑ Max. service depot visits per depot - 5

γp Max. capacity for passenger modules pas. 16

γ f Max. capacity for freight modules items 16
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Table 1 continued

Notation Description Unit Value

ζ Large positive Number - -

αt t Cost of total vehicle travel time EUR/h 6.9

αps Cost of a platform EUR 313.67

αms Cost of a module EUR 156.84

αtd Cost of travel distance EUR/km 0.1

αmc Cost of module change EUR 8.8

αud Cost of one unserved request EUR 470.52

pair for one request can be identified using (i, i + hr ) ∀i ∈ N+
r , while the corresponding

origin/destination pair for one depot is (i, i + hd + 2 · hr ) ∀i ∈ N+
d .

The set of available modules (M) is defined as M = Mp ∪ M f , where Mp are passenger
modules and M f are freight modules, with Mp = {1, ..., μp} and M f = {μp + 1, ..., μp +
μ f }, respectively. The set of all available platforms (K ) is defined as K = {1, ..., κ}, with κ

being the maximum number of platforms.
Each node i ∈ N has a demand qi , service duration oi , and request-specific time window

(ai , bi ). For depot nodes and service depot nodes the demand is set to zero. For pickup
nodes, the demand represents the number of passengers or packages that should be picked
up at that node. The sum of the demand for a given request pair is zero, i.e., the demand for
drop off nodes is the negative value of the corresponding pickup node. The service duration
for packages and passengers, and the respective time windows, are specified for each node
individually.

The set of all arcs A is defined as A = {(i, j)∀i, j ∈ N } and hence spans a fully connected
graph. The travel time ti, j is computed with ti, j = di, j/v + oi ∀i, j ∈ N , where v is the
average travel speed in the network G. In our formulation, we assume that platforms drive
with a constant and known speed.

A homogeneous fleet of maximum κ vehicle platforms is available, each using a(n)
(exchangeable) modulem ∈ M with a type specific capacity. We assume that a fixed number
of modules are available at each service depot at each point in time, defined by the parameter
ϑ . Vehicles experience a service time at a service depot and a regular depot which represents
the time needed for any loading and/or unloading. The distance travelled by any individual
platform cannot exceed the maximum range value η.

The decision variables for the problem are xi, j,k , yi, j,m , ek,u , si,k , and ci . xi, j,k is a binary
variable which is 1 if the node pair (i, j) is served by the platform k, and 0 otherwise. yi, j,m
is a binary variable which is 1 if node pair (i, j) is served by modulem, and 0 otherwise. ek,u
is a binary variable which is 1 if platform k used modules u and 0 otherwise. This variable is
used to keep track of the total usage of modules. si,k is a positive real number that indicates
the arrival time of vehicle platform k at node i . ci is a positive real number which indicates
the current load at node i .

The objective function parameters in the model are total vehicle travel time cost (αt t ), the
fixed cost of a platform (αps), the fixed cost of a module (αms), the cost of travel distance
(αtd ), the fixed cost of module change (αmc), the fixed cost of one unserved request (αud ).

The objective function is composed of the minimization of six cost terms (see Eq. 1).

min
x,y,s,e,c

αps · B1 + αms · B2 + αtd · B3 + αt t · B4 + αmc · B5 + αud · B6 (1)
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The first term in the objective function computes the total number of platforms used in a
solution (see Eq. 2). Note that index i is summed over the origin nodes N+

d . Since an origin
node is visited only by one platform, the total sum equals the number of platforms.

B1 =
∑

i∈N+
d

∑

j∈Nr

∑

k∈K
xi, j,k (2)

Equation 3 computes the total number ofmodules used utilizing themodule usage decision
variable e which is equal to 1 if u modules are used on platform k. The index u is also used
as an integer number with {u ∈ Z | 0 ≤ u ≤ |N |}.

B2 =
∑

u∈N

∑

k∈K
u · ek,u (3)

Equation 4 computes the total distance traveled by all platforms in the solution.

B3 =
∑

i∈N

∑

j∈N

∑

k∈K
di, j · xi, j,k (4)

The fourth term (see Eq. 5) computes the total vehicle travel time by subtracting the
departure time from the origin depot from the arrival time of the corresponding destination
depot. Note that for unused depots the difference equals zero, as is imposed by Eq. 44 in the
problem formulation.

B4 =
∑

i∈N+
d

(
∑

k∈K
si+2·hr+hd ,k −

∑

k∈K
si,k

)
(5)

Equation 6 computes the number of service depot visits, in combination with Eqs. 17 and
18 this equals the number of module changes.

B5 =
∑

i∈N

∑

j∈Nsd

∑

k∈K
xi, j,k (6)

The unserved demand is computed in Eq. 7 by subtracting the number of pickup nodes
served from the total number of requests.

B6 = hr −
∑

i∈N+
r

∑

j∈N

∑

k∈K
xi, j,k (7)

In addition to the objective function, the following constraints constitute the proposed
MP-PDP.

∑

j∈N

∑

k∈K
xi, j,k ≤ 1 ∀i ∈ N , (8)

∑

k∈K
xi, j,k −

∑

m∈M
yi, j,m = 0 ∀i ∈ N , j ∈ N , (9)

∑

k∈K
xi, j,k −

∑

m∈Mp

yi, j,m = 0 ∀i ∈ Nr ,p, j ∈ N , (10)
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∑

k∈K
xi, j,k −

∑

m∈M f

yi, j,m = 0 ∀i ∈ Nr , f , j ∈ N , (11)

∑

j∈N
xi, j,k −

∑

j∈N
xhr+i, j,k = 0 ∀i ∈ N+

r , k ∈ K , (12)

∑

j∈N
yi, j,m −

∑

j∈N
yhr+i, j,m = 0 ∀i ∈ N+

r ,m ∈ M, (13)

