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Abstract
The goal of this thesis is expanding quantum algorithm datasets to enhance our
capability to benchmark quantum systems and to open up possibilities for using
machine learning techniques in quantum circuit mapping. Both of these areas are
currently hindered by the lack of a wide range of useful quantum algorithms. To
solve this problem, KetGPT is presented, a model that uses the revolutionary
transformer machine learning architecture to generate synthetic, yet realistic

looking, quantum circuits. By visual inspection, KetGPT generated circuits are
easily distinguishable from random circuits, and show desirable qualities such as
structure and human-like programming factors including applying gates in the

order of ascending qubits. Consequently, they might be more suitable for certain
tasks like benchmarking and training a reinforcement learning compiler. In an
attempt to quantify the quality of circuits generated by KetGPT, a separate

transformer classifier model was trained on the task of classifying the synthetic
circuits generated by KetGPT as either real circuits, or as random circuits.
However, although this classifier might capture realistic features of quantum

circuits, the classifier has not been unambiguously proven to be reliable, and can
therefore not be used as a standalone tool to determine the quality of KetGPT

generated quantum circuits. Nevertheless, KetGPT and the transformer classifier
are novel, promising approaches in an attempt to expand quantum algorithm

datasets.
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1 Introduction
The emergence of transformer models [1], that are part of the technology behind
ChatGPT [2], has caused a paradigm shift in the field of natural language processing.
These models are used for realistic text and code generation [3, 4] and they achieve
impressive performance on these tasks by capturing important information about
the structure of sequences of data, and make it possible to use this information to
generate new synthetic, but realistic looking, data.

Simultaneously, another potentially groundbreaking technology is being developed:
quantum computers. Quantum computers are a promising type of computers that,
in theory, can solve certain problems faster than classical computers can [5]. To solve
those problems, quantum algorithms need to be carried out on those quantum com-
puters using quantum circuits, that are defined using quantum code like Quantum
Assembly (QASM) [6]. However, at the moment there are only a handful of quantum
algorithms that are known to solve a useful problem in a way that is faster than with
classical algorithms, which makes it challenging to benchmark those quantum com-
puters and related software. Furthermore, there are machine learning applications
where there is a need for a large dataset of quantum algorithms [7, 8].

In an attempt to address these problems in quantum computing, and inspired by
the paradigm shift in natural language processing, the problem statement of this
thesis is as follows:

“Can transformer models be used to generate realistic-looking quantum
circuits to expand quantum algorithm datasets?”

To resolve this question, this thesis introduces KetGPT: a transformer model that
is capable of generating realistic-looking quantum circuits. Furthermore, a method
to determine the quality of the generated QASM code is proposed, using a different
transformer model specifically designed for this task.

The remainder of the thesis is structured as follows: in Section 2, background on
quantum algorithms is provided in order to acquaint the reader with quantum com-
puting. In Section 3, transformer models are introduced, the highly influential type
of machine learning models that excel in generative tasks like generating data. Sec-
tion 4 introduces the main contribution of this thesis: KetGPT, a transformer model
specifically designed to generate data that is useful for quantum computing purposes.
It describes how to generate QASM files using these transformer models, and in this
section a method to quantify how realistic these QASM files are is proposed. In
Section 5 the results are presented and the generated QASM files are examined.
Section 6 contains a discussion of the presented results, and a conclusion is presen-
ted in Section 7. Section 8 elaborates on suggestions for future work. Ultimately,
supplementary information like the Python code, the dataset that was used, and
examples of generated QASM files are brought forward in Section 9.
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2 Quantum Algorithms and Computation
In general, algorithms are sequences of operations that transform an input to an
output, often in the context of achieving a certain goal [9]. For example in classical
computing if we want to find a certain number in a list of numbers, an algorithm
to find that specific number could be: start at the beginning of the list and check
if that number is the number you are looking for, if not: check the next one until
you find the desired number. The output of this algorithm would be the position
of the number in the list. As this example shows, in the context of algorithms we
usually have a problem, an idea to solve this problem, and a structured description
of how to solve this problem. This structured description of how to solve problems
can be in the form of natural language, but can also be formalised and written in
the form of code. Quantum algorithms are a certain class of algorithms that can be
implemented on quantum computers using quantum code, like Quantum assembly
(QASM) [6]. Some of these algorithms are particularly interesting since they could
solve some problems faster than classical computers can solve these problems [5]. In
this section, a short overview of current algorithms will be presented, followed by a
general description of the systems that are needed to execute these algorithms, and
finally some comments on benchmarking these systems.

2.1 Overview of Quantum Algorithms

“The Quantum Algorithm Zoo” [10] is a catalog of quantum algorithms that gives a
rough idea of how many quantum algorithms exist that have a so called “quantum
speedup”, i.e. quantum algorithms that can solve problems in less time than the
best known classical algorithms can solve these problems [11]. At the time of writing
there are 64 entries, and although this number itself is rather arbitrary, since for
example some machine learning applications are grouped and counted as one, the
main takeaway from this number is that it signifies that there are only a limited
number of quantum algorithms that provide a quantum speedup. Furthermore not
all of these algorithms are equally interesting, since some algorithms are only going to
be used for niche domains, having a relatively small societal impact, so it can be said
that quantum algorithms that are expected to be widely used in practice are quite
scarce. Some quantum algorithms that are expected to have a big societal impact
are for example [5]: Grover’s search algorithm [12], Shor’s factoring algorithm [13]
and the quantum algorithm for solving linear systems of equations (commonly called
HHL) [14]. Some reasons why the amount of useful algorithms are scarce could be:
classical algorithm designers need specialised education to be able to design quantum
algorithms, quantum mechanics is counter-intuitive for humans and the applications
can be very technical and specialised [15].
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2.2 QASM Files and Quantum Circuits

As mentioned in the introduction to this section, Quantum algorithms are conven-
tionally encoded using Quantum assembly (QASM). An example of a QASM file,
containing QASM code is shown in Figure 1a. We can also graphically depict the
circuit for this QASM code, this circuit is shown in Figure 1b.

(a) An example of QASM code. (b) Corresponding circuit.

Figure 1: QASM code with corresponding circuit.

Lines in the QASM file from Figure 1a correspond to an operation: line 5 dictates
that a hadamard gate [16] should be performed on qubit 0, and line 7 means that a
controlled phase gate [16] is performed between qubit 0 and qubit 1.

2.3 Implementing Quantum Algorithms

To run a quantum algorithm on a quantum computer, the QASM representation of
an algorithm needs to be converted to instructions that a quantum computer can
interpret. This is non trivial due to several factors, including:

• Different quantum hardware implementations can have a different native gate
set, which are the operations that are natively supported by the quantum
hardware device. For example when there is a cx gate in the QASM code,
but cx is not in the device’s native gate set, the cx needs to be converted to
for example a cz gate (possibly by performing extra hadamards on the target
qubit) to make sure this algorithm is able to be executed on this device. As
long as the quantum hardware has a universal gate set, meaning that the
gates from native gate set of the quantum hardware can perform any quantum
computation, this conversion is realisable [17], but might increase the amount
of gates which need to be executed to perform the computation.
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• Different qubit topologies, which put limits on qubit connectivities and there-
fore determines between which qubits it is possible to perform 2-qubit gates.

• And lastly, there are multiple different ways to assign initial qubit numbers (if
you have two physical qubits for example, you can choose which one you call
“qubit 1”). This choice is often interwoven with qubit topology, since it makes
sense to choose them in such a way that qubits that are supposed to interact
are physically able to interact as much as possible, to prevent unnecessary
SWAP gates.

The process of modifying quantum circuits to meet the physical constraints of a
quantum device is called “quantum circuit mapping” [16,18], and is an essential part
of the compilation process. There are many different ways to do quantum circuit
mapping, and to determine which method performs the best, benchmarking suites
have been proposed [19–23].

2.4 Random Circuits for Quantum Circuit Mapping

Random circuits are composed of randomly chosen operations, in contrast to real
circuits where operations are performed with a specific purpose in mind. Because of
the fact that there are not so many useful algorithms, random circuits are deployed
in various tasks related to quantum circuit mapping. Some benchmarking suites
contain random circuits as part of their benchmark [19,23].

Random circuits are also often used in machine learning tasks related to quantum
circuit mapping [8, 24]. They are both used as training data, and for testing how
well the machine learning models perform.
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3 Transformers
Transformer models are popular machine learning models that excel at capturing
dependencies in sequential data. This is why they have revolutionised natural lan-
guage processing [1] and are used in, for example, code generation [4,25], and music
generation [26]. In this chapter, a brief background on these models will be given and
the reason why these models are promising for generating realistic-looking QASM
code will be introduced.

