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Abstract

Jobfeed is an online database containing all vacancies posted on the internet. The database obtains this data
through a process called spidering. The data is collected by visiting web pages and extracting vacancies from
these pages, using machine learning techniques. In the process of spidering, errors can occur. To ensure the
quality of the Jobfeed data, an old alarm system is in place to detect possible errors in the spidering process.
This alarm system triggers alarms whenever the spidering of a website seems to be malfunctioning. The old
alarm system is not performing well, with a precision of 0.028 and recall of 0.18. The goal of this thesis is
to develop a new alarm system, better capable of triggering alarms. In order to do so, the data has been
modelled as a hidden Makrov model. The core of the alarm system consists of a particle filter, a sequential
Monte Carlo method that is able to judge whether the process is showing behaviour that indicates something
is wrong. A series of methods to detect a change in distribution of a time series, or a change point, have been
developed and tested to detect a change in a random walk with drift. The initial values for the particle filter
were partly estimated by applying the best performing change point detection method to find the last stable
segment in the historical data. The data in this stable segment can be used to estimate initial values for the
system. Sequential decision making theory is used to decide whether an alarm should be triggered or not.
The new alarm system has a precision of 0.74 and recall of 0.96, which is a big improvement compared to the
old system used.
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1
Introduction

The impact and importance of data on our society have grown rapidly over the past years. Where only twenty-
five years ago it was something special to have access to the internet, there now is a big industry of tech-
companies doing business in this field. In many big companies, also traditional ones that do not have their
main focus in the tech industry, terms like "big data", "machine learning" and "artificial intelligence" can be
heared on a daily basis. A lot of money is involved; in 2017 the estimated revenue in the big data analytics
market was $150 billion and is expected to grow to $210 billion in 2020 [1]. One of the challenges when han-
dling data is to obtain as much relevant data as possible, while ensuring the data quality. Since we are dealing
with big data, it is not possible to monitor the process of gathering data manually; therefore algorithms have
to be used to check for possible errors in the database. Here artificial intelligence and machine learning come
in; the process of detecting errors in a database can be improved by learning from past assessments. This the-
sis focusses on building such a system, that is able to trigger alarms whenever problems seem to occur in the
process of obtaining data.

1.1. Jobfeed

This thesis has been executed in partnership with Textkernel, an IT company that specializes in machine in-
telligence for matching supply and demand in the job market. They have developed several tools to better
search and match candidates and vacancies. Besides, Textkernel also developed a tool that can be used to
analyse the job market: Jobfeed. It is an online tool and database that can be used to analyse and search va-
cancies posted online and is currently available for over 8 countries, such as The Netherlands, Belgium, Ger-
many, France, the United Kingdom and the United States. The Jobfeed database contains vacancies posted
on websites from for example job boards or direct employers. The database can be searched using various
search criteria, to find a suitable vacancy, or to look for possible trends in the job market. The search results
can be shown based on jobs, websites or organizations. Also a tab named insights is available to see a graphi-
cal representation of the search, showing what job boards the vacancies came from, the profession, education
level and more. A screen shot of the result of searching on Java developer in Amsterdam is shown in figure
1.1, where the search bar is shown on the left and the results of the search on the right.

1



2 1. Introduction

Figure 1.1: Search bar and search result from Jobfeed, for a search "Java developer" in "Amsterdam".

1.2. Goal of the thesis

In this thesis we will be focussing on the way the Jobfeed data is obtained and how we can detect issues in
this process. The goal is to build an alarm system that is capable of detecting defects in this data gathering
process. Such an alarm system is already in place, but due to the big amount of (false) alarms this system
is only used to monitor vacancies coming from the 25 websites with the largest amount of vacancies. These
alarms are monitored by the Jobfeed Data Quality team, that consists of two members at the moment. The
new alarm system developed during the course of this thesis may be used to monitor websites that have less
vacancies, but are still a valuable source for the Jobfeed database; in practice we also want to monitor websites
that are on place 26 up to 100 when it comes to the amount of vacancies.

1.3. Structure of the thesis

The research done in this thesis consist of several parts that are related to each other, as shown globally in
figure 1.2. The main computation is done by a sequential Monte Carlo method called a particle filter. The
particle filter uses the data to calculate the probability that the data gathering process is not functioning
properly. This is passed on to a sequential decision making procedure that can decide to trigger an alarm,
which is the output of the system. After this, the user has to decide what to do with this alarm; he can either
do nothing or decide to reset the particle filter. The particle filter needs initial values to start its computation.
These initial values are partly determined using data from the past. For this change point detection has been
used to split the past data up in segments in which the data shows similar behaviour; the last segment is used
to estimate initial values that are passed on to the particle filter.



1.3. Structure of the thesis 3

Figure 1.2: Graphical representation of the alarm system.

First, we will first describe the process of gathering the Jobfeed data and describe what possible problems
can occur in chapter 2. After this, some preliminaries on statistics and machine learning are given in chapter
3. Next, we will focus on detecting change points and apply this to a random walk with drift in a simulation
study in chapter 4. After this we will describe the alarm system developed by first explaining the assumed
model in chapter 5 and in chapter 6 a numerical method called a particle filter is described that can be used
for inference in a hidden Markov model. To decide at what time to trigger an alarm, a sequential decision
making procedure is described in chapter 7. A test has been done in chapter 8 to check the performance of
the newly developed alarm system and conclusions are stated is chapter 9.





2
Jobfeed data

In order to get vacancies from the internet into the Jobfeed database, a process called spidering is used. This
entails a program or a spider visiting web pages and looking for vacancies. If the spider comes across what
he believes is a valid vacancy, it will save the attributes pertaining to this vacancy, such as job title, location,
required educational level, employer, etc. These will be added to the Jobfeed database. The spiders can be
divided in two groups:

1. Scripted spiders
These spiders are scripts written for one website in particular. The spider knows where the attributes
of the job are located and how to go through all vacancies on the website.

2. Wild spiders
These spiders crawl a big part of the internet, looking for vacancies. They are designed to work for all
websites, but the results are less reliable than the vacancies from the scripted spiders and therefore
these spiders aren’t used on websites a scripted spider is available for.

Not all vacancies detected by the spiders are directly imported into the Jobfeed database. The job open-
ings found are further filtered to remove pages that are not actual vacancies. An example of such an error is
that a wild spider often identifies an index page with links to vacancies as a vacancy itself; this should not be
imported in the database. At this point we also check for duplication; the vacancy should only be imported
once. In case it is posted at multiple locations, it should still be imported as a single vacancy.

The scripted spiders visits the website once every day. Here it will go through all job offers on the website.
The output of the spider consists of two parts:

• URL files, indicating the pages the vacancies can be found. For every job opening the spider finds, it
will return a URL file. It is necessary to do so every day, because this way we are able to tell when a
vacancy is no longer active and should be removed from Jobfeed. In case the URL is not yet in the
jobfeed database, an XOS file will be generated.

• XOS files, containing all information available about a vacancy on the website. The XOS files represent
the vacancies that are new and have to be added to the Jobfeed database.

The XOS files found by the spider are processed to determine whether they are actual vacancies and to re-
move duplicates. After this, the new vacancies are imported into the database. The vacancies in the database
of which the URLs are no longer found by the spider are expired and removed from the database. In case a
vacancy has been expired, but later the URL of the vacancy is found by the spider again, the vacancy will be
revived.

In some cases, the spider does not have enough time to finish the spidering before the day is over. When
this happens, a different type of spider is activated, a manual flush spider. This spider only records the URL
files and is therefore a lot faster than the regular spider. This way all URL files are imported in the database,
even if not all XOS files are found. Spidering can take quite some time, because most websites can only
be visited with a limited frequency. If a website is visited too frequently we will be blocked by the website.
Typically a website can be visited once every three seconds.

5



6 2. Jobfeed data

2.1. Norm URL
When visiting a web page, the URL (Uniform Resource Locator) contain information about the location of the
page. A URL consists of several parts; a host name, a path and sometimes a query. In this query you will often
find GIT parameters, containing information about the current session. If you would use Google to search
for "mathematics", this keyword will be included in the query as GIT parameter ?q=mathematics. Not all of
these GIT parameters are relevant for us; often a session ID or the browser used is in it as well. In the example
of the Google search, both of these URLs will result in the same page:

https://www.google.nl/search?q=mathematics&rlz=1C1AWFC_enNL754NL754&oq=mathematics&aqs=

chrome..69i57j0l5.1381j1j7&sourceid=chrome&ie=UTF-8

https://www.google.nl/search?q=mathematics

In the second URL, all unnecessary GIT parameters were left out.
We will call the URL without all these unnecessary parameters the norm URL. Note that the norm URL

does not necessarily have to be a working URL; it the shortest way to identify an internet page that we can
reproduce when coming across this page again. These norm URLs will be used to check the presence of a
vacancy in the Jobfeed database. If it is already in the database, the vacancy doesn’t have to be imported. In
case we would use the regular URL for this, we would identify each vacancy as new, because the GIT parame-
ters are usually different for every session and if they are not removed the new URL doesn’t match the URL in
the database.

2.2. Heuristics
To improve the stability of the data in Jobfeed, several heuristics are used to correct for possible errors in the
data found by the spiders.

1. If more than 25% of the vacancies should be expired according to the spider, none of the vacancies
of this website currently in Jobfeed will be expired. If this happens, it will be saved as an "expiration
problem". This will be done for a maximum of five day in a row; if the URL files of the vacancies are still
not found after five days the vacancies will be expired anyway.

2. In case a spider tends to overlook vacancies, a grace period between expiring and the lost of the URL
file can be implemented. A grace period of length k means the vacancy will only be expired if the URL
file has not been found for k days. Not all websites have such a grace period; usually it is only used for
unstable spiders.

3. If more than 250% of the maximum of database imported in the last two weeks is imported on one day,
the vacancies will not be imported.

Other rules specifically defined for each website are used as well, mostly to filter out vacancies that have
been imported by the spider but shouldn’t be imported into the Jobfeed database, because they aren’t an
actual vacancy or because they contain too little information.

The information contained in de XOS file is just the HTML page the spider found. From this page, all
relevant parameters have to be extracted. Textkernel has developed a tool named Textractor that is able to
abstract these parameters from the page. However, because we often know the location of each parameter for
the website that are spidered using a scripted spider, additional wrapping rules are in state for most scripted
websites, to improve the output quality of Textractor. Often companies use a so called applicant tracking
system (ATS) in their HR department to process and view the data of applicants. In case the source uses such
an ATS to keep track of their vacancies, we can use standard wrapping rules for this ATS.

Apart from wrapping rules, often scripted websites have site rules in place. These site rules help to identify
and to locate vacancies. The URL of a vacancy often has a specified form, for example:

http://company.com/vanancies/vacancy_id

A site rule could be that all vacancy pages start with http://company.com/vacancies, or have the word "va-
cancies" in it. Likewise we can also reject all URLs that take a preset form or contain some word or character

https://www.google.nl/search?q=mathematics&rlz=1C1AWFC_enNL754NL754&oq=mathematics&aqs=chrome..69i57j0l5.1381j1j7&sourceid=chrome&ie=UTF-8
https://www.google.nl/search?q=mathematics&rlz=1C1AWFC_enNL754NL754&oq=mathematics&aqs=chrome..69i57j0l5.1381j1j7&sourceid=chrome&ie=UTF-8
https://www.google.nl/search?q=mathematics
http://company.com/vanancies/vacancy_id
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indicating we’re not actually dealing with a vacancy. If for example on a job board the vacancies from one
particular employer are never uploaded correctly, the spider can be forced to skip vacancies that have the
name of this employer in their URL.

Another important thing the site rules are controlling is the norm URL. As explained before, this norm
URL is used to identify each vacancy, to see whether it is already in the database or not. The site rules state
how the norm URL is created from the actual URL.

2.3. Available data
The Jobfeed database contains a lot of parameters about the vacancies found by the spiders and wild-spiders.
Users can use these parameters to search through the vacancies and analyze the job market. This data is the
result of the spidering; however in this thesis we are interested in the functioning of the spiders themselves.
To this end we have several statistics about the spidering available to us:

1. Spider found: The amount of unique URL files the spider found that day.

2. Spider found cumulative: The amount of unique URL files the spider found, plus the URLs that
did not expire due to a set grace period in the expiration.

3. Spider accepted: The amount of unique URL files the spider found that day after apply-
ing heuristics.

4. Spider imported: The amount of new vacancies the spider found that day; these vacan-
cies are imported as XOS files.

5. Database imported: The amount of new vacancies import into the database, after cleaning
and removing duplicates.

6. Expired: The amount of vacancies that expired on that day.

7. Revived: The amount of vacancies that were expired, but revived because their
URLs have been detected again that day.

8. Total active: The amount of vacancies listed as active for this website.

Furthermore, whenever an expiration error occurs, this will be saved in the database. The methods devel-
oped in this thesis have been applied on the spider accepted data, however other statistics about the spidering
could be used as well.

2.4. Currently used alarm system
There already is an alarm system in place that is triggering alarms when a spider seems to be malfunctioning.
This alarm system is only used for the top 25 websites that have the most vacancies. The system is actually
a list of heuristics, describing boundaries for some statistics of the spider, such as its mean and standard
deviation. The following procedure is used for each website:

1. For the last ten weeks, the amount of vacancies found within that week is saved as n0,n1, ...,n9. Here ni

is the number of vacancies found by the spider in the i ′th week before the current day.

2. Take µ = 1
10

∑10
i=1 ni the mean amount of vacancies found per week of the last ten weeks and σ =

1
10

∑10
i=1(µ−ni )2 the standard deviation assuming normality.

3. Alarms are triggered if:

• n0 > 0 and n j = 0 for 1 ≤ j ≤ 9

• µ> 25, n0 = 0 and n j > 0 for 1 ≤ j ≤ 9

• µ≥ 50 and |n0 −µ| > µ
2

• µ> 25 and |n0−µ|
σ > 2

This system only takes the weekly amount of vacancies into account. The performance of this algorithm
is rather poor, as we will see later in section 8.2.
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2.5. Problems and data
For the alarm system developed in this thesis, we will use the spider accepted data as input. This data is
collected on a daily basis, so every data point represents the number of vacancies the spider accepted in one
day. Some examples are shown in figure 2.1.

0 50 100 150 200

0
50

0
15

00
25

00
35

00

Spider Accepted

t

X
t

0 50 100 150 200

0
10

00
20

00
30

00

Spider Accepted

t

X
t

Figure 2.1: Examples of spider accepted data of two different websites.

There are several things that can go wrong in the spidering process. In this section we will indicate some
of the issues that can pop up and how they can be recognized in the data. Note that this list is not complete.
We will focus on the scripted spiders.

A possible source of a problem is the website that is being spidered. Examples are:

1. The website is down temporarily
The spider will try to find vacancies, but the website is offline due to problems at the host. The spider
will not return anything (not even a 0). The next day the website could be online again and everything
will be back to normal.

2. The website has changed
The spider will try to find vacancies, but something about the website has changed, which makes the
spider gather wrong or incomplete data. In case the lay out of the website has changed, the spider
might not be able to find the vacancies any more, which makes the spider accepted go to zero. It could
also be that the spider does find the vacancies, but some of the parameters are missing, mixed up or
false.

The problem could also be caused by incorrect settings or site rules. This is related to the website itself; if
the website has been updated, the site rules will most likely be outdated. Some of these issues are:

1. Norm URL is broken The way the norm URL is defined is (no longer) correct for this website. The spi-
der will find new URLs for all vacancies on the website and will try to expire all vacancies already in the
database. The heuristics will only allow this to happen after five days. So, for five days the spider will im-
port all vacancies it finds, making the total active go up, while the spider accepted stays approximately
constant. Spider and database imported are both high. After these five days the spider will expire all
vacancies and keep only those found on the fifth day. This process will repeat itself if the norm isn’t
fixed and we will see "triangles" in the data.

2. Wrong ATS selected
In order for content to be picked up by the spider, the correct ATS has to be used. If the wrong ATS is
selected, the content picked up by the spider will most likely be false.

There are other issues that may occur in the spidering process, that can be seen in the statistics of the
spider. Note that if we observe troubling behaviour of the spidering data, this could be caused by a lot of
issues and often we cannot see directly from the data whether the issue is in the website, the settings or in the
spider itself. Some examples of observations in the data that suggest something is wrong are:
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1. Spider drops to zero
The spider still finds URL and XOS files, but they are both empty, so we do not import anything. Spider
imported and spider accepted both go to zero. This could be because the spider is picking up wrong or
empty pages. It could also be the result of a change in the website.

2. Spider imported drops to zero
The spider does find the URL files, but not the XOS files of new vacancies. Spider imported goes to zero,
but spider accepted will still be approximately the same as the day before. Here the spider could be
broken, making it unable to find the XOS files. It could also be the start of a dying spider; the spider
finds less vacancies every day and doesn’t find any new vacancies any more. An example of the spider
accepted data of a dying spider (that recovers at t = 145) is shown in figure 2.2
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Figure 2.2: Example of spider accepted data of a dying spider, recovering around t = 145.

Spider accepted will slowly go down and spider imported will be zero. The reason for this is often that
the website has changed the way they process their vacancies, but the old vacancies remain the same;
new vacancies will therefore no longer be detected by the spider.

3. Sudden drop of spider accepted
The spider seems to find only a part of the vacancies on the website; the spider coverage could be
incomplete. Because of this spider imported, revived and expired are too high and spider accepted is
too low.

4. Sudden rise of spider accepted
The spider suddenly finds a lot more URL and XOS files than before. Spider accepted and spider im-
ported will increase drastically. This can be an indication something broke in the spidering process,
but this can also occur when a spider was broken but has been fixed.

The unscripted spiders cause a lot of issues as well, especially since they are not build for one particular
website. In this thesis we will focus on the scripted spiders.

2.5.1. Focus in alarm system
The alarm system developed during the course of this thesis should preferably be able to detect all possible
issues with the spider. Since however this is a complicated issue, not all of these problems will be incorporated
in the alarm system. After discussing several examples of situations where the spider was malfunctioning
with the Jobfeed Data Quality team, we decided the following behaviour of the spider accepted data will be
focussed on:

1. The spider is zero
In this situation the spider could have dropped to zero or delivered the wrong content. Besides this, the
website could be changed or down. Since a drop to zero occurs quite frequently, one day of a zero value
should not be a problem. If the spider accepted is zero for more than one day, this is a problem and an
alarm should be triggered.
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2. The spider makes a jump
In many cases in which the spider wasn’t functioning correctly, the spider accepted data showed some
kind of sudden drop or rise. This could be in the case of incomplete spider coverage (drastic decrease),
a change of website or a drastic increase. A broken norm URL also shows jumps, but not always right
away.

