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Observation of Landau levels and  
chiral edge states in photonic crystals 
through pseudomagnetic fields induced  
by synthetic strain

René Barczyk    1, L. Kuipers    2 & Ewold Verhagen    1 

Control over light propagation and localization in photonic crystals offers 
wide applications ranging from sensing and on-chip routing to lasing 
and quantum light–matter interfaces. Although in electronic crystals, 
magnetic fields can be used to induce a multitude of unique phenomena, the 
uncharged nature of photons necessitates alternative approaches to bring 
about similar control over photons at the nanoscale. Here we experimentally 
realize pseudomagnetic fields in two-dimensional photonic crystals 
through engineered strain of the lattice. Analogous to strained graphene, 
this induces flat-band Landau levels at discrete energies. We study the spatial 
and spectral properties of these states in silicon photonic crystals at telecom 
wavelengths with far-field spectroscopy. Moreover, taking advantage of 
the photonic crystal’s design freedom, we realize domains of opposite 
pseudomagnetic field and observe chiral edge states at their interface. We 
reveal that the strain-induced states can achieve remarkably high quality 
factors despite being phase matched to the radiation continuum. Together 
with the high density of states and high degeneracy associated with flat 
bands, this provides powerful prospects for enhancing light–matter 
interactions, and illustrates the broad potential o f p sd eudomagnetic fields 
in the nanophotonic domain. This work, thus, establishes a new design 
principle to govern both on-chip and radiating light fields.

In condensed-matter physics, magnetic fields provide a versatile 
mechanism to control the behaviour of electrons in materials. For 
example, a magnetic field piercing a two-dimensional electron gas 
induces flat bands at discrete energies known as Landau levels, which 
can be viewed as the quantization of the electrons’ cyclotron motion 
in the magnetic field. Moreover, at the system’s boundaries, the mag-
netic field implies the existence of chiral edge states associated with 
the quantum Hall effect. In photonics, the idea of controlling light in 
a similar way has been a tantalizing prospect. Although at microwave 

frequencies, magneto-optic effects may be strong enough to effec-
tively mediate interactions between photons and real magnetic 
fields1, this approach is unfeasible for optical frequencies. Realizing 
an effective magnetic control over photons in dielectric photonic sys-
tems without relying on actual external magnetic fields represents 
an especially luring proposition for on-chip nanophotonic systems, 
where the associated implications for the localization and steer-
ing of light and the enhancement of light–matter interactions form  
powerful prospects.
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factors, even though they exist within the radiation continuum. We 
finally demonstrate the creation of inhomogeneous PMFs by spatially 
tailoring the strain field. This allows observing signatures of chiral 
edge states that are predicted to exist at the boundaries of domains 
with opposite magnetic fields32 and which are distinct from other 
crystal-symmetry-based implementations of topological edge states 
in PhCs19,33–35. Our findings illustrate the applicability of synthetic strain 
engineering for the control of light and its interaction with matter at 
the nanoscale.

Results
Observation of nanophotonic Landau levels
We fabricate suspended silicon membranes perforated by triangular 
air holes using electron-beam lithography and wet etching of a 
silicon-on-insulator substrate (Methods)36,37. Figure 1a shows a scanning 
electron micrograph of a fabricated strained PhC lattice, where the 
inset depicts a three-dimensional cross-cut of the slab. We follow the 
approach outlined elsewhere17 to induce a uniform PMF Beff piercing 
the PhC plane. The starting point is a pristine transverse-electric-type 
honeycomb PhC with lattice constant a0 and dielectric distribution 
ϵ(x) (x = (x, y)). The lattice is oriented with the zigzag and armchair 
directions along the x and y axes, respectively. The PhC’s frequency 
spectrum features a Dirac-type crossing (Fig. 1b,c) and is governed by 
the scalar Helmholtz equation for the out-of-plane magnetic field 
H(x) = Hz(x)ẑ:

−∇∇∇ ⋅ (ϵ−1(x)∇∇∇)Hz(x) = (ω/c)2 Hz(x). (1)