3.1 Evolution of Natural Language Processing Models

Before transformers were introduced, convolutional neural networks (CNNs) [27], re-
current neural networks (RNNs) [28] and long short-term memory networks (LSTMs)
[29] were the standard models used for natural language processing tasks like gen-
erating text. But these models had multiple issues like struggling with long-range
dependencies and lack of parallelisability [1]. To resolve this, researchers developed
the transformer architecture, first published in the highly influential paper “Atten-
tion is All you Need” [1]. Transformer models differentiate themselves from earlier
models because they are parallelisable (and are therefore more suitable for training
on large datasets) and they are able to capture longer-range dependencies.

3.2 Components of a Transformer

Now that the advantages of transformer models have been discussed, we will further
specify how they are structured. First, all the individual components of a trans-
former architecture will be discussed following the path of data flow, then in Section
3.3 the full model architecture will be discussed in its entirety.

3.2.1 Tokenisation of Dataset

In computers, text is represented as a so-called “string”. The calculations we are
going to use, however, work with numbers instead of strings (a list of characters), so
we need to convert those strings to numbers. These numbers are called “tokens” and
this process is called “tokenisation”. Although this part of the process is not strictly
part of the transformer architecture as defined in [1] (rather it is part of dataset
preparation), it is essential in understanding the flow of information through the
transformer network and is therefore included in this section. An example of this
process is shown in Table 1.
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Table 1: Tokenisation Example. Text (in the form of QASM operations) is
provided, and each statement (a line of QASM code) is converted to a number.

The number that is assigned to each statement does not have an intuitive
meaning, rather, it just depends on the way our tokenisation algorithm has ordered
its vocabulary. Tokenising a sequence of statements will create a list of numbers.

QASM Operation Tokenized Sequence

h q [ 0 ] ; [ 9 ]

cx q [ 0 ] , q [ 1 ] ; [ 5 5 ]

swap q [ 1 ] , q [ 2 ] ; [ 1 2 ]

h q [ 0 ] ;
cx q [ 0 ] , q [ 1 ] ; [ 9 , 55 ]

h q [ 0 ] ;
cx q [ 0 ] , q [ 1 ] ;
swap q [ 1 ] , q [ 2 ] ;

[ 9 , 55 , 12 ]

One can imagine that there are multiple ways to divide strings up into numbers,
for example, using the approach shown in Table 1. But we can also convert every
character to a number, e.g.

h q [ 0 ] ;

could also be converted to the 7 integers

[ 8 , 37 , 17 , 38 , 27 , 39 , 40 ]

for the 7 characters including whitespace, instead of just

[ 9 ]

So to characterize the tokenisation process, we need to have a system for dividing
up a sequence into parts, and we need to have a “dictionary” to determine what
number we associate with each possible part of a sequence we can encounter using
our system for dividing up sequences.

In the next sections, we will use the last row of Table 1 to further clarify the inform-
ation flow within the corresponding component.



12

3.2.2 Word Embeddings

In the last example in Table 1 we can see that the sequence of QASM operations
has been converted to a sequence of integers. After this step, we convert every
integer in the sequence into a real-valued vector, to obtain our word embeddings.
So in the aforementioned example, [9,55,12] will be converted into a real-valued
array of dimensions 3× dim, where 3 is the length of the sequence, and dim is the
dimension of the vector. The dimension of this vector that represents an individual
QASM operation is a free parameter of the model and can be set to any integer,
where a higher dimension makes the model potentially better, but is more costly
in memory and training time. This vector representation is used to better capture
the “meaning” of a word since, for example, the vectors representing “h q[0];” and “h
q[1];” can be more similar to than, say, the vectors representing “h q[0];” and “swap
q[42], q[23];”. This process of converting a token into a vector is done using a Feed
Forward Neural Network, so this part of the model is the first component that we
have encountered that is trainable. What a Feed Forward Neural Network is will
be detailed in Section 3.2.4. At the end of this process, we have for our example in
Table 1 a sequence of 3 vectors, where the 9, 55 and 12 are each represented by a
vector of a chosen dimension, so we end up with an array of real numbers with size
3× dim that represents our original QASM code.

3.2.3 Positional Encoding

The order of lines of QASM code matters: for example h q[0]; and then cx
q[0],q[1]; will result in a different outcome than by first applying cx q[0],q[1];
and then h q[0];. However, transformer models don’t innately have a way to cap-
ture this positional information, so positional information has to be added to the
data. This is done using a process called positional encoding, which is graphically
depicted in Figure 2. We take the sequence of vectors that we created in Section
3.2.2, and we add a sequence of vectors that signify the position of the individual
QASM statements. The values of the elements of these positional encoding vec-
tors are trainable parameters of the model, and are therefore determined during the
training process.
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Figure 2: Graphical example of positional encoding. A positional encoding vector
is added to each word embedding vector. The values of the positional encoding
vector depend on the position of the input in the sequence. Adapted from [30]

In the example from Table 1, after the positional encoding step we would still have
an array of real numbers with size 3 × dim, as this step does not change the data
shape. But for each of the 3 input vectors, a vector has been added to the dim dimen-
sional vector that helps our network encode the positional information of the QASM
statement, so we end up with the same size array with different numbers.

3.2.4 Feed Forward Neural Network

Neural Networks play a key role in various machine learning techniques and are
one of the fundamental parts of transformer models. They consist of a series of
layers that each perform a linear operation on the input followed by a (non-linear)
activation function. An example of a Neural Network is given in Figure 3.

Figure 3: Schematic depiction of a Feed Forward Neural Network with 1 hidden
layer [31].
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In Figure 3, every circle represents a node. Every node is assigned a real number.
The number in a node follows from the following equation:

h1 = Activation({w11 · x1}+ {w12 · x2}+ {w13 · x3}+ b1)

hk = Activation({wk1 · x1}+ {wk2 · x2}+ {wk3 · x3}+ bk),
(1)

where h1 is the value of node 1 in the hidden layer, x1 is the value of node 1 in
the layer before it, w12 the weight of the connection between node 2 in the layer
before it and node 1 in the layer, and b1 is some number that serves as a bias.
Then a non-linear activation function (like softmax [32] or ReLu [33]) is applied, so
that the network can capture complex non-linear patterns. In general, the value of
node k will be a linear combination of the values of the nodes in the previous layer
weighted by the corresponding weights, passed through an activation function. In
the example from equation (1), it is assumed that the previous layer only contains
3 nodes, and in that case w13 is the last weight. But more generally, this pattern
of multiplying every node in the previous layer with a weight is continued for the
total amount of nodes in the previous layer. A Feed Forward Neural Network is
fully defined by specifying the number of layers, the number of nodes in each layer,
the weights of every connection between nodes of a layer and a previous layer, a bias
per node and the activation function per layer.

To train such a network one initialises a network with the desired architecture,
but with randomly initialised weights and biases, and then trains the network by
repeatedly giving an input and adjusting those randomly initialised weights and
biases to better match the output of the network with the expected output for
that specific input. These weights and biases are adjusted using a method called
Stochastic Gradient Descent [34]. The simplest form of this method can be described
as follows: first define a loss function that determines how well the model results
fit your expected results (for example, taking the mean square error), then find
the partial derivative of the loss function to every weight and bias and update the
weights and biases according to the following formula:

w := w − α∇C(w), (2)

where w is a vector containing all weights and biases, C is your loss function and
α is a parameter called the learning rate. The −∇C(w) term determines in which
direction you need to adjust the weights and biases vector to lower the loss func-
tion, and the learning rate α determines how drastically you want to adjust the
weights and biases in that direction. One of the reasons machine learning has been
so successful is because of the backpropagation algorithm, which is an algorithm
that allows us to efficiently compute the gradient needed for a Stochastic Gradient
Descent step [35].
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3.2.5 Self-Attention

Self-attention is a mechanism that helps a transformer understand the relation
between words, and is the main innovation in transformer models. For example,
in the sentence “The computer executes the program, because it is told to”, for hu-
mans it is easy to know that “it” refers to the computer and not to the program, but
for computers, this is not so obvious. A self-attention component helps transformers
make this connection.

The input to the attention mechanism consists of queries, keys and values. Each
token in the input sequence corresponds to one query and key vector with dimension
dk and a value vector with dimension dv, but for computational purposes, the queries,
keys and values for all tokens are packed into respectively, a matrix Q, K and V.
These matrices can be derived in the manner graphically depicted in Figure 4:

Figure 4: Every row in the X matrix corresponds to a token in the input
sentence. In this figure the sequence length is 2 tokens. The WQ, WK and WV

matrices are learned in the process of training the model [30]

Then, the main equation describing the attention process is the following: [1]

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (3)
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where softmax is the softmax function [32] and KT is the transpose of the K mat-
rix.