Examples of both situations are shown in figure 2.3.
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(b) Jumps.

Figure 2.3: Examples of spider accepted data in case of a longer period of zero and jumps.

The most important problems we are missing by focussing on these two are the dying spider and the case
where no vacancies are imported, however the URL files are found. The last one cannot be observed in the
spider accepted data and is therefore left out of the alarm system. Dying spiders are rare and can only be seen
after observing for a longer period of time, which makes them less urgent than for example zeros or a sudden
jump in the spidering data.



3
Preliminaries

In this thesis, several statistical methods will be used. Some basic statistical results will be summarized in
this chapter. First the topic of time series [2] will be addressed in section 3.1. After this we will discuss how
outliers can be dealed with using robus statistics or filters [3] in section 3.2. Then we will discuss Bayesian
statistics [4] in section 3.3, followed by linear regression [5] in section 3.4. Last we will give some measures to
monitor the performance of a system [6] in section 3.5.

3.1. Time series
A time series (X t )t≥1 is a set of data points indexed over time t ∈N, starting at time t = 1. We will denote this
as X t . A subset (Xi )s≤i≤t will be notated as Xs:t . The distribution function of X will be denoted as fX (x). The
subscript will often be left out to clean up the notation.

We will define the backshift operator ∇ for which:

∇X t = X t −X t−1 (3.1)

A lot of models have been developed to describe time series showing different types of behaviour. One
common model is the AR(p) model. Here the time series X t follows the recursion:

X t = δ+
p∑

i=1
φi X t−1 +Zt (3.2)

Here Zt is a white noise process; from now on we will assume Zt ∼ N (0,σ2) for some standard deviation σ.
We also need a starting value X0. A special type of AR model is the random walk; an AR(1) model with φ1 = 1
and δ= 0:

X t = X t−1 +Zt (3.3)

Note that for the expectation of the random walk holds:

E(X t ) = E(X t−1)+E(Zt )

= E(X t−1) (3.4)

Therefore for n ∈N the expected value at t +n is equal to the expected value at t :

E(X t+n) = E(X t ) (3.5)

The variance however is not constant:

Var(X t+n) = Var

(
X t +

n∑
i=1

Zi

)
= Var(X t )+nσ2 (3.6)

11
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Here we used that the Zi are independent and identically distributed (i.i.d.), in particular independent of X t .
This means the variance is increasing over time. In case δ 6= 0, we have a random walk with drift δ:

X t = δ+X t−1 +Zt (3.7)

Given a time series X1:N , we are often interested in its properties, such as the expected value or the vari-
ance of the time series. In case the expected value of the time series is constant in time, a classical way to
approximate this is by taking the sample mean:

X = 1

N

N∑
i=1

Xi (3.8)

A constant variance can be approximated by the sample variance:

σSV = 1

N −1

N∑
i=1

(Xi −X )2 (3.9)

3.2. Outliers
A data set may contain data points that were not generated by the same process as the process we are inter-
ested in. These points are called outliers and we often wish to exclude them when we are making calculations.
One way of dealing with outliers is by using robust statistics. These statistics aren’t affected as much by out-
liers or changes in the parametric distribution of the data. This could also be beneficial if we are dealing with
data from a wide range of probability distribution.

3.2.1. Robust mean
If we are interested in the level of a time series X1:N , the classical approach is to use the mean (3.8). This is not
a robust statistic, because by changing only one of the Xi , we can make the mean arbitrarily large. A robust
statistic for this is the median. The median is defined as the value m such that:

P(X ≤ m) ≥ 1

2
and P(X ≥ m) ≥ 1

2
(3.10)

The median has a breakdown point of 50%, indicating what percentage of the data can be outliers before
the estimator produces an incorrect result. For the regular mean, this is 0%.

Another, equivalent definition of the median of random variable X is:

median(X ) = arg max
m∈R

E[|X −m|] (3.11)

For the sample median holds:

median(X1:N ) = arg min
m∈R

N∑
i=1

[|Xi −m|] (3.12)

Note that this is the same as (3.39), but assuming β= 0.

3.2.2. Robust variance
To estimate the variability of a data sample, the median absolute deviation (MAD) can be used. The MAD is
defined as:

M AD = median
i

(|Xi −median(X1:N )|) (3.13)

For a consistent estimator of the standard deviation σ, the MAD has to be multiplied by a factor, depending
on the distribution of the data. Because the median is the middle value of the data, we see that if we are
dealing with Gaussian data Xi ∼ N(µ,σ) for 1 ≤ i ≤ n, holds:

1

2
=P(|X −µ| ≤ M AD)

=P
( |X −µ|

σ
≤ M AD

σ

)
=P

(
|Z | ≤ M AD

σ

)
(3.14)

(3.15)

(3.16)
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Here Z ∼ N(0,1). Now we see:

1

2
=P

(
Z ≤ M AD

σ

)
−P

(
Z ≤−M AD

σ

)
=P

(
Z ≤ M AD

σ

)
−

(
1−P

(
Z ≤ M AD

σ

))
3

4
=P

(
Z ≤ M AD

σ

)
(3.17)

ForΦ the cumulative distribution function of the standard normal distribution, we get:

M AD =Φ−1
(

3

4

)
σ (3.18)

σM AD = 1

Φ−1
( 3

4

) M AD (3.19)

So in the case of Gaussian data, taking 1.4826 MAD will result in an estimator for the standard deviation σ.
Because of the use of the median, the MAD also has a breakdown point of 50%.

There are other robust options for estimating the standard deviation. One of them is proposed by Rousseeuw
[33]. The estimator is:

σS = c median
i

(median
j

|Xi −X j |) (3.20)

This estimator also has a breakdown point of 50% and is shown to be more efficient for Gaussian data. To
make this a consistent estimator for σ of a normal distributed sample, a constant c = 1.1926 has to be used.

3.2.3. Filters
Another way to deal with outliers is to apply a filter to the times series. We will look into the Hampel filter.
This filter is based on a moving average window of half-width k:

W k
i = {Xi−k , ..., Xi , ..., Xi+k } (3.21)

Now, define:

mi = median(W k
i ) (3.22)

the median of the moving average window. The response of the Hampel filter is:

hi =
{

xi for |xi −mi | ≤ tσM AD,i

mi for |xi −mi | > tσM AD,i
(3.23)

Here t is a threshold parameter andσM AD,i the estimated variance (3.19) using the MAD estimate, calculated
with the the data points in window W k

i . For t = 0, this results in the so called median filter, which is very
efficient in removing outliers from a dataset. The strength of the more sophisticated Hampel filter is the
possibility to increase the sensitivity to changes in the time series; increasing t will lead to less replacements
of data by the median of the moving average. This way bigger fluctuations stay present in the data.

3.3. Bayesian statistics
Bayesian statistics is field in statistics, in which prior knowledge is updated by observations to calculate prob-
abilities. We will first introduce some notation. Let X ,Y be random variables, then we will denote the prob-
ability distribution function of X as f (X = x) or f (x). The probability distribution function of X given Y we
will denote as f (X = x|Y = y), or f (x|y) shortly.

An important tool in Bayesian statistics this is the Bayes formula or Bayes rule:

f (X = x|Y = y) = f (Y = y |X = x) f (X = x)

f (Y = y)
(3.24)

In Bayesian statistics, to make inference on a parameter θ in the distribution of a random variable X , θ is
assumed to be a random variable itself. We will assume prior distribution π(θ) on θ. Using Bayes formula we
can find the posterior distribution of θ given the data X :
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π(θ|x) = f (x|θ)π(θ)

f (x)
(3.25)

3.4. Linear regression
In the field of linear regression the aim is to construct a straight line that approximates the time series of
interest. To this end, the time series Y1:N is assumed to constructed by the regression line and an noise term
Zi :

Yi =α+βxi +Zi (3.26)

In the best known case the noise Zi is assumed to be Gaussian, although another type of distribution may
be assumed, such as heavy tailed Student’s-t noise.

3.4.1. Gaussian noise
First, will assume Zi ∼ N (0,σ2) is a Gaussian error on the data. By doing so we are able to derive estimators
for α and β, using maximum likelihood estimation. Provided with data

{
xi , yi

}
1≤i≤N the likelihood function

is:

L(σ,α,β) =
N∏

i=1
f (yi |xi ,σ,α,β)

=
N∏

i=1

1p
2πσ2

e−
(yi −α−xi β)2

2σ2 (3.27)

We find for the log likelihood:

L (σ,α,β) =
N∑

i=1

(
log

(
1p

2πσ2

)
− (yi −α−xiβ)2

2σ2

)

=−N

2
log(π)−N log(σ)−

N∑
i=1

(yi −α−xiβ)2

2σ2 (3.28)

An analytic expression for the maximum likelihood estimator of α and β can be found by solving the
system: 

∂L (σ,α,β)
∂α = 0

∂L (σ,α,β)
∂β = 0

∂L (σ,α,β)
∂σ = 0

(3.29)

Solving this system leads to the ordinary least square estimate (OLS) for α and β:β̂G =
∑N

i=1(xi−x)(yi−y)∑N
i=1(xi−x)2

α̂G = y − β̂G x
(3.30)

Here x and y denote the sample mean (3.8) of x and y . We also found the maximum likelihood estimator
for σ2:

σ̂2 = 1

n

N∑
i=1

(yi − α̂G − β̂G xi )2 (3.31)

Using α and β we can now calculate the Gaussian regression line:

lG (xi ) = α̂G + β̂G xi (3.32)

These estimates α̂G and β̂G are called the ordinary least square estimate, because they are also the solution
to the optimization problem of minimizing the square of the difference between the data points and the
regression line:

(α̂G , β̂G ) = argmin
(α,β)

N∑
i=1

(yi −αG −βG xi )2 (3.33)
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3.4.2. Student’s t noise
Using Gaussian errors is common practice in linear regression. Closed expressions are available for the re-
gression estimators and they can be calculated in O (N ). A downside of modelling errors as Gaussians, is that
outliers in the data have a big impact on the regression curve, because the normal distribution is not heavy
tailed. This means the probability of observing an outlier is very low, compared to a distribution that has a
heavy tail. To better incorporate the possibility of outliers, we will therefore perform regression using errors
from the heavy-tailed Student’s-t distribution. It has the following distribution function:

f (x|ν,ρ) = Γ(ν+1
2 )

Γ(ν2 )
√
πνρ2

(
1+ 1

ν

(
x

ρ

)2)− ν+1
2

(3.34)

Here ν > 0 are the degrees of freedom and ρ the scaling parameter. The thickness of the tail depends on
the degrees of freedom and the scaling parameter can be used to adjust the variance. For X following the
Student’s-t distribution, the variance is: 

ν
ν−2 for ν> 2
∞ for 1 < ν≤ 2

undefined else
(3.35)

We will again assume (3.26) but this time the Zi are independent identically distributed according to a
Student’s-t distribution. For the likelihood function we find:

L(ν,ρ,α,β) =
N∏

i=1

Γ(ν+1
2 )

Γ(ν2 )
√
πνρ2

(
1+ 1

ν

(
yi −α−βxi

ρ

)2)− ν+1
2

(3.36)

Now for the log likelihood we get:

L (ν,ρ,α,β) =
N∑

i=1
log

(
Γ(ν+1

2 )

Γ(ν2 )
√
πνρ2

)
−

(
ν+1

2

)
log

(
1+ 1

ν

(
yi −α−βxi

ρ

)2)

= N log

(
Γ(ν+1

2 )

Γ(ν2 )
√
πνρ2

)
−

N∑
i=1

(
ν+1

2

)
log

(
1+ 1

ν

(
yi −α−βxi

ρ

)2)
(3.37)

Again we could find the maximum likelihood estimators by solving system (3.29). In this case however, there
is no exact solution, therefore a numerical approximation has to be used. After solving we can calculate the
Student-t regression line:

lSt (xi ) =αSt +βSt xi (3.38)

3.4.3. Robust regression as LP problem
The OLS estimators are found by looking at the square of the difference between the data and the regression
line (3.33). Using this square, outliers have a big effect on the outcome. To reduce the effect outliers have
on the regression, we can use the absolute difference instead. We are looking for coefficients α and β such
that the absolute distance between the line α+βx and the data Y is minimized; we will find the robust linear
regression coefficients by:

argmin
α,β∈R

N∑
i=1

[|Yi −α−βxi |] (3.39)

This can be written as a linear programming problem (LP-problem). Write ci = |Yi −α−βxi |, then we see
that minimizing (3.12) is equivalent to the following LP problem:

min ci

s.t. Yi −α−βxi ≤ ci

−Yi +α+βxi ≤ ci

ci ≥ 0

(3.40)
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After solving, using for example the Simplex algorithm, we can find the robust regression line:

lR (xi ) =αR +βR xi (3.41)

3.5. System performance
If we are dealing with a system that has a binary outcome, the outcome of the system can take two values,
either a positive, or a negative. An example of such a system is an alarm system; the result is either an alarm
(positive) or no alarm (negative). Two important measures for the performance of these systems are the
precision and recall. We define:

• A positive outcome of the system is a true positive if the outcome should have been positive as well.

• A positive outcome of the system is a false positive if this outcome should have been negative.

• A negative outcome of the system is a false negative if the outcome should have been positive.

To test the performance of the system, a test can be performed by running the system multiple times. Let
nt p the number of true positives, n f p the number of false positives and n f n the number of false negatives
found by the system. We define the precision of the system as the ratio of true positives over the number of
positives found by the system:

Precision = nt p

nt p +n f p
(3.42)

The recall of the system is the ratio of true positives over the number of outcomes that should have been
positive:

Recall = nt p

n f n +nt p
(3.43)

The recall is also refereed to as sensitivity. Note that if the system only has positive outcomes, the precision
will be low, but the recall will be 1 because not a single positive has been missed (n f n = 0).
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Change point detection

When analysing a time series, we are often interested in the distribution of our observations. This distribution
can change over time. A point in time where the distribution of the time series undergoes an abrupt change
is referred to as a change point. In sequental change point detection the aim is to detect such a change as soon
as possible after its occurrence.

Let X1, X2, ... be the time series of interest. The definition of a change point is quite general; a change
point is a point in time τ where X1:τ has been generated according to some process, that is different from the
process generating data Xτ+1, X−τ+2, .... Most literature discuss the case where the data before and after the
change point are independent and identically distributed random variables, but other models such as an AR
model (3.2) could be used to describe the data.

In this chapter we will first give an overview of theory on change point detection, starting with early fre-
quentist methods in section 4.1 and Bayesian methods in section 4.2. After this we will cover finding a single
change point in a time series using a cost function and an estimator in section 4.3. Here several options for
the cost function and estimator will be discussed and the use of a linear regression line as estimator is pro-
posed. In section 4.4 several algorithms to detect multiple change points using a cost function are discussed.
The theory will be applied to find changes in a random walk process in section 4.5. To check the performance
of the change point detection methods, a simulation test has been done in section 4.6. We will use the best
performing change point detection method to help estimate initial values for the alarm system, as illustrated
in figure 1.2.

4.1. Frequentist approach
Detecting a change in distribution function could for example be a change in mean of the process, a change
in variance, both of them or the entire type of distribution could be different. Early attempts focussing on
detecting a change were made by Shewhart [7], introducing the concept of state of statistical control. The
idea is that the probability distribution of the data depends on some parameter θ, which can be monitored
using some statistic Yt . If Yt exceeds certain control limits, the process is no longer in the state of control and
the hypothesis made on θ must be rejected. The test statistic Yt is calculated on a so called process inspection
scheme, taking samples of fixed size N at regular time intervals. For a change in mean of the time series, the
mean of the samples in used as test statistic, resulting in the so called Shewhart X -chart. If assumed the data
is i.i.d. Gaussian, the control limits used are:

X ± Bσp
N

(4.1)

Here B was calculated to be 3.09. We can define the stopping time for this procedure as:

T = inf

{
t : X t > X + Bσp

N
, X t < X − Bσp

N

}
(4.2)

Other control limits can be used in the stopping time to detect changes in a different parameter.

17
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Another class of schemes was introduced by Page [8], cumulative sum (CUSUM) schemes. If the Xi are
i.i.d. up to i = τ and i.i.d. as well for i > τ, the stopping time for this procedure takes the from:

TC S = inf

{
n : max

1≤ j≤n

[
N∑

i= j
log

(
f1(Xi )

f0(Xi )

)]}
(4.3)

Something similar can be done in case the Xi left and right from the change point are not independent.
Note that for this approach, the likelihood ratio of f1 and f0 must be known, which is often not the case in
applications.

4.2. Bayesian approach
The first Bayesian description of the change point problem was formulated by Shiryaev [20]. He assumed that
we are looking for a single change point, where the probability distributions before f0 and after f1 the change
point are known. When approaching the change point detection in a Bayesian way, the change point itself is
considered to be a random variable and a prior distribution for the change point has to be defined:

P(τ= k) =πk (4.4)

The delay in detecting a change point should be as short as possible. However, detecting a change point
when there is not an actual change in distribution is also undesirable. To this end we define the average delay
to detection as:

ADDπ
τ (T ) = E(T −τ|T > τ) = max

{
0,Eπ (T −τ)

}
Pπ(T > τ)

(4.5)

and the probability of false alarm:

PF Aπ(T ) =Pπ(T ≤ τ) =
∞∑

k=1
πkPk (T ≤ k) (4.6)

Here T is the time of detecting the change point. Now, the aim is to minimize ADD , but not let the PF A
exceed a fixed critical probability α. So for our fixed α we want an optimal stopping time Topt with:

Topt such that:

{
PF Aπ(Topt ) ≤α
ADDπ(Topt ) = inf

T
ADDπ(T ) (4.7)

For his first approach, Shiryaev used a geometrical distribution with the probability that the change point
is at t = 0 equal to π as prior distribution:

P(τ= k) =
{
π for k = 0
(1−p)k−1p for k > 0 given τ> 0

(4.8)

Using this prior, an exact solution for the optimal stopping time is available. This results in a procedure
with stopping time:

TS = inf
{
n ≥ 1 : Rn,p ≥ Aα

}
(4.9)

Here:

Rn,p = q

(1−q)p

n∏
j=1

(
L j

1−p

)
+

n∑
k=1

n∏
j=k

(
L j

1−p

)
(4.10)

with L j = f1(X j )
f0(X j ) . Note that Aα depends on α in the sense that we pick Aα in the following way:

TS (Aα) such that:

{
PF Aπ(TS (Aα)) =α
ADDπ(TS (Aα)) = inf

T
ADDπ(T ) (4.11)

This, like the frequentist method, depends on the likelihood ratio L . We will now focus on methods where
knowledge of L is not necessarily required.
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4.3. Single change point
We will investigate the case where a change point defined by a change in the underlying model generating
the data, where the data is not necessarily i.i.d. within each segment. In order to do so, we will first assume
that our time series contains only one change point that splits the time series into two segment. To find this
change point, most modern change point methods use a cost function γ(X ,θ) that depends on some statistic
θ of the time series [11][12]. This cost function describes the cost of a single data point in the time series. If
available often a negative log likelihood can also be used as a cost function [14], as can minus the posterior
distribution in a Bayesian setting [17]. Other cost functions can be used if the likelihood ratio is not available.

