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1
INTRODUCTION

A core theme of mathematical research, and of science in general, is the building
of bridges between seemingly unrelated fields. The idea occurs in Galois theory
which provides a link between groups and field extensions, it helped in proving
Fermat’s infamous last theorem by connecting modular forms with Galois rep-
resentations and it appears in K-theory where (in its classical form) groups are
associated with compact topological spaces. The power of translating a given ma-
thematical concept into another stems from the new set of tools often provided
by adopting a new perspective. Conversely, such a translation often leads to in-
teresting examples and new structures, one of which are group operator algebras
associated with a given group and crossed product operator algebras associated
with a given dynamical system.

Originating in Heisenberg’s formalism of matrix mechanics, the theory of ope-
rator algebras was introduced as an abstraction of algebras of physical observa-
bles appearing in quantum theory. Its rigorous foundation was built by Murray
and von Neumann who realized that the modeling of infinite systems of parti-
cles requires the study of certain infinite-dimensional algebras. These ideas led to
the theory of C∗-algebras and von Neumann algebras which, somewhat detached
from its origins in quantum physics, over time developed a vibrant life on its own.
A C∗-algebra is an algebra over the complex numbers (i.e. a vector space with a
multiplication), equipped with a submultiplicative norm with respect to which it
is complete, and an anti-linear involution (the “star”) whose properties resemble
the properties of conjugation of complex numbers. The prescribed compatibility of
the norm and the involution implies a strong connection between the C∗-algebra’s
algebraic and its analytic properties. This has a number of intriguing implications,
one of which is a fundamental result of Gelfand and Naimark, that states that every
(abstract) C∗-algebra can be viewed as a norm-closed involutive subalgebra of the
bounded linear operators B(H ) on some complex Hilbert space H .
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Von Neumann algebras build a subclass of C∗-algebras. They can be concretely
defined as those norm-closed involutive subalgebras of the bounded linear opera-
tors B(H ) on some complex Hilbert space H that are closed in the strong operator
topology (that is, the topology of pointwise convergence). Despite their evident
proximity, the study of von Neumann algebras has a very different flavor com-
pared to that of C∗-algebras: whereas C∗-algebra theory is often referred to as non-
commutative topology, von Neumann algebra theory is called non-commutative
measure theory.

Two well-studied classes of C∗-algebras and von Neumann algebras, that al-
ready appear in the early works of Murray and von Neumann and that provide
interesting examples of operator algebras, are those associated with groups and,
more generally, with dynamical systems. Groups constitute some of the most fun-
damental objects in mathematics. A given (discrete) group G induces its com-
plex group (convolution) algebra C[G] which can be completed to the (reduced)
group C∗-algebra C∗

r (G) and the group von Neumann algebra L (G). Very much
in the spirit of the first paragraph above, the procedure provides a way to en-
code group theoretical data in the language of operator algebras. Similarly, a (dis-
crete) group G that acts on a compact Hausdorff space X gives rise to the reduced
crossed product C∗-algebra C (X )or G and the corresponding crossed product von
Neumann algebra L∞(X )oG , where in the case of the one-point set X = {•} simply
C (X )or G = C∗

r (G) and C (X )oG = L (G). The study of group algebras and crossed
products turned out to be of use both for the investigation of internal structures
as well as for applications. It further motivated other fascinating concepts such as
free products and graph products of operator algebras.

The aim of this thesis is the study of a somewhat “deformed” setting, namely
that of operator algebras associated with so-called Iwahori-Hecke algebras. In our
attempt to unravel the structure of these algebras, we encounter and study seve-
ral other concepts such as (Khintchine inequalities of) graph products of operator
algebras, topological dynamics associated with boundaries and compactifications
of groups, the approach by Kalantar and Kennedy to the C∗-simplicity problem of
discrete groups, the relative Haagerup property of general unital inclusions of von
Neumann algebras, approximation properties of operator algebras, and rigidity
theory of von Neumann algebras.

IWAHORI-HECKE ALGEBRAS

The concept of deformation is ubiquitous in mathematics and can be traced back
to Euler’s work on q-analogues of the natural logarithm. The underlying idea is to
generalize a mathematical statement, a formula, or an expression by introducing a
deformation parameter q for which, if q approaches 1, the original statement, for-
mula or expression is recovered. Examples of this appear in combinatorics (see e.g.
q-factorials, q-binomial coefficients), analysis (see e.g. q-derivatives, q-difference
polynomials), in the study of quantum groups, and the idea is the core theme of
deformation quantization where, roughly speaking, classical physical systems are
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deformed into non-classical (non-commutative) ones. Also, Iwahori-Hecke alge-
bras, the operator algebraic completions of which we will be concerned with in
this dissertation, fall into this category.

A Coxeter group is a group universally generated by a (possibly infinite) ge-
nerating set S with respect to relations of the form (st )mst = e where s, t ∈ S, mst ∈
N∪ {∞} and where mss = 2, mst = mt s and mst ≥ 2 if s 6= t . The class of Coxe-
ter groups, first studied by Coxeter in [62] and [63], was introduced as a natural
generalization of finite reflection groups, i.e. finite groups generated by a set of
reflections on a finite-dimensional Euclidean space. It is very accessible but also
provides a rich source of interesting structures. The multiplication of the group
algebra C[W ] of a given Coxeter group W generated by a set S admits a natural
deformation depending on a deformation parameter q . It gives rise to an algebra,
the Iwahori-Hecke algebra Cq [W ] of the Coxeter group with respect to the param-
eter q , which can be endowed with an involution and which in the case where q
equals 1 coincides with the group algebra C[W ].

Definition ([67, Proposition 19.1.1]). Let W be a Coxeter group generated by a
set S, let q = (qs )s∈S ∈ RS

>0 be a multi-parameter for which qs = qt if s and t are
conjugate to each other (i.e. if there exists w ∈ W with s = w−1tw) and let (T̃w)w∈W

be the canonical basis of the free C-module C(W ) on W . Then there exists a unique
∗-algebra structure on C(W ) such that for all w ∈W , s ∈ S,

T̃s T̃w =
{

T̃sw , if |sw| > |w|
qs T̃sw + (1−qs )T̃w , if |sw| < |w|

and
(T̃w)∗ = T̃w−1 .

Here |·| denotes the word length with respect to the generating set S. The in-
duced ∗-algebra Cq [W ] is called the Iwahori-Hecke algebra of the pair (W,S) and
the multi-parameter q .

Iwahori-Hecke algebras very naturally appear as abstractions of certain endo-
morphism rings that play a role in the representation theory of Lie groups. Their
history is vast and reaches into diverse fields such as knot theory (see [118]), com-
binatorics (see [107], [106]), the theory of buildings (see [87, Section 6.2], [160, Sec-
tion 2.4]). They are linked to quantum groups and non-commutative geometry,
and due to their relation with reductive groups they occur in the local Langlands
program. The notion can be traced back to Iwahori in [112] who studied (double
coset) algebras associated with certain inclusions of groups.

The Iwahori-Hecke algebras Cq [W ], q ∈ RS
>0 can conveniently be viewed as ∗-

subalgebras of the bounded linear operators B(`2(W )) on the Hilbert space `2(W )
of all square-summable functions on the (discrete) group W and thus norm com-
plete to C∗-algebras and strongly complete to von Neumann algebras. These are
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respectively called the corresponding Hecke C∗-algebras C∗
r,q (W ) and the corres-

ponding Hecke-von Neumann algebras Nq (W ) of the Coxeter group W . It is nat-
ural to ask how much the structure of these algebras resembles that of C∗

r (W ) and
L (W ) and to what extent it depends on the deformation parameter q . In this con-
text, as we will see, the class of Hecke operator algebras constitutes a natural set-
ting to look for extensions of ideas and methods developed in the study of group
operator algebras.

Probably the first source discussing topological operator algebraic completions
of Iwahori-Hecke algebras is Matsumoto’s book [133]. In the eighties, Baum, Hig-
son, and Plymen studied them in relation to the important Baum-Connes conjec-
ture (see [15]), which links the K-theory of reduced group C∗-algebras with the
(topological) K-homology of certain spaces and which has been proved to hold
for lots of classes of groups, one of which are Coxeter groups. Later Opdam [146]
considered Hecke C∗-algebras in the setting of harmonic analysis which inspired
several other results, see [69], [147], [167], [168]. In all these instances the study
of Hecke operator algebras mostly restricted to a certain tractable class of Coxe-
ter groups, the so-called affine ones. The study of (possibly non-affine) Hecke-
von Neumann algebras was initiated by Davis, Dymara and Januszkiewicz (see
[76], [66], [67]) in an attempt to investigate a certain q-analogue to the classical
`2-cohomology of buildings. This “weighted `2-cohomology” is tied to the central
decomposition of Hecke-von Neumann algebras. Motivated by this, in his book on
the geometry and topology of Coxeter groups [67] Davis asked for a classification
of Hecke-von Neumann algebras up to isomorphism. This question was picked
up by Garncarek in [86] who calculated the center of single-parameter Hecke-von
Neumann algebras of a certain class of Coxeter groups, namely the right-angled
ones, and who demonstrated that although the centers of these von Neumann
algebras can be non-trivial, they contribute nothing to the decomposition of the
weighted cohomology of W . His results are however of independent interest and
initiated the study of Hecke operator algebras on their own rights. In [160] Raum
and Skalski extended Garncarek’s results to the multi-parameter setting.

Complementing his results on the center of Hecke-von Neumann algebras, in
[86, Section 6] Garncarek discussed a curious connection to the interpolated free
group factors which occur in the context of the infamous free factor problem. The
free factor problem, going back to a question raised by Kadison in the 1960s, is
one of the major open questions in the theory of von Neumann algebras. It asks
whether the group von Neumann algebras, the “free group factors”, of groups
freely generated by a certain finite set of generators can be distinguished from
each other, i.e. do there exist natural numbers m 6= n bigger than 1 such that
L (Fn) ∼= L (Fm) where Fn denotes the free group on n generators and where Fm

denotes the free group on m generators? Despite its straightforward formulation,
the free factor problem is notoriously hard to answer and led to the creation of
whole new fields such as Voiculescu’s free probability theory. By introducing “in-
terpolated free group factors” (independently discovered by Radulescu in [159]),
Dykema demonstrated in [74] that the L (Fn), n ∈ N are either all isomorphic to
each other, or none of them are. Garncarek’s discussion in [86, Section 6] implies
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that the interpolated free group factors arise as Hecke-von Neumann algebras of
certain Coxeter groups, that is Hecke-von Neumann algebras can be viewed as a
natural generalization of the interpolated free group factors. The classification of
these operator algebras is hence tied to, and thus motivated by, one of the major
questions in the theory of operator algebras.

After providing the background on C∗-algebras and von Neumann algebras
(see Section 2.2), dynamical systems and crossed products (see Section 2.3), par-
tially ordered sets (see Section 2.4), graphs and trees (see Section 2.5), amalga-
mated free products of groups (see Section 2.6) and Coxeter groups (see Section
2.7) in Chapter 2, in Chapter 3 we make an effort to gently introduce Iwahori-
Hecke algebras and their operator algebraic counterparts. After that, we study
isomorphism properties and decompositions of Hecke algebras and their genera-
ting elements, and we discuss our results with respect to the free factor problem.
The corresponding results will be crucial for the later chapters.

GRAPH PRODUCT KHINTCHINE INEQUALITIES

Creating new objects out of simpler building blocks often leads to interesting new
structures. Instances of this common idea are CW-complexes in topology, free pro-
ducts, and graph products of groups and inductive limits. The approach is also
employed in the theory of operator algebras where, after their introduction as a
part of Voiculescu’s non-commutative probability theory, (reduced) free products
nowadays play an important role. Voiculescu’s construction starts with a family
of C∗-algebras (or von Neumann algebras) endowed with states, and spits out a
new C∗-algebra (or von Neumann algebra) into which the family canonically em-
beds and for which operators coming from different members of the family are in
a certain sense “free” with respect to each other. It can be viewed as an operator
algebraic analogue to free products of groups.

In the group setting free products can be generalized in terms of Green’s graph
products of groups. Her construction starts from a simplicial graph with a dis-
crete group attached to each vertex and results in a new discrete group that suit-
ably contains its building blocks and for which the corresponding commutation
relations resemble the structure of the underlying graph. What makes the con-
struction so interesting is that it interpolates between free products and Cartesian
products, it covers important examples such as right-angled Coxeter groups and
right-angled Artin groups, and - other than the more general construction of amal-
gamated free products - it preserves many important group theoretical properties.
It is a natural question to ask whether graph products of groups admit an operator
algebraic counterpart. This question was answered by Caspers and Fima in [44] in
the affirmative. They came up with a construction that associates with a simplicial
graph with C∗-algebras (or von Neumann algebras) endowed with states attached
to each vertex, a new C∗-algebra (or von Neumann algebra) into which the ver-
tex operator algebras canonically embed and for which the commutation relations
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resemble the structure of the underlying graph.

Theorem ([44, Proposition 2.12]). Let K = (V ,E) be a finite, undirected, simplicial
graph and let (Av ,ϕv )v∈V be a family of unital C∗-algebras equipped with GNS-
faithful states. Then there exists a (up to isomorphism) unique C∗-algebra A, the
(reduced) graph product C∗-algebra, such that:

(1) There exists a GNS-faithful state ϕ on A;

(2) There exist unital inclusions Av ⊆ A such that the union of all Av , v ∈V gene-
rates A and such that for all (v, v ′) ∈ E the elements in Av commute with the
elements in Av ′ ;

(3) ϕ|Av =ϕv for every v ∈V ;

(4) Freeness: For every reduced word v = v1...vn with v1, ..., vn ∈ V and a1 ∈ A◦
v1

,
..., an ∈ A◦

vn
one has ϕ(a1...an) = 0.

Similar to their group theoretical counterparts, graph products of operator al-
gebras generalize Voiculescu’s free products as well as tensor products and they
admit useful preservation properties. What makes the construction so interesting
in the context of this dissertation is that Hecke operator algebras coming from
right-angled Coxeter groups decompose as graph products over very simple (2-
dimensional) building blocks. This observation provides useful tools to study
them, some of which have been employed in [46] to study rigidity properties of
right-angled Hecke-von Neumann algebras. On the other hand, this demonstrates
that operator algebraic graph products lead to interesting structures to examine.

Since their invention in the 1980s, various structural aspects of free products
of operator algebras have been studied. Results in particular concern the ideal
structure and approximation properties (see the later sections for an explanation
of what that means), the construction of free product maps between operator alge-
bras and a detailed study of free products of finite-dimensional operator algebras.
In [163] Ricard and Xu, in an attempt to deduce (the preservation of) approxima-
tion properties of free product C∗-algebras, proved a “Khintchine type inequality”.
Inequalities of this type estimate the operator norm of an operator of a given length
with the norm of certain Haagerup tensor products of column and row Hilbert
spaces. In the case of group C∗-algebras C∗

r (Fn), n ∈ N of free groups and opera-
tors of length 1, their approach goes back to Haagerup’s fundamental paper [93].
In Chapter 4 we walk a similar path by proving a Khintchine type inequality for
general graph products of C∗-algebras.

Theorem (Graph product Khintchine inequality). Let K = (V ,E) be a finite, undi-
rected, simplicial graph and let (Av ,ϕv )v∈V be a family of unital C∗-algebras equipped
with GNS-faithful states. Denote by A the corresponding graph product C∗-algebra
and by χn : A → A the word length projection of length n. Then for every n ∈ N≥1

there exists some operator space Xn and maps

jn :χn(A) → Xn , πn : dom(πn) ⊆ Xn →χn(A),



1

11

with dom(πn) = jn(χn(A)) such that the following statements hold:

(1) Xn is a direct sum of Haagerup tensor products of column and row Hilbert
spaces;

(2) πn ◦ jn is the identity on χn(A);

(3) The map πn is completely bounded with ‖πn‖cb ≤C n for some (explicit) con-
stant C , depending only on the graph K .

The proof of this theorem employs an intertwining technique between graph
products and free products as well as a careful decomposition of graph product
operators of a given length into sums of creation, diagonal and annihilation opera-
tors. Our main objective will be to apply the theorem in the setting of right-angled
Hecke C∗-algebras where, due to the graph product decomposition of the latter
into very simple building blocks, the Khintchine inequality conveniently simpli-
fies. This will allow us to derive a “Haagerup type inequality” for Hecke C∗-
algebras of right-angled Coxeter groups. Such a Haagerup type inequality states
that the norm of an operator of length n can be estimated with its 2-norm up to a
polynomial bound depending on n. It is a generalization of Haagerup’s inequality
for free group C∗-algebras C∗

r (Fn), n ∈ N in [93] which entails that there exists a
constant C such that for every x ∈C∗

r (Fn) ⊆B(`2(Fn)) supported on group elements
of length n one has ‖x‖ ≤ C n‖xδe‖2. In particular, in this case the polynomial can
be chosen to be n, that is we have a linear estimate in the length n.

Theorem (Haagerup inequality for right-angled Hecke C∗-algebras). Let W be a
finitely generated right-angled Coxeter group and let q be a multi-parameter. Then
for each n ∈N and x ∈χn(C∗

r,q (W )) we have that

‖x‖ ≤C n‖xδe‖2

for some (explicit) constant depending only on q and the group W .

Haagerup and Khintchine inequalities have found a wide range of applications
in operator theory. We will employ them in the context of the trace-uniqueness
problem of Hecke C∗-algebras in Section 6.3.

TOPOLOGICAL BOUNDARIES AND COMPACTIFICATIONS

OF GRAPHS AND COXETER GROUPS

The basic idea of geometric group theory is to explore the connections between ab-
stract algebraic properties of a group and geometric properties of a space on which
this group acts nicely. Many of the concepts in the field are heavily influenced by
the work of Gromov who introduced the notion of word hyperbolic groups and
(more generally) hyperbolic graphs. Hyperbolic graphs are graphs that satisfy a
certain negative curvature condition. Intuitively, a hyperbolic graph’s large-scale
geometry looks similar to that of a tree; in particular, every tree is hyperbolic. The
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notion can be formally introduced in several equivalent ways, one of which is to
declare a (undirected and simplicial) graph K with graph metric dK to be hyper-
bolic, if there exists a constant δ> 0 such that for any four vertices w, x, y, z ∈ K the
inequality

dK (w, x)+dK (y, z) ≤ max{dK (w, y)+dK (x, z),dK (w, z)+dK (x, y)}+δ

holds. A group G generated by a finite set S is word hyperbolic, if its Cayley
graph Cay(G ,S) with respect to S, consisting of the vertex set G and the edge set
{(g ,h) ∈G ×G | g−1h ∈ S ∪S−1}, is hyperbolic. It might not be immediately clear, but
the class of hyperbolic groups is very accessible and the notion of hyperbolicity is
quite rigid. For instance, it does not depend on the generating set S.

An important tool in the study of hyperbolic graphs (and in particular word
hyperbolic groups) is its “space at infinity”, the Gromov boundary ∂hK . One
can think of it as a set of (equivalence classes of) infinite geodesic rays. It can
be equipped with a topology that turns it into a compact Hausdorff space. This
topological space has a rich structure which provides an excellent tool to study the
underlying graph as well as groups acting on it. This led to a number of break-
throughs in the fields of geometric and combinatorial group theory.

Following Gromov’s ideas, many similar constructions assigning topological
spaces to graphs and groups have been presented. In Chapter 5 we will follow an
analogous path by defining certain topological spaces associated with (countable,
undirected, and simplicial) connected graphs with a designated root vertex. Given
such a graph K and a root o ∈ K we consider (equivalence classes of) sequences in
K that in a certain sense “converge to infinity”. The set of all such elements can be
endowed with a natural topology that turns it into a compact Hausdorff space and
that we denote by ∂(K ,o). Similarly, the set (K ,o) := K ∪∂(K ,o) can be turned into
a compact Hausdorff space that naturally contains the vertex set of K as a dense
subset; we call it the compactification of (K ,o). Our construction covers several
interesting examples. It reflects combinatorial and order theoretical properties and
(for hyperbolic graphs) nicely relates to Gromov’s construction.

Theorem. Let (K ,o) be a hyperbolic connected rooted graph. Then there exists a
canonical continuous surjection φ : ∂(K ,o) → ∂hK . If the graph is locally finite, then
φ extends to a continuous surjection φ̃ : (K ,o) → K ∪∂hK with φ̃|K = idK .

In general, the structure of the spaces (K ,o) and ∂(K ,o) is much less tractable
than that of hyperbolic compactifications and boundaries; for instance, an isome-
tric bijection of a graph does not necessarily extend to a homeomorphism of (K ,o).
However, for certain classes of graphs, this can be different. This is the case for
Cayley graphs of Coxeter groups with respect to their canonical generating set.
For a given Coxeter system (W,S) we denote the corresponding compactification
and boundary associated with its Cayley graph Cay(W,S) by (W,S) and ∂(W,S).
One can conveniently think of elements in ∂(W,S) as infinite reduced words with
letters in S. As it turns out, the canonical action of W on itself via left multipli-
cation induces a continuous action of W on (W,S) and ∂(W,S); one can thus build
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the corresponding crossed product C∗-algebras C ((W,S))or W and C (∂(W,S))or W .
These crossed products are strongly connected to the Hecke C∗-algebras of W .

