
 
 

Delft University of Technology

Understanding Work Rhythms in Software Development and Their Effects on Technical
Performance

Zhang, Jiayun; Gong, Qingyuan; Chen, Yang; Xiao, Yu; Wang, Xin; Ding, Aaron Yi

DOI
10.1049/2024/8846233
Publication date
2024
Document Version
Final published version
Published in
IET Software

Citation (APA)
Zhang, J., Gong, Q., Chen, Y., Xiao, Y., Wang, X., & Ding, A. Y. (2024). Understanding Work Rhythms in
Software Development and Their Effects on Technical Performance. IET Software, 2024(1), Article
8846233. https://doi.org/10.1049/2024/8846233

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1049/2024/8846233
https://doi.org/10.1049/2024/8846233


Research Article
Understanding Work Rhythms in Software Development and
Their Effects on Technical Performance

Jiayun Zhang ,1 Qingyuan Gong ,2 Yang Chen ,1 Yu Xiao ,3 Xin Wang ,1 and
Aaron Yi Ding 4

1Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
2Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
3Department of Information and Communications Engineering, Aalto University, Espoo, Finland
4Department of Engineering Systems and Services, Delft University of Technology, Delft, Netherlands

Correspondence should be addressed to Qingyuan Gong; gongqingyuan@fudan.edu.cn and Yang Chen; chenyang@fudan.edu.cn

Received 14 June 2023; Revised 30 April 2024; Accepted 15 May 2024

Academic Editor: Alessandro Marchetto

Copyright © 2024 Jiayun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The temporal patterns of code submissions, denoted as work rhythms, provide valuable insight into the work habits and produc-
tivity in software development. In this paper, we investigate the work rhythms in software development and their effects on
technical performance by analyzing the profiles of developers and projects from 110 international organizations and their commit
activities on GitHub. Using clustering, we identify four work rhythms among individual developers and three work rhythms among
software projects. Strong correlations are found between work rhythms and work regions, seniority, and collaboration roles.
We then define practical measures for technical performance and examine the effects of different work rhythms on them. Our
findings suggest that moderate overtime is related to good technical performance, whereas fixed office hours are associated with
receiving less attention. Furthermore, we survey 92 developers to understand their experience with working overtime and the
reasons behind it. The survey reveals that developers often work longer than required. A positive attitude towards extended
working hours is associated with situations that require addressing unexpected issues or when clear incentives are provided.
In addition to the insights from our quantitative and qualitative studies, this work sheds light on tangible measures for both
software companies and individual developers to improve the recruitment process, project planning, and productivity assessment.

1. Introduction

The time allocation for work activities is closely related to a
software developer’s daily routine and reflects her/his work
habits. We define the work rhythms in the process of software
development as the temporal patterns shown in developers’ code
submission activities. A typical work rhythmof a developer could
be described as follows: the developermay start thework at 9 a.m.
onworking days and concentrate onwriting and submitting code
during working hours. She/he would take a short break at noon
for lunch and the code submissions could stop for a while as well.
After finishing the tasks at 6 p.m., the codes will not be updated
until 9 a.m. on the next working day. Developers working in
companies with diverse cultures follow different work rhythms.
It was reported that one third of software developers do not adopt
a typical working hour rhythm (e.g., from 10 a.m. to 6 p.m.) [1].
The issues of developers’ work rhythms have been discussed

extensively. SomeChinese tech companies have adopted anunof-
ficial work schedule known as the “996 working hour system,”
which requires employees to work from 9 a.m. to 9 p.m., 6 days a
week. The public quickly took notice of these extreme working
hours as they were shared on social media (https://github.com/
996icu/996.ICU). This abnormal work schedule has received crit-
icism, arguing that developers cannot keep focusing on program-
ming during such long working hours and their efficiency and
productivity decrease after working for long hours (https://www.
scmp.com/tech/start-ups/article/3005947/quantity-or-quality-
chinas-996-work-culture-comes-under-scrutiny). However,
global leading news media, such as Cable News Network
(CNN; https://edition.cnn.com/2019/04/15/business/jack-ma-
996-china/index.html) and British Broadcasting Corporation
(BBC) News (https://www.bbc.com/news/business-47934513),
reported another voice that many successful entrepreneurs

Wiley
IET Software
Volume 2024, Article ID 8846233, 19 pages
https://doi.org/10.1049/2024/8846233

https://orcid.org/0000-0002-3562-5794
https://orcid.org/0000-0001-7942-8752
https://orcid.org/0000-0003-4749-3060
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-9405-4485
https://orcid.org/0000-0003-4173-031X
mailto:gongqingyuan@fudan.edu.cn
mailto:chenyang@fudan.edu.cn
https://github.com/996icu/996.ICU
https://github.com/996icu/996.ICU
https://github.com/996icu/996.ICU
https://github.com/996icu/996.ICU
https://www.scmp.com/tech/start-ups/article/3005947/quantity-or-quality-chinas-996-work-culture-comes-under-scrutiny
https://www.scmp.com/tech/start-ups/article/3005947/quantity-or-quality-chinas-996-work-culture-comes-under-scrutiny
https://www.scmp.com/tech/start-ups/article/3005947/quantity-or-quality-chinas-996-work-culture-comes-under-scrutiny
https://edition.cnn.com/2019/04/15/business/jack-ma-996-china/index.html
https://edition.cnn.com/2019/04/15/business/jack-ma-996-china/index.html
https://www.bbc.com/news/business-47934513
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1049%2F2024%2F8846233&domain=pdf&date_stamp=2024-08-30


weighed on the advantages of long-hour work schedules to the
companies. These heated discussions with controversial perspec-
tives press an urge demand to understand developers’ work
rhythms and their effects on practical technical performance.

Studying work rhythms in software development yields
many important implications. For example, the profiles and
activities in online developer communities are considered as
reliable indicators of technical performance during the hiring
process [2]. However, having more commits during off-hours
does not necessarily equate to better code quality. Instead of
assessing based on the quantity of commits, it is crucial to acquire
a deeper understanding of work rhythms and their effects. Such
insights can help employers gain deeper knowledge about job
applicants’work habits before hiring. In addition, software devel-
opment teams can rely on more rational assessments of technical
performance rather than judging merely by the time spent in the
office. With an understanding of the effects of work rhythms on
technical performance, both project teams and individual devel-
opers can better allocate and schedule their time in development.

The existing studies on the work rhythms of people in
different occupations often cover their effects on work per-
formance. Alternative work schedules, such as flexible and
compressed work schedules, had positive effects on work-
related criteria including productivity and job satisfaction
[3, 4]. Conversely, sustained work during long working
hours was associated with an increased risk of errors and
decreased work performance [5, 6, 7, 8, 9]. In the field of
software engineering, multiple studies have examined the
relationship between code quality and the time when the
work is performed. It has been found that the bugginess of
commits is related to the time (i.e., the hour of the day) when
those commits have been made, but there are large variations
among individuals and projects [10, 11, 12].

Previous studies have primarily focused on the effects of
work hours on code quality, within the contexts of limited
organizations and have primarily considered code bugginess
as a quality metric. In addition, they have not sufficiently
addressed the circadian and weekly patterns that characterize
developers’ work habits. Our study leverages a large-scale real-
world dataset from GitHub to explore how work rhythms cor-
relate with multiple dimensions of technical performance.
Considering that project-level working behaviors often involve
collaborative efforts of multiple contributors and do not nec-
essarily reflect the work patterns of individual developers, our
study analyzes both project- (in our study, the term “project” is
used synonymously with “repository”) and individual-level
metrics.We aim to provide amore comprehensive understand-
ing of work patterns from two different yet interconnected
perspectives. Specifically, we apply spectral biclustering [13]
to identify the work rhythms from both the individual and
project perspectives. The biclustering algorithm simultaneously
groups both rows and columns of a data matrix, allowing us to
understand the groups of similar subjects (i.e., developers/
repositories) and their typical commit behaviors at the same
time. We analyze the relationship between the identified work
rhythms and demographics (such as region and account/repos-
itory age) and collaboration roles (i.e., whether a developer is a
structural hole spanner (SHS) [14]). We use popularity metrics

(such as followers, stars, forks, and issues on GitHub) and
code productivity (measured by lines of code changed per
week) as indicators of technical performance. Then, we per-
form a comprehensive analysis to investigate how these work
rhythms influence technical performance. Furthermore, we
conduct a survey study to complement the results of empirical
data analysis.

Our major contributions are summarized as follows:

(1) We design an approach with spectral biclustering
algorithm to identify the work rhythms of reposito-
ries and individual developers. This method reveals
four distinct work rhythms among individuals and
three among repositories.

(2) We present an empirical analysis of the correlations
between work rhythms and demographics including
regions, age, and collaboration roles. We define mul-
tiple practical measures for technical performance
and study the effects of work rhythms on them.

(3) We conduct a survey involving 92 respondents to
gain insights into developers’ experiences and the
reasons and attitudes towards overtime work.

We introduce the background and related works in
Section 2 and research questions in Section 3, followed by
our research methods (Section 4) and results (Section 5). We
discuss the significance of our contributions in Section 6 and
offer some concluding remarks in Section 7.