The intuition behind this equation is that the QKT term describes a dot product
between the queries and the keys, to determine their “inter-relation”. Then this
information is used to create an attention matrix that can be interpreted as being
similar to a correlation matrix as it determines for each element how strong its bond
is to each other element, but instead of it being a correlation that is between -1 and
1, it is in the form of a probability distribution, so with values between 0 and 1.
The

√
dk scaling factor is there to get a more dimension-independent dot product,

and that for technical reasons makes it easier to train the network [1]. Then, after
multiplying this attention matrix with V, we get our final result which is our original
matrix V with added information about the inter-relations between the queries and
the keys because, for example, values that had a very low score in the attention
matrix are drowned out (because that corresponding attention matrix element is
close to 0). To give a more concrete example: if information in the sentence “The
computer executes the program, because it is told to” that was alluded to earlier,
is encoded in 3 matrices Q, K and V. Then Attention(Q,K, V ) gives us a matrix
that encodes this sentence with information about the inter-relations between the
words (for example the information that “it” refers to the computer and not the
program).

3.2.6 Multi-Head Attention

Since words are related in multiple ways (e.g., syntactically or semantically), a trans-
former model uses multiple attention heads that act on the input at the same time,
to get a richer representation of the relations within the sentence. Mathematically
this is implemented by simply repeating the process in the previous section (Section
3.2.5), but for various weight matrices WQ, WK and WV. We end up with multiple
matrices that encode our original sentence with information about the inter-relations
of the words in that sentence. However, we want to end up with only one final rep-
resentation of this sentence instead of a collection of various representations. To this
end we concatenate all matrices, and we multiply the result with a matrix WO so
that the resulting matrix has our expected dimensions again (that are independent
of the number of heads we use). The values of the elements of WO are trainable
during the training process. This gives our model the desired ability to learn many
ways in which the words in our sentence are related to each other, and even lets it
give the different ways words are related to different weights [1].

3.2.7 Masked Multi-Head Attention

In regular Multi-Head attention we allow every token in a sequence to attend to
each other. However, when generating a sequence, we want to prevent leftward
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information flow and we want to preserve the auto-regressive property. To do so,
in a Masked Multi-Head Attention block, matrix elements of the Q and K matrices
that correspond to “illegal connections” are set to −∞ just before the softmax in
the attention process [1].

3.2.8 Residual Connections

Within a Machine learning model every block (like a Feed Forward Neural Network,
or a Self-attention block) tries to learn how an input should best be converted to
an output. Often this output however is close to the input, so then it is much more
meaningful to learn the difference between the input and the output. On a more
technical note, learning the difference between input and output also helps solve the
vanishing gradient problem, making models like these train efficiently [36].

Schematically this procedure, which is called a “residual connection”, comes down
to the following

output = Block(input) + input, (4)

where the Block() function is a Neural Network or a Self-attention block and + is
elementwise-addition.

3.2.9 Layer Normalisation

The output of an attention block, or a Feed Forward Neural Network block can have
very high element values or very low element values, depending on the input of that
block. We normalise these outputs according to the following formula:

LayerNorm(x) = γ

(
x− µ√
σ2 + ϵ

)
+ β, (5)

where x is the output of an attention or Feed Forward Neural Network block, µ
and σ2 are respectively the mean and variance of x, ϵ is a small number in the
denominator for numerical stability, and γ and β are learnable parameters.

By normalising the outputs in this way, it has been empirically shown that networks
train better [37].

3.2.10 Classification Layer

At the end of the model there is a Classification layer. This is just a Feed Forward
Neural Network with one layer, where the amount of output nodes is the same as the
total amount of possible outcomes of the model (e.g. every word in a dictionary).
After this Neural Network layer an activation function (usually softmax [32]) is
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applied that makes sure that the output of the layer is a probability distribution.
So after this classification layer we end up with a probability distribution over our
“dictionary” of possible words to choose from.

3.3 Full Model Architecture

After discussing every important individual component in the transformer architec-
ture, the full model architecture, depicted in Figure 5, can be discussed:

Figure 5: General transformer architecture [1]

We can discern two major parts in this architecture: the so-called “encoder” on
the left side, and the “decoder” on the right side. This is the general transformer
architecture, where both the encoder and decoder are present and they interact with
each other, but different models use different architectures. For example, the GPT
family of models use a decoder-only architecture, where there is only a decoder and
no encoder [38]. Such an architecture looks like Figure 6:
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Figure 6: Decoder-only transformer architecture [39]

These decoder-only models are generally used for generation tasks like generating
text [40] and generating computer code [25].

Similarly, there are also encoder-only models like the highly influential BERT model
[41]. They look the same as the decoder-only model pictured in Figure 6, but they
don’t use Masked Multi-Head Attention. Rather they just use normal Multi-Head
Attention, and therefore allow bidirectional (non-causal) information flow. These
models are commonly used in sequence classification (sentiment analysis or spam
detection for example) [42]. So for text generation tasks, one should employ a
decoder-only transformer model, while for sequence classification tasks, one should
employ an encoder-only transformer.

3.4 Information Flow Example

In this section we will exemplify the information flow within a transformer model.
We will follow the last example from Table 1 again, and we will see what happens
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within a pass of a decoder-only transformer. We start with our input:

h q [ 0 ] ;
cx q [ 0 ] , q [ 1 ] ;
swap q [ 1 ] , q [ 2 ] ;

which we then tokenise (each valid QASM statement will be converted into a token)
to get the following list of integers:

[ 9 , 55 , 12 ]

This list is now ready to be passed to the decoder-only transformer, as shown in
Figure 6. The “input Embedding” step makes our list of integers into a list of real-
valued vectors, which will be denoted with the letters a, b and c for the vectors
corresponding to 9, 55 and 12 respectively.

[ a , b , c ]

The dimension of these vectors is a constant defined by the model. Afterwards, these
vectors get modified in the positional encoding step so that they contain positional
information in the positional encoding step. The vectors change but remain the
same dimension. We denote these vectors with d, e and f representing the vectors
a, b and c, respectively, but with added positional information:

[ d , e , f ]

Now, we arrive at the main point of interest: the Masked Multi-Head Attention
block. We multiply our list of vectors (which can be represented by a matrix) with
matrices WQ, WK and WV, to get out matrices Q, K and V respectively. We set
the values in the Q and K matrices that correspond to illegal connections to -∞ and
then we use these matrices according to the Attention formula described in equation
(3), to get a matrix

Z0

We repeat this process for the amount of “heads” we desire, to get matrices Z0 , Z1,
etc. and we concatenate them and multiply that concatenated matrix with another
weight matrix WO to get a matrix

Z

Then we come to the Add & Norm block. In this block we add our matrix containing
the vectors d, e and f to Z (element-wise addition) to get a matrix that represents
our input sequence with information about relations between tokens. We normalise
each row of this matrix (every row represents a token) using the LayerNorm formula
described in equation (5). We call the resulting matrix

A
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Each row of this matrix is then individually fed into a Feed Forward Neural Network.
Then we get an Add & Norm block again, where we add A to the result and then
normalise that matrix per row. Let’s call this matrix

B

The process between the part after the positional encoding until this point is usually
called a decoder block. We can repeat this process multiple times to get an even
more complex representation of our original sequence.

After going through the desired amount of decoder blocks, the rows of the resulting
matrix will individually go through the classification layer, which is one final linear
layer, followed by a Softmax operation, to end up with a matrix where each row is
a probability distribution over the vocabulary (all possible tokens).

3.5 Generating Text Using a Transformer

In generating text, we are only interested in the output that corresponds to the
last token from the input sequence, so for example, to find the token that is most
likely to follow our input sequence, we look at which element of the last row of the
resulting matrix has the highest value. If we want to generate text or QASM code
for example, we simply add the token we found to the input, go through the whole
model again and repeat that process until we have generated the desired amount of
tokens.

3.6 Training a Transformer Model

Now that we know how a transformer model works, we discuss how such a model
can be trained.