Theorem. Let W be a Coxeter group generated by S with #S < ∞ and let q be a
multi-parameter. Then the Hecke C∗-algebra C∗

r,q (W ) canonically embeds into the
crossed product C∗-algebra C ((W,S))or W . If q lies outside a certain set R′(W,S) of
parameters associated with the region of convergence of the multi-variate growth
series

∑
w∈W zw of W , then the Hecke C∗-algebra C∗

r,q (W ) canonically embeds into
the crossed product C∗-algebra C (∂(W,S))or W .

The theorem provides a direct link between the topological spaces (W,S) and
∂(W,S) (and the action of W on them) and the Hecke operator algebras of the sys-
tem. This motivates the usage of geometrical ideas to deduce information about
Hecke C∗-algebras and Hecke-von Neumann algebras. For this reason, in Sec-
tion 5.2 we study dynamical properties of W æ (W,S) and W æ ∂(W,S), such as
amenability, smallness at infinity, boundary actions and probability measures on
(W,S) and ∂(W,S). These properties all have interesting operator algebraic impli-
cations that we will pick up in the later chapters. We further identify the spaces
(W,S) and ∂(W,S) with a construction by Caprace and Lécureux [37] that was given
in the setting of buildings.

IDEAL STRUCTURE AND UNIQUE TRACE PROPERTY OF

HECKE C*-ALGEBRAS

A von Neumann algebra is called a factor if its center (i.e. the set of elements that
commute with every other element of the von Neumann algebra) is trivial. By a
classical theorem of von Neumann every von Neumann algebra admits a decom-
position into factorial building blocks via direct integrals which can be thought
of as a generalization of the concept of direct sums. The power of such a decom-
position follows from the fact that it often allows passing in considerations about
general von Neumann algebras to the factorial case.

As mentioned before, motivated by the study of the weighted `2-cohomology
of buildings, in [67] Davis asked for a classification of Hecke-von Neumann alge-
bras up to isomorphism. This question was picked up by Garncarek in [86] who
calculated the center of right-angled single-parameter Hecke-von Neumann alge-
bras. His characterization was extended to the right-angled multi-parameter case
by Raum and Skalski by using a combinatorial approach.

Theorem ([160, Theorem A]). Let (W,S) be a right-angled, irreducible Coxeter sys-
tem with 3 ≤ #S < ∞ and let q be a multi-parameter with 0 < qs ≤ 1 for all s ∈ S.
Then the corresponding Hecke-von Neumann algebra Nq (W ) decomposes as a di-
rect sum

Nq (W ) ∼=M ⊕⊕
ε
C
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where M is a factor and where the direct summands C correspond to the (1-dimen-
sional) central projections of Nq (W ). The central projections can be characterized
explicitly.

The characterization of the factoriality for broader classes of Hecke-von Neu-
mann algebras is still open.

Unfortunately, there exists no C∗-algebraic version of von Neumann’s central
decomposition theorem. The most suitable analogue to factoriality in the C∗-
algebraic setting is the notion of simplicity. A C∗-algebra is called simple if it
contains no non-trivial closed two-sided ideal. Since Powers’ short paper [157]
in 1975, especially the characterization of (discrete) groups whose reduced group
C∗-algebras are simple (such groups are called C∗-simple) was a major open pro-
blem. By using a clever averaging argument he proved that for every n ≥ 2 the
C∗-algebra C∗

r (Fn) is simple and that it carries a unique tracial state. Influenced by
Powers’ approach, large classes of C∗-simple groups that appear naturally in ge-
ometry have been identified, including non-elementary word hyperbolic groups
and lattices in semisimple groups.

In [120] Kalantar and Kennedy found a new dynamical approach to the ques-
tion for C∗-simplicity by considering the action of a given discrete group G on its
“Furstenberg boundary”. The continuous action of a group G on a compact Haus-
dorff space X is called minimal if the orbit of every element under the action is
dense in X . It is further strongly proximal if the weak-∗ closure of the orbit of
every probability measure on X contains a point mass. The space X is called a
G-boundary if G æ X is both minimal and strongly proximal. In [85] Furstenberg
demonstrated that every group admits a unique G-boundary ∂F G , its Furstenberg
boundary, which is universal in the sense that every other G-boundary is a con-
tinuous G-equivariant image of ∂F G . By identifying the continuous functions on
∂F G with the minimal C∗-subalgebra of `∞(G) that arises as the image of a unital
positive G-equivariant projection (this is the so-called G-injective envelope of C),
Kalantar and Kennedy were able to deduce several interesting implications, one of
which is the characterization of C∗-simplicity in terms of boundary actions.

Theorem ([120, Theorem 6.2]). A discrete group G is C∗-simple if and only if its
action on some G-boundary is topologically free.

The approach by Kalantar and Kennedy implied further results on the unique-
ness of trace and tightness of nuclear embeddings of group C∗-algebras and it
inspired various generalizations.

Motivated by the results on the factoriality of Hecke-von Neumann algebras,
the aim of Chapter 6 is to study the ideal structure (and in particular simplicity)
and the trace-uniqueness of Hecke C∗-algebras. It is known that the reduced group
C∗-algebra (i.e. the Hecke C∗-algebra with parameter 1) of an irreducible Coxeter
system is simple if and only if the corresponding Coxeter system is non-affine (see
[80], [101], [61]). By demonstrating that the 1-dimensional central projections that
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lie inside certain Hecke-von Neumann algebras induce unital, linear, multiplica-
tive functionals, we deduce non-simplicity results that in particular imply that
Hecke C∗-algebras of irreducible Coxeter groups that are not non-affine are never
simple.

Theorem. Let (W,S) be an irreducible Coxeter system and q some multi-parameter.
If the multi-parameter (qεs

s )s∈S with

εs :=
{
+1, if qs ≤ 1

−1, if qs > 1

lies in the closure of the region of convergence of the growth series
∑

w∈W zw of W ,
then C∗

r,q (W ) is not simple and does not have a unique tracial state.

Corollary. Let (W,S) be an irreducible Coxeter system that is not non-affine and
q some multi-parameter. Then C∗

r,q (W ) is not simple and does not have unique
tracial state.

By using the Haagerup inequality from Chapter 4 we further prove a decompo-
sition of right-angled Hecke C∗-algebras which is analogous to the one for right-
angled Hecke-von Neumann algebras and we prove that, if the parameter q is
close enough to 1, the Hecke C∗-algebra of a right-angled Coxeter group W ge-
nerated by S with 3 ≤ #S <∞ carries a unique tracial state. The trace-uniqueness
result is inspired by Powers’ classical averaging argument in [157].

Theorem. Let (W,S) be a right-angled Coxeter system with 3 ≤ #S <∞ and let q be
a multi-parameter. Then the corresponding Hecke C∗-algebra C∗

r,q (W ) decomposes
as a direct sum

C∗
r,q (W ) ∼= A⊕⊕

ε
C,

where A is a C∗-algebra and where the direct summands C correspond to the (1-
dimensional) central projections of Nq (W ).

Theorem. Let (W,S) be an irreducible, right-angled Coxeter system with 3 ≤ #S <
∞. Then there exists an open neighborhood U of 1 such that for all multi-parameters
q ∈U the Hecke C∗-algebra C∗

r,q (W ) has unique tracial state.

The proof of the chapter’s main result is inspired by Kalantar-Kennedy’s boun-
dary methods and the approach in [95]. By using the construction from Chapter
5 and by viewing certain Hecke C∗-algebras as C∗-subalgebras of the crossed pro-
duct C (∂(W,S))or W , we obtain a complete characterization of right-angled simple
Hecke C∗-algebras.

Theorem. Let (W,S) be an irreducible, right-angled Coxeter system with #S < ∞
and let q be a multi-parameter. Then the Hecke C∗-algebra C∗

r,q (W ) is simple if and
only if q lies outside the closure of a set R′(W,S) of parameters associated with the
region of convergence of the multi-variate growth series

∑
w∈W zw of W
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Corollary. Let (W,S) be an irreducible, right-angled Coxeter system with #S =∞
and let q be a multi-parameter. Then the Hecke C∗-algebra C∗

r,q (W ) is simple if and
only if there exists a finite subset T ⊆ S such that the Hecke C∗-algebra C∗

r,qT
(WT )

with qT := (qt )t∈T is simple.

THE RELATIVE HAAGERUP PROPERTY

Chapter 7 is somewhat isolated from the rest of this dissertation as it does not a
priori relate to the study of Hecke operator algebras. In the broad context of this
thesis its relevance becomes apparent as soon as one invokes the results of Section
7.7 in the context of Hecke-von Neumann algebras of Coxeter groups that conve-
niently decompose as amalgamated free products, as we will do in Chapter 8. The
aim of Chapter 7 is the introduction and study of a suitable notion of the relative
Haagerup property for arbitrary inclusions of (σ-finite) von Neumann algebras.

The story of the (group theoretic) Haagerup property began with Haagerup’s
celebrated article [93] in which he noted that the free group Fn , n ∈ N admits a
sequence of positive definite functions that are in a certain sense small and that
pointwise converge to a constant function equal to 1. An important notion both in
group theory as well as in the study of operator algebras associated with groups
is that of amenability. A group G is amenable if there exists a sequence of finitely
supported positive definite functions on G that converges to 1. Amenability has
a number of strong implications. Haagerup’s result indicates that, even though
the free group Fn is not amenable for n ≥ 2, it satisfies a property that is close to
amenability and that can be viewed as a natural weakening of this notion. This
“Haagerup property” holds for many groups and is a subject of intense study,
in particular because it is related to deep conjectures such as the Baum-Connes
conjecture and the associated Novikov conjecture. It can be encoded operator al-
gebraically in terms of the group von Neumann algebra of the group. Motivated
by this, in [55] Choda introduced a definition of the Haagerup property for a von
Neumann algebra M equipped with a (faithful normal) tracial state in terms of the
existence of certain approximating maps on M , that behave well with respect to
the trace in question. Later Jolissaint proved that the property does not depend on
the choice of the trace; it is thus an intrinsic invariant of M .

In several group theoretic and operator algebraic contexts it is important to con-
sider also relative properties; such properties are for instance the key to showing
that Z2oSL2(Z) does not have the Haagerup property, which in turn has several
von Neumann algebraic consequences. In the context of von Neumann algebras
that admit a tracial state the relative Haagerup property, first defined by Boca [23],
was used in [155] as part of Popa’s deformation/rigidity theory as a key tool to
obtain deep structural results about von Neumann algebras containing a certain
type of large commutative subalgebras. Such “Cartan subalgebras” are deeply re-
lated to von Neumann algebras of equivalence relations (which generalize certain
crossed product von Neumann algebras). In this setting the first analogue to the
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Haagerup property outside the tracial case was proposed in [176], [6].
Also in the non-relative case for several years considerations focused on finite

von Neumann algebras, mainly as the motivating examples came from discrete
groups. This changed when a suitable analogue for quantum groups and their
von Neumann algebras was investigated. Soon after that Okayasu and Tomatsu
on one hand, and Caspers and Skalski on another, gave a definition of the Haa-
gerup property for an arbitrary von Neumann algebra equipped with a (faithful
normal semifinite) weight and proved that in fact the notion does not depend on
the choice of the weight in question. In all the cases above the Haagerup property
should be thought of as a natural weakening of important approximation proper-
ties (namely injectivity/amenability), that permits applying approximation ideas
and techniques beyond the class of amenable groups or algebras. Further, the class
of discrete groups enjoying the Haagerup property has good permanence proper-
ties, one of which is the preservation under taking free products amalgamated
over finite subgroups.

In Chapter 7 we extend the ideas from above by undertaking a systematic study
of a von Neumann algebraic relative Haagerup property for a unital inclusion
N ⊆ M of von Neumann algebras equipped with a faithful normal conditional
expectation EN : M → N . We define it in terms of a fixed (faithful normal) state
(preserved by EN ) but then quickly show that it depends only on the conditional
expectation in question. Essentially, for a triple (M ,N ,EN ) to have the relative
Haagerup property we require the existence of certain N -bimodular maps on M

that preserve EN , that in a certain sense decrease rapidly and that converge to
the identity function. Allowing non-trivial inclusions allows us to significantly
broaden the class of examples fitting into our framework and yields certain facts
that are new even in the context of the non-relative tracial Haagerup property.

If the smaller von Neumann algebra admits a tracial state, we prove that the
relative Haagerup property is an intrinsic invariant of the inclusion N ⊆M .

Theorem. Suppose that N ⊆ M is a unital, expected inclusion of von Neumann
algebras and assume that N admits a faithful normal tracial state. Then the rela-
tive Haagerup property of the triple (M ,N ,EN ) does not depend on the choice of
the conditional expectation EN .

We further prove that, similar to the non-relative setting, certain conditions of
the definition can be relaxed upon. The key idea to the proofs of these statements
is to use modular theory to pass to a tracial setting. However, the relative context
makes the technical details quite demanding.

Other main results of Chapter 7 are the following.

Theorem. Suppose that N ⊆ M is a unital, expected inclusion of von Neumann
algebras and assume that N is finite-dimensional. Then the relative Haagerup
property of the triple (M ,N ,EN ) is equivalent to the non-relative Haagerup pro-
perty of M .

Theorem. The relative Haagerup property is preserved under taking amalgamated
free products over finite-dimensional subalgebras.
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We illustrate our results with examples coming from discrete quantum groups.
Of particular interest is further the elementary case of M =B(H ) for some Hilbert
space H . It provides us with both triples (B(H ),N ,EN ) that do and do not have
the relative Haagerup property. This leads to rather surprising examples.

APPROXIMATION PROPERTIES OF HECKE OPERATOR

ALGEBRAS

The idea of approximating complicated structures by simpler building blocks ap-
pears all over mathematics. One such instance is the Stone-Weierstrass theorem
which, in its simplest form, states that continuous functions on an interval can be
approximated by polynomials. Another example is property (AP) in Banach space
theory which demands that every compact operator is the norm limit of finite rank
operators. Also in the theory of C∗-algebras and von Neumann algebras approxi-
mation properties have huge importance. Over the years some of the most pro-
found developments of the field, such as Murray-von Neumann’s uniqueness re-
sult for the hyperfinite II1-factor or Elliott’s classification program for C∗-algebras,
would not have been possible without the consideration of suitable approximation
properties.

A famous question going back to von Neumann (and which of course relates
to the free factor problem) asks if a discrete group can be recovered from its group
von Neumann algebra. Treating the question – hence contributing to the classifi-
cation theory of von Neumann algebras – is highly ambitious. An approach that
has been effective so far is the usage of finite-dimensional approximations. An
approximation property of a C∗-algebra or von Neumann algebra is a way of ap-
proximating the algebra by finite-dimensional (matrix) algebras. Nowadays there
exists a whole zoo of approximation properties, one of which is the notion of nu-
clearity. A C∗-algebra A is called nuclear if there exists a sequence of contractive
completely positive maps ϕn : A → Mkn (C) and ψn : Mkn (C) → A with kn ∈ N such
that ψn ◦ϕn → idA pointwise, so roughly speaking A is nuclear if the identity map
on A approximately factors through matrix algebras. One can think of nuclearity
as a non-commutative analogue to the existence of a partition of unity. One of the
reasons why this property is so useful is that lots of interesting C∗-algebras are
known to be nuclear. It can further be characterized in a seemingly completely
different way: a C∗-algebra A is nuclear if and only if for every other C∗-algebra
B there is a unique C∗-algebra completion of the algebraic tensor product A ¯B .
Other approximation properties are the (relative) Haagerup property that we dis-
cussed before in the general setting as well as exactness. A C∗-algebra A is called
exact if it can be embedded into some space B(H ) of bounded operators on a
Hilbert space H such that the embedding approximately factors through matrix
algebras. Just as nuclearity, this property can be characterized qualitatively: a C∗-
algebra A is exact if and only if (spatial) tensoring with A preserves short exact
sequences.
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The examples above indicate that the approximation theory of operator alge-
bras lives on the edge between quantitative and qualitative considerations. It com-
bines hard and soft analysis.

The aim of Chapter 8 is to study approximation properties of Hecke operator
algebras. By using the results of the previous chapters we will prove that Hecke
C∗-algebras are exact, we characterize their nuclearity and injectivity and we con-
sider classes of Hecke-von Neumann algebras that satisfy the Haagerup property.

Theorem. Let W be a Coxeter system and let q be a multi-parameter. Then C∗
r,q (W )

is an exact C∗-algebra.

Theorem. Let W be a Coxeter group and q a multi-parameter. Then the following
statements are equivalent:

(1) W is not non-affine;

(2) The Hecke C∗-algebra C∗
r,q (W ) is nuclear;

(3) The Hecke-von Neumann algebra Nq (W ) is injective.

Theorem. Let W be a virtually free Coxeter group and q a multi-parameter. Then
the corresponding Hecke-von Neumann algebra Nq (W ) has the Haagerup pro-
perty.

FUNDAMENTAL PROPERTIES OF HECKE OPERATOR

ALGEBRAS

As mentioned earlier, a question going back to von Neumann asks if a discrete
group can be recovered from its group von Neumann algebra. That is, is every
(discrete) group G W ∗-superrigid in the sense that if L (G) ∼=L (H) for some other
(discrete) group H , then G ∼= H? Similarly one can ask for whether an action G æ X
can be recovered from its crossed product von Neumann algebra L∞(X )oG . These
questions were famously answered in the negative by Connes who proved that
for every countable amenable group G that only has infinite non-trivial conjugacy
classes, the von Neumann algebra L (G) is isomorphic to the unique hyperfinite
II1-factor. A similar result holds in the crossed product setting as well. Connes’
result implies that group von Neumann algebras and crossed product von Neu-
mann algebras associated with certain amenable groups admit a striking lack of
rigidity; almost all the group theoretic information is lost as soon as one passes
to the von Neumann algebra setting. On the other hand, in 1980 Connes proved
that if G is a (discrete) group with infinite conjugacy classes that admits “property
(T)”, then any automorphism of the group von Neumann algebra L (G) which is
in a certain sense close to the identity must be implemented by conjugation with
unitary elements from L (G). In other words, the identity map on L (G) can not be
“deformed” by automorphisms all of which are outer.
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Initiated by the seminal work of Popa starting in 2001 the classification of group
and crossed product von Neumann algebras made enormous progress. Popa’s
deformation/rigidity approach, consisting of studying classes of II1-factors (i.e.
indecomposable infinite-dimensional von Neumann algebras that carry a tracial
state) that admit both a deformation property as well as a rigidity property, led to
several important rigidity results, one of which states that for m 6= n the crossed
product von Neumann algebra L∞(X )oFn associated with a certain type of action
Fn æ X can be distinguished from that of L∞(Y )oFm for a certain type of other ac-
tion Fm æ Y . This statement should be compared with the free factor problem.

In the setting of the rigidity theory of (group) von Neumann algebras the con-
sideration of boundaries has turned out to be very useful. By using properties of
the canonical action of word hyperbolic groups on their Gromov boundary, Hig-
son and Guentner deduced in [105] that for every such group G the algebraic tensor
product map

C∗
r (G)¯ JC∗

r (G)J →B(`2(W ))/K (`2(G)), x ⊗ y 7→ x y +K (`2(G))

continuously extends with respect to the minimal tensor norm on C∗
r (G)¯ JC∗

r (G)J .
Here J is the anti-linear operator δg 7→ δg−1 and K (`2(G)) denotes the compact ope-
rators on `2(G). The same statement had earlier been shown by Akemann and Os-
trand for free groups by a different method, see [1]. This “Akemann-Ostrand pro-
perty” (property (AO )) was formally introduced and famously applied by Ozawa
in [148] to rigidity questions of von Neumann algebras. In particular, he proved
that certain von Neumann algebras that admit a dense C∗-subalgebra satisfying (a
variant of) property (AO ), are prime in the sense that they can not be decomposed
as a tensor product of infinite-dimensional von Neumann algebras. Using similar
notions and ideas, Ozawa and Popa were able to find classes of von Neumann al-
gebras that can not be written as certain crossed product von Neumann algebras
(or more generally von Neumann algebras induced by equivalence relations).

By using a method similar to that of Higson and Guentner in combination with
our study of the canonical action of a Coxeter group W on its compactification
(W,S) and boundary ∂(W,S) in Chapter 5, in Chapter 9 we prove that Hecke-von
Neumann algebras of Coxeter groups whose reflection centralizers are all finite
satisfy a variant of the Akemann-Ostrand property.

Theorem. Let W be a Coxeter group generated by S with #S < ∞ and #{w ∈ W |
sw = ws} <∞ for all s ∈ S. Let further q be a multi-parameter. Then the Hecke-von
Neumann algebra Nq (W ) ⊆B(`2(W )) satisfies the Akemann-Ostrand property.

As an immediate consequence, we deduce that Dykema’s interpolated free
group factors share this property. The statement is known to experts.