We will assume the change we are looking for can be identified by statistic θ of the time series. If we have
a cost function γ(X ,θ), we can find the cost of a segment by summing up the cost of the data points in the
segment. We define:

C (Xs:t ) = min
θ

t∑
i=s

γ(Xi ,θ) (4.12)

Here we assumed θ is constant throughout the segment. We see that the sum of the cost of each data
point is minimized over the statistic θ. In practice, minimizing over all possible θ is very time consuming,
which is why an estimate θ̂ for θ is used:

C (Xs:t , θ̂) =
t∑

i=s
γ(Xi , θ̂) (4.13)

We will also include the possibility for θi to vary within a segment, under the condition that θi is propor-
tional to the time. In this case, the cost of a segment is defined as:

C (Xs:t , θ̂i ) =
t∑

i=s
γ(Xi , θ̂i ) (4.14)

If θi is not constant within the segment, a change point represents for example a sudden jump in the
statistic θτ+1 of the time series that is not according to the proportionality of θτ.

Assume we have a time series X1:N and we are looking for a change point 0 < τ< N for which the statistic
θ of the time series has a sudden change. This can be done by minimizing the sum of the cost of the two
segments that are obtained by splitting up the time series at time τ. Therefore if we use a (possibly time-
varying) estimate θ̂i for the statistic θ, the change point can be found by:

τc = argmin
0≤τ<N

[
τ∑

t=1
C (X1:τ, θ̂i )+

N∑
t=τ+1

C (Xτ+1:N , θ̂i )

]
(4.15)

If τ= 0, no change point was found in the time series.
We will focus on the case where θi represents the level of the time series. Several ways to approximate

(possibly time varying) θi will be discussed and we will formulate cost functions that can be used.

4.3.1. Cost functions for mean
A common cost function in literature, used to find the mean of a time series is the quadratic loss function:

γ(X ,θ) = (X −θ)2 (4.16)

This loss function results from looking at normally distributed data and taking minus the log likelihood as a
cost function. Another commonly used loss function is the absolute error:

γ(X ,θ) = |X −θ| (4.17)

The absolute error is less sensitive to outliers than the quadratic loss, because the contribution of outliers to
the result is decreased due to the absolute value instead of the square. Another, more robust option is to use
the biweight cost function [10]:

γ(X ,θ) =
{

(X −θ)2 if |X −θ| < K
K 2 else

(4.18)

Here the cost function is bounded by K 2. K can be varied to make the method more robust to outliers. De-
creasing K will reduce the contribution of outliers to the result, however it might also affect the cost of data
points that are not outliers.
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4.3.2. Estimating θ
In case θ represents the mean of the time series, the most straight forward way to estimate it would be to look
at the sample mean (3.8) of the time series:

θ̂s:t = 1

t − s +1

t∑
i=s

Xi (4.19)

Or we could use the more robust median (4.20):

θ̂s:t = median(Xs:t ) (4.20)

If we use (4.19) or (4.20), we assume the level of the time series is constant from time s to t . If this is not
the case, θ is a function of time and so should our estimate be. We will assume our time series follows a linear
trend, that is the level is proportional to the time t . Instead of looking at the distance between each data point
and the line y = θ, we propose to look at the distance to a fitted line that is not necessarily horizontal. To this
end we will use linear regression, as described in section 3.4. These regression lines can be seen as the trend
of the time series and can be used as estimation for a changing θ:

θ̂i = lG (i )

θ̂i = lSt (i )

θ̂i = lR (i )

(4.21)

(4.22)

(4.23)

4.4. Multiple change points
The methods mentioned above are designed to detect a single change point and can be used online, meaning
they can be used on real-time data. Given a data set, we also want an algorithm that is able to detect multi-
ple change points. For this we can use the Optimal Partitioning algorithm described in section 4.4.1, or the
PELT algorithm, which is an improved version of the OP algorithm, as described in section 4.4.2. Another op-
tion is the Binary Segmentation algorithm described in section 4.4.3 or its improved version, the Wild Binary
Segmentation algorithm described in section 4.4.4.

Assume we have a data set {X t }t≤N for N ∈N+ finite. We assume there are m change points in our data.
Our goal is to split our data into m+1 segments, where the change point will be the last point in each segment.
By setting τ0 = 0 and τm+1 = N we write τ = (τ0, ...τm+1) for the set of change points. We will write Tt =
{τ1:k : 0 < τ1 < ... < τm < t } the set of possible change points for X1:t

To find a proper segmentation of our data, we will use an appropriate cost function γ(X ,θ) for a single
observation X , and a location parameter θ pertaining to the segment X is in. The end goal is to find a seg-
mentation that minimizes the overall cost for this segmentation. Using the definition for the cost of one
segment (4.12), we define the overall cost of a segmentation as:

Q(X1:N ,τ0:m+1) =
m+1∑
i=1

C (Xτi−1+1:τi ) (4.24)

To prevent the algorithm of finding too many change points, a penalty β f (m) is introduced, depending
on the amount of change points. We can define the penalized cost for a segmentation as:

Q(X1:N ,τ0:m+1) =
m∑

i=1
[C (Xτi−1+1:τi )]+β f (m) (4.25)

Often the penalty is linear in the amount of change point, adding a constant for every change point the
algorithm finds, but there are more possibilities. Examples are using the Aikake information criterion (AIC)
or Bayesian information criterion (BIC) [13]. We will be using a linear penalty, which results in:

Q(X1:N ,τ0:m+1) =
m∑

i=1
[C (Xτi−1+1:τi )+β] (4.26)
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4.4.1. Optimal Partitioning
An algorithm to find the optimal segmentation, or optimal partitioning, that minimizes (4.26) is the OP-
algorithm suggested by Jackson et al [17]. It makes use of dynamic programming to find the optimal segmen-
tation. It is a recursive procedure that first determines the optimal partition of X1:t to calculate the optimal
partition of X1:t+1. If we define F (t ) the value of (4.26) when we found the optimal segmentation of X1:t , we
can see that for s < t ≤ N holds:

F (t ) = min
τ∈Tt

{
m+1∑
i=1

[C (Xτi−1+1:τi )+β]

}

= min
s

{
min
τ∈Ts

m+1∑
i=1

[C (Xτi−1+1:τi )+β]+C (X(s+1):N )+β
}

= min
s

{
F (s)+C (X(s+1):N )+β}

(4.27)

(4.28)

(4.29)

Using this recursion we can formulate the OP-algorithm as follows:

Result: Vector cp(N ) containing all ordered change points
Initialize:
F (0) =−β;
cp(0) = NU LL;
for τ∗ = 1, ..., N do

F (τ∗) = min0≤τ<τ∗ [F (τ)+C (X(τ+1):τ∗ )+β] ;
τ′ = arg

{
min0≤τ<τ∗ [F (τ)+C (X(τ+1):τ∗ )+β]

}
;

cp(τ∗) = (cp(τ′),τ′)
end

Algorithm 1: OP-algorithm.

This algorithm computes the change points in O (N 2).

4.4.2. PELT-algorithm
The OP-algorithm is able to find the desired change points in O (N 2); the PELT algorithm developed by Fearn-
head et al [14] uses the same principle but has O (N ). It is able to do so by removing the values of τ that will
never be minima from the minimization of F (τ∗). In order to do this, the following is assumed:

Assumption 1. There exists a constant K such that for all s < t < N holds:

C (X(s+1):t )+C (X(t+1):N )+K ≤C (X(s+1):N ) (4.30)

In other words, by adding a change point, the value of the cost function will reduce. As a result, if:

F (s)+C (X(s+1):t )+K ≥ F (t ) (4.31)

we know that for some N > t , t will never be the optimal change point prior to N . Using this principle, the
PELT algorithm 2 has been proposed.

Result: Vector cp(N ) containing all ordered change points
Initialize:
F (0) =−β;
cp(0) = NU LL ;
R1 = {0};
for τ∗ = 1, ...N do

F (τ∗) = minτ∈Rτ∗ [F (τ)+C (X(τ+1):τ∗ )+β] ;

τl = arg
{
minτ∈Rτ∗ [F (τ)+C (X(τ+1):τ∗ )+β]

}
;

cp(τ∗) = [cp(τl ),τl ];
R∗
τ +1 = {

τ∗∩{
τ ∈ Rτ∗ : F (τ)+C (X(τ+1):τ∗ )+K < F (τ∗)

}}
;

end
Algorithm 2: PELT-algorithm.
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4.4.3. Binary Segmentation (BS)
Previous methods mentioned for multiple change point detection both optimize using some dynamic pro-
gramming to determine multiple change points at the same time. The Binary Segmentation approach [18] is
different, in the sense that in every step, a new change point is found and added to the set of change points.
After this, the interval is split in half and in both new intervals the search for a new change point is continued.
This will go on until some stopping condition is met.

In the original algorithm, designed to detect a change in mean, where the data was i.i.d. Gaussian, a
CUSUM statistic of the following form is maximized:

X̂ τ
s,t =

√
t −τ

Ni (τ− s +1)

τ∑
j=s

X j −
√

τ− s +1

Ni (t −τ)

t∑
j=τ+1

X j (4.32)

Here s and t are the left and right end of the time interval, Ni is the length of this interval (equal to t − s +1)
and τ is the parameter over which we are maximizing. The value of τ pertaining to the maximum value of
X̂ τ

s,t will be the change point found. Note that maximizing |X̂ τ
s,t | is equivalent to the least square estimate of a

piecewise-constant function on Xs , ..., X t that has exactly one change point [16].
The algorithm will terminate if |X̂ τ

s,t | ≤ ζN , for some threshold ζN , depending on the length N of the time
series.

Result: Vector cp containing all ordered change points
Initialize:
s = 0;
t = N ;
cp = [ ];
BinSeg(s, t ,ζN):
if t − s < 1 then

stop
else

τ′ := argmaxτ∈{s,...,t−1} |X̂ τ
s,t | ;

if |X̂ τ
s,t | > ζN then

Add τ to cp;
BinSeg(s,τ′,ζN ) ;
BinSeg(τ′+1, t ,ζN ) ;

else
stop

end
end
Order cp

Algorithm 3: BS-algorithm.

This algorithm typically takes O (N l og (N )), which is better than the OP-method but computationally
more expensive than the PELT-method. Note that while searching for change points, other statistics than
CUSUM could be used; minimizing a cost function would also be an option. In fact, any change point de-
tection method designed to detect one change can be used. The difference with the penalized cost approach
from previous methods is that here the penalty of detecting too many change points is in the threshold ζN

and not in a penalty per change point.

4.4.4. Wild Binary Segmentation (WBS)
One of the downsides of the BS-method is that it searches for only one change point each time. Since the
maximizing CUSUM statistic (4.32) is actually fitting a piecewise constant function with one change point,
the presence of multiple change points can cause the algorithm to find wrong or no change point, especially
when the actual change points are close to each other. The same problem occurs when using a different cost
funtion to find the single change points. As a result, the change points have to be a minimum distance of

order N
3
4 , quite big. To overcome this problem, the Wild Binary Segmentation method (WBS) was proposed

by Fryzlewicz [19].
Instead of looking for one change point in (X1, ..., XN ), the WBS-algorithm first randomly draws a number

of subsamples, Xs , ..., X t where 1 ≤ s < t ≤ N integers. Now we search for a change point candidates by max-
imizing the CUSUM statistic (4.32) (or minimizing some other cost function) within each subsample. The
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largest value will be tested against some threshold. If this results in detecting a change point, this procedure
will be repeated on the left and right side of the change point found.

If sufficiently many subsamples are created, from different sizes, the probability of having only one change
point in one of the subsamples will increase and therefore this algorithm will be more accurate than the BS-
algorithm.

Let GM
N be a set of M random intervals [sm , tm],m = 1, ..., M . Here the start- and end-points have been

drawn from {1, ..., N } uniformly. Furthermore let ζN be a threshold parameter, then we can formulate the
WBS-algorithm:

Result: Vector cp containing all ordered change points
Initialize:
s = 0;
t = N ;
cp = [ ];
WildBinSeg(s, t ,ζN):
if t − s < 1 then

stop
else

Ms,t := set of those indices m for which [sm , tm] ∈ F M
N such that [sm , tm] ⊆ [s, t ] ;

(m0,τ′) := argmaxm∈Ms,t ,τ∈{sm ,...,tm−1} |X̂ τ
sm ,tm

| ;

if |X̂ τ′
s0,t0

| > ζN then
Add τ to cp ;
WildBinSeg(s,τ′,ζN ) ;
WildBinSeg(τ′+1, t ,ζN ) ;

else
stop

end
end
Order cp

Algorithm 4: WBS-algorithm.

4.5. Change points in random walks
We want to apply the change point detection methods discussed in section 4.3 to a random walk with drift.
Recall that a random walk with constant drift δ and constant variance σ can be described as:

X t = X t−1 +Zt +δ
Zt ∼ N (0,σ)

(4.33)

(4.34)

Two types of sudden changes will be considered; a change in level, meaning that we observe a "jump" in
the time series and a change in drift. We will first focus on finding a single change point and later apply this
to find multiple change points. We can describe a change in drift as a change in δ, from δ1 to δ2 after change
point τc . A sudden change in level with change point τc of size ∆ can be described as:

Xτc+1 = Xτc +Zτc+1 +δ+∆ (4.35)

Here ∆ is large compared to the standard deviation σ of Zτc+1. After the change in level the random walk
continuous its normal behaviour (4.34).

To detect a change point we will make use of the cost functions as described in section 4.3.1. Recall that
finding a single change point in time series X1:N can be done by minimizing the total cost of the two segments
over the position τ of the change point separating these segments:

τc = argmin
0≤τ<N

[
τ∑

t=1
C (X1:τ, θ̂i )+

N∑
t=τ+1

C (Xτ+1:N , θ̂i )

]

If we want to find multiple change points, we can use this method of finding one change point in the WBS
algorithm 4, or apply the PELT algorithm 2 using the described cost function. When using the WBS method,
a threshold ζN and a way of measuring is needed to judge whether the point detected by minimizing (4.15) is
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indeed a change point or if it is not significant enough. Depending on the estimator used for θi and the type
of change the threshold and method may differ.

We will discuss several cases and specify what estimate for θ can be used to find a single change point.
Here we consider a change is in the level, in drift and a change in both of them. Also the cases δ = 0 and
δ 6= 0 will be considered. For each type of change point we will also discuss the choice and usage of ζN . Plots
showing examples of these change points can be found in figure 4.2.

• Change in level where δ= 0
Here δ= 0 constant and we only observe a change in level at some change point τc . To find the position
of this change point, we minimize (4.15) applying one of the cost functions in section 4.3, using an
estimator for the mean of the times series. For this the mean (3.8) or median (3.11) can be used, because
there is no drift and therefore the level will be constant within each segment.

To check the significance of the change point in case we want to detect multiple change points, we can
look at the absolute difference in mean resp. median of the two segments and only accept the change
point in case this difference is bigger than some ζ∆N . So, here ζ∆N describes what the minimum value of
∆ should be.

• Change in drift
Note that:

∇X t = Zt +δ (4.36)

Therefore a change in δ is the same as a change in level for ∇X t . Since no trend is involved in (4.36), we
can again use the mean or median as estimate for θ. Using X t is also possible to find a change in drift, if
we use a linear regression line as estimator; a change in drift should result in a change in the regression
line as well.

To check the significance in the case of multiple change points, if we use ∇X t we can again look at the
difference of the mean resp. median of ∇X t of the two segments and set an appropriate value for ζδN .

Here ζδN describes what the minimal absolute difference of drifts δ1 and δ2 should be. If we use the
linear regression line as estimator, we can look at the absolute difference of β (3.30) of the regression
line before and after the change point and again use ζδN and accept the change point if the difference in

β is larger than ζδN .

• Change in level where δ 6= 0
Here δ 6= 0 constant. Now simply using the mean or median as estimator will not suffice. If for example
δ> 0 and the drop ∆< 0, we could get a situation as shown in figure 4.1.
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Figure 4.1: Random walk of length N = 400 with δ= 0.4 constant and
a single change in level at τc = 199.

Here the means of the two segments are equal; therefore no change point will be detected in the middle,
even though there is a clear change there. This problem can be solved by using an estimate for θi that
is proportional to the time, to estimate the drift of the time series as a whole. For this we can use linear
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regression lines (3.32), (3.38) or (3.41). Using Gaussian regression is computationally the least expensive
and therefore easier to implement.

If we are looking for multiple change points, we will look at the absolute difference between the last
point of the regression line θτ and the first point of the regression line in the second segment θτ+1. If
this is bigger than a threshold ζ∆N the change point should be accepted. Again here ζ∆N represents the
minimum value of ∆.

• Change in level and drift
This kind of change points is most interesting for our application, because a change in level of the
spider often also includes a change in drift. For such a change, we can still use the linear regression
lines as an estimate for θi .

Here two types of changes can be observed, therefore two thresholds are set if we are looking for mul-
tiple change points. The first ζ∆N to indicate the minimal value of ∆, as described in the case we have a

change in level with δ 6= 0. The second ζδN accounts for the change in δ. This change can be calculated
by taking the difference of β (3.30) of the two regression lines.

