
Reproducing the concept of ordered landmarks in planning
The effect of ordered landmarks on plan length in forward search

Paul Tervoort1

Supervisor(s): Sebastijan Dumančić1, Issa Hanou1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Paul Benjamin Tervoort

Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Issa Hanou, Luı́s Miranda da Cruz

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
A lot of research has been conducted to make the
task of plan generation more efficient. One idea to
do so is the use of landmarks, which are sub-goals
that must be true in every solution to the problem.
The approximation of landmarks has a lower com-
plexity than solving the task itself, and they can be
used to guide the planner in the right direction. In
previous work, ideas to order landmarks are pro-
posed and compared to algorithms that do not use
them. We verify if this comparison is fair by testing
both algorithms implemented in the same language
and framework. In our experiment not many prob-
lem instances finish in time, but those that do are in
line with previous experiments in that on average
planners using landmarks produce longer solutions
than planners that do not use them.

1 Introduction
Planning algorithms aim to generate an ordered list of actions
to get from the initial state to some target state. This type of
algorithm is useful in applications where a significant amount
of steps need to be performed to reach a goal, for example
when a robotic arm has to reach certain positions [1]. The
problem of planning is PSPACE-hard [2], so research in this
field has to rely on heuristics to invent algorithms that give
acceptable results in a realistic time frame.

One promising heuristic to reduce the running time of a
planning algorithm is that of ordered landmarks [3]. A land-
mark of a planning problem is a fact that needs to be true at
some point in all valid solutions for the problem [4]. A list of
landmarks can be ordered, which means that for each land-
mark to be true, all other landmarks earlier in the list must
have been true before reaching it. If a landmark is reached
earlier than landmarks ordered before it, the planner must re-
vert this achievement before the goal can be reached. Por-
teous et al. [2001] implemented a planning algorithm that
exploits ordered landmarks and is compared against previous
work [4], but differences in the implementation details of dif-
ferent algorithms can lead to a bias in the test results.

In this paper we answer the question How do ordered land-
marks affect the solution length of forward search planning in
the SymbolicPlanners framework? This question is important
to answer because there are use cases where a shorter plan is
more important than a shorter execution time. If this question
is answered then better-informed decisions can be made about
whether to use landmarks in a planner or not. To answer our
research question we answer the following sub-questions:

• Can the solution lengths for planning problems in previ-
ous work be repeated using a different implementation?

• How does the solution length of an implementation using
ordered landmarks differ from an implementation using
the same framework but without using landmarks?

Planners using landmarks from previous work give longer
solutions [4] while giving shorter plans in other work [5]. We
challenge the hypothesis that the results in [4] correctly re-
flect the differences between the compared algorithms. Our

Figure 1: An example Blocksworld task [4, fig. 1].

research question is answered by verifying their findings. The
alternative hypothesis is that the different results are caused
by different implementations of their approach and the com-
pared algorithm. We take the alternative hypothesis if obtain-
ing the solution lengths from our experiment has a probability
of less than 10% under the assumption that the plan lengths
in [4] are correct.

In section 2 specific terminology for the paper is explained
and section 3 highlights the most closely related previous
work. Section 4 sets out the methodology for the research.
The results of the experiments are listed in section 5. In sec-
tion 6 we defend that the choices made during the research
are ethical and justified and we reflect on the results of the re-
search in section 7. In conclusion, we discuss open questions
and future work in section 8.

2 Background
In this section, we will introduce important concepts and def-
initions that are used in this paper. In other sections in the
paper is assumed that these are understood by the reader.

A planning domain abstractly models a type of envi-
ronment. This includes possible object types, global or
object-related properties and actions that can modify these
properties. Figure 1 visualizes an example problem in the
Blocksworld domain [6].

A planning problem describes a desired goal state which
has to be reached starting from an initial state. The objects
which exist in the problem instance are also defined. A
planning domain must be connected to infer the behavior of
these objects and what actions are available to reach the goal
state. A planning problem is formally defined in [7]:

Definition 1. (Planning problem)
A planning problem is a 4-tuple Π = ⟨F,A, I,G⟩ where

• F is a finite set of propositional state variables,

• A is a finite set of actions, each with associated recon-
ditions pre(a) ⊆ F , add effects add(a) ⊆ F , delete
effects del(a) ⊆ F and cost cost(a) ∈ R+

0 + 0,

• I ⊆ F is the initial state, and

• G ⊆ F is the set of goals.