Corollary. For every t ∈ R>1 the interpolated free group factors L (Ft ) satisfy the
Akemann-Ostrand property.

We further exploit some related implications of property (AO ) that are related
to Connes’ notion of fullness.



2
PRELIMINARIES AND

NOTATION

In the following, we present the background required for the later parts of this
thesis. The content and the notation is as it appears in [49], [126], [127], [128] and
[50].

2.1. GENERAL NOTATION

We will writeN := {0,1,2, ...} andN≥1 := {1,2, ...} for the natural numbers. The disjoint
union of a family (Ai )i∈I of sets is denoted by

⊔
i∈I Ai . For a unital ring R, R× is the

set of units. Hilbert spaces and von Neumann algebras are usually denoted by
calligraphic letters where scalar products of Hilbert spaces are always assumed
to be linear in the first variable. We denote the bounded operators on a Hilbert
space H by B(H ) and the corresponding unitary group is denoted by U (H ).
For a discrete group G write (δg )g∈G ⊆ `2(G) for the canonical orthonormal basis
in `2(G). The symbol ¯ denotes the algebraic tensor product of ∗-algebras. The
neutral element of a group is always denoted by e and for a set S we write #S for
the number of elements in S and χS for the characteristic function on S.

2.2. C∗-ALGEBRAS AND VON NEUMANN ALGEBRAS

Originating in Heisenberg’s formalism of matrix mechanics, the theory of operator
algebras was introduced as an abstraction of algebras of physical observables ap-
pearing in quantum theory. Its rigorous foundation was built by Murray and von
Neumann in a series of publications on rings of operators, see [136], [137], [140],
[138].

21



2

22 2. PRELIMINARIES AND NOTATION

A C∗-algebra is a complex Banach algebra A endowed with an involution x 7→ x∗
which is compatible with the norm on A in the sense that ‖x∗x‖ = ‖x‖2 for all
x ∈ A. Though it is not immediately clear, this inconspicuous C∗-condition implies
an intimate relationship between the algebraic and the analytic structure of the
C∗-algebra A. Basic examples of C∗-algebras are the commutative algebras C0(X )
of functions on X which vanish at infinity where X is a locally compact Hausdorff
space, where the algebra is endowed with the supremum norm and where the in-
volution is given by complex conjugation f 7→ f . One of the first structural results
on C∗-algebras is Gelfand’s theorem which asserts that (up to ∗-isomorphism)
every commutative C∗-algebra arises in such a way. A second result by Gelfand
and Naimark states that every (abstract) C∗-algebra can be represented concretely
as a norm-closed ∗-subalgebra of the algebra B(H ) of all bounded linear operators
on some complex Hilbert space H . Gelfand’s theorem and the Gelfand-Naimark
theorem (and their constructive proofs) form the foundation of the theory of ope-
rator algebras.

We shall assume throughout this dissertation that the reader is familiar with the
basic concepts of C∗-algebras, including Gelfand’s theorem, positive elements, (conti-
nuous) functional calculus, inductive limits of C∗-algebras, the GNS-construction, spa-
tial tensor products of C∗-algebras (which we will denote by ⊗) and completely po-
sitive maps. There are a number of standard textbooks on C∗-algebras, some of
which are [70], [171], [172], [135], [65], [20], [33].

Though introduced earlier by Murray and von Neumann, von Neumann alge-
bras build a subclass of C∗-algebras. A von Neumann algebra is a unital ∗-subalgebra
of the algebra B(H ) of all bounded linear operators on some complex Hilbert
space H , which is closed in the strong operator topology. Von Neumann algebras
can be described more algebraically as unital ∗-subalgebras of B(H ) which coin-
cide with their bicommutant. There exists a von Neumann algebraic analogue to
Gelfand’s theorem which identifies a commutative von Neumann algebra N with
L∞(X ,µ) ⊆B(L2(X ,µ)) where (X ,µ) is a locally finite measure space. Consequently,
the study of von Neumann algebras is sometimes referred to as non-commutative
measure theory. In many applications, it suffices to study factorial von Neumann
algebras (that is von Neumann algebras whose center is trivial), the reason being
that every von Neumann algebra decomposes as a direct integral of factorial von
Neumann algebras. These von Neumann algebras can hence be viewed as the
building blocks of more general von Neumann algebras. Factorial von Neumann
algebras fall into one of three classes: type I von Neumann algebras contain a min-
imal projection (i.e. a projection p 6= 0 such that for all other projections q with q ≤ p
either q = 0 or q = p), type II von Neumann algebras contain no minimal projection
but a finite one (i.e. a projection p such that no other projection q � p is equivalent
to p in the sense that v v∗ = p, v∗v = q for some partial isometry v), and type III von
Neumann algebras are those von Neumann algebras whose non-zero projections
are infinite.

Again, we shall assume throughout this dissertation that the reader is familiar
with the basic concepts of von Neumann algebra theory, including type classifica-
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tion, direct integral decompositions, the different topologies on von Neumann algebras,
Borel functional calculus, tensor products of von Neumann algebras (which we will
denote by ⊗), standard forms, Tomita-Takesaki modular theory and the (Takai-)Takesaki
duality. Standard references are [169], [171], [172], [20], [5].

2.3. DYNAMICAL SYSTEMS AND CROSSED PRODUCTS

The study of dynamical systems is an important subject on its own which has a
long history. It can be linked to the theory of operator algebras which leads to the
concept of C∗-dynamical and W∗-dynamical systems and their crossed products.
This link, going back to von Neumann’s work, provides interesting examples of
operator algebras and turned out to be of use both for the investigation of internal
structures as well as for applications. Standard references are [172], [182] and [33].

A group action of a group G on a set X is a map G × X → X , (g , x) 7→ g .x which
is compatible with the group structure of G in the sense that e.x = x and g .(h.x) =
(g h).x for all g ,h ∈ G , x ∈ X . A subset Y ⊆ X is called G-invariant if g .y ∈ Y for all
g ∈ G , y ∈ Y . If X is a topological space and G is a topological group acting on it,
then the action is called continuous if the map (g , x) 7→ g .x is continuous. In this
case X is called a (left) G-space, the pair (G , X ) is called a transformation group and
we often write G æ X for the (continuous) group action. Without further mention,
we will usually assume that the space X is a locally compact Hausdorff space on
which the locally compact group G acts continuously.

The C∗-algebraic analogue to these topological dynamics are C∗-dynamical
systems.

Definition 2.3.1. A C∗-dynamical system is a triple (A,G ,α) consisting of a C∗-
algebra A, a locally compact group G and a group homomorphism α : G → Aut(A)
of G into the automorphism group of A which is continuous with respect to the
point-norm topology on Aut(A). We usually just say that the group G acts (C∗-
continuously) on A and write G

αæ A or G æ A. Further, we usually write g .x :=
αg (x) for g ∈ G , x ∈ A. A subset X ⊆ A is called G-invariant if g .x ∈ X for all g ∈ G ,
x ∈ X .

The link between the notion of C∗-dynamical systems and classical dynamics
becomes apparent in the following way. A continuous action G æ X of a locally
compact group G on a locally compact Hausdorff space X induces a C∗-dynamical
system α : G → Aut(C0(X )), g 7→ αg via αg ( f )(x) := f (g−1.x) where f ∈ C0(X ) and
x ∈ X . Conversely, if G acts on C0(X ) this induces a unique continuous group action
G æ X with (g . f )(x) = f (g−1.x) for all g ∈ G , f ∈ C0(X ), x ∈ X , see [182, Proposition
2.7].

Every action G æ A of a locally compact group G on a C∗-algebra A induces
a natural continuous action of G on the state space S (A) of A equipped with the
weak-∗ topology via (g .φ)(x) := φ(g−1.x) for g ∈ G , x ∈ A. Similarly, for a locally
compact Hausdorff space X denote by Prob(X ) the space of all probability measures
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on X equipped with the weak-∗ topology. Then a continuous action G æ X of G on
X induces a continuous action G æProb(X ) via (g .µ)(x) :=µ(g−1.x).

Definition 2.3.2. Let G be a locally compact group which acts on a C∗-algebra A.
A covariant representation (π,U ) of the C∗-dynamical system (A,G ,α) consists of
a Hilbert space H , a ∗-representation π : A → B(H ) and a unitary representation
U : G →U (H ), g 7→Ug such that Ugπ(x)U∗

g =π(g .x) for all g ∈G , x ∈ A.

In the following let µ be a fixed left Haar measure on G .
Every covariant representation (π,U ) of the C∗-dynamical system (A,G ,α) in-

duces a ∗-representation πoU : Cc (G , A) →B(H ), the induced representation, of the
convolution algebra Cc (G , A) of compactly supported continuous functions f : G → A
on B(H ) via

πoU ( f ) :=
∫

G
π( f (g ))Ug dµ(g ).

Covariant representations always exist. Indeed, assume that A ⊆ B(H ) is a
C∗-subalgebra for some Hilbert space H and define π : A →B(L2(G ,H )) by

(π(x)ξ)(g ) := (g−1.x)(ξ(g ))

for g ∈G , ξ ∈ L2(G ,H ) and λ : G →U (H ) by

λg (ξ)(h) := ξ(g−1h)

for g ,h ∈ G , ξ ∈ L2(G ,H ). Then (π,λ) is a covariant representation, called the (left)
regular covariant representation of the system G æ A. It can be proved that the cor-
responding induced representation πoλ : Cc (G , A) → B(L2(G ,H )) is faithful, that
for every f ∈ Cc (G , A) the operator norm

∥∥ f
∥∥

r := ∥∥(πoλ)( f )
∥∥ is finite and that it

does not depend on the choice of the embedding A ⊆ B(H ). This motivates the
following definition.

Definition 2.3.3. Let G be a locally compact group which acts on a C∗-algebra A ⊆
B(H ). The corresponding reduced crossed product C∗-algebra, denoted by Aoα,r G ,
is the completion of Cc (G , A) with respect to the C∗-norm ‖·‖r .

Similarly, the universal crossed product C∗-algebra, denoted by Aoα,u G , is the
completion of Cc (G , A) with respect to the (well-defined) C∗-norm∥∥ f

∥∥
u := {∥∥πoU ( f )

∥∥ | (π,U ) is a covariant representation of (A,G ,α)
}

.

If the action α : G →Aut(A) is clear, we usually just write Aor G , instead of Aoα,r G
and Aou G , instead of Aoα,u G .

From the definition it is clear that the identity map on Cc (G , A) extends to a
surjective ∗-homomorphism Aoα,u G� Aoα,r G . By construction, we can further
view Aoα,r G as a C∗-subalgebra of B(L2(G ,H )).

Following [33], for notational convenience we denote for C∗-dynamical sys-
tems (A,G ,α) with discrete G the elements of Cc (G , A) ⊆ Aoα,u G by finite sums
of the form f = ∑

g∈G fg g where fg ∈ A. Similarly, we can view the elements of
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Cc (G , A) ⊆ Aoα,r G as finite sums of the form f = ∑
g∈G fgλg where fg ∈ A. In both

cases A canonically embeds into the corresponding crossed product via x 7→ xe
and x 7→ xλe . The map Cc (G , A) → A given by

∑
g∈G fgλg 7→ fe continuously ex-

tends to a conditional expectation E : Aoα,r G → A (i.e. a contractive completely
positive A-bimodule map with E |A = idA) which is faithful (i.e. E(x∗x) 6= 0 for all
0 6= x ∈ Aoα,r G), see [33, Proposition 4.1.9].

Particularly important is the case of trivial dynamical systems. Note that C
only provides trivial ∗-automorphisms. For a locally compact group G we denote
by C∗

r (G) :=Coα,r G the reduced group C∗-algebra of G and by C∗
u (G) :=Coα,u G the

universal group C∗-algebra of G . The corresponding unitary representation λ : G →
U (L2(G)), g 7→ λg is called the left regular representation. If the group G is discrete,
C∗

r (G) carries a canonical tracial state τ : C∗
r (G) →C given by

τ(λg ) := 〈
λgδe ,δe

〉={
1 , if g = e

0 , if g 6= e
.

There is also a von Neumann algebraic analogue of crossed products and group
algebras that will play a role in Chapter 7.

Definition 2.3.4. A W∗-dynamical system is a triple (N ,G ,α) consisting of a von
Neumann algebra N , a locally compact group G and a group homomorphism
α : G → Aut(N ) of G into the automorphism group of N which is continuous with
respect to the point-strong topology on Aut(N ). We usually just say that the group
G acts (W∗-continuously) on N and write G

αæ N or G æ N . Further, we usually
write g .x := αg (x) for g ∈ G , x ∈ N . A subset X ⊆ N is called G-invariant if g .x ∈ X
for all g ∈G , x ∈ X .

Note that a W∗-continuous action G
αæ N does not necessarily define a C∗-

dynamical system, i.e. the map α is not in general point-norm continuous. If the
group G is discrete this is however the case.

Similar to before, for a W∗-dynamical system (N ,G ,α) one can define a W∗-
crossed product of N by G . For this, assume that N ⊆ B(H ) is a von Neumann
subalgebra for some Hilbert space H and define π : N →B(L2(G ,H )) by

(π(x)ξ)(g ) := (g−1.x)(ξ(g ))

for g ∈G , ξ ∈ L2(G ,H ) and λ : G →U (H ) by

λg (ξ)(h) := ξ(g−1h)

for g ,h ∈ G , ξ ∈ L2(G ,H ). Then (π,λ) is a covariant representation of the system
G æ N . The corresponding induced representation πoλ : Cc (G , A) → B(L2(G ,H ))
is faithful.
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Definition 2.3.5. Let G be a locally compact group which acts on a von Neumann
algebra N ⊆ B(H ). The corresponding crossed product von Neumann algebra, de-
noted by AōαG , is defined as

N ōαG := ((πoλ)(Cc (G ,N )))′′ ⊆B(L2(G ,H )).

If the action α : G →Aut(N ) is clear, we usually just write N ōG , instead of N ōαG .

The crossed product von Neumann algebra of a given W∗-dynamical system
does, up to isomorphism, not depend on the way N is represented on H . Again,
we can view Cc (G ,N )) as a ∗-subalgebra of N ōαG whose elements are - in the
case where G is discrete - finite sums of the form f =∑

g∈G fgλg where fg ∈N and
N canonically embeds into N ōαG via x 7→ xλe . In this setting the map Cc (G ,N ) →
N given by

∑
g∈G fgλg 7→ fe continuously extends to a faithful normal conditional

expectation E : N ōαG → A.
For a locally compact group G we denote by L (G) := CōG the group von Neu-

mann algebra of G . Again, the corresponding representation λ : G → U (L2(G)),
g 7→ λg is called the left regular representation and if the group G is discrete, L (G)
carries a canonical normal tracial state τ : L (G) →C given by

τ(λg ) := 〈
λgδe ,δe

〉={
1 , if g = e

0 , if g 6= e
.

2.3.1. AMENABILITY

Crossed products of dynamical systems provide a way to encode the information
of a given group action by an operator algebra. It is natural to ask if one can read
off properties of the action from the corresponding crossed product C∗-algebra
(resp. crossed product von Neumann algebra) and vice versa. In the following, we
will consider certain dynamical notions and their operator algebraic counterparts
that will play a role in the later chapters. We will mostly restrict to discrete groups
and C∗-dynamical systems.

Definition 2.3.6 ([33, Definition 4.3.1]). Let G be a discrete group acting on a unital
C∗-algebra A. The action G æ A is called amenable if there exists a sequence (Ti )i∈N ⊆
Cc (G , A) such that the following conditions hold:

• For every g ∈ G , i ∈ N the element Ti (g ) ∈ A is positive and contained in the
center of A;

•
∑

g∈G (Ti (g ))2 = 1A for every i ∈N;

•
∑

g∈G

∣∣h.(Ti (g ))−Ti (hg )
∣∣2 → 0 for every h ∈G .

Crossed product C∗-algebras associated with amenable group actions satisfy
several strong properties. For instance, the amenability of the action G æ A implies
that the canonical surjection Aou G� Aor G is an isomorphism (see [33, Theorem
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4.3.4]). Further, the nuclearity (resp. exactness) of A implies the nuclearity (resp.
exactness) of Aor G . For an excellent introduction to this topic (and discrete crossed
products in general), see [33].

The commutative analogue of Definition 2.3.6 is the following.

Definition 2.3.7 ([33, Definition 4.3.5]). Let G be a discrete group acting on a com-
pact Hausdorff space X . The action G æ X is called (topologically) amenable if there
exists a sequence (mi : X → Prob(G), x 7→ mx

i )i∈N of continuous functions such that
for every g ∈G ,

lim
i→∞

sup
x∈X

( ∑
h∈G

∣∣mx
i (g−1h)−mg .x

i (h)
∣∣)= 0.

It can be shown that an action G æ X of a discrete group G on a compact Haus-
dorff space X is amenable if and only if the induced action G æC (X ) is amenable,
see [33, Theorem 4.3.7]. In this sense Definition 2.3.6 and Definition 2.3.7 are com-
patible with each other. The reader should be aware that there is an analogue to
topological amenability in the ergodic theoretic setting which is sometimes called
Zimmer amenability. Both notions should not be confused.

A discrete group G is called amenable if the trivial action of G on the one-point
set is amenable. Every group action G æ X of an amenable group on a compact
Hausdorff space is amenable. Further, amenability of groups can be characterized
in several equivalent ways, some of which are listed below.

Theorem 2.3.8 ([33, Theorem 2.6.8]). Let G be a discrete group. Then the following
statements are equivalent:

• G is amenable;

• C∗
u (G) ∼=C∗

r (G) via g 7→λg ;

• C∗
r (G) has a character (i.e. a one-dimensional representation);

• C∗
r (G) is nuclear.

2.3.2. SMALLNESS AT INFINITY

Let G be a discrete group. Recall that `∞(G) can be viewed as a commutative C∗-
subalgebra of B(`2(G)) via f δg := f (g )δg and that G acts on `∞(G) via (g . f )(h) :=
f (g−1h) for f ∈ `∞(G), g ,h ∈ G . Following [33, Chapter 5.3], a compact Hausdorff
space G which contains G as a dense open subset, is called a compactification of G .
It is (left) equivariant if the canonical left translation action of G on itself extends to
a continuous action on G . From Gelfand duality it follows that (left equivariant)
compactifications bijectively correspond to (G-invariant) C∗-subalgebras A with
C0(G) ⊆ A ⊆ `∞(G).

A notion that (often implicitly) appears in the rigidity theory of group von
Neumann algebras (see e.g. [119], [104] and [105]) is that of compactifications that
are small at infinity.
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Definition 2.3.9 ([33, Definition 5.3.16]). Let G be a discrete group and G an equi-
variant compactification of G . Then G is said to be small at infinity if for every net
(gi )i∈I ⊆ G with gi → z for some boundary point z ∈ G \ G , one has gi h → z for all
h ∈G .

We will see in Chapter 9 that the study of a certain equivariant compactification
which is small at infinity also implies rigidity properties of Hecke-von Neumann
algebras.

Equivariant compactifications that are small at infinity can be characterized in
the following way. For f ∈ `∞(G) and g ∈G define f g ∈ `∞(G) by f g (h) := f (hg−1).
Then the spectrum of a G-invariant C∗-algebra A with C0(G) ⊆ A ⊆ `∞(G) is small
at infinity if and only if f g − f ∈C0(G) for all f ∈ A, g ∈G .

2.3.3. BOUNDARY ACTIONS

Topological and measurable boundary actions have been introduced by Fursten-
berg in [84], [85] in the context of rigidity of Lie groups. Compared to its mea-
surable counterpart, the notion of topological boundary actions initially received
much less attention. That changed after Kalantar and Kennedy established in [120]
a connection between the dynamical properties of the Furstenberg boundary of a
given discrete group and the question for simplicity, uniqueness of trace and tight-
ness of nuclear embedding of the corresponding reduced group C∗-algebra. A se-
ries of breakthroughs and generalizations followed (see e.g. [95], [30], [125] and
[16], [102], [121], ...).

Definition 2.3.10. Let G be a discrete group continuously acting on a compact
Hausdorff space X .

• The action G æ X is called minimal if for every x ∈ X the G-orbit G .x is dense
in X .

• The action G æ X is called strongly proximal if for every probability measure
ν ∈ Prob(X ) the weak-∗ closure of the G-orbit G .ν contains a point mass δx ∈
Prob(X ) for some x ∈ X .

• The action G æ X is topologically free if for every g ∈G \ {e} the set X g of points
fixed by g has no inner points.

X is called a G-boundary if the action of G on X is both minimal and strongly prox-
imal. In that case the action is called a boundary action.