We start with a training dataset that contains many data points (where every data
point is a sequence of tokens). In this thesis a data point corresponds to one QASM
file. One creates a batch of data points, which all individually travel through the
model like in Section 3.4. Then for every token from every data point in the batch,
we obtain a probability distribution over all tokens in our vocabulary, describing
how likely it is for every token in the vocabulary to follow the input token, which
is the end result of our model. To quantitatively assess our model performance we
use a so-called “loss function” to compare the computed probability distribution for
the next token in the sequence with what token was actually next in the sequence.
Since choosing which token from a set of tokens is the one we are looking for is
a classification problem, we use the Cross-Entropy loss function [43], which is the
standard loss function for classification problems [38,41]:
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−
M∑
c=1

yc ln(pc), (6)

where in general, yc is the actual probability of the token, but in our case we consider
this to be 1 when examining the correct token, and 0 when examining every other
token. M is the total amount of tokens in the model vocabulary, and pc is the
probability that the model attributed to that token. After we have calculated the
loss, we can backpropagate the loss through the network like discussed in Section
3.2.4 to get the best adjustment to all the weights and biases of the model, on
average for the batch we considered.
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4 KetGPT: Transformers for QASM Code Genera-
tion

In this thesis KetGPT is presented: KetGPT is a transformer model that is trained
to generate realistic-looking QASM code. Generating QASM code in this way has
its own specific challenges like: the training dataset is small compared to datasets
normally used in machine learning, due to the fact that there are few known quantum
algorithms, or that code, in general, is sensitive to syntax errors. In this section,
applications for these circuits are elaborated, more practical matters are discussed
and the experimental method is described.

4.1 Applications

The main thing differentiating circuits generated by KetGPT from circuits generated
by the qiskit random_circuit implementation, is how “realistic” they are. Because
they are closer to actual quantum circuits, they are more fit for certain quantum
circuit mapping applications. In this section some of the main applications will be
mentioned.

4.1.1 Benchmarking

The first reason why we would want to generate quantum circuits is for benchmark-
ing purposes. When benchmarking different compilers for example, we would like to
compare their performance on a large set of realistic quantum circuits. As mentioned
in Section 2.4, some benchmark suits [19,23] include random circuits in benchmarks
because of the lack of real quantum algorithms.

Example experiments could be, but are not limited to: comparing gate depth
between different compiler optimisation passes on the same circuit, comparing gate
depth between different compiler mapping passes on the same circuit, comparing
gate depth or execution time on different compiler scheduler passes and comparing
metrics between different full-compiler passes altogether.

4.1.2 Machine Learning

Promising applications within the field of machine learning are training a Reinforce-
ment Learning compiler [7,8] using KetGPT circuits instead of random circuits, like
suggested in [8], and in a similar way enhancing the deep neural network approach
from [24] with KetGPT circuits that more closely resemble realistic circuits than
the random circuits that were used in their approach. Intuitively, it makes sense
to train a compiler to be good at handling realistic circuits rather than training it
to be good at handling random circuits. Furthermore, many possibilities could be
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unlocked because machine learning usually requires large datasets to succeed, which
now might become available due to KetGPT.

4.1.3 More Fundamental Quantum Information Research

Generating circuits that look more like real, useful, quantum circuits also opens up
the question: “what does it mean for a quantum circuit to be useful?”. Analysing
KetGPT circuits could help in answering this question, for example by analysing
the average amount of entanglement that is present at certain phases in the circuit.
This could help us think about what quantum hardware implementations would be
best suited to run quantum circuits, even for algorithms that have not yet been
invented.

4.2 Dataset Definition

4.2.1 Raw Dataset

Some collections of quantum algorithm datasets that can be used for benchmarking
exist [19–21,23], for this thesis MQT Bench [19] was used. QASM files were created
that describe circuits implementing algorithms for 2 to 100 qubits using OPEN-
QASM 2.0 [6]. In some cases algorithms were not compatible with a certain amount
of qubits (for example if an algorithm requires an uneven amount of qubits), for
these algorithms all valid circuits within this range were created. The full dataset
and more information on this dataset is supplied in Section 9.2.

4.2.2 Dataset Preprocessing

To get the dataset in a suitable format for the transformer models, we need to do a
preprocessing step:

Minor adjustments to the circuits from the dataset were made to make the dataset
more structured (for example consistently using a newline after every valid QASM
statement), and because of technical limitations, large files cannot be processed
by the model, so the maximum length of the circuits (measured in amount of valid
QASM statements) that were used was 1024. Circuits that exceeded this length were
not taken into account. This technical limitation is related to RAM limitations of
the hardware that was used, and is not a general technical limitation. After the
preprocessing step, the final dataset consists of 713 QASM files.

4.3 Generator

4.3.1 Architecture

For text and code generation, it is common to use a decoder-only transformer ar-
chitecture [25]. Therefore, to generate the QASM files, the GPT-2 model archi-
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tecture [40], which uses a decoder-only transformer has been chosen. Python code
constructing this architecture is openly available using the GPT-2 implementation
in the Huggingface “Transformers” python library [44, 45]. This architecture is a
decoder-only transformer as is described in Figure 6, but where the layer normal-
isation was moved to the input of each sub-block instead of the output, and an
additional layer normalisation was added after the final self-attention block. Fur-
thermore, the way the weights are initialised when defining the model was changed
to account for the effect of the amount of residual connections [40].

4.3.2 Tokenisation

As discussed in Section 3.2.1, a tokenisation scheme will be used to convert the
dataset text into tokens. The original implementation of GPT-2 uses a certain type
of tokenisation called Byte Pair Encoding (BPE). An intuitive way of understanding
this method of tokenisation is that it divides up text in components (for example
“training” can be split up into “train” and “ing” which makes it easier to capture the
meaning of the full word “training”). A problem with using this method of token-
isation is that it makes it possible to generate QASM code that is not syntactically
correct (for example the line “hh q0q1;” could theoretically be generated using this
tokenisation method).

That is why, for the generator, the tokenisation method was changed to only al-
low syntactically correct QASM code as tokens. This was done by adjusting the
GPT2Tokeniser class. A list of all valid QASM statements in the dataset is com-
piled, and that list is used as our vocabulary. This way it can be guaranteed that
whatever token is generated by the model will be a valid QASM statement.

4.4 Classifier

After the QASM files have been generated using the generator, one wants to know
if the generated files are indeed “realistic”. A binary classifier was used to classify
whether a generated QASM file is more similar to files from our dataset, or it is
more similar to a randomly generated file.

4.4.1 Architecture

For the classifier, an encoder-only transformer model as described in Section 3.3
was used. More specifically, the exact architecture that was used is the architec-
ture of the DistilBERT model [46], using the implementation from the Huggingface
transformers library [45]. This model is a smaller version of the highly influential
encoder-only BERT model [41]. A smaller model in general ensures faster training
and inference.
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4.4.2 Tokenisation

For the generator it was necessary to create a custom tokenisation method to ensure
that the generator could only generate valid QASM code. For the classifier, it is not
necessary to use a custom tokenisation method, since the classifier will not generate
code, but is only used for classification tasks, so the tokenisation method that was
used to train the original DistilBERT model can be used. This tokenisation method
is called WordPiece [47]. Similar to the BPE tokeniser briefly described in Section
4.3.2, it divides words into sub-words. The way these sub-words are chosen is what
differentiates WordPiece from BPE, but is not relevant for this thesis.

The tokeniser truncates the QASM sequences after 512 tokens (since these tokens
are now sub-words instead of QASM lines, 512 tokens coresponds to about 50 lines
of QASM code, depending on the sequence) to make the files compatible with the
maximum input size of the classifier model that was used.

4.5 Experimental Method

In this subsection some practicalities regarding producing the results of this thesis
will be further specified.

4.5.1 Google Colab

To run the code that produces the results of this thesis, a Jupyter notebook [48]
was executed in the Google Colab environment [49]. This Notebook is provided
in Section 9.1. Google Colab allows users to access a powerful Tesla T4 GPU for
free. The Tesla T4 has 16Gb of GDDR6 memory, 320 Turing tensor cores and
2560 CUDA cores, which is useful since a powerful GPU can significantly speed up
machine learning model training and inference [50].

4.5.2 Python and Relevant Packages

Google Colab currently uses Python version 3.10.12. Relevant packages for the code
used to obtain the results of this thesis are the transformers [44] (version 4.34.0)
and datasets [51] (version 2.14.5) libraries from Huggingface, PyTorch [52] (version
2.0.1+cu118) and NumPy [53] (version 1.23.5).

4.5.3 Generator Model and Training Settings

Firstly, in Table 2 the parameters that define the structure of our generator model
are specified. Default values correspond to the values used in the original GPT-2
implementation [40].

n_embd is the dimension of the word embedding vector (which was called dim in
Section 3.2.2).
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n_layer determines how many decoder blocks the model consists of. This value was
set to 3 instead of the default of 12 to gives us a more lightweight model that is
easier to train, uses up less memory and generates faster once the model is trained,
at negligible cost of performance.

n_head determines the amount of attention heads in a multi-head attention block.
This value was set to 4 instead of the default of 12, for the same reasons as for
n_layer.

n_positions, which determines the maximum sequence length the model is able to
process, was left at the default value of 1024.

vocab_size specifies the amount of tokens in the vocabulary. This is important
because the amount of tokens in the vocabulary also determines the size of the output
layer and, therefore has architectural implications. In this model the vocabulary size
was set to 48291, since this corresponds to the total amount of unique QASM lines
in our dataset.