∑

j∈N
x j,i,k −

∑

j∈N
xi, j,k = 0 ∀i ∈ Nr , k ∈ K , (14)

∑

j∈N
y j,i,m −

∑

j∈N
yi, j,m = 0 ∀i ∈ Nr ,m ∈ M, (15)

∑

j∈N
x j,i,k −

∑

j∈N
xi, j,k = 0 ∀i ∈ Nsd , k ∈ K , (16)

∑

j∈N

∑

m∈Mp

y j,i,m −
∑

j∈N

∑

m∈M f

yi, j,m = 0 ∀i ∈ Nsd , (17)

∑

j∈N

∑

m∈M f

y j,i,m −
∑

j∈N

∑

m∈Mp

yi, j,m = 0 ∀i ∈ Nsd , (18)

∑

j∈N

∑

k∈K
xi, j,k ≤ 1 ∀i ∈ N+

d , (19)

∑

j∈N
xi, j,k −

∑

j∈N
x j,(i+2·hr+hd ),k = 0 ∀i ∈ N+

d , k ∈ K , (20)

si,k + ti, j − ζ · (
1 − xi, j,k

) ≤ s j,k ∀i ∈ N , j ∈ N , k ∈ K , (21)

si,k + ti,hr+i − ζ ·
⎛

⎝1 −
∑

j∈N
xi, j,k

⎞

⎠ ≤ shr+i,k ∀i ∈ N+, k ∈ K , (22)

si,k ≥ ai ∀i ∈ N , k ∈ K , (23)

si,k ≤ bi ∀i ∈ N , k ∈ K , (24)
∑

i∈N

∑

j∈N
wi, j · xi, j,k ≤ η ∀k ∈ K , (25)

ci ≤ γp ∀i ∈ Nr ,p, (26)

ci ≤ γ f ∀i ∈ Nr , f , (27)

c j + ζ · (
1 − yi, j,m

) ≥ ci + q j ∀i ∈ N , j ∈ Nr ,m ∈ M, (28)

ci = 0 ∀i ∈ (
N+
d ∪ Nsd

)
, (29)

∑

u∈N
u · ek,u −

∑

i∈(
N+
d ∪Nsd

)
xi, j,k = 0 ∀ j ∈ N , k ∈ K , (30)

∑

i∈Gl

∑

j∈N
xi, j,k ≤ 1 ∀l ∈ N+

d , k ∈ K , (31)

xi,i,k = 0 ∀i ∈ N , k ∈ K , (32)

yi,i,m = 0 ∀i ∈ N ,m ∈ M, (33)
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∑

j∈N

∑

k∈K
xi, j,k = 0 ∀i ∈ N−

d , (34)

∑

j∈N

∑

m∈M
yi, j,m = 0 ∀i ∈ N−

d , (35)

xi, j,k = 0 ∀i ∈ N+
r , j ∈ (

Nsd ∪ N−
d

)
, k ∈ K , (36)

yi, j,m = 0 ∀i ∈ N+
r , j ∈ (

Nsd ∪ N−
d

)
,m ∈ M, (37)

xi, j,k = 0 ∀i ∈ (
Nsd ∪ N+

d

)
, j ∈ N−

r , k ∈ K , (38)

yi, j,m = 0 ∀i ∈ (
Nsd ∪ N+

d

)
, j ∈ N−

r ,m ∈ M, (39)

xi, j,k = 0 ∀i ∈ Nsd , j ∈ Nsd , k ∈ K , (40)

yi, j,m = 0 ∀i ∈ Nsd , j ∈ Nsd ,m ∈ M, (41)

xi, j,k = 0 ∀i ∈ N+
d , j ∈ Nsd , k ∈ K , (42)

yi, j,m = 0 ∀i ∈ Nsd , j ∈ N−
d ,m ∈ M, (43)

si,k + ζ ·
∑

j∈N
x j,i,k ≥ b(i−2·hr−hd ) ∀i ∈ N−

d , k ∈ K , (44)

xi, j,k = 0 or 1 ∀i, j ∈ N , k ∈ K , (45)

yi, j,m = 0 or 1 ∀i, j ∈ N ,m ∈ M, (46)

ek,u = 0 or 1 ∀u ∈ N , k ∈ K , (47)

si,k ≥ 0 ∀i ∈ N , k ∈ K , (48)

ci ≥ 0 ∀i ∈ N (49)

Equation 8 guarantees that each node is visited at most once. The inequality relation here
and in Eq. 19mean that not every node has to be visited, hence allowing for unserved demand.
In Eq. 9 the platform assignment is connected with the module assignment to guarantee that
each served node pair i, j is visited by a platform and a module.

In Eqs. 10 and 11 the request type andmodule type are required tomatch, that is, passenger
requests have to be served with passenger modules and freight requests with freight modules.
Constraints (12) and (13) guarantee that the pickup node and its corresponding delivery node
are served by the same platform and module. Similarly, Eqs. 14 and 15 ensure that the
same platform and module that enter a node also leave that node (i.e., flow conservation
constraints).

In constraints (16)–(18) the handling of platforms and modules in service depots is
described. Equation 16 assures that the same platform entering a service depot node also
leaves that service depot, whereas the module and its module type have to change as formu-
lated in Eqs. 17 and 18.

Each platform is required to start at an origin depot (compare Eq. 19) and end its trip
at the corresponding destination depot (see Eq. 20). In Eq. 21 the arrival times for con-
secutively visited nodes are constrained. Note that the travel time ti, j between a node
pair i, j includes the service time for node i . The large positive integer ζ is defined as
max

(
bi + ti, j − a j ∀i, j ∈ N

)
.

In constraint (22) it is defined that the pickup node is served before the corresponding
drop off node. Equations 23 and 24 guarantee that each arrival time is within its time window.
In constraint (25) the length of each platform trip is constrained by the platform range.

