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Abstract
We present a multilevel Monte Carlo (MLMC) method for the uncertainty quantification of variably saturated porous
media flow that is modeled using the Richards equation. We propose a stochastic extension for the empirical models that
are typically employed to close the Richards equations. This is achieved by treating the soil parameters in these models as
spatially correlated random fields with appropriately defined marginal distributions. As some of these parameters can only
take values in a specific range, non-Gaussian models are utilized. The randomness in these parameters may result in path-
wise highly nonlinear systems, so that a robust solver with respect to the random input is required. For this purpose, a solution
method based on a combination of the modified Picard iteration and a cell-centered multigrid method for heterogeneous
diffusion coefficients is utilized. Moreover, we propose a non-standard MLMC estimator to solve the resulting high-
dimensional stochastic Richards equation. The improved efficiency of this multilevel estimator is achieved by parametric
continuation that allows us to incorporate simpler nonlinear problems on coarser levels for variance reduction while the
target strongly nonlinear problem is solved only on the finest level. Several numerical experiments are presented showing
computational savings obtained by the new estimator compared with the original MC estimator.

Keywords UQ · Richards equation · MLMC · Modified Picard · Cell-centered multigrid

1 Introduction

Mass transport through a variably saturated porous medium
can be accurately predicted using the Richards equation
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[1]. This modeling approach is of critical importance for
several physics and engineering problems, for instance,
when studying aquifer recharge via rainfall infiltration,
or for understanding the environmental impact of mining
operations. When reliable measurements of the hydraulic
properties are available, numerical solutions originating
from the Richards equation have been reasonably successful
for transport prediction in a broad range of soil types.

Different formulations for the Richards equation are
available in the literature, along with well-established
mathematical theory, such as the pressure head, the
water content, or a mixed formulation, see, e.g., [2–7].
The aforementioned formulations contain nonlinearities
due to a parametric dependence of the pressure head
on the saturation and the relative hydraulic conductivity.
Depending on the soil parameters, these nonlinearities
range from mild to strong. The extreme sensitivity of
the soil parameters on the output necessitates accurate
measurements of the hydraulic properties. For many
realistic problems, complete information of these quantities
is however not available. In such scenarios, these parameters
may be modeled in a probabilistic framework and the
solution output may be expressed by means of a prediction
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interval (with mean and variance), rather than as a single
value. Such approaches are nowadays common in the case
of saturated groundwater flow, where uncertainties are
included when modeling the hydraulic conductivity as a
spatially correlated lognormal random field [8–10]. The
purpose of the present work is to develop and analyze a
stochastic extension of the Richards equation, along with an
efficient numerical method to solve the resulting nonlinear
partial differential equation with random coefficients.

Previous work on the uncertainty quantification (UQ)
of unsaturated flows was often based on an uncertain
hydraulic conductivity [11–14]. In addition to that, in
the present work, we introduce stochasticity in the so-
called van Genuchten and Mualem model [15, 16], which
is typically utilized to close the Richards equation. This
model provides a closed-form analytic expression for the
unsaturated hydraulic conductivity based on a sigmoid
type function for the soil-water retention curve. This
curve is defined by four independent parameters that are
estimated by curve-fitting, based on field measurements.
Typically, these parameters are fixed throughout the
domain during numerical simulations, assuming the soil
to be homogeneous. Realistic models should however
also incorporate the intrinsic heterogeneity in the soil.
Therefore, we model these soil parameters as random
variables with a certain, specified probability distribution
and spatial correlations. To assure the well-posedness of
the Richards equation, these parameters should be within
a certain range. Thus, the probability distributions for
these parameters are chosen such that the random samples
will be in the domain of validity for these parameters. A
practical choice is to employ non-Gaussian random fields
with marginal distributions from expert knowledge or from
field measurements.

With the stochastic Richards equation formulated, an
appropriate UQ technique is required to compute the
statistical moments of the desired quantities of interest
(QoIs). This choice primarily depends on the number of
uncertainty dimensions. Other practical factors, such as ease
of implementation and availability of an iterative solver
which is robust with respect to the random input, also
play a role in the selection of a suitable UQ technique.
The proposed stochastic extension of the Richards equation
results in a very high-dimensional problem, and the use
of deterministic sampling approaches such as polynomial
chaos expansion, stochastic collocation, or stochastic
Galerkin is therefore limited. For these UQ methods, the
cost grows exponentially with the number of random
inputs. Furthermore, a deterministic sampling approach may
not adequately represent those regions in the stochastic
space where strong nonlinearity may be encountered. In
previous works of Zhang [13, 17], the moments method
was applied for the uncertainty quantification of solutions

of the Richards equation. The main disadvantage of a
moment-based method is that it can only be reliably
employed when the effect of uncertain inputs is mild and
largely linear. For the proposed stochastic formulation of
the Richards equation, Monte Carlo (MC)–based sampling
approaches are the methods of choice, due to their
dimension-independent convergence. Moreover, these MC-
type methods can accurately represent the entire stochastic
space given a sufficiently large number of samples. A
well-known drawback of the plain MC method is its slow
convergence of the sampling error, with O(1/

√
N), where

N is the number of samples, making it intractable for
problems with a large cost per sample. Recently, efficient
MC estimators based on the multilevel Monte Carlo
(MLMC) method have been developed for a large class of
problems, see, e.g., [18–21]. The efficiency of the MLMC
estimation comes from solving the problem of interest on
a coarse grid and subsequently adding corrections based
on finer mesh resolutions. As these correction terms have
smaller variances, they can be computed accurately using
only a few samples. The estimates at different levels are then
combined using a telescopic sum. The standard practice is
to solve the PDE with random coefficients on a hierarchy of
grids.

The original, grid-based MLMC estimator may be
utilized to solve the stochastic Richards equation; however,
this approach may not be the most efficient, especially
not when strongly nonlinear problems need to be solved.
Such problems require a very fine spatio-temporal mesh
thereby restricting the use of coarse grids to improve the
efficiency of the MLMC estimator. In this article, we utilize
a non-standard MLMC estimator based on the parametric
continuation technique. Continuation methods for solving
nonlinear PDEs are very popular in engineering applications
[22–27]. Within continuation methods, a nonlinearity
dictating parameter � is introduced in the interval �0 ≤
� ≤ �∗ where the solution p(�0) corresponds to a linear
(or mildly nonlinear) problem and p(�∗) to the target
strongly nonlinear. The key idea is to march from p(�0)

to p(�∗) in small steps of size δ�, where at each step
we use the solution from the previous step as an initial
guess. Usually, � is some physical parameter, for, e.g., the
Reynolds number, and the Mach number. In the current
work, we use parametric continuation to obtain variance
reduction within the multilevel Monte Carlo framework.
This is achieved by solving simpler nonlinear problems on
coarser levels and the target strongly nonlinear problem is
only solved on the finest level. This new estimator allows us
to incorporate comparatively coarser spatio-temporal grids
in the MLMC hierarchy and, as such, the computational
cost of each estimator in the telescopic sum is greatly
reduced. Here, we point out that in the context of the
MLMC estimators, level-dependent simplifications of a
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challenging target problem have already been explored in
[28, 29]. In these articles, a level-dependent truncation of the
Karhunen-Loéve expansion of a random permeability field
was employed in order to get a simplified representation of
a heterogeneous permeability field on coarser levels.

We furthermore propose a solution method for Richards
equation based on a combination of the modified Picard
method [2] and a cell-centered multigrid, as proposed in
[30]. We benchmark the performance of this combined
solver in a probabilistic framework. A number of tests for a
wide range of soil parameters and for hydraulic conductivi-
ties with different heterogeneity levels are performed.

The rest of the article is organized as follows. In
Section 2, we briefly discuss the deterministic Richards
equation along with the van Genuchten-Mualem parameter-
ization. Section 3 describes the stochastic Richards equation
as well as the modeling of various uncertain soil parameters.
The description of the modified Picard method in combina-
tion with the cell-centered multigrid method is provided in
Section 4. Also, in this section, we present some numeri-
cal experiments to assess the performance of the combined
solver for an infiltration problem. The non-standard MLMC
estimator is explained in Section 5 and its performance is
analyzed in Section 6. Finally, some conclusions are drawn
in Section 7.

