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Experimental creation of quantum Zeno subspaces
by repeated multi-spin projections in diamond
N. Kalb1,2, J. Cramer1,2, D.J. Twitchen3, M. Markham3, R. Hanson1,2 & T.H. Taminiau1,2

Repeated observations inhibit the coherent evolution of quantum states through the quantum

Zeno effect. In multi-qubit systems this effect provides opportunities to control complex

quantum states. Here, we experimentally demonstrate that repeatedly projecting joint

observables of multiple spins creates quantum Zeno subspaces and simultaneously

suppresses the dephasing caused by a quasi-static environment. We encode up to two logical

qubits in these subspaces and show that the enhancement of the dephasing time with

increasing number of projections follows a scaling law that is independent of the number of

spins involved. These results provide experimental insight into the interplay between frequent

multi-spin measurements and slowly varying noise and pave the way for tailoring the

dynamics of multi-qubit systems through repeated projections.
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T
he quantum Zeno effect restricts the evolution of
repeatedly observed quantum systems. For a two-dimen-
sional system the state simply is frozen in one of

two eigenstates of the measurement operator1–10. In multi-
dimensional systems; however, Zeno subspaces are formed that
can contain complex quantum states and dynamics: repeated
observations create a barrier that blocks coherent evolution
between subspaces, but leaves coherences and dynamics within
those subspaces intact11. Analogous effects can also be
realized through coherent control pulses or strong driving
fields that decouple transitions between the subspaces12–19.
Pioneering experiments have highlighted that the non-trivial
dynamics in Zeno subspaces can be used to prepare exotic
quantum states20–24. However, the opportunities to tailor the
dynamics of multi-qubit systems by restricting coherent evolution
have remained unexplored.

Here we show that repeated multi-spin projections on
individually controlled spins create quantum Zeno subspaces
that can encode multiple logical qubits while suppressing
dephasing caused by the environment. We realize these repeated
projections for up to three nuclear spins in diamond using the
optical transition of a nearby electron spin. We then encode up to
two logical qubits—including entangled states of logical qubits—
and show that increasing the frequency of the projections
supresses the dephasing of quantum states. Finally, we theore-
tically derive and experimentally verify a scaling law that shows
that the increase in dephasing time is independent of the number
of spins involved.

Results
Experimental system and sequence. Our system consists of three
13C spins (I¼½) surrounding a single nitrogen vacancy (NV)
centre (|0iNV : ms¼ 0 and |1iNV : ms¼ � 1) in diamond (see
Supplementary Note 1). The natural evolution of the 13C spins
is dominated by dephasing due to the slowly fluctuating
surrounding bath of 13C spins (dephasing times T�2 ¼ 12.4(9),
8.2(7) and 21(1) ms for spin 1, 2 and 3, respectively)25.
Because the fluctuations are quasi-static, the Hamiltonian in a
given experiment is H ¼

Pk
i¼1 Diŝz;i=2, with k the number of

spins and the detuning Di for spin i drawn from a Gaussian
distribution with s ¼

ffiffiffi
2
p

=T�2 . We denote the Pauli operators as
ŝx, ŝy, ŝz and the identity as Î.

The quantum Zeno effect arises when an observable Ô is
projected (super-operator MðÔÞ). Here we consider dichotomic
observables with eigenvalues ±1. A projection leaves the system’s
density matrix (rs) in block-diagonal form with respect to the
projectors P� ¼ ðÎ � ÔÞ=2 (ref. 11):

M Ô
� �

rs ¼ Pþ rsP
y
þ þP� rsPy� ¼

rsþ ÔrsÔ
y

2
: ð1Þ

Repeatedly projecting observable Ô thus inhibits coherent
evolution between the two eigenspaces of Ô. We choose joint
multi-spin observables of the form Ô ¼ ŝ� k

x , which anti-
commute with all terms in the Hamiltonian H, so that
rapid projections ideally result in the effective Zeno
Hamiltonian HZeno ¼ P�HPy� ¼ 0 (ref. 11). Applying these
projections therefore suppresses dephasing for each nuclear
spin, but leaves quantum states and driven dynamics inside the
two subspaces untouched (Fig. 1a).