The set of constraints (26)–(29) guarantee that each module type is only filled up to its
type-specific capacity (compare Eqs. 26 and 27). Additionally, the capacity conservation is
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assured by Eq. 28. Note that drop off nodes have the negative demand of its corresponding
pickup node. In Eq. 29 the module loads are initialized to zero.

Using Eq. 30 the number of used modules can be computed. The number of origin depot
node N+

d or service depot node Nsd visits by a platform k is equal to the number of modules
used. Note that {u ∈ Z | 0 ≤ u ≤ |N |} is used as an index and integer variable. Due
to duplication of depot nodes, the constraint (8) does not prevent the same platform from
departing from the same physical depot twice. Therefore, additional constraints are required
to ensure that the same platform k does not depart from the same depot twice; in Eq. 31 this
is formalized. Gl contains a list of all duplicate nodes in the origin depot l ∈ N+

d .
In Eqs. 32 - 44 several simplifications are formalized. Equations 32 and 33 prevent looping

at any node. Equations 34 and 35 prevent any departure from any destination node for
platforms and modules, respectively. Equations 36 and 37 prevent arriving at a service depot
or destination node after visiting a pickup node for platforms and modules, respectively.
Equations 38 and 39 prevent arriving at a drop off node after visiting a service depot or
origin depot node for platforms and modules, respectively. Equations 40 and 41 prevent
traveling from any service depot to any other service depot for platforms and modules,
respectively. Equation 42 prevents traveling to any service depot after an origin depot node
and Eq. 43 prevents traveling from any service depot to a destination depot node. In Eq. 44
the arrival times for unserved destination nodes are set to the upper time window bound of
the corresponding origin depot node using ζ as a large positive number. By this, it is ensured
that unserved depot nodes are not contributing to the trip duration term (compare Eq. 5).

In the remaining Eqs. 45–49 the domains of the decision variable for platform assignment
(xi, j,k), module assignment (yi, j,m), module usage (ek,u), arrival times (si ) and capacity (ci )
are defined, respectively.

Adaptive large neighborhood search

Small and medium-sized instances can be solved using the optimization software CPLEX.
For larger instances, a heuristic optimization algorithm is developed. We have adopted and
implemented the ALNS algorithm, originally proposed by Ropke and Pisinger (2006), with
problem-specific heuristics. The ALNS has been successfully applied to several PDPs (e.g.,
Sacramento et al. 2019; Masson et al. 2013) and has shown good performance for complex
combinatorial problems in general. The basic idea of the ALNS algorithm is to iteratively
destroy and repair solutions. In Algorithm 1 the general outline of the implemented ALNS
is given.

In the first step, an initial feasible solution x is created. This can be done using one of the
repair operators, as each of them results in a feasible solution. The operator weights are all
initialized to 1. In the next step, one destroy and one repair operator are selected using the
roulette wheel selection process. The probability pi, j of choosing operator i ∈ O , with O
being the list of available operators, in iteration j is calculated using Eq. 50. Here, wi, j is
the weight for operator i at iteration j . Note that there is a separate list (O) for destroy and
repair operators, hence their probabilities are independent. The destroy and repair operators
implemented are detailed below.

pi, j = wi, j∑
k∈O wk, j

(50)

A candidate solution x ′ is created by sequentially applying both operators. Note that after
both operators have been applied, the candidate solution is always feasible. In the last step, the
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Algorithm 1 An outline of the ALNS framework (see Pisinger and Ropke 2007)
Data: passenger/freight demand, (service) depot positions, parameter settings
Result: best solution (x∗) for the MD-PDP

1 create a feasible solution (x), set x∗ := x ;
2 repeat
3 roulette wheel selection (see Eq. 50) for a destroy & a repair operator using weights;
4 create a destroyed solution (xd ) using the chosen destroy operator on x ;
5 create a candidate solution (x ′) using the chosen repair operator on xd ;
6 if Objective(x ′) < Objective(x∗) then
7 set x∗ := x ′;
8 set x := x ′;
9 set score for chosen destroy & repair operator to σ1;

10 else
11 if x ′ is accepted (Simulated Annealing) then
12 set x := x ′;
13 if Objective(x ′) < Objective(x) then
14 set score for chosen destroy & repair operator to σ2;
15 else
16 set score for chosen destroy & repair operator to σ3;
17 end
18 else
19 set score for chosen destroy & repair operator to σ4;
20 end
21 end
22 update weights using new operator scores (see Eq. 51)
23 until maximum number of iterations, or objective variation threshold;
24 return x∗

current solution x , global best solution x∗ and the heuristic scores are updated according to
the objective value of x ′ if the candidate solution x ′ is accepted. If a new overall best solution
is found the candidate solution is set as the new global best solution and the new current
solution, and the score for the operators is set to σ1. If the candidate solution is accepted
using a simulated annealing decision process, the current solution is set to the candidate
solution. If the objective value of the accepted candidate solution is lower than the objective
value of the current solution the operator scores are set to σ2, else the score is set to σ3. If the
candidate solution x ′ is not accepted, the best global solution and current solutions remain
unchanged, and the operator scores are set to σ4. At the end of each iteration j the operator
weights (wi, j ) for the chosen operators i are updated using Eq. 51. Here, the score (si, j ) for
the operator chosen i at the current iteration j is set to the corresponding σ value as outlined
in Algorithm 1. The values of σ and the computation of the updated weights is in line with
the process described in Ropke and Pisinger (2006).

wi, j+1 = wi, j · δ + (1 − δ) · si, j (51)

In Eq. 51 the operator decay parameter δ with {δ ∈ R | 0 ≤ δ ≤ 1} influences the speed at
which the operator weights are adjusted to the scores. For low δ the adjustment rate is fast,
while for high δ the adjustment rate is slow and the computed score values do not influence the
operator’s weights much. The algorithm terminates once the maximum number of iterations
(λ) is reached or the change in the objective value - after a minimum number of iterations
(λmin) is performed - over an iteration span (ω) is below a threshold (ε). The termination
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criterion is computed using Eq. 52 at each iteration i .
∑i−ω

j=i−2·ω z j
∑i

j=i−ω z j
− 1 ≤ ε f or , λmin ≤ i ≤ λ, (52)

with z j being the objective value at each iteration.