Furstenberg proved in [85, Proposition 4.6] that every discrete group G admits a
unique G-boundary ∂F G that is universal in the sense that every other G-boundary
is a continuous G-equivariant image of ∂F G . It is called the Furstenberg boundary of
the group G . In [120] Kalantar and Kennedy demonstrated that the algebra C (∂F G)
of continuous functions on ∂F G identifies with Hamana’s G-injective envelope (see
[97], [98], [99], [100]) of the complex numbers C, i.e. the minimal C∗- subalgebra
of `∞(G) that arises as the image of a unital positive G-equivariant projection. This
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connection implies a dynamical characterization of the C∗-simplicity of discrete
groups: the reduced group C∗-algebra of a discrete group G is simple (that is it
contains no non-trivial two-sided closed ideals) if and only if the action G æ ∂F G
is topologically free, see [120, Theorem 6.2]. The proof of this statement requires a
result by Archbold and Spielberg [9] which states that for a discrete group G which
continuously acts on a compact Hausdorff space X , the corresponding reduced
crossed product C∗-algebra C (X )or G is simple if and only if the action is minimal,
topologically free and regular in the sense that the kernel of the canonical surjection
Aou G� Aor G is trivial. We will also make use of this fact in Section 6.2.

2.4. PARTIALLY ORDERED SETS

The following definitions are as they appear in [19]. Let S be a set. A partial order
on S is a binary relation ≤ which is reflexive, antisymmetric and transitive. A set
endowed with a partial order is called a partially ordered set (poset). If existent, the
join of a subset T ⊆S , denoted by ∨T , is the least upper bound of T , meaning that
∨T ≥ y for every y ∈ T and ∨T ≤ x for every x ∈ S with x ≥ y for every y ∈ T . In
the same manner, the meet of T , denoted by ∧T , is the greatest lower bound of T ,
meaning that ∧T ≤ y for every y ∈ T and ∧T ≥ x for every x ∈S with x ≤ y for every
y ∈ T .

In general, the join and the meet of a subset of a partially ordered set do not
necessarily exist. A poset S in which all pairs

{
x, y

}
, x, y ∈ S of elements have

a join is called a join-semilattice. If every non-empty subset has a join, it is called
a complete join-semilattice. Dually, a poset in which all pairs of elements have a
meet is called a meet-semilattice. If every non-empty subset has a meet, it is called a
complete meet-semilattice.

The following lemma is standard. We include a proof (which also appears in
[127, Lemma 2.2]) for the convenience of the reader.

Lemma 2.4.1. Let S be a complete meet-semilattice and T ⊆ S a set. If T has an upper
bound (i.e. an element x ∈S with x ≥ y for all y ∈ T ), then the join ∨T exists.

Dually, if S is a complete join-semilattice and T ⊆S a set with a lower bound (i.e. an
element x ∈S with x ≤ y for all y ∈ T ), then the meet ∧T exists.

Proof. Let S be a complete meet-semilattice and T ⊆ S a set having an upper
bound. Then the set T ′ := {

x ∈S | y ≤ x for all y ∈ T
}

is non-empty. Because S is a
complete meet-semilattice, the meet x := ∧T ′ exists. It satisfies y ≤ x for all y ∈ T
and x ′ ≥ x for all x ′ ∈ T ′, i.e. x is the join of the set S. The second statement follows
analogously.
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2.5. GRAPHS AND TREES

2.5.1. BASIC NOTIONS

A graph K is a pair K = (V ,E) consisting of a vertex set V and an edge set E ⊆V ×V . In
the case where the vertex and edge set of the graph K are not designated, we will
often write x ∈ K , meaning that x is a vertex of the graph K . A graph is called finite
if V is finite, it is called countable if V is countable, it is called undirected if for every
element (x, y) ∈ E also (y, x) ∈ E and it is called simplicial if (x, x) ∉ E for every x ∈
V . We will always assume that the graphs appearing in this thesis are countable,
undirected and simplicial. We call a second graph K0 = (V0,E0) a subgraph of K if
V0 ⊆V and E0 ⊆ E . In this case we write K0 ⊆ K .

Two vertices x, y ∈ K are adjacent if (x, y) ∈ E . A pathα= (αi )i of length n ∈N∪{∞}
is a sequence α0...αn of n vertices for which (αi ,αi+1) ∈ E for every 0 ≤ i < n. We
call K connected if every two vertices of K can be connected by a path. This induces
a natural metric dK on K via

dK (x, y) := min
{
n | there is a path of length n that connects x and y

}
.

We call this the graph metric on K . A path α is called geodesic if dK (αi ,α j ) = ∣∣i − j
∣∣

for all i , j . Without further comments we will often extend a finite geodesic path
α0...αn to an infinite path via α0...αnαnαn ... and still call it (finite) geodesic. Further,
we say that K is a tree if it is connected and if there is no finite path α= (αi )i=0,...,n

with α0 =αn for which the vertices α1, ...,αn are pairwise distinct.
A vertex of a graph is said to have finite degree if the number of vertices that are

adjacent to it is finite. A graph whose vertices all have finite degree is called locally
finite. If there is a uniform bound on the degree of vertices, we say that the graph
is uniformly locally finite.

For a vertex x in the graph K = (V ,E) we call

Link(x) := {
y ∈ K | (x, y) ∈ E

}
the link of x and denote the common link of a subset X ⊆ K by

Link(X ) := ⋂
x∈X

Link(x),

where by convention Link(;) :=V . Note that we may view Link(X ) as a subgraph
of K by declaring two vertices x, y ∈Link(X ) to be connected if (x, y) ∈ E . We further
define Star(x) :=Link(x)∪ {x}.

A clique in the graph K is a subgraph K0 ⊆ K in which every two vertices share
an edge. We write Cliq(K ) for the set of cliques in K and Cliq(K , l ) for the set
of cliques with l vertices. By convention we will assume that ; ∈ Cliq(K ). For a
subgraph K0 ⊆ K set

Comm(K0) := {
(K1,K2) ⊆Link(K0)×Link(K0) | K1,K2 ∈Cliq(K ) and K1 ∩K2 =;}

.

The following lemmas are standard (see for instance [33, Lemma 5.2.3 and
Lemma E.2]).
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Lemma 2.5.1. Let K be a connected graph, α= (αi )i∈N an infinite geodesic path in K and
x ∈ K . Then there exists an infinite geodesic path β= (βi )i∈N with x =β0 which eventually
flows into α in the sense that there exists k ∈Z such that βi =αi+k for all large enough i .

Lemma 2.5.2. Let T be a tree and x, y ∈ T . Then there exists a unqiue geodesic path
connecting x and y .

We will usually denote the unique geodesic path appearing in Lemma 2.5.2 by[
x, y

]
.

The most important class of graphs that we consider in this dissertation are
Cayley graphs of finitely generated groups.

Example 2.5.3. Let G be a group generated by a set S where e ∉ S. Set S−1 :={
g−1 | g ∈ S

}
. The Cayley graph Cay(G ,S) of G with respect to S is the graph defined

by the vertex set G and the edge set
{(

g ,h
) ∈G ×G | g−1h ∈ S ∪S−1

}
. If S is finite, the

corresponding Cayley graph is countable, undirected, simplicial and uniformly
locally finite.

Given a family (Ki )i∈I of graphs Ki := (Vi ,Ei ) one can build the (Cartesian) pro-
duct K := ∏

i∈I Ki . Its vertex set is given by the product
∏

i∈I Vi and two vertices
x = (xi )i∈I and y = (yi )i∈I are defined to be adjacent to each other if and only if there
exists i0 ∈ I with xi = yi for all i ∈ I \ {i0} and (xi0 , yi0 ) ∈ Ei0 . This gives K the struc-
ture of a graph. The corresponding graph metric dK is given by the `1-metric on the
product

∏
i∈I Ki , meaning that dK (x,y) =∑

i∈I dKi (xi , yi ) for x = (xi )i∈I , y = (yi )i∈I ∈ K .

2.5.2. HYPERBOLIC GRAPHS AND COMPACTIFICATIONS

Hyperbolic graphs are graphs that satisfy a certain negative curvature condition.
Intuitively, a hyperbolic graph is a graph whose large-scale geometry looks simi-
lar to that of a tree. The concept goes back to Gromov, see [90]. The results and
definitions we present here are as they appear in [33, Chapter 5.3] and [122].

Let K be a connected graph. A geodesic triangle ∆ consists of three points x, y, z ∈
K and three geodesic paths connecting them. If there exists a number δ > 0 for
which each of the paths is contained in the open δ-tubular neighborhood of the
union of the other two paths, such a triangle is called δ-slim. We say that the graph
K is hyperbolic if there exists δ> 0 such that every geodesic triangle is δ-slim. Note
that trees are always hyperbolic with δ= 1.

The Gromov product of a graph K with base point o ∈ K is defined by

〈
x, y

〉
o := 1

2
(dK (o, x)+dK (o, y)−dK (x, y)).

Every hyperbolic graph K admits a topological “space at infinity” consisting of
equivalence classes of certain sequences. Define an equivalence relation ∼h on the
set of all sequences x := (xi )i∈N ⊆ K which converge to infinity in the sense that
liminfi , j 〈xi , x j 〉o =∞ by declaring two such sequences x and y to be equivalent if
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and only if liminfi , j 〈xi , y j 〉o =∞. This definition does not depend on choice of the
base point o. We write [x]h for the equivalence class of x. The hyperbolic boundary
(or Gromov boundary) ∂hK of K is the set of all equivalence classes of sequences in
K which converge to infinity. The union K ∪∂hK is called the hyperbolic bordifica-
tion (or Gromov bordification). It is easy to see that for a locally finite graph every
element in ∂hK can be represented by an infinite geodesic path starting in the base
point o (see [122, Proposition 2.10]).

For z ∈ ∂hK , R > 0 define the sets

U (z,R) := {z ′ ∈ ∂hK | there are sequences x,y converging to infinity
with z = [x]h , z ′ = [y]h and liminf

i , j→∞
〈

xi , y j
〉

o > R}

and

U ′ (z,R) :=U (z,R)∪ {y ∈ K | there is a sequence x converging to infinity
with z = [x]h and liminf

i→∞
〈

xi , y
〉

o > R}.

One can topologize ∂hK by declaring the basis of neighborhoods for a point z ∈ ∂hK
to be {U (z,R) | R > 0}. One can further topologize K ∪∂hK by endowing K with the
metric (i.e. discrete) topology and by declaring the basis of neighborhoods for a
point z ∈ ∂hK to be {U ′(z,R) | R > 0}. Again, these topologies are independent of
the choice of the base point o. If we assume K to be locally finite, then K ∪∂hK
is a compact space (for a proof see e.g. [33, Proposition 2.14]) that contains K as
a dense open subset. In that context, we also speak of K ∪ ∂hK as the hyperbolic
compactification of K . Further, every automorphism (i.e. isometric bijection) of K
uniquely extends to a homeomorphism of K ∪∂hK , [33, Theorem 5.3.14].

Let us now turn our attention to Cayley graphs of finitely generated groups.

Definition 2.5.4. A group G generated by a finite set S whose Cayley graph Cay(G ,S)
is hyperbolic, is called word hyperbolic.

As it turns out, both the hyperbolicity of Cay(G ,S) and the hyperbolic boun-
dary ∂hG := ∂hCay(G ,S), do not depend on the choice of the finite generating set S.
Further, since the left multiplication of G on itself induces an action by automor-
phism of G on its Cayley graph, it extends to continuous actions G æG ∪∂hG and
G æ ∂hG . These actions have some desirable properties.

Theorem 2.5.5 ([33, Theorem 5.3.15]). Let G be a word hyperbolic group. Then the
actions G æG ∪∂hG and G æ ∂hG are amenable.

Proposition 2.5.6 ([33, Proposition 5.3.18]). Let G be a word hyperbolic group. Then
the hyperbolic compactification G ∪∂hG is small at infinity.

Theorem 2.5.7 ([88, Chapitre 8] and [120, Remark 5.6]). Let G be a non-amenable
word hyperbolic group. Then ∂hG is a G-boundary.
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2.6. AMALGAMATED FREE PRODUCTS AND GRAPH

PRODUCTS OF GROUPS

The notion of amalgamated free products of groups generalizes free products of
groups. Let (Gi )i∈I be a family of discrete groups indexed by a set I and assume
that there exists a group H such that for every i ∈ I there is a monomorphism
ιi : H ,→ Gi . Then the amalgamated free product of (Gi )i∈I over H , denoted by ?H Gi ,
is the quotient of the free product group ?i∈I Gi by the smallest normal subgroup
of ?i∈I Gi generated by {

ιi (h)−1ι j (h) | i , j ∈ I ,h ∈ H
}

.

One can hence view the amalgamated free product as the free product of the family
(Gi )i∈I where the embedded copies of H are identified with each other in a way that
is compatible with the embeddings ιi , i ∈ I . Note that the notation ?H Gi is slightly
ambiguous.

For every i ∈ I the group Gi canonically embeds into ?H Gi . Further, note that
in the case where H is trivial, ?H Gi is the ordinary free product ?i∈I Gi . In the case
of finite index sets I = {1, ...,n} we sometimes write ?H Gi =G1?H G2?H ...?H Gn , if
convenient.

Graph products of groups were introduced by Green in her thesis [89] as a well-
behaved generalization of free products and Cartesian products of groups. The
construction associates with a simplicial graph with groups attached to each vertex
a new group by taking the free product of the vertex groups, with added relations
depending on the graph. To make this precise, let K = (V ,E) be a finite, undirected,
simplicial graph and let (Gv )v∈K be a family of groups. Then the graph product group
?v,K Gv is the quotient of the free product group ?v∈V Gv by the smallest normal
subgroup of ?i∈I Gi generated by{

st s−1t−1 | s ∈Gv , t ∈Gw with (v, w) ∈ E
}

.

Special (extremal) cases of graph products are free products (induced by graphs
with no edges) and Cartesian products (induced by complete graphs). For every
v ∈V the group Gv canonically embeds into ?v,kGv .

Green’s construction preserves many important group theoretical properties
(see [7], [8], [43], [54], [57], [56], [89], [109], [103]) and covers interesting exam-
ples such as right-angled Coxeter groups (see Subsection 2.7.4) and right-angled
Artin groups. Further, any graph product of groups decomposes as iterated amal-
gamated free products of certain subgroups, as the following proposition demon-
strates.

Proposition 2.6.1 ([89, Lemma 3.20]). Let K = (V ,E) be a finite, undirected, simplicial
graph, let (Gv )v∈V be a family of groups and let v0 ∈ V . Define subgraphs K1 := Star(v0),
K2 := K \ {v0} of K and set H0 := ?v,Link(v0)Gv , H1 := ?v,K1Gv and H2 := ?v,K2Gv . Then
?v,K Gv decomposes as H1?H0 H2.
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2.7. COXETER GROUPS

Coxeter groups, first systematically studied by Coxeter in [62] and [63], can be
viewed as abstractions of (finite) reflection groups. Formally introduced by Tits
(see [173]), they naturally appear in several branches of mathematics including
algebra, geometry and combinatorics. Standard references on Coxeter groups are
[26], [110], [19] and [67]. For a historical overview see [26] as well as [62].

2.7.1. BASIC NOTIONS

Let S be a (possibly infinite) set and let M := (mst )s,t∈S be a symmetric matrix with
mss = 1 for all s ∈ S and with mst ∈ N≥2 ∪ {∞} for all s, t ∈ S, s 6= t . A matrix of this
form is called a Coxeter matrix over S. The associated Coxeter group W is the discrete
group freely generated by S subject to the relations (st )mst = e, i.e.

W = 〈
S | (st )mst = e for all s, t ∈ S

〉
.

Here the condition mst =∞ means that s and t are free with respect to each other,
i.e. no relation of the form (st )m = e with m ∈N is imposed. The pair (W,S) is called
the Coxeter system associated with M . We will often assume that the generating set
S is finite. In that case we say that (W,S) has finite rank and #S <∞ is called the
rank of the system. The set of reflections of the Coxeter group W is often denoted
by T and consists of all elements of the form w−1sw where s ∈ S, w ∈W .

Example 2.7.1. (i) There exists exactly one Coxeter group of rank 1. It is isomorphic
to Z2, the group consisting of two elements.

(ii) For Coxeter systems (W,S), (W ′,S′) associated with matrices M := (mst )s,t∈S ,
M ′ := (m′

st )s,t∈S′ define coefficients m̃st via m̃st = mst for s, t ∈ S, m̃st = m′
st for s, t ∈ S′

and m̃st = 2 else. Then the Coxeter group associated with (m̃st )s,t∈StS′ is isomorphic
to the direct product W ×W ′ and we write (W ×W ′,S t S′) ∼= (W,S)× (W ′,S′). In
particular, every group of the form Zk

2 , k ∈N can be realized as a Coxeter group.
(iii) Similar to (ii), for Coxeter systems (W,S), (W ′,S′) associated with matrices

M := (mst )s,t∈S , M ′ := (m′
st )s,t∈S′ define coefficients m̃st via m̃st = mst for s, t ∈ S,

m̃st = m′
st for s, t ∈ S′ and m̃st = ∞ else. Then the Coxeter group associated with

(m̃st )s,t∈StS′ is isomorphic to the free product W ?W ′ and we write (W ?W ′,StS′) ∼=
(W,S)?(W ′,S′). In particular, every group of the form Z

k1
2 ? ...?Zkl

2 with l ∈N≥1 and
k1, ...,kl ∈N can be realized as a Coxeter group.

The data of (W,S) can be encoded in its Coxeter diagram which is an undirected
simplicial labeled graph with vertex set S and edge set {(s, t ) ∈ S ×S | mst ≥ 3} where
every edge connecting vertices s, t ∈ S is labeled by the corresponding exponent
mst = mt s .

Example 2.7.2. The diagram of the Coxeter group generated by the Coxeter matrix
1 3 2 ∞
3 1 5 2
2 5 1 3
∞ 2 3 1


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is given by

•

3

•
5

•

3

•
∞

The odd Coxeter diagram is obtained from the Coxeter diagram by removing all
edges whose labels are even or infinite. It encodes information about the conjugacy
of generators.

Lemma 2.7.3 ([67, Lemma 3.3.3]). Let (W,S) be a Coxeter system and s, t ∈ S. Then s
and t are conjugate to each other in the sense that there exists w ∈W such that t = w−1sw,
if and only if s and t lie in the same connected component of the odd Coxeter diagram of
(W,S).

For a subset T ⊆ S the subgroup WT := 〈T 〉 of W generated by T is called a
special subgroup. It is also a Coxeter group with the same exponents as W (see [67,
Theorem 4.1.6]), i.e.

WT
∼= 〈

T | (st )mst = e for all s, t ∈ T
〉

canonically. We briefly write Ws =W{s} for s ∈ S and note that by the relation s2 = e,
Ws

∼=Z2.
The system (W,S) is called irreducible if its Coxeter diagram is connected. This

is equivalent to W not having a non-trivial decomposition into a direct product of
special subgroups (compare with Example 2.7.1).

2.7.2. WORDS IN COXETER GROUPS

Let (W,S) be a Coxeter system. Because S generates the group W , every element
w ∈W can be written as a product w = s1...sn with generators s1, ..., sn ∈ S. We call

|w| := min
{
n |There exist s1, ..., sn ∈ S with w = s1...sn

}
the word length of w. An expression w = s1...sn is called reduced if n = |w|. The set
of letters appearing in a reduced expression is independent of the choice of the
reduced expression (see [67, Proposition 4.1.1]). For v,w ∈W with

∣∣v−1w
∣∣= |w|− |v|

(resp.
∣∣wv−1

∣∣ = |w| − |v|) we say that w starts (resp. ends) with v and write v ≤R w
(resp. v ≤L w). This defines a partial order which is called the weak right (resp.
weak left) Bruhat order. For convenience, we will often write ≤ instead of ≤R . The
weak Bruhat orders have the important property that they define complete meet-
semilattices on W .
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Proposition 2.7.4 ([19, Proposition 3.2.1]). Let (W,S) be a Coxeter system. Then the
weak right Bruhat order and the weak left Bruhat order on W define complete meet-
semilattices.

Another useful property is the following.

Lemma 2.7.5 ([19, Proposition 3.1.2 (vi)]). Let (W,S) be a Coxeter system, v,w ∈W and
s ∈ S. Then the following statements hold:

• Assume that s ≤R v, s ≤R w. Then, v ≤R w if and only if sv ≤R sw.

• Assume that s ≤L v, s ≤L w. Then v ≤L w if and only if vs ≤L ws.

Coxeter groups can be characterized as those groups generated by a set of ele-
ments of order two which satisfy the following three equivalent cancellation con-
ditions, see [67, Theorem 3.2.16 and Theorem 3.3.4]. We use the convention that ŝ
means that s is removed from an expression.

Theorem 2.7.6 ([67, Theorem 3.2.16 and Theorem 3.3.4]). Let (W,S) be a Coxeter
system, w = s1...sn an expression for an element w ∈ W and s, t ∈ S. Then the following
conditions hold:

• Deletion condition: If s1 . . . sn is not a reduced expression for w, then there exist
i < j such that s1 . . . ŝi . . . ŝ j . . . sn is also an expression for w.

• Exchange condition: If w = s1 . . . sn is reduced, then either |sw| = n + 1 or there
exists 1 ≤ i ≤ n with sw = s1 . . . ŝi . . . sn .

• Folding condition: If |sw| = n + 1 and |wt | = n + 1, then either |swt | = n + 2 or
|swt | = n.