4.5.1. Dealing with outliers
We will now look into a random walk with drift, where outliers are present. These outliers are false data points
that are not generated according to the random walk. We want to minimize the influence of these outliers on
the result of our change point method. One way to do this is by using a cost function that is robust for outliers,
meaning it reduces the effect of the presence of outliers. Using the square cost function (4.16) is not a very
robust choice. More robust options are the absolute cost (4.17) and the biweight cost function (4.18).

Another way to deal with outliers is to apply a filter before using a change point detection method, such
as the median or Hampel filter (3.30).

4.6. Simulation study change point detection
We want to apply the change point detection methods described in section 4.5 to find changes stable seg-
ments (without change points) in a random walk where changes occur. To this end we will simulate data of
a random walk with a single change point and test the change point detection methods. The drift δ and the
standard deviation σ stay constant within the segment. For now we will also assume σ is the same in both
segments, but a shift in level or drift may occur.

On top of this we assume there are outliers present, where the outliers follow the outlier distribution f 2

(5.17). At each time t the probability of having an outlier Ot is equal to po , meaning that after n data points
the number of outliers is binomially distributed. The combined model can be described as a hidden Markov
model, which is explained in chapter 5 with hidden state Yt and observable X t . Here the hidden sequence

Yt =
(

Tt

At

)
consists of Tt , where if Tt = 0 we observe the random walk and if Tt = 1 we have an outlier. Here At

is the value of the random walk, meaning X t = At if Tt = 0.
Now:

X t =
{

At if Tt = 0
Ot if Tt = 1

(4.37)

Here:
At = At−1 +Zt +δ

Tt =
{

0 with probability po

1 with probability 1−po

Ot ∼ f 2(At )

A simulation study as been performed, by generation data according to this model and applying several
filters, cost functions and estimators for θi to detect a single change point. These are described in section 4.3.
In the simulation, a random walk has been simulated using a standard deviation of σ= 1 and a starting value
X0 = 100. The test has been performed by simulating a random walk of length N = 400 with one change point
at time τc = 299. The outlier probability has been set po = 0.3. The data will be pre-processed in the following
ways:

• No filter
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• Median filter using k = 5

• Hampel filter using k = 5 and t = 3

Besides, also the difference ∇X t after applying these filters has been tested. The following cost functions have
been used:

• Squared cost function

• Absolute cost function

• Biweight cost function, taking K = 3

The following estimators for θi were applied:

• Mean

• Median

• Linear Gaussian regression

Note that only a Gaussian regression line has been used instead of other, more robust regression lines 3.38
and 3.41. The reason for this is that calculating these two regression lines is computationally too expensive to
use for a test on this scale.
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(c) Change in level, where δ> 0 constant.
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(d) Change in both level and drift.

Figure 4.2: Examples of random walks with change point τc = 299 used in to test the change point detection method.
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The following change points have been considered:

• Change in level where δ= 0 constant, ∆= 30

• Change in drift where δ1 = 0.1 up to τc and δ2 =−0.4 after

• Change in level where δ= 0.5 constant, ∆= 30

• Change both level and drift, where δ1 = 0.1 up to τc , δ2 =−0.4 after and ∆= 30

An example of a simulated data set for each of these changes in mean and level has been plotted in figure
4.2.

Each simulation has been performed 500 times. Afterwards the fraction of change points that exactly
matched τc has been calculated. Also the fraction of change points τ found that were at most two off the
actual value, so |τ−τc | ≤ 2 has been calculated.

After this, the best resulting method is used to detect multiple change points {τ1 = 99,τ2 = 299,τ3 = 399}
in a data set of length N = 500. The data is simulated in the same way as before, however this time taking
three jumps in level where {∆1 = 30,∆2 = 40,∆3 =−50} and the drifts of the four segments that make up the
time series are {δ1 = 0.1,δ2 = 0.5,δ3 =−0.1,δ4 =−0.6}. As threshold constants, ζ∆N = 25 and ζδN = 0.3 have been
used. An example of the simulated data is plotted in figure 4.3.
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Figure 4.3: Example plot of data simulated for multiple change point test.

4.6.1. Results single change point
Not all combinations of cost function, estimator and filter lead to reasonable results. A description of what
methods could lead to finding the correct change point can be found in section 4.5. We will discuss the most
interesting results. The full tables with the precision for all combinations of cost function, estimator and filter
can be found in Appendix A.1 for using X t and in Appendix A.2 for using ∇X t .

The result of applying methods using a mean or median cost function to find a change point in level where
δ = 0 constant are shown in table 4.1. We see that best results are obtained by first applying the Hampel fil-
ter and using the absolute cost function. Taking the median as estimator gives better results than taking the
mean. Also worth noticing is that using the Hampel filter the results are much better for the exact precision
than using the median filter, but if we look at the precision of |τ−τc | ≤ 2, there is not much of a difference.
Note that without filtering, using the median as estimator combined with the absolute or biweight cost func-
tion gives results almost as good, or in the case of the biweight cost function even better, as applying them
with a filter. The prefered method to use here is the Hampel filter combined with an absolute cost function
and the median estimator.
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Cost function Estimator Type of filter τ= τc |τ−τc | ≤ 2
Square Mean No filter 0.044 0.104
Square Median No filter 0.058 0.146

Absolute Mean No filter 0.184 0.324
Absolute Median No filter 0.502 0.758
Biweight Mean No filter 0.072 0.132
Biweight Median No filter 0.532 0.75
Square Mean Median filter 0.22 0.746
Square Median Median filter 0.22 0.736

Absolute Mean Median filter 0.216 0.746
Absolute Median Median filter 0.22 0.754
Biweight Mean Median filter 0.192 0.668
Biweight Median Median filter 0.184 0.586
Square Mean Hampel filter 0.43 0.704
Square Median Hampel filter 0.426 0.702

Absolute Mean Hampel filter 0.51 0.788
Absolute Median Hampel filter 0.534 0.816
Biweight Mean Hampel filter 0.38 0.64
Biweight Median Hampel filter 0.462 0.714

Table 4.1: Precision of finding a change in level, where δ= 0 constant, using Xt .

The results of detecting a single change in drift using ∇X t are not great; the methods that apply a Hampel
filter perform the best and are shown in table 4.2. The reason these methods don’t lead a very satisfying result
could be that the change in drift is very small compared to the rest of the data and the outliers; δ2−δ1 =−0.4,
so the change in mean of ∇X t that we are trying to detect is small compared to the outliers, which are in of
the order of X0 in size (remember X0 = 100). Therefore detecting such a small change in drift can be difficult.

Cost function Estimator Type of filter τ= τc+ |τ−τc | ≤ 2 |τ−τc | ≤ 10
Square Mean Median filter 0.038 0.13 0.282
Square Median Median filter 0.026 0.12 0.382

Absolute Mean Median filter 0 0.014 0.054
Absolute Median Median filter 0.016 0.078 0.286
Biweight Mean Median filter 0.046 0.216 0.562
Biweight Median Median filter 0.028 0.136 0.416
Square Mean Hampel filter 0.004 0.018 0.070
Square Median Hampel filter 0.03 0.088 0.266

Absolute Mean Hampel filter 0.016 0.06 0.190
Absolute Median Hampel filter 0.024 0.102 0.328
Biweight Mean Hampel filter 0.042 0.168 0.444
Biweight Median Hampel filter 0.046 0.152 0.430

Table 4.2: Precision of finding a change in drift, using ∇Xt .

To get some more insight, also the percentage of change points found τ for which |τ− τc | ≤ 10 is also
shown in the table. A difference of 10 is too big to be used in applications, but it shows that the change points
found are at least around τc to a certain extend. Another option is to use X t , combined with estimator lG .
Some of these results are shown in table 4.3.
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Cost function Estimator Type of filter τ= τc |τ−τc | ≤ 2 |τ−τc | ≤ 10
Square lG Median filter 0.006 0.068 0.346

Absolute lG Median filter 0.014 0.082 0.376
Biweight lG Median filter 0.014 0.07 0.362
Square lG Hampel filter 0.014 0.064 0.288

Absolute lG Hampel filter 0.01 0.06 0.358
Biweight lG Hampel filter 0.012 0.07 0.364

Table 4.3: Precision of finding a change in drift, using Xt .

We see that also these results are not very promising; the best precision for |τ−τc | ≤ 10 is 0.376 for using
the absolute cost function with a median filter. Note that even if we don’t use filtering, the results are similar.
This could indicate that the reason for the bad results is not in the presence of outliers, but is that the random
walk is "too random". As seen in section 3.1, the variance of a random walk increases in time. Therefore
the difference of the random walk to the trend line can get very big in time, causing the algorithm the fail in
detecting this trend change.

The result of using lG to detect a change in level where δ 6= 0 constant is shown in table 4.4. Using the
absolute cost function gives the highest precision for each filter. Again the best results are obtained by using
the Hampel filter, although the results is almost the same as applying the median filter. For this type of change
point a Hampel filter combined with an absolute cost function and lG as estimator is the preferred choice.
Also note that the precision is significantly lower than in the case where δ= 0. Using other estimators results
in even lower precision.

Cost function Estimator Type of filter τ= τc |τ−τc | ≤ 2
Square lG No filter 0.002 0.014

Absolute lG No filter 0.046 0.076
Biweight lG No filter 0.02 0.044
Square lG Median filter 0.258 0.424

Absolute lG Median filter 0.36 0.604
Biweight lG Median filter 0.236 0.456
Square lG Hampel filter 0.272 0.442

Absolute lG Hampel filter 0.364 0.604
Biweight lG Hampel filter 0.26 0.47

Table 4.4: Precision of finding a change in level, where δ 6= 0 constant, using Xt .

The last type of change point, a change in both level and drift, is most interesting for our application in
the alarm system. The result of using estimator lG is shown in table 4.5. As before, the absolute cost function
shows better results than the other cost functions. The result of using other estimates than lG is bad. The best
results are obtained by using a Hampel filter, absolute cost function and estimator lG .

Cost function Estimator Type of filter τ= τc |τ−τc | ≤ 2
Square lG No filter 0.022 0.046

Absolute lG No filter 0.084 0.146
Biweight lG No filter 0.028 0.066
Square lG Median filter 0.21 0.742

Absolute lG Median filter 0.212 0.764
Biweight lG Median filter 0.2 0.678
Square lG Hampel filter 0.464 0.71

Absolute lG Hampel filter 0.492 0.76
Biweight lG Hampel filter 0.316 0.578

Table 4.5: Precision of finding a change in both level and drift, using Xt .

4.6.2. Results multiple change points
We have applied the best performing method for a single change point in both level and drift, which is using
a Hampel filter with absolute cost function and estimator lG , in the WBS algorithm 4 to find multiple change
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points in a random walk with drift. There are three change points that the method should have detected.
The average number of change points found is 10.6, a lot more than the desired 3. This also includes change
points that were very close together and the change points that we wanted to detect. To see how many change
points the method found that were truly different, the change points were put in bins of size 5. If multiple
change points were in the same bin, we will count them as one. By taking this number of change points, on
average 7.5 change points were found, of which 2.7 were true change points. Using these numbers, the values
of the precision and recall have been calculated for the total and for each change point separately in table 4.6.

τ1 τ2 τ3 total
Precision 0.105 0.120 0.131 0.355

Recall 0.784 0.896 0.978 0.886

Table 4.6: Precision and recall of finding multiple changes in a random walk with outliers.

Here the precision per change point is taken by dividing the number of times change point τ has been
detected over the total number of change point that was found. By taking the sum of these three, the precision
of the whole change point method can be calculated. Note that the performance of this change point method
is not very high, especially the precision is quite low. To see if outliers play a big role, the same test has been
performed, without outliers and without using a Hampel filter. The precision and recall can be found in table
4.7.

τ1 τ2 τ3 total
Precision 0.320 0.340 0.338 0.999

Recall 0.938 0.998 0.992 0.976

Table 4.7: Precision and recall of finding multiple changes in a random walk without outliers.

We see that without outliers, all of the change points are usually detected, although the second and the
third change point are detected a little more often than the first one. This is probably because ∆1 was smaller
than ∆2 and ∆3. The average number of change points found, when using data without outliers is approxi-
mately 2.9. This indicates that the poor precision in table 4.6 is due to the outliers. Apparently, even though
a Hampel filter and an absolute cost function have been used, the outliers still affected the outcome of the
change point detection method.

Another reason for the low precision is that the detection of a single change point also shows limitations;
in the best case the single change point detection method was able to detect the right change point in 81.6%
of the time.

Something else that plays a role is the that the method of detecting a single change point often fails if
multiple changes are in the time series. Therefore if the random interval selected by the WBS algorithm
contains two or more change points, it will most likely select a false change point. Since there are in fact
changes in the interval, using ζN can result in accepting the change point, which means we detect more
change points than we should.

4.6.3. Conclusion change point detection tests
The precision of the best performing change point detection methods for each type of change point is shown
if table 4.8. If we would have to choose one method to detect any of these four types of change points it would
be applying a Hampel filter with an absolute cost function and estimator lG .

Change point type Cost function Estimator Type of filter Data τ= τc |τ−τc | ≤ 2
Level, δ= 0 Absolute Median Hampel filter X t 0.534 0.816

Drift Biweight Mean Median filter ∇X t 0.046 0.216
Level, δ 6= 0 Absolute lG Hampel filter X t 0.364 0.604

Level and drift Absolute lG Hampel filter X t 0.492 0.76

Table 4.8: Overview of best performing single change point detection methods for each type of change point and their precision.

Using this method to detect a single change point in WBS algorithm 4, we get a precision of 0.36 and a
recall of 0.886. This means that although the algorithm detects too many change points, usually the actual
change points are detected.
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Model for Spider Accepted data

In machine learning and statistics different kinds of models are used to describe a system and to make in-
ference. A commonly used model is the hidden Markov model. We will first introduce this model and name
some of its properties. In section 5.1 we will further elaborate on how the hidden Markov model is used to
model the spider accepted data. Some analytic results about how we can derive information when using this
model are stated in section 5.2. After this, we will describe how this model can be implemented in section
5.3. In section 5.4 we will describe how the initial values are picked and how we can use the change point
detection techniques from chapter 4 in this process.

We will first introduce the notion of a discrete state Markov chain or discrete state Markov process.

Definition 1. Discrete state Markov chain or discrete state Markov process
Let (Ω,F ,P ) be a probability space with filtration (Ft , t ∈N) and state space (Z ,Z ) a measurable space. Then
the process Yt that takes values in Z is a discrete time Markov Chain if the Markov Property holds:

P(Yt |Yt−1,Yt−2, ...,Y0) =P(Yt |Yt−1) (5.1)

In case the state space is not finite, we have a continuous state Markov process; here the Markov property
holds for the probability distributions instead of the probability itself:

f (yt |yt−1, yt−2, ..., y0) = f (yt |yt−1) (5.2)

Let Yt be a Markov chain. In case the corresponding state space Z is discrete, we can define the transition
probability as the probability of the Markov chain moving to a next state, given the previous state.

Definition 2. Transition probability
If Yt a discrete time Markov Chain, with finite state space Z , the transition probability from state yi ∈ Z to
s j ∈ Z is:

P(Yt = s j |Yt−1 = yi ) = pi j (5.3)

Since we have a finite number of possible states for the Markov Chain Yt , we can put these transition
probabilities in a matrix, the transition probability matrix:

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

. . .
. . .

...
pn1 . . . . . . pnn

 (5.4)

Note that the rows of P sum up to 1. If the Markov chain has continuous states, the transition probability is
a probability distribution f (yt |yt−1).

Markov processes are useful tools for modelling. For a discrete state space, one of the advantages is that
if the transition probabilities are known and we are given data of the current state of the Markov process, we
can easily calculate what the expected value in the future will be:

31
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E(Yt+1|Yt = yi ) =∑
j

pi j y j (5.5)

An extension to this Markov process is the hidden Markov process. Here not the observed valuable itself
is a Markov chain, but a latent or hidden variable is. This hidden state Yt determines the distribution of the
observed series X t . Here the density of X t does not depend on Xs , s < t and can be observed, unlike the
hidden Markov process Yt . A graphical interpretation of the model is shown in figure 5.1

Figure 5.1: Hidden Markov model with hidden states Yt and our time series Xt .

Here Yt is a Markov process, and the probability density of X t given hidden state Yt is known.

Definition 3. Emission probability
The emission probability density of a hidden Markov model with hidden state Yt and observed variable X t is:

f (xt |yt ) (5.6)

5.1. Model description
We will assume the spider accepted data is generated according to a hidden Markov model. Here the hidden
Markov process contains information about the state the spider is in. The state of the spider describes what
the situation of the spider is. We will consider five possible spider states:

1. The spider shows normal behavior

2. The spider shows abnormal behavior for a day

3. The spider is zero for a day

4. The spider is broken

5. The spider is zero for several days

We will denote the spider state at time t as Tt . The probability of the state transitioning is captured in
a transition matrix P of the hidden Markov model. These transition probabilities are constant in time and
may be learned from past observations. Note that we do not observe the state, but we observe the time
series resulting from these states. Depending on the state the process is in, the time series will show different
behaviour. The model for X t given Tt is:



5.1. Model description 33

1. X t is generated according to a random walk

2. X t is an outlier

3. X t = 0

4. X t is an outlier or zero

5. X t = 0

Note that the model of state 3 and state 5 is the same. Here the difference is that the spider will only be
in state 3 for a single day; this is not problematic, whereas the spider being zero for multiple day (state 5) is
a problem. Because we want to distinguish these two cases, they are modelled as separate spider states. We
first elaborate on the hidden state Yt , then we will discuss the transition probability of Yt and after this the
emission probability distributions f (xt |yt ) will be described.

5.1.1. Hidden sequence Yt
In our model, the hidden process Yt consists of two part; the spider state denoted as Tt ∈ {1,2,3,4,5} indi-
cating in which of the five spider states the spider is in at time t and At ∈ R, the typical normal amount of
vacancies of the spider at time t . Here Tt is a discrete Markov chain with transition probability matrix P . The
normal amount of vacancies At is assumed to be a random walk:

At = At−1 +Zt−1

Zt−1 ∼ N (0,σ2)

(5.7)

(5.8)

Here Zt−1 is a normally distributed random variable with mean 0 and fixed standard deviation σ. Note that
At is continuous and:

f (at |at−1, at−2, ..., ) = f (at |at−1) (5.9)

This means At is a continuous Markov chain. By writing:

Yt =
(

Tt

At

)
(5.10)

therefore Yt is indeed a continuous Markov process. In figure 5.2 the hidden sequence with components Tt

is shown, with its dependencies.