2. Background and Related Work

Developers are engaged in multiple work activities in a given
week and follow some rules in the time usage in software
development [15, 16, 17]. Sequential analysis of the gener-
ated contents is crucial for understanding the behavior pat-
terns of online users [18, 19]. The widely used development
tools such as version control systems and online developer
communities ensure the transparency of the workflows,
which provide researchers with abundant resources to inves-
tigate developers’ work practices [20, 21, 22, 23]. By explor-
ing the data from these development tools, multiple studies
have examined developers’ work practices and contributions.

First, the work time in software development has been
studied. For example, Claes et al. [1] defined work rhythm
as the circadian and weekly patterns of commits. They ana-
lyzed the commit timestamps of 86 open source software
projects and reported that two-thirds of the developers follow
a standard work schedule and rarely work nights and week-
ends. In addition, Traulle and Dalle [24] investigated the
evolution of developers’ work rhythms. They observe a trend
where developers adopt more regular work patterns over time
and start working increasingly earlier. Furthermore, this study
is related to our previous work [25], which examined the
commit activities of tech companies in China and the United
States and compared the differences in working hours
between companies in the two countries. Compared with
our previous work, this study expands the scope and intro-
duces new research questions—the correlations between

2 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



work rhythmand technical performance. In addition, we enlarge
the dataset to include a wider range of regions and approach the
analysis of working behaviors at more granular levels by exam-
ining both project- and individual-level behaviors.

Second, the relationships between work quality and work
time have been investigated. For example, Khomh et al. [26]
studied the impact of Firefox’s rapid release cycle on software
quality. They found that the fast release cycle did not lead to
more bugs but accelerated the process of fixing bugs. In addi-
tion, several studies focused on the relationships between the
bugginess of code and the hour of the day when the code is
submitted. For instance, Eyolfson et al. [10, 11] studied three
well-known open source projects and found that more bugs
are contained in commits made during midnight and early
morning, while commits made in the morning have the best
quality. Prechelt and Pepper [12] investigated a closed-source
industry project and proposed that 8 p.m. is the hour with the
highest error rate. It is observed that results vary across dif-
ferent projects.

Previous research on the effects of work time often inves-
tigates projects from limited organizations and only consid-
ers the bugginess of code as the metric of code quality. In
addition, these studies typically focus on the effects of spe-
cific hours of the day, rather than the circadian and weekly
patterns. There is no sufficient investigation with solid evi-
dence yet to show the relationship between work rhythms
and technical performance from multiple aspects. In this
paper, we perform data analysis on a real-world code sub-
mission dataset collected from GitHub, a prominent online
developer platform with more than 100 million developers
and hosting more than 420 million repositories (https://
github.com/about, accessed on May 18, 2024).

During the software development, people often use Git, a
distributed version control system, to monitor the modifica-
tions to the code. To submit code changes to Git, people
make commits that include details such as authorship, time-
stamp, and the code changes made. The temporal distribu-
tion of a developer’s commit logs reflects her/his rhythm of
submitting code changes. These commit logs can be accessed
if the projects are uploaded to GitHub and set to publicly
visible. Figure 1 shows the time distribution of developers’
code submissions on GitHub. The statistics are generated
according to the GitHub User Dataset [27, 28]. The dataset
consists of the information and activities about more than
10 million randomly selected GitHub users. We focus on the
users who have more than 100 commits and have submitted
codes on more than 100 different days. Among these users,
we select 13,201 of the developers with 5,406,933 commits. In
general, developers commit more frequently on weekdays
than at weekends. There are peak hours of code submissions
at 11 a.m., 4 p.m., and 10 p.m., and an off-peak period during
the early morning, which conforms to the common sense of
people’s daily life. The aggregated commit logs in Figure 1
show that developers exhibit temporal regularities in code
submissions. However, given the differences in the adoption
of work practices, such general work rhythm could not rep-
resent effectively the work habit of each developer.

3. Research Questions

We aim to study the work rhythms of developers and soft-
ware projects to have a comprehensive view of work rhythms
in software development from both the individual and group
levels. Our study is guided by the following four research
questions:

RQ1. What are the work rhythms of individual develo-
pers and software projects?

RQ2. Are work rhythms related to demographics and
collaboration roles?

The first two RQs intend to reveal representative work
rhythms among individual developers and software projects
and examine discrepancies in the demographics of the devel-
opers with different work rhythms.

RQ3. What are the correlations between different work
rhythms and technical performance?

The third RQ is to seek a deeper understanding of the
relationships of different work rhythms with the outcome of
work by considering various metrics for technical performance.

RQ4. What are developers’ attitudes towards work
rhythms and productivity?

The last RQ investigates developers’ actual work experi-
ence and their views on productivity.

4. Methods

In this section, we present the data collection and analysis
methods in our study. A summary of the research subjects,
variables, and the methods of data analysis for each research
question is provided in Table 1. The overview of the meth-
odology is presented in Figure 2.

4.1. Data Collection. The commit logs of public projects on
GitHub are publicly visible and can be retrieved using the
GitHub API. Our data collection adhered to “terms of ser-
vice” of GitHub (https://help.github.com/articles/github-te
rms-of-service/). The data collection took place from May
1 to May 27, 2019. The dataset covers the commit activities of
the source repositories of 110 organizations ever since the
repositories were created. The location of the companies
spread a wide range from the United States (such as Face-
book, Amazon, and Google) to China (such as Baidu,

24181260
Hour of day

0
0.0025

0.005
0.0075

0.01
0.0125

Ra
tio

 o
f c

om
m

its

Mon.
Tues.
Wed.
Thur.

Fri.
Sat.
Sun.

FIGURE 1: Time distribution of code submissions on GitHub. The
x-axis shows the hour of the day, with both 0 and 24 representing
12 a.m. The y-axis shows the ratio of commits made within an hour
to the total number of commits.

IET Software 3

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/about
https://github.com/about
https://github.com/about
https://help.github.com/articles/github-terms-of-service/
https://help.github.com/articles/github-terms-of-service/
https://help.github.com/articles/github-terms-of-service/
https://help.github.com/articles/github-terms-of-service/


Tencent, and Alibaba) and Europe (such as SAP, Nokia, and
Spotify). To accurately assess work rhythms, we used the
local time of each commit log to avoid the potential influence
of different time zones in which the commits were made.
Commit logs without time zone information (9.03% of the
total) were excluded. Following the data cleaning, a total of
1,532,439 commits remained. Then, we group these commits
by repositories and committers respectively and form the
following two datasets for our analysis.

Company repositories. We scanned the repository lists of
the 110 organization accounts and crawled descriptive infor-
mation about the repositories and commit logs submitted
into the repositories. We selected repositories with at least
300 commits and formed the repository dataset with a total of
1,131 repositories and 1,111,685 commits.

Individual developers. To study the work rhythms of
individual developers, we first merged different identities of
the same developer, as a developer may have multiple iden-
tities on GitHub and in the version control system. We
extracted the email from the version control system’s author
field and GitHub account ID from the author field recorded

in GitHub commit activity. We created a mapping from email
addresses to GitHub accounts and grouped together identities
that shared the same account ID or email address. Following
this dealiasing process, 47.1% of the committer identities were
merged. Then, we chose the core developers by selecting those
with at least 30 commits. These developers are the top 12.5%
of the committers and have made 85% out of all commits in
our dataset. We further crawl the GitHub account informa-
tion of the developers, including number of followers and
number of stars in each of their own repositories. Finally,
we formed our developer dataset with 7,509 individual devel-
opers and 1,296,715 commits, among which 2,754 have
detailed information about their GitHub accounts.

4.2. Identifying Work Rhythms. To profile how commits are
created by a developer or in a project repository, we compute
the frequencies of commit activities across different time
intervals and apply clustering to identify patterns.

4.2.1. Data Processing. For each developer or repository, we
calculate the average percentage of commits for each hour
of the day on both weekdays and weekends. Formally, we

TABLE 1: Summary of research subjects, variables, and methods of analysis applied to research questions.

Research question Subject Variable Analysis method

RQ1 Developer/repository Commit frequency during the week Spectral biclustering

RQ2
Developer

Account creation time Mann–Whitney U test
Structral hole spanner APGreedy, Pearson’s chi-squared test

Repository
Regions Pearson’s chi-squared test

Repository creation time Mann–Whitney U test

RQ3

Developer
Number of followers

Mann–Whitney U testAverage number of stars
h-index of stars

Repository

Number of stars

Mann–Whitney U test
Number of forks

Number of open issues
Lines of code changed per week

RQ4 Developer
Required and actual working hours

User studyTime allocation for work activities
Attitude towards working overtime

① Data collection ② Data processing ③ Identifying work rhythms ④ Empirical analysis

⑤ User survey

Work
rhythmsCommit frequency

Spectral biclustering
Commit frequencyCommitsProfiles

su
bj

ec
t

(d
ev

el
op

er
/c

om
pa

ny
)

• Collaboration role
• Demographic

• Technical performance

• Experiences
• Reasons
• Perspectives

W
ee

kd
ay

W
ee

ke
nd

s

FIGURE 2: The workflow of our study. We collect profiles of developers and projects, along with their commit activities, from 110 organizations
on GitHub. Data processing is performed on these commits, which are then used to identify work rhythms via spectral biclustering. We
conduct an empirical analysis of the demographics, collaboration roles, and technical performances across these identified work rhythms
using hypothesis testing. Furthermore, we administer a user survey to understand developers’ attitudes on work rhythms and productivity.