To investigate quantum Zeno subspaces we use the following
experimental sequence (Fig. 1b). We first initialize the nuclear
spins in the desired state and prepare the electron spin in |1iNV.
Crucially, leaving the electron in |1iNV creates a different
frequency shift for each of the three 13C spins that suppresses
resonant flip-flop interactions among the 13C spins during

idle time26. We then apply a total of N projections that are
equally distributed in time. Finally, the nuclear spin state is read
out using the electron spin as an ancilla (refs 27–32). Here we
consider the case of an even number of projections. The results
for an odd number of projections N give rise to additional effects
at long evolution times due to the time-correlations in the noise
and are discussed in Supplementary Fig. 1. The total evolution
time t is defined from the end of the initialization to the start of
the read-out. We subtract the time that control operations are
applied to the nuclear spins (averaged over all spins), as
dephasing might be suppressed during driving (for a
comparison see Supplementary Fig. 2).

We experimentally realize repeated multi-spin projections on
the 13C spins by using the NV electron spin as an ancilla spin
(Fig. 1c). First, we entangle the NV electron spin state with the
projections on the eigenspaces of Ô (hÔi¼ þ 1 or � 1), so that
the combined state is ajhÔi ¼ þ 1ij0iNVþbjhÔi ¼ � 1ij1iNV
(refs 25,33). Second, we apply an optical excitation that is
resonant only if the electron-spin state is |1iNV (‘reset’)25, which
projects the quantum state and re-initializes the NV electron spin
in |0iNV through optical pumping (Fig. 1d). Note that it is not
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Figure 1 | Concept and experimental sequence. (a) Quantum Zeno

subspaces. The state space of a quantum system is divided into two

subspaces (yellow boxes) of an observable Ô. Plus and minus signs indicate

eigenvalues of the associated operator. Coherent transitions between the

two subspaces occur while the system is unperturbed (top, red arrows)

but are strongly inhibited if Ô is repeatedly projected (bottom).

(b) Experimental sequence. After initialization in |ci, N equidistantly

distributed projections M(Ô) (see equation (1)) are applied during a total

evolution time t and the state of the system is read out. (c) Realization of

MðÔ ¼ ŝxŝxŝxÞ for three nuclear spins. First, the state of the nuclear spins

(yellow) is entangled with the ancilla electron-spin state (purple). Second,

the electron spin is projected and reinitialized in |1iNV (see also d) through a

long 30 ms optical pumping pulse to |0iNV and a subsequent microwave

p-pulse (X). Such a long laser excitation pulse ensures that the NV is

projected. The x and y gates are p/2 rotations around the X and Y axes,

respectively. Controlled gates indicate that the direction is determined by

the electron spin28. See Supplementary Fig. 3 for pulse sequences for

projections on one and two spins. (d) Relevant electron spin levels for

optical re-pumping through selective resonant excitation of |1iNV to |eiNV.

We prepare the nuclear spin states in the hÔi¼ þ 1 subspace and associate

this subspace with the electron state |0iNV in the entangling sequence so

that the optical projection ideally never excites the NV centre.
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required to extract or record the outcome of the optical
measurement. To mitigate extra dephasing caused by the
stochastic nature of the optical re-initialization (time constant
of B1 ms), we use 13C spins with a NV-13C hyperfine coupling
that is small compared with the inverse of the time constant for
re-initialization (all couplings are below 2p � 50 kHz)34,35. In
addition, we design the gate sequence, so that |0iNV is associated
with the subspace of the initial nuclear state: ideally the electron
spin is never optically excited and the projection constitutes a null
measurement.