[7, p. 335, def. 1]

PDDL [8] is a language to describe planning problems and
their domains using predicates. The algorithms in this paper
only accept a subset of PDDL called STRIPS [9]. Within this
paper, PDDL refers to this subset.



Figure 2: The states in two valid plans for the problem in Figure 1.
States where one of the blocks is being held are not shown because
they are not meaningful for this illustration. An interesting new
predicate is shown for each step. Proposition On(A,C) is not a
landmark. Landmark Clear(C) is reasonably ordered before land-
mark On(B,D).

Forward search is a family of planning algorithms [10].
These algorithms model a planning problem as a graph and
search this graph using the A* algorithm [11] until a node is
reached which satisfies the goal of the problem. The differ-
ence in algorithms within this family is the use of different
heuristics guide A* [10].

A landmark for a planning problem is a proposition that
must become true in all valid solutions for the problem
[4]. For the example problem in Figure 1, the proposition
Clear(C) is considered a landmark because C must be clear
to allow it to be picked up and placed on A. All proposi-
tions that are true in the goal state are trivial landmarks [4].
Figure 2 illustrates two solutions for the problem in Figure 1
and shows where landmark Clear(C) and trivial landmark
On(B,D) become true. Solution 2 shows that proposition
On(A,C) is not a landmark because this solution reaches the
goal without a state in which proposition On(A,C) is true.

A landmark A is reasonably ordered before a landmark B
if B must be false to make A true in all plans. In Figure 2
landmark Clear(C) is reasonably ordered before On(B,D).
In solution 2 landmark On(B,D) is reached early but is made
false again in step 2 in the process of reaching landmark
Clear(C) which adds unnecessary steps. This illustrates how
ordering landmarks can help to make more efficient plans.

3 Related Work
In this section related research and software are mentioned.
We explain how these are connected to our research and what
value they add, or how they approach the topic differently.

We verify the experiment from [4] in our research. This pa-
per introduces reasonable landmark orders as a type of land-
mark order. This paper proposes a method for not only order-
ing the goal terms in a problem but also landmarks that are
not in the goal state. In their experiment, the new approach is
often faster than their reference implementation, but the plans
have more steps on average.

SymbolicPlanners is a framework that contains implemen-
tations of different planning algorithms [12]. The algorithms
in this framework take as input planning problems in PDDL
format and the framework contains test problems that can be
used as benchmarks. SymbolicPlanners is implemented in the
Julia language [13].

Different methods to use landmarks to help with planning
are explored in [5]. One of these methods which uses land-
marks as intermediary goals is also proposed in [4]. [5] also
mentions a technique to use landmarks to compute a heuris-
tic for a forward search planner [10]. The algorithms in this
paper are implemented in the SymbolicPlanners framework
[12][14], and we will use those implementations for our ex-
periment.

Fast Downward is an implemented planner program for
PDDL instances [15]. This planner is open-source and uses
concepts from [4]. We use this planner for inspiration dur-
ing the implementation of our landmark extraction algorithm.
Fast Downward contains multiple planning algorithms and
heuristics. A notable difference compared to other forward
search [10] planners is that they internally represent proposi-
tions as facts that are explicitly true or false [15].

Fast-Forward is a heuristic intended for forward search
planning [16]. This heuristic uses a Relaxed Planning Graph
(RPG) [17] to estimate which actions are most likely to cause
the goal state. A planner using Fast-Forward represents pre-
vious work for the experiment in [4]. In our research, we will
also compare the experiment results to a planner which uses
this heuristic. Both Fast-Forward and a planner that can use
this heuristic are implemented in SymbolicPlanners [12].

Zhu and Givan (2003) extract landmarks by propagating a
relaxed planning graph. Their method can extract more land-
marks than the landmark exploration in [4]. Methods to ex-
tract information other than landmarks using planning graph
propagation are also mentioned in this paper [18]. Some tech-
niques for landmark extraction from this work are also found
in the part of Fast Downward which we used as inspiration
for our implementation.