Figure 1c plots the calculated dispersion for the ky direction, with the 
Dirac point appearing at ky = 0 for lattice constant a = √3a0, which is 
the minimal periodicity when implementing the strain profile. This 
uniaxial strain is realized by displacing each point x in the PhC plane 
via T(x) = x + u(x), with quadratic displacement function 

In graphene, pseudomagnetic fields (PMFs) can be induced for 
electrons via mechanical strain of the lattice, as the corresponding 
perturbation to interatomic hopping mimics the action of a mag-
netic gauge potential2–5. Contrary to real magnetic fields that break 
time-reversal symmetry, strain-induced PMFs carry opposite signs for 
the two non-equivalent Dirac cones at the K and K′ valleys. Neverthe-
less, they still give rise to intriguing phenomena including Landau-level 
quantization and chiral edge states. Analogously, suitable lattice defor-
mations can act as magnetic gauge potentials in bosonic systems. Their 
effects have been studied in lattices of coupled waveguides6,7, arrays 
of microwave resonators8,9, Moiré superlattices in bilayer microwave 
metamaterials10, microcavity exciton–polaritons11 and acoustic plat-
forms12–16. Recently, it has been predicted that inhomogeneous defor-
mations in honeycomb photonic crystal (PhC) membranes can act as a 
magnetic gauge potential, creating synthetic strain through a designed 
perturbation of the dielectric function ϵ(x) (ref. 17). Strain-induced 
pseudomagnetism in PhCs is non-trivial because of inherent long-range 
interactions. It would, however, be highly appealing as it provides a new 
paradigm for the on-chip routing and confinement of light18,19. In con-
trast to Landau levels in cavity or waveguide arrays6,11,20 or multimode 
cavities21, their realization in nanophotonics via PMFs offers a path to 
enhance light–matter interactions and nonlinearities through the high 
degeneracy and high local density of states of photonic Landau levels, 
associated with their nature as flat bands22–25. Moreover, photonic 
synthetic magnetism has been predicted to enable unique forms of 
lasing26, polariton condensation27 and optical vortex generation28, 
and could form a new design paradigm in metamaterials to control 
far-field radiation.

Here we realize PMFs in silicon PhCs at telecom wavelengths, and 
demonstrate the resulting emergence of photonic Landau levels. Using 
far-field Fourier spectropolarimetry29–31, we study the characteristic 
energy scaling of Landau levels with strain, their delocalization and loss 
mechanisms. We reveal that they can exhibit remarkably high quality 
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Fig. 1 | Sample geometry and strain-induced Landau levels. a, Scanning 
electron micrograph of a fabricated PhC membrane, with the sample geometry 
depicted in the inset. The supercell of the strained honeycomb lattice is 
highlighted in blue, with periodicity a = √3a0 along the y direction and a0 
denoting the lattice constant of the underlying pristine honeycomb lattice.  
b, Schematic of the supercells for pristine ①, strained ② and shrunken strained 
③ lattices. The applied displacement function is given by u(x), and ρ = r/r0 
denotes the relative displacement of holes within a hexagonal unit cell with 
respect to a pristine lattice (ρ = 1). c, Schematic of the real-space geometry and 
dispersion of a pristine honeycomb lattice (left), together with simulated 

photonic bulk bands ①. The dispersion is characterized by a Dirac-type linear 
crossing. Because of the two-dimensional periodicity of the lattice, the 
dispersion delineates a continuum of states in the Dirac cone (indicated by blue 
shading). The light-blue lines depict bands of an exemplary finite-width supercell 
with transverse periodic boundary conditions at x = ±28.5a0. A bandgap is 
opened in place of the original Dirac-type crossing due to strain ②, and flat 
Landau levels emerge symmetrically distributed around the bandgap centre. 
Experimentally retrieved angularly resolved reflection spectra showing photonic 
Landau levels in strained PhC lattices ③, with ρ = 0.99 and 0.97 and κ = 0.125 in 
both cases.
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u(x) = (0, a−1(κx)2) and the parameter κ representing the strain magni-
tude. The displacement, thus, breaks the x periodicity but preserves 
the larger supercell periodicity a along y. In the vicinity of the K and K′ 
valleys, the eigenfunctions’ dynamics are captured by a two-dimensional 
Dirac-type Hamiltonian3:

Heff = vD[−i∇∇∇x − Aeff(x)] ⋅ σ, (2)

where vD is the Dirac velocity, σ = (σ1, σ2) are Pauli matrices and Aeff is 
the effective magnetic vector potential that is related to the displace-
ment function u via

Aeff ∝ (
ux,x − uy,y

−(ux,y + uy,x)
) . (3)

Here ui,j = ∂ui/∂xj. The solutions to the eigenvalue problem associated 
with equation (2), up to first-order 𝒪𝒪(κ), correspond to flat states at 
discrete frequencies that are symmetrically distributed around the 
original Dirac-cone frequency ωD. These constitute Landau levels that 
follow the square-root law:

ωn = ωD ±
vDc

2

√2ωD
√n|Beff(κ)|, n = 0, 1, 2,… , (4)

where the effective magnetic-field amplitude is given by ∣Beff(κ)∣ =  
∣∇x × Aeff(κ)∣ = B0κ2, and B0 is a constant parameter specific to the (meta)
material17,32. Although this magnetic field does not quantize conduct-
ance, given that photons obey bosonic rather than fermionic statistics, 
it does quantize the spectrum.

To make the strain-induced photonic Landau levels experimentally 
accessible via far-field Fourier spectroscopy (Extended Data Fig. 1 and 
Methods), we enhance their radiative coupling by applying an additional 
type of sub-lattice symmetry breaking by concentrically shrinking the 
radial position r of six air holes within a hexagonal unit cell by a factor 
of ρ = r/r0 (Fig. 1b,c), where r = r0 for the pristine honeycomb PhC29–31,33. 
Figure 1c presents the wavevector- and frequency-resolved reflectance 
for two shrinking factors, namely, ρ = 0.99 and 0.97, highlighting the 
substantial enhancement in band visibility achieved through the 
symmetry-breaking mechanism. Here we recognize pronounced, largely 
horizontal bands in the photonic dispersion, in a striking departure 
from the linear Dirac-cone dispersion of the unperturbed lattice. This 
constitutes the first pivotal consequence of the PMFs we realized—the 
experimental observation of photonic Landau levels in a strained PhC 
membrane. The clarity with which these states can be resolved is testa-
ment to the low loss and large scale of the PhC implementation. The Lan-
dau levels are unaffected by the shrinking factor (Extended Data Fig. 2  
shows more measurements and simulations with varying ρ values). They 
are distributed around the n = 0 Landau level at ωD ≈ 2π × 197 THz and 
exhibit Fano lineshapes due to interference with the broad reflection 

background (Methods). In the following, if not stated otherwise, the 
presented reflection measurements are of PhCs with ρ = 0.98 that have 
bands that are well visible as weak symmetry breaking is maintained. 
We emphasize that the symmetry breaking is only used here to visualize 
the states. Alternative methods such as period doubling could also be 
employed, whereas perturbations that break inversion symmetry are 
to be avoided to not affect the Landau levels.

The strain magnitude, controlled by the parameter κ, largely 
affects the energy landscape of the PhC (Fig. 2a; Extended Data Fig. 3 
shows more measurements and simulations with varying κ values). We 
see that the bandgap size increases with κ, and successively more flat 
states emerge around ωD. Extracting their centre-mode frequencies at 
the Γ point from fits to the experimental lineshape (equation (5)), we 
recognize that the level separation follows the expected square-root 
scaling that is unique to massless Dirac particles in an increasingly 
strong external (pseudo-)magnetic field (equation (4)). This character-
istic energy scaling is further supported by eigenfrequency simulations 
(Fig. 2b). Together, the results shown in Fig. 2 underline the origin of 
the resolved states in the strain-induced PMF.