Heuristic operators

The implemented operators are in line with the conventionally used operators of Ropke
and Pisinger (2006) and Sacramento et al. (2019). The interested reader is referred to these
publications for more detailed information. In Hatzenbühler et al. (2023) the authors propose
heuristic operators to solve a PDP with modular vehicles. In their study the vehicles can
form platoons but are limited to transporting a single demand type. The operators in this
work are adjusted to accommodate the novel multi-purpose modules and vehicle operations,
hence resulting in novel destroy and repair heuristics. In the following paragraphs only a
brief description of each implemented operator and adjustments for the special nature of the
MP-PDP are given.

Destroy Operators The general idea of the destroy operators is to help diversify the search
process and thereby explore the solution space. In the implemented destroy heuristics depots
(origin and corresponding destination node), service depots or requests (a pair of pickup and
drop off nodes) are removed from a solution. Hence, except for service depots, no single
nodes are removed from the solution but rather a node pair.

• Random removal: In this heuristic, a random selection of currently served requests
(pickup and drop off node) are removed from the solution and considered as unserved.

• Module removal: In this heuristic a random selection of currently used modules is made.
All requests served by any of the chosen modules, including potential service depot
nodes, are removed from the solution and considered as unserved.

• Platform removal: In this heuristic, one of the currently used platforms is chosen at
random. All requests served by this platform, including potential service depot nodes,
are removed from the solution and considered as unserved.

• Service depot removal: In this heuristic a random selection of currently used service
depot nodes are removed from the solution. A service depot node can only be removed
if that removal results in a feasible solution. Hence, in this heuristic redundant service
depots such as two consecutive service depots, or service depot before/after a depot are
removed. The removal of service depots including the removal of associated platforms
is achieved with the module removal and platform removal heuristics.

• Shaw removal: This removal heuristic was first proposed by Shaw (1997) and removes
similar requests from the solution. Here, the relatedness is computed using Eq. 53, using
a distance term, travel time term, and request load term. To diversify the removal process,
a determinism parameter is introduced; see detailed description in Ropke and Pisinger
(2006).

• Worst removal: In this heuristic, the requests with the highest cost contribution to the
total cost are removed. The cost contribution for each served request is calculated by
computing the objective function with and without this request.

The relatedness (Ri, j ) for two requests i and j , as utilized in the Shaw removal operator
is computed with

Ri, j = φ · (
wai ,a j + wbi ,b j

) + χ · (|sai − sa j | + |sbi − sb j |
) + ψ · (|qi − q j |

)
, (53)
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where φ, χ , and ψ are input parameters for the distance term, travel time term and the load
term, respectively. ai and bi are the pickup and drop off nodes for request i . wi, j , ti , and qi
are the travel distance, arrival time, and demand for requests i, j , respectively.

The handling of service depot nodes introduces a few additional considerations that are
novel to the proposed problem. In all destroy operators except for Module removal and
Platform removal, a service depot node is only removed from the solution if that temporary
solution remains feasible. Therefore, a removal would be feasible if a service depot is at the
beginning or at the end of the route, or if two service depots are visited consecutively. In
theModule removal and Platform removal operators, either an entire trip or a trip segment
(i.e. depot to service depot, service depot to service depot, service depot to depot, or depot
to depot) is removed. These operators strongly diversify the solution and guarantee that the
number of platforms and modules is optimized. Additionally, these heuristics remove service
depots from a solution, which is essential to further explore the solution space.

In all destroy operators except for thePlatform removal, the number of requests ormodules
that are removed is a random integer (N ) following the discrete uniform distribution over the
set

N = {ι, ...,min (nserved , nr · ξ)}, (54)

with ι and ξ being input parameters determining how many requests are removed. For high
values of ξ the maximum number of removed requests equals the number of served requests
(nserved ), while for low values of ξ only a fraction of the total number of request (nr ) in the
scenario are removed.

Repair Operators As a first step for all repair operators, the list of unserved requests is
randomized. By this step, inserting the same requests in the same order multiple times can be
avoided. Next, we loop through the list of requests and try to insert each request individually
following the principles described below. Additionally, we insert individual nodes (service
depots) and node pairs (depots and requests) only in feasible positions in the temporary
solution. This results in (1) at the end of each operator, we guarantee a feasible solution, and
(2) certain solutions cannot be created immediately. An example of the second consequence
is the situation when a request can only be inserted if a service depot is also added. In the
current implementation of the algorithm, these cases are handled through the high number
of iterations performed and the combination of intensification and diversification heuristics.

At the end of each operator redundant service depots are removed. This applies in the
following three cases: (1) a service depot is at the beginning of a route, (2) a service depot is
at the end of a route, or (3) two service depots are visited consecutively.

• First fit insert: In this repair heuristic, all unserved requests, depot nodes and service
depot nodes are inserted into the first feasible location.

• Inter route insert: In this repair heuristic all unserved requests, depot nodes and service
depot nodes are inserted into the best feasible location of one route. This route equals
the route from which this request/node was previously removed. If the request/node has
never been served, a random route is chosen.

• Best insert: In this repair heuristic all unserved requests, depot nodes and service depot
nodes are inserted into the best feasible location of all routes.