4 Methodology
We explain the steps of our experiment. This section should
provide enough details to reproduce the experiment. To an-
swer the research question we first answer the two mentioned
sub-questions.

To answer the first sub-question, we create an implemen-
tation of an algorithm that extracts ordered landmarks from a
problem and uses this information for plan generation. Then



we run the algorithm on the problem instances used in [4].
These are found in the experiments branch of Symbolic-
Planners [12] and other repositories [19][20][21]. We com-
pare the lengths of the plans generated by our algorithm with
the lengths in [4], both relative to a planner using the Fast-
Forward heuristic [16]. A t-test [22] will be conducted to
compare both results sets. We assume that both sets are sam-
ples from the same general difference in plan length between
planners with- and without using landmarks. If the proba-
bility that this assumption is true is ≤ 10% we accept the
alternative hypothesis. If not then the plan lengths in [4] are
reproduced successfully.

If sub-question one is answered positively, the answer to
the second sub-question is in line with previous work. To an-
swer this question we compare the average solution lengths of
our and previous experiments, both in general and per plan-
ning domain. For this comparison, the data obtained for an-
swering sub-question one is used.

We implement a planning algorithm within the Symbol-
icPlanners framework which uses landmarks as described in
[4]. Common steps in planning from the framework are
reused in this implementation. This minimizes the effect
of differences in implementation when the new algorithm is
compared against a forward search [10] algorithm with Fast-
Forward heuristic from SymbolicPlanners [16][12].

For algorithm implementation, the programming language
that we used is Julia [13]. Julia is chosen because it is fast for
an interpreted language. It can pre-compile parts of the code
before execution. SymbolicPlanners is implemented in Julia,
and to make our code compatible with this framework it helps
to use the same language.

Because [4] does not contain pseudo-code for landmark ex-
traction or subroutines used in it, we used Fast Downward
[15] as inspiration for the implementation of ordered land-
mark extraction. This planner program implements the ideas
from [4], is open-source and has a public license1. For using
extracted landmarks in a planner we used the heuristic and
planner from [14]. These implementations are developed to-
gether with our landmark extraction algorithm and they can
be used together. Our implementation will refer to our land-
mark extraction implementation used together with a planner
from [14].

The algorithm implementation for our experiment can be
found on GitHub2. This branch contains the code that pro-
duced the results in this paper together with the raw experi-
ment result files. Also, the pseudo-code for our ordered land-
mark extraction algorithm is in algorithm 1.

5 Experimentation Results
In this section, the results of our experiment are explained and
interpreted. We explain how the data in the tables and charts
are obtained from the raw experiment results.

Our planner implementation is executed with all test prob-
lems listed in [4, Fig. 5]. For each instance, landmarks are

1https://www.gnu.org/licenses/gpl-3.0.en.html
2https://github.com/PaulTervoort/SymbolicPlanners.jl-

landmarks/tree/experiment-reproducing-the-concept-of-ordered-
landmarks-in-planning

Algorithm 1: Ordered landmark generation
Data: (F,A, I,G)
P ← build planning graph(F, A, I, G);
N ← ⟨⟩;
E ← ⟨⟩;
Q← ⟨⟩;
foreach f ∈ I do
enqueue(Q, f);

end
while ¬empty(Q) do

n← dequeue(Q);
foreach p ∈ prerequisites in graph(n, P) do

if ¬reach without prop(p, G) then
enqueue(Q, p);
insert(N, p);
insert(E, (p, n));

end
end
foreach n1 ∈ N do

if true in state(n1, G) then
foreach n2 ∈ N do

if interferes(n1, n2) then
insert(E, (n1, n2));

end
else

foreach n2 ∈ interesting nodes(n1) do
if interferes(n1, n2) then
insert(E, (n1, n2));

end
end
Result: (N,E)

Domain Task [4, Fig. 5] Table 2
Blocksworld bw-large-a 1.33 1.50
Blocksworld bw-large-b 0.80 1.44
Blocksworld bw-large-c - 1.07
Blocksworld bw-large-d 0.86 1.83