4 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



denote the commit logs of a repository or a developer as L¼
fc1; c2;…; cHg :, where ch is the hth commit and H is the total
number of commits. We segment a week into 168 hr (24 hr
per day) and count the number of commits made in each
hour as N ¼fn1; n2;…; n168g:. To reduce noise in the empir-
ical data, we follow Goyal et al.’s [29] method to take a 3-hr
average and divide it by the total number of commits to
obtain the commit frequency for each hour:

ft ¼

nt−1 þ nt þ ntþ1

3 × Σ168
i¼1ni

; 2 ≤ t ≤ 167; t 2 N

n168 þ n1 þ n2
3 × Σ168

i¼1ni
; t ¼ 1

n167 þ n168 þ n1
3 × Σ168

i¼1ni
; t ¼ 168

8>>>>>>><
>>>>>>>:

: ð1Þ

Then, for each hour of the day, we compute the average
commit frequency in that hour on a weekday and a weekend,
as shown in Equations (2) and (3) respectively:

f̄
weekday
h ¼ 1

5
f 1h þ f 2h þ f 3h þ f 4h þ f 5h

À Á
; ð2Þ

f̄ weekend
h ¼ 1

2
f 6h þ f 7h

À Á
; ð3Þ

where h denotes the hth hour of the day and f dh denotes the
commit frequency of the hth hour of the day on the dth day of
the week. Finally, the profile of a developer’s commit behavior
is represented as a 48-dimensional vector f f̄ dtypeh jh2f1; 2;
…; 24g; dtype2fweekday;weekendgg:.

4.2.2. Biclustering Model. Among various classical clustering
methods, such as K-means [30], DBSCAN [31], and the state-
of-the-art ones designed for specific applications such as topic
models (latent Dirichlet allocation) [32, 33], we choose the
spectral biclustering [13] algorithm to discover the work
rhythms in our dataset. Spectral biclustering is a clustering
technique, which generates biclusters—a group of samples (in
row) that show similar behavior across a subset of features (in
column), or vice versa. In our scenario, we group both
developers/repositories and the commit behavior at a time
to understand the groups of similar subjects and their
typical behaviors. Specifically, developers/repositories
grouped in different row clusters show different commit
behaviors. In addition, the column clusters outputted by the
algorithm enable us to infer how developers/repositories in
different row clusters behave in each subset of hours.
Developers/repositories with the same rhythm have similar
commit frequencies in each subset of hours.

The model takes the 48-dimensional vectors as input and
automatically discovers the clusters of work rhythms bymeasur-
ing the similarities between them. To implement the clustering
model, we used Scikit-learn [34], a widely usedmachine-learning
library. To determine the optimal parameter setting, we perform
an iterative search for the number of work rhythms k from 2 to 8
with empirical experiments. For each k, we visualize the rhythms

and examine the number of samples in clusters to ensure that the
clusters have sufficient individuals and exhibit distinct patterns
beyond mere time shifting. We choose k as the largest value
among those tested that yields stable and distinctive work
rhythms.

4.3. Empirical Analysis on Identified Work Rhythms

4.3.1. Demographics of Developers and Repositories. We
intend to explore whether developers or repositories with
specific demographic information tend to follow specific
work rhythms.

First, local cultures may have an impact on work rhythms.
To investigate whether there is a difference among developers
who work on repositories from different regions in terms of
work rhythms, we examine the countries of the repositories
that the developers worked on. For each developer, we group
the repositories that she/he has made contributions to and
check which countries the organizations of the repositories
belong to. If a developer has contributions to repositories
from more than one country, we set the work region of the
developer as “multiple countries.” We target four different
regions: the United States, China, Europe, and multiple
countries.

In addition, considering the fact that senior developers
may take charge of more projects than junior developers, we
assume that senior developers have different work rhythms
from young developers. For this purpose, we investigate
whether there is a correlation between the type of work
rhythms and the seniority of the developers. We use the
number of days after the creation time of GitHub account
as a proxy for one’s seniority in programming.

Furthermore, according to Vasilescu et al.’s [35] study,
there are differences in terms of productivity between younger
repositories and older ones. As a result, repositories with lon-
ger histories may have different work rhythms from newly
created ones.We count the number of days since a project was
created on GitHub as the measure of repository age.

4.3.2. Collaboration Role. Collaboration is an important fea-
ture of software engineering. The developer’s participation in
project collaboration is a testament to her/his technical ability.

The structural hole theory [14, 36, 37, 38] in social network
analytics suggests that people who are positioned in structural
holes, known as SHS, play a critical role in the collaboration
andmanagement of the teams. A structural hole is perceived as
a gap between two closely connected groups. SHS fill in the
gaps among different groups. They control the diffusion of
valuable information across groups and come up with new
ideas by combining ideas frommultiple sources [14]. Bhowmik
et al. [39] studied the role of structural holes in requirements
identification of open-source software development and found
that structural holes are positively related to the contribution of
a larger amount of new requirements and play an important
role in new requirement identification.

We intend to see whether there is a difference in terms of
work rhythms between SHS developers and ordinary devel-
opers. We build a collaboration graph using our dataset, in
which the node represents a developer and an edge between

IET Software 5

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



two nodes represents the two developers have committed to
the same repository. We apply an advanced SHS identifica-
tion algorithm called APGreedy [40] (there are several SHS
identification algorithms [37, 41, 42] and APGreedy is a
representative one) to find the SHS in the collaboration
graph and choose the top 500 developers as the SHS devel-
opers. After filtering out developers with less than 30 com-
mits, we obtain 246 SHS developers in total. Accordingly, we
select 246 non-SHS developers from the rest using random
sampling to represent the ordinary developers.

4.3.3. Developer-Level Measures on Technical Performance.
We define the following measures for evaluating the techni-
cal performance of a developer:

Average number of stars. GitHub provides starring func-
tion for users to mark their interest in projects. We count the
average number of stars received by the repositories owned
by the developer. Receiving more stars indicates a higher
popularity of a project [43].

Number of followers. We use the number of followers a
GitHub user has at the time of data collection as a signal of
standing [44] within the community. Users with lots of fol-
lowers are influential in the developer community as many
people are paying attention to their activities.

H-index of Stars. The h-index [45] was originally intro-
duced as a metric to evaluate both the productivity and cita-
tion impact of a scholar’s research publications. It has been
used to measure the influence of users’ generated contents in
social networks [46]. We define h-index of a developer as the
maximum value of c such that the given developer has pub-
lished c repositories that have each been starred at least c
times. We use this metric to measure both the productivity
and influence of a developer on GitHub.

4.3.4. Repository-Level Measures of Technical Performance.
To examine the technical performance of repositories, we
define the following measures:

Number of stars. We use the number of stars a repository
has received to evaluate the popularity of a repository. A
repository with many stars implies that many people show
their interests in it [35, 47].

Number of forks. The “forking” function on GitHub
enables developers to create a copy of a repository as their
personal repository and then they can make changes to the
code freely. Similar to the number of stars discussed above,
the number of forks a repository has received is another
important indicator that a repository is popular [35, 44, 48].

Number of open issues. Issues can be used to track bugs,
enhancements, or other requests. In cases where the project’s
problem was suspect, submitters and core members often
engaged in extended discussions about the appropriateness
of the code [49, 50]. Repositories with more open issues
receive more attention than those with less.

Lines of code changed per week (LOCchanged). This measure
is defined as the average number of lines of code changed (the
sum of additions and deletions) in all commits in a repository
per week. It is a measure of outputs produced per unit time,
which serves as a proxy for productivity [35, 51, 52, 53].

4.3.5. Hypothesis Testing. To accurately identify behavioral
differences among different populations, we conduct statisti-
cal hypothesis testing on different groups.

First, we conduct Pearson’s chi-squared test [54] to
examine if there are significant differences in the work
rhythms among different groups (i.e., regions and collabora-
tion roles) of projects or developers. The Pearson’s chi-
squared test is commonly used for evaluating the significance
of the association between two categories in sets of categori-
cal data.

Second, we statistically validate if there are significant
differences in the demographics and technical performance
among different groups of software projects and developers.
We compute the measures of each subject within the group
and the measures of the population outside the group. Then,
we apply the Mann–WhitneyU test [55], which is commonly
used to determine whether two independent samples are
from populations with the same distribution.

The results of Pearson’s chi-squared test andMann–Whitney
U test are measured by p-value, where a smaller p-value indicates
higher significance level in rejecting the null hypothesis H0. A
p-value below 0.05 indicates a significant difference among the
two populations in terms of the selected measure. Cramer’s
V and Cliff’s delta effect size are used to supplement the results
of Pearson’s chi-squared test and Mann–Whitney U test,
respectively.

4.4. User Survey. To investigate how developers experience
and think of their work rhythms and productivity, we
designed an online survey and sent it to developers in
selected tech companies. The selected companies included
a mix of large corporations and startups.

Our survey was reviewed and approved by the Institute
of Science and Technology, Fudan University. Prior to the
launch of the survey, we invited seven developers from dif-
ferent tech companies and did a pilot test. These participants
completed the questionnaire and provided feedback, which
we used to refine the survey. Next, we performed an unde-
clared pilot test involving 10 participants from selected com-
panies in our dataset. We reviewed and discussed their
responses to ensure that the questionnaire was free of major
issues. After finalizing the survey, we distributed it online
and asked the pilot participants to share the link to the
survey with others. The survey had 1,516 views and received
92 responses from eligible respondents who identified their
current job as software development. The survey questions
are given in the appendix.