Figure 5.2: Graphical representation of hidden state Yt .
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5.1.2. Transition probability
Because Tt is a discrete Markov process, its transition probabilities P can be written in matrix form (5.4). We
will elaborate on what the exact value of the transition probabilities in this matrix should be in section 5.3.2.

Since At is continuous the transition probabilities for At cannot be written in matrix form, but as a con-
tinuous probability distribution. From (5.7) we see that:

At |At−1 ∼ N (At−1,σ2) (5.11)

So At is normally distributed with mean At−1 and standard deviation σ.

5.1.3. Emission probability
The form of the emission probabilities is assumed to depend on the spider state Tt , as described in section
5.1. Here we will elaborate on the precise distributions.

• Tt = 1

We will assume that the spider, if it is in a normal situation, can be modelled as a random walk. To this
end we modelled the normal value of the spider At as a random walk as well. In case the spider shows
normal behaviour, we therefore expect that X t ≈ At .

We assume:

X t = At +Zt (5.12)

Here Zt ∼ N (0,σ2). So as emission distribution we get:

f 1
t (xt , at ,σ) = 1p

2πσ
e−

(xt −at )2

2σ2 (5.13)

• Tt = 2

We are dealing with an outlier. Observing an outlier means the spidering is not close to the normal
value At ; the amount of vacancies found is significantly higher or lower than what we would expect.
It often happens that not zero, but a lot less vacancies are found by the spider than what we would
consider normal. How much lower exactly is hard to say; when the spider coverage is incomplete it
could be anything between zero and the normal value. Therefore we will use a uniform distribution
to model the value of an outlier. Outliers higher than At also occur, but are not expected to be much
higher than the normal value At . Because of this, we will set the uniform distribution up to 1.5At . Here
we will exclude zero, because it will be treated separately. The uniform probability density is:

f U
t (xt |at ) = 1

1.5at
for xt ∈ (0,1.5at ] (5.14)

Although we don’t expect outliers to take extremely high values, there is a possibility they will get larger
than 1.5At . Therefore we will use the heavy-tailed pareto distribution to model the probability of high
outliers. Because we want the total distribution to be continuous, the uniform and pareto distribution
will be patched together at 1.5At . The used pareto distribution is:

f p
t (xt |at ) = 2

(1.5at )2

x3
t

for xt ∈ [1.5at ,∞) (5.15)

To construct a continuous probability distribution on (0,∞), both parts of the distribution have to
be multiplied by a scaling factor. In order for the distribution to be continuous, we need f U

t (xt =
1.5at |at ) = f p

t (xt = 1.5at |at ). This can be done by multiplying f p
t (xt |at ) by:

f U
t (xt = 1.5at |at )

f p
t (xt = 1.5at |at )

(5.16)

The normalization factor for the combined probability density can easily be found:
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∫ ∞

0
f U

t (xt |at )+ f U
t (xt = 1.5at |at )

f p
t (xt = 1.5at |at )

f p
t (xt |at )d xt =

∫ 1.5at

0
f U

t (xt , at )d xt

+
∫ ∞

1.5at

f U
t (xt = 1.5at |at )

f p
t (xt = 1.5at |at )

f p
t (xt |at )d xt

=1+ f U
t (xt = 1.5at |at )

f p
t (xt = 1.5at |at )

As final outlier distribution we get:

f 2
t (xt |at ) =


(
1+ f U

t (xt=1.5at |at )

f
p

t (xt=1.5at |at )

)−1
1

1.5at
for x ∈ (0,1.5at ]

1

1+
(

f U
t (xt =1.5at |at )

f
p
t (xt =1.5at |at )

)−1
2(1.5at )2

x3
t

for xt ∈ (1.5at ,∞)
(5.17)

• Tt = 3
Here X t = 0, so the corresponding emission probability is:

f 3
t (xt ) = δ0(xt ) (5.18)

Here δ0 is the Dirac-delta function; in other words, X t = 0 with probability 1.

• Tt = 4
The spider is broken. The distribution of X t is the same as for Tt = 2, but here also a value of zero can
occur. We will use a mixture distribution, where X t = 0 with probability pz and X t has distribution
function f 2

t with probability 1−pz . We get:

f 4
t (xt |at ) = pzδ0(xt )+ (1−pz ) f 2

t (xt |at ) (5.19)

• Tt = 5
Here X t = 0, so the corresponding emission probability is:

f 5
t (xt ) = δ0(xt ) (5.20)

5.2. Analytic inference
We will derive some theoretical results, that can be used to calculate probability densities within the model
described above. First, we will find the likelihood function of the hidden states Y1:N , f (y1:N ), for some N >
1. Note that the elements of Yt only depend on other elements in Yt and on Yt−1. Let f (yt |yt−1) be the
distribution of Yt given Yt−1, then:

f (yt |y1, y2, ...yt−1) = f (yt |yt−1) (5.21)

This is the Markov property, so indeed Yt is a Markov process. Because of this Markov property, we get:

f (y1:N ) = f (y1)
N∏

i=2
f (yi |yi−1) (5.22)

Here f (y1) is the initial distribution of Y1.
Since Yt consists of different components, we can write f (yt |yt−1) as a product of transition probabilities

of these components:

f (yt |yt−1) = f (tt |yt−1) f (at |yt−1, tt )

= f (tt |tt−1) f (at |at−1, tt ) (5.23)

We see using (5.22) that holds:



36 5. Model for Spider Accepted data

f (y1:N ) = f (a1:N , t1:N ) = f (a1, t1)
N∏

i=2
f (tt |tt−1) f (at |at−1, tt−1) (5.24)

The hidden state Yt is called hidden because it cannot be measured directly. However, we indirectly have
access to information about Yt by the emission X t that we observe. So, we would like to be able to say some-
thing about the hidden state, given the time series X t . We would like to find the distribution of Yt given X1:t :

f (yt |x1:t )

Using the Bayes rule (3.25) we get that:

f (y1:t |x1:t ) = f (x1:t |y1:t ) f (y1:t )

f (x1:t )
(5.25)

Since the distribution of X t only depends on Yt , we get f (x1:t |y1:t ) = f (x1:t−1|y1:t−1) f (xt |yt ). Using this,
we see:

f (y1:t |x1:t ) = f (x1:t |y1:t ) f (y1:t )

f (x1:t )

= f (x1:t−1|y1:t−1) f (y1:t−1)

f (x1:t−1)

f (xt |yt ) f (yt |yt−1)

f (xt |x1:t−1)

= f (y1:t−1|x1:t−1)
f (xt |yt ) f (yt |yt−1)

f (xt |x1:t−1)
(5.26)

Here:

f (xt |x1:t−1) =
∫

f (xt |yt ) f (yt |x1:t−1)d yt

=
∫

f (xt |yt )

{∫
f (yt |yt−1) f (yt−1|x1:t−1)d yt−1

}
d yt (5.27)

To find f (yt |x1:t ) we have to integrate out y1:t−1 of f (y1:t |x1:t ). This results in:

∫
f (y1:t |x1:t )d y1:t−1 =

∫
f (y1:t−1|x1:t−1)

f (xt |yt ) f (yt |yt−1)

f (xt |x1:t−1)
d y1:t−1

f (yt |x1:t )
∫

f (y1:t−1|x1:t−1)d y1:t−1 = f (xt |yt )

∫
f (y1:t−1|x1:t−1) f (yt |yt−1)d y1:t−1

f (xt |x1:t−1)

f (yt |x1:t ) = f (xt |yt )

∫
f (yt |yt−1) f (yt−1|y1:t−1)d yt−1

∫
f (y1:t−1|x1:t−1)d y1:t−1∫

f (y1:t−1|x1:t−1)d y1:t−1 f (xt |x1:t−1)

f (yt |x1:t ) = f (xt |yt )

∫
f (xt |yt−1) f (yt−1|x1:t−1)d yt−1

f (xt |x1:t−1)

We get:

f (yt |x1:t ) = f (xt |yt ) f (yt |x1:t−1)

f (xt |x1:t−1)
(5.28)

Here:

f (yt |x1:t−1) =
∫

f (yt |yt−1) f (yt−1|x1:t−1)d yt−1 (5.29)

In theory (5.27), (5.28) and (5.29) could be calculated sequentially. In practice however, calculating 5.28
exactly is often not possible because of the embedded integrals. There are some cases where an exact solution
is available, such as the well know Kalman Filter [9]. For our model however, we will have to make use of a
numerical approximation to calculate f (yt |x1:t ).
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5.3. Model implementation
The difficulty of using the model proposed earlier is that we don’t know what value for σ to use. It can vary
for different websites and is important because it is a measure for how "unstable" a spider is. A large value of
σ means At is likely to vary much over time, so big differences in the amount of jobs accepted by the spider
are assumed to be likely. If σ is small, only a small difference from the last day are expected. The value of σ
will be estimated using data from the past. Because σ only appears in the distribution in case Tt = 1, we will
only use the data points where the Tt = 1.

For the implementation of the algorithm it is useful to extend the hidden state Yt , adding 3 components
in order to estimate σ for each spider. We will call this extended hidden state St as hidden state in the HMM,
instead of Yt .

St contains all information to determine the emission density f (xt |st ). We will assume that St ∈ {1,2,3,4,5}×
R×R×N×R and write:

St =


Tt

At

σt

nt

l A
t

=


Yt

σt

nt

l A
t

 (5.30)

Here:

• Tt is the state of the spider itself

• At is the value of the spider if it is showing normal behaviour

• σt is an estimation of the variance of the difference of At

• nt is the number of points in time where Tt = 1, up to time t

• l A
t is the value of As when the spider state was Ts = 1 for the last time, for s ≤ t

Note that σt ,nt and l A
t are only used to estimate σ; σ itself is still assumed to be constant. In fact σt ,nt

and l A
t are calculated alongside the hidden Markov model, but don’t have transition probabilities since they

will be calculated deterministically. The results from sections 5.1 and 5.2 still apply, where we take Yt = St

and yt = st .

5.3.1. Estimating σ
The standard deviation σ will be estimated using previous data and the previous states of the hidden se-
quence Yt . We denote σt the estimate of σ at time t . Recall that in case Tt = 1, so the spider shows normal
behaviour, we have:

At − At−1 ∼ N (0,σ2) (5.31)

We will estimate σ by using the sample variance (3.9), so it is calculated in a deterministic way. An advan-
tage of using the sample variance, opposed to another estimate as described on section 3.2.2, is that we can
update the estimate in a sequential way, as we will see. Since At − At−1 ∼ N (0,σ2), the sample variance is:

σ2
t =

1

n −1

n∑
i=1

(Ai − Ai−1)2 (5.32)

Rewriting this gives:

σ2
t =

n −2

n −1

1

n −2

n−1∑
i=1

(Ai − Ai−1)2 + 1

n −1
(Ai − Ai−1)2 (5.33)

So, we get:

σ2
t =

n −2

n −1
σ2

t−1 +
1

n −1
(Ai − Ai−1)2 (5.34)

So, only σt−1, At−1 and At are needed for the estimation of σt . Here we assumed the spider is showing
normal behaviour at every time t , in other words Tt = 1 ∀ t . This is not always the case; therefore we will only
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use the values of At that have Tt = 1. In order to do this we will keep track of the last value of A where T = 1,
l A

t . We will also save the amount of data point where T has been equal to 1 up to time t , nt . Note that by
doing this, the outliers are filtered out and therefore there is no need to use a robust estimator for σ.

Computing the values of l A
t and nt is straightforward:

l A
t =

{
At if Tt = 1

l A
t−1 else

(5.35)

nt =
{

nt−1 +1 if Tt = 1
nt−1 else

(5.36)

We will only update σt if Tt = 1. So we can update estimate σ2
t as follows:

σ2
t =

{
nt−2
nt−1σ

2
t−1 + 1

nt−1

(
At − l A

t−1

)2
if Tt = 1

σ2
t−1 else

(5.37)

Note that at the beginning, only a limited amount of data points nt has been available to calculate the
estimation of σ, σt . We will define a threshold thσ, indicating what the minimum value of nt should be
before we can use σt as estimation of σ. Also we define σst ar t , a starting value of sigma that can be used in
case nt < thσ. We get as estimate σ̂ for σ:

σ̂=
{
σst ar t if nt < thσ
σt if nt ≥ thσ

(5.38)

5.3.2. Estimating P
The spider state Tt ∈ {1,2,3,4,5} has a finite state space and is a Markov chain. Therefore we can specify the
transition probabilities in a transition probability matrix P as in (5.4). Using the past outcome of the particle
filter, we would like to estimate the values in this matrix. First, we will assume the matrix has the following
form:

P (p12, p13, p14, p35) =


1− (p12 +p13 +p14) p12 p13 p14 0

1− (p22 +2∗p13 +p14) p12 2∗p13 p14 0
1− (3∗p12 +p35) 3∗p12 0 0 p35

0 0 0 1 0
1− (p12 +p14 +0.75) p12 0 p14 0.75

 (5.39)

This might seem a bit arbitrary, but some thought has been put into it. The idea is that the probability of
transitioning to state 2 is a multiple of the probability of transitioning from state 1 to state 2, p12. The same
thing is assumed for states 3 and 4, but with p13 resp. p14. Note that p32 > p12. This is because if a spider
has dropped to zero, so is in state 3, if often happens that the day after the amount of vacancies accepted by
the spider is not back to normal yet, but somewhere halfway or its accepting more vacancies than expected.
This is not a problem if the spider turns back to normal two days after it was zero. To incorporate this in the
model, we assume that the transition probability from zero to an outlier, p32, is bigger than transitioning to 2
from another state. The reverse is also true; after an outlier there is a bigger probability of the spider dropping
to zero, although this effect is not as big. Therefore p23 is chosen to be larger than p13. We assume that once
the spider is broken, it will remain broken. For this reason state 4 is called an absorbing state. We get p44 = 1
and p4i = 0 if i 6= 4.

Also we will assume that if the spider is zero for one day, in state 3, it can only transition into state 2,5 or
1, meaning that if it is zero for another day we are in state 5 and it doesn’t get into the broken state 4 right
away, but an outlier state 2 is in between. State 5 can only be reached after being state 3 or 5, meaning the
spider had to be zero already. This makes sense, since state 5 represents being zero for multiple days. Unlike
state 4, we will assume state 5 is not absorbing and we allow the possibility that the spider is restored by itself
(for example in case a website has been down for several days but comes back online). The value p55 = 0.75
is fixed.

By using this form of P , we only have to estimate p12, p13, p14 and p35. We will do this by looking at the
outcome of the particle filter. It tells us what the most likely spider Tt was in the past times s ≤ t . If we have
enough information, we should therefore be able to estimate the transition probabilities we need by looking
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at how many times this transition took place in the past. In order to do this we need at least 100 data points
where it calculated the most likely state of T . We will denote the number of data points in state i as ni , and the
number of transitions from state i to state j as ni j . Note that ni −1(Tt=i ) is the number of transitions where
the transition started in state i . Now we can calculate ratio of transitioning from state i to state j by dividing
ni j by ni −1(Tt=i ). In the case of p14 we will take any transition that transitioned to 4, since this is quite
unlikely to happen. To ensure these transition probabilities are all nonzero, we will take the maximum of the
calculated transition probability and a minimum value of pi j = 0.01. problems also occur in case pi j = 1;
therefore we set p12, p13, p14 and p35 to be 0.8 at most. We get:

• p12 = min(max(0.01, n12
n1−1(Tt =1)

),0.8)

• p13 = min(max(0.01, n13
n1−1(Tt =1)

),0.8)

• p35 = min(max(0.01, n35
n3−1(Tt =3)

),0.8)

• p14 = min(max(0.01, n14+n24+n34+n44+n54
n1+n2+n3+n4+n5−1 ),0.8)

The estimate of the transition probability matrix at time t will be denoted as P t .

5.4. Initial values
The parameters in the model for the spider accepted data may be different depending on the website, as
are the transition probabilities of the hidden Markov model. These will be learned from the data as time
progresses. To do this however, initial values have to be chosen. Depending on the hidden spider state T1 we
will pick the other components of S1. We will assume we have the last 30 data points X−29:0 available to us.

First we will describe the choice of the transition probability matrix P1 containing the transition probabil-
ities of Tt and the procedure for setting A1,σ1n1, l A

1 given T1. After this we will elaborate on how to estimate
σst ar t from the historical data. In section 5.4.1 a simulation study has been performed on a random walk
with drift to find out how σ can best be estimated.

We will start by an initial transition probability matrix P1:

P1 =


0.89 0.05 0.05 0.01 0
0.84 0.05 0.1 0.01 0
0.55 0.15 0 0 0.3

0 0 0 1 0
0.19 0.05 0 0.01 0.75

 (5.40)

Note that P1 is equal to (5.39) using p12 = 0.05, p13 = 0.05 and p14 = 0.01.
Depending on the value of T1, we can set A1,σt ,n1 and l A

1 :

• If T1 = 1 we set:
A1 = X1

σ1 =;
n1 = 0
l A

1 = A1.
Note that in this case n1 = 0, because we use the difference of A to estimate σ and the number of
differences we have is equal to zero.

• If T1 6= 1 we set:
A1 = median(X−9:0)
σ1 =;
n1 =−1
l A

1 =;.
Here n1 =−1, because we don’t have any data yet that can be used to estimate σ, therefore we need to
have at least two more data points before we have a difference that can be used for the estimation.

Note that in practice, T1 is not know. The best thing to do is to get a human assessment of T1; however we
can also assume T1 = 1, since this is the most common situation. In case T1 6= 1 this will show soon enough.
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5.4.1. Initial value σstart

Before enough data is available to estimate σ as σt , an initial value σst ar t is used to estimate σ as stated
in (5.38). To find an appropriate value for σst ar t we will use the past data X−29:0. This is assumed to be a
random walk with drift and outliers, possibly with changes in drift and/or level. Using change point detection
techniques described in section 4.5 we are able to find the segments of the random walk in which it shows
stable behaviour, meaning there are no change points within each segment. We will use the last segment to
calculate σst ar t . However again, in order for this estimation to make sense the last segment has to be longer
than a threshold sth (not to be confused with thσ, which can be different). If the last segment has length
smaller than sth , a default value of σst ar t = 1

50 max X−29:0 is used.