Localization and radiation
Long-range interactions in the PhC lattice render the photonic Landau 
levels weakly dispersive away from the Γ point, increasing in frequency 
with ∣ky∣ (Fig. 2a)17. Coupling beyond next-nearest neighbours cor-
responds to higher-order contributions (𝒪𝒪(κ2)) in equation (4). It, 
thus, represents a feature specific to the photonic platform, differ-
entiating it from the tight-binding graphene analogue. The spatial 
localization of states also displays a clear dependence on ky. Figure 3a 
shows the simulated fields of the n = 0 Landau level at three different 
ky values. All the bands are doubly degenerate, with fields that are 
even and odd with respect to the mirror symmetry axis of the lattice 
along x = 0—or an orthogonal pair of superpositions thereof (Fig. 3a, 
right). Although the states’ transverse extent for ky = 0—where the 
group velocity vanishes—spans many unit cells, it appears finite none-
theless. For a finite wavevector ky, the fields are localized further away 
from the centre, eventually transforming into trivial states propagat-
ing along the armchair edges of the lattice (Fig. 3a)17,38,39. We see this 
behaviour confirmed in experiment when scanning the excitation 
focus along x (Fig. 3b). Here we plot the measured states for two spe-
cific incident polarizations (right- and left-handed circularly polarized; 
Extended Data Fig. 4 shows the case of linear polarization). Interest-
ingly, we recognize that a mode with positive ky can be excited either 
with right-circular polarization to the left of the centre (x = −3 μm) or 
with left-circular polarization to the right (x = 3 μm). Thus, these states 
form a degenerate pair with opposite pseudospins (encoded as 
far-field helicity) linked to transverse localization. We note that an 
equivalent pair with opposite handedness exists in the backward 
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square-root scaling law. The small mode splitting of the (ideally doubly 
degenerate) modes in simulations is a finite-size effect and not resolvable in our 
far-field measurements.
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direction, owing to time-reversal symmetry. For excitation near the 
centre (x = 0), the flat part of the band near ky = 0 is probed for any 
polarization.

The transverse localization is also linked to the losses of the 
states, manifested in their resonance linewidths. We distinguish four 
possible sources of loss: (1) intrinsic far-field radiation, due to the 
fact that the states inherently reside within the radiation continuum;  
(2) losses associated with the edge of the lattice at large ∣x∣, due to 
either scattering or leakage into slab modes; (3) losses due to scat-
tering at random disorder; and (4) radiation losses associated with 
non-unity shrinking factor ρ, which are intentionally introduced 
only to facilitate free-space measurements. At the Γ point, we deter-
mine the quality factors of the n = 0 level from linewidth fits (Fig. 3c).  
The measured quality factors reach Q ≈ 7,000 for the weakest sym-
metry breaking at ρ = 0.99, close to the spectral-resolution limit 
(Methods). These low losses are reproduced on PhCs with different 
lattice constants. The fact that losses increase strongly with smaller 
ρ shows that at ky = 0, they are limited by the non-intrinsic losses due 
to non-unity ρ. In fact, the linearly decreasing trend of linewidth with 
ρ shows that losses are negligibly small when extrapolated to ρ = 1. 
Numerical simulations with and without absorbing boundary condi-
tions (Methods) indeed show that radiative losses dominate (Fig. 3d, 
left), with intrinsic quality factor (ρ = 1) calculated to be on the order 
of Q ≈ 107 (Fig. 3d, right, and Extended Data Fig. 5a). This is a remark-
ably high value, given that the photonic Landau levels are inherently 
residing within the free-space radiation continuum, as evident from 
the numerical simulations of the complex mode frequencies (Fig. 3a).  
Therefore, although strain perturbation strongly alters the real parts 
of the spectrum, transforming the linear Dirac dispersion into flat 
Landau levels, it leaves the imaginary parts close to zero. From the 
ky-dependent reflection spectra (Fig. 3b), we see that resonance 
linewidths increase away from the Γ point. This can be related to the 

shift in localization away from the lattice centre towards the edges, 
accompanied by increased in-plane losses (point (2) above) that 
dominate for large wavevectors (Extended Data Fig. 6 shows the 
simulations of losses versus ky).