First, to validate our result on work rhythms, we asked
survey participants about their required working hours and
actual working hours on a typical work day. The participants
are required to provide both their required and actual start
time and end time of work or to implicate there is no
required working hours.

Next, we asked participants about the time they spent on
different work activities and programming themes. According to
Meyer et al. [56], developers primarily identified coding-related
tasks as productive, whereas activities such as attending meet-
ings, reading, and writing emails were often considered as

6 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



unproductive. To gain insight into productivity both during and
outside office hours, we asked participants to indicate the per-
centage of time they spent on variouswork activities during these
periods, including coding, studying, project planning, writing
documents, contacting colleagues, meeting, social activities,
and others. Participants could choose one among the following
five options to indicate the percentage of time they spent on each
work activity or programming theme: “less than 5%,” “between
5% and 20%,” “between 20% and 35%,” “between 35% and 50%,”
and “more than 50%.” In addition, according to Meyer et al.’s
[56] work, different types of programming tasks impact produc-
tivity differently. For instance, activities such as development and
bug fixing were perceived as productive, whereas testing was
considered as unproductive. We also asked participants about
the percentage of time they spent on different programming
themes in off-hours, using the same options as in the previous
question. We asked participants to specify the detailed informa-
tion if they had been involved in activities or programming
theme other than those we listed.

Moreover, to understand whether developers believe extra
working hours can contribute to productivity, we included a
question asking whether extra working hours increase produc-
tivity. Participants were given the option to select either
“agree,” “neutral,” or “disagree.” Then, we cross checked their
ideas with theirmotivations for working overtime. Beckers et al.
[57] proposed that the outcome of extra working hours was
affected by motivation. Highly motivated workers might have
more active attitude towards extra working hours. To see how
participants’ perspectives on extra working hours differ with
motivations, we included a multiple-choice question, listing
nine common reasons for working overtime. These options
were derived from initial interviews with several developers,
who explained why they worked overtime. Their reasons
were used as initial options in pilot tests. During the pilot tests,
participants were asked to provide additional reasons if theirs
were not listed. We then reviewed their answers and adjusted
the options to ensure that the given reasons covered all cases.

Finally, we concluded nine reasons from their responses, such
as (1) handling emergencies (such as application crashes),
(2) meeting deadlines, (3) making up for the time wasted on
programming-independent work activities during office hours,
(4) taxi reimbursement (some companies covered the taxi
expenses within specific hours), (5) good environment of com-
pany (such as free snacks and air conditioners), (6) peer pres-
sure (participants mentioned they stayed in the office after
work because most of their colleagues did not leave), (7) com-
pany requirements, (8) enjoying coding in spare time, and (9)
working for bonus. One or more options could be selected.
Participants could also specify their reasons if they are not
given as options.

5. Results

5.1. RQ1. What Are the Work Rhythms of Projects and
Developers?

5.1.1. Work Rhythms of Developers. We apply clustering
analysis on the commit behavior of developers in our dataset.
Four work rhythms are detected among the developers in our
dataset. We visualize the four detected work rhythms in the
form of heatmap, as shown in Figures 3(a), 3(b), 3(c), and
3(d), with the x-axis representing the hours and the y-axis
representing the days in a week. The color intensity of each
time slot shows the aggregated commit frequency among
developers, where darker color indicates higher commit fre-
quencies. The detected work rhythms exhibit unique char-
acteristics. The 48 hr in weekdays and weekends are divided
into four subsets, as shown in Table 2. We observe the com-
mit behavior in the subsets of hours and summarize the
following characteristics:

#1: Nine-to-five worker. As shown in Figure 3(a), devel-
opers with work rhythm #1 concentrate on programming
during regular office hours (9 a.m. to 5 p.m.) on

Mon. 0.020
0.016
0.012
0.008
0.004
0.000

Wed.

Fri.

Sun.
0 3 6 9

Hour of day
12 15 18 21

D
ay

 o
f w

ee
k

ðaÞ

Mon. 0.020
0.016
0.012
0.008
0.004
0.000

Wed.

Fri.

Sun.
0 3 6 9

Hour of day
12 15 18 21

D
ay

 o
f w

ee
k

ðbÞ

0.020
0.016
0.012
0.008
0.004
0.000

0 3 6 9
Hour of day

12 15 18 21

Mon.

Wed.

Fri.

Sun.D
ay

 o
f w

ee
k

ðcÞ

Mon. 0.020
0.016
0.012
0.008
0.004
0.000

Wed.

Fri.

Sun.
0 3 6 9

Hour of day
12 15 18 21

D
ay

 o
f w

ee
k

ðdÞ
FIGURE 3: (a–d) Identified work rhythms among developers in GitHub dataset. Deeper color indicates higher commit frequency during the
time slot, with the color bars on the right denoting the corresponding values of commit frequency.

IET Software 7

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



weekdays. They submit code changes less frequently after
work hours or on weekends.
#2: Flex timers. As shown in Figure 3(b), the code sub-
missions of developers with rhythm #2 are uniformly
distributed on almost every hour on weekdays. Develo-
pers with this rhythm are likely to submit code changes at
any time of the day and do not display fixed work and
rest time.
#3: Overnight developers. As shown in Figure 3(c), devel-
opers with rhythm #3 submit their codes from 9 a.m. to
12 a.m. They also make code submissions on weekends
following a similar daily working schedule as weekday,
whereas the commit frequency on weekends is lower
than that on weekdays.
#4: Off-hour developers. As shown in Figure 3(d), the
peak time of the code submissions of developers with
rhythm #4 is weekday nights and weekends, instead of
regular working hours on weekdays.

5.1.2. Work Rhythms of Projects. We also apply clustering
analysis on the commit behavior of repositories. Three

work rhythms are detected among the repositories in our
dataset. Figures 4(a) and 4(b) present the temporal distribu-
tions of commit frequency for identified rhythms. The 48 hr
in weekdays and weekends are divided into three subsets, as
shown in Table 3. We summarize the features of the three
identified rhythms as follows:

#1: Typical office hours. Repositories with work rhythm
#1 adopt typical work time, usually from 9 a.m. to 5 p.m
on weekdays. Code changes are rarely submitted into
those repositories on weekends.
#2: Slightly extended working hours. Repositories with
rhythm #2 extend the typical work time to 6 p.m. on
weekdays. Compared with developers in rhythm #1,
repositories with rhythm #2 usually have more code sub-
missions on weekends.
#3: Working over night and weekend. Repositories with
rhythm #3 endure longer working hours than the other
two rhythms. Developers of these repositories work
equally on weekdays and weekends, starting from nine
in the morning to the midnight.

TABLE 2: Column clusters output by biclustering on developers dataset.

Subset Weekday Weekend

1 9 a.m. to 5 p.m. —

2 7 p.m. to 12 a.m. (mid night) 3 p.m. to 11 p.m.
3 — 9 a.m. to 2 p.m. and 12 a.m.
4 1 a.m. to 8 a.m. and 6 p.m. 1 a.m. to 8 a.m.

The 48 hr in weekdays and weekends are divided into four time subsets. Developers with the same rhythm have the same degree of commit frequency in each
time subset. For example, as shown in Figure 3(a), developers with rhythm #1 made commits at a high frequency during 9 a.m. to 5 p.m. on weekdays (i.e., time
subset #1), whereas they have much fewer commits during the other time subsets.

24181260
Hour of the day

0

0.006

0.012

0.018

0.024

Co
m

m
it 

fre
qu

en
cy

Pattern #1
Pattern #2

Pattern #3

ðaÞ

Pattern #1
Pattern #2

Pattern #3

24181260
Hour of the day

0

0.006

0.012

0.018

0.024

Co
m

m
it 

fre
qu

en
cy

ðbÞ
FIGURE 4: (a and b) Identified work rhythms among company repositories in GitHub dataset.

TABLE 3: Column clusters outputted by biclustering on repository dataset.

Subset Weekday Weekend

1 9 a.m. to 5 p.m. —

2 7 p.m. to 12 a.m. (midnight) 9 a.m. to 12 a.m. (midnight)
3 1 a.m. to 8 a.m. and 6 p.m. 1 a.m. to 8 a.m.

The 48 hr in weekdays and weekends are divided into three subsets.

8 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The percentage of developers and repositories in each
detected work rhythm is shown in Figures 5(a) and 5(b),
respectively. Among the four work rhythms detected in the
developer dataset, we observe that about two-thirds of the
developers follow rhythm #1 (typical working hours), which
conforms to Claes et al.’s [1] finding. Among the three work
rhythms detected in the repository dataset, rhythm #1 covers
half of the repositories and rhythm #2 takes up 40% reposi-
tories, and the rest 10% repositories follow rhythm #3.

5.2. RQ2. Are Work Rhythms Related to Demographics and
Collaboration Role? Do work rhythms vary across different
regions? We examine the work regions of the developers. The
percentages of developers per rhythm in each region are

shown in Figure 6. Developers working for organizations in
the United States and Europe mainly follow rhythm #1,
whereas rhythms #3 and #4 are more prevalent among devel-
opers working for organizations in China or “multiple coun-
tries”. We divide developers into two groups according to
their work regions: the United States and Europe as a group
and China and “multiple countries” as another group. We
apply chi-square test to check the frequency of the two groups
in each of the four rhythms. We find a significant difference
between the two groups of developers in terms of the four
work rhythms (p-value < 0.001, Cramer’s V= 0.325).