2 Deterministic Richards equation

We begin by describing the deterministic version of the
problem. The governing equations are defined in a bounded
domain D ⊂ R

n, with the boundary ∂D and a finite
time interval T = (0, Tfinal], with Tfinal < ∞. The
classical Richards equation is a result of coupling the mass
conservation equation of the water phase and the Darcian
flow, i.e.,

φ
∂Sw

∂t
+ ∇ · q = f in D × T , (2.1)

q = −KsKrw(∇p + z) in D × T , (2.2)

respectively, subject to boundary and initial conditions:

p = p0 in D, t = 0, (2.3)

p = gD in �D × T , (2.4)

q · n = gN in �N × T , (2.5)

where φ[L3/L3] is the porosity, Sw[L3/L3] is the water-
phase saturation; q is the Darcy flux, which depends
on the pressure head, p[L], and the depth z[L] in
the vertical direction; Ks[L/T ] represents the saturated
hydraulic conductivity field at saturation; Krw is the relative
conductivity of the water phase with respect to air and f

is the source/sink term. The initial pressure head value is
given by p0. The quantities gD and gN denote, respectively,

the Dirichlet and Neumann boundary conditions that are
imposed at the boundaries �D and �N , respectively, with n
the unit normal vector to �N .

The coupling of Eqs. 2.1 and 2.2 may result in different
variants of the Richards equation, such as the pressure head,
the moisture content, and the mixed formulation. The mixed
formulation of the Richards equation is given by:

∂θ(p)

∂t
− ∇ · (KsKrw(∇p + z)) = f in D × T . (2.6)

It is obtained by substituting the moisture content, i.e, θ =
φSw(p). By using

∂θ(p)

∂t
= C(p)

∂p

∂t
,

the above PDE can be reformulated into the pressure head
formulation:

C(p)
∂p

∂t
− ∇ · (KsKrw(∇p + z)) = f in D× T , (2.7)

where C(p) = ∂θ
∂p

is the specific moisture capacity. It is
well-known that numerical solutions originating from the
pressure head formulation may give rise to a significant
mass balance error, resulting in an inaccurate prediction of
the infiltration depth.

Numerical methods based on the mixed form (using finite
differences or mass-lumped finite elements) are popular as
they result in mass conservation schemes [2]. Therefore,
we will work with the mixed form Eq. 2.6 of the Richards
equation.

2.1 Van Genuchten-Mualemmodel

To complete the PDE formulations, Eqs. 2.6 or 2.7, closure
models for approximating Krw and θ are required. A
number of models have been presented in the literature and
the most popular ones are by Brooks-Corey [31] and van
Genuchten-Mualem [15, 16]. These two models employ
nonlinear constitutive relations for Krw and p, and for
θ and p, respectively. We consider the parameterization
introduced by van Genuchten and Mualem here. For the
saturation, van Genuchten [15] proposed the following
analytic formula:

Sw(p) = θ(p) − θr

θs − θr

=
{

(1 + (|αp|)n)−m, p < 0,

1, p ≥ 0,
(2.8)

where θs and θr are the saturated and residual water
contents, respectively, and α[L−1], n and m = 1 − n−1 are
obtained by fitting data characterizing the statistics of the
soil. Specifically, the parameter α provides a measure of the
average pore-size in the soil matrix and n is related to the
pore-size distribution of the soil [32].
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We may derive the specific moisture content, C(p),
analytically from Eq. 2.8, as

C(p) =
{

(θs − θr )αmn(1 + |αp|n)−(m+1)|αp|n−1, p < 0,
0, p ≥ 0.

(2.9)

In previous work, Mualem [16] derived a closed-form
expression for Krw, which is given by

Krw = S1/2
w

[∫ Sw

0
dSw/p

/∫ 1

0
dSw/p

]2

. (2.10)

Using Eq. 2.8, the above integral equation reduces to the
following analytic expression:

Krw(p) =
⎧⎨
⎩ Sw(p)1/2

(
1 − (1 − Sw(p)1/m

)m)2

, p < 0,

1, p ≥ 0.
(2.11)

The complexity of the numerical solution of the Richards
equation depends on the values of the parameters n and α.
For n ∈ (1, 2) and p → 0, the relative hydraulic conductivity
Krw(p) is not Lipschitz continuous and the derivative K ′

rw(p)

becomes infinite as p approaches zero [32, 33]. Moreover, for
small values of n, a sharp Krw vs. p profile is encountered.
Similarly, for large values of the parameter α, the pressure
head exhibits a transition behavior with a steep gradient
from the saturated to the unsaturated region. In general, for a
small n or for large α, strong nonlinearities are encountered,
thus implying convergence issues for nonlinear iterative
techniques such as the Newton or Picard methods.

3 Stochastic Richards model

Here, we describe a stochastic extension of the van
Genuchten model. We assume that the unknown soil
parameters belong to the probability space (	,F,P), where
	 is the sample space with σ -field F ⊂ 2	 as a set of events
and the probability measure P : F → [0, 1].

The stochastic extension is based on modeling the
soil parameters as spatially correlated random fields in
order to incorporate spatial heterogeneity. For the saturated
hydraulic conductivity, Ks , it is a standard practice to model
it as a lognormal random field, as follows:

Ks(x, ω) = K(bl)
s (x) exp(Z(x, ω)), x ∈ D, ω ∈ 	, (3.1)

where K
(bl)
s (x) is the baseline hydraulic conductivity and

Z(x, ω) is a zero mean Gaussian random field with a
specified covariance kernel. So,

E[Z(x, ·)] = 0, (3.2)

Cov(Z(x1, ·), Z(x2, ·)) = E[Z(x1, ·)Z(x2, ·)], x1, x2 ∈ D. (3.3)

In the present work, we consider an anisotropic Matérn
covariance function, C�, defined as
⎧⎪⎨
⎪⎩

C�(x1, x2) = σ 2
c

21−νc

�(νc)

(
2
√

νcr̃
)νc Kνc

(
2
√

νcr̃
)
,

r̃ =
√

(x1−x2)2

λ2
cx

+ (z1−z2)2

λ2
cz

, with x1 = (x1, z1), x2 = (x2, z2).
(3.4)

Here, we denote the gamma function by � and by
Kνc the modified Bessel function of the second kind.
The Matérn function is characterized by the parameter
set � = {νc, λcx, λcz, σ

2
c }. Parameter νc ≥ 0 defines the

differentiability of Z, σ 2
c > 0 is the marginal variance,

and λcx and λcz are correlation lengths along x- and z-
coordinates, respectively. When νc = 1/2, the Matérn
function corresponds to an exponential covariance function
and for νc → ∞ to a squared exponential covariance model.
Simulating a Gaussian random field can be based on the
Karhunen-Loéve (KL) decomposition [34] of Z(x, ω), i.e.,

Z(x, ω) =
∞∑

j=1

√
λj�j (x)ξj , ξj ∼ N (0, 1). (3.5)

Here, λj and �j are eigenvalues and eigenfunctions of the
covariance kernel C�(x1, x2), obtained from the solution of
the Fredholm integral,
∫
D

C�(x1, x2)�(x1)dx1 = λ�(x2). (3.6)

The sum of Eq. 3.5 represents an infinite-dimensional
uncertain field with a decaying contribution of the
eigenmodes. The rate of decay typically depends on
the smoothness and correlation length of the covariance
function. The sum is truncated at a finite number of
terms, MKL, which is usually decided by balancing the
KL-truncation error with other sources of error, like the
discretization and sampling errors. For Gaussian processes
with small correlation lengths and large variances, typically
a large number of terms is needed to include the critical
eigenmodes [34]. The evaluation of the eigenmodes in the
KL-expansion is expensive as it requires solving the integral
Eq. 3.6 for each mode. In the case of stationary covariance
models, fast sampling of random fields can be achieved
via spectral generators that employ the FFT (fast Fourier
transform) [35, 36] for the factorization of the covariance
matrix. Another advantage of using these spectral methods
is that they are able to simulate random fields on the
sampling mesh without any bias (for example, in the case
of the KL-expansion). In this article, we use the fast Fourier
transform moving average (FFT-MA) algorithm from [37] to
sample Gaussian random fields, see Appendix for details.