For Inter route insert and Best insert the best insertion position for each request/node is
found using a two-step approach. In a first step, all feasible positions within a request route
are computed. Then for each position, compute the objective value of the new route with
the request/node inserted. The position with the smallest delta value is chosen as the final
insertion position.
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The re-/insertion of service depots in any of the three repair operators follows the following
three principles. These principles are applicable to any route. (1) A service depot node can
be inserted as the first node visited after the depot, (2) a service depot node can be inserted
as the last node before ending the route, or (3) a service depot node can be inserted between
any node pair, if the first node of that pair is a drop off node and the second node of that pair
is a pickup node, and both these nodes are of different request type. The reconfiguration of
platforms is achieved, since the list of requests and unserved (service) depots is randomized
before each repair operator, and hence service depots can be inserted early or late in the repair
process resulting in various new route configurations.

Experimental design

To analyze the capabilities of the multi-purpose vehicle, several experiments are performed
using the model described in the previous section.

Scenario definitions

The scenarios are created byvarying the spatial demanddistribution, timewindowconstraints,
and number of service depots. In total 54 scenarios represent different vehicle use cases
and operations. In the following paragraphs, the different configurations are described. The
analysis focuses on three main dimensions influencing the operation of the new vehicle
concept: the temporal and spatial distributions of the demand, and the number of available
service depots. Each scenario is solved using the parameters from Table 1. Scenarios without
service depots model the conventional vehicle operations and function as the base case in
the following analysis. The base demand for passengers and freight is in line with real data
from the area of Stockholm, Sweden. For each scenario an ensemble run of 10 independent
optimizations is performed, the average values of the ensemble runs are used for the analysis.

Spatial demand distribution

Figures 3a–c represent the different spatial demand distributions analyzed in this paper. For
all scenarios the demand consists of 50 passengers and 50 freight requests. The locations
of the depots (red) correspond to those of freight distribution centers in Stockholm. The
locations of service depots (blue) are chosen at strategic points in the service area to best
illustrate the transport concept. The locations of depots and service depots remain unchanged
among the different scenarios.

In scenarios 1–18 as described in Table 3 (see Fig. 3a) the passenger requests (pickup and
drop off locations) are evenly distributed over the entire service area. The freight requests
are focused on the central area in Stockholm. This central demand pattern represents urban
deliveries operations that selectively serve, e.g., stores, shops and grocery stores only in a
centralized area.

The spatial distribution of scenarios 19–36 from Table 3 (see Fig. 3b) represents city-wide
deliveries spread evenly over the entire area of interest and typical passenger movement
patterns throughout the city. The passenger pickup and drop off points are different to Fig. 3a
but share the same generation process.
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(a) Central representation (scenarios 1-18). (b) Distributed representation (scenarios 19-36).

(c) Cluster representation (scenarios 37-54).

Fig. 3 Spatial demand representation for the three different configurations

In the third variation in demand distribution (Fig. 3c and scenarios 37–54 in Table 3), the
passenger and freight requests form spatial clusters. A request can however be transported
between clusters, i.e., pickup and drop off locations do not need to be in the same cluster.
An operator serving only a certain area of a city or having dedicated areas of interest would
face a similar demand distribution as is represented in this scenario.

Time window settings

Next to the spatial demand variation, each scenario also has different timewindow definitions
(compare Table 2). In total three different time window settings are implemented. The first
setting represents a scenario where no time window constraints are present so that each
request can be served at any time. This setting is chosen to represent a base scenario for
the optimization. Due to the absence of time windows the solution space is significantly
increased and therefore finding a robust solution is more challenging for the algorithm. At
the same time creating feasible solutions is simplified and the general functionality of the
algorithm can be better shown.

The second time window setting represents loose peak time window constraints, meaning
that each request has a dedicated time for pickup and drop off but large deviations are
permissible, e.g., several hours. The distribution of the requests follows a peak distribution,
where passenger demand is highest during the morning and afternoon hours and freight
demand is highest during mid-day.

In the last time window setting, the constraints are tightly set. All requests have an arrival
time window of 20min, while the departure time window is set to be nonrestrictive. Similar
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Table 2 Time window definitions Start Time [sec] End Time
[sec]

Type Count

No time windows

1 86400 drop off freight 50

1 86400 drop off passenger 50

1 86400 pickup freight 50

1 86400 pickup passenger 50

Peak time windows

28800 43200 drop off passenger 25

28800 43200 pickup passenger 25

36000 57600 drop off freight 50

36000 57600 pickup freight 50

50400 64800 drop off passenger 25

50400 64800 pickup passenger 25

Tight time windows

1 86400 pickup freight 50

1 86400 pickup passenger 50

24600 25800 drop off passenger 2

25800 27000 drop off passenger 3

27000 28200 drop off passenger 5

28200 29400 drop off passenger 6

29400 30600 drop off passenger 5

30600 31800 drop off passenger 3

31800 33000 drop off passenger 1

33000 34200 drop off passenger 1

34200 35400 drop off freight 1

35400 36600 drop off freight 1

36600 37800 drop off freight 1

37800 39000 drop off freight 1

39000 40200 drop off freight 2

40200 41400 drop off freight 4

41400 42600 drop off freight 4

42600 43800 drop off freight 5

43800 45000 drop off freight 6

45000 46200 drop off freight 6

46200 47400 drop off freight 5

47400 48600 drop off freight 4

48600 49800 drop off freight 4

49800 51000 drop off freight 2

51000 52200 drop off freight 1

52200 53400 drop off freight 1

53400 54600 drop off freight 1

54600 55800 drop off freight 1
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Table 2 continued Start Time [sec] End Time
[sec]

Type Count

55800 57000 drop off passenger 1

57000 58200 drop off passenger 2

58200 59400 drop off passenger 3

59400 60600 drop off passenger 5

60600 61800 drop off passenger 6

61800 63000 drop off passenger 5

63000 64200 drop off passenger 2

to the second setting, the requests follow a peak distribution, i.e., passenger requests peak
during the morning and afternoon and freight request peak during mid-day.