Is there a correlation between work rhythm and devel-
oper seniority? We investigate the account age of developers
in each rhythm and perform Mann–Whitney U test.

Developer

64% 3%

25%

7%

Pattern #1
Pattern #2

Pattern #3
Pattern #4

ðaÞ

Repository

50% 40%

10%

Pattern #1
Pattern #2

Pattern #3

ðbÞ
FIGURE 5: (a and b) Percentage of developers and repositories in each work rhythm.

The United States

65% 4%

24%

7%
China

57%

1%

32%

10%

Europe

73%

2%

19%

7%
Multiple Countries

52%

3%

33%

11%

Pattern #1
Pattern #2

Pattern #3
Pattern #4

FIGURE 6: Percentage of developers with each type of work rhythm in different regions.

IET Software 9

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 7(a) shows the account ages of the developers for each
work rhythm in box plots. Developers with rhythms #3
(p-value < 0.001, Cliff ’s delta d= 0.20) and #4 (p-value=
0.004, d= 0.13) tend to create their GitHub accounts earlier
than those with other rhythms, which indicates that devel-
opers with rhythms #3 and #4 start to be engaged in software
development earlier than those with the other two rhythms.
Developers with rhythm #1 created their GitHub accounts
later than others (p-value < 0.001, d=−0.20).

Is there a correlation between work rhythm and project
maturity? We investigate the repository age in each rhythm
and performMann–WhitneyU test. As shown in Figure 7(b),
repositories with the three rhythms do not show significant
difference in terms of repository ages (p-values > 0.05).

Do SHS developers have specific work rhythms? The
percentages of developers in each rhythm among SHS devel-
opers and ordinary developers are shown in Figure 8. There
are more developers with rhythm #1 and fewer developers
with rhythm #3 among ordinary developers than among SHS
developers. We apply chi-square test and find a significant
difference between SHS and non-SHS developers in terms of

rhythms #1 and #3 (p-value= 0.006, Cramer’s V= 0.128).
Compared with ordinary developers, SHS developers tend
to be overnight developers rather than work in fixed office
hours.

5.3. RQ3. What Are the Correlations between Different Work
Rhythms and Technical Performance? Next, we examine the
effects of work rhythms on various measures of technical per-
formance. Figures 9(a), 9(b), and 9(c) present the performance
on the three measures for developers. We perform Mann–
Whitney U test and the results are shown in Table 4. The value
in each entry of the table is the ratio between themedian value of
themeasures within the group and outside the group. A less than
1 value indicates that the developers with the selected rhythm
have smaller value in the chosen measure and a higher than 1
value means otherwise. In addition, ∗ marks the difference is
significant with p-value ≤ 0.05, ∗∗ marks p-value ≤ 0.01 and
∗∗∗ marks p-value ≤ 0.001. As shown in Table 4, developers
with rhythms #3 and #4 had more followers (Cliff’s delta d=
0.30 and 0.16 respectively), received more stars from their own
repositories (d=0.228 and 0.158 respectively) and had higher

#4#3#2#1
Pattern

900

1,800

2,700

3,600

4,500

D
ay

s a
fte

r j
oi

ni
ng

 G
itH

ub

ðaÞ

#3#2#1
Pattern

0

700

1,400

2,100

2,800

3,500

D
ay

s a
fte

r c
re

at
io

n

ðbÞ
FIGURE 7: (a and b) Seniority of individual developers and maturity of repositories. The five horizontal lines of each box represent, from
bottom to top, the minimum, first quartile, median, third quartile, and maximum values (the minimum/maximum are the lowest/highest
values excluding outliers).

Non-SHS developer

61%

1%

30%

7%
SHS developer

49%

2%

41%

7%

Pattern #1
Pattern #2

Pattern #3
Pattern #4

FIGURE 8: Percentage of developers with each type of work rhythm within SHS developers and Non-SHS developers.

10 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



h-indexes (d= 0.239 and 0.169 respectively). In contrast, devel-
opers with rhythm #1 perform the worst in all three measures:
average number of stars (d=−0.235), number of followers
(d=−0.282), and h-index (d=−0.243).

We also examine the effect of repositories’ work rhythms
on technical performance and apply Mann–Whitney U test.
The results are shown in Figures 10(a), 10(b), 10(c), and
10(d) and Table 5. Repositories with rhythm #2 receive

more stars (d= 0.085) and have more forks (d= 0.090)
than those with the other two rhythms. Repositories with
rhythm #3 receive more stars than others (d= 0.151). As
for the number of open issues, there is no significant differ-
ence among the three work rhythms.

It is interesting to find that although repositories with
rhythm #1 have larger LOCchanged than those with the other
two rhythms, their values of the other measures of technical

1,0007505002500
0

0.2

0.4

0.6

0.8

1
Cu

m
ul

at
iv

e d
ist

rib
ut

io
n 

fu
nc

tio
n

Pattern #1
Pattern #2

Pattern #3
Pattern #4

ðaÞ

Pattern #1
Pattern #2

Pattern #3
Pattern #4

403020100
0

0.2

0.4

0.6

0.8

1

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

ðbÞ

Pattern #1
Pattern #2

Pattern #3
Pattern #4

1086420
0

0.2

0.4

0.6

0.8

1

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

ðcÞ
FIGURE 9: (a–c)Technical performance of developers with four types of work rhythms. The cumulative distribution functions of three metrics:
number of followers, average number of stars, and h-index of the developers within each group.

TABLE 4: Correlation between developers’ work rhythms and technical performance.

Rhythm Average number of stars Number of followers h-Index

#1 0.30∗∗∗ 0.34∗∗∗ 0.50∗∗∗

#2 1.25 0.63 1.00
#3 3.12∗∗∗ 2.95∗∗∗ 2.00∗∗∗

#4 2.17∗∗∗ 1.85∗∗∗ 2.00∗∗∗

∗∗∗ marks difference is significant with p-value≤ 0.001.

IET Software 11

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



performance including stars (d=−0.133) and forks (d=
−0.10) turn out to be lower. To discover the reason for
this phenomenon, we further check the number of lines of
code added and deleted per commit in each hour of a day. As
shown in Figures 11(a) and 11(b), during the typical office
hours, both the lines of code added and deleted per commit
submitted into repositories with rhythm #1 are larger than
those with the other two rhythms. During 4.–5 p.m. the sizes
of the commits are the largest among commits in all hours of
the day. The commit sizes peak between 4 and 5 p.m., sug-
gesting a hypothesis that developers working on repositories
with rhythm #1 may submit larger commits just before leav-
ing the office to finish their workday on time. However, this

practice might lead to lower code quality, necessitating dele-
tions and rewrites the next day. As a result, these repositories
have more frequent code changes, but their stars and forks
are fewer.

5.4. RQ4. What Are Developers’ Attitudes on Work
Rhythm and Productivity?

5.4.1. Required Working Hour vs. Actual Working Hour. We
ask participants about their companies’ required working
hour and their actual working hour on a typical work day.
As shown in Figure 12, most participants reply that their
companies require an 8-hr work day schedule. However,
they usually work longer hours than required.

#1 #2 #3
Pattern

0

2,000

4,000

6,000

N
um

be
r o

f s
ta

rs

ðaÞ

#1 #2 #3
Pattern

0

200

400

600

800

N
um

be
r o

f f
or

ks

ðbÞ

#1 #2 #3
Pattern

0

30

60

90

120

N
um

be
r o

f o
pe

n 
iss

ue
s

ðcÞ

#1 #2 #3
Pattern

0

1,000

2,000

3,000

M
ed

ia
n 

lin
es

 o
f c

od
e c

ha
ng

ed
 p

er
 w

ee
k

ðdÞ
FIGURE 10: (a–d) Technical performance of repositories with three types of work rhythms. The five horizontal lines of each box represent the
minimum, first quartile, median, third quartile, and maximum values from bottom to top (the minimum/maximum are the lowest/highest
values excluding outliers).

TABLE 5: Repositories’ work rhythms and performance.

Rhythm Number of stars Number of forks Number of open issues LOCchanged

#1 0.51∗∗∗ 0.71∗∗ 1.00 1.17∗

#2 1.66∗ 1.50∗ 1.03 0.91∗

#3 1.55∗∗ 0.99 0.93 0.78
∗ marks the difference is significant with p-value≤ 0.05, ∗∗ marks p-value≤ 0.01, and ∗∗∗ marks p-value≤ 0.001.

12 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5.4.2. Content Switch between Office Hours and Off-Hours.
Figure 13 presents the distribution of activities during office
hours and off-hours. Coding occupies the majority of time in
both periods. The rankings for time spent on different tasks
are mostly consistent, except for meetings and studying.
During the office hours, meetings rank the third and the
sixth respectively, whereas, during the off-hours, studying
moves up to the second and meetings drop to the sixth. As
shown in Figure 14, the most common programming activity
during off-hours is developing, followed by testing, bug fix-
ing, and creating backups.