3.1 Sampling of non-Gaussian random fields

For sampling the van Genuchten parameters, α(x, ω), n(x, ω),

θs(x, ω),andθr (x, ω) in Section 2.1, we employ random fields
with non-Gaussian marginal distributions. This choice of
distributions is practical as these parameters can only take
values in a certain range, see, e.g, [33]. We introduce
stochasticity in the parameters via an additive noise,

α(x, ω) = α(bl)(x) + εα(x, ω), (3.7)
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Table 1 Two combinations of Matérn parameters � =
(νc, λcx, λcz, σ

2
c ) corresponding to isotropic (�1) and anisotropic

(�2) random fields

�1 �2

(1.0, 0.2, 0.2, 1) (0.5, 0.1, 0.01, 1)

where α(bl)(x) is the deterministic baseline value and εα(x, ω)

is a random field with a non-Gaussian marginal distribution
and covariance C�. Notations are analogously for the other
three van Genuchten parameters. Next, we describe a
technique proposed in [38] for the point-wise transformation
of a standard Gaussian random field to a non-Gaussian
random field.

Non-Gaussian random fields are difficult to simulate
as they are not uniquely determined by their mean and
variance. There are however different techniques available

for simulating non-Gaussian fields, see, e.g., [38, 39]. In
this work, we will follow a basic approach based on a
generalized polynomial chaos (gPC) expansion [38], which
approximates the non-Gaussian field in terms of a weighted
combination of Hermite orthogonal polynomials of the
standard Gaussian field,

Y (x, ω) ≈
NPC∑
j=0

wjHj (Z(x, ω)), (3.8)

where Y (x, ω) is the non-Gaussian random field (with a
marginal distribution, e.g., the uniform distribution, gamma
distribution, and truncated normal). Hj (Z) is the Hermite
polynomial in Z of order j with weight wj and NPC is
the order of the expansion. Hermite polynomials can be
expressed as

H0(Z) = 1, Hj (Z) = (−1)j exp(Z2/2)
dj

dxj
exp(Z2/2), j ∈ N. (3.9)

Fig. 1 a–d Samples of random fields generated using the isotropic
Matérn parameter �1 (top row) and the anisotropic parameter �2 (bot-
tom row); and standard normal marginal distribution (left column)

and uniform marginal distribution (right column). The notation
U(2.7, 3.3, C�) represents a random field with uniform marginal
distribution, U [2.7, 3.3], with spatial correlation defined by C�
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As Hermite polynomials are orthogonal with respect to the
Gaussian measure, the weights can be evaluated using

wj = E[YHj (Z)]
E[Hj (Z)2] . (3.10)

Here, the denominator is basically an expectation of a
polynomial of the Gaussian random variable, which has an
analytic expression. As the dependence between Y and Z

is unknown, the expectation in the numerator is not well-
defined. Since the cumulative distribution for Y , defined as
FY (y) = Prob(Y ≤ y), is however known, one can utilize the
relation Y = F−1

Y (FZ(Z)) to reformulate Eq. 3.10 as

wj = 1

E[Hj (Z)2]
∫

IZ

F−1
Y [FZ(z)]Hj (z)dFZ(z), (3.11)

where IZ is the support of Z in the range (− ∞,∞) and F−1
Y

representing the inverse of the distribution FY . Similarly,
FZ(z) = Prob(Z ≤ z) is the cumulative distribution for
standard Gaussian random variable Z. The integral Eq. 3.11
can be numerically computed using any conventional
integration technique, for example, by using Monte Carlo
quadrature. The weights only need to be computed once, so
that the cost of sampling a non-Gaussian random field with
a stationary covariance function is of the same order as that
of a Gaussian random field.

We will experiment here with both isotropic and
anisotropic Matérn covariance models. In Table 1, the
two Matérn parameter sets are listed, �1 corresponding
to an isotropic model and �2 to an anisotropic model.
In Fig. 1, we present some samples of the random fields
with a Gaussian and a uniform marginal distribution, for
the two Matérn parameters. We use NPC = 6 in Eq. 3.8
for generating the random fields with uniform marginal
distribution. Due to a small correlation length and low
spatial regularity, the numerical solutions of the PDE with
random coefficients based on �2 are comparatively more
expensive to compute than those obtained with �1. A
comprehensive study on the computational cost of solving
elliptic PDEs with different Matérn parameters can be found
in [30]. We will study the effect of covariance functions on
the performance of the solver for the Richards equation.

4Modified Picard iteration combined
with the cell-centeredmultigrid method

Algorithms based on the modified Picard iteration from
Celia et al. [2] are often employed as efficient iterative
solution methods for the Richards equation. These methods
are relatively easy to implement, as they do not require the
computation of Jacobians and they also have low storage
requirements. Within each modified Picard iteration, a
diffusion equation with variable coefficients needs to be
solved. For this, we propose to utilize the cell-centered

multigrid (CCMG) for heterogeneous diffusion coefficients,
as proposed in [30, 40, 41]. The CCMG algorithm is efficient
as it is constructed with a simple set of transfer operators
and it has been demonstrated to perform well for a large
class of highly heterogeneous and also jumping diffusion
coefficients [30].

4.1 Modified Picard iteration

We briefly recall the fully implicit Picard iteration for the
mixed formulation of the Richards equation from [2]. With
�t the time step and for any integer J > 1, we define a
uniform temporal grid by {tj = j�t, j = 0, . . . , J }. The
iteration number within a time step is denoted by an integer
k > 0. For simplicity, we use a simplified notation for
θj,k = θ(pj,k) and Kj,k = KsKrw(pj,k). The backward Euler
approximation of Eq. 2.6 is then written as

θj+1,k+1 − θj

�t
− ∇ · Kj+1,k∇pj+1,k+1 − ∂K

∂z

j+1,k

= f j+1. (4.1)

The key idea of the modified Picard iteration is the use of
a Taylor expansion for θj+1,k+1 with respect to p, i.e.,

θj+1,k+1 = θj+1,k + ∂θ

∂p

j+1,k

(pj+1,k+1 −pj+1,k)+O
(
δp2
)

, (4.2)

where the derivative ∂θ(p)
∂p

= C(p) is analytically computed
by using Eq. 2.9. By neglecting the higher order terms in
Eq. 4.2 and substitution in Eq. 4.1, we get

C(pj+1,k)
δpj+1,k

�t
+ θj+1,k − θj

�t
− ∇ · Kj+1,k∇pj+1,k+1 − ∂K

∂z

j+1,k

= f j+1, (4.3)

with δpj+1,k = pj+1,k+1 − pj+1,k . The above equation can be
expressed in the form

C(pj+1,k)
δpj+1,k

�t
− ∇ · Kj+1,k∇δpj+1,k = ∇ · Kj+1,k∇pj+1,k + ∂K

∂z

j+1,k

+ f j+1 − θj+1,k − θj

�t
. (4.4)
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The next pressure head iterate is obtained by the update
pj+1,k+1 = pj+1,k + δpj+1,k . Notice that the left-hand side of
the above equation is the residual associated with the Picard
iteration, which should be equal to zero for a converged
solution. Therefore, one may use ||δpj+1,k ||∞ < εPI as a
stopping criterion with εPI > 0 as the tolerance for Picard
iteration. The pressure head at time tj+1 is then given by
pj+1 = pj+1,k+1, with k the total number of Picard iterations
to converge to εPI . The iterative scheme (4.4) is a general
mixed-formulation Picard iteration, which results in perfect
mass balance.

4.2 Cell-centeredmultigrid

Focussing on the k-th Picard iteration (4.4) at time tj+1,
the following elliptic PDE with variable coefficients is
obtained, using simplified notation,

C̃

�t
δp̃ − ∇ · (K̃∇δp̃

) = f̃ in D, (4.5)

δp̃ = 0 in �D ∪ �N,

with the known quantities

C̃ = C(pj+1,k), K̃ = Kj+1,k and f̃ = ∇ · Kj+1,k∇pj+1,k + ∂K

∂z

j+1,k

+ f j+1 − θj+1,k − θj

�t
,

and the unknown δp̃ = δpj+1,k . To discretize the above
problem, we use a cell-centered finite volume scheme for which
the hydraulic conductivity at the cell-face is based on the
harmonic averaging of the hydraulic conductivities from the
adjacent cells, derived by the continuity of fluxes [40, 41].