Quantum Zeno effect for a single spin. To illustrate the quan-
tum Zeno effect and to benchmark our system, we first consider a
single 13C spin and study the dephasing of the superposition state
Xij � ð 0j i þ 1j iÞ=

ffiffiffi
2
p

for Ô ¼ ŝx (Fig. 2a). We initialize the 13C
spin in |Xi with an initial state fidelity of 0.95(2) and apply up to
N¼ 16 projections. For a fixed total evolution time of 40 ms, we
observe a significant increase of the state fidelity with an
increasing number of projections (Fig. 2b). The complete time
traces show that the dephasing time increases as more projections
are applied (Fig. 2c); the superposition state is protected by the
quantum Zeno effect. In this example, however, the Zeno
subspaces contain just a single state and therefore cannot encode
general quantum states.

Preserving a logical qubit via quantum Zeno subspaces. We
next investigate Zeno subspaces that can contain an arbitrary
two-dimensional quantum state, that is, a complete logical
quantum bit, by performing joint projections on two 13C spins.
We set the joint-observable Ô ¼ ŝxŝx, so that the four-dimen-
sional state space is divided into two coherent two-level subspaces
(Fig. 3a). In these subspaces a logical qubit, which can hold an
arbitrary quantum state, can be defined as cij L¼ a 0ij Lþ b 1ij L,
with 0j iL¼ X;j Xi and 1j iL¼ �X; �j Xi, and with logical
operators ẐL ¼ ŝxÎ and X̂L ¼ ŝzŝz. Note that logical qubit
superposition states are generally entangled states of the two 13C
spins.

We characterize the storage of arbitrary quantum states
by preparing all six logical basis states 0j iL; 1j iL;

�

0j iL� 1j iL
� �

=
ffiffiffi
2
p

; 0j iL� i 1j iL
� �

=
ffiffiffi
2
p
g and averaging the final

logical state fidelities36 (Fig. 3b). The logical qubit
without projections shows the same decay as a single 13C spin,
but with a slightly reduced initial fidelity (F¼ 0.89(1)) due to the
overhead of creating the entangled states |ciL. Applying
projections of the joint-observable ŝxŝx strongly suppresses the
dephasing by the environment, while preserving the logical qubit
states. As a result, the average state fidelity for the logical qubit
surpasses the best 13C nuclear spin used, while still remaining
above the threshold of 2/3 for the storage of quantum states37.
This result demonstrates the suppression of the dephasing of a
complete logical qubit through the quantum Zeno effect.

Interestingly, preserving the logical qubit does not actually
require the coherence of the second spin to be maintained, as
follows from the logical operator ẐL ¼ ŝx Î. To show that the
complete two-spin state is preserved, including entanglement
between the two nuclear spins, we measure the average state
fidelity with the ideal two-spin state for the four entangled initial
states as a function of time (Fig. 3c). The duration for which
genuine entanglement persists (two-spin state fidelity 40.5) is
extended for N¼ 2, 4 and 6 projections compared with the case
without any projections, indicating that the barrier introduced by
the projections inhibits dephasing for any two-spin state within
the Zeno subspace.

Quantum Zeno subspaces with two logical qubits. Realizing
Zeno subspaces with even more dimensions enables the
exploration of complex states of multiple logical qubits within the
subspaces. We include a third nuclear spin and set Ô ¼ ŝxŝxŝx to
create a protected four-dimensional subspace, which can host
two logical qubits defined by the logical operators ẐL1 ¼ ŝx Îŝx;
X̂L1 ¼ Îŝzŝz and ẐL2 ¼ Îŝxŝx; X̂L2 ¼ ŝz Îŝz (Fig. 4a). Each pure
state within the hÔi¼ þ 1 subspace can be expressed in terms of
the logical two-qubit states:

a X;X; Xij þ b �X;X; � Xij þ g X; �X; � Xij
þ d �X; �X; Xij ¼ a 0; 0iL

�� þ b 0; 1iL
�� þ g 1; 0iL

�� þ d 1; 1iL
�� :

ð2Þ

To investigate the inhibition of dephasing of the two logical
qubits by repeated projections we prepare three different logical
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increases with the number of projections. The curves are fits to the theoretically expected fidelity (see equation (3)). All data are corrected for the final

read-out fidelity (Supplementary Fig. 4 and Supplementary Note 3). All error bars are 1 s.d.
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states: the logical eigenstate state |0,0iL, the logical superposition
state X; 0ij L¼ ð 0; 0ij Lþ 1; 0ij LÞ=

ffiffiffi
2
p

and the entangled logical
state Fþ iL

�� ¼ 0; 0ij Lþ 1; 1ij L

� �
=
ffiffiffi
2
p

. Preserving this set of states
requires repeated projections of the three-spin operator ŝxŝxŝx,
since they are not eigenstates of a single two-spin operator.