5.4.3. Perspectives on Productivity in Extra Working Hours.
Except for 25 participants (27.17%) who claim they do not
work extra hours, 38 participants (41.30%) believe that addi-
tional working hours enhance productivity, 26 participants
(28.26%) believe that additional work time does not boost
productivity, and three participants (3.26%) are neutral.

We ask participants why they work overtime. Among all the
options, “deadline” receives the most votes (33.3%). “Emer-
gency” is the second most popular reason with 32.3% responses.
In addition, 24.7%mention that they work overtime to make up
for the time wasted on programming-independent work activi-
ties during office hours, 19.4% say that their companies require
extra working hours, 16.1% agree that they work overtime
because of peer pressure, 15.1% claim that they work overtime
because they enjoy coding in their spare time, 7.5% say that they
stay in the office after work because their companies provide
good environment, and 6.5% mention that they work overtime

because their companies provide taxi reimbursement. Only 1.1%
say because of the bonus that their companies offer for over-
time work.

We cross-check their motivations and views on the pro-
ductivity of additional working hours. The results are shown
in Figure 15, in which the height of a rectangle represents the
proportion of participants who agree on the option and the
flow represents the proportion of participants who agree on
both the two options on each side. According to the results,
more respondents agree extra working hours could increase
productivity if they work overtime for emergencies (19 agree
and 8 disagree), deadlines (18 agree and 10 disagree), making
up for the time wasted on programming-independent work
activities (13 agree and 10 disagree), taxi reimbursement (4
agree and 2 disagree), or good environment of their compa-
nies (3 agree and 2 disagree). In contrast, fewer respondents
agree with the idea if they work overtime because of the
company’s requirements (8 agree and 9 disagree), peer pres-
sures (7 agree and 8 disagree), or bonus (0 agrees and
1 disagrees). Among the respondents who work overtime
because they enjoy coding in their spare time, the numbers
of participants who hold both views are the same (4 agree
and 4 disagree).

6. Discussion

6.1. Implications for Software Practice. The purpose of this
paper is to investigate the work rhythms in software devel-
opment and their effects on technical performance. We iden-
tify four typical work rhythms in the developer dataset. The
typical working hours (from 9 a.m. to 5 p.m. on weekdays)
cover 64% of developers in the dataset. The rest three
rhythms represent an aperiodic work rhythm, an overnight
work rhythm, and an off-hour work rhythm, respectively. In
addition, three work rhythms are detected among reposito-
ries in the dataset. There are one typical work rhythm cover-
ing half of the repositories and two different types of
overtime work rhythm.

Work rhythms are correlated with demographics and
collaboration roles. Work rhythms with moderately extended
working hours are more popular among senior developers.
The maturity of a repository does not decrease the chance of
requiring its developers to work extra hours. Developers who

0 6 12 18 24
Hour of the day

0

50

100

150
M

ed
ia

n 
lin

es
 o

f c
od

es
ad

de
d 

pe
r c

om
m

it

Pattern #1
Pattern #2

Pattern #3

ðaÞ

0 6 12 18 24
Hour of the day

Pattern #1
Pattern #2

Pattern #3

0

20

40

60

M
ed

ia
n 

lin
es

 o
f c

od
es

de
le

te
d 

pe
r c

om
m

it

ðbÞ
FIGURE 11: (a and b) Median number of lines of codes changed per commit.

Actual

4
0

10

20

30

40

8
Duration of working hours

N
um

be
r o

f r
es

po
ns

es

12 16

Required

FIGURE 12: Required working hours vs. actual working hours.

IET Software 13

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1007550250255075100
Percentage

Social activities

Studying

Contacting colleagues

Writing documents

Meeting

Project planning

Coding

< 5%

34%

38%

29%

28%

19%

18%

2%

48%17%

37% 25%

62% 9%

65%

71% 10%

9%73%

8%

2%95%

5% – 20%
20% – 35%

35% – 50%
> 50%

ðaÞ

Social activities

Meeting

Contacting colleagues

Writing documents

Project planning

Studying

Coding 13%

25%

18%

11%

11%

8%

5%

31%

16%

14%

10%

4%

5%

1%

56%

59%

69%

78%

85%

87%

94%

1007550250255075100
Percentage

< 5%
5% – 20%
20% – 35%

35% – 50%
> 50%

ðbÞ
FIGURE 13: (a and b) Content switch between office hours and off-hours. The percentages on the right represent respondents who spend more
than 35% of their time on the activities, whereas the percentages on the left indicate those who spend less than 20% of their time on the
activities. The percentage in the middle shows respondents who select 20%–35%.

Others

Backup

Fixing bugs

Testing

Developing

11%

19%

29%

20% 39%

15%

15%

5%

5%8%

41%

56%

66%

84%

87%

1007550250255075100
Percentage

< 5%
5% – 20%
20% – 35%

35% – 50%
> 50%

FIGURE 14: Content of coding in extra working hours.

14 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



bridge collaboration groups consist of a higher proportion of
“overnight developers” than others.

Work rhythms with a moderate amount of extended
working hours appear to be associated with good technical
performance. According to our results, projects and develo-
pers following the work rhythms with moderate hours of
overtime work (rhythms #3 and #4 in developers’ rhythms
and rhythms #2 and #3 in repositories’ rhythms) turn out to
have better work performance than those following other
rhythms. Projects and developers following fixed-hour work
rhythms (rhythm #1 in developers’ rhythms and rhythm #1 in
repositories’ rhythms) show poorer technique performance.
Developers who follow aperiodic work rhythm (rhythm #2 in
developers’ rhythms) do not present better performance than
others.

Developers’ perspectives on productivity in extended
working hours are influenced by their motivations of working
overtime. They would feel extended working hours increase
their productivity when the time for coding is insufficient due
to some unexpected arrangments (such as approaching dead-
line) or the companies give clear incentives (such as reimburs-
ing taxi fares), while fewer believe that extended working
hours could increase productivity if they are under the
requirement of companies, or work for bonus, or just follow
the other colleagues to work overtime. Tech companies and
teams could benefit from practices, for example, not forcing
the members to work extra hours, and providing employees
with better work environment and clear incentives.

6.2. Limitations and Threats to Validity. Being a first study to
reveal work rhythms in software development and their

effects on technical performance, there are a few limitations
in our work. First, the data analysis in our study is limited to
public open-source projects hosted on GitHub. Therefore,
our conclusions are specific to the open-source projects
and their contributors. Although our findings demonstrate
notable distinctions between work rhythms, we cannot guar-
antee their broader applicability to the entire industry, as
comprehensive data on a wider range of companies and
closed-source projects would be necessary. We notice that
there are alternative platforms such as GitLab where organi-
zations release their work projects in a timely way. In addi-
tion, while we aim to capture an authentic snapshot of
developer activity in open-source projects by forming an
actual distribution of repositories in the companies, the vari-
ation in the number of repositories across these companies
could potentially introduce bias into the results. In future
work, we plan to explore other data sources to validate and
expand our findings.

Second, our quantitative analysis on the work rhythms
primarily focuses on the commit activities. Analysis on more
comprehensive dataset could better reveal of rules of one
field of research [58]. Other activities, such as meetings
and document writing, also occupy developers’ working
hours; therefore, the time spent on programming might
not fully represent their work schedule. However, because
programming is a major task of developers’ work, the tem-
poral pattern of commits is a strong indicator of work time
and our findings could provide insights into developers’
working status. We also acknowledge that there might be a
delay between the time of making commits and the actual
time of completing coding tasks. However, because our

Long work
time increase
productivity.

Productivity
does not
compensate
for extra
working hours.

Neutral

FIGURE 15: Relationship between the motivation of working overtime and perspective on extra working hours. The height of a rectangle
represents the proportion of participants who agree on the option and the flow represents the proportion of participants who agree on both
the two options on each side.

IET Software 15

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



analysis is based on aggregated commits rather than individ-
ual ones, the impact of such delays should be negligible.

Third, the metrics that we use to measure the technical
performance are indirect. For developers, we use average
number of stars, number of followers, and h-index of stars
as indicators of their reputations. For repositories, we con-
sider number of stars, number of forks, and number of issues
as proxies for user attention. More user attention and dis-
cussions mean that the repositories and developers are rec-
ognized by more people, which indicates their good technical
performance. In addition, we use the lines of code changed
per week to measure code productivity. Although these mea-
sures are intuitively reasonable, they could only show tech-
nical performance in some way. More metrics such as code
quality should be addressed to obtain a comprehensive
understanding of the technical performance.

7. Conclusions and Future Work

In this paper, we aim to discover work rhythms in software
development and investigate their effects on technical per-
formance. We found four work rhythms among individuals
and three work rhythms among repositories in our dataset.
The findings indicate that developers working for organiza-
tions in China or multiple countries tend to follow long-hour
work rhythms, whereas those working for organizations in
the United States and Europe tend to follow the typical work
rhythm. Regarding the effects of work rhythms on technical
performance, we found that a moderate amount of overtime
work is related to good technical performance, whereas fixed
office hours appear to be associated with projects and devel-
opers who receive less attention. In addition, our survey
study indicates that developers usually tend to work longer
than their companies’ required working hours. A positive
attitude towards overtime work is often linked to situations
that require addressing unexpected issues, such as approach-
ing deadlines, or when clear incentives are provided.