Logistics prob-4-0 - 1.45
Logistics prob-6-0 - 1.00
Logistics prob-8-0 - 1.00
Logistics prob-10-0 - 1.02
Logistics prob-12-0 - 1.21
Logistics prob-38-0 1.28 -
Logistics prob-39-0 1.20 -
Logistics prob-40-0 1.26 -
Logistics prob-41-0 1.25 -
Tireworld fixit-1 1.00 1.00
Tireworld fixit-2 - 1.07
Tireworld fixit-3 - 1.05
Tireworld fixit-10 1.15 -

Table 1: Relative solution lengths algorithm using landmarks com-
pared to Fast-Forward. This is FF-v1.0+L/FF-v1.0 in [4, Fig. 5]
and LM+FF/FP+FF in Table 2.

https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/PaulTervoort/SymbolicPlanners.jl-landmarks/tree/experiment-reproducing-the-concept-of-ordered-landmarks-in-planning
https://github.com/PaulTervoort/SymbolicPlanners.jl-landmarks/tree/experiment-reproducing-the-concept-of-ordered-landmarks-in-planning
https://github.com/PaulTervoort/SymbolicPlanners.jl-landmarks/tree/experiment-reproducing-the-concept-of-ordered-landmarks-in-planning


FP+FF FP+LM LM+FF
Domain Task Steps Steps Steps

Blocksworld bw-large-a 12 12 18
Blocksworld bw-large-b 18 - 26
Blocksworld bw-large-c 28 - 30
Blocksworld bw-large-d 36 - 66

Grid prob01 14 - -
Grid prob02 - - -
Grid prob03 - - -
Grid prob04 - - -
Grid prob05 - - -

Logistics prob-38-0 - - -
Logistics prob-39-0 - - -
Logistics prob-40-0 - - -
Logistics prob-41-0 - - -
Tireworld fixit-1 19 19 19
Tireworld fixit-10 - - 120
Tireworld fixit-20 - - -
Tireworld fixit-30 - - -
Freecell prob-7-1 - - -
Freecell prob-7-2 - - -
Freecell prob-7-3 - - -
Freecell prob-8-1 - - -
Freecell prob-8-2 - - -
Freecell prob-8-3 - - -
Freecell prob-9-1 - - -
Freecell prob-9-2 - - -
Freecell prob-9-3 - - -
Freecell prob-10-1 - - -
Freecell prob-10-2 - - -
Freecell prob-10-3 - - -
Freecell prob-11-1 - - -
Freecell prob-11-2 - - -
Freecell prob-11-3 - - -

Extra
Logistics prob-4-0 20 20 29
Logistics prob-6-0 25 25 25
Logistics prob-8-0 31 - 31
Logistics prob-10-0 45 - 46
Logistics prob-12-0 42 - 51
Logistics prob-14-0 - - -
Tireworld fixit-2 30 30 32
Tireworld fixit-3 41 - 43
Tireworld fixit-4 - - 54
Tireworld fixit-5 - - 65
Freecell prob-2-1 - - -
Freecell prob-2-2 - - -
Freecell prob-2-3 - - -

Table 2: Comparison between a forward planner using the FastFor-
ward heuristic (FP+FF), a forward planner using an ordered land-
marks heuristic (FP+LM) and a planner which uses landmarks as
sub-goals and solves these using FP+FF (LM+FF). The extra in-
stances are smaller problems from the same dataset which have a
higher probability to terminate.

0.8 1 1.2 1.4 1.6 1.8

[4, Fig. 5]

Table 2

Figure 3: Distribution of the lengths of solutions from the algorithm
using landmarks relative to Fast-Forward.

Set Size Mean Std. Dev.
A 9 1.13 0.19
B 12 1.22 0.27

Table 3: Statistics of sets A and B, where A is [4, Fig. 5] from
Table 1 and B is Table 2.

extracted after which all algorithms are run up to four times.
All tasks are performed by an AMD Ryzen 7 5800H™ Pro-
cessor clocked at 4.45GHz and are stopped if running longer
than 10 minutes or consuming more than 7Gb of memory.
The resulting solution lengths are collected in Table 2 and the
complete data is included with the experiment code.

Not many executions finish within the time and memory
constraints, while in [4] most problems finish within ten sec-
onds and a peak of under seven minutes. A reason for this
difference might be that SymbolicPlanners is less efficient
than the implementations in [4], given that the baseline al-
gorithm is also slower. Our algorithm which uses a heuristic
based on landmarks finishes only for a few small problems
and is therefore not useful for comparison. In the Grid and
Freecell domains, no problem has more than one planner
finishing and they are therefore also not used for comparison.