For the discretization of Eq. 4.5, a uniform grid Dh on a
unit square domain with the same mesh width h = 1/M,M ∈
N in both directions,

Dh =
{
(xi1 , zi2 ); xi1 =

(
i1 − 1

2

)
h, zi2 =

(
i2 − 1

2

)
h, i1, i2 = 1, . . . , M

}
, (4.6)

is considered. For each interior cell (edges do not lie on a
boundary) with center (xi1 , zi2 ), denoted by Di1,i2

h , we obtain
a five-point scheme,

ch
i1,i2

δp̃i1,i2 + wh
i1,i2

δp̃i1−1,i2 + eh
i1,i2

δp̃i1+1,i2 + sh
i1,i2

δp̃i1,i2−1 + nh
i1,i2

δp̃i1,i2+1 = f̃ h
i1,i2

, (4.7)

with

wh
i1,i2

= − 2

h2

K̃i1,i2K̃i1−1,i2

K̃i1,i2 + K̃i1−1,i2

, eh
i1,i2

= − 2

h2

K̃i1,i2K̃i1+1,i2

K̃i1,i2 + K̃i1+1,i2

,

sh
i1,i2

= − 2

h2

K̃i1,i2K̃i1,i2−1

K̃i1,i2 + K̃i1,i2−1
, nh

i1,i2
= − 2

h2

K̃i1,i2K̃i1,i2+1

K̃i1,i2 + K̃i1,i2+1
,

ch
i1,i2

= −(wh
i1,i2

+ eh
i1,i2

+ nh
i1,i2

+ sh
i1,i2

) + C̃i1,i2

�t
,

where, for instance, K̃i1,i2 is the diffusion coefficient
associated with cell Di1,i2

h and the source term f̃ h
i1,i2

is an
approximation of f̃ in that cell. This scheme is modified
appropriately for cells close to the boundary.

Next, we describe the multigrid method for solving the
linear system arising from the above discretization. The
multigrid hierarchy is based on uniform grid coarsening,
i.e., the cell-width is doubled in each coarsening step
in each direction. As the smoothing method, we use the
lexicographic Gauss-Seidel iteration, and as the transfer
operators between the fine and coarse grids, a simple piece-
wise constant prolongation operator, P h

2h, is applied and its
scaled adjoint is used as the restriction operator R2h

h on the

cell-centered grid. In classical stencil notation, these are
written as

P h
2h =

⎤
⎥⎦

1 1

�

1 1

⎡
⎢⎣

h

2h

and R2h
h = 1

4

⎡
⎢⎣

1 1

�

1 1

⎤
⎥⎦

2h

h

, (4.8)

respectively, where � denotes the position of the cell
center. The coarse grid operator is obtained via a direct
discretization of the PDE operator on the coarse grid.
For this discretization on a coarser grid, we need to
appropriately define the diffusion coefficients on the coarse
cell edges. The technique to define the suitable diffusion
coefficient on a coarse cell edge is graphically described in
Fig. 2 and its caption. In [30], the W(2, 2)-cycle was found
to be a very robust and efficient multigrid cycling strategy,
and, therefore, we also employ this cycle in our experiments.
The number of multigrid iterations is based on the stopping
criterion, ||Lhδp̃h − f̃h||∞ < εMG, where Lh denotes the linear
operator after the discretization of Eq. 4.5 and εMG > 0.

We consider the modified Picard method in this article
as it is widely adopted, although many modifications have
been proposed to improve its robustness. For instance,
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Fig. 2 Schematic representation of coefficient upscaling in the multi-
grid hierarchy (h-2h-4h). a Coefficient values at cell-centres (blue
dots). b Values at face-centres (red dots) obtained from the harmonic
mean (HM) of coefficients from two adjacent cell-centres. c Values at
face-centres (bigger red dots) of the 2h-grid are based on arithmetic

mean (AM) of coefficients from face-centres of the h-grid. d Values
at face-centres (biggest red dots) of the 4h-grid are based on the arith-
metic mean of the values of the coefficients from face-centres of the
2h-grid

the authors in [42] studied a spatio-temporal adaptive
solution method to improve the numerical stability of the
modified Picard iteration. Another interesting improvement
was proposed in [43], where an Anderson acceleration
was applied to improve the robustness and computational
cost for the standard Picard iteration scheme. These
improvements can easily be extended to the modified
Picard-CCMG solver studied here. Also, there are a
number of effective solution approaches based on Newton’s
method, see, e.g., [44–46]. These methods exhibit a quadratic
convergence rate but are very sensitive to initial solution
approximations.

4.3 Performance of themodified Picard-CCMG solver

We study the performance of the modified Picard-CCMG
solver for a range of values of the parameters α and
n and the effect of the heterogeneity of the hydraulic
conductivity on the performance of the solver. For this, we
consider an infiltration problem [46, 47] on a two-dimensional
computational domain D = (0, 1)2. The initial and boundary
conditions are prescribed as follows:

p(x, z, 0) = −0.4(1 − exp(−80z)), p(x, 1, t) = −0.4, (4.9)

p(x, 0, t) = 0.1,
∂p

∂x

∣∣∣∣
x=0,1

= 0.

The right-hand side is assumed to be zero, and we consider
the a final time Tfinal = 0.1 [h]. In Table 2, we provide a list
of 20 values for α and n, used in the experiments. In total,
we test 400 pairings of α and n. Parameters θs = 0.50 and
θr = 0.05 are fixed, as they do not pose any problems for
the convergence rate of the solver. The samples of hydraulic
conductivity are generated according to Eq. 3.1, with K

(bl)
s =

0.2 [m/h] and the covariance is based on the two Matérn
parameters from Table 1.

A similar test was performed in [43] for a deterministic
steady-state flow governed by the Richards equation. We
perform our experiments in a probabilistic framework.
For a given pair α, n, we generate 64 random hydraulic
conductivity fields and solve Richards equation with
conditions given in Eq. 4.9 for each sample. This is done as
the number of multigrid iterations varies depending on the
random realization of the hydraulic conductivity field. The
cost of solving one instance of stochastic Richards’ equation
is expressed in terms of the total number of multigrid
W(2, 2)−cycles needed to solve the time-dependent problem.
Here, by total number of W(2, 2)− cycles means the
sum of multigrid iterations needed to reach Tfinal. For all
experiments, we set the tolerances εPI , εMG = 10−5. The
solution method was terminated with failure when the
maximum number of nonlinear iterations (set to 50) was
exceeded at any time step.

Table 2 Set of α, n values used to for benchmarking the modified Picard-CCMG solver

α n

0.2 0.4 0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5

1.2 1.4 1.6 1.8 2.0 1.6 1.7 1.8 1.9 2.0

2.2 2.4 2.6 2.8 3.0 2.2 2.4 2.6 2.8 3.0

3.2 3.4 3.6 3.8 4.0 3.2 3.4 3.6 3.8 4.0
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Fig. 3 a–d Contour plots of the average number of multigrid iterations needed to solve the infiltration problem using the modified Picard-CCMG
solver for an isotropic hydraulic conductivity field generated using �1

In Figs. 3 and 4, we show the average cost (average of
64 random realizations of the hydraulic conductivity) for
solving the stochastic Richards equation for four different
combinations of spatial and temporal grid sizes and for two
Matérn parameter sets, �1 and �2, listed in Table 1. The
region in red in the figures denotes the (α, n) values for
which the modified Picard-CCMG solver failed to converge
at least once out of the 64 samples.

Based on numerical experiments, the performance of the
modified Picard-CCMG solver for the stochastic Richards
equation can be summarized as follows:

• In general, the cost increases by decreasing n and
increasing α. The cost of the solver rises steeply for
n < 1.5 and α > 3.0, and the cost increment with respect
to the decrease in the value of n is more pronounced
compared with the increase in α.

• While a spatio-temporal mesh refinement improves the
robustness with respect to α and n, the improvement is
less pronounced for n and may require a very fine mesh
as n → 1.

• For a given spatio-temporal mesh, the modified Picard-
CCMG solver is less robust and more expensive for
anisotropic hydraulic conductivity compared with the
isotropic case. A similar (α, n) robustness can be achieved
for anisotropic cases by using a sufficiently refined mesh.

The standard deviation contours for the cost show a
similar behavior as the average cost contour and we observe
a large standard deviation for the cost when n < 1.5 and
α > 3.0. In Fig. 5, we present the number of samples (out of
64 samples), for which the solver did not converge for �1

and �2. For almost all samples, convergence failed with α

close to 4.0 and n close to 1.1.
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Fig. 4 a–d Contour plots of the average number of multigrid iterations needed to solve Eq. 4.9 using the modified Picard-CCMG solver for an
anisotropic hydraulic conductivity field generated using �2

Fig. 5 a, b Counting the number of samples (out of 64), for which the modified Picard-CCMG solver does not converge
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A few remarks are in order. We point out that the (α, n)

cost map may vary depending on the type of boundary
and initial conditions as well as on Tfinal. For instance,
in the above experiments, an initially wet profile for the
porous media was considered. We expect the performance
of the modified Picard-CCMG solver to vary for problems
in which infiltration takes place into an initially dry media
and the convergence rates may depend on the values of θr

and θs (see, e.g., [48]). Furthermore, the robustness of the
solver will also depend on the properties of the hydraulic
conductivity field such as on the degree of heterogeneity
and anisotropy. These topics will be actively explored in the
future work.