Chiral edge states at domain walls
A defining advantage of the PhC platform is the ease with which opti-
cal potentials can be tailored at will as a function of position. Indeed, 
different gauge potentials (equation (3)) can be realized through dif-
ferent deformations u(x). By choosing u(x) = (0, a–1(κx)2sgn(x)), that 
is, enforcing inversion rather than mirror symmetry in the x = 0 plane 
of the PhC, we obtain two oppositely strained domains that feature 
a domain wall between oppositely oriented PMFs at x = 0 (Fig. 4a,b). 
Numerical simulations predict the emergence of non-degenerate chiral 
edge states at the interface, connecting the former Landau levels of 
the individual half-domains (Fig. 4c, left)32. The origin of these states 
differs from that of topological edge states in other PhCs33,40 as they 
arise not from a breaking of internal symmetry of a unit cell but rather a 
global change in the lattice. We choose propagation along an armchair 
boundary as we aim to avoid trivial zero-energy states at the outer 
boundaries of the sample that are known to be supported by the zigzag 
terminations of a graphene lattice32.

The edge states are localized at the central boundary for ky/k0 = 0, 
but now feature a finite group velocity there (Fig. 4c, left). Like the 
Landau levels, they are largely protected from diffraction loss at 
the PhC terminations, resulting in similarly narrow linewidths and 
theoretical quality factors up to 106 (Extended Data Fig. 5b). Away 
from the Γ point, the edge states are increasingly displaced from 
the central domain wall and slowly restore their degeneracy and 
photonic Landau-level nature, before eventually turning into trivial 
propagating states at the PhC boundaries (Fig. 4d), accompanied by 
enhanced losses and broadened linewidth (Extended Data Fig. 5b). 
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Fig. 3 | Landau-level localization, polarization and losses. a, Simulated bands 
of a strained lattice (κ = 0.125, ρ = 0.98) with the linewidth indicated by blue 
shading (left), alongside the simulated mode profiles of the in-plane electric-field 
intensity for selected values of ky (right). b, Position- and polarization-dependent 
excitation of photonic Landau levels, where the displacement in x relative to the 
lattice centre and the right-hand (R) and left-hand (L) polarization states of the 
incident beam are indicated. c, Fano fits to the measured lineshapes (left) yield 

the experimentally extracted linewidths and quality factors of the n = 0 Landau 
level at the Γ point as a function of ρ (right). For ρ = 0.99, the open circles indicate 
measurements on two additional lattices with different lattice constants. The 
linewidths are averaged over seven cross-cuts of the recorded dispersion along ky 
(around ky ≈ 0) and given alongside the standard error. d, Numerically retrieved 
linewidths (left) and quality factors (right), showing the respective contributions 
of radiative and in-plane losses to the total mode loss.
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The mode localization and associated losses can be broadly tuned by 
means of changing the PMF magnitude (Extended Data Fig. 7 shows 
the experiments and simulations with varying κ values) or by realizing 
more complex strain patterns. Figure 4e shows a Fourier spectroscopy 
measurement. The symmetry breaking at ρ < 1 induced to enhance 
radiative coupling now alters the chiral-edge-state dispersion, intro-
ducing avoided crossings at the Γ point (Fig. 4c, right; Extended Data 
Fig. 9 shows the data for varying ρ values). Nonetheless, much of 
the characteristic features of the predicted chiral edge states can 
be recognized in the dispersion bands, compared with the theory 
prediction (Fig. 4c, right). As shown in Extended Data Fig. 8, we rec-
ognize the signatures of spin–orbit coupling in the chiral edge states 
when resolving polarization. At a fixed frequency, one can selectively 
couple into forward- or backward-propagating modes by changing 
the helicity (pseudospin) of the incident beam. However, contrary to 
other implementations of edge states in PhCs based on the quantum 
spin Hall effect30,33, there is no unique correspondence between the 
states’ pseudospin and the far-field helicity of the emitted radiation, 
as the same state can be excited with different helicities at different 
locations.