If the last segment has length longer than sth , we can use one of the estimators described in section 3.2.2
to calculate σst ar t , which are the sample variance (3.9), σM AD (3.19) or σS (3.20). Recall that:

∇X t = Zt +δ (5.41)

Therefore ∇X t ∼ N (δ,σ2). This means we can estimate the standard deviation σ by applying one of the
estimators for σ to ∇X t .To find out which estimator to use, a simulation study has been performed. In the
end we want to use the estimator that is robust in the presence of outliers and converges to the true value of
σ as quickly as possible, so only a limited amount of data points is required for a good estimation. The data
used for this test is generated using (4.37). Here we assumed a drift δ= 0.1, σ= 1 and X0 = 100. The outliers
are generated using outlier probability po = 0.3. We simulated 500 data sets of length N = 500 and calculated
the estimators σ̂n for an increasing amount of n data points. The absolute differences |σ̂n −σ| are taken; of
these the mean will be calculated.

5.4.2. Result simulation study σstart

The mean of the absolute difference of the sample variance, σM AD and σS are plotted in figure 5.3.
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Figure 5.3: Absolute difference of estimator to real value of σ, versus number of used data points n.

We see that the results of using the sample variance are only getting worse as more data points are used
for the estimation. The reason for this is that the sample variance is not a robust method of estimating the
standard deviation, therefore the outliers cause the estimate to be much higher than it should. We also see
that σS and σM AD are very close in terms of error; the performance of σS seems to be slightly better. To see
the spread in answers, a box plot for a sample size of 10 is plotted in figure 5.4.
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Figure 5.4: Box plots of σM AD and σS for sample size n = 10.

We can see that the maximum values in the case of using σM AD are bigger than those if we use σS ; there
are in fact quite some outliers. However the median of σM AD is much closer to the real value σ= 1 than the
median ofσS . Also the third quantile is closer forσM AD . Therefore there is a slight preference for usingσM AD

over σS , although the difference is not big. Also note that using σM AD is easier to implement, since there is a
standard function in R for this statistic.





6
Particle filter

We are interested in the value of the hidden state process Yt of a hidden Markov model, as described in chap-
ter 5. Since we cannot observe the hidden process Yt directly, we can only use the observed time series X t .
Therefore we would like to find the likelihood f (yt |x1, ..., xt ). An analytical solution to finding this density
in a sequential way is available (5.28), however in practice it is often not possible to calculate all the inter-
grals needed for this recursion. Even if it is, this can computationally be very expensive. A commonly used
computational method to approximate this likelihood is the particle filter [28] [29] [30] [31].

In this chapter we will start by explaining importance sampling in section 6.1. After this several particle
filters are described, the basic particle filter sequential importance sampling in section 6.2, the sequential
importance resampling in section 6.3 and the Bootstrap filter in section 6.4. We will see how this Bootstrap
filter can be applied to make inference in our model for the spider accepted data in section 6.5.

6.1. Importance Sampling
Importance sampling is a classical technique that can be used to estimate properties from a complicated
distribution f (x), only using samples from a different distribution that we can more easily sample from. We
define the importance sampling distribution π(x) that we are able to sample from and has support larger than
f (x). Assume we are interested in computing expectations of the form:

h =
∫

h(x) f (x)d x (6.1)

If we are able to generate random samples {xi }1≤i≤N from f and f is normalized, we can approximate h
by:

h ≈ 1

N

N∑
i=1

h(x(i )) (6.2)

The problem is that we cannot sample directly from f ; therefore we use the importance sampling distri-
bution π. We will sample {xi }1≤i≤N from π and by writing:

ω̂(i ) = f (x(i ))

π(x(i ))
(6.3)

We will also assume f is not necessarily normalized. This way we get:

h =
∫

h(x) f (x)
π(x)π(x)d x∫
f (x)d x

≈
1
N

∑N
i=1 ω̂

(i )h(x(i )

1
N

∑N
j=1 ω̂

( j )

=
N∑

i=1

ω̂(i )∑N
j=1 ω̂

( j )
h(x(i ))

43
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We will call ω̂(i ) the unnormalized importance weight and define the normalized importance weight as:

ω(i ) = ω̂(i )∑N
j=1 ω̂

( j )
(6.4)

Now we see:

h ≈
N∑

i=1
ω(i )h(x(i )) (6.5)

This means the pairs {x(i ),ω(i )}1≤i≤N is a numerical approximation of the distribution of f (x), where x(i ) is
called the particle, hence the name particle filter. The distribution f now approximately is:

f (x) ≈


x(1) with prob. ω(1)

x(2) with prob. ω(2)

... ...
x(N ) with prob. ω(N )

(6.6)

6.2. Sequential Importance Sampling (SIS)
Importance sampling can be used sequentially as well, in the context of a hidden Markov moddel. Assume a
hidden Markov model as described in chapter 5 with hidden state Yt and observables X t . We will start with a
set of particles y (i )

0 , sampled from an initial distribution f0(y0). The procedure consists of two steps:

• Correction
Calculate the normalized importance weights

{
ω(i )

t

}
1≤i≤N

• Prediction
The particles

{
y (i )

t

}
1≤i≤N

are propagated to
{

y (i )
t+1

}
1≤i≤N

by sampling using transition probability dis-

tribution f (yt+1|y (i )
t )

The goal is to approximate the likelihood f (yt |x1, ..., xt ) at time t by
{

y (t )
i ,ω(t )

i

}
1≤i≤N

. By increasing the value

of N , we will have more particles and the approximation will be more accurate as well.
We will derive a recursion to calculate the importance weights. Recall that we have (5.26):

f (y1:t |x1:t ) = f (y1:t−1|x1:t−1)
f (xt |yt ) f (yt |yt−1)

f (xt |x1:t−1)
(6.7)

Since f (xt |x1:t−1) is a normalization constant that doesn’t depend on Y , we have:

f (y1:t |x1:t ) ∝ f (y1:t−1|x1:t−1) f (xt |yt ) f (yt |yt−1) (6.8)

Also recall that by integrating over y1:t−1 we got (5.29):

f (yt |x1:t ) =
∫

f (xt |yt ) f (yt |yt−1) f (yt−1|x1:t−1)

f (xt |x1:t−1)
d yt−1 (6.9)

So if we want to approximate this integral using importance sampling, we set h = 1
f (xt |x1:t−1) and

g (x1:t−1, yt , yt−1) = f (xt |yt ) f (yt |yt−1) f (yt−1|x1:t−1). Then:

f (yt |x1:t ) =
∫

h(xt )g (x1:t−1, yt , yt−1)d yt−1 (6.10)

We will use an importance sampling function π that can by propagated in time, without modifying the
trajectories that have already been simulated; so for π holds:

π(y1:t |x1:t ) =π(y1:t−1|x1:t−1)π(yt |y1:t−1, x1:t ) (6.11)

The unnormalized importance weights can therefore be calculated using (6.3) as:
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ω̂(i )
t = g (xt , yt , yt−1)

π(y1:t |x1:t )

= f (y1:t−1|x1:t−1) f (yt |yt−1) f (xt |yt )

π(y1:t |x1:t )

= f (y1:t−1|x1:t−1)

π(y1:t−1|x1:t−1)

f (yt |yt−1) f (xt |yt )

π(yt |y1:t−1, x1:t )

∝ ω̂(i )
t−1

f (yt |yt−1) f (xt |yt )

π(yt |y1:t−1, x1:t )

(6.12)

(6.13)

Here we used (6.8), such that
f (y1:t−1|x1:t−1) ∝ f (y1:t−2|x1:t−2) f (xt−1|yt−1) f (yt−1|yt−2) = g (x1:t−2, yt−1, yt−2). After normalizing using (6.4)
we have found the importance weights ω(i )

t .

6.3. Sequential Importance Resampling (SIR)
The SIS method works well for short periods of time, but as time increases it has some serious drawbacks and
is not effective in the long run. As time progresses, the weights can get highly degenerate. This means the
weight mass is concentrated in a few particles, while the other particles only have very low weights; as a result
there effectively are only a few particles that make up the numerical probability density that is the outcome
of the filter. To overcome this problem, resampling can be used. The idea is that when the weights become
too degenerate, we will take a new sample, using the particles and their corresponding weights as probability
distribution. To determine when to resample, we will use the effective number of particles, defined as:

Neff =
1∑N

i=1

(
ω(i )

t

)2 (6.14)

If Neff gets below a predetermined threshold value, the will resample according to the importance weights.

After resampling, the weights are reset toω(i )
t = 1

N . It is also possible to resample at every iteration, obsoleting
the use of Neff.

6.4. Bootstrap filter
We will now focus on the choice of the importance sampling distribution π. A common choice is to use the
transition probability f (yt |yt−1) as importance distribution. Doing so will result in the so called Bootstrap
filter. We see that indeed equation (6.11) holds:

f (y1:t |y1:t−1) = f (y1:t−1|y1:t−2) f (yt |yt−1)

By using this importance function, the unnormalized importance weights can be calculated using equa-
tion (6.13) as:

ω̂(i )
t = ω̂(i )

t−1

f (yt |yt−1) f (xt |yt )

π(yt |y1:t−1, x1:t )

= ω̂(i )
t−1

f (yt |yt−1) f (xt |yt )

f (yt |yt−1)

= ω̂(i )
t−1 f (xt |yt ) (6.15)

We see that this choice of the importance function results in an easy expression for the importance weights.
The Bootstrap filter resamples in case Neff < Nthr for some threshold Nthr.

6.5. Implementation particle filter
Recall that in our implementation, we will estimate σ from the data and the outcome of the particle filter and
save it along with the particles. To this end we use the extended hidden state St (5.30) instead of Yt , so we
will write Yt = St and yt = st . The implementation of this hidden Markov model is described in section 5.3.
We will use a Bootstrap filter to calculate the distribution of the hidden state, f (st |x1:t ). This will be done on
a daily basis, using the spider accepted data and the outcome of the particle filter for before.
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Assume we will use N particles. As a first step, we generate an initial set of particles
{

ŝ(i )
0

}
1≤i≤N

as de-

scribed in section 5.4. We also set a threshold value thσ, indicating how many data points we need to esti-
mate σ properly and a value σst ar t that the algorithm can use for σ in case not enough data is available yet.
Another threshold Neff has to be set, indicating the minimum amount of effective particles before deciding
to resample. Also the transition probability matrix P is passed to the algorithm. How to construct this P is
described in section 5.3.2.

Now the algorithm will start iterating, on a daily basis. Using the particles of the previous day, next day’s
set of particles will be generated using f (st |st−1):

ŝ(i )
t ∼ f (st |st−1 = ŝ(i )

t−1) (6.16)

This is the prediction step. Here the estimator σt for σ will only be used if nt ≥ thσ. Otherwise σst ar t

is used to calculate the next generation of particles. The corresponding importance weights are calculated
using the recursion for the weights (6.15):

ω̂(i )
t = ω̂(i )

t−1 f (xt |st = ŝ(i )
t ) (6.17)

This is the correction step. The number of effective particles is calculated and if Neff < Nth the particles
will be resampled and the weights are all set to 1

N . Using the importance weights, the density of hidden spider
state Tt given the data is estimated using (6.6):

P(Tt = j ) =
N∑

i=1
ω(i )

t 1(t (i )
t = j ) (6.18)

The outcome of the algorithm are these probabilities for Tt and the new particles and corresponding
importance weights. The procedure is summarized in algorithm (5). The complexity of the algorithm is of
O (N ).
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Input:
Number of particles N ;
Set of last particles and corresponding weights (ŝ(i )

t+1, w (i )
t+1)1≤i≤N ;

Transition probability matrix P describing the transition probabilities of Tt

Threshold thσ indicating the minimum amount of data points needed to estimate σt

Default deviation σstart to use if not enough data points are available to estimate σt

Output:
A set of particles and corresponding weights (ŝ(i )

t+1, w (i )
t+1)1≤i≤N representing f (st |x1:t );

A vector p t+1 of length 5 with P(Tt+1|x1:t+1)
ParticleFilter(N , (ŝ(i )

t )1≤i≤N , (w (i )
t )1≤i≤N ,P , thσ,σstart):

for i ∈ {1, ..., N } do
Generate next set of particles ŝ(i )

t+1
p =P t (i )

t ,1≤ j≤5

Sample t (i )
t+1 from {1,2,3,4,5} with probabilities p

if n(i )
t ≥ thσ then
Draw ε∼ N (0,σ(i )

t )
else

Draw ε∼ N (0,σ(i )
st ar t )

end

a(i )
t+1 = at +ε

if t (i )
t+1 = 1 then
l A,(i )

t+1 = a(i )
t+1

n(i )
t+1 = n(i )

t +1

σ(i )
t+1 =

√
n(i )

t+1−2

n(i )
t+1−1

(
σ(i )

t

)2 + 1
n(i )

t+1−1

(
a(i )

t+1 −a(i )
t

)2

else
l A,(i )

t+1 = l (i ),A
t

n(i )
t+1 = n(i )

t

σ(i )
t+1 =σ(i )

t
end

Calculate unnormalized importance weight w (i )
t+1

ŵ (i )
t+1 = w (i )

t f (xt |st = ŝ(i )
t+1)

end
Normalize importance weights
for i ∈ {1, ..., N } do

w (i )
t+1 =

ŵ (i )
t+1∑N

i=1 ŵ (i )
t+1

end
Resampling
Neff = 1∑N

i=1

(
ω(i )

t

)2

if Neff < Nth then
Sample (s(i )

t+1)1≤i≤N from (ŝ(i )
t+1)1≤i≤N with probabilities (ω(i )

t+1)1≤i≤N

Set (ŝ(i )
t+1)1≤i≤N ←− (s(i )

t+1)1≤i≤N

Set w (i )
t+1 = 1

N ∀i
end
Calculate conditional probability Tt

for j ∈ {1,2,3,4,5} do
p t+1

j =∑N
i=1 w (i )

t+11(t (i )
t+1= j )

end
p t+1 = (

p t+1
1 p t+1

2 p t+1
3 p t+1

4 p t+1
5

)
return (ŝ(i )

t+1, w (i )
t+1)1≤i≤N , p t+1

Algorithm 5: Particle filter algorithm.





7
Decision Making

The purpose of the alarm system described in this thesis is to trigger alarms when a spider seems to be mal-
functioning. For this, a decision has to be made every day either to trigger an alarm, or not to trigger an alarm.
Decision making theory deals with the problem of making such decisions. We will look at the hidden Markov

model with hidden state Yt and spider accepted data X t , as described in chapter 5. Recall that Yt =
(

Tt

At

)
,

where Tt is the state of the spider. The spider is broken in case Tt = 4 or Tt = 5.

We define the state spaceΘ= {0,1} of possible states that our decision making process has to choose from.
Here θ = 0 means the spider is fine (so Tt ∈ {1,2,3}) and θ = 1 means the spider is broken (so Tt ∈ {4,5}). Also
we define action space A = {0,1}, which contains the possible actions that can be taken. Here a = 0 means
doing nothing and a = 1 is triggering an alarm. This comes down to testing H0 : θ = 0 versus H1 : θ = 1, a
simple hypothesis test. Note that the spider state Tt may vary over time, which means the same holds for θ.
For now however we will assume that θ is constant, even though Tt may change.

Because the algorithm will be run in a sequential fashion, we will be using sequential decision making
theory for this decision, described in section 7.1. We will describe the sequential probability ratio test in
section 7.2, a procedure for testing these hypotheses in a sequential way. We will discuss some principles
used in Bayesian decision making and discuss a Bayesian method that can easily be used in combination
with the particle filter to make sequential decisions about triggering alarms in section 7.3. In section 7.4 we
will discuss how, after an alarm has been triggered, the user can reset the particle filter.

7.1. Sequential decision making
Sequential decision making deals with the problem of making a decision in a process, where the data X t is
gathered in a sequential way. This data will be used to pick an action a ∈A , where A is the set of all possible
actions.

The task at hand is to come up with a decision procedure, indicating if and when which action should be
taken. In a sequential decision problem, this is described in a sequential decision procedure d (τ,δ).

Definition 4. Sequential decision procedure d (τ,δ)
A sequential decision procedure

d (τ,δ)

is a procedure consisting of stopping rule τ = (τ0,τ1(X1),τ2(X1:2), ..., ), where τt indicates the probability of
deciding after observing X1:t and decision rule δ= (δ0,δ1(X1),δ2(X1:2), ..., ), where δt indicates the action taken
after observing X1:t .

We will only be looking at non-randomized stopping procedures, meaning that the τt can either be 0 or 1
(either we make a decision, or we don’t). To decide which procedure is to be preferred, we will define a loss
function that describes the loss of taking action a ∈A given that we are in state θ ∈Θ. For the loss of making
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a decision at time t we will assume the loss function L(θ, at ) to take the following form:

L(θ, at ) =


0 if θ = 0, a = 0
0 if θ = 1, a = 1
f if θ = 0, a = 1
g if θ = 1, a = 0

(7.1)

Also we will assume the overall cost after n observations has the form:

L(θ, at ,n) = L(θ, at )+
n∑

i=1
ci (7.2)

The reason for using this decomposition is that in a sequential decision procedure, there is an extra decision
to be made compared to decision making with a fixed sample size; namely whether to stop sampling and
make the decision or to wait and take another data point. This decomposition can be described as having a
loss L(θ, at ) associated with making the decision and a cost

∑n
i=1 ci of observing or sampling. In most appli-

cations taking more samples will result in costs, therefore usually ci > 0. Taking bigger values for ci will result
in a quicker decision and therefore the size of the total sample used to make this decision will be smaller. We
will assume that ci is constant, such that:

L(θ, at ,n) = L(θ, at )+ cn (7.3)

The decision procedure should be such that we minimize this loss.