5Multilevel Monte Carlo with parametric
continuation

We have observed in the preceding section that the total
number of multigrid iterations increases rapidly with a
decrease in the value of parameter n and an increase in α.
We also noticed that the solver is less robust on a coarse
spatio-temporal mesh. Therefore, when using the original
MLMC estimator for a “difficult” (α, n) pair, a relatively
fine spatio-temporal mesh will be required (and employed),
even on the coarsest level of the MLMC hierarchy, resulting
in an expensive estimator. To deal with this drawback,
we propose an MLMC estimator based on the parametric

continuation technique. In this approach, we solve the original
problem only on the finest level of the MLMC hierarchy and
simplify the parameter settings dictating the nonlinearities
as we work on coarser levels. This allows us to include
a comparatively coarser spatio-temporal mesh compared
with the original MLMC estimator as simpler problems are
solved on coarser levels.

This idea is motivated by continuation-based multigrid
solvers for nonlinear boundary value problems [22–24].
In the context of multigrid solvers, continuation is
commonly applied in the FMG-FAS (Full MultiGrid-Full
Approximation Scheme) algorithm. In these algorithms, the
continuation process is integrated in the FMG hierarchy,
where the coarse grid solves the simplest problem and is
used as a good first approximation for the next grid with a
slightly more complicated problem. This process is repeated
until the finest grid is reached where the target problem is
solved. Although the continuation strategy works well for
a large class of nonlinear problems, there is no guarantee
that the simpler problem is close enough to the next difficult
problem. One can use bifurcation diagrams to understand the
solution dependence on nonlinearity dictating parameters.
These diagrams can also reveal multiple branches and
bifurcation points, where the solution differs greatly even if
there is a slight perturbation in the parameter value. In such

cases, an arclength procedure [25] can be applied to determine
the appropriate perturbation size.

5.1 MLMC estimator

To explain the MLMC estimator, we consider the pressure
head field at some final time Tfinal as the QoI. Further, we
define a spatio-temporal hierarchy of grid levels {D�,T�}L�=0

using

h� = �t� = O(s−�h0), (5.1)

where h0 is the cell-width on the coarsest mesh D0 and
s > 0 represents a grid refinement factor. We further
define a hierarchy of parameter sets, {��}L�=0, where �L

is the parameter set corresponding to the target (strongly
nonlinear) problem to be solved. For instance, we can define
a parametric hierarchy using the set of van Genuchten
parameters, e.g., �� = {α(bl)

� , n
(bl)
� }. The approximation of

the pressure head on the level � at Tfinal is denoted by
ph�,��

. Using the linearity of the expectation operator, one
can define the expected value of the pressure head on the
finest level, L, with the original parameter set, �L, by the
following telescopic sum:

E[phL,�L
] = E[ph0,�0 ] +

L∑
�=1

E[ph�,��
− ph�−1,��−1 ]. (5.2)

Note that for �0 = �1 = ... = �L, we have the standard
MLMC estimator which solves the same problem on all
levels. In terms of computational effort, it is cheaper to
approximate E[ph0,�0 ] by a standard Monte Carlo estimator,
as the samples are computed on a coarse spatio-temporal
mesh based on an “easy nonlinear parameter set �0.”
Furthermore, the correction term, E[ph�,��

− ph�−1,��−1 ], can
be accurately determined using only a few samples as
the level-dependent variance, V� := V[ph�,��

− ph�−1,��−1 ],
is typically small, since the random variables ph�,��

and
ph�−1,��−1 are positively correlated. Note that the correlation
will depend on the grid parameters h� and h�−1 as well as
on the difference between the nonlinear parameters �� and
��−1. We will elaborate on this later on.

Each of the expectations in the MLMC estimator Eq. 5.2
can be independently computed using the standard MC
simulation. We define a multilevel estimator, EML

L [phL,�L
],

constructed using a sum of L + 1 MC estimators:

E[phL,�L
]≈EML

L [phL,�L
] :=

L∑
�=0

EMC
N�

[ph�,��
−ph�−1,��−1 ], (5.3)

where EMC
N�

[ph�,��
− ph�−1,��−1 ] is the standard MC esti-

mator obtained by averaging N� independent, identically
distributed (i.i.d.) samples as

EMC
N�

[ph�,��
−ph�−1,��−1 ] :=

⎛
⎝ 1

N�

N�∑
i=1

(ph�,��
(ωi ) − ph�−1,��−1 (ωi))

⎞
⎠ .

(5.4)
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with ωi denoting an event in the stochastic domain 	 and
ph−1,�−1 = 0. It is expected that the number of MLMC
samples N� ∈ N forms a decreasing sequence for increasing
�. In order to keep the variance of the correction terms small,
the MC samples, ph�,��

(ωi) − ph�−1,��−1 (ωi), should be based
on the same random input ωi for the simulation on two
consecutive levels � and � − 1.

Remark 5.1 In this work, we do not explore the standard MC method
to compute E[phL,�L

] as the computational cost of standard MC will
be more than or equal (when only one level is possible) to the standard
MLMC estimator. In Section 6, we will only compare the standard
and parametric continuation versions of the MLMC estimator.

Similarly, a multilevel estimator for the variance of the
pressure head, V[phL,�L

], can be defined as

V[phL,�L
]≈VML

L [phL,�L
] :=

L∑
�=0

VMC
N�

[ph�,��
]−VMC

N�
[ph�−1,��−1 ],

(5.5)

where the variance VMC
N�

[ph�,��
] is computed as

VMC
N�

[ph�,��
] ≈ 1

N� − 1

N�∑
i=1

(
ph�,��

(ωi) − EMC
N�

[ph�,��
]
)2

. (5.6)

Again, the computational savings for the variance estimator
Eq. 5.5 are obtained by computing individual variances
VMC

N�
[ph�,��

] and VMC
N�

[ph�−1,��−1 ] using the same random

inputs {ωi}N�

i=1. The above variance estimator can be seen as
an extension of the standard multilevel variance estimator
proposed in [49].

For the multilevel estimators, an appropriate spatial interpo-
lation procedure is required to combine expectations from
all levels. Typically, the polynomial order of the interpolation
scheme should be equal to or higher than the order of the dis-
cretization to avoid any additional dominant source of error.
In some more detail, when using the estimator Eq. 5.3 to
compute EML

L [phL,�L
], we begin by computing EMC

N0
[ph0,�0 ]

on the coarsest grid D0. This quantity is then interpolated
to the next finer grid D1 and is added to the correction
term EMC

N1
[ph1,�1 − ph0,�0 ] resulting in a two-level estimate

EML
1 [ph1,�1 ]. This is again interpolated to the next grid level

D2 and added to the next correction term EMC
N2

[ph2,�2 −
ph1,�1 ]. This process is repeated until the final level is reached.

5.2 Accuracy of MLMC estimator

Throughout this paper, we use the L2− based norm for
the error analysis of the multilevel Monte Carlo estimator.
We assume that the pressure considered belongs to the
functional space L2(	,D) corresponding to the space of
square-integrable measurable functions p : 	 → L2(D) for a
previously defined probability space (	,F,P). These spaces
are equipped with the norm

||p(x, T , ω)||L2(	,D) := E

[
||p(x, T , ω)||2

L2(D)

] 1
2 =

(∫
	

||p(x, T , ω)||2
L2(D)

dP

) 1
2

. (5.7)

The mean-square error (MSE) in EML
L [phL,�L

] can then be
expressed as the sum of the discretization and the sampling
errors as

∣∣∣
∣∣∣E[p�L

] − EML
L [phL,�L

]
∣∣∣
∣∣∣2
L2(	,D)

≤ ∣∣∣∣E[p�L
] − E[phL,�L

]∣∣∣∣2
L2(D)

+ ∣∣∣∣E[phL,�L
] − EML

L [phL,�L
]∣∣∣∣2

L2(	,D)
. (5.8)

Both errors in the MLMC estimator can be dealt with
separately. The discretization error can be quantified as∣∣∣∣E[p�L

] − E[phL,�L
]∣∣∣∣

L2(D)
≤ c0h

a
L, a > 0, (5.9)

where c0 is a constant independent of hL but depending
on the parameter set �L. The rate a typically depends on the
regularity of the PDE and the accuracy of the discretization.
The next task is to bound the sampling errors. As the MLMC
estimator EML