Following [19, Section 3.3], we call the deletion of a factor of the form ss inside
a word s1...sn in S a nil-move. Similarly, we call the replacement of a factor st st ... of
length mst by a factor t st s... of length mst inside s1...sn a braid-move.

Theorem 2.7.7 ([19, Theorem 3.3.1]). Let (W,S) be a Coxeter system and w ∈W . Then
the following statements hold:

• Any expression s1...sn with s1, ..., sn ∈ S for w can be transformed into a reduced
expression for w by a sequence of nil-moves and braid-moves.

• Every two reduced expressions for w can be transformed into each other by a sequence
of braid-moves.

2.7.3. CLASSES OF COXETER GROUPS

Coxeter groups are intimately related to reflection groups. In [62] Coxeter proved
that every reflection group is a Coxeter group and demonstrated in [63] that con-
versely all finite Coxeter groups can be realized in this way. Further, the class of
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Coxeter groups which can be realized as reflection groups has been entirely clas-
sified by their Coxeter diagrams (see [63] and [38]). Motivated by this one distin-
guishes three classes of (irreducible) Coxeter systems (compare with [67, Theorem
12.3.5]).

Definition 2.7.8. Let (W,S) be an irreducible Coxeter system.

• It is of spherical type if it is locally finite, i.e. every finitely generated subgroup
of W is finite.

• It is of affine type if it is infinite, virtually abelian and has finite rank.

• It is of non-affine type if it is neither spherical nor affine.

Both spherical type and affine type Coxeter systems are entirely classified by
their Coxeter diagrams. These are called (An)n≥1, (Bn)n≥2, (Dn)n≥4, (En)6≤n≤8, F4,
G2, (Hn)2≤n≤4, (In)n≥3, A∞, A′∞, B∞, D∞ and (Ãn)n≥2, (B̃n)n≥3, (C̃n)n≥2, (D̃n)n≥4,
(Ẽn)6≤n≤8, F̃4, G̃2, Ĩ1, see the list in the appendix. The simplest Coxeter group of
affine type is the infinite dihedral group D∞ := 〈

s, t | s2 = t 2 = e
〉∼=Z2?Z2 which is ge-

nerated by two elements.

Every finite rank spherical type (i.e. finite) Coxeter group contains a unique
element of maximal length, see [67, Lemma 4.6.1]. We usually denote this element
by w0.

By [67, Theorem 14.1.2 and Proposition 17.2.1] a Coxeter group W is amenable
if and only if it decomposes as a direct product of spherical type and affine type
Coxeter groups. By the work of several authors (see e.g. [80], [101], [61]) it has
further been characterized when a Coxeter group W is C∗-simple and when C∗

r (W )
carries the canonical tracial state τ (see Section 2.3) as its unique tracial state.

Theorem 2.7.9. Let (W,S) be a Coxeter system. Then the following statements are equi-
valent:

• W decomposes as a direct product of non-affine type Coxeter groups;

• W is C∗-simple;

• C∗
r (W ) carries a unique tracial state.

Let us expand on the well-known fact that irreducible affine Coxeter groups
arise as subgroups generated by (affine) reflections associated with crystallographic
root systems. Following [110, Chapter 1 and Chapter 4], let V be a finite-dimensional
real Euclidean vector space with canonical inner product 〈·, ·〉. For α ∈V \ {0} write
α∨ := 2

〈α,α〉α ∈V and denote by sα the reflection

sα : V →V , x 7→ x −〈x,α〉α∨
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in V mappingα to −αwhile fixing pointwise the hyperplane Hα,0 := {x ∈V | 〈x,α〉 = 0}
orthogonal toα. Similarly, for i ∈Z define the affine hyperplane Hα,i := {x ∈V | 〈x,α〉 = i }
and write sα,i for the affine reflection

sα,i : V →V , sα,i (x) := x − (〈x,α〉− i )α∨

in V which fixes Hα,i pointwise and maps 0 to iα∨. A translation in V is a map of
the form tv : V →V , x 7→ x + v for some v ∈V . Note that sα,1sα,0 = tα∨ .

Definition 2.7.10. Let V be a finite-dimensional real Euclidean vector space with
canonical inner product 〈·, ·〉. A root system in V is a finite subset Φ ⊆ V with 0 ∉Φ
satisfying the following conditions:

• Span(Φ) =V ;

• Φ∩Rα= {−α,α} for all α ∈Φ where Rα := {λα |λ ∈R};

• sα(Φ) =Φ for all α ∈Φ.

A root system Φ is called crystallographic if 2〈α,β〉
〈β,β〉 ∈ Z for all α,β ∈ Φ. It is called

irreducible if Φ cannot be written as a disjoint union of two subsets Φ1,Φ2 ⊆Φ with〈
α,β

〉= 0 for all α ∈Φ1, β ∈Φ2.

Similar to spherical and affine type irreducible Coxeter systems, irreducible
crystallographic root systems have been completely classified by Cartan using
Dynkin diagrams.

If V is a finite-dimensional real Euclidean vector space and Φ is a crystallo-
graphic root system, then the set {sα |α ∈Φ} generates a finite subgroup W (Φ) of
the orthogonal group O(V ); this is the Weyl group which arises as a spherical type
Coxeter group. Indeed, call a basis ∆ of V = Span(Φ) with ∆ ⊆Φ a simple system if
every α ∈Φ can be expressed as a linear combination of elements in ∆ with coeffi-
cients all of the same sign, i.e. all coefficients are either positive or all coefficients
are negative. Such a system always exists and its elements are called simple (posi-
tive) roots.

Theorem 2.7.11 ([110, Chapter 2]). Let V be a finite-dimensional real Euclidean vector
space with canonical inner product 〈·, ·〉 and let Φ be a crystallographic root system. Then
W (Φ) is generated by S := {sα |α ∈∆} ⊆W (Φ) and (W (Φ),S) is a Coxeter system. Further,
the system is irreducible if and only if Φ is irreducible.

The Coxeter diagrams corresponding to Weyl groups are (An)n≥1, (Bn)n≥2, (Dn)n≥3,
(En)6≤n≤8, F4 and G2.

Given a simple system ∆ of the crystallographic root system Φ, define the set of
positive roots

Φ+ :=
{
α ∈Φ |α= ∑

β∈∆
aββ with aβ ≥ 0 for all β ∈∆

}
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and the set of negative roots

Φ− :=
{
α ∈Φ |α= ∑

β∈∆
aββ with aβ ≤ 0 for all β ∈∆

}
.

If Φ is irreducible, there exists a unique element α̃ = ∑
β∈∆ aββ in Φ+ such that∑

β∈∆ aβ is maximal; we call it the highest root.
Similar to before, the set T := {

sα,i |α ∈Φ, i ∈Z}
generates a subgroup Waff(Φ) of

O(V ); the corresponding affine Weyl group. It is infinite, its set of reflections coin-
cides with T and W (Φ) ⊆ Waff(Φ) is a subgroup. Note that, since Φ is assumed to
be crystallographic, the set Φ∨ := {

α∨ |α ∈Φ}⊆ V of co-roots also defines a crystal-
lographic root system and write

L(Φ∨) := {
n1α1 + ...+nlαl |α1, ...,αl ∈Φ∨,n1, ...,nl ∈Z

}
for the Z-span of Φ∨. One can show that the group of translations tv , v ∈ L(Φ∨) is
normal in Waff(Φ) and that Waff(Φ) decomposes as a semidirect product of W (Φ)
and

{
tv | v ∈ L(Φ∨)

}
(for details see [110, Section 4.2]). This decomposition will play

an important role in Section 3.3 where Iwahori-Hecke algebras of affine type Co-
xeter systems are considered.

Theorem 2.7.12 ([110, Chapter 4]). Let V be a finite-dimensional real Euclidean vector
space with canonical inner product 〈·, ·〉, letΦ be an irreducible crystallographic root system
and let ∆⊆Φ be a simple system. Then Waff(Φ) is generated by

Saff := {
sα,0 |α ∈∆}∪{

sα̃,1
}⊆Waff(Φ)

where α̃ ∈Φ denotes the highest root and (Waff(Φ),Saff) is a Coxeter system. Further, every
irreducible affine Coxeter group arises in such a way.

Example 2.7.13. Let V :=Re be the 1-dimensional real Euclidean vector space with
basis vector e and set Φ := {e,−e} ⊆ V . Φ is an irreducible crystallographic root
system, ∆ := {e} defines a simple system and e ∈Φ is the corresponding highest root.
The induced Coxeter group Waff(Φ) then identifies with the infinite dihedral group
D∞. We further have that W (Φ) ∼=Z2 and by the above discussion D∞ ∼=ZoZ2.

In the context of Theorem 2.7.12 the word length |w| of an element w ∈ Waff(Φ)
(with respect to the generating set Saff) has a convenient geometrical interpreta-
tion. Write V ◦ := V \ (

⋃
α∈Φ,i∈Z Hα,i ) and call the connected components of V ◦ al-

coves. Two such alcoves are separated by an affine hyperplane Hα,i if they lie in
different half-spaces relative to Hα,i . One checks that the standard alcove A◦ :={

x ∈V | 0 < 〈x,α〉 < 1 for all α ∈Φ+}
is indeed an alcove. Further, the natural action

of Waff(Φ) on V induces an action on the set of all alcoves. Then, for an element
w ∈W we have

|w| = #
{

Hα,i | Hα,i separates A◦ and w.A◦
}

.
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2.7.4. RIGHT-ANGLED COXETER GROUPS

The combinatorial structure of general Coxeter groups can be very wild. An im-
portant subclass of Coxeter groups whose combinatorial structure is still rich but
much more accessible is the class of right-angled Coxeter groups.

Definition 2.7.14. Let (W,S) be a Coxeter system. It is called right-angled if mst ∈
{2,∞} for all s 6= t .

Right-angled Coxeter systems interpolate between free products and Carte-
sian products of Z2. In the right-angled case, if we have cancellation of the form
s1...sn = s1...ŝi ...ŝ j ...sn for s1, ..., sn ∈ S, then si = s j and si commutes with every letter
in the reduced expression for si+1...s j−1. Indeed, if s1...sn = s1...ŝi ...ŝ j ...sn then we
have s j = (si+1...s j−1)−1si (si+1...s j−1), i.e. si and s j are conjugate to each other. Be-
cause the connected components of the odd Coxeter diagram of a right-angled Co-
xeter group are one-point sets, we deduce with Lemma 2.7.3 that si = s j and hence
(si+1...s j−1)s j = si (si+1...s j−1). The statement then follows from Theorem 2.7.7.

The following lemma, that appears in [46], will play a role in Subsection 6.1.1.

Lemma 2.7.15 ([46, Lemma 4.4]). Let (W,S) be a right-angled, finite rank Coxeter sys-
tem and let w ∈W . For l ∈N define

κw(l ) := #{v ∈W | v ≤ w and |v| = l }.

Then there exists a constant C > 0 (which can be chosen uniformly in w) such that κw(l ) ≤
C l #S−2 for all l ∈N.

Right-angled Coxeter groups decompose as graph products of Z2. Indeed, let
K := (V ,E) be the complement of the (unlabeled) Coxeter diagram of (W,S), i.e.
V := S and E := {(s, t ) | mst = 2}. Then we find by Ws = 〈s〉 ∼=Z2 that

W ∼=?s,K Ws
∼=?s,KZ2

canonically. This follows from the fact that the defining (universal) properties of a
right-angled Coxeter group and the corresponding graph product over the special
subgroups Ws

∼=Z2 are the same.

2.7.5. AMALGAMATED FREE PRODUCT DECOMPOSITIONS

Similar to the decomposition of right-angled Coxeter groups in terms of graph
products of Z2, general Coxeter groups can be decomposed inductively as amal-
gamated free products of certain special subgroups (compare also with Proposition
2.6.1).

Following [67, Chapter 8.8], fix a finite rank Coxeter system (W,S). A subset
T ⊆ S is called spherical if the special subgroup WT ⊆ W generated by T is finite.
Recall that a (abstract) simplicial complex consists of a set V (the vertex set) and a
collection S of finite subsets of V (the simplices) such that {v} ∈ S for every v ∈ V
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and such that T ∈ S , T ′ ⊆ T implies T ′ ∈ S . One such simplicial complex is the
nerve of the system, denoted by N (W,S), which is given by the vertex set S and the
set {T ⊆ S | S spherical} of simplices. Let N0 be a full subcomplex of N := N (W,S),
meaning that every simplex of N whose vertices are contained in N0 is already a
simplex in N . Further assume that N \N0 can be written as a disjoint union of two
subcomplexes. Denote the union of the corresponding vertex sets with the vertex
set S0 of N0 by S1 and S2. Then, as explained in [67, Chapter 8.8], W decomposes as
the amalgamated free product W =W1?W0 W2 with W0 :=WS0 , W1 :=WS1 , W2 :=WS2

where W0 embeds into W1 and W2 canonically. By iterating this procedure, every
Coxeter group can be decomposed as an iterated amalgamated free product of 0-
or 1-ended special subgroups over spherical special subgroups, see [67, Chapter
8.6 and Proposition 8.8.2] for details and the notion of ends of groups.

Conversely, if W is an arbitrary group which decomposes as an amalgamated
free product W =W1?W0 W2 where (W1,S1), (W2,S2) are Coxeter systems with W0 =
W1 ∩W2 and where S0 := S1 ∩S2 generates W0, then (W,S1 ∪S2) is a Coxeter system
as well.

Denote by G the smallest class of Coxeter groups which contains all finite rank
spherical type Coxeter groups and which is closed under taking amalgamated free
products over spherical special subgroups. Then, by [67, Proposition 8.8.5], G co-
incides with the class of Coxeter groups which are virtually free in the sense that
they contain a finite index free subgroup. The class G will play a role in Chapter 8.

2.7.6. WORD HYPERBOLIC COXETER GROUPS

In [134] Moussong characterized word hyperbolic Coxeter groups.

Theorem 2.7.16 ([134, Theorem 17.1]). For every finite rank Coxeter system (W,S) the
following statements are equivalent:

• W is word hyperbolic;

• W contains no subgroup which is isomorphic to Z×Z;

• There is no subset T ⊆ S such that (WT ,T ) is an affine type Coxeter system of rank
≥ 3 or that there exists a pair of disjoint subsets T1,T2 ⊆ T with (WT ,T ) ∼= (WT1 ×
WT2 ,T1 ∪T2) where WT1 , WT2 are infinite.

In the right-angled case this leads to a convenient characterization of word
hyperbolicity in terms of the complement of the (unlabeled) Coxeter diagram. Let
(W,S) be a right-angled Coxeter system and set K := (V ,E) with V := S and E :=
{(s, t ) | mst = 2}. Then W ∼= ?s,KZ2 is word hyperbolic if and only if K contains no
square as an induced subgraph, i.e. there are no elements s, t ,u, v ∈ E with mst =
mtu = muv = mv s = 2 and msu = mt v =∞.

2.7.7. GROWTH SERIES OF COXETER GROUPS

Let (W,S) be a finite rank Coxeter system and let C(W,S) be the set of tuples z :=
(zs )s∈S in CS with the property that zs = zt whenever s and t are conjugate in W .
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Further set R(W,S)
>0 := C(W,S) ∩RS

>0 and {−1,1}(W,S) := C(W,S) ∩ {−1,1}S . From Theorem
2.7.7 it follows that for every z := (zs )s∈S ∈C(W,S) and w ∈W with reduced expression
w = s1...sn the complex number zw := zs1 ...zsn ∈ C does not depend on the choice of
the reduced expression. Following [19] and [67], for a subset X ⊆W we can hence
define the (multivariate) growth series (or Poincaré series) X (z) :=∑

w∈A zw of X .
As we will see in the later sections, several properties of Hecke operator alge-

bras are related to the regions of convergence of the corresponding growth series
of Coxeter groups. For the Coxeter system (W,S) write

R(W,S) := {
z ∈C(W,S) |W (z) converges

}
for the region of convergence of W (z) =∑

w∈W zw and define

R′(W,S) :=
{(

qεs
s

)
s∈S | q ∈R(W,S)∩R(W,S)

>0 ,ε ∈ {−1,1}(W,S)
}

.

Further denote the closure of R′(W,S) in R(W,S)
>0 by R′(W,S).

One of the first results about growth series of Coxeter groups is their rationality
which inductively follows from the following lemma.

Lemma 2.7.17 ([67, Corollary 17.1.5] and [19, Corollary 7.1.4]). Let (W,S) be a finite
rank Coxeter system.

• If W is finite and w0 ∈W is the (unique) longest element in W , then for all z ∈C(W,S)

the equality ∑
T⊆S

(−1)#T

WT (z)
= zw0

W (z)

holds.

• If W is infinite, then for all z ∈ C(W,S) for which
∑

w∈W zw absolutely converges, the
equality ∑

T⊆S

(−1)#T

WT (z)
= 0

holds.

As the following proposition demonstrates, the growth series of any infinite
Coxeter system can be computed conveniently in a non-recursive way by only
considering finite Coxeter subgroups. It can be deduced from Lemma 2.7.17.

Proposition 2.7.18 ([67, Corollary 17.1.10] and [19, Proposition 7.1.7]). Let (W,S) be
a finite rank Coxeter system for which W is infinite and denote by N :=N (W,S) the nerve
of (W,S). Consider N ∪ {S} with respect to the partial order induced by the inclusion of
sets and inductively define the corresponding Möbius function µN by

µN (T,T ′) :=
{

1 , if T = T ′

−∑
T⊆T ′′(T ′ µN (T,T ′′) , if T ( T ′ ,
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for T,T ′ ∈ N ∪ {S} with T ⊆ T ′. Then for all z ∈ C(W,S) for which
∑

w∈W zw absolutely
converges,

1

W (z)
=− ∑

T∈N

µN (T,S)

WT (z)
.

Example 2.7.19. Let (W,S) be a Coxeter system of the form W =Zk1
2 ? · · ·?Zkl

2 with
l ,k1, . . . ,kl ∈N (compare with Example 2.7.1). Denote by s(m)

1 , . . . , s(m)
km

the mutually

commuting generators corresponding of the component Zkm
2 of W and set Sm :=

{s(m)
1 , . . . , s(m)

km
}, so that in particular S =⋃l

m=1 Sm . The corresponding nerve of (W,S)

is given by
N (W,S) = {; 6= T ⊆ Sm | m = 1, ..., l } .

Using Lemma 2.7.17, an easy computation implies that for all z ∈ C(W,S) for which∑
w∈W zw absolutely converges,

W (z) =
(

l∑
m=1

km∏
i=1

(1+ zs(m)
i

)−1 − (l −1)

)−1

.

As we have seen before, irreducible amenable Coxeter groups are exactly those
Coxeter groups that are of spherical or affine type. The consideration of the growth
series of Coxeter groups leads to a number of other characterizations of this impor-
tant property.

Proposition 2.7.20 ([67, Corollary 17.1.2]). Let (W,S) be a finite rank Coxeter system.
Then the following conditions are equivalent:

• W is amenable;

• W does not contain the free group F2 generated by two elements;

• W is not large, i.e. W does not contain a finite index subgroup which maps onto F2;

• W is virtually abelian;

• W decomposes as a direct product of spherical type and affine type Coxeter groups;

• the radius of convergence of the (single-parameter) growth series
∑

w∈W z |w| is 1;

• W has subexponential growth, i.e. there exists no Λ> 1 such that #{w ∈W | |w| ≤
l } ≥Λl for all l ∈N.





3
HECKE OPERATOR ALGEBRAS

In this chapter, we introduce Iwahori-Hecke algebras and study their operator-
algebraic counterparts. The first three sections, which are mostly not original but
appear in [67, Chapter 19], [133, Chapter 2], [39, Chapter 10] and [35, Section 16]
are concerned with the introduction of general Iwahori-Hecke algebras, the cha-
racterization of these algebras in the setting of affine type Coxeter systems and the
introduction of their operator algebraic counterparts. In Section 3.5 we study iso-
morphisms of Hecke (operator) algebras and Section 3.6 treats amalgamated free
product decompositions of Hecke operator algebras associated with virtually free
Coxeter groups.

The content of these sections is based on parts of the articles

• M. Caspers, M. Klisse, N.S. Larsen, Graph product Khintchine inequalities and
Hecke C∗-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exact-
ness, J. Funct. Anal. 280 (2021), no. 1, Paper No. 108795, 41 pp. no. 1,
108795;

• M. Klisse, Topological boundaries of connected graphs and Coxeter groups, to ap-
pear in the Journal of Operator Theory;

• M. Klisse, Simplicity of right-angled Hecke C∗-algebras, to appear in Int. Math.
Res. Not. IMRN;

• M. Caspers, M. Klisse, A. Skalski, G. Vos, M. Wasilewski, Relative Haagerup
property for arbitrary von Neumann algebras, arXiv preprint arXiv:2110.15078
(2021).

45



3

46 3. HECKE OPERATOR ALGEBRAS

3.1. IWAHORI-HECKE ALGEBRAS

Iwahori-Hecke algebras can be viewed as deformations of the group algebra of
Coxeter groups depending on a deformation (multi-)parameter q . They abstract
certain endomorphism rings appearing in the representation theory of Lie groups
and provide an important tool in the study of the representation theory of reflec-
tion groups and Weyl groups.