Variation in available service depots

The third dimension of the scenario definition is the number of available service depots. Each
spatial and temporal configuration is combined with six different service depot variations,
increasing from no available service depot to five available service depots in the city center
(compare Fig. 3). In all scenarios the same service depot is added first, second, third, etc.
The location and sequence of the service depots are based on practical considerations, i.e.
the first depot at the most central location and the other depots spread out evenly over the
city. In the scenarios with at least one service depot the regular depots can also be used as
service depots. The scenarios without available service depots represent the operations with
conventional vehicles.

In Table 3 an overview of the configurations of all 54 scenarios is given.

Parameter settings

The parameters used for the experiments are determined based on parameter tuning proce-
dures, reported literature values or general reasoning. If not stated otherwise the parameters
in Tables 1 and 4 are used for the remainder of this paper.

Table 3 Scenario overview Scenario Spatial distribution Time window
variation

Nb. of service
depots

1–6 Central noTW (0, 1, 2, 3, 4, 5)

7–12 Central peak (0, 1, 2, 3, 4, 5)

13–18 Central tight (0, 1, 2, 3, 4, 5)

19–24 Distributed noTW (0, 1, 2, 3, 4, 5)

25–30 Distributed peak (0, 1, 2, 3, 4, 5)

31–36 Distributed tight (0, 1, 2, 3, 4, 5)

37–42 Clustered noTW (0, 1, 2, 3, 4, 5)

43–48 Clustered peak (0, 1, 2, 3, 4, 5)

49–54 Clustered tight (0, 1, 2, 3, 4, 5)
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Table 4 ALNS parameter Notation Description Value

σ1 Operator weight for new best overall solu-
tion

7

σ2 Operator weight for better candidate solu-
tion

2

σ3 Operator weight for accepted solution 9

σ4 Operator weight for rejected solution 1

δ Operator decay per iteration 0.1

λ Iterations 10000

λmin Min. iterations 2000

ω Iterations look-back 1000

ε Objective improvement threshold 0.01

Tstart Start temperature simulated annealing 100

Tend End temperature simulated annealing 0.0001

ν Step size simulated annealing 0.9999

φ Relatedness parameter for distance 9

χ Relatedness parameter for time 3

ψ Relatedness parameter for load 2

ρ Randomising selection parameter for
shaw removal requests

6

ρworst Randomising selection parameter for
worst removal requests

3

ξ Max. request removal factor 0.32

ι Min. request removals 1

Model parameters

The platform and operational parameters, i.e., maximum trip range and passenger/freight
capacity are based on vehicle design parameters published by manufacturers or project
reports. The travel time costs are based on a value-of-time of 6.9EUR/h as mentioned in
Börjesson and Eliasson (2014).

Militão and Tirachini (2021) present a linear estimation model based on vehicle capacity
to estimate the distance- and time-based operational costs for electric vehicles. The model is
built using data from Munich, Germany, and Santiago, Chile. For the distance related cost
their model is αtd = 0.003599 · γk + 0.04162. For the time related costs their model equals
αps = (0.1753 · γk + 16.8) · 2

3 · 24, and αms = (0.1753 · γk + 16.8) · 1
3 · 24, respectively,

using the capacity γk per type k ∈ K . The parameters αps and αms are scaled with 2/3
and 1/3, respectively, to account for cheaper module operation costs. The second factor, 24,
represents the duration of the planning period in hours.

Themodule change cost is estimated based on an average salary of 17.6EUR/h (Economic
Research Institute 2024) for a bus driver in Sweden and the assumption that one personwould
need approximately 30min to switch the module.

The parameter settings for unserved demand are chosen to match the fleet size related
costs for one platform and one module. This is to avoid a single vehicle serving a single
request.
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There are no differences in model parameters between conventional operations and multi-
purpose operations. This is done to isolate the impact of the new vehicle technology on the
results.

In preparation for the final results, two experiments are performed. Both have the goal to
overcome the challenges imposed by the numerical differences in model parameters and to
achieve robust optimization of the vehicle fleet and vehicle routes. The first experiment uses
a hierarchical objective function. The top-level problem optimizes the number of platforms
andmodules, while the low-level problem optimizes the vehicles routes using the results from
the top-level problem. The objective function in this approach is adjusted to only represent
the relevant cost terms for each subproblem. In the second experiment, the vehicle fleet and
routes are optimized simultaneously using all cost terms in the objective function. When
comparing the results of both experiments for all scenarios, no significant differences in
the solutions could be seen. Hence, the results reported in “Results” are achieved using the
simultaneous optimization approach of the second experiment.

Additionally, we employ a two-step approach. First, the scenarios with conventional vehi-
cle operations are solved using the ALNS as described in “Methodology”. Second, the best
solutions of the conventional operations are used as initial solutions for the scenarios with
multi-purpose vehicle operations. Since all solutions with conventional operations are also
feasible for the multi-purpose scenarios this improves the optimization process for the multi-
purpose vehicles by initiating their optimization with high quality solutions.

Optimization parameter

Following the principle of Ropke and Pisinger (2006) an iterative grid search parameter
tuning approach has been performed. For each parameter in Table 4 a discrete set of 10
possible parameter values each has been manually specified. Additionally, 36 scenarios have
been created synthetically with varying spatial/temporal demand distribution and number of
(service) depots to have a diverse set of scenarios. Each scenario has a total of 40 requests,
which represents a compromise between fast computation times and scenario complexity. The
final parameter values are reported in Table 4. These parameters correspond to the parameter
values with the lowest average optimally gap over all scenarios compared to the best available
solution.

Results

The result section is divided into two parts. In the first part, the ALNS and CPLEX solutions
are compared for small andmedium-sized problems to showcase the functionality and bench-
mark the ALNS algorithm. The second part presents and discusses the results obtained for
large scenarios, focusing on the changes induced by the multi-purpose vehicle technology.