L [phL,�L
] is composed of L + 1 independent

MC estimators, the sampling error in the MLMC estimator

is just the sum of sampling errors from the individual MC
estimators. Therefore,

∣∣∣
∣∣∣E[phL,�L

] − EML
L [phL,�L

]
∣∣∣
∣∣∣2
L2(	,D)

=
L∑

�=0

||V�||L2(D)

N�

, (5.10)

see [50, 51] for a proof. Obtaining a bound on the level-
variance ||V�||L2(D) is more involved due to its dependence
on the grid size h� as well as on the nonlinearity parameter
set ��. We numerically estimate it by

||V�||L2(D) = ∣∣∣∣V[ph�,��
− ph�−1,��−1 ]

∣∣∣∣
L2(D)

≈ 1

N� − 1

N�∑
i=1

∫
D

(
EMC

N�
[ph�,��

− ph�−1,��−1 ] − (ph�,��
(ωi) − ph�−1,��−1 (ωi))

)2

. (5.11)
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To achieve a tolerance of ε, one needs to ensure that

∣∣∣
∣∣∣E[p�L

]−EML
L [phL,�L

]
∣∣∣
∣∣∣2
L2(	,D)

≤(c0h
a
L)2+

L∑
�=0

||V�||L2(D)

N�

<ε2.

(5.12)

The total cost of the MLMC estimator can be expressed
as WML

L = ∑L
�=0 N�W�, where W� = O(h

−γ

� ) corresponds
to the cost of computing one sample on level �. For time-
dependent problems, the rate γ ≥ d + 1, with d the
number of spatial dimensions. As proposed in [18, 19], the
number of samples at different levels is typically derived by
minimizing the total cost such that the sampling error of the
MLMC estimator reduces below ε2, i.e.,

min

(
L∑

�=0

N�W�

)
s.t

L∑
�=0

||V�||L2(D)

N�

= ε2. (5.13)

Using the standard Lagrange multiplier approach [18], gives
us

N� = ε−2

(
L∑

�=0

√
||V�||L2(D) W�

)√ ||V�||L2(D)

W�

, (5.14)

and hence the total cost to obtain a tolerance of ε is given by

WML
L (ε) =

L∑
�=0

N�W� = ε−2

(
L∑

�=0

√
||V�||L2(D) W�

)2

. (5.15)

In the above formula, the product ||V�||L2(D) W� determines
the cost contribution from any level �. For instance, if the
product decays with increasing �, the dominant cost comes
from the coarsest level whereas if the product grows with �,
the dominant contribution comes from the finest level.

Remark 5.2 The optimal number of samples given in Eq. 5.14 is
based on a pre-defined hierarchy of parameters {��}L�=0. A more
general approach is to find N� along with the parameter set {��}L�=0
for which the total cost of the MLMC estimator is minimum. Solving
such optimization problem analytically is non-trivial. Furthermore,
numerically obtaining the best values for �� can also be highly
expensive. In Section 6, we will discuss some heuristics that can be
applied to find ��.

5.2.1 MLMC algorithmwith parametric continuation

To compute the estimator EML
L [phL,�L

], the standard MLMC
algorithm from [18, 19] cannot be directly employed as
it requires solving the same problem on all grid levels.
Here, we describe a modified version of the standard MLMC
technique to compute EML

L [phL,�L
]. This algorithm assumes

that the total number of levels in the MLMC hierarchy and
the values of the nonlinearity parameters �� for all levels
are known in advance. The algorithm can be described by
the following steps:

Algorithm 1 PC MLMC algorithm.

1: Fix the tolerance ε, D�, T�, �� and warm-up samples
N∗

� for � = 0, 1, 2, ..., L.
2: Compute quantities EMC

N�
[ph�,��

− ph�−1,��−1] and
||V�||L2(D) using samples N� = N∗

� for all levels.
3: Update N� using the formula (5.14) for all levels.
4: Compute additional samples and update EMC

N�
[ph�,��

−
ph�−1,��−1] and ||V�||L2(D) for all levels.

5: Perform steps 3-4 until no additional samples are
needed on any level.

In the above algorithm, setting a smaller value of N∗
� may

lead to an abrupt termination of the algorithm even before
the sum sampling error Eq. 5.10 has reduced to the set
tolerance. Also, the value of N∗

� should not be set too high,
especially not for the finest level, to avoid oversampling.
The cost per sample W� can also be estimated “on-the-
fly” by averaging the CPU times from the computation of
warm-up samples.

6 Numerical experiments

We evaluate the performance of the new MLMC estimator
and study the improvements with respect to the standard
MLMC estimator. For all the experiments, we use the
infiltration problem with conditions given in Eq. 4.9,
however, with Tfinal = 0.2 [h] (in hours) and the
two Matérn covariance parameters from Table 1. We
employ a geometric hierarchy of spatio-temporal grids with
refinement factor s = 2 in Eq. 5.1 and we use h� =
�t�. For all experiments, the following baseline values are
prescribed, K

(bl)
s = 0.2 [m/h] (in meters/hour), θ

(bl)
s = 0.5 and

θ
(bl)
r = 0.05; different baseline values for α(bl) and n(bl) are

studied. The uncertainty in the soil parameters is defined
according to the values presented in Table 3. The sampling
and upscaling procedure for a Gaussian random field is
described in Appendix. The sampling of random fields with
uniform marginal is described in Section 3.

Table 3 Description of uncertainty for different soil parameters

Quantity Uncertainty

Z(x, ω) N (0, C�)

εθs (x, ω) U(- 0.05, 0.05, C�)

εθr (x, ω) U(- 0.005, 0.005, C�)

εα(x, ω) U(- 0.2, 0.2, C�)

εn(x, ω) U(- 0.05, 0.05, C�)
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Fig. 6 a, b Convergence of discretization error with respect to mesh refinement for different baseline values of α(bl) and n(bl)

Note that the above stochastic model is extremely high-
dimensional as it comprises five independent random fields.
For each random field, the degree of freedom is equal
to the number of grid points in the sampling mesh. The
dimensionality can be reduced using the KL-expansion
method Eq. 3.5; however as we use random fields with small
correlation lengths, we will still need to use a very large
number of KL-modes for an accurate representation of these
random fields.

6.1 Convergence of discretization bias

We begin by analyzing the reduction of the discretization
error ||ph�

− ph�−1 ||L2(	;D) with respect to mesh refinement
for different baseline values of α(bl) and n(bl). The relative
error is used to bound the exact discretization bias as

||p − ph�
||L2(	;D) ≤ ||ph�

− ph�−1 ||L2(	;D)

sa − 1
, (6.1)

where a is the convergence rate defined in Eq. 5.9. The
relative errors for �1 and �2 are presented in the left and
right pictures in Fig. 6, respectively. For both cases, a
convergence rate close to first-order is observed, i.e., a ≈ 1.
The convergence rate typically depends on the order of
the spatio-temporal discretization scheme as well as on
the smoothness parameter νc in the covariance function. In
fact, the dominant error comes from the first-order accurate
backward Euler time discretization. The magnitude of the
error grows with increasing α(bl) and reduces with increasing
n(bl) values. Note that for the most difficult cases, n(bl) =
1.45, α(bl) = 3.0 for �1 and n(bl) = 1.55, α(bl) = 2.8 for �2, the
convergent solutions are obtained from h� = 1/64 onwards.

6.2 MLMC simulation

Here, we describe the algorithm to compute the multilevel
estimator EML

L [phL,�L
]. We perform the MLMC simulations

Fig. 7 a–c Comparison of pressure head fields at Tfinal = 0.2 [h] for different baseline values of the parameters, (n(bl), α(bl)) but with the same
random fields Z, εθs , εθr , εα, εn. Solutions are based on h = �t = 1/64 and the Matérn parameter set �1
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Fig. 8 Comparison of cross sections of the pressure heads from Fig. 7
at x = 0.5

for two test cases based on �1 and �2, respectively. The
original problem for �1 uses �L = {α(bl)

L , n
(bl)
L } = {3.0, 1.45}

and for �2, the original problem is based on �L = {2.8, 1.55}.
We first investigate the correlations for the pressure

head profiles when the baseline values for α(bl) and n(bl)

are varied however employing the same random fields.
In Fig. 7, we compare three pressure head solutions
with different baseline values, and with the same random
fields, Z(x, ω), εθs (x, ω), εθr (x, ω), εα(x, ω), and εn(x, ω) (see
Section 3). Clearly, the pressure head profile becomes more
diffusive when “easier” parameters are prescribed. We also
compare the cross sections of the pressure head profiles at
x = 0.5 in Fig. 8. For reference, we use the solution on the
fine grid h = �t = 1/128 (black solid line) and compare it
with different pairs of n(bl) and α(bl) values on the next coarse
grid h = �t = 1/64. The profiles with the same (n(bl), α(bl))

values are very close and the deviation increases as the two
parameters are set to “easier” values. Thus, we can conclude
that the correlation decays as the difference between the
baseline values of the nonlinear parameters widens.