7.2. Sequential probability ratio test
The sequential probability ratio test (SPRT), described by Wald [24] is a sequential procedure to make a de-
cision in a simple sequential hypothesis test, as described in the introduction of this chapter. The test was
designed assuming that the time series X t is i.i.d. with density either f0(x) (for θ = 0) or f1(x) (for θ = 1). Then,
the likelihood ratio, after making observations up till time t is:

Λt (X1:t ) =
t∏

i=1

f1(xi )

f0(xi )
(7.4)

Now letΛ0 andΛ1 be two constant thresholds, then the test will be as follows:

Accept H1 ifΛt ≥Λ1

Accept H0 ifΛt ≤Λ0

Continue sampling ifΛ1 ≤Λt ≤Λ0

It can be shown, using proper threshold constant that depend on the loss function, that this procedure is
optimal in the sense that it minimizes the expected sample size, in the class of all sequential tests. Also it turns
out that the same procedure can be used when X t is not i.i.d. but shows nice statistical properties, such as
following an AR model or being a Markov process. Because hidden state Yt is a Markov chain, this procedure
can be used as an optimal decision procedure for triggering alarms. The difficulty is to find appropriate values
for the thresholds. By taking a Bayesian perspective we can find a solution to this problem.

7.3. Bayesian sequential decision making
The basic idea behind Bayesian sequential analysis is quite simple. If we want to make inference on a pa-
rameter θ ∈Θ and start with a prior distribution π(θ) for this parameter, we can use Bayes theorem (3.25) to
calculate the posterior density π1(θ|x1) after observing X1. Doing so in a sequential way we can keep updat-
ing and at time n we have πn(θ|x1:n). We will denote this as πn(θ). At each time we can either make a decision
for a certain θ, or gather more data to further support our decision.

To decide whether we should continue observing or make a decision, we will make use of the Bayesian
expected loss ρ(π, a).

Definition 5. Bayesian expected loss ρ(π, a)
For posterior π∗, loss function L(θ, a) and action a the Bayesian expected loss is defined as:

ρ(π∗, a) = Eπ∗ [L(θ, a)]

=
∫
Θ

L(θ, a)π∗(θ|x)dθ
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We want to take action a such that ρ(π∗, a) is minimized.

Definition 6. Bayes action, Bayes risk
The action a that minimizes ρ(π∗, a) is called the Bayes action. We will denote the Bayesian expected loss of the
Bayes action as ρ(π∗) and call this the Bayes risk.

In the end we want to take the Bayes action, since the Bayes risk is the minimum expected loss. This will
be the δ in our sequential decision procedure. At time t we use as decision rule:

δt (X1:t ) = argmin
a

ρ(πt (X1:t , a)) (7.5)

So, in the end we want a procedure using a stopping time where the actions taken result in the "true"
Bayes risk ρ(π). The question now is, how many data points should we take into account when making a
decision? For this we will use an approximation of the true Bayes risk, where we only take a maximum of m
data points into account. We will denote the Bayes risk of a sequential procedure using at most m data points,
starting at time t as:

ρm(πt , t )

To decide when to take this action or to keep sampling, we will use a stopping rule. If we have a maximum
amount of data point that we want to use to make our decision, we can use the Bayes m-truncated stopping
rule.

Principle 1. Bayes m-truncated stopping rule τm

Stop sampling and make a decision for the first n, (n = 0,1, ...,m) as soon as

ρ0(πn ,n) = ρm−n(πn ,n)

In other words, we stop sampling and make a decision as soon as the Bayes risk of making an immediate
decision is smaller than the Bayes risk of taking more observations, no later than at time m.

Now τm = inft

(
t ∈ {0,1, ...,m} : ρ0(πt ) = ρm−t (πt )

)
is a stopping time, since it only depends on informa-

tion up to time t . It turns out we can calculate the Bayesian expected loss ρ j (πn) at time j after making n
observations in a recursive way:

ρ j (πn) = min
{
ρ0(πn),E∗[ρ j−1(πn(θ|xn+1))]+ c

}
(7.6)

Here the expectation is taken with respect to the marginal distribution of Xn+1 at time n, f (Xn+1|X1:n)
Theory shows that under some assumptions, this truncated stopping rule converges to the true Bayes risk

ρ(π). This is the scribed in the following theorem.

Theorem 1. Limit of τm

Assuming:

1. X t is a sequentially taken sample

2. The loss function has form (7.2)

3. There exists a sequential procedure d with finite Bayes risk

Then there exists an optimal Bayes procedure dπ, where the procedure is to stop sampling at the first time n for
which ρ0(πn) is finite and

ρ0(πn) = ρ∞(πn) (7.7)

Here ρ∞(πn) can be calculated sequentially using:

ρ∞(πn) = min
{
ρ0(πn),E∗[ρ∞(πn(θ|xn+1)]

}
(7.8)

It can be shown that, using this stopping procedure, performing a simple hypothesis test in the Bayesian
setting results again in a Sequential Probability Ratio Test. For the proof I refer to [25].
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7.3.1. Implementation using particle filter
We will again look at the simple hypothesis test H0 : θ = 0 versus H1 : θ = 1. In our model, the information
important for making the decision to trigger an alarm is in the hidden state St , in particular the hidden spider
state Tt . If Tt = 4 or Tt = 5, there should be an alarm triggered. The particle filter calculates the probability of
Tt given the data X1:t . So, in other words the posterior distribution of θ given the data X1:t . This means that
at posterior density at time t we have:

πt (θ = 1|x1:t ) =P(T = 4|X1:t )+P(T = 5|X1:t ) (7.9)

Assume we are starting the decision making procedure at time t +1. As prior we take the outcome of the
particle filter πt (θ|x1:t ):

π(θ) =πt (θ|x1:t ) (7.10)

For the sake of simplicity, we will denote the posterior distribution πt (θ) as:

πt (θ|x1:t ) =
{

πt
1 if θ = 1

1−πt
1 if θ = 0

(7.11)

Now we can calculate the Bayes risk ρ0(πt , a) of making a decision at time t :

ρ0(πt , a) =
{

gπt
1 if a = 0

f (1−πt
1) if a = 1

(7.12)

Clearly, the Bayes action, minimizing the expected Bayes loss, is to accept H0 if the expected loss is smaller
when accepting θ = 0 than the expected loss when accepting H1 : θ = 1. The corresponding Bayes risk is:

ρ0(πt ) = min
{

gπt
1, f (1−πt

1)
}

(7.13)

Note that holds:
gπt

1 ≤ f (1−πt
1) ⇔ gπt

1 + f πt
1 ≤ f

⇔πt
1 ≤

f

f + g
(7.14)

Therefore the value of ρ0(πt ) depends on the value of the posterior density πt in the following way:

ρ0(πt ) =
{

gπt
1 if πt

1 ≤
f

f +g

f (1−πt
1) if πt

1 >
f

f +g

(7.15)

Ideally, we would like to use theorem 1 as decision procedure. In practice however, it is not possible to
calculate ρ∞(πn), because we would have to take into account all sequential stopping procedures that are
using at least one and up to ∞ data points. Therefore we wil assume the following:

ρ∞(πn) ≈ ρ1(πn , t +1) (7.16)

In other words, we only take the expectation of the next data point into account for our decision. The reason
for this is that the spider state Tt can change on a daily basis. So, θ is in fact not constant, even though the
sequential decision procedures discussed here assumed it is. If a change has occurred in θ, it doesn’t make
sense to use data from before the change to make a decision about θ. In practice this results into taking an
immediate decision most of the times; however it is possible that the procedure waits a few (usually not more
than one) more days before making the decision. Ideally we would actually want the procedure to take a
decision every day. If we want to enforce this, we could use the truncated stopping rule provided by theorem
(1) and set m = 1. In some cases however it could be beneficial to wait a little before making a decision.

Now we want to calculate the Bayes risk of taking another observation. To calculate the expected Bayes
risk at time t +1, we first calculate the expected distribution of the spider state Tt+1, using the current distri-
bution at time t and the transition probabilities of the hidden Markov model. The expected distribution of
spider state Tt+1 is: (

p̂ t+1
1 p̂ t+1

2 p̂ t+1
3 p̂ t+1

4 p̂ t+1
5

)= (
p t

1 p t
2 p t

3 p t
4 p t

5

)
P (7.17)
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Here p t
i = P(Tt = i |X1:t ), p̂ t+1

i the expected probability of p t+1
i and P is the transition probability matrix of

the hidden Markov model:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 (7.18)

The expected posterior distribution π̂t+1
1 at time t + 1 is equal to the expected probability of the spider

being in state 4 or 5:

π̂t+1
1 = p̂ t+1

4 + p̂ t+1
5 (7.19)

Using this we can calculate the expected Bayes risk at time t +1:

E∗[ρ(πt+1)] = min
{

g π̂t+1
1 , f (1− π̂t+1

1 )
}

(7.20)

Or:

E∗[ρ(πt+1)] =
{

g π̂t+1
1 if π̂t+1

1 ≤ f
f +g

f (1− π̂t+1
1 ) if π̂t+1

1 > f
f +g

(7.21)

Now we can use (7.6) to calculate ρ1(π) and we can decide using the stopping rule described in theorem
1 if we should continue sampling or make a decision. We should stop sampling if:

ρ1(π) = ρ0(π)

If ρ1(π) < ρ0(π), we should keep sampling. The decision making procedure is summarized in algorithm 6 and
has a complexity of O (1).
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Result: Either a decision to trigger an alarm (θ = 1) by accepting H1 or no to trigger an alarm θ = 0) by
accepting H0

Initialize:
p t−1

1 =P(Tt−1 = 1|X1:t−1)
p t−1

2 =P(Tt−1 = 2|X1:t−1)
p t−1

3 =P(Tt−1 = 3|X1:t−1)
p t−1

4 =P(Tt−1 = 4|X1:t−1)
p t−1

5 =P(Tt−1 = 5|X1:t−1)
p t−1 = (

p t−1
1 p t−1

2 p t−1
3 p t−1

4 p t−1
5

)
SequentialDecision(t , p t−1,P , f , g ,c):
π1 = p t−1

4 +p t−1
5(

p̂ t
1 p̂ t

2 p̂ t
3 p̂ t

4 p̂ t
5

)= p t−1P

π̂t
1 = p̂ t

4 + p̂ t
5

ρ0(θ) = min
{

gπ1, f (1−π1)
}
;

ρ1(θ) = min
{
ρ0(θ),min

{
g π̂1, f (1− π̂1)

}+ c
}

if ρ0 = ρ1 then
Make decision
if πt−1 ≤ f

f +g then
Accept H0

else
Accept H1 and trigger alarm

end
else

Take next sample
p t

1 =P(Tt = 1|X1:t )
p t

2 =P(Tt = 2|X1:t )
p t

3 =P(Tt = 3|X1:t )
p t

4 =P(Tt = 4|X1:t )
p t

5 =P(Tt = 5|X1:t )
p t = (

p t
1 p t

2 p t
3 p t

4 p t
5

)
π1 = p t

4 +p t
5

SequentialDecision(t +1, p t ,P )

end
Algorithm 6: Sequential decision making algorithm.
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7.4. Resetting the system
After an alarm has been triggered, the user has to decide what to do with this alarm. If he thinks the spidering
is broken, he can try to solve the issue to get the amount of vacancies found back to the normal level. Because
the normal level of amount of vacancies found by the spider, At , remains the same, the alarm will likely be
triggered the next day as well. On the other hand, in case he thinks the spidering is actually working as it
should be, he can decide to reset the alarm.

By resetting the system, a new set of initial particles is generated and the sequential algorithm will be
started over. The new set of particles will be generated the same way the initial set of particles was generated,
by setting At = X t , Tt = 1 and also resetting the numbers l A

t and nt to their initial values. The value for
σst ar t will be set to a default value of 1

50 At , since we cannot assume the previous value of σt is appropriate
in the new situation. The probability of hidden state Tt = 1 will be reset to 1. The procedure is described in
algorithm 7 and has a complexity of O (N ).

Result: Reset the the particles after an alarm
ResetParticles(X t , (ŝ(i )

t )1≤i≤N ,σst ar t)

for 1 ≤ i ≤ N do
t (i )

t = 1

a(i )
t = X t

σ(i )
t =σst ar t

n(i )
t =−1

l A,(i )
t = X t

s̃(i )
t =


t (i )

t

a(i )
t

σ(i )
t

n(i )
t

l A,(i )
t


end

return (s̃(i )
t )1≤i≤N

Algorithm 7: Reset particles algorithm.

In practice he will do this after some spider issue has been resolved or some change has occurred on the
website (e.g. it has merged with another website).





8
System test

The system described in this thesis should be able to trigger an alarm when a spider is not showing normal
behaviour. In order to see how well the system performs, a test has been done. We will use the outcome of
the test to set the parameters f , g ,c in the decision making algorithm 6, such that the precision (3.42) and
recall (3.43) of the method are nearly optimal and the system triggers the right amount of alarms. First we will
elaborate on the way the test has been done and the data that was used in section 8.1. After this the results
are used to pick values for f , g and c and calculate the precision and recall of the system in section 8.2.

8.1. Test description

The test has been performed as follows. First the top 100 websites that have the largest number of vacancies
is taken and of these the last 75 websites will be used in final the test; these are the websites the system will be
used for in practise as well. The data available from these websites is dated from 21-05-2015 to 22-05-2017.
In this time range, four non-overlapping intervals of 60 days have been chosen and used for each website.
Not all of this data was available for every website. Besides, only the intervals where the median of the spider
accepted data was at least 800 and where the spider accepted more than zero vacancies at the starting time
of the algorithm have been used. This resulted in 200 data sets of length 60 that can be used in the final test.

For each data set, the algorithm 5 has been run, using N = 1000 particles, Ne f f = N , thresholds thσ = sσ
and starting at time t = 31, taking the first 30 data points to calculate the initial values of the particle filter, as
described in section 5.4. Now we will keep running the algorithm until it triggers its first alarm and the time
of this alarm is saved. After an alarm has been triggered, the algorithm will stop running for this data set and
go on to the next one. If no alarm has been triggered when reaching the end of the interval, this will also be
saved. In this case the algorithm will stop at the end of the interval, which is at t = 60.

Plots showing the data of the intervals up to the point of the alarm (or the whole interval in case no alarm
has been triggered) have been shown to two annotators, the members of the Jobfeed Data Quality team. Two
examples of such plots can be found in figure 8.1.
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Figure 8.1: Examples of test plots.

Here the green dot represents the starting point of the algorithm. The spider is assumed to be at a normal
level here. Note that this might not be the case; the spider could be broken at the starting point. The annota-
tors were asked to judge the outcome of the alarm system given that the green dot was indeed the expected
amount of vacancies to be found by the spider.

The algorithm has run for the black dotted data. The first 30 data points are only shown as reference
for the annotators, to observe what kind of behaviour is normal for this spider. For each plot, the following
questions had to be answered, about the points where the algorithm has run:

1. Should an alarm be triggered at the last data point plotted?

2. Should an alarm be triggered before the last data point? If yes, at what time?

3. At which other times should alarms be triggered?

4. Is the spider stable enough to monitor?

It turned out that the answer to the third question was no at all times, meaning the system never missed more
than one alarm. If the spider was too unstable to monitor, the plot has not been used to calculate results.

So, for now only the first two questions are of interest to calculate the precision and recall of the algo-
rithm. Since at most two alarms in each interval where the algorithm has run were required (one at the last
point and possibly one before that the algorithm did not trigger), we can make a list of where alarms where
required. Using this and the outcome of the algorithm we can calculate the amount of alarms that was trig-
gered correctly (true positives), the amount of alarms that was triggered even though no alarm was required
(false positives) and how many times an alarm should have been triggered, but the algorithm failed to do so
(false negatives). Using these we can calculate the precision (3.42) and recall (3.43).

The test of which the plots have been shown to the annotators has been performed using the following
parameters for the decision making algorithm:

f = 1

g = 1

c = 0.007

(8.1)

We run the algorithm for the same intervals but with different values of these parameters to see which
results in the best values for the precision and recall. As we can see in algorithm 6, the actual value of f does

not matter, only the quantity f
f +g is important. Therefore we will keep f = 1 fixed and alter g . We will keep

c = 0.007 fixed. By looking at the values of the precision and recall we will pick an optimal value for g . This
value of g will be used when we run the system again, this time altering the value of c, to find what value
would be optimal for c.

The old alarm system that is currently in place to trigger alarms has been run on the same data. A descrip-
tion of this algorithm can be found in section 2.4. Using the annotations, we can calculate the precision and
recall of the old system and use this as a base line.
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8.2. Results parameter choice
The final test consisted of 200 plot similar to those in figure 8.1. Two annotator looked at the these plots and
answered the questions mentioned in the previous section separately. In 25% of the answers, their judgement
was different. Therefore the plots where they disagreed were revisited, this time together to come to a final
conclusion. Often the disagreement was due to a mistake by one of the two annotators (approximately 40%),
or because the spider was too unstable to be used (approximately 12%). In the other cases it was hard to judge
where and if an alarm should be triggered, but after debating final answers have been agreed upon. The plots
that were too unstable are left out of the results (two of them were judged as too unstable).

The result of the test altering the value of g is shown in figure 8.2. Both the precision and the recall have
been plotted versus 10 log(g ) on the x-axis that was used in the algorithm.
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Figure 8.2: Precision and recall for different values of g .

Also, the average number of alarms per day that we would get if we would implement the algorithm and
use it for these 75 websites on a daily basis has been calculated and plotted in figure 8.3.
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Figure 8.3: Average number of alarms per day for different values of g .

We can see that for 10 log(g ) ≥ 0 the recall is approximately equal to 0.97 and stays approximately the same
after this. The precision is fluctuating around 0.73 for most values of g . Since we don’t want the algorithm to
fail triggering an alarm when it should, we will use the optimal value of the recall, so some g ≥ 1. Because the
precision is approximately the same for all these values of g , we will use the g that minimizes the amount of
alarms we get per day, which is approximately 1.75 for g = 1.

Taking g = 1 fixed and running the algorithm for different value of c gives precision and recall values as
plotted in figure 8.4.
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Figure 8.4: Precision and recall for different values of c.