For future work, we aim to delve deeper into the under-
lying mechanisms behind developers’ work. We wish to
understand the underlying causes for different working
rhythms by considering the interplay between work rhythms
and other factors, such as technical roles and collaboration
patterns. Furthermore, we plan to investigate the causal rela-
tionship between work rhythms and technical performance
by conducting experimentation and incremental studies.

Appendix

The User Survey

We conducted a user survey to gain deeper insights into the
working time of software developers. The survey was com-
prised of 12 questions and took approximately 5–10min to
complete. All responses were kept confidential and anony-
mous. The data collected from the survey were used for

research purposes only and for overall analysis. The survey
questions are listed below:

(1) What is the country of your company?
(2) How long have you been employed at your current

company?
(3) What is the type of your current job? (e.g., develop-

ment, testing, product management, etc.)
(4) What is your company’s designated working hour

for workdays? (Please fill in the start and end time
in 24-hr format.)

(5) What are your actual working hour for workdays?
(Please fill in the start and end time in 24-hr
format.)

(6) How often do you work overtime on weekends?
(Please choose one from the options.)
(i) I work on both Saturday and Sunday every

weekend
(ii) I work on either Saturday or Sunday every

weekend
(iii) I sometimes work on weekends (less than once

a week, please specify how many days per
month on average)

(iv) I never work on weekends
(v) Other (please specify)

(7) Please rate the following statements according to
how well they match your actual situation. (1:
very inconsistent, 2: somewhat inconsistent, 3: aver-
age, 4: somewhat consistent, 5: very consistent.)
(i) Most of my colleagues work overtime.
(ii) My company provides benefits for overtime

worker.
(iii) I enjoy working overtime.
(iv) I work during holidays.
(v) I work more before/after holidays.

(8) During your designated work hours, what percent-
age of your time is spent on each of the following
activities? (1: below 5%, 2: 5%–20%, 3: 20%–35%, 4:
35%–50%, 5: above 50%.)

(i) Coding
(ii) Project planning
(iii) Meetings
(iv) Reading/writing documents and preparing

reports
(v) Handling other work tasks, e.g., reading/writ-

ing emails, etc.
(vi) Learning software, tools, skills, etc.
(vii) Business entertainment, e.g., hosting collea-

gues, etc.
(viii) Leisure activities
(ix) Other

16 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(9) During your off-work hours, what percentage of your
time is spent on each of the following work-related
activities? (1: below 5%, 2: 5%–20%, 3: 20%–35%,
4: 35%–50%, 5: above 50%. Skip this question if you
do not work overtime.)

(i) Coding
(ii) Project planning
(iii) Meetings
(iv) Reading/writing documents and preparing

reports
(v) Handling other work tasks, e.g., reading/writ-

ing emails, etc.
(vi) Learning software, tools, skills, etc.
(vii) Business entertainment, e.g., hosting collea-

gues, etc.
(viii) Leisure activities
(ix) Other

(10) During your off-work hours, what percentage of
your time is spent on each of the following pro-
gramming tasks? (1: below 5%, 2: 5%–20%, 3:
20%–35%, 4: 35%–50%, 5: above 50%. Skip this
question if you do not work overtime.)
(i) Development
(ii) Testing
(iii) Backups
(iv) Bug fixes
(v) Other

(11) What is the main reason you engage in work-related
programming activities after work hours? (Multi-
ple-choice question.)

(i) I do not work overtime.
(ii) Deadlines.
(iii) Handling emergencies (such as application

crashes).
(iv) Making up for the time wasted on programming-

independent work activities during office hours.
(v) Company requirements.
(vi) Peer pressure (most of my colleagues have not

left).
(vii) Enjoying coding in spare time.
(viii) The company provides good environment,

e.g., free smacks and air conditioners.
(ix) The company provides taxi reimbursements

within specific hours.
(x) Working for bonus.
(xi) Other. (Please specify the reason.)

(12) Do you think extra working hours increase
productivity?
(i) I do not work overtime.
(ii) Agree—overall, working overtime increases

my work output.

(iii) Disagree—overtime work does not compen-
sate for my extra working hours.

(iv) Neutral.

Data Availability

As the data used in this work are publicly visible and accessi-
ble onGitHub, researchers interested in accessing the data can
retrieve it directly from the GitHub platform with its official
API. To ensure transparency and facilitate further research,
the list of organizations and repositories in our dataset is
publicly available on GitHub: https://github.com/jiayunz/
Work-Rhythms-in-Software-Development. Researchers can
refer to this repository to gain access to the specific projects
and repositories included in the dataset. For any inquiries or
requests related to the dataset, researchers can contact the
corresponding author through email.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work has been sponsored by National Natural Science
Foundation of China (nos. 62072115 and 62102094), Shanghai
Science and Technology Innovation Action Plan Project (no.
22510713600), European Union’s Horizon 2020 Research and
Innovation Programme under the grant agreement no.
101021808, and Marie Skłodowska Curie grant agreement no.
956090.

References

[1] M. Claes, M. Mäntylä, M. Kuutila, and B. Adams, “Do
programmers work at night or during the weekend?” in
Proceedings of the 40th International Conference on Software
Engineering, pp. 705–715, IEEE, 2018.

[2] J. Marlow and L. Dabbish, “Activity traces and signals in
software developer recruitment and hiring,” in Proceedings of
the 2013 Conference on Computer Supported CooperativeWork,
pp. 145–156, ACM, 2013.

[3] B. B. Baltes, T. E. Briggs, J. W. Huff, J. A. Wright, and
G. A. Neuman, “Flexible and compressed workweek schedules:
a meta-analysis of their effects on work-related criteria,” Journal of
Applied Psychology, vol. 84, no. 4, pp. 496–513, 1999.

[4] L. Smith, S. Folkard, P. Tucker, and I. Macdonald, “Work shift
duration: a review comparing eight hour and 12 hour shift
systems,” Occupational and Environmental Medicine, vol. 55,
no. 4, pp. 217–229, 1998.

[5] G. P. Krueger, “Sustained work, fatigue, sleep loss and
performance: a review of the issues,” Work & Stress, vol. 3,
no. 2, pp. 129–141, 1989.

[6] E. J. Josten, J. E. Ng-A-Tham, and H. Thierry, “The effects of
extended workdays on fatigue, health, performance and
satisfaction in nursing,” Journal of Advanced Nursing, vol. 44,
no. 6, pp. 643–652, 2003.

[7] S. W. Lockley, L. K. Barger, N. T. Ayas, J. M. Rothschild,
C. A. Czeisler, and C. P. Landrigan, “Effects of health care

IET Software 17

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/jiayunz/Work-Rhythms-in-Software-Development
https://github.com/jiayunz/Work-Rhythms-in-Software-Development
https://github.com/jiayunz/Work-Rhythms-in-Software-Development


provider work hours and sleep deprivation on safety and
performance,” The Joint Commission Journal on Quality and
Patient Safety, vol. 33, no. 11, pp. 7–18, 2007.

[8] A. Richardson, C. Turnock, L. Harris, A. Finley, and S. Carson,
“A study examining the impact of 12-hour shifts on critical
care staff,” Journal of Nursing Management, vol. 15, no. 8,
pp. 838–846, 2007.

[9] S. M. Keller, P. Berryman, and E. Lukes, “Effects of extended
work shifts and shift work on patient safety, productivity, and
employee health,” AAOHN Journal, vol. 57, no. 12, pp. 497–
504, 2009.

[10] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th
Working Conference on Mining Software Repositories,
pp. 153–162, ACM, 2011.

[11] J. Eyolfson, L. Tan, and P. Lam, “Correlations between
bugginess and time-based commit characteristics,” Empirical
Software Engineering, vol. 19, no. 4, pp. 1009–1039, 2014.

[12] L. Prechelt and A. Pepper, “Why software repositories are not
used for defect-insertion circumstance analysis more often: a
case study,” Information and Software Technology, vol. 56,
no. 10, pp. 1377–1389, 2014.

[13] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, “Spectral
biclustering of microarray data: coclustering genes and
conditions,” Genome Research, vol. 13, no. 4, pp. 703–716, 2003.

[14] R. S. Burt, Structural Holes: The Social Structure of
Competition, Harvard University Press, 2009.

[15] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “Under-
standing and improving time usage in software development,”
Software Process, vol. 5, pp. 111–135, 1995.

[16] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of
the 28th International Conference on Software Engineering,
pp. 492–501, ACM, 2006.

[17] E. Fu, Y. Zhuang, J. Zhang, J. Zhang, and Y. Chen,
“Understanding the user interactions on GitHub: a social
network perspective,” in Proceedings of CSCWD, pp. 1148–
1153, IEEE, 2021.

[18] Q. Gong, Y. Chen, X. He et al., “DeepScan: exploiting deep
learning for malicious account detection in location-based
social networks,” IEEE Communications Magazine, vol. 56,
no. 11, pp. 21–27, 2018.

[19] X. He, Q. Gong, Y. Chen, Y. Zhang, X. Wang, and X. Fu,
“DatingSec: detecting malicious accounts in dating apps using
a content-based attention network,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 5, pp. 2193–
2208, 2021.

[20] M. Saini and K. Kaur, “Fuzzy analysis and prediction of
commit activity in open source software projects,” IET
Software, vol. 10, no. 5, pp. 136–146, 2016.