The history of Iwahori-Hecke algebras is vast and its detailed description is
beyond the scope of this dissertation. They can be traced back to Iwahori [112]
who discovered that double coset Hecke algebras associated with a Chevalley
group acting on the cosets of a Borel subgroup define Iwahori-Hecke algebras.
His result was later extended to the setting of arbitrary groups with a BN-pair by
Matsumoto [132]. A lot of relevant insights, notably [113], [133], [123], [18], [124],
[131], followed. Today Iwahori-Hecke algebras are ubiquitous, e.g. they occur in
Jones’ construction of an invariant for oriented knots and links [118], they play
a role in combinatorics [107], [106] and the theory of buildings and Kac-Moody
groups acting on them [87, Section 6.2] (see also [160, Section 2.4]). They are linked
to quantum groups and non-commutative geometry, and due to their relation with
reductive groups they occur in the local Langlands program.

In the following, let R be a commutative unital ring, let (W,S) be a Coxeter
system, write R(W ) for the free R-module on W with basis (T̃w)w∈W and denote by
R(W,S) the set of tuples q := (qs )s∈S in RS with the property that zs = zt whenever s
and t are conjugate in W .

Theorem 3.1.1 ([67, Proposition 19.1.1]). For a = (as )s∈S ,b = (bs )s∈S ∈ R(W,S) there
exists a unique ring structure on R(W ) such that for all w ∈W , s ∈ S

T̃s T̃w =
{

T̃sw , if |sw| > |w|
as T̃sw +bs T̃w , if |sw| < |w| . (3.1.1)

Proof. For s ∈ S define R-linear endomorphisms λs : R(W ) → R(W ) and ρs : R(W ) →
R(W ) by

λs (T̃w) :=
{

T̃sw , if |sw| > |w|
as T̃sw +bs T̃w , if |sw| < |w|

and

ρs (T̃w) :=
{

T̃ws , if |ws| > |w|
as T̃ws +bs T̃w , if |ws| < |w| .

By using Theorem 2.7.6 one checks that for all s, t ∈ S the maps λs and ρt commute
in the sense that λs ◦ρt (T̃w) = ρt ◦λs (T̃w) for all w ∈ W . Denote by H the subal-
gebra of EndR (R(W )) generated by the set {λs | s ∈ S}. For w ∈ W choose a reduced
expression w = s1...sn and define

λw :=λs1 ◦ ...◦λsn ∈H and ρw := ρs1 ◦ ...◦ρsn .
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By the above, λv ◦ρw = ρw ◦λv for all v,w ∈W . For s ∈ S and v,w ∈W with |sw| > |w|
we hence have

(λs ◦λw −λsw)(T̃v) = (λs ◦λw −λsw)(ρv(T̃e ))

= ρv((λs ◦λw −λsw)(T̃e ))

= ρv(0)

= 0

and for s ∈ S and v,w ∈W with |sw| < |w|,

(λs ◦λw −asλsw −bsλw)(T̃v) = (λs ◦λw −asλsw −bsλw)(ρv(T̃e ))

= ρv((λs ◦λw −asλsw −bsλw)(T̃e ))

= ρv(0)

= 0.

This implies

λs ◦λw =
{
λsw , if |sw| > |w|
asλsw +bsλw , if |sw| < |w| .

By the same argument as before, the map Φ : H → R(W ) given by λw 7→ λw(T̃e ) for
w ∈W is an R-linear isomorphism. It induces the desired ring structure on R(W ) via

T̃vT̃w :=Φ(Φ−1(T̃v)◦Φ−1(T̃w))

for v,w ∈W . This finishes the proof.

The algebra Ra,b[W ] induced by Theorem 3.1.1 is called the Iwahori-Hecke al-
gebra of the system (W,S) and the multi-parameters a,b ∈ R(W,S). Its unit is given
by 1 := Te . In the following we will only consider the case where a = q for some
q = (qs )s∈S ∈ R(W,S) and where b = (1− qs )s∈S ∈ R(W,S). In that case we denote the
corresponding Iwahori-Hecke algebra by Rq [W ]. For q ∈ R the Iwahori-Hecke al-
gebra associated with (q)s∈S ∈ R(W,S) is called a single-parameter Iwahori-Hecke algebra
which we still denote by Rq [W ]. Note that R1[W ] is the usual group algebra R[W ]
of W . We can hence view Rq [W ] as a “deformation” of R[W ]. To keep track of the
deformation parameter, instead of T̃w we will usually write T̃ (q)

w for the canonical
basis elements of Rq [W ].

Remark 3.1.2. (a) Let (W,S) be a Coxeter system and let a = (as )s∈S ,b = (bs )s∈S ∈C(W,S)

be multi-parameters for which as 6= 0 or bs 6= 0 for every s ∈ S. If for every s ∈ S, λs ∈
C denotes the non-zero root of the polynomial λ2 −bsλ−as and if q := (asλ

−2
s )s∈S ∈

C(W,S), then the defining properties of the corresponding Iwahori-Hecke algebras
induce an algebra isomorphism Ra,b[W ] ∼= Rq [W ] via T̃w 7→ λwT̃ (q)

w for w ∈ W . In-
deed, for s ∈ S and w ∈W with |sw| > |w| one has

(λs T̃ (q)
s )(λwT̃ (q)

w ) =λswT̃ (q)
sw
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and for s ∈ S and w ∈W with |sw| < |w| one has

(λs T̃ (q)
s )(λwT̃ (q)

w ) =λsλw(qs T̃ (q)
sw + (1−qs )T̃ (q)

w ) = as (λswT̃ (q)
sw )+bs (λwT̃ (q)

w ).

The existence of the isomorphism then follows from Theorem 3.1.1. The observa-
tion demonstrates that in this case the consideration of Iwahori-Hecke algebras of
the form Cq [W ], q ∈C(W,S) is not really restrictive.
(b) Let R be a commutative unital ring, let (W,S) be a Coxeter system and let
q = (qs )s∈S ∈ R(W,S). By the equality (3.1.1), for s ∈ S with qs ∈ R×, the element T̃ (q)

s is
invertible with (T̃ (q)

s )−1 = q−1
s T̃ (q)

s + (1−q−1
s ).

Since this dissertation is concerned with the study of operator algebras associ-
ated with Iwahori-Hecke algebras, from Section 3.4 on we will only consider the
case where R = C and q ∈ R(W,S)

>0 . Following the notation in [86] (see also [46], [45],

[49], [160], [126], [127], [161], [128], [50]), in this case we set T (q)
w := q

− 1
2

w T̃ (q)
w for

w ∈ W . Then (T (q)
w )w∈W ⊆ Cq [W ] is a basis of Cq [W ] which satisfies an analogue of

(3.1.1),

T (q)
s T (q)

w =
{

T (q)
sw , if |sw| > |w|

T (q)
sw +ps (q)T (q)

w , if |sw| < |w|

for s ∈ S, w ∈W where ps (q) := q
− 1

2
s (qs −1) and we have (T (q)

s )−1 = T (q)
s −pq .

The following statements are easy to check and appear in [67, Chapter 19]. We
will constantly make use of them in the later sections without further mention.

Lemma 3.1.3 ([67, Lemma 19.1.2]). Let R be a commutative unital ring, let (W,S) be a
Coxeter system and let q = (qs )s∈S ∈ R(W,S). Then the following statements hold:

• For all v,w ∈W with |vw| = |v|+ |w| the equality T̃ (q)
v T̃ (q)

w = T̃ (q)
vw holds;

• For all s ∈ S the equality (T̃ (q)
s )2 = qs + (1−qs )T̃ (q)

s holds;

• For all s, t ∈ S with mst 6=∞, T̃ (q)
s T̃ (q)

t ... = T̃ (q)
t T̃ (q)

s ... where the number of factors on
the left-hand side and right-hand side equals mst .

In this context (as well as in other instances) the relation T̃ (q)
s T̃ (q)

t ... = T̃ (q)
t T̃ (q)

s ...
in Lemma 3.1.3 is often refered to as a Braid relation.

Iwahori-Hecke algebras also admit a right-handed version of (3.1.1).

Lemma 3.1.4 ([67, Proposition 19.1.1]). Let R be a commutative unital ring, let (W,S)
be a Coxeter system and let q = (qs )s∈S ∈ R(W,S). Then for all s ∈ S, w ∈W ,

T̃wT̃s =
{

T̃ws , if |ws| > |w|
as T̃ws +bs T̃w , if |ws| < |w| .

In the case where R = C and q ∈ R(W,S)
>0 , analogues of Lemma 3.1.3 and Lemma

3.1.4 also hold true for T (q)
w , w ∈W .
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3.2. IWAHORI-HECKE ALGEBRAS OF FINITE COXETER

GROUPS

Let (W,S) be a Coxeter system for which W is finite. In the case where the com-
mutative unital ring R coincides with the complex numbers, the group ring R[W ]
is semi-simple in the sense that for every 0 6= x ∈ R[W ] there exists an irreducible re-
presentation π with π(x) 6= 0. From abstract algebraic arguments, it can be deduced
that for most choices of the parameter q ∈ R(W,S) the representation theory of the
corresponding Iwahori-Hecke algebra Rq [W ] is relatively easy. More concretely,
it follows from Tits’ deformation theorem (see e.g. [39, Theorem 10.11.2]) that the
Iwahori-Hecke algebra Rq [W ] is isomorphic to the group algebra R[W ] if and only
if Rq [W ] is semi-simple. The underlying reasoning is based on the classification
of finite-dimensional semi-simple algebras and the isomorphism is not explicit.
Similar arguments apply to more general choices of R as well.

In the case where Rq [W ] is not semi-simple, it contains a nilpotent ideal (i.e. an
ideal I for which I k = 0 for some k ∈N) and can look quite different from R[W ]. It
is therefore of interest to know for which choice of q = (qs )s∈S ∈ R(W,S) the algebra
Rq [W ] is semi-simple. It can be shown that this happens if for every s ∈ S the
coefficient qs is not a proper root of unity, so in particular Rq [W ] ∼= R[W ] for all
q ∈R(W,S)

>0 .

3.3. IWAHORI-HECKE ALGEBRAS OF AFFINE TYPE

Even though in recent years Iwahori-Hecke algebras of non-affine type Coxeter
systems gained attention, traditionally the study of Iwahori-Hecke algebras was
mainly focused on spherical and (extended) affine type Coxeter systems. The rea-
son being that, similar to the characterization of affine Coxeter groups in terms of
reflections of Euclidean vector spaces (see Subsection 2.7.3), these algebras admit
a convenient characterization in terms of crystallographic root systems.

An important tool in the representation theory of Iwahori-Hecke algebras of
affine type Coxeter systems is Bernstein’s (unpublished) presentation (see e.g. [131],
[96], [35]). It implies that these algebras are finitely generated over their centers
which will play a role in Chapter 8. Following [35] (see also [131], [96]), we will
present some details.

Let V be a finite-dimensional real Euclidean vector space with canonical in-
ner product 〈·, ·〉 and let Φ be an irreducible crystallographic root system. Re-
call that by Theorem 2.7.12 the subgroup Waff := Waff(Φ) of O(V ) generated by the
affine reflections

{
sα,i |α ∈Φ, i ∈Z}

is a Coxeter group with respect to the genera-
ting set Saff := {

sα,0 |α ∈∆}∪ {
sα̃,1

}
where ∆ is a simple system and where α̃ de-

notes the corresponding highest root. Further recall that every irreducible affine
type Coxeter group arises in that fashion and that Waff decomposes as a semidi-
rect product Waff

∼= T oW . Here T is the group of translations tv , v ∈ L(Φ∨) with
Φ∨ = {

α∨ |α ∈Φ}⊆ V , L(Φ∨) = {
n1α1 + ...+nlαl |α1, ...,αl ∈Φ∨,n1, ...,nl ∈Z

}
and W is



3

50 3. HECKE OPERATOR ALGEBRAS

the irreducible finite Coxeter group with generating set S = {sα |α ∈∆}.
Let R be a commutative unital ring, let q = (qs )s∈Saff ∈ R(Waff,Saff) with qs ∈ R× for

all s ∈ Saff and consider the corresponding Iwahori-Hecke algebra Rq [Waff]. As be-
fore, denote by |·| the word length with respect to the generating set Saff. Note that
in general |tv tw | 6= |tv |+ |tw | for v, w ∈ L(Φ∨). In particular, usually T̃ (q)

tv tw
6= T̃ (q)

tv
T̃ (q)

tw
.

To fix this issue, introduce the set

Ldom(Φ∨) := {
x ∈ L(Φ∨) | 〈x,α〉 ≥ 0 for all α ∈∆}⊆V

of dominant weights in the co-root lattice. From the characterization of |·| in terms of
the number of hyperplanes which separate a certain alcove and the fundamental
alcove (see Subsection 2.7.3) one deduces |tv tw | = |tv | + |tw | for all v, w ∈ Ldom(Φ∨)

(see [35, Lemma 17] for details) and hence that T̃ (q)
tv tw

= T̃ (q)
tv

T̃ (q)
tw

. Now, a general
weight x ∈ L(Φ∨) decomposes as x = v −w where v, w ∈ Ldom(Φ∨). Define

θ
(q)
x := T̃ (q)

tv
(T̃ (q)

tw
)−1 ∈ (Rq [W ])×

and note that θ(q)
x does not depend on the choice of v, w ∈ Ldom(Φ∨). Indeed, if

v −w = v ′−w ′ for v, w ∈ Ldom(Φ∨), then

T̃ (q)
tw ′ T̃ (q)

tv
= T̃ (q)

tw ′ tv
= T̃ (q)

tv ′ tw
= T̃ (q)

tv ′
T̃ (q)

tw

and hence

T̃ (q)
tv

(T (q)
tw

)−1 = (T̃ (q)
tw ′ )−1T̃ (q)

tv ′

= (T̃ (q)
tw ′ )−1T̃ (q)

tv ′
T̃ (q)

tw ′ (T̃ (q)
tw ′ )−1

= (T̃ (q)
tw ′ )−1T̃ (q)

tw ′ T̃ (q)
tv ′

(T̃ (q)
tw ′ )−1

= T̃ (q)
tv ′

(T̃ (q)
tw ′ )−1.

By a similar calculation we also have that θ(q)
x θ

(q)
y = θ

(q)
x+y for all x, y ∈ L(Φ∨), so in

particular the subalgebra A of Rq [W ] generated by all elements θ(q)
x , x ∈ L(Φ∨) is

commutative. It is canonically isomorphic to the group algebra R[T ].
The group W naturally acts on A via w.θx := θw(x) for w ∈ W , x ∈ L(Φ∨). It is a

remarkable (unpublished) result by Bernstein that the center Z (Rq [W ]) of Rq [W ]
coincides with the set A W of W -invariant elements in A and that it is large in the
sense that Rq [W ] is finitely generated over Z (Rq [W ]) . Further, the set of elements
of the form θ

(q)
x T̃ (q)

w where x ∈ Ldom(Φ∨), w ∈ W forms an R-basis of Rq [W ]. For a
proof (in a slightly different setting) see [131], [96] and [35].

Theorem 3.3.1 (Bernstein). Let R be a commutative unital ring, let (W,S) be an irre-
ducible Coxeter system of affine type and let q = (qs )s∈S ∈ R(W,S) with qs ∈ R× for all s ∈ S.
Then there exists a subset T ⊆ S such that the special subgroup WT is finite and such that
every element in the Iwahori-Hecke algebra Rq [W ] is a sum of the form

∑
w∈WT zwT̃ (q)

w with
coefficients zw ∈Z (Rq [W ]), i.e. Rq [W ] is finitely generated over its center.
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We are finally in the position to introduce Hecke operator algebras which are the
central focus of study of this dissertation. In the case of spherical and (extended)
affine Coxeter systems these types of completions of Iwahori-Hecke algebras have
been considered early by Matsumoto in [133]. In the eighties Baum, Higson and
Plymen looked at C∗-completions of affine Iwahori-Hecke algebras in relation to
the Baum-Connes conjecture (an account of which can be found in [15]). Further,
an extensive treatment of them appears in the article [146] which inspired several
other results, some of which are [69], [147], [167], [168].

In the (possibly) non-affine setting Hecke operator algebras first occurred in the
context of the `2-cohomology of buildings (see [76], [66] and also [67]). Motivated
by this, Davis formulated in [67, Chapter 19] the question for a classification of fac-
torial Hecke-von Neumann algebras. In the right-angled single-parameter setting
such a classification was obtained by Garncarek (see [86]) who further observed
that Hecke-von Neumann algebras of right-angled Coxeter groups are closely re-
lated to Dykema’s interpolated free group factors, which play an important role in
the treatment of the infamous free factor problem (see [73], [159], [86]). A number
of other results followed, see [45], [46], [160], [24], [49], [161].

Let (W,S) be a Coxeter system and q = (qs )s∈S ∈ R(W,S)
>0 . Write `2(W ) for the

Hilbert space of square-summable functions on W and denote its canonical or-

thonormal basis by (δw)w∈W ⊆ `2(W ). For every s ∈ S the element T (q)
s = q

− 1
2

s T̃ (q)
s ∈

Cq [W ] acts boundedly on `2(W ) via

T (q)
s δw :=

{
δsw , if |sw| > |w|
δsw +ps (q)δw , if |sw| < |w| (3.4.1)

where as before ps (q) := q
− 1

2
s (qs −1). The induced map S → B(`2(W )) extends to a

faithful algebra representation Cq [W ] ,→B(`2(W )) (compare with the proof of The-
orem 3.1.1). We will identify Cq [W ] with its image under this representation. With
the involution coming from B(`2(W )), the Iwahori-Hecke algebra Cq [W ] carries a
∗-algebra structure satisfying (T (q)

w )∗ = T (q)
w−1 for w ∈W .

Remark 3.4.1. Let (W,S) be a Coxeter system and q = (qs )s∈S ∈ R(W,S)
>0 . Note that

for s ∈ S the element T (q)
s (viewed as an operator in B(`2(W ))) is self-adjoint. The

equality (T (q)
s )2 = 1+ ps (q)T (q)

s implies that every point λ in the spectrum of T (q)
s

satisfies λ2 = 1+ps (q)λ. One further checks that the vectors

ξ1 := q
1
2
s (qs +1)−1δs + (qs +1)−1δe

and
ξ2 :=−q

1
2
s (qs +1)−1δs +qs (qs +1)−1δe

are eigenvectors of T (q)
s with T (q)

s ξ1 = q
1
2
s ξ1 and T (q)

s ξ2 = −q
− 1

2
s ξ2. Hence the spec-

trum of T (q)
s is given by {−q

− 1
2

s , q
1
2
s }. In particular, ‖T (q)

s ‖ = max{q
1
2
s , q

− 1
2

s }.
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Consider the anti-linear isometric isomorphism J on `2(W ) defined by δv 7→ δv−1

and define operators T (q),r
w := JT (q)

w J ∈ B(`2(W )) for w ∈ W . One checks that every
such operator satisfies a right-handed (i.e. with the order of s and w reversed)
analogue of (3.4.1) and that it commutes with the elements in Cq [W ] ⊆ B(`2(W )).
Hence, the right-handed Iwahori-Hecke algebra

Cr
q [W ] :=∗-Alg({T (q),r

w | w ∈W }) ⊆B(`2(W ))

of the system (W,S) and the multi-parameter q ∈ R(W,S)
>0 is contained in the com-

mutant (Cq [W ])′ ⊆ B(`2(W )) of Cq [W ] and conversely Cq [W ] is contained in the
commutant (Cr

q [W ])′ ⊆ B(`2(W )) of Cr
q [W ]. A short calculation implies that the

orthonormal basis vector δe ∈ `2(W ) associated with the neutral element e of the
group is cyclic and separating for both Cq [W ] and Cr

q [W ].

We define the (reduced) Hecke C∗-algebra C∗
r,q (W ) of (W,S) and q ∈ R(W,S)

>0 as
the norm closure of Cq [W ] in B(`2(W )) and the corresponding Hecke-von Neu-
mann algebra as Nq (W ) := (Cq [W ])′′ ⊆B(`2(W )). Similarly, the right-handed (reduced)
Hecke C∗-algebra C∗,r

r,q (W ) is the norm closure of Cr
q [W ] in B(`2(W )) and N r

q (W ) :=
(Cr

q [W ])′′ ⊆B(`2(W )) is the right-handed Hecke-von Neumann algebra. For q ∈R>0 we
denote the single-parameter Hecke operator algebras associated with (q)s∈S ∈R(W,S)

>0 by
C∗

r,q (W ), Nq (W ), C∗,r
r,q (W ) and N r

q (W ) as well.
Note that for q = 1 := (1)s∈S ∈R(W,S)

>0 one has that Cq [W ] =C[W ], C∗
r,q (W ) =C∗

r (W )
and Nq (W ) = L (W ) are respectively the group algebra, the reduced group C∗-
algebra and the group von Neumann algebra of W and that T (1)

w ∈B(`2(W )), w ∈W
is nothing but the left regular representation operator λw (see Section 2.3). Hecke
(C∗- and von Neumann) algebras can hence be viewed as q-deformations of group
(C∗- and von Neumann) algebras of Coxeter groups where the deformation (in
principle) depends on the parameter q .