Note that the precision is fluctuating around 0.725 and doesn’t differ a lot, but is maximum for 10 log(c) =
−2.5. The recall is smallest for 10 log(c) =−3.0 and for 10 log(c) ≥−2.5 the recall is either approximately 0.960
or around 0.969. Remarkable is that for c = 0.5, the recall is slightly lower than for c = 0.1. This suggests
that the difference in recall for 10 log(c) ≥ −3.0 is not caused by the difference in c, but by other limiting
factors such as the limited number of particles N or a different outcome of the change point detection that
is determining the initial values of the particle filter. Since the results are so similar for c ≥ 0.01, it seems
that the decision procedure here is to take an immediate decision at all times, without waiting for another
observation. Therefore it is interesting to have a closer look at the behaviour for smaller c. We will have focus
on values of c between 0 and 0.0015. The precision and recall are plotted in figure 8.5.
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Figure 8.5: Precision and recall for different values of c.

We see that for c ≥ 0.003 we observe similar behaviour for both the precision and recall. The average daily
amount of alarms for these 75 websites can be found in figure 8.6.
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Figure 8.6: Average number of alarms per day for different values of c.

Note that the number of alarms is increasing for c ≤ 0.003 and after this is stays approximately the same.
It seems the value of c doesn’t make a big difference in the outcome of the system. We will use c = 0.003,
because the precision and recall values for this c are similar to the others, but the expected number of daily
alarms is slightly lower.

The old alarm system as described in section 2.4 has been used on the annotated data and the precision,
recall and the expected number of daily alarms for 75 websites have been calculated. The results of the old
and the new system using g = 1 and c = 0.003 can be found in table 8.1.

Precision Recall Expected number of alarms per day
Old alarm system 0.028 0.182 8.83
New alarm system 0.740 0.959 1.727

Table 8.1: Results of testing the old and new alarm system.

8.2.1. Discussion system test
As noted before, it seems that the sequential decision algorithm 6 almost always decides to make a decision
right away, instead of waiting for another observation. This suggests that we could leave out the (somewhat
complicated) sequential decision theory and just decide to make a decision right away, every day; this would
obsolete the parameter c. In the long run however, using the sequential decision theory algorithm could lead
to better results. The test that has been performed here only uses the initial transition probability matrix
(5.40) containing the transition probabilities of the hidden spider state Tt , because the particle filter didn’t
run long enough to update these transition probabilities. How this transition probability matrix is update is
described in section 5.3.2. By updating these transition probabilities, prior information about the behaviour
of the spider is incorporated in the decision making process.

An example where using the sequential decision algorithm could be useful is the case where the particle
filter claims it is most likely for the spider to be in state 5, meaning it is zero for multiple days. If in the past
the spider has been zero for two days in a row quite often but has recovered by itself the third day, this will be
incorporated the transition probability matrix P by a bigger value of p51. Therefore we expect that spider is
more likely to have Tt+1 = 1. This can cause the decision to be postponed and if the spider is indeed back to
normal, no alarm will be triggered.





9
Conclusion

In this thesis an alarm system has been developed that triggers alarm in case it seems there is a problem in
the spidering of the Jobfeed data. The precision of this new system is 0.74, which is much higher than the
precision of the old system, 0.03. Also the recall of this new system, 0.96, is a lot higher than the recall of the
old system, 0.18. If we would implement this new alarm system and use it to monitor 75 websites, on average
there would be 1.7 alarms triggered per day, opposed to the 8.8 alarms triggered by the old system.

Also change point methods to detect changes in a random walk process with drift including outliers have
been investigated. The method that was most successful in detecting a single change in level and drift was
to first filter the data using a Hampel filter and minimizing an absolute cost function, where the level of the
spider was approximated by using a Gaussian linear regression line. The precision of this method for finding
a single change point, if we allow for an error of maximum two, is 0.76. However when we use this method in
the Wild Binary Segmentation method to detect multiple change points, it is less effective; a precision of only
0.36 is obtained. The recall of this multiple change point detection method is 0.89.

9.1. Future research
Although the alarm system developed in the course of this thesis is performing well compared to the old
alarm system that was in place, there are several things that could be improved upon.

9.1.1. Improvements change point detection
Detecting change points in a random walk was harder than anticipated and could use some more attention,
especially detecting multiple change points. The method using the WBS algorithm 4 to find multiple change
points in a random walk has a low precision of only 0.36.

One of the reasons for this is that too many change points are found, because the random intervals taken
by the WBS interval too often contain more than one change point. This could be solved in two ways; either
by adjusting these random intervals, or by changing the threshold parameter ζN that is used to judge whether
the change point found is significant enough to keep. If the random intervals are forced to be smaller than
a pre-set size, the chance to find only a single change point in the segment is increased; for this knowledge
of the typical distance between the change points is required. The other option involves ζN . Right now this
threshold only depends on the size of the whole time series, which is N . However, we could also adjust ζ such
that it depends on the size Ni of the interval chosen by the WBS algorithm. By increasing ζNi for increasing
interval length Ni , the algorithm is less likely to accept a change point if the interval is large.

Another reason for the low precision in the multiple change point detection method is that outliers still
cause the algorithm to detect too many change points. As estimate of the level, a Gaussian regression line
(3.32) has been used, instead of more robust options (3.38) or (3.41). This has been done because calculating
the more robust linear regression lines was computationally too expensive to implement. If however a way
could be found to calculate these regression lines quicker, this could improve the result of the change point
detection method.
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9.1.2. Improvements particle filter
Also the particle filter used could use some improvements. The filter is using the outcome from the past and
the user input to improve the results in two ways: by updating the transition probability matrix P (p12, p13, p14, p35)
and by estimating σ. Both of these can be improved upon.

In our implementation we assumed that each transition probability that we are estimating has a mini-
mum value of 0.01. The reason for this is that if the past suggests that one of these probabilities is equal to
zero, the algorithm doesn’t work any more because some states would not be able to be reached. This value
is arbitrarily chosen. To improve this, a Bayesian approach could be taken by starting off with a prior over the
values of p12, p13, p14 and p35 and updating this prior as more observations come in. Here we can take into
account that the outcome of the particle filter is the probability of the spider being in a certain state; as it is
implemented now, we take the state with the highest probability to be true.

To find a starting value for σ, σst ar t , first change point detection is used to find the last stable segment of
the spider and here the robust σM AD (3.19) is taken as estimation. If the last segment is too short, a custom
value is used, that is proportional to the maximum of the last 30 days. This is quite arbitrary and more sophis-
ticated methods could be used. The choice of σst ar t could for example be improved by looking at another
stable segment that is long enough to estimate properly.

9.1.3. Improvements sequential decision making
As we have seen in section 8.2.1, the perks of using the sequential decision making algorithm over making
a decision every day, can be seen as the transition probability matrix describing the transition probabilities
of hidden state Tt is updated using the outcome of the particle filter. This means that setting a value for
c without running the algorithm for a longer period of time isn’t very meaningful. If this alarm system is
implemented and running live, the outcome could be used to better tune not only c, but other parameters as
well.

9.1.4. Improvements using other data
For the alarm system, only the spider accepted data has been used. The system could be improved by includ-
ing other statistics of the spidering in the system. The best usable are the total number of active vacancies
and the the number of imported vacancies.

The number of active vacancies should be close to the number of vacancies accepted by the spider. If
these two differ a lot, this could be a reason to trigger an alarm. This is similar to the current approach, only
the difference is that now we model the number of vacancies that the spider should accept as a random walk
At , instead of comparing it to the number of active vacancies in the database.

If we use the spider imported, it could give a different insight. The number of vacancies the spider imports
should be significantly lower than the number of vacancies the spider finds, unless the spider is new. We do
however expect the number of new vacancies on a website to be somewhat stable. Therefore we could use
the same model as we used for the spider accepted data and apply the same alarm system as well. Here most
parameters will be different, because the number of vacancies imported by the spider is much lower and
zero’s also occur more often. Besides this, the way websites upload their vacancies is more important here
than in the case of the spider accepted data.
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A
Results change point detection for random

walks

A.1. Using X t

Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0.044 0.104
Square Median No filter 0.058 0.146
Square Linear regression No filter 0.012 0.038

Absolute Mean No filter 0.184 0.324
Absolute Median No filter 0.502 0.758
Absolute Linear regression No filter 0.09 0.18
Biweight Mean No filter 0.072 0.132
Biweight Median No filter 0.532 0.75
Biweight Linear regression No filter 0.028 0.072
Square Mean Median filter 0.22 0.746
Square Median Median filter 0.22 0.736
Square Linear regression Median filter 0.216 0.738

Absolute Mean Median filter 0.216 0.746
Absolute Median Median filter 0.22 0.754
Absolute Linear regression Median filter 0.218 0.744
Biweight Mean Median filter 0.192 0.668
Biweight Median Median filter 0.184 0.586
Biweight Linear regression Median filter 0.2 0.704
Square Mean Hampel filter 0.43 0.704
Square Median Hampel filter 0.426 0.702
Square Linear regression Hampel filter 0.41 0.664

Absolute Mean Hampel filter 0.51 0.788
Absolute Median Hampel filter 0.534 0.816
Absolute Linear regression Hampel filter 0.44 0.736
Biweight Mean Hampel filter 0.38 0.64
Biweight Median Hampel filter 0.462 0.714
Biweight Linear regression Hampel filter 0.33 0.588

Table A.1: Results of testing change point detection methods on a random walk with a single change point in level, without drift using
Xt .
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Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0 0.016
Square Median No filter 0.002 0.014
Square Linear regression No filter 0.004 0.012

Absolute Mean No filter 0.002 0.004
Absolute Median No filter 0 0
Absolute Linear regression No filter 0.006 0.026
Biweight Mean No filter 0 0.002
Biweight Median No filter 0 0.002
Biweight Linear regression No filter 0.006 0.036
Square Mean Median filter 0 0.002
Square Median Median filter 0 0.002
Square Linear regression Median filter 0.006 0.068

Absolute Mean Median filter 0 0
Absolute Median Median filter 0 0
Absolute Linear regression Median filter 0.014 0.082
Biweight Mean Median filter 0 0.002
Biweight Median Median filter 0 0
Biweight Linear regression Median filter 0.014 0.07
Square Mean Hampel filter 0 0.004
Square Median Hampel filter 0.002 0.004
Square Linear regression Hampel filter 0.014 0.064

Absolute Mean Hampel filter 0 0
Absolute Median Hampel filter 0 0
Absolute Linear regression Hampel filter 0.01 0.06
Biweight Mean Hampel filter 0 0
Biweight Median Hampel filter 0 0.002
Biweight Linear regression Hampel filter 0.012 0.07

Table A.2: Results of testing change point detection methods on a random walk with a single change point in drift, using Xt .
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Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0.02 0.042
Square Median No filter 0.016 0.064
Square Linear regression No filter 0.002 0.014

Absolute Mean No filter 0.032 0.078
Absolute Median No filter 0.032 0.126
Absolute Linear regression No filter 0.046 0.076
Biweight Mean No filter 0.01 0.026
Biweight Median No filter 0.024 0.076
Biweight Linear regression No filter 0.02 0.044
Square Mean Median filter 0.046 0.122
Square Median Median filter 0.046 0.124
Square Linear regression Median filter 0.258 0.424

Absolute Mean Median filter 0.134 0.262
Absolute Median Median filter 0.086 0.2
Absolute Linear regression Median filter 0.36 0.604
Biweight Mean Median filter 0.036 0.09
Biweight Median Median filter 0.008 0.032
Biweight Linear regression Median filter 0.236 0.456
Square Mean Hampel filter 0.046 0.112
Square Median Hampel filter 0.048 0.128
Square Linear regression Hampel filter 0.272 0.442

Absolute Mean Hampel filter 0.148 0.298
Absolute Median Hampel filter 0.1 0.218
Absolute Linear regression Hampel filter 0.364 0.604
Biweight Mean Hampel filter 0.03 0.066
Biweight Median Hampel filter 0.014 0.026
Biweight Linear regression Hampel filter 0.26 0.47

Table A.3: Results of testing change point detection methods on a random walk with a single change point in level, with a constant drift
using Xt .
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Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0.018 0.042
Square Median No filter 0.04 0.096
Square Linear regression No filter 0.022 0.046

Absolute Mean No filter 0.036 0.078
Absolute Median No filter 0.05 0.106
Absolute Linear regression No filter 0.084 0.146
Biweight Mean No filter 0.018 0.03
Biweight Median No filter 0.026 0.042
Biweight Linear regression No filter 0.028 0.066
Square Mean Median filter 0.028 0.112
Square Median Median filter 0.036 0.118
Square Linear regression Median filter 0.21 0.742

Absolute Mean Median filter 0.028 0.106
Absolute Median Median filter 0.026 0.1
Absolute Linear regression Median filter 0.212 0.764
Biweight Mean Median filter 0.016 0.072
Biweight Median Median filter 0.008 0.036
Biweight Linear regression Median filter 0.2 0.678
Square Mean Hampel filter 0.064 0.144
Square Median Hampel filter 0.062 0.138
Square Linear regression Hampel filter 0.464 0.71

Absolute Mean Hampel filter 0.064 0.108
Absolute Median Hampel filter 0.07 0.11
Absolute Linear regression Hampel filter 0.492 0.76
Biweight Mean Hampel filter 0.02 0.038
Biweight Median Hampel filter 0.024 0.056
Biweight Linear regression Hampel filter 0.316 0.578

Table A.4: Results of testing change point detection methods on a random walk with a single change point in both level and drift, using
Xt .
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A.2. Using ∇X t

Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0.002 0.014
Square Median No filter 0 0
Square lG No filter 0.002 0.014

Absolute Mean No filter 0 0.002
Absolute Median No filter 0 0
Absolute lG No filter 0 0
Biweight Mean No filter 0 0
Biweight Median No filter 0 0
Biweight lG No filter 0 0
Square Mean Median filter 0.01 0.036
Square Median Median filter 0 0
Square lG Median filter 0.036 0.174

Absolute Mean Median filter 0.016 0.042
Absolute Median Median filter 0 0
Absolute lG Median filter 0 0
Biweight Mean Median filter 0.004 0.016
Biweight Median Median filter 0 0
Biweight lG Median filter 0 0.008
Square Mean Hampel filter 0.026 0.088
Square Median Hampel filter 0.016 0.056
Square lG Hampel filter 0.028 0.1

Absolute Mean Hampel filter 0.006 0.014
Absolute Median Hampel filter 0 0.002
Absolute lG Hampel filter 0.002 0.002
Biweight Mean Hampel filter 0 0.01
Biweight Median Hampel filter 0 0.008
Biweight lG Hampel filter 0 0.002

Table A.5: Results of testing change point detection methods on a random walk with a single change point in level, without drift using
∇Xt .
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Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0 0.004
Square Median No filter 0 0
Square lG No filter 0 0.006

Absolute Mean No filter 0.006 0.022
Absolute Median No filter 0.002 0.024
Absolute lG No filter 0 0.002
Biweight Mean No filter 0.006 0.022
Biweight Median No filter 0.004 0.024
Biweight lG No filter 0 0.002
Square Mean Median filter 0.038 0.13
Square Median Median filter 0.026 0.12
Square lG Median filter 0.014 0.04

Absolute Mean Median filter 0 0.014
Absolute Median Median filter 0.016 0.078
Absolute lG Median filter 0.004 0.008
Biweight Mean Median filter 0.046 0.216
Biweight Median Median filter 0.028 0.136
Biweight lG Median filter 0.024 0.096
Square Mean Hampel filter 0.004 0.018
Square Median Hampel filter 0.03 0.088
Square lG Hampel filter 0.002 0.012

Absolute Mean Hampel filter 0.016 0.06
Absolute Median Hampel filter 0.024 0.102
Absolute lG Hampel filter 0.01 0.04
Biweight Mean Hampel filter 0.042 0.168
Biweight Median Hampel filter 0.046 0.152
Biweight lG Hampel filter 0.026 0.08

Table A.6: Results of testing change point detection methods on a random walk with a single change point in drift, using ∇Xt .
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Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0.002 0.014
Square Median No filter 0 0
Square lG No filter 0.002 0.014

Absolute Mean No filter 0.002 0.006
Absolute Median No filter 0.002 0.002
Absolute lG No filter 0 0
Biweight Mean No filter 0 0.004
Biweight Median No filter 0 0
Biweight lG No filter 0 0
Square Mean Median filter 0.002 0.034
Square Median Median filter 0.014 0.038
Square lG Median filter 0.006 0.036

Absolute Mean Median filter 0.004 0.024
Absolute Median Median filter 0.004 0.008
Absolute lG Median filter 0.002 0.004
Biweight Mean Median filter 0.002 0.004
Biweight Median Median filter 0.004 0.012
Biweight lG Median filter 0 0.002
Square Mean Hampel filter 0.006 0.044
Square Median Hampel filter 0.006 0.036
Square lG Hampel filter 0.01 0.044

Absolute Mean Hampel filter 0.006 0.02
Absolute Median Hampel filter 0.002 0.012
Absolute lG Hampel filter 0.002 0.006
Biweight Mean Hampel filter 0.006 0.008
Biweight Median Hampel filter 0.006 0.008
Biweight lG Hampel filter 0.002 0.002

Table A.7: Results of testing change point detection methods on a random walk with a single change point in level, with a constant drift
using ∇Xt .
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Cost function Estimator Type of filter Exact efficiency Efficiency |τ−τc | ≤ 2
Square Mean No filter 0.006 0.01
Square Median No filter 0.002 0.004
Square lG No filter 0.006 0.01

Absolute Mean No filter 0.02 0.046
Absolute Median No filter 0.012 0.03
Absolute lG No filter 0 0
Biweight Mean No filter 0.006 0.018
Biweight Median No filter 0.004 0.016
Biweight lG No filter 0 0
Square Mean Median filter 0.012 0.032
Square Median Median filter 0.002 0.012
Square lG Median filter 0.028 0.086

Absolute Mean Median filter 0.026 0.072
Absolute Median Median filter 0 0.002
Absolute lG Median filter 0 0
Biweight Mean Median filter 0.014 0.068
Biweight Median Median filter 0.002 0.006
Biweight lG Median filter 0.002 0.014
Square Mean Hampel filter 0.012 0.056
Square Median Hampel filter 0.078 0.192
Square lG Hampel filter 0.01 0.062

Absolute Mean Hampel filter 0.018 0.136
Absolute Median Hampel filter 0.05 0.136
Absolute lG Hampel filter 0.002 0.006
Biweight Mean Hampel filter 0.108 0.256
Biweight Median Hampel filter 0.056 0.17
Biweight lG Hampel filter 0.012 0.024

Table A.8: Results of testing change point detection methods on a random walk with a single change point in both level and drift, using
∇Xt .
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