Validation of ALNS

The small and medium-sized problems are created synthetically with varied number of
requests, number of depots, and varied time window definitions. As shown in Table 5, this
variation leads to several problems for each value of the number of requests. In total 118
problems with varied complexity are created.
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Table 5 Comparison of CPLEX and ALNS

Nb. of requests Nb. of problems Avg. Obj. deviation Avg. time CPLEX
[sec]

Avg. time ALNS
[sec]

4 12 -4.11E-06 0.21 2.52

8 12 -2.13E-09 0.48 2.81

12 12 -2.65E-06 1.26 2.63

16 12 8.03E-10 2.62 3.11

20 12 -7.60E-07 11.07 4.43

24 12 3.08E-08 44.83 4.35

28 10 2.94E-08 422.70 5.04

30 24 6.62E-03 427.90 5.16

40 12 4.38E-08 1707.35 6.16

To validate the ALNS performance, each problem is solved using CPLEX and ALNS.
For the ALNS approach, each problem is solved with an ensemble run of 10. The numerical
values reported for the ALNS for each request group are based on the average values of each
ensemble run. The maximum computation time for CPLEX is set to 1h and the accepted
optimization gap is set to 0.4%.

As can be seen in Table 5, the ALNS algorithm is capable of finding the optimal solution
for all problems. The objective deviation is computed as the percentage difference between
the best CPLEX solution and the average of all ensemble ALNS solution for a problem. The
reported value in Table 5 is the objective deviation averaged over all problems with the same
number of requests. With the CPLEX termination conditions six of the problems could not
be solved to optimality within the permitted time limit, meaning that the ALNS is in all cases
capable to match the performance of CPLEX. In fact, in 116 problems the ALNS always
finds the exact optimal solution or better solutions than CPLEX due to exceeded time limit.

Looking at the average computation time for CPLEX and ALNS a clear trend can be seen.
For larger problems starting from approximately 20 requests the ALNS computation time
is shorter than that of CPLEX. The reported computation time for ALNS is the time until
the algorithm terminates, e.g., over 2000 iterations. However, for most problems, the best
solution is found after only a couple of hundred iterations, highlighting the rapid convergence
of ALNS. It should be noted that the ALNS computation time is not linear with the number
of requests.

Scenario analysis

In this section scenario-specific results with a focus on the spatial, temporal, and service depot
variation are discussed. The average computation time for all scenarios is 1020sec. The final
best solution is found on average after 1200 iterations, while on average 2020 iterations are
computed for each scenario.

Impact of spatial distribution and time window constraints

The figures in this section show aggregated values. The numerical values are average values
for each aggregation. In Fig. 4 the objective value for the different definitions of the time
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Fig. 4 Average objective values for different spatial distributions and time window definitions

window and the spatial groups is shown. The bars without pattern correspond to scenarios
without service depots and therefore represent conventional operations, while the multi-
purpose operations have between 1 and 5 additional service depots and are shown as bars
with pattern. The different colors indicate the value of each cost term in the objective function.

It can be seen that for tight time window definitions the objective values are significantly
higher than for peak and no time window definitions. This is because more platforms and
more modules are needed to serve all requests. In addition, there is no significant difference
in the objective value between operations with no time window and peak time window
definitions. The objective value reduction are 11.3%, 13.4%, and 15.4% for central, cluster
and distributed scenarios, respectively. Thus, multi-purpose operations are most beneficial
for clustered and distributed scenarios.

The reduction for tight time window definition mainly stems from a reduction of used
platforms of approximately 35%, which outweighs the higher costs for the modules required.
In the conventional case additional vehicles have to be used to serve requests that cannot be
served within the tight-time window, whereas the flexibility of the multi-purpose vehicles
allows for a strategic change of the module so that more requests can be served with the same
platform. In peak time window scenarios this advantage is not available since most requests
can be served in an optimal waywith the same amount of platforms. This principle can clearly
be seen in Figs. 5 and 6. Additionally, the total vehicle travel time costs and distance costs
are reduced by approximately 33% and 16%, respectively, when deploying multi-purpose
vehicles. The significantly higher objective values for centralized scenarios with tight time
windows compared to other tight time window scenarios can be explained with the unserved
demand. In all these scenarios, 2 requests could not be served. This is independent of the
vehicle technology used.

When analyzing the total distance traveled by all platforms in a solution (see Fig. 7) and
the total travel time cost (see Fig. 8), the following general observations can be made. First,
for peak and no time window scenarios the total distance and trip duration are significantly
lower than for tight time window scenarios. This is as expected since the order in which
requests can be served is less constrained. Hence the ALNS algorithm can generate more
direct and therefore shorter platform routes, which in turn also results in shorter trip duration.
This observation is independent of the vehicle technology.

Interestingly, for tight time window scenarios, the trip durations for multi-purpose vehi-
cle operations are significantly shorter compared to conventional operations. This can be

123



Transportation

Fig. 5 Average number of modules utilized for different spatial distributions and time window definitions

explained by the fact that the multi-purpose vehicles utilize the centrally located service
depots to start a new trip, which directly translates to shorter trip times. This also results in
a reduction in the distance traveled (see Fig. 7). The explanation for this is two-fold. First,
to achieve shorter trip duration and trip distances the order in which requests are served is
different between conventional and multi-purpose operations. Second, due to the removal of
additional trips to and from the main depots shorter travel distances and trip times can be
recorded.

A second observation can be made by comparing the spatial distributions. For clustered
scenarios without windows and with peak time windows, the total distance traveled by the
platforms is significantly shorter than for the central and distributed scenarios. This indicates
that short routes can be found when the demand is spatially clustered. The effect is however
not present for the tight time window scenarios where modules are utilized (compare Fig. 5).
This shows how the utilization of service depots and multi-purpose vehicles changes the
order in which requests are served and where vehicles are operating.