Remark 3.4.2. (a) For completeness it should be mentioned that in [160] Raum and
Skalski introduced `r -convolution algebra analogues to Hecke-von Neumann al-
gebras which generalize the construction above. These analogues will however
not occur as a part of this thesis.
(b) Similar to the group C∗-algebraic setting (see Section 2.3) one can introduce
a universal analogue to reduced Hecke C∗-algebras which, to the author’s best
knowledge does not yet occur in the literature. For this, let (W,S) be a Coxe-
ter system, let q = (qs )s∈S ∈ R(W,S)

>0 and define C∗
u,q (W ) to be the completion of the

Iwahori-Hecke algebra Cq [W ] (equipped with the ∗-algebra structure from before)
with respect to the norm

‖x‖u := sup
{‖π(x)‖ |π is a (cyclic) ∗-representation of Cq [W ]

}
.

Similar to the reasoning in Remark 3.4.1 it can be deduced that the supremum
is indeed finite for every x ∈ Cq [W ], i.e. the C∗-algebra C∗

u,q (W ) is well-defined.
It identifies with the universal C∗-algebra generated by a family of self-adjoint
elements (Rs )s∈S with respect to the relations R2

s = 1+ps (q)Rs for s ∈ S and Rs Rt Rs ... =
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Rt Rs Rt ... for s, t ∈ S with mst 6=∞ where the number of factors on the left-hand side
and the right-hand side equals mst . Further, the identity map on Cq [W ] uniquely
extends to a surjective ∗-homomorphism C∗

u,q (W )�C∗
u,r (W ).

In the following sections, we will be mostly concerned with reduced Hecke
C∗-algebras. The q-deformed setting however leads to a couple of curious phe-
nomena of universal Hecke C∗-algebras which will be discussed in Section 3.5.

Let us proceed by collecting some basic facts about Hecke operator algebras.

Lemma 3.4.3. Let (W,S) be a Coxeter system and q ∈R(W,S)
>0 . Then the vector state

τ : B(`2(W )) →C,τ(x) := 〈xδe ,δe〉

restricts to a normal tracial state τq on Nq (W ) with τq (T (q)
w ) = 0 for all w ∈W \ {e}.

Proof. It is clear that the restriction τq of τ to Nq (W ) is normal and satisfies τq (T (q)
w ) =

0 for w ∈W \ {e}. The traciality follows from

τq (T (q)
v T (q)

w ) =
〈

T (q)
v T (q)

w δe ,δe

〉
= 〈

δw,δv−1

〉={
0 , if w 6= v−1

1 , if w = v−1

for v,w ∈ W . Finally, the faithfulness of τq can be deduced from the fact that δe ∈
`2(W ) is separating for Nq (W ).

One easily checks that an analaogue of Lemma 3.4.3 also holds for N r
q (W ).

Lemma 3.4.4 ([76, Proposition 2.1]). Let (W,S) be a Coxeter system and q ∈R(W,S)
>0 . Then

N r
q (W ) = (Nq (W ))′ and Nq (W ) = (N r

q (W ))′, i.e. Nq (W ) is the commutant of N r
q (W )

and vice versa.

Proof. As mentioned before, Cq [W ] ⊆ (Cr
q [W ])′ and Cr

q [W ] ⊆ (Cq [W ])′ which implies
that

Nq (W ) = (Cq [W ])′′ ⊆ (Cr
q [W ])′′′ = (N r

q (W ))′

and similarly N r
q (W ) ⊆ (Nq (W ))′. Thus, by the well-known properties of the mo-

dular conjugation operator J ,

Nq (W ) ⊆ (N r
q (W ))′ = JN r

q (W )J ⊆ J (Nq (W ))′ J =Nq (W ),

i.e. Nq (W ) = (N r
q (W ))′ and N r

q (W ) = (Nq (W ))′.

Proposition 3.4.5 ([67, Proposition 19.2.2]). Let (W,S) be a Coxeter system, q = (qs )s∈S ∈
R

(W,S)
>0 , T ⊆ S and set qT := (qt )t∈T ∈ R(WT ,T )

>0 . Then the canonical embedding CqT [WT ] ,→
Cq [W ],T (qT )

w 7→ T (q)
w uniquely extends to ∗-embeddings C∗

r,qT
(WT ) ,→C∗

r,q (W ) and NqT (WT )
,→Nq (W ).
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Proof. Denote the map CqT [WT ] ,→ Cq [W ] given by T (qT )
w 7→ T (q)

w for w ∈ W by ι. It
obviously preserves the ∗-structure of CqT [WT ] ⊆B(`2(WT )). For w ∈W write

`2(WT w) := Span{δv | v ∈WT w} ⊆ `2(W )

and note that these subspaces give rise to a direct sum decomposition `2(W ) ∼=⊕
WT w`

2(WT w) where the sum runs over all right cosets WT w, w ∈ W . In this pic-
ture, for every x ∈CqT [WT ] the image ι(x) preserves the summands and acts on each
of them in the same way in the sense that U∗ι(x)U = x where U : `2(WT ) → `2(WT w)
is the natural unitary. Hence ι(x) is a multiple of the operator x where the multi-
plicity coincides with the number of cosets. This implies the claim.

It is often useful not to consider Hecke operator algebras of a given Coxeter sys-
tem independently from each other, but to embrace that they are deformations con-
tinuously depending on the parameter q . This perspective will play a major role in
the later chapters of this thesis. The following lemma is a multi-parameter version
of [46, Lemma 2.7] and roughly states that the canonical basis elements (viewed as
operators on `2(W )) of a given right-angled Iwahori-Hecke algebra conveniently
decompose as sums of products of group algebra elements and certain projections.
It should be mentioned that decompositions of this flavour also exist outside of the
right-angled setting. However, these are often much harder to formulate explicitly
due to the (potentially) more complicated combinatorial structure of the underly-
ing Coxeter group.

Proposition 3.4.6 ([46, Lemma 2.7]). Let (W,S) be a right-angled Coxeter system. De-
note the set of subsets of S whose elements pairwise commute (including the empty set) by
Cliq, let Ps ∈ `∞(W ) ⊆B(`2(W )) be the orthogonal projection onto

Span
{
δv | v ∈W with s ≤ v

}⊆ `2(W )

and write PΓ := ∏
s∈ΓPs for Γ ∈ Cliq. Further, for w ∈ W let Aw be the set of triples(

w′,Γ,w′′) with w′,w′′ ∈W and Γ ∈Cliq such that w = w′ (∏
s∈Γ s

)
w′′, |w| = |w′|+|∏s∈Γ s|+

|w′′| and |w′t | > |w′| for all t ∈ S with mst = 2 for all s ∈ Γ. Then the operator T (q)
w decom-

poses as

T (q)
w = ∑

(w′,Γ,w′′)∈Aw

(∏
s∈Γ

ps (q)

)
T (1)

w′ PΓT (1)
w′′ . (3.4.2)

Proof. The proof proceeds by induction over the word length of w. Note that in the
case where |w| = 1 it follows from (3.4.1) that T (q)

w = T (1)
w +pw(q)Pw.

Now suppose that (3.4.2) holds for w ∈ W and let t ∈ S with |tw| = |w|+1. One
gets that

T (q)
tw = T (q)

t T (q)
w

=
(
T (1)

t +pt (q)Pt

)( ∑
(w′,Γ,w′′)∈Aw

(∏
s∈Γ

ps (q)

)
T (1)

w′ PΓT (1)
w′′

)
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= ∑
(w′,Γ,w′′)∈Aw

(∏
s∈Γ

ps (q)

)(
T (1)

t T (1)
w′ PΓT (1)

w′′ +pt (q)Pt T (1)
w′ PΓT (1)

w′′
)

. (3.4.3)

For a triple
(
w′,Γ,w′′) ∈ Aw distinguish the following two cases.

(1): If tw′ = w′t , by the assumptions |tw| = |w| +1 and |w| = |w′| + |∏s∈Γ s| + |w′′|
we have that t �w′ in the weak right Bruhat order (see Subsection 2.7.2). It follows
that Pt T (1)

w′ = T (1)
w′ Pt and hence pt (q)Pt T (1)

w′ PΓT (1)
w′′ = pt (q)T (1)

w′ Pt PΓT (1)
w′′ . One further

has Pt PΓ = P{t }∪Γ if {t }∪Γ ∈Cliq and Pt PΓ = 0 otherwise.
(2): Now assume that tw′ 6= w′t . For every u ∈ W with PΓδu 6= 0 there ex-

ists a decomposition u = vv′ with |u| = |v| + ∣∣v′∣∣ where v := ∏
s∈Γ s and v′ ∈ W . Let

w′ = s1...sn be a reduced expression for w′. By the properties of
(
w′,Γ,w′′) one has∣∣sn vv′

∣∣= |v|+∣∣v′∣∣+1. Indeed, if
∣∣sn vv′

∣∣= |v|+∣∣v′∣∣−1 then sn either cancels a letter in the
expression

∏
s∈Γ s for v or s commutes with v (see Subsection 2.7.4). Both options

contradict the assumptions on the triple
(
w′,Γ,w′′) ∈ Aw that |w| = |w′| + |v| + |w′′|

and |w′t ′| > |w′| for all t ′ ∈ S with mst ′ = 2 for all s ∈ Γ. By the same argument,∣∣sn−1sn vv′
∣∣ = |v| + ∣∣v′∣∣+ 2. Proceeding like this we get that

∣∣w′vv′
∣∣ = ∣∣w′∣∣+ |v| + ∣∣v′∣∣.

Now, by |tw| = |w| + 1 we in particular have that t � w′ and since tw′ 6= w′t we
deduce that Pt T (1)

w′ PΓδu = Ptδw′vv′ = 0 (again, see Subsection 2.7.4). It follows that
Pt T (1)

w′ PΓ = 0.

The considerations above imply in combination with (3.4.3) that

T (q)
tw = ∑

(w′,Γ,w′′)∈Aw

(∏
s∈Γ

ps (q)

)
T (1)

tw′PΓT (1)
w′′

+ ∑
(w′,Γ,w′′)∈Aw:tw′=w′t ,{t }∪Γ∈Cliq

( ∏
s∈{t }∪Γ

ps (q)

)
T (1)

w′ P{t }∪ΓT (1)
w′′

= ∑
(w′,Γ,w′′)∈Atw

(∏
s∈Γ

ps (q)

)
T (1)

w′ PΓT (1)
w′′

from which the claim follows.

We finish this subsection with a useful inequality.

Lemma 3.4.7. Let (W,S) be a Coxeter system, q = (qs )s∈S ∈R(W,S)
>0 and w ∈W . Let further

w = s1...sn with s1, ..., sn ∈ S be a reduced expression for w. Then,

n∏
i=1

min
{

qsi , q−1
s

}≤ (T (q)
w )∗T (q)

w ≤
n∏

i=1
max

{
qsi , q−1

s

}
. (3.4.4)

Proof. By Remark 3.4.1 for every 1 ≤ i ≤ n the spectrum of (T (q)
si

)2 is given by
{qsi , q−1

si
} and hence min{qsi , q−1

si
} ≤ (T (q)

si
)2 ≤ max{qsi , q−1

si
}. It inductively follows

that

(T (q)
w )∗T (q)

w = T (q)
sn

...T (q)
s1

T (q)
s1

...T (q)
sn
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≥ min{qs1 , q−1
s1

}T (q)
sn

...T (q)
s2

T (q)
s2

...T (q)
sn

≥ ...

≥
n∏

i=1
min

{
qsi , q−1

si

}
and similarly

(T (q)
w )∗T (q)

w = T (q)
sn

...T (q)
s1

T (q)
s1

...T (q)
sn

≤ max{qs1 , q−1
s1

}T (q)
sn

...T (q)
s2

T (q)
s2

...T (q)
sn

≤ ...

≤
n∏

i=1
max

{
qsi , q−1

s

}
.

This proves the inequality (3.4.4).

3.5. ISOMORPHISMS OF HECKE ALGEBRAS

This section aims to discuss isomorphism properties of Hecke algebras and their
implications for the associated operator algebras, in particular concerning the de-
pendence on the multi-parameter. Recall that these properties are well understood
in the case of finite Coxeter systems, see Section 3.2.

The following proposition is well-known on the algebraic level, see for instance
[133, Chapter 2], [67, Chapter 19], [145, Section 9]. The proof of its operator alge-
braic counterparts makes use of the following general fact which is standard and
shall be used several times in the course of this thesis.

Lemma 3.5.1. Let A and B be unital C∗-algebras with respective faithful tracial states τA

and τB . Let A0 ⊆ A and B0 ⊆ B be dense ∗-subalgebras of A and B and let π : A0 → B0

be a ∗-isomorphism such that τB ◦π= τA . Then π extends to ∗-isomorphisms A → B and
πτA (A)′′ →πτB (B)′′ where πτA and πτB denote the GNS-representations.

Proof. The statement is essentially [135, Theorem 5.1.4]. Without loss of generality
we may assume that A and B are represented on their GNS-Hilbert spaces L2(A,τA)
and L2(B ,τB ) with cyclic vectors ΩA and ΩB . Then the map U : L2(A,τA) → L2(B ,τB )
induced by U (aΩA) :=π(a)ΩB for a ∈ A0 is a unitary with π(a) =UaU∗. Therefore π
extends to a map A → B as well as a map A′′ → B ′′.

Proposition 3.5.2. Let (W,S) be a Coxeter system and q = (qs )s∈S ∈ R(W,S)
>0 , ε= (εs )s∈S ∈

{−1,1}(W,S). Then C∗
r,q (W ) ∼= C∗

r,q ′ (W ) and Nq (W ) ∼= Nq ′ (W ) via T (q)
s 7→ εs T (q ′)

s where

q ′ := (qεs
s )s∈S ∈R(W,S)

>0 .

Proof. First note that εs ps (q ′) = ps (q). From the defining properties of the Iwahori-
Hecke algebras Cq [W ] and Cq ′ [W ] (see Theorem 3.1.1) it follows that T (q)

s 7→ εs T (q ′)
s

for s ∈ S determines a ∗-isomorphism πq ′,q :Cq [W ] →Cq ′ [W ]. Moreover,

τq ′ ◦πq ′,q (T (q)
w ) = εwτq ′ (T (q ′)

w ) = τq (T (q)
w )
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because τq ′ (T (q ′)
w ) = τq (T (q)

w ) = 0 for all w ∈W \{e}. We get that πq ′,q is trace-preserving
and hence, by Lemma 3.5.1, πq ′,q extends to ∗-isomorphisms C∗

r,q (W ) ∼= C∗
r,q ′ (W )

and Nq (W ) ∼=Nq ′ (W ).

The following proposition easily follows from Proposition 3.4.5 in combination
with the universal property of the inductive limit construction.

Proposition 3.5.3. Let (W,S) be a Coxeter system, q = (qs )s∈S ∈R(W,S)
>0 , T0 ⊆ S finite and

S := {
T ⊆ S | T finite with T0 ⊆ T

}
. For T ∈S set qT := (qt )t∈T . Then{

(C∗
r,qT

(WT ),φT,T ′ ) | T,T ′ ∈S with T ⊆ T ′
}

withφT,T ′ (T (qT )
t ) := T

(qT ′ )
t for t ∈ T defines an inductive system with C∗

r,q (W ) ∼= lim−−→C∗
r,qT

(WT ).

Theorem 3.5.4. Let (W,S) be a spherical type Coxeter system and q ∈ R(W,S)
>0 . Then the

Hecke C∗-algebra C∗
r,q (W ) is ∗-isomorphic to the reduced group C∗-algebra C∗

r (W ). A
similar statement holds for the corresponding Hecke-von Neumann algebras.

Proof. First assume that #S < ∞, that is W is a finite group and hence Cq [W ] =
C∗

r,q (W ) = Nq (W ), C[W ] = C∗
r (W ) = L (W ). By the discussion in Section 3.2, the

Iwahori-Hecke algebra Cq [W ] is algebraically isomorphic to C1[W ]. Recall that
every finite-dimensional C∗-algebra is ∗-isomorphic to a direct sum of matrix al-
gebras. There are different C∗-structures on such an algebra, but they are all equi-
valent under conjugation by suitable elements. It follows that finite-dimensional
C∗-algebras are isomorphic as C∗-algebras if and only if they are isomorphic as
algebras. We deduce that C∗

r,q (W ) ∼=C∗
r (W ) and Nq (W ) ∼= L (W ). In the case where

#S =∞, the same statement follows from the finitely generated case in combination
with Proposition 3.5.3.

Proposition 3.5.5. Let (W,S) be a Coxeter system that admits a non-trivial decomposition
of the form (W,S) = (WT ×WT ′ ,T tT ′). For q ∈R(W,S)

>0 set qT := (qt )t∈T and qT ′ := (qt )t∈T ′ .
Then the corresponding Hecke algebra decomposes as an algebraic tensor product Cq [W ] ∼=
CqT [WT ]¯CqT ′ [WT ′ ] via T (q)

vw 7→ T (qT )
v ⊗T

(qT ′ )
w for v ∈ WT , w ∈ WT ′ . This induces C∗-

algebraic and von Neumann algebraic isomorphisms C∗
r,q (W ) ∼= C∗

r,qT
(WT )⊗C∗

r,qT ′ (WT ′ )

and Nq (W ) ∼=NqT (WT )⊗NqT ′ (WT ′ ).

Proof. Define a linear map U : `2(W ) → `2(WT )⊗`2(WT ′ ) by δvw 7→ δv⊗δw for v ∈WT ,
w ∈WT ′ . The operator U defines an isometric isomorphism with

U T (q)
t U∗(δv ⊗δw) =

{
δtv ⊗δw , if |tv| > |v|
δtv ⊗δw +pt (qT )δv ⊗δw , if |tv| < |v|

for t ∈ T , v ∈WT ,w ∈WT ′ and

U T (q)
t U∗(δv ⊗δw) =

{
δv ⊗δtw , if |tw| > |w|
δv ⊗δtw +pt (qT ′ )δv ⊗δtw , if |tw| < |w|
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for t ∈ T ′, v ∈ WT ,w ∈ WT ′ . For v ∈ WT with reduced expressions v = s1...sm where
s1, ..., sm ∈ T and w ∈ WT ′ with reduced expression w = t1...tn where t1, ..., tn ∈ T ′ it
hence follows that

U T (q)
vw U∗ = (U T (q)

s1
U∗)...(U T (q)

sm
U∗)(U T (q)

t1
U∗)...(U T (q)

tn
U∗)

= (T (qT )
s1

⊗1)...(T (qT )
sm

⊗1)(1⊗T
(qT ′ )
t1

)...(1⊗T
(qT ′ )
tn

)

= T (qT )
v ⊗T

(qT ′ )
w ,

i.e. the unitary operator U implements isomorphisms Cq [W ] ∼=CqT [WT ]¯CqT ′ [WT ′ ],
C∗

r,q (W ) ∼=C∗
r,qT

(WT )⊗C∗
r,qT ′ (WT ′ ) and Nq (W ) ∼=NqT (WT )⊗NqT ′ (WT ′ ).

Because many operator algebraic properties are preserved by taking inductive
limits and tensor products, Proposition 3.5.2, Proposition 3.5.3 and Proposition
3.5.5 allow to restrict in the treatment of questions like the ones for simplicity of
Hecke C∗-algebras or factoriality of Hecke-von Neumann algebras to irreducible,
finite rank Coxeter systems (W,S) and parameters q = (qs )s∈S ∈ R(W,S)

>0 with 0 < qs ≤
1.

To the author’s best knowledge other than in the spherical type case there exists
no general statement for arbitrary Coxeter systems (W,S) on the dependence of the
isomorphism class of the Hecke deformations on the multi-parameter q ∈ R(W,S)

>0 .
However, for right-angled (not necessarily spherical type) Coxeter systems one can
still prove that all Iwahori-Hecke algebras are isomorphic; even with an explicit
isomorphism. See e.g. [133, (2.1.13)], [145, Corollary 9.7] for this result which we
present in an alternative way that is suited for the next sections.

Proposition 3.5.6. Let (W,S) be a right-angled Coxeter system and q = (qs )s∈S ∈ R(W,S)
>0 .

Then the map πq,1: C1 [W ] →Cq [W ] given by

1 7→ 1 and T (1)
s 7→ 1−qs

1+qs
+ 2

p
qs

1+qs
T (q)

s (3.5.1)

for s ∈ S defines an isomorphism of ∗-algebras.