[21] F. Javeed, A. Siddique, A. Munir, B. Shehzad, and M. I. U. Lali,
“Discovering software developer’s coding expertise through
deep learning,” IET Software, vol. 14, no. 3, pp. 213–220, 2020.

[22] M. A. Aljemabi, Z. Wang, and M. A. Saleh, “Mining social
collaboration patterns in developer social networks,” IET
Software, vol. 14, no. 7, pp. 839–849, 2020.

[23] A. Sajedi-Badashian and E. Stroulia, “Investigating the informa-
tion value of different sources of evidence of developers’ expertise
for bug assignment in open-source projects,” IET Software,
vol. 14, no. 7, pp. 748–758, 2020.

[24] B. Traullé and J.-M. Dalle, “The evolution of developer work
rhythms,” in International Conference on Social Informatics,
pp. 420–438, Springer, 2018.

[25] J. Zhang, Y. Chen, Q. Gong et al., “Understanding the working
time of developers in IT companies in China and the United
States,” IEEE Software, vol. 38, no. 2, pp. 96–106, 2021.

[26] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understand-
ing the impact of rapid releases on software quality,” Empirical
Software Engineering, vol. 20, no. 2, pp. 336–373, 2015.

[27] Q. Gong, J. Zhang, Y. Chen et al., “Detecting malicious accounts
in online developer communities using deep learning,” in
Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 1251–1260, 2019.

[28] Q. Gong, Y. Liu, J. Zhang et al., “Detecting malicious accounts
in online developer communities using deep learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35,
no. 10, pp. 10633–10649, 2023.

[29] R. Goyal, G. Ferreira, C. Kästner, and J. Herbsleb, “Identifying
unusual commits on GitHub,” Journal of Software: Evolution
and Process, vol. 30, no. 1, Article ID e1893, 2018.

[30] J. MacQueen, “Classification and analysis of multivariate
observations,” in Fifth Berkeley Symposium on Mathematical
Statistics and Probability, pp. 281–297, University of
California, Los Angeles, LA, USA, 1967.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” in 2nd International Conference on Knowledge
Discovery and Data Mining, pp. 226–231, ACM, 1996.

[32] Z. Cheng, M. Trépanier, and L. Sun, “Probabilistic model for
destination inference and travel pattern mining from smart
card data,” Transportation, vol. 48, no. 4, pp. 2035–2053, 2021.

[33] Z. Li, H. Yan, C. Zhang, and F. Tsung, “Individualized
passenger travel pattern multi-clustering based on graph
regularized tensor latent dirichlet allocation,” Data Mining
and Knowledge Discovery, vol. 36, no. 4, pp. 1247–1278, 2022.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in python,” Journal of Machine Learning
Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[35] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to continuous
integration in GitHub,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pp. 805–816,
ACM, 2015.

[36] R. S. Burt, M. Kilduff, and S. Tasselli, “Social network analysis:
foundations and frontiers on advantage,” Annual Review of
Psychology, vol. 64, no. 1, pp. 527–547, 2013.

[37] Z. Lin, Y. Zhang, Q. Gong, Y. Chen, A. Oksanen, and
A. Y. Ding, “Structural hole theory in social network analysis:
a review,” IEEE Transactions on Computational Social Systems,
vol. 9, no. 3, pp. 724–739, 2022.

[38] W. Li, Z. Xu, Y. Sun et al., “DeepPick: a deep learning
approach to unveil outstanding users with public attainable
features,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 1, pp. 291–306, 2023.

[39] T. Bhowmik, N. Niu, P. Singhania, and W. Wang, “On the role of
structural holes in requirements identification: an exploratory study
on open-source software development,” ACM Transactions on
Management Information Systems, vol. 6, no. 3, pp. 1–30, 2015.

[40] W. Xu, M. Rezvani, W. Liang, J. X. Yu, and C. Liu, “Efficient
algorithms for the identification of top- structural hole spanners in
large social networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 5, pp. 1017–1030, 2017.

[41] Q. Gong, J. Zhang, X. Wang, and Y. Chen, “Identifying
structural hole spanners in online social networks using
machine learning,” in Proceedings of the ACM SIGCOMM.
2019 Conference Posters and Demos, pp. 93–95, 2019.

18 IET Software

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



[42] M. Gao, Z. Li, R. Li et al., “EasyGraph: a multifunctional, cross-
platform, and effective library for interdisciplinary network
analysis,” Patterns, vol. 4, no. 10, Article ID 100839, 2023.

[43] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and
technical factors for evaluating contribution in GitHub,” in
Proceedings of the 36th International Conference on Software
Engineering, pp. 356–366, ACM, 2014.

[44] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: transparency and collaboration in an open software
repository,” in Proceedings of the ACM. 2012 conference on
Computer Supported Cooperative Work, pp. 1277–1286, ACM,
2012.

[45] J. E. Hirsch, “An index to quantify an individual’s scientific
research output,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 102, no. 46,
pp. 16569–16572, 2005.

[46] Q. Gong, Y. Chen, X. He et al., “Cross-site prediction on social
influence for cold-start users in online social networks,” ACM
Transactions on the Web, vol. 15, no. 2, pp. 1–23, 2021.

[47] H. Borges, A. Hora, and M. T. Valente, “Understanding the
factors that impact the popularity of GitHub repositories,” in
2016 IEEE International Conference on Software Maintenance
and Evolution, pp. 334–344, IEEE, 2016.

[48] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang,
“Why and how developers fork what from whom in GitHub,”
Empirical Software Engineering, vol. 22, no. 1, pp. 547–578,
2017.

[49] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in GitHub,” in Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ACM, 2014.

[50] G. Vale, A. Schmid, A. R. Santos, E. S. De Almeida, and
S. Apel, “On the relation between GitHub communication
activity and merge conflicts,” Empirical Software Engineering,
vol. 25, no. 1, pp. 402–433, 2020.

[51] B. Vasilescu, K. Blincoe, Q. Xuan et al., “The sky is not the
limit: multitasking across GitHub projects,” in Proceedings of
the 38th International Conference on Software Engineering,
pp. 994–1005, IEEE, 2016.

[52] O. Dieste, A. M. Aranda, F. Uyaguari et al., “Empirical
evaluation of the effects of experience on code quality and
programmer productivity: an exploratory study,” Empirical
Software Engineering, vol. 22, no. 5, pp. 2457–2542, 2017.

[53] E. Oliveira, E. Fernandes, I. Steinmacher, M. Cristo, T. Conte,
and A. Garcia, “Code and commit metrics of developer
productivity: a study on team leaders perceptions,” Empirical
Software Engineering, vol. 25, no. 4, pp. 2519–2549, 2020.

[54] K. Pearson, “X. On the criterion that a given system of
deviations from the probable in the case of a correlated system
of variables is such that it can be reasonably supposed to have
arisen from random sampling,” The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, vol. 50,
no. 302, pp. 157–175, 2009.

[55] H. B. Mann and D. R. Whitney, “On a test of whether one of
two random variables is stochastically larger than the other,”
The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50–
60, 1947.

[56] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann,
“Software developers’ perceptions of productivity,” in Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 19–29, ACM, 2014.

[57] D. G. J. Beckers, D. van der Linden, P. G. W. Smulders,
M. A. J. Kompier, M. J. P. M. van Veldhoven, and N. W. van
Yperen, “Working overtime hours: relations with fatigue, work
motivation, and the quality of work,” Journal of Occupational
and Environmental Medicine, vol. 46, no. 12, pp. 1282–1289,
2004.

[58] J. Wu, B. Ye, Q. Gong et al., “Characterizing and
understanding development of social computing through
DBLP: a data-driven analysis,” Journal of Social Computing,
vol. 3, no. 4, pp. 287–302, 2022.

IET Software 19

 ietsfw
, 2024, 1, D

ow
nloaded from

 https://ietresearch.onlinelibrary.w
iley.com

/doi/10.1049/2024/8846233 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Understanding Work Rhythms in Software Development and Their Effects on Technical Performance
	1. Introduction
	2. Background and Related Work
	3. Research Questions
	4. Methods
	4.1. Data Collection
	4.2. Identifying Work Rhythms
	4.2.1. Data Processing
	4.2.2. Biclustering Model

	4.3. Empirical Analysis on Identified Work Rhythms
	4.3.1. Demographics of Developers and Repositories
	4.3.2. Collaboration Role
	4.3.3. Developer-Level Measures on Technical Performance
	4.3.4. Repository-Level Measures of Technical Performance
	4.3.5. Hypothesis Testing

	4.4. User Survey

	5. Results
	5.1. RQ1. What Are the Work Rhythms of Projects and Developers?
	5.1.1. Work Rhythms of Developers
	5.1.2. Work Rhythms of Projects

	5.2. RQ2. Are Work Rhythms Related to Demographics and Collaboration Role?
	5.3. RQ3. What Are the Correlations between Different Work Rhythms and Technical Performance?
	5.4. RQ4. What Are Developers' Attitudes on Work Rhythm and Productivity?
	5.4.1. Required Working Hour vs. Actual Working Hour
	5.4.2. Content Switch between Office Hours and Off-Hours
	5.4.3. Perspectives on Productivity in Extra Working Hours


	6. Discussion
	6.1. Implications for Software Practice
	6.2. Limitations and Threats to Validity

	7. Conclusions and Future Work
	Appendix
	The User Survey
	Data Availability
	Conflicts of Interest
	Acknowledgments
	References