Discussion
We demonstrated the experimental realization of PMFs in PhC mem-
branes via engineered synthetic strain, and employed it to induce pho-
tonic Landau levels and quantum-Hall-like edge states in the photonic 
band structure. We studied these states in the far field by introducing 
radiative coupling through sub-lattice symmetry breaking. The latter 
could, however, be readily removed, leaving remarkably high quality 
factors despite the states being coupled to the radiation continuum. 
In fact, these PhC Landau levels share some traits with bound states in 
the continuum41, combining low radiation coupling and spatial delo-
calization. Although the predicted extreme quality factors (~107) may 
not be reached in practice due to random fabrication disorder, the low 
loss augments the high interest of these states for applications that 
benefit from strong field enhancement. Together with the slow group 
velocity and large delocalization, it makes the flat Landau-level bands 
extremely appealing for a variety of applications, including quantum 
light sources, nonlinear nanophotonics for frequency conversion, 
efficient lasers, sensors, interaction of light with free electrons25 and 
polariton condensation27. Supplementary Section II provides a prelimi-
nary numerical study showing that Purcell factors that are competitive 

with slow-light waveguides are in reach even without optimization, indi-
cating high value for applications42. The ability to realize broad-angle 
resonances with ultralow intrinsic loss provides interesting prospects 
for wavefront control in metasurfaces, for example, for narrow-band 
filters and fibre couplers.

Studying the effects of disorder forms an obvious direction of 
follow-up research. Although we recognize that the Landau levels are 
unaffected by certain perturbations (such as the employed shrinking 
transformation), the fact that the system conserves time-reversal 
symmetry means that other perturbations, specifically those breaking 
inversion symmetry, may affect the Landau levels. This is the same in 
the fermionic case of strained graphene, where disorder is also a topic 
of interest43. The low-loss, large-scale silicon PhC platform forms, in 
fact, an interesting testbed for fundamental studies in this direction, 
as well as for the exploration of two-dimensional photonic Anderson 
localization. Likewise, it would be useful to gain a comprehensive 
understanding of radiative losses in these inherently non-Hermitian 
systems.

The demonstrated design principle of artificial strain engineer-
ing allows for a broad engineering of the localization and propaga-
tion properties of PhCs, and offers extensive control over dispersion 
through tailoring of the lattice, well beyond the studies reported here. 
For instance, the flatness of the Landau-level bands could be readily 
improved by engineering an effective pseudoelectric field through 
additional transverse strain along x when exploring applications of 
light–matter enhancement17. We numerically illustrate such flattening 
and the resultant increase in Purcell enhancement (Supplementary 
Section II). Although the optimization of a single Landau level for 
applications would be valuable, we note that it would be interesting 
to develop a comprehensive understanding of possible transforma-
tions for the complete design of dispersion. Overall, the demonstrated 
strain-induced gauge fields provide a new, highly flexible paradigm 
for the exploration of novel photonic phenomena and the potential 
development of new photonic devices.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-024-01412-3.
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Fig. 4 | Chiral edge states through inhomogeneous PMFs. a,b, Scanning 
electron micrograph (a) and schematic (b) of a PhC membrane composed 
of inversely strained domains sharing an armchair interface. The opposing 
PMFs (±Beff) penetrating both domains (blue arrows) lead to the emergence of 
counterpropagating, spin-polarized chiral edge states guided along their mutual 

boundary (magenta arrows). c, Simulated bands for the pristine (ρ = 1.00) and 
shrunken (ρ = 0.98) case. d, Real-space edge-state mode profiles of the in-plane 
electric-field intensity for the values of ky marked in c. e, Edge-state spectra for 
a strain magnitude of κ = 0.125, taken for linear horizontal polarization with the 
focus spot placed 3 μm to the side of the interface.
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Methods
Numerical simulations
Full-wave finite-element-method simulations in three dimensions were 
performed using the COMSOL Multiphysics RF Module44. The refractive 
index of silicon was set to n = 3.48, with a slab thickness of 220 nm. The 
unstrained primitive rhombic unit cell consisted of equilateral trian-
gular air holes with a side length of s = 0.3125 ×√3a0 and a lattice con-
stant of √3a0 = 800 nm. Perfectly matched layers above and to the 
transverse (x) sides of the simulation domain provide us with an esti-
mate for the total loss and associated linewidth of the (quasinormal) 
eigenmodes, defined as two times the imaginary part of the complex 
eigenfrequency. We also perform simulations in which the transverse 
perfectly matched layers are replaced by perfect electric-conducting 
boundaries to eliminate in-plane loss and thus separately quantify the 
in-plane and out-of-plane (radiative) contributions to the total loss 
through comparison. We extract the displayed near-field profiles on a 
regular grid in a plane located 20 nm above the slab.