Both other algorithms in our experiment finish on some
larger problems but not enough for comparison, so we added
some smaller instances to the experiment from the same
datasets as the larger problems used in [4] for those domains
that have more instances available. Because for comparison
the data is normalized such that Fast-Forward has a length of
1.0, the extra results are useful to model general differences
in solution length. The solution lengths can be found in Ta-
ble 2 for our experiment and in [4, Fig. 5] for the reference
values. The normalized lengths of the problems which are
used for the comparison are in Table 1. Figure 3 visualizes
the distribution of this data.

Let the relative lengths from the experiment of [4] be set
A, and let the relative lengths from our experiment be set B.
The size, mean and standard deviation from these sets are cal-
culated and are listed in Table 3. With these values, Welch’s
t-test [22] gives tw = 0.93 and dfw = 18. For 18 degrees of
freedom and 10% significance level t = 1.73 [23]. Because
tw ≤ t, it is not probable that A and B are samples from
different output sets.

In [4, Fig. 5] the average solution length of the planner
using landmarks is 13% longer compared to the planner that
does not use landmarks. In our experiment, this difference
is 22%. From the compared domains, Blocksworld has the
greatest relative difference in average solution length between
the two experiments as can be seen in Figure 4. Instance bw-



Blocksworld Logistics Tireworld

1

1.2

1.4

R
el

at
iv

e
so

lu
tio

n
le

ng
th

[4, Fig. 5] Table 2

Figure 4: Average length of solutions found by the algorithm using
landmarks relative to Fast-Forward. Averages are per domain.

large-d influences this difference significantly while the dif-
ferences between experiments are under 15% for the other
compared domains.

6 Responsible Research
An important aspect of research is the verification of other
results through reproducing them because it keeps science re-
liable. This is also stated in the Netherlands Code of Conduct
for Research Integrity [24, 3.4] which is supported by TU
Delft. To facilitate this in the field of computer science, it is
important to make the code that was used for an experiment
available to other researchers or provide a sufficiently detailed
pseudo-code that describes all subroutines that can influence
the results of the experiment. For paper [4], of which we try
to reproduce the results, neither can be found. The names of
the problem instances used are listed in the paper and can be
found on the internet, but it is not possible to guarantee that
they are the same instances.

To fill in these uncertainties for the experiment we had to
make assumptions, which possibly do not reflect the choices
of the author. SymbolicPlanners has an Apache 2.03 license,
and our code for this research which is based on it inherits
the licence. The code and experiment files of our research are
publicly available, so the results can be verified. Also, other
researchers can use them to verify whether our assumptions
are correct and are in line with the assumptions in [4].

7 Conclusions and Future Work
Forward search is a type of planning algorithm that uses the
A*-algorithm to search for valid plans based on a heuristic.
Ordered landmarks are information about a planning problem
that can be used to guide this algorithm. We have researched
the question How do ordered landmarks affect the solution

3https://www.apache.org/licenses/LICENSE-2.0

length of forward search planning in the SymbolicPlanners
framework?

To answer this question we first found an answer to the
question Can the solution lengths for planning problems in
previous work be repeated using a different implementation?
We have implemented the ideas of Porteous et al. [4] and
compared the plan lengths of this implementation to their re-
sults. We obtained marginally different plan lengths using
our implementation, but we can conclude that these relative
differences are not significant.

We have established that we can repeat the results from
previous work with our implementation and we use this im-
plementation to answer the question How does the solution
length of an implementation using ordered landmarks dif-
fer from an implementation using the same framework but
without using landmarks? We compared the plan lengths
produced by our implementation to a forward search plan-
ner with the Fast-Forward [16] heuristic, which are both im-
plemented in the SymbolicPlanners framework. Our imple-
mentation using landmarks generated on average 22% longer
plans, so we conclude that the idea from Porteous et al. [4]
implemented in SymbolicPlanners negatively impacts solu-
tion length. This answers the main question of our research.