The logical state fidelities for all three states show a clear
prolongation of the decay times for N¼ 2 and 4 three-spin
projections (Fig. 4b). Moreover, for a range of evolution times, the
absolute logical state fidelities are increased despite the initial loss
of fidelity due to the complexity of the experimental sequence
(33 two-qubit gates for N¼ 4, which in total require 1,276
refocusing pulses on the electron spin). These results confirm that
the introduced three-spin projections inhibit dephasing of the
individual spins while preserving the two logical qubits in a
quantum Zeno subspace.

Scaling law for the suppression of dephasing. To gain a detailed
quantitative understanding of the quantum Zeno effect
for multi-spin projections, we derive a complete analytical
description for the evolution. We model the projections as
instantaneous and the noise as a quasi-static Gaussian
frequency detuning, independent for each nuclear spin. We find
an analytic solution for the decay of the expectation value of
observables that are sensitive to dephasing (for N projections
and total evolution time t):

A
2N þ 1

XN þ 1

l¼0

N þ 1
l

� �
e
� tNl

T�
2;eff

	 
2

with tNl ¼ t� 2l
N þ 1

t: ð3Þ

Here A r 1 is the initial amplitude determined by experimental

fidelities and 1=T�2;eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1 ð1=T�2;iÞ
2

q
is an effective joint

decay rate of all involved spins. This result is valid for any
system size, that is, number of spins, and number of projections
N (both even and odd). A detailed derivation of equation (3) is
given in Supplementary Note 2.

We fit all experimental data in Figs 2–4 with A, T�2;eff and an
offset, to account for the fact that two out of six cardinal states are
insensitive to dephasing, as free parameters. We find good
agreement with the experimentally obtained dephasing curves
(see Supplementary Table 1 for all fit values). To analyse the
increase of the decay time with increasing number of projections,
we compile the extracted values from all experiments with an
even number of projections and with 1–3 nuclear spins in Fig. 5.
The results reveal a scaling law that is independent of the number
of spins involved, in good quantitative agreement with our
theoretical model.

Discussion
In conclusion, we have observed that repeatedly projecting joint-
observables of multi-spin systems creates quantum Zeno
subspaces that can hold complex quantum states, and that these
Zeno subspaces are resilient to environmental dephasing. While
suppression of dephasing may also be achieved through
alternative techniques such as coherent refocusing17–19, our
results provide direct experimental insight into the physics of
repeated multi-spin measurements and Zeno subspaces in
low-frequency noise environments. The results are also of
practical relevance in the context of quantum error correction
and detection codes, in which errors are detected through
repeated measurements of joint observables25,38,39. Moreover, the
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eliminate potential systematic detunings by measuring
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ŝxh i2 þ ŝy

� �2
q

(instead of ŝx or ŝy). The dashed horizontal line is the classical limit of 2/3

(ref. 37). (c) Preserving two-spin entangled states. The two-spin state fidelity, averaged over the four entangled input states, indicates that general two-spin

states in the subspace are preserved. Above the dashed horizontal line (F¼0.5) the state is entangled. For N¼ 2, 4 and 6 projections, entanglement is

preserved longer than without projections. Solid lines are fits to equation (3) with the initial amplitude A, an offset and the effective dephasing time T�2;eff as

free parameters. Error bars are 1 s.d. and are smaller than the symbols.
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demonstrated methods pave the way for investigating the effect
of repeated measurements in various noise environments,
for example, non-Markovian noise, and for exploring and

engineering complex dynamics of multi-qubit systems under
tailored decoherence40–43.

Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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