Next, we study the behavior of the level-dependent
variance ||V�||L2(D) when using the parametric continuation
approach. For this we define the so-called parametric

continuation variables, ∇α = α� − α�−1 and ∇n = n�−1 − n�,
with the purpose to reduce the nonlinearity when processing
coarse grids. In Fig. 9, we plot ||V�||L2(D) computed using
Eq. 5.11 for different (∇α, ∇n) pairs for the two Matérn
parameter sets. The original problem is solved with hL =
1/256. The parameter sets �L and ��, for � = L − 1, L −
2, ..., 0, are obtained by employing ∇α and ∇n. The black
line represents the variance when same problem is solved
on all levels, i.e., ∇α = ∇n = 0, corresponding to the
original MLMC estimator. Using the original approach,
we can only process three levels in the MLMC hierarchy.
The red and blue lines in the figure correspond to the

variance which is computed using ∇α = 0.05,∇n = 0.1

and ∇α = 0.1,∇n = 0.2, respectively. For these two cases,
we can incorporate a larger number of coarse levels, up to
h0 = 1/16, as milder nonlinear problems are solved on these
coarse levels. Furthermore, for levels � < L, the variance
is smaller, compared with the case without continuation
(where ∇α = ∇n = 0) which will result in lower number of
samples on these levels. Here, we wish to highlight the fact
that choosing optimal values for ∇α and ∇n is important.
For example, when α = 0.1,∇n = 0.2, the variance on
the finest level increases as compared with the variance
found with the original MLMC approach. Due to this, an
increasing number of samples will be needed on the finest
level, compared with the original MLMC estimator, which
is undesirable as it may result in an expensive estimator. On
the other hand, for a smaller perturbation ∇α = 0.05,∇n =
0.1, the magnitude of the variance on the finest level is
similar to that of the original MLMC estimator. Therefore,
the number of samples on the finest level will be more-or-
less similar to the original MLMC estimator.

Alternatively, one can avoid high variance on the finest
level by using zero perturbations on the two finest levels, i.e.,
∇αL = ∇αL−1 = 0 and ∇nL = ∇nL−1 = 0 and choosing non-
zero perturbations on next coarser levels from L − 2 onwards.
This way, we solve the original problem on the two finest lev-
els.

Now we apply the parametric continuation-based MLMC
estimator denoted by PC MLMC, to compute the mean
and variance of the pressure head field and also perform
comparisons with respect to the standard MLMC estimator
which is denoted by Std MLMC. For this, we use the two
previously discussed test cases: isotropic covariance �1 with
baseline values n(bl) = 1.45, α(bl) = 3.0 and anisotropic
covariance �2 with baseline values n(bl) = 1.55, α(bl) = 2.8.
For simplicity, we use the continuation variables ∇α =
0.05,∇n = 0.1 for both the isotropic and anisotropic cases.
We compare the number of samples needed on different
grids for three values of the tolerances. For the Std MLMC

estimator, the coarsest possible level is h0 = �t0 = 1/64,
whereas for the PC MLMC, we use h0 = �t0 = 1/16.
As the discretization error shows a first-order decay (see
Fig. 6), we set the tolerance ε = O(hL). We use Algorithm
1 to reduce the sampling error to ε. For all experiments,
warm-up samples are computed as N∗

� = 2(L+1−�), which
results in stable performance. The number of levels is
decided based on an error convergence study performed in
Section 6.1. In Table 4, the two estimators for the isotropic
Matérn parameter �1 are compared. Due to the sample
optimization strategy Eq. 5.14, a large number of samples
is shifted to coarser grids when using the PC MLMC

estimator. Furthermore, a fewer number of samples are
required for the PC MLMC estimator compared with the
Std MLMC, even on the finest level. This is due the fact that
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Fig. 9 a, b Comparison of level-dependent variances using different pairs of ∇α, ∇n for the two Matérn parameters

the sum
∑L

�=0

√
||V�||L2(D) W� for the PC MLMC estimator

is slightly smaller than for Std MLMC. Moreover, a large
computational gain is induced by the reduction in the
number of samples on grid h� = 1/64, for instance, for
ε = 0.005, the number of samples reduced from 438 to 35
when using the parametric continuation. In Fig. 10a, the
CPU times for the two estimators are also compared. We
observe a speed-up of about a factor of three for ε = 0.005.

A similar test is performed for the anisotropic problem.
The number of samples for different tolerances are provided
in Table 5 and the CPU times in Fig. 10b. Again some
improvement in computation times are observed, although
the gain is not as pronounced as for the first problem. This
is due to the fact that the second case uses simpler baseline
values n(bl) = 1.55, α(bl) = 2.8 and the cost reduction with
parameter simplification is not very rapid. For the isotropic
case with n(bl) = 1.45, α(bl) = 3.0, the cost decay is more
rapid with parameter simplification. This is more evident
from the cost map in Fig. 4, where we see more dense
contour lines around n(bl) = 1.45. Therefore, the parametric

continuation approach is very effective when a strongly
nonlinear stochastic problem needs to be solved.

We point out that the parametric continuation can also
be very effective in the case of smooth anisotropic random
fields in combination with a high-order discretization.
Typically, a high-order discretization can lead to a rapid
decay of level-dependent variance. Furthermore, if the
variance decay is faster than the per sample cost growth,
we obtain a multilevel estimator with dominant cost coming
from the coarsest level, see [18, 19]. In this scenario,
PC MLMC will be highly effective as it allows to incorporate
very coarse levels. In the article, we only use a low-
regularity anisotropic random field (smoothness νc = 0.5,
see Table 1) for which a first-order scheme (a combination
of Picard iteration and backward Euler time stepping) is
already sufficient.

We also wish to highlight the fact that both MLMC estima-
tors are optimal since the cost scales as O(ε−3), which is similar
to the computational complexity of solving one deterministic
problem on the finest grid, i.e., O(h−3

L ) and hL = O(ε).

Table 4 Comparison of number of samples needed to achieve tolerances ε using the standard MLMC (Std MLMC) and parametric continuation
MLMC (PC MLMC) estimators for �1, n

(bl)
L = 1.45, α

(bl)
L = 3.0. Entries with symbol (−) indicate zero samples needed for that grid

h� N�(hL = 1/64, ε = 0.02) N�(hL = 1/128, ε = 0.01) N�(hL = 1/256, ε = 0.005)

Std MLMC PC MLMC Std MLMC PC MLMC Std MLMC PC MLMC

1/16 − 115 − 459 − 1833

1/32 − 11 − 44 − 176

1/64 28 3 110 9 438 35

1/128 − − 5 2 18 8

1/256 − − − − 4 3
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Fig. 10 a, b Comparison of CPU times WML
L (sec) for two different estimators

Fig. 11 a–c Comparison of mean pressure head field for �1, α
(bl)
L = 3.0, n

(bl)
L = 1.45, Tfinal = 0.2 [h] computed using the two MLMC estimators

with finest level hL = �tL = 1/256 and ε = 0.005

Table 5 Comparison of number of samples needed to achieve tolerances ε using the standard MLMC (Std MLMC) and parametric continuation
MLMC (PC MLMC) estimators for �2, n

(bl) = 1.55, α(bl) = 2.8

h� N�(hL = 1/64, ε = 0.0184) N�(hL = 1/128, ε = 0.0092) N�(hL = 1/256, ε = 0.0046)

Std MLMC PC MLMC Std MLMC PC MLMC Std MLMC PC MLMC

1/16 − 96 − 427 − 1659

1/32 − 18 − 77 − 301

1/64 9 4 36 16 140 60

1/128 − − 4 4 15 12

1/256 − − − − 3 3
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Fig. 12 a–c Comparison of mean pressure head field for �2, α
(bl)
L = 2.8, n