Table 2: Generator model settings

Name Value

n_embd 768 (default)

n_layer 3

n_head 4

n_positions 1024 (default)

vocab_size 48291

Table 3: Training settings

Name Value

Epochs 5

Learning Rate 5e-5 (default)

Batch Size 4

Optimiser AdamW (default)

Loss function Cross-entropy (default)

The training settings are specified in Table 3.

Epochs determines how many times the model goes through the dataset during
the training process. This parameter of course directly influences training time,
but is mostly important because it also plays a large part in how well trained the
model will be. If you don’t train long enough (low amount of epochs), the model
might not have been given enough time to adjust its weights to well represent the
training data. But if you train for too long, the model might develop tunnel vision:
representing the training data really well, but not being able to generalise further
than the training data (this phenomenon is called overfitting [54]).

Learning rate is the α in equation (2) from section 3.2.4 which determines how
large the update of the weights and biases of the model will be per step. Setting
this parameter too low might result in very slow learning, but setting this parameter
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too high makes it possible for the optimisation algorithm to overshoot the optimal
value for the weights (since the adjustments to the model are not fine enough).

Batch size is the amount of data points that are used in one optimisation step.
The optimiser updates the weights that on average improve the model the most.
Choosing a higher batch size makes the model train faster, but is more memory
intensive.

The Optimiser is the algorithm that determines how the weights are updated at
every step. AdamW [55] is similar to the algorithm that was described in Section
3.2.4, but is slightly more advanced.

The loss function quantifies how well our model performs. Cross-entropy is the
standard loss function for classification problems (like predicting which word should
be next, out of a vocabulary of words) [41].

4.5.4 Classifier Model and Training Settings

In Table 4 the settings that were used to define the classifier model are specified.

Table 4: Classifier model settings

Name Value

n_embd 768 (default)

n_layer 6 (default)

n_head 12 (default)

n_positions 512 (default)

vocab_size 30522

Table 5: Training settings

Name Value

Epochs 3

Learning Rate 5e-5 (default)

Batch Size 4

Optimiser AdamW (default)

Loss function Cross-entropy (default)

These settings have the same meaning as corresponding settings in the generator,
except for the vocab_size: in the generator model the vocab_size is the dimension
of the output layer, but in the classifier, the output layer dimension is 2 because
we are doing binary classification instead of next token prediction. In the classifier,
the vocab_size parameter is therefore more closely linked to the classifier token-
iser than to the classifier model itself as the parameter does not have architectural
implications.

4.6 Generation Details

The generator model workflow is as follows:
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4.6.1 Preparation

Generating tokens using the generator model is done as follows: i) a list is made that
contains the qubit count for every algorithm in the dataset and a list is made that
contains the amount of gates for every algorithm in the dataset; ii) random qubit
count and a number of gates are chosen from those lists, and that will be the qubit
count and amount of gates for the QASM file that will be created; and finally, iii)
using these parameters, all invalid QASM statements related to qubit count will be
filtered out (e.g., if the qubit count is 5, then all gates that involve qubit 13 won’t
be considered). This is done by making it impossible for the generator model to
generate these tokens.

4.6.2 Model Input

The model will receive as input the following:

OPENQASM 2.0;

include "qelib1.inc"

qreg q[{}];

where {} will contain the chosen qubit count. This is the way all the QASM files
in our dataset start, and it gives us an opportunity to control the qubit count in a
simple manner.

4.6.3 Generation Scheme

Every time a new probability distribution over the tokens is generated, the 5 most
probable tokens are selected, and from them, a new token is chosen according to
the renormalised probability distribution over those 5 tokens (the probability is
renormalised to ensure that all probabilities add up to 1). This gives us a way to
introduce more randomness in the QASM file generation, while also keeping the
generated tokens realistic since the 5 most probable tokens are probably still good
candidates. This generation scheme is called top-k generation [56]. For this thesis, 5
was chosen as the relevant parameter, but in general, the amount of most probable
tokens that are selected is a free parameter of the top-k generation scheme.

Furthermore, it is specified that it should not be possible that somewhere in the file
a sequence of 15 tokens repeats itself. Although this is not ideal for QASM code gen-
eration (since algorithms often contain repeating sequences), in transformer model
generation, it sometimes happens that the model gets stuck in a loop, predicting
the same sequence over and over again, and this is to be prevented.
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Lastly, this process is simply repeated until the desired amount of gates is reached.

4.7 Classification Details

When training the classifier, a dataset is set up where all real quantum algorithms
in the MQTbench dataset are labeled “0” (1112 QASM files), and an equal amount
of QASM files, that consists of gates that are randomly chosen from a list of all
unique QASM statements in the dataset, are labeled “1”. To make sure that the
classification process is as fair as possible, similar to how the KetGPT generated
QASM files were generated, it is made sure that the randomly generated QASM
files will contain the same distribution of qubit counts and amount of gates as the
original dataset.

Since the classifier model only accepts up to 512 tokens, the dataset is tokenised in
a way such that the maximum amount of tokens is 512, which corresponds to about
50 QASM lines (depending on the QASM file). All lines after that are truncated.
The downside of this approach is that in determining if the QASM file is real or
not, the full QASM file is not taken into account, but only the first part of it, but
the advantage is that training and inference is much faster and a less technically
complex model is needed. Furthermore, one can usually already tell from the first
part of a QASM file whether it is random or if it has some logical structure.

Then the model is trained on the labeled dataset, and afterwards the trained model
is used to predict whether the KetGPT generated circuits are labeled “0” or “1”,
meaning that they are closer to actual algorithms or random algorithms respect-
ively.
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5 Results
In this section the results of the thesis will be presented. Although KetGPT is
still a proof of concept, so the results can likely be drastically improved and should
therefore be regarded as the results of a minimal working version, the results demon-
strate that the approach for generating realistic-looking quantum circuits used in
this thesis is promising.

5.1 Visual Inspection

First we visually inspect (the first lines) of a circuit generated by KetGPT, and
compare it to what the first lines of a real and a fully random circuit look like:

(a) KetGPT (b) Real (c) Random

Figure 7: Side by side comparison between the first lines of a 6 qubit QASM file
generated by KetGPT, taken from a real dataset and a random circuit.

Note that the lines in the KetGPT file and in the real file contain structure, like
repetition of hadamard and 2-qubit gates (cx and cz), whereas the fully random
circuit does not contain such a repetitive sequence. Also note that the order in which
the hadamard gates is applied in the KetGPT and the real circuit is ascending in
qubit number, whereas in the fully random circuit, as is to be expected, there is
no logical order of operations. It is important to mention that the random circuit
contains invalid statements (for example an operation on node 4 is instructed, but
node 4 was never defined), but this error is also sometimes present in files generated
by KetGPT, although, seemingly, less often. The fact that it is not specifically
forbidden for KetGPT to generate invalid statements, but it still generates such
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statements considerably less often than random files, can also be seen as a realistic
feature of KetGPT generated data.

Some more examples of circuits generated by KetGPT are presented as supplement-
ary information in Section 9.3.1.

From these examples, and from the example in Figure 7, it can be concluded that
visual inspection strongly suggests that KetGPT circuits contain features of real
quantum circuits, demonstrating that the approach of using transformers to generate
quantum circuit data is promising.

5.2 Classifier Model evaluation

In an attempt to get a quantifiable measure, a classifier model was trained to classify
a QASM file as real, or as randomly generated. This was done using training data
that consisted of real quantum circuits, and of random quantum circuits. The
classifier was trained using this training data, but to evaluate its performance, it is
important to use data that it has not seen in training before (so-called test data). A
subset of 15% of the total data, that is has not yet encountered during the training
process, is fed to the classifier model, and used to evaluate the performance of the
classifier. To evaluate this performance, a confusion matrix can be used to determine
how the predictions of the model relate to the actual labels of the data. In Figure
8, the confusion matrix that corresponds to this test evaluation is presented:

Figure 8: Classifier performance on a test dataset illustrated by a confusion
matrix. Diagonal values are correctly predicted, only 4 QASM files that were

actually “True” were predicted as being “Random”

The total test dataset consisted of 334 (167 real and 167 random) entries, and 330
of the dataset values were predicted correctly, that means that the classifier model
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achieved an accuracy of 98.8%. Which would mean that the classifier model is
capable of discerning real quantum circuits from random quantum circuits in 98.8%
of the cases.