In our experiment, the algorithm did not solve many prob-
lems within time constraints, but the Fast-Forward planner
from SymbolicPlanners to which we compared our imple-
mentation also did not. Porteous et al. [4] also compared
their algorithm to Fast-Forward and there it did finish within
time constraints. Further research can answer how the Sym-
bolicPlanners framework affects the running time of planners
that use this framework. In the future performance issues with
our implementation can be solved to collect more results for
comparison.

8 Discussion
We attempted to reproduce the results in [4] with our exper-
iment but their method is not properly reproducible. We had
to make some assumptions which can influence the results.
Fast-Downward [15] uses ideas that are discovered after [4]
was published. Some subroutines in our implementation that
are inspired by Fast-Downward may include newer ideas.

We have confirmed that the planning algorithm from [4]
using landmarks does on average produce longer plans than a
forward planner with the Fast-Forward heuristic. It is possible
that [5] presents more optimistic results, or their idea works
better for generating shorter plans.

References
[1] S. M. LaValle, PLANNING ALGORITHMS. Cambridge

University Press, 2006.
[2] K. Solovey, “Complexity of planning,” ArXiv,

vol. abs/2003.03632, 2020.
[3] J. Contact and L. Sebastia, “Extracting landmarks and

ordering them for planning,” 07 2001.
[4] J. Porteous, L. Sebastia, and J. Hoffmann, “On the ex-

traction, ordering, and usage of landmarks in planning,”



in ECP-01. Sixth European Conference on Planning,
Toledo, Spain, pp. 37–48, 2001.

[5] S. Richter, M. Helmert, and M. Westphal, “Landmarks
revisited,” in AAAI Conference on Artificial Intelli-
gence, 2008.

[6] J. Slaney and S. Thiébaux, “Blocks world revisited,” Ar-
tificial Intelligence, vol. 125, no. 1, pp. 119–153, 2001.

[7] E. Keyder, S. Richter, and M. Helmert, “Sound and
complete landmarks for and/or graphs,” in Proceedings
of the 2010 Conference on ECAI 2010: 19th European
onference on Artificial Intelligence, (NLD), p. 335–340,
IOS Press, 2010.

[8] M. Helmert, An Introduction to PDDL, 2014.
[9] R. E. Fikes and N. J. Nilsson, “Strips: A new approach

to the application of theorem proving to problem solv-
ing,” Artificial Intelligence, vol. 2, no. 3, pp. 189–208,
1971.

[10] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling,
“Backward-forward search for manipulation planning,”
in 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, Sept. 2015.

[11] B. Anderson, A* Search, 2007.
[12] T. Zhi-Xuan, “SymbolicPlanners.jl,” Feb. 2023.
[13] J. Bezanson, A. Edelman, S. Karpinski, and V. B.

Shah, “Julia: A fresh approach to numerical comput-
ing,” SIAM Review, vol. 59, pp. 65–98, Sept. 2017.

[14] B. van Maris, “Landmarks in planning: Using land-
marks as intermediary goals or as a pseudo-heuristic,”
2024.

[15] M. Helmert, “The fast downward planning system,” J.
Artif. Int. Res., vol. 26, p. 191–246, jul 2006.

[16] J. Hoffmann, “Ff: The fast-forward planning system,”
in AAAI Vol. 22 No. 3: Fall 2001, vol. 22, p. 57, Sep.
2001.

[17] E. Delisle, Variable Elimination Example, 2014.
[18] L. Zhu and R. Givan, “Landmark extraction via plan-

ning graph propagation,” 2003.
[19] U. of Potsdam, “pddl-instances,” 2016.
[20] H. Kautz and B. Selman, “Blackbox,” 2018.
[21] M. A. Christian Muise, Rowan Monk, “classical-

domains,” 2015.
[22] Z. Lu and K.-H. Yuan, Welch’s t test, pp. 1620–1623.

Thousand Oaks, CA: Sage, 01 2010.
[23] B. B. Gerstman, “t-table,” tech. rep., San José State Uni-

versity, 2007.
[24] K. N. N. T. federatie; Vereniging Hogescholen; VSNU,

Nederlandse gedragscode wetenschappelijke integriteit.
DANS, 2018.


	Introduction
	Background
	Related Work
	Methodology
	Experimentation Results
	Responsible Research
	Conclusions and Future Work
	Discussion