(bl)
L = 1.55, Tfinal = 0.2 [h] computed using the two MLMC estimators

with finest level hL = �tL = 1/256 and ε = 0.0046

In the last part of this section, we validate the stochastic
moments computed using the proposed estimator. It is
expected that the mean pressure field computed using the
two MLMC estimators should converge to a similar solution
for a given tolerance. In Fig. 11, the mean pressure head
profile for the isotropic case is shown. It is computed using
the number of samples from Table 4, with ε = 0.005. For
a closer inspection, we also compare the mean pressure
head profiles at x = 0.5. Similarly, the mean profile for the
anisotropic case is presented in Fig. 12, using the number
of samples from Table 5 with ε = 0.0046. We see good
agreement between the mean profiles computed from the
two estimators. The isotropic case exhibits a seemingly
smoother transition from the saturated to the unsaturated
zone compared with the anisotropic problem. In Fig. 13,
we also present the variance field for the isotropic test
case, computed using the multilevel variance estimator
VML

L [phL,�L
] given in Eq. 5.5. The two variance fields are

very similar, although some discrepancy in the magnitude is
observed. This is due to the fact that the two variance fields
are computed using the samples based on the error analysis
of EML

L [phL,�L
] (from Table 4) and not on the error analysis

of VML
L [phL,�L

]. Thus, the two variance estimates may

have different tolerances resulting in this slight mismatch.
Readers are referred to [49] for a detailed error analysis of
the multilevel variance estimator.

The results from the two estimators also showed good
agreement with the plain Monte Carlo solutions performed
on the grid hL = 1/128. This is done in order to verify that
a proper upscaling of the random fields on coarser levels is
carried out while using the MLMC estimator. These results
are omitted for the sake of brevity.

7 Conclusion

In this work, an efficient uncertainty propagation method
for a high-dimensional stochastic extension of Richards
equation was proposed. All the soil parameters were treated
as unknown and modeled as random fields with appropriate
marginal distributions. We also studied a modified Picard
iteration and cell-centered multigrid method for solving
the nonlinear systems with heterogeneous coefficients. We
found that the combined solver is robust for a wide
parameter range and the performance further improves with
spatio-temporal refinements. This combination of solvers is

Fig. 13 a–c Comparison of the variance of the pressure head field for �1, α
(bl)
L = 3.0, n

(bl)
L = 1.45, Tfinal = 0.2 [h] computed using the two

MLMC variance estimators with finest level hL = �tL = 1/256
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general; therefore, its robustness can be further improved by
incorporating adaptive time stepping or by combining with
other advanced techniques, for instance, using the Anderson
acceleration proposed in [43].

For computing the statistical moments of the solution
of Richards equation, a parametric continuation technique-
based multilevel Monte Carlo estimator was proposed. This
estimator is very practical for this problem, as it requires
solving the strongly nonlinear problem only on the finest
level, where the solver is robust, and uses simpler nonlinear
problems on the coarse grid levels for a variance reduction.
For the stochastic Richards equation, the proposed estimator
is more prominent regarding the computational gains
compared with the standard MLMC method if the problem
is strongly nonlinear. In general, this estimator is also
applicable to other parameter dependent nonlinear PDEs.
One of the research problems that needs to be addressed is
finding a computationally viable way of obtaining optimal
step sizes for the nonlinear parameters used in continuation.
This problem will be actively investigated in future work.
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use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
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Appendix. Sampling and upscaling
of Gaussian random fields

In this section, we outline the procedure for sampling
Gaussian random fields that is used to sample the
hydraulic conductivity fields Eq. 3.1 and also the non-
Gaussian soil parameters Eq. 3.8. For this, we use the
fast Fourier transform moving average (FFT-MA) algorithm
from [37]. Although this sampling method is similar to the
Cholesky decomposition technique, the FFT-MA method
achieves a faster factorization of a covariance matrix by
making the computational domain periodic. The resulting
covariance operator is also periodic and can be decomposed
as a convolutional product. This allows us to compute
the samples of the random fields using cheaper vector-
vector products compared with the expensive matrix-vector
operation when using Cholesky factorization. Next, we
provide a brief description of FFT-MA method from [37].

When using the Cholesky factorization, the samples of
correlated Gaussian random vectors z(ω) can be obtained as

C� = LLT and use z = Ly, (A.1)
where C� is the covariance matrix constructed on some grid
and y is a vector of i.i.d. samples from the standard normal
distribution. The FFT-MA relies on the decomposition of
the covariance function C�(r) as a convolutional product of
some function S�(r) and its transpose S′

�(r) = S�(−r).
We can express this decomposition as

c = s ∗ s′, (A.2)

where c, s are vectors obtained by evaluating C�(r) and
S�(r), respectively, at grid points of the considered mesh.
Moreover, the resulting vector s is also real, positive, and
symmetric and s = s′. Now, a correlated random vector z
can be computed by using the convolution product

z = s ∗ y. (A.3)

The FFT-MA method performs the above computations in
the frequency domain. As the convolution product in spatial
domain is equivalent to the component-wise product in
the frequency domain, we can take a Fourier transform of
Eq. A.2 as

F(c) = F(s) · F(s) =⇒ F(s) = √F(c), (A.4)

where F denotes the discrete FFT and · denotes component-
wise multiplication. As the FFT operation requires a
periodic signal, first we transform the vector c into
a periodic signal, which is also real, positive, and
symmetric. For more details on the practical aspects of this
transformation, see [21, 35, 36, 52]. Here the component-
wise square-root operation does not pose any problems
as the power spectrum F(c) is real and positive. Further,
the convolution product in Eq. A.3 can be expressed as a
vector-vector product in the frequency domain as

F(z) = F(s ∗ y) = F(s) · F(y). (A.5)

An inverse fast Fourier transform is finally applied to
synthesize the samples for Gaussian random fields

z = F−1(F(s) · F(y)). (A.6)

It is pointed out that due to the periodicity in the covariance
vector c, the resulting random field z is also periodic.
Therefore, we only retain the part of the vector that
corresponds to the physical domain and the remaining part
is discarded. Also note that it takes two FFT evaluations
to obtain one sample of z (ignoring the FFT operation in
Eq. A.4 that is performed just once). For a given mesh, the
cost of sampling random fields is negligible compared with
the cost of solving the nonlinear PDE using the modified
Picard-CCMG solver.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Next, we describe the upscaling procedure for the
random fields from grid D� to D�−1. For clarity, we denote
the above vectors computed on mesh D� with subscript �,
for example, z�, s�, y�. While estimating the correction term

in the telescopic sum Eq. 5.3, the
approximations ph�,��

(ωi) and ph�−1,��−1(ωi) need to be
positively correlated such that the level-dependent variance
||V�||L2(D) is small (see Eq. 5.11). This is typically achieved
by first sampling the fine grid Gaussian random field z�

to compute ph�,��
(ωi) and using an upscaled version z�−1

for ph�−1,��−1(ωi). While performing such upscaling of
random fields, it is important to ensure that the telescopic
sum Eq. 5.3 is not violated. In other words, the expectation
of the random variable ph�,��

when estimating E[ph�,��
−

ph�−1,��−1] and E[ph�+1,��+1 −ph�,��
] should be the same,

i.e.

E[ph�,��
](coarse) =E[ph�,��

](f ine), for �={0,1, ..., L−1}.
(A.7)

Using spatial averaging for obtaining an upscaled version
may result in a modified covariance structure on the coarser
levels, violating Eq. A.7. This issue can be avoided by using
the covariance upscaling [21] that employs the spectral
generator on two consecutive grids using the same normally
distributed vector y�. When using the FFT-MA algorithm,
the vector y� is associated with respective grid points,
coarser realizations of the fine grid Gaussian random field
z� can be obtained by using multi-dimensional averaging
of the vector y�. For instance, in two dimensions for the
cell-centred mesh,

yi,j

�−1 = 1

2
(y2i−1,2j−1

� + y2i−1,2j
� + y2i,2j−1

� + y2i,2j
� ), (A.8)

where i and j are the cell indices for the mesh D�−1.
The scaling by a factor 2 is needed to obtain a standard
normal distribution for the averaged quantity yi,j

�−1. The
coarse random field can now be simply assembled as

z�−1 = F−1(F(s�−1) · F(y�−1)). (A.9)

This process can be recursively applied to generate upscaled
random fields on next coarser scales. As the averaging
in Eq. A.8 smooths out high frequencies, the upscaled
version z�−1 will also be smoother compared with z�. These
upscaled Gaussian random fields can be utilized to generate
upscaled non-Gaussian fields using Eq. 3.8.
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