Fig. 6 Average number of platforms utilized for different spatial distributions and time window definitions
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Fig. 7 Total distance traveled by all platform in a solution averaged for different spatial distributions and time
window definitions

Impacts of module usage

As described in the previous section, the number of platforms needed to serve the demand can
be reduced by utilizingmulti-purpose vehicles. In Fig. 9 the number of platforms in a solution
is shown with respect to the number of available service depots. Two main observations can
be made from this figure. First, the visit of just one service depot, i.e., one module change,
results in a reduction of approximately two platforms for all three spatial variations (central,
cluster, and distributed). This is only true for scenarios with tight time window definitions.
For other time window definitions, no or only small reduction in platforms due to visits at
the service depot is observed. Second, no additional platforms are saved by having more
service depots available. This indicates that there is an optimal combination of platforms and
the number of modules, which cannot be improved by adding more service depots to the
scenario.

This observation is confirmed by the average number of module changes per platform
shown in Fig. 10. The different patterns in Fig. 10 indicate the different number of service

Fig. 8 Trip duration by all platforms in a solution averaged for different spatial distributions and time window
definitions
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Fig. 9 Average number of platforms in a solution for different number of service depots, spatial distributions
and time window definitions

depots in each scenario (compare Fig. 3). Note that the number of service depots indicates the
order in which they are added. This order is always the same. The first service depot added
is always the service depot at location 1, the second is always the service depot at location
2, and so on until all 5 service depots are added to the scenario.

As described in the previous section, the results for scenarios with peak time windows
and without time window constraints exhibit similar trends. Most of the platforms in these
scenarios do not change their purpose along their route, meaning that not every platform in
these scenarios visits a service depot along its route. This is different with tight time window
definitions, where an average of 1.18 module changes are made per platform. This means
that few platforms visit multiple service depots during their trip. It can also be seen that the
number of module changes does not correlate with the number of available service depots,
i.e., for an increasing number of available service depots, the number of module changes does
not increase significantly. This suggests that several service depots are rarely used and shows
the importance of positioning the service depots at strategic locations within the service area.

Fig. 10 Module changes per platform for different number of service depots, averaged for different spatial
distributions and time window definitions
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Discussion and conclusion

In this study, a new vehicle technology for sequential consolidation of urban passenger and
freight flows is examined. By exchanging a removable module, different types of requests
(passenger or freight) can be served using the same vehicle platform. The paper proposes
an extension of the pickup and delivery problem to model these modular vehicle operations.
We demonstrate the ability of an adjusted ALNS optimization algorithm to solve the rout-
ing problem for large-scale scenarios and highlight the benefits of modular vehicles over
conventional operations.

The conducted experiments are based on scenarios in Stockholm, Sweden and show that
the use of multi-purpose vehicles lead to an objective value reduction of 11.3%, 13.4%, and
15.4%, for scenarios with tight time windows and central, cluster and demand distribution,
respectively. The reduction mainly stems from an approximate 35% reduction in the number
of platforms required to serve requests in these scenarios. The reduction comes at the cost of
approximately 37% more used modules. Furthermore, the results show that the availability
of service depots leads to a different order in which the requests are served, resulting in
an average reduction in the total duration of the vehicle trip of approximately 33% and a
reduction in travel distance of approximately 16%. The number of unserved requests remains
unchanged when changing the vehicle technology, indicating an unchanged level of service.

Considering the usage of service depots, the average number of module changes is around
1.18 for scenarios with tight time window definitions, showing that every platform is visiting
at least one service depot along its route. The number of platforms saved does not correlate
with the number of service depot available, meaning that more available service depots and/or
more service depot visits do not lead to further reduction in required platforms. The main
benefits can be achieved with one module change. Lastly, it can be noted that the number of
module changes is not significantly increased by increasing the number of available service
depots in the scenario. This indicates that most service depots are rarely used, and hence the
positioning of service depots is crucial for the benefits of the proposed vehicle technology.

The results of this study can be used by practitioners and policymakers to concludewhether
the combination of passenger and freight demand flows will yield benefits compared to
existing systems. In general, it can be said that for realistic (tight) timewindow definitions the
newvehicle technology leads to promising results, mainly a reduction in required platforms to
serve the same demand. Generally, in comparison with simultaneous integration concepts the
proposed sequential integration concept guarantees that passenger requests are not affected
by freight delivery processes. Hence, the level of service for passengers is higher in this form
of integration.

Our study is subject to several limitations affecting the scalability of the model and the
generality of the results reported. The computation time of the ALNS is capable of solving
problems of around 200–400 requests within a reasonable time, however, for larger problems,
the proposed heuristic algorithm needs to be improved with, e.g., pre-processing steps (e.g.,
demand clustering), or multi-level optimization approaches. Further research may examine
the sensitivity of numerical solutions to vehicle characteristics such as speed, range, and
capacity. Additionally, the location and costs structures of depots and vehicle operations
influence the generality of the proposed results. Furthermore, we assume that during every
service depot visit the correct module type is always available. In the model this is guaranteed
by setting the number of availablemodules per type and per service depot equal to the number
of maximum allowed service depot visits, as defined by parameter ϑ . In this way, we can
guarantee successful operation of the transportation system, but we overestimate the module
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availability compared to a more realistic scenario. The current version of the proposed model
does not guarantee that the number of modules and their types is the same before and after
the planning period at each depot. In practical operations this could require re-balancing
of the vehicles, which would reduce the benefits of the proposed multi-purpose transport
system. Notwithstanding, the proposed modeling framework and optimization algorithm can
be adapted to accommodate such considerations if necessary.

The proposed research can be extended in three directions. First, by integratingmixed-fleet
properties (i.e., different vehicle sizes, simultaneous optimization of conventional and multi-
purpose vehicles) for urban freight transport studies. Second, module scheduling and/or
module inventory features can be added to the proposed formulation. Third, the (service)
depot positioning problem can be integrated in the proposed model in order to expand to
strategic planning decisions.
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