Device fabrication
The PhC slab was fabricated on a silicon-on-insulator platform with a 
220-nm-thick silicon layer on a 3 μm buried oxide layer. First, a positive 
electron-beam resist with a thickness of 240 nm (AR-P 6200.09) was 
spin coated. Then, the PhC design was patterned in the resist using 
electron-beam lithography (Raith Voyager) with 50 kV beam exposure. 
The electron-beam resist was developed in pentyl acetate/o-xylene/
methyl isobutyl ketone:isopropanol (9:1)/isopropanol, and the chip 
subsequently underwent reactive ion etching in HBr and O2. Finally, 
the buried oxide layer was removed in an aqueous 4:1 solution of 
hydrofluoric acid for 19 min and the sample was then subjected to 
critical-point drying to obtain free-standing PhC membranes37. The 
PhC lattice design features a honeycomb configuration of equilateral 
triangles (side length, s = 0.3125a) in a hexagonal unit cell with lat-
tice constant a = 827 nm. The unit-cell shrinking factor was chosen as 
ρ = r/r0 = 0.98, unless stated otherwise, where r is the distance of the 
centroids of the triangular air holes from the unit-cell centre; r = r0 for 
a perfect honeycomb lattice.

Experimental setup
Extended Data Fig. 1 shows a schematic of the optical setup. To meas-
ure the photonic dispersion, we use a 200 mW supercontinuum 
source (SCS; Fianium WhiteLase Micro) that generates light with a 
broadband spectrum. Its output is filtered by a long-pass filter with a 
cutoff wavelength of 1,150 nm and coupled into a single-mode opti-
cal fibre. Infrared light from the fibre is collimated by an achromatic 
lens (COL) and passed through a linear polarizer and an achromatic 
quarter-wave plate, which together define the polarization of the 
input beam (PO1). A non-polarizing beamsplitter cube (BS) steers the 
input light to an aspheric microscope objective (MO; Olympus LCPL-
N50XIR, ×50; numerical aperture, 0.65), which focuses the incident 
Gaussian beam onto the sample. To precisely position the sample 
in the focal plane, it is attached to an XYZ-movable piezo-actuator 
(MCL Nano-3D200FT, controlled via MCL ND3-USB163), which itself 
is mounted atop a manual XYZ translation stage for coarse alignment. 
Reflected light is collected by the same objective and passed through 
the BS and a second set of linear polarizer and quarter-wave-plate 
(PO2) to project the back focal plane (BFP) radiation onto the desired 
polarization state. It then passes a Fourier lens (FL) that, together 
with a tube lens (TL), images the objective’s BFP onto the entrance 
slit of a spectrometer (Acton SpectraPro SP-2300i). Optional custom 
spatial filters (SFs) are placed in the image plane between the FL and 
TL to define the sample area from which light is collected as well as to 
suppress stray light. The (vertical) entrance slit of the spectrometer 
is aligned with the optical axis and a cross-cut is selected along kx = 0 
in the reciprocal plane, confirmed using a test grating sample. With 

the help of two parabolic mirrors (PMs) for focusing and collection, 
the spectrometer grating then disperses the broadband infrared light 
orthogonally to the slit, such that the InGaAs infrared camera (AVT 
Goldeye G-008 SWIR) placed at the spectrometer output records 
images of frequency versus ky/k0, where k0 is the free-space wavevector. 
The wavevector resolution is δky/k0 ≈ 0.009, and the typical minimal 
spectral resolution is ~16 GHz.