Then, instead of predicting on real algorithms and completely random algorithms,
the classifier model was asked whether 1000 QASM files that were generated with
KetGPT are closer to the algorithms from the MQTBench dataset (the real al-
gorithms), or whether they are closer to completely random algorithms. 997 out of
1000 circuits were classified as being real, which is 99.7%.

The classifier model accuracy however is suspiciously high, and after visual inspec-
tion of the circuits, it seemed that there was a strong correlation between whether
measurement operations were present in the circuit and the circuit being classified
as random. This makes sense since in realistic circuits, a measurement operation is
much more likely to be present towards the end of the circuit, as opposed to in the
first ∼50 lines of code (remember, the classifier can only see the first part of the
QASM code), but completely random circuits don’t have this property. On the one
hand, the classifier captures an important feature of realistic QASM code, namely
that it is unrealistic to have measurement operations so early in a circuit. But on
the other hand, it is not desirable for the classifier to be strongly influenced by only
a single feature, because other features like sequence repetition or other examples
of logical structure might not receive the attention they deserve.

The process was repeated, but this time all real, random and KetGPT QASM files
were rewritten such that there are no measurement operations present.

The resulting confusion matrix is presented in Figure 9.

Figure 9: Confusion matrix for classifier trained on real and random data where
all measurement operations were removed.
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261 out of 334 files from the dataset were correctly classified, giving the model an
accuracy of 78.1% on the test dataset. This accuracy is much lower than the accuracy
of the previous model which was 98.8%, which could be explained by the fact that
the problem it needs to solve is harder: the model can’t simply check if there is a
measurement operation and use that to determine whether the sequence is real or
random anymore. After classifying these real and random circuits, KetGPT circuits
were investigated. This classifier model classified 486 out of the total of 1000 circuits
as being closer to the real algorithm dataset than to the random circuits, which is
48.6%. This value is quite low, especially since the confusion matrix in Figure
9 shows that the model more often classifies random circuits as real, than that it
classifies real circuits as random. Since it is easy to discern by visual inspection which
QASM files from the test dataset are real and which ones are random, an accuracy
of 78.1% might be an indication that the model is underfitting, i.e. the model was
not being trained enough to be able to capture complex dependencies.

One final classifier model was trained for 6 epochs instead of 3, to investigate whether
the previous model could be underfitting. The confusion matrix that corresponds
to this model can be seen in Figure 10.

Figure 10: Confusion matrix for classifier trained for 6 epochs, on real and
random data where all measurement operations were removed.

This confusion matrix is more similar to the confusion matrix of the original classifier
model from Figure 8, where the measure operations were still present in the dataset.
This time 328 out of 334 QASM files from the test dataset were predicted correctly,
which gives the model an accuracy of 98.2%. Moreover, this classifier model classifies
999 out of the 1000 KetGPT circuits as real, which is 99.9%.

It is difficult to determine how reliable each model is: as mentioned earlier, the
problem the classifier has to solve is easy, as we can also easily tell by visual inspec-
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tion which QASM files are random and which ones are written by a human, which
could explain the extremely high accuracy of some of the classifier models. The high
accuracy can also be explained by the fact that the test dataset consists, for lack of a
better alternative, of a random subset of the total data. It is therefore impossible to
have, for example, the Deutsch–Jozsa algorithm [57] on 6 qubits in both the training
dataset, and the test dataset. But it is possible that Deutsch-Jozsa on 6 qubits is
in the training dataset, and Deutsch-Jozsa on 5 qubits is in the test dataset. Since
they are very similar, the classifier model is now being tested on (semi) training
data, and then the accuracy is not a reliable metric anymore. This phenomenon is
called data leakage.

The random QASM files in the test set however, are not necessarily similar to the
random files in the training dataset, and are predicted correctly every time. This
could be an indication that the classifier model result is reliable after all.

Taking these considerations into account, none of the classifier models seem to be
reliable enough to use as a definitive classifier. Since the first classifier seemed to
pick up realistic features in the data (the measurement operations being present),
looking at its accuracy on the test dataset, it is at least plausible that the final
classifier model also picks up some feature(s) of realistic QASM files. But whether
this means that it also overfits on a feature, or it has learned relevant aspects of
realistic QASM files is difficult to tell.

In conclusion, the proposed classifier models are not able to solve the problem of
quantifying how realistic-looking a quantum circuit is. Nevertheless, visual inspec-
tion of KetGPT files still provides good reason to believe that these KetGPT circuits
contain features of real quantum circuits.

5.3 Training and Inference Time

All computations were done using the hardware described in Section 4.5.1. KetGPT
training time was 240 seconds, and generating 1000 QASM files took 8818 seconds
(147 minutes), which means that on average KetGPT needs 8.8 seconds per gener-
ated file. However, the QASM files are of varying size (as explained in Section 4.6.1),
and the amount of time needed to generate one file is non-linearly dependent on the
size of the file, so this number should be taken as a rough estimate of generation
time per file.
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6 Discussion

6.1 Sequentiality of Qubits

A human way of writing QASM code is by starting with performing e.g. a gate on
qubit 0, and then performing a gate qubit 1. But in principle the qubit number is
just a name and doing the same operation on qubit 43 and qubit 22 is equivalent
to performing the operations on qubit 0 and 1. KetGPT consistently generates
files in the way humans would write them (with qubit numbers in ascending order)
because it was trained on a dataset of QASM code that was written by humans.
On the one hand this is desirable, since it makes sense to for example benchmark a
compiler with code that looks like it was written by a human, because that’s what
it should be good at. But on the other hand it might be that KetGPT pays too
much attention to the qubit number, where the gate it performs is more important
in terms of implementing a realistic quantum algorithm.

6.2 Variability of Generated QASM Files

To determine if a collection of QASM files is useful, they need to be realistic indi-
vidually, but this criterion does not suffice: if all of the generated files are similar,
or even the same, then as a whole they are not useful, even though they could be
very realistic. By visual inspection it seems like there is some repetition of common
patterns in the generated files. See for example KetGPT 20 and KetGPT 793 in
Section 9.3.1: the QASM files both build up the entanglement in the qubits in a
similar way using hadamards and cz gates. More examples of repeating patterns are
found in the full dataset. Some similarity however is to be expected, since the data-
set also consists of QASM files that have similarities, even if they describe different
quantum algorithms. Furthermore, there are only so many realistic ways to build
up entanglement in your qubits, and most of them involve hadamard gates, so some
repetition is to be expected. Ultimately, it seems as though there is a reasonable
amount of variability in the generated files, but as of now, this variability was not
quantified in a reliable way and is left for future work.

6.3 Test Data Leakage

As mentioned in Section 5.2, the test dataset for the classifier model contains data
leakage: the test data contains information about the training data because the
QASM files for the same algorithm using different qubit counts are similar. Since
the amount of real quantum algorithms is so limited, building a proper validation
dataset is also difficult. One possible solution would be to train the classifier on the
MQTBench dataset, like was done for this thesis, and to test the classifier on QASM
files describing the same algorithms, but in a different QASM description, by using
a different dataset source for example. But this approach has major downsides as
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well since the classifier is being trained on defining features of QASM files from one
source, and these defining features might not be able to translate well to QASM
files from other sources. Furthermore, data leakage is still present since the same
algorithms will be used for training and testing, just from a different source.

Another option would be to not train the classifier on one algorithm, and use QASM
files that implement that algorithm as a test dataset. But then the test dataset
essentially only consists of one datapoint, in which case the sample size is too small.
Even if we train many different classifiers, each time leaving out a different algorithm,
the classifiers are all different so if they all individually perform well on their own
respective test datasets, it is still not possible to confidently say that a classifier
works well. Therefore, the methodology of testing the classifier used in this thesis
was chosen, but visual inspection should be the most important measure, which
should only be aided by the classifier model.

6.4 Random Circuit Depth and Qubit Count

KetGPT and random circuits were generated according to the method described in
Section 4.6.1. Quickly summarised, the amount of qubits and the amount of QASM
statements are chosen randomly from their corresponding distribution in the real
algorithms dataset. The amount of QASM statements, and the amount of qubits
that are used in a specific QASM file are chosen individually, while in real circuits
the qubit count correlates with the amount of gates. This methodology of choosing
the amount of qubits and the amount of QASM statements to generate QASM files
was chosen so that in training on the random circuits, the classifier might learn that
long QASM files with low qubit count are more likely to be synthetic, which is a
property which is desirable for the classifier to have. It has not yet been investigated
if the classifier indeed learned such a skill.

6.5 Consistency of Generation Quality

Only the first lines of QASM files were investigated, which means that any conclusion
that can be drawn from this investigation does not have to hold for other parts of
the QASM files. It could be the case that after a certain number of generated
statements, the quality of generated statements decreases. This effect has not been
extensively investigated, and it is therefore not possible to conclude that the QASM
files in their entirety are realistic, although visual inspection does not indicate a
clear decrease in quality.

6.6 Useful Quantum Algorithms

The circuits generated by KetGPT are not meant to be interpreted as circuits that
implement useful quantum algorithms. The circuits are realistic-looking and might
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describe some undiscovered quantum algorithms, but without knowing what the al-
gorithm should be doing, it is near impossible to reverse engineer what the algorithm
a circuit is implementing is useful for.

6.7 Notable Limitation

Furthermore, because this version of KetGPT is merely a proof of concept, the
circuits generated by KetGPT are still discernible from real quantum circuits, and it
is challenging to do fundamental research about what properties quantum algorithms
tend to have, like suggested in Section 4.1.3.
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7 Conclusion
Transformer models, which are used in realistic text and code generation, have
caused a paradigm shift in the field of natural language processing, and simultan-
eously, quantum computers are being developed which are promising since they
could solve certain problems faster than classical computers can. However, datasets
of real quantum circuits, which are crucial for benchmarking these quantum com-
puters and which are crucial for various machine learning applications in the field
of quantum circuit mapping, are scarce.

Therefore the problem statement for this thesis was:

“Can transformer models be used to generate realistic-looking quantum circuits to
expand quantum algorithm datasets?”

The main contribution presented in this thesis was KetGPT, a decoder-only trans-
former model that is able to generate realistic-looking quantum circuits. Circuits
that were generated by KetGPT were presented, which, by visual inspection, are eas-
ily distinguishable from random circuits, and show desirable qualities like structure
and humanlike programming factors like applying gates in the order of ascending
qubits.

Furthermore, classifier models were suggested in an attempt to get a quantifiable
measure to determine if a given QASM file is likely to be realistic, or whether it
was likely to be randomly generated. The final classifier model reached an accuracy
of 98.2% on the test dataset, correctly predicting 328 out of 334 QASM files, and
classified 999 out of the 1000 KetGPT generated circuits as real. However, due to
data leakage, it is unclear if the classifier behaves as intended. But although it is not
possible to use the trained classifier model to unambiguously quantify how realistic
the QASM files generated by KetGPT are, the results from the classifier model do
make it plausible that there is an amount of realism to these QASM files, as the
classifier model did seem to be able to pick up features of real quantum circuits.

In conclusion, the quality of the files can not reliably be quantified by the classi-
fier model, but visual inspection strongly suggests that KetGPT quantum circuits
contain features of real quantum circuits, demonstrating that the novel approach
of using transformers to generate data for quantum circuit mapping purposes is
promising.
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8 Future Work

8.1 Hyperparameter tuning

Both KetGPT and the classifier model have not undergone any hyperparameter
tuning. Although it is difficult to do so without a reliable validation dataset, for
which there are not enough algorithms, improvements can be made by adjusting
hyperparameters like, but not limited to: the amount of epochs the models are
trained for, the learning rate, the embedding vector size, the amount of layers, the
amount of heads and many more parameters. This hyperparameter tuning process is
difficult to perform methodically however, as it is not possible to create a validation
dataset without it suffering from data leakage.

8.2 Other Generation Methods

As mentioned in Section 4.6.3, top-k generation has been used to generate the QASM
files that are presented in this thesis. There are some other generation schemes
like top-p [58], beam search [59] and contrastive search [60], that are used in text
generation tasks. In future work, different generation methods could be compared,
and a generation scheme that is specifically apt for QASM file generation could be
used instead of the aforementioned standard text generation schemes.

8.3 Discrete Token Set

Every unique QASM statement was converted into a token. That means that the
token set is discrete. This method was chosen as it was the easiest implementation
to make the proof of concept that KetGPT was supposed to be, but in general this
is not satisfactory way to represent building blocks for general QASM files since
some real QASM files contain arbitrary angles. To resolve this, an arbitrary gate
token could be created, which in post-processing could be filled in by a transformer
specifically trained for this purpose.

8.4 Adjusting Tokenisation Scheme

As mentioned in the previous section, as of now the QASM code is tokenised into
full QASM statements where for example “hadamard gate on qubit 1” is one token.
KetGPT might perform better if it is trained on data where the gates and the target
qubits are seperated tokens, like “hadamard gate” being a token, and “on qubit 1”
being another token. If the generation scheme is adjusted accordingly, it can still
be guaranteed that only valid QASM expressions are generated. This approach also
scales better into higher qubit counts.
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9 Supplementary Information

9.1 Notebook

The code that was used for this thesis is provided as a Jupyter notebook [48], which
was executed in the Google Colab environment [49], from the following url:

https://colab.research.google.com/drive/1dbtJX6q8sED4yrb1I09KUuXWYH0AVN8r?
usp=sharing

9.2 Data

The data that was used in this thesis can be found from the following url:

https://www.kaggle.com/datasets/boranapak/ketgpt-data

It contains the dataset that was used, and a KetGPT folder that contains: the
KetGPT model, the KetGPT tokeniser, the classifier model, all KetGPT generated
circuits and all random circuits.

The 1112 real algorithm QASM files in the dataset, were generated using MQTbench
[19] using the algorithms:

• Amplitude Estimation (AE)

• Deutsch-Jozsa

• Graph State

• GHZ State

• Grover’s (no ancilla)

• Grover’s (v-chain)

• Portfolio Optimization with QAOA

• Portfolio Optimization with VQE

• Quantum Approximation Optimization Algorithm (QAOA)

• Quantum Fourier Transformation (QFT)

• QFT Entangled

• Quantum Neural Network (QNN)

• Quantum Phase Estimation (QPE) exact

• Quantum Phase Estimation (QPE) inexact

• Quantum Walk (no ancilla)

https://colab.research.google.com/drive/1dbtJX6q8sED4yrb1I09KUuXWYH0AVN8r?usp=sharing
https://colab.research.google.com/drive/1dbtJX6q8sED4yrb1I09KUuXWYH0AVN8r?usp=sharing
https://www.kaggle.com/datasets/boranapak/ketgpt-data
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• Quantum Walk (v-chain)

• Variational Quantum Eigensolver (VQE)

• W-State

• Ground State

• Pricing Call Option

• Pricing Put Option

And using the settings:

• qubit range: 2-100

• Target-independent level: Qiskit

9.3 QASM Files

9.3.1 Selection of KetGPT Generated Files

To give an impression of the files KetGPT generates, a random number generator
was used to pick 5 numbers between 0 and 999. The first 30 lines of KetGPT files
corresponding to those random numbers are presented.

KetGPT 20:

OPENQASM 2.0;
include "qelib1.inc";
qreg q[34];
h q[0];
h q[1];
h q[3];
cz q[0],q[1];
h q[2];
h q[3];
h q[3];
h q[4];
h q[5];
h q[6];
h q[7];
cz q[6],q[7];
h q[8];
h q[9];
cz q[8],q[9];
h q[10];
h q[11];
h q[12];
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cz q[11],q[12];
h q[13];
h q[14];
h q[15];
h q[15];
h q[16];
h q[17];
h q[18];
h q[19];

KetGPT 398:

OPENQASM 2.0;
include "qelib1.inc";
qreg q[42];
h q[1];
u2(0,0) q[0];
u2(0,0) q[1];
h q[2];
u2(0,0) q[3];
h q[4];
u2(0,0) q[5];
u2(0,0) q[6];
h q[7];
u2(0,0) q[8];
u2(0,0) q[9];
h q[10];
u2(0,0) q[11];
u2(0,0) q[12];
h q[13];
h q[14];
u2(0,0) q[15];
h q[16];
h q[17];
h q[18];
h q[19];
h q[20];
u2(0,0) q[21];
h q[22];
h q[23];
u2(0,0) q[24];
u2(0,0) q[25];

KetGPT 409:

OPENQASM 2.0;
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include "qelib1.inc";
qreg q[97];
creg meas [4];
ry(-pi/4) q[0];
ry(-pi/3) q[2];
cz q[0],q[1];
h q[2];
h q[3];
cz q[2],q[3];
h q[4];
cz q[3],q[4];
h q[5];
measure q[0] -> meas [0];
measure q[1] -> meas [1];
measure q[2] -> meas [2];
measure q[3] -> meas [3];
measure q[4] -> meas [4];
measure q[5] -> meas [5];
measure q[6] -> meas [6];
measure q[7] -> meas [7];
measure q[8] -> meas [8];
measure q[9] -> meas [9];
measure q[10] -> meas [10];
measure q[11] -> meas [11];
measure q[12] -> meas [12];
measure q[13] -> meas [13];
measure q[14] -> meas [14];
measure q[15] -> meas [15];
measure q[16] -> meas [16];

KetGPT 793:

OPENQASM 2.0;
include "qelib1.inc";
qreg q[14];
h q[0];
h q[0];
h q[1];
cz q[0],q[1];
h q[2];
h q[3];
h q[4];
h q[5];
h q[6];
h q[7];
h q[8];
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h q[9];
h q[10];
h q[11];
h q[12];
h q[13];
cz q[12],q[13];
h q[12];
h q[13];
cz q[12],q[13];
h q[13];
cz q[12],q[13];
cz q[12],q[13];
cz q[12],q[13];
cp(-pi/8) q[3],q[0];
cp(pi/2) q[12],q[11];
h q[11];

KetGPT 807:

OPENQASM 2.0;
include "qelib1.inc";
qreg q[31];
h q[1];
ry(-pi/4) q[0];
ry(-pi/3) q[2];
h q[2];
h q[3];
h q[4];
u2(0,0) q[5];
h q[5];
h q[6];
h q[7];
h q[8];
h q[9];
h q[10];
h q[11];
h q[12];
h q[13];
h q[14];
h q[15];
h q[16];
h q[17];
cz q[16],q[17];
h q[18];
h q[19];
h q[20];
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h q[21];
h q[22];
h q[23];

9.3.2 Real QASM Files Classified as Random

These QASM files were from the real dataset, but were classified as random Quantum
Walk (no ancilla) 3 qubits:

OPENQASM 2.0;
include "qelib1.inc";
qreg node [2];
qreg coin [1];
creg meas [3];
h coin [0];
ccx coin[0],node[1],node [0];
cx coin[0],node [1];
x coin [0];
x node [1];
ccx coin[0],node[1],node [0];
cx coin[0],node [1];
u2(-pi,-pi) coin [0];
x node [1];
ccx coin[0],node[1],node [0];
cx coin[0],node [1];
x coin [0];
x node [1];
ccx coin[0],node[1],node [0];
cx coin[0],node [1];
u2(-pi,-pi) coin [0];
x node [1];
ccx coin[0],node[1],node [0];
cx coin[0],node [1];
x coin [0];
x node [1];
ccx coin[0],node[1],node [0];
cx coin[0],node [1];
x coin [0];
x node [1];
barrier node[0],node[1],coin [0];

Quantum Walk (no ancilla) 7 qubits:

OPENQASM 2.0;
include "qelib1.inc";
qreg node [6];
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qreg coin [1];
creg meas [7];
h node [0];
cu1(pi/32) node[5],node [0];
cx node[5],node [4];
cu1(-pi/32) node[4],node [0];
cx node[5],node [4];
cu1(pi/32) node[4],node [0];
cx node[4],node [3];
cu1(-pi/32) node[3],node [0];
cx node[5],node [3];
cu1(pi/32) node[3],node [0];
cx node[4],node [3];
cu1(-pi/32) node[3],node [0];
cx node[5],node [3];
cu1(pi/32) node[3],node [0];
cx node[3],node [2];
cu1(-pi/32) node[2],node [0];
cx node[5],node [2];
cu1(pi/32) node[2],node [0];
cx node[4],node [2];
cu1(-pi/32) node[2],node [0];
cx node[5],node [2];
cu1(pi/32) node[2],node [0];
cx node[3],node [2];
cu1(-pi/32) node[2],node [0];

Quantum Walk (no ancilla) 8 qubits:

OPENQASM 2.0;
include "qelib1.inc";
qreg node [7];
qreg coin [1];
creg meas [8];
h node [0];
cu1(pi/64) node[6],node [0];
cx node[6],node [5];
cu1(-pi/64) node[5],node [0];
cx node[6],node [5];
cu1(pi/64) node[5],node [0];
cx node[5],node [4];
cu1(-pi/64) node[4],node [0];
cx node[6],node [4];
cu1(pi/64) node[4],node [0];
cx node[5],node [4];
cu1(-pi/64) node[4],node [0];
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cx node[6],node [4];
cu1(pi/64) node[4],node [0];
cx node[4],node [3];
cu1(-pi/64) node[3],node [0];
cx node[6],node [3];
cu1(pi/64) node[3],node [0];
cx node[5],node [3];
cu1(-pi/64) node[3],node [0];
cx node[6],node [3];
cu1(pi/64) node[3],node [0];
cx node[4],node [3];
cu1(-pi/64) node[3],node [0];

Quantum Walk (no ancilla) 12 qubits:

OPENQASM 2.0;
include "qelib1.inc";
qreg node [11];
qreg coin [1];
creg meas [12];
h node [0];
cu1(pi /1024) node [10], node [0];
cx node [10], node [9];
cu1(-pi /1024) node[9],node [0];
cx node [10], node [9];
cu1(pi /1024) node[9],node [0];
cx node[9],node [8];
cu1(-pi /1024) node[8],node [0];
cx node [10], node [8];
cu1(pi /1024) node[8],node [0];
cx node[9],node [8];
cu1(-pi /1024) node[8],node [0];
cx node [10], node [8];
cu1(pi /1024) node[8],node [0];
cx node[8],node [7];
cu1(-pi /1024) node[7],node [0];
cx node [10], node [7];
cu1(pi /1024) node[7],node [0];
cx node[9],node [7];
cu1(-pi /1024) node[7],node [0];
cx node [10], node [7];
cu1(pi /1024) node[7],node [0];
cx node[8],node [7];
cu1(-pi /1024) node[7],node [0];

Quantum Walk (v-chain) 15 qubits:
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OPENQASM 2.0;
include "qelib1.inc";
qreg node [8];
qreg coin [1];
qreg anc [6];
creg meas [15];
h coin [0];
rccx coin[0],node[1],anc [0];
rccx node[2],anc[0],anc [1];
rccx node[3],anc[1],anc [2];
rccx node[4],anc[2],anc [3];
rccx node[5],anc[3],anc [4];
rccx node[6],anc[4],anc [5];
ccx node[7],anc[5],node [0];
rccx node[6],anc[4],anc [5];
rccx node[5],anc[3],anc [4];
rccx node[4],anc[2],anc [3];
rccx node[3],anc[1],anc [2];
rccx node[2],anc[0],anc [1];
rccx coin[0],node[1],anc [0];
rccx coin[0],node[2],anc [0];
rccx node[3],anc[0],anc [1];
rccx node[4],anc[1],anc [2];
rccx node[5],anc[2],anc [3];
rccx node[6],anc[3],anc [4];
ccx node[7],anc[4],node [1];
x node [1];
rccx node[6],anc[3],anc [4];

9.3.3 Random QASM Files Classified as Real

This QASM file was randomly generated, but was still classified as real by the final
classifier

OPENQASM 2. 0;
include "qelib1.inc";
qreg q[63];
cp(0) eval[1],eval [48];
cz q[11],q[44];
cx q[20],q[36];
cx q[9],q[51];
cp(0) q[53],q[9];
cx q[0],q[45];
cz q[22],q[28];
cx q[21],q[25];
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u1(-pi) q[6];
h eval [19];

9.3.4 KetGPT Files Classified as Random

The only KetGPT file that was classified as random per the final classifier KetGPT
463:

OPENQASM 2.0;
include "qelib1.inc";
qreg q[78];
ry(-pi/4) q[0];
ry(-pi/4) q[0];
ry(-pi/3) q[2];
h q[14];
rccx coin[0],node[1],anc [0];
rccx coin[0],node[1],anc [0];
rccx coin[0],node[2],anc [0];
ry(-pi/3) q[2];
rccx coin[0],node[1],anc [0];
rccx node[2],anc[0],anc [1];
rccx coin[0],node[2],anc [0];
x node [1];
rccx coin[0],node[1],anc [0];
rccx coin[0],node[2],anc [0];
rccx node[3],anc[0],anc [1];
rccx coin[0],node[2],anc [0];
rccx node[3],anc[0],anc [1];
rccx coin[0],node[2],anc [0];
rccx node[3],anc[0],anc [1];
x node [1];
rccx node[3],anc[0],anc [1];
h q[20];
rccx node[2],anc[0],anc [1];
rccx coin[0],node[1],anc [0];
rccx coin[0],node[2],anc [0];
x node [1];
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