Extraction of resonance frequencies and quality factors
To extract the centre-mode frequencies and quality factors from the 
reflection spectra, we fit a set of general (Fano) resonance lineshapes 
of the form

R(ω) =
||||
A0 +

n

∑
j=1

Ajeiϕj
γj

ω − ω0j
+ iγj

||||

2

, (5)

where A0 is a constant background amplitude; and Aj, ϕj and ω0j
− iγj  

are the amplitude, phase and complex frequency of n = 2 individual 
Lorentzians, respectively. One of these Lorentzians models the PhC 
mode, whereas the second (broad) Lorentzian accounts for the slowly 
varying background reflection. Quality factors are defined as 
Qj = ω0j

/(2γj).

Data availability
The data in this study are available via Zenodo at https://doi.org/ 
10.5281/zenodo.10125585.
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Extended Data Fig. 1 | Far-field Fourier spectroscopy. Schematic depiction of the experimental far-field Fourier spectropolarimetry setup used for angularly 
resolved measurement of the photonic crystals’ band dispersion. See Methods for details and abbreviations.
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Extended Data Fig. 2 | Symmetry breaking to control radiative coupling. Measured (top) and simulated (bottom) bands of Landau levels in PhCs with varying unit 
cell shrinking factor ρ, all at κ = 0.125. The linewidth in the simulations is scaled by a factor two for enhanced visibility. The linewidth increases with decreasing ρ.
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Extended Data Fig. 3 | Tailoring Landau levels via strain. Measured (top) and simulated (bottom) bands of Landau levels in PhCs with increasing strain magnitude κ, 
all at ρ = 0.98. The gap at small κ is due to the sub-lattice symmetry breaking.
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Extended Data Fig. 4 | Landau level localization and polarization. Position- 
and polarization-dependent excitation of photonic Landau levels, where the 
displacement in x relative to the lattice center and the polarization state of the 

incident beam (linear horizontal (X), linear vertical (Y), right-handed circular 
(R) and left-handed circular (L)) are indicated (ρ = 0.98 and κ = 0.125 in these 
measurements).
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Extended Data Fig. 5 | Quality factors of pristine lattices. a, Numerically retrieved bands of a pristine strained photonic crystal featuring Landau levels, with color-
coded quality factors (ρ = 1.00, κ = 0.125). b, Same as a, for a photonic crystal featuring chiral edge states.

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-024-01412-3

Total
Radiative
In-plane

ρ=0.98
κ=0.125

Extended Data Fig. 6 | Landau level losses versus wavevector. Numerically 
retrieved contributions of radiative and in-plane losses to the total linewidth 
of the zeroth Landau level (left), corresponding to the section of the band 
highlighted in red (right). For large ky, the in-plane losses exceed the radiative 

losses to the top and bottom of the PhC slab, which reduces the visibility of 
the bands in the experiment as they become under-coupled to the free-space 
radiation.
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Extended Data Fig. 7 | Tailoring chiral edge states via strain. Measured (top) and simulated (bottom) bands of chiral edge states in PhCs with increasing strain 
magnitude κ, all at ρ = 0.98.
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Extended Data Fig. 8 | Polarization and position dependence of chiral edge 
states. The incident polarization state is denoted as X (linear horizontal),  
R (right-hand circular), or L (left-hand circular) besides each row. The transverse 
position of the focus with respect to the interface between the domains is shown 
above each column. The strain magnitude is κ = 0.125 for all panels. For right- and 
left-handed circularly polarized light, we see signatures of spin-orbit coupling 

in the chiral edge states. At a fixed frequency, one can selectively couple into 
forward or backward propagating modes by changing the helicity (pseudospin) 
of the incident beam. However, we note that the same state can be launched with 
opposite helicity at the other side of the center. Moreover, the panels show that 
two different edge states can be excited at the same location with equal helicity, 
despite having opposite group velocity.
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Extended Data Fig. 9 | Sub-lattice symmetry breaking and edge state dispersion. Measured (top) and simulated (bottom) bands of chiral edge states in PhCs with 
varying unit cell shrinking factor ρ, all at κ = 0.125. The linewidth is scaled by a factor two for enhanced visibility. The sub-lattice symmetry breaking leads to avoided 
crossings around the Γ point in the edge state dispersion.
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