Proof. Set αs (q) := (1−qs )(1+qs )−1 and βs (q) := 2q
1
2
s (1+qs )−1. Being its own inverse,

for s ∈ S the expression αs (q)+βs (q)T (q)
s ∈ Cq [W ] is invertible. It induces a map

S →Cq [W ]×, s 7→αs (q)+βs (q)T (q)
s that uniquely extends to a group homomorphism

φ on the free group F (S) in S. Because (W,S) is right-angled one easily checks that
φ (st )mst = (

φ (s)φ (t )
)mst for all s, t ∈ S. This implies that φ induces a group homo-

morphism φ′ : W → Cq [W ]× with (φ′(w))∗ = φ(w−1) for every w ∈ W . The universal
property of the group algebra C1 [W ] then implies the existence of the unital ∗-
algebra homomorphism πq,1. It is clearly surjective. The injectivity follows from
the universal property of the Iwahori-Hecke algebra C1 [W ], see Theorem 3.1.1.

Remark 3.5.7. (a) The homomorphism prescribed by (3.5.1) does not necessarily
exist if (W,S) is not right-angled. This already fails for the Coxeter group W =〈

s, t | s2 = t 2 = (st )3 = e
〉

and points out an inaccuracy in [67, Note 19.2].
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(b) Let (W,S) be a right-angled Coxeter system and q = (qs )s∈S ∈ R(W,S)
>0 . By the

universal properties of the universal group C∗-algebra C∗
u (W ) and the universal

Hecke C∗-algebra C∗
u,q (W ) (see Remark 3.4.2), the isomorphism πq,1 in Proposi-

tion 3.5.6 extends to an isomorphism C∗
u (W ) ∼=C∗

u,q (W ). In the case where the sys-
tem (W,S) is of spherical type, for trivial reasons πq,1 also extends to an isomor-
phism C∗

r (W ) ∼= C∗
r,q (W ) of the corresponding reduced operator algebras. How-

ever, if W is infinite this is not true anymore and already fails in the case where
W = 〈

s, t | s2 = t 2 = e
〉

is the infinite dihedral group which is the only irreducible
right-angled Coxeter group of affine type. Indeed, let C∗

r,0(0) ⊆ B(`2(W )) be the
unital C∗-algebra generated by the orthogonal projections Ps and Pt onto the sub-
spaces

Span
{
δw | w ∈W with s ≤ w

}
and

Span
{
δw | w ∈W with s ≤ w

}
of `2(W ). Assume that for every q ∈R(W,S)

>0 the isomorphism πq,1 of Proposition 3.5.6

extends to a ∗-isomorphism . Then the map defined by Ps 7→ 1−T (1)
s

2 and Pt 7→ 1−T (1)
t

2
extends to a ∗-isomorphism π0,1 : C∗

r,0(W ) ∼=C∗
r (W ) as well. Indeed, for every finite

sum x :=∑
w∈W x(w)T (1)

w ∈C1[W ] with x(w) ∈C one checks that as q ↓ 0,

π−1
q,1(x) → ∑

w∈W
x(w)π−1

0,1(T (1)
w ) =π−1

0,1(x)

in B(`2(W )). That implies

‖π−1
0,1(x)‖ = lim

q↓0
‖π−1

q,1(x)‖ = ‖x‖

as πq,1 is isometric. Because the C∗-algebra C∗
r,0(W ) is commutative, we have rea-

ched a contradiction. The example illustrates that in general πq,1 does not extend to
an isomorphism of (reduced) C∗-algebras. This is somewhat unexpected because
for amenable discrete groups the universal and the reduced group C∗-algebra co-
incide (see Theorem 2.3.8). In the case of non-affine type Coxeter systems, it gets
even worse. Indeed, if (W,S) is an irreducible right-angled Coxeter system of non-
affine type, then by Theorem 2.7.9 the reduced group C∗-algebra C∗

r (W ) carries a
unique tracial state. For q 6= 1 the map πq,1 is not trace-preserving with respect
to the canonical traces τ1 and τq , i.e. τq ◦πq,1 6= τ1. It can hence not extend to
the reduced C∗-algebraic level. To check that π−1

q,1 does in general not extend, one
can either use the same argument as before or apply Theorem 6.3.3 from Section
6.3. One should also compare these observations with the results in [161] where
K-theoretic invariants of right-angled Hecke C∗-algebras have been computed.
(c) In [86] Garncarek characterized the center of single-parameter right-angled
Hecke-von Neumann algebras. He proved that for irreducible right-angled Co-
xeter systems (W,S) with #S ≥ 3 the corresponding Hecke-von Neumann algebra
Nq (W ) is a factor (necessarily of type II1) if and only if q ∈ [ρ,ρ−1] where ρ is the
radius of convergence of the growth series

∑
w∈W z |w|. Moreover, for q outside this
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interval, Nq (W ) decomposes as a direct sum of a II1-factor and C. Garncarek’s re-
sult was later extended by Raum and Skalski in [160] to the multi-parameter case.
Similar to (b) this illustrates that the isomorphism of Proposition 3.5.6 does not
necessarily extend to an isomorphism of the corresponding Hecke-von Neumann
algebras. Moreover, for q ∈ [ρ,ρ−1] and q ′ ∉ [ρ,ρ−1] there can be no isomorphism
at all between Nq (W ) and Nq ′ (W ). But the situation is even more delicate. In
combination with Garncarek’s calculations in [86, Section 6], reference [73, Theo-
rem 2.3 and Proposition 2.4] implies that for every Coxeter group W = Z∗l

2 , l ≥ 3
(compare with Example 2.7.1) and q ∈ [(l −1)−1,1] the II1-factor Nq (W ) is isomor-
phic to L (F2l q(1+q)−2 ) where L (Ft ), t ∈ R>1 denotes Dykema’s and Radulescu’s in-
terpolated free group factor, cf. [73], [159]. It is known that the interpolated free
group factors are either all isomorphic or they are all non-isomorphic. The pro-
blem which of the two in this dichotomy is true is known as the infamous free
factor problem. Hence, solving the isomorphism question of Nq (W ) for different
q ∈ [ 1

l−1 ,1] is equivalent to the free factor problem. In Subsection 6.1.3 we shall
show that for q ∈ [ 1

l−1 ,1] the C∗-algebra C∗
r,q (W ) has a unique tracial state. There-

fore, if any two C∗
r,q (W ) and C∗

r,q ′ (W ) with q, q ′ ∈ [ 1
l−1 ,1] are isomorphic, Lemma

3.5.1 implies that Nq (W ) ∼= Nq ′ (W ). Since solving the free factor problem using
these C∗-algebraic methods seems unrealistic (and solving it in the affirmative
using C∗-algebras seems even more unrealistic) we expect all Hecke C∗-algebras
C∗

r,q (W ) with q ∈ [ 1
l−1 ,1] to be non-isomorphic. In this context it should be men-

tioned that the reference [161] provides an explicit computation of the K-theory of
right-angled Hecke C∗-algebras, including concrete algebraic representants of K-
theory classes. The results in particular allow to distinguish certain right-angled
Hecke C∗-algebras from each other.

3.6. AMALGAMATED FREE PRODUCT DECOMPOSITIONS

Building interesting new objects out of simpler building blocks is a common idea
that appears all over mathematics. Being part of Voiculescu’s groundbreaking non-
commutative probability theory the (reduced) free product construction, which
plays an important role in the theory of operator algebras, is an example of this. It
can be viewed as a natural operator algebraic analogue to free products of groups
where both constructions are in a certain sense compatible with each other (see
Example 3.6.3 and Example 3.6.4).

In Section 2.6 we introduced the notion of amalgamated free products of groups.
Similar to free products, this notion also admits an operator algebraic counterpart
that will play a role in Subsection 6.1.3 and Chapter 8. It turns out to behave well
with respect to amalgamated free product decompositions of Hecke operator alge-
bras, see Subsection 3.6.2.

The aim of this section is to first introduce amalgamated free products of opera-
tor algebras in detail and to then study the concept in the setting of Hecke operator
algebras. For further details see [179], [72], [180], [21] and [33].
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3.6.1. AMALGAMATED FREE PRODUCTS OF OPERATOR ALGEBRAS

Following [33, Chapter 4.7], let (Ai )i∈I be a family of unital C∗-algebras and let D
be a unital C∗-algebra such that for every i ∈ I there exists a unital ∗-embedding
ιi : D ,→ Ai . For convenience, we will often suppress the embedding ιi and identify
D with its image in Ai . Assume moreover that for every i ∈ I there exists a faithful
conditional expectation Ei : Ai → D.

For every i ∈ I denote by L2(Ai ,Ei ) the Hilbert D-module obtained from the
pair (Ai ,Ei ), i.e. the completion of A with respect to the norm induced by the D-
valued inner product 〈a,b〉 := Ei (b∗a) for a,b ∈ Ai . Write ΩEi for the element in
L2(Ai ,Ei ) corresponding to 1 ∈ Ai and denote by πEi : Ai → B(L2(Ai ,Ei )) the (faith-
ful) ∗-representation induced by left multiplication by elements in A. In this con-
text, the triple (πEi ,L2(Ai ,Ei ),ΩEi ) is called the GNS-representation of (Ai ,Ei ). For
brevity we write πi :=πEi , H i := L2(Ai ,Ei ) and Ωi :=ΩEi .

Define the free product Hilbert D-module (H ,Ω) := ?i∈I (H i ,Ωi ) where Ω is the
vacuum vector and where

H := DΩ⊕⊕
n≥1

⊕
i1 6=i2,i2 6=i3,...,in−1 6=in

H ◦
i1
⊗D ...⊗D H ◦

in
.

Here H ◦
i := (Ai ∩ker(Ei ))Ωi ⊆ H i denotes the closed subspace of H i spanned by

all elements aΩi , a ∈ Ai with Ei (a) = 0 and ⊗D is the Hilbert D-module tensor
product. For i ∈ I define an isomorphism Ui ∈ B(H i ⊗D H (i ),H ) with H (i ) :=
DΩ⊕⊕

n≥1
⊕

i 6=i1,i1 6=i2,i2 6=i3,...,in−1 6=in H ◦
i1
⊗D ...⊗D H ◦

in
by

Ui :

DΩi ⊗D DΩ
H ◦

i ⊗D DΩ
DΩi ⊗D (H ◦

i1
⊗D ...⊗D H ◦

in
)

H ◦
i ⊗D (H ◦

i1
⊗D ...⊗D H ◦

in
)

∼=−→
DΩ
H ◦

i
H ◦

i1
⊗D ...⊗D H ◦

in

H ◦
i ⊗D H ◦

i1
⊗D ...⊗D H ◦

in

.

where the actions are understood naturally. It gives rise to a faithful ∗-representa-
tion λi : Ai →B(H ) that satisfies λi |D =λ j |D for all j ∈ I via λi (x) :=Ui (πi (x)⊗1)U∗

i .

Definition 3.6.1 ([33, Definition 4.7.1]). Let (Ai )i∈I be a family of unital C∗-algebras
and let D be a unital C∗-algebra such that for every i ∈ I there exists a unital ∗-
embedding ιi : D ,→ Ai and a faithful conditional expectation Ei : Ai → D. Then the
(reduced) amalgamated free product C∗-algebra (A,ED ) :=?D (Ai ,Ei ) is the C∗-subalgebra
A of B(H ) (with H as above) generated by

⋃
i∈I λi (Ai ) equipped with the (faithful)

conditional expectation ED : A → D, x 7→ 〈xΩ,Ω〉.
Because the ∗-representations λi are faithful, we usually identify Ai , i ∈ I with

its image in A. The reduced amalgamated free product C∗-algebra can be charac-
terized in the following way.

Theorem 3.6.2 ([33, Theorem 4.7.2]). Let (Ai )i∈I be a family of unital C∗-algebras and
let D be a unital C∗-algebra such that for every i ∈ I there exists a unital ∗-embedding
ιi : D ,→ Ai and a faithful conditional expectation Ei : Ai → D. Then the (reduced) amalga-
mated free product A is the (up to isomorphism) unique C∗-algebra such that:
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(1) There exists a unital inclusion D ⊆ A and a faithful condition expectation ED : A →
D;

(2) There exist inclusions D ⊆ Ai ⊆ A such that the union of all Ai , i ∈ I generates A;

(3) (ED )|Ai = Ei for every i ∈ I ;

(4) Freeness: For all i1, ..., in ∈ I with i1 6= i2, i2 6= i3, ..., in−1 6= in and a1 ∈ Ai1 ∩
ker(Ei1 ), ..., an ∈ Ain ∩Ein one has ED (a1...an) = 0.

In the case where the common C∗-subalgebra D of the Ai , i ∈ I coincides with
C and where the conditional expectations Ei are faithful states, the corresponding
amalgamated free product C∗-algebra is nothing but the free product ?i∈I (Ai ,Ei ).

As mentioned before, the construction above can be viewed as a natural ope-
rator algebraic analogue to amalgamated free products of groups where both con-
structions are in a certain sense compatible with each other. We will make this
precise in the following example.

Example 3.6.3. Let G :=?H Gi be the amalgamated free product of a family (Gi )i∈I

of discrete groups over a common subgroup H (see Section 2.6). The inclusion in-
duces expected inclusions C∗

r (H) ⊆C∗
r (Gi ), i ∈ I and C∗

r (H) ⊆C∗
r (G) of C∗-algebras.

Denote the corresponding faithful conditional expectations by EH
Gi

and EH
G . Then

the reduced group C∗-algebra C∗
r (G) identifies with the amalgamated free product

of the family (C∗
r (Gi ),EH

Gi
)i∈I , i.e.

(C∗
r (G),EH

G ) ∼=?C∗
r (H)(C

∗
r (Gi ),EH

Gi
).

There also exists a von Neumann algebraic analogue to amalgamated free pro-
ducts which has first been spelled out for arbitrary σ-finite von Neumann algebras
in [175, Section 2] (compare with [179], [72]). In this context, the conditional ex-
pectations appearing in the construction above are assumed to be normal and the
corresponding amalgamated free product von Neumann algebra is defined as the von
Neumann algebra generated by the union of the images of the λi , i ∈ I . To distin-
guish between the C∗-algebraic and the von Neumann algebraic case we denote
amalgamated free products of von Neumann algebras by ?D . The construction
satisfies a uniqueness property very similar to the one in Theorem 3.6.2, see [175,
Proposition 2.5].

Example 3.6.4. Let G :=?H Gi be the amalgamated free product of a family (Gi )i∈I

of discrete groups over a common subgroup H . The inclusion induces expected
inclusions L (H) ⊆ L (Gi ), i ∈ I and L (H) ⊆ L (G) of von Neumann algebras. De-
note the corresponding faithful normal conditional expectations by EH

Gi
and EH

G .
Then the group von Neumann algebra L (G) identifies with the amalgamated free
product of the family (L (Gi ),EH

Gi
)i∈I , i.e.

(L (G),EH
G ) ∼=?L (H)(L (Gi ),EH

Gi
).
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3.6.2. AMALGAMATED FREE PRODUCTS OF HECKE OPERATOR AL-
GEBRAS

Similar to the decompositions in Example 3.6.3 and Example 3.6.4 Hecke operator
algebras behave well with respect to amalgamated free product decompositions of
the underlying Coxeter group (see Subsection 2.7.5). Recall that if W is an arbitrary
group which decomposes as an amalgamated free product W = W1?W0 W2 where
(W1,S1), (W2,S2) are Coxeter systems with W0 = W1 ∩W2 and where S0 := S1 ∩ S2

generates W0, then (W,S1 ∪S2) is a Coxeter system as well. In that case, for every
multi-parameter q := (qs )s∈S ∈ R(W,S)

>0 , by Proposition 3.4.5 there are natural uni-
tal embeddings C∗

r,q0
(W0) ⊆ C∗

r,q1
(W1) ⊆ C∗

r,q (W ), C∗
r,q0

(W0) ⊆ C∗
r,q2

(W2) ⊆ C∗
r,q (W ) and

Nq0 (W0) ⊆ Nq1 (W1) ⊆ Nq (W ), Nq0 (W0) ⊆ Nq2 (W2) ⊆ Nq (W ) where q0 := (qs )s∈S0 ,
q1 := (qs )s∈S1 , q2 := (qs )s∈S2 . Denote by E : Nq (W ) → Nq0 (W0) the unique faithful
normal trace-preserving conditional expectation onto Nq0 (W0) (see [33, Lemma
1.5.11]). Then, for w ∈W the equality

E(T (q)
w ) =

{
T (q0)

w , if w ∈W0

0, if w ∉W0

holds.

The following theorem (and its graph product analogue, see Chapter 4.3.1) will
turn out to be very useful.

Theorem 3.6.5. Let (W,S) be a finite rank Coxeter system that decomposes as W =W1∗W0

W2 where (W1,S1), (W2,S2) are Coxeter systems with S = S1 ∪S2 and W0 =W1 ∩W2 such
that S0 := S1 ∩S2 generates W0. For a multi-parameter q = (qs )s∈S ∈R(W,S)

>0 the Hecke-von
Neumann algebra Nq (W ) decomposes as an amalgamated free product of the form

Nq (W ) ∼= (Nq1 (W1),E1)?Nq0 (W0)(Nq2 (W2),E2),

where q0 := (qs )s∈S0 , q1 := (qs )s∈S1 , q2 := (qs )s∈S2 and where the decomposition is taken
with respect to the restricted conditional expectations E1 := E|Nq1 (W1) and E2 := E|Nq2 (W2).
Similarly,

C∗
r,q (W ) ∼= (C∗

r,q1
(W1),E1)?C∗

r,q0
(W0) (C∗

r,q2
(W2),E2)

where E1 := E|C∗
r,q1

(W1) and E2 := E|C∗
r,q2

(W2).

Proof. We may restrict to the von Neumann algebraic case. By the uniqueness
of the amalgamated free product construction (see [175, Proposition 2.5] and also
Theorem 3.6.2) in combination with our previous discussion it suffices to show
that E(x1...xn) = 0 for all x1 ∈ Nqi1

(Wi1 )∩ker(Ei1 ), ..., xk ∈ Nqik
(Wik )∩ker(Eik ) where

n ∈N and i1, ..., in ∈ {1,2} with i1 6= i2, i2 6= i3, ..., in−1 6= in . For i ∈ {1,2} let (Nqi (Wi ))1

denote the unit ball of Nqi (Wi ) and write Span for the strong closure of the linear
span. By Kaplansky’s density theorem,

(Nq1 (W1))1 ∩ker(E1) = (Nq1 (W1))1 ∩Span{T (q1)
w | w ∈W1 \W0},
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and
(Nq2 (W2))1 ∩ker(E2) =Nq2 (W2)1 ∩Span{T (q2)

w | w ∈W2 \W0}.

The statement [135, Remark 4.3.1] hence implies that the element x1...xn ∈ Nq (W )
can be approximated strongly by a bounded net of linear combinations of reduced
expressions of the form T (q)

w1
...T (q)

wn
with w1 ∈ Wi1 \ W0, ..., wn ∈ Win \ W0. But this ex-

pression coincides with T (q)
w1...wn

where w1...wn ∈W \W0 is non-trivial, so E(x1...xn) = 0
because ENq is normal and hence weakly continuous on bounded sets. The claim
follows.

Remark 3.6.6. (a) In the case where the Coxeter subsystem is trivial, Theorem 3.6.5
implies that the Hecke operator algebras of free products of Coxeter groups de-
compose as (reduced) free products over the canonical tracial states. This will play
a role in Subsection 6.1.3.
(b) Recall that the smallest class of Coxeter groups which contains all finite rank
spherical type Coxeter groups and which is closed under taking amalgamated
free products over spherical special subgroups coincides with the class of Coxeter
groups which are virtually free. Combining this with Theorem 3.6.5 implies that
Hecke-von Neumann algebras of finite rank virtually free Coxeter systems can be
decomposed as iterated amalgamated free products over finite-dimensional von
Neumann subalgebras. We will make use of this in fact in Chapter 8 where the
Haagerup approximation property for Hecke-von Neumann algebras is studied
by using very general results of Chapter 7.
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KHINTCHINE INEQUALITIES

Similar to amalgamated free products, Green’s graph products of groups (see Sec-
tion 2.6 and Section 3.6) admit an operator algebraic counterpart introduced and
explored by Caspers and Fima in [44]. Generalizing results by Ricard and Xu on
free products of C∗-algebras (see [163]), in this chapter we prove Khintchine type
inequalities for general C∗-algebraic graph products and illustrate their relevance
for the study of right-angled Hecke C∗-algebras by proving a Haagerup type ine-
quality.

The chapter is structured as follows: we will first recall the necessary back-
ground material such as the notion of column and row Hilbert spaces and the con-
struction of graph products of operator algebras. The corresponding references
are [77], [152] and [44]. In Section 4.2 we will then prove the main theorem of
this chapter, the graph product Khintchine type inequality for graph products of
C∗-algebras. Section 4.3 is concerned with its connection to right-angled Hecke C∗-
algebras. This link will later be picked up in Section 6.3 where the trace uniqueness
of right-angled Hecke C∗-algebras will be studied.

The content of Section 4.2 and Section 4.3 is entirely based on the article

• M. Caspers, M. Klisse, N.S. Larsen, Graph product Khintchine inequalities and
Hecke C∗-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exact-
ness, J. Funct. Anal. 280 (2021), no. 1, Paper No. 108795, 41 pp.
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4.1. PRELIMINARIES

In the following we present the background required for Section 4.2 and Section
4.3. The content and the notation is as it appears in [49].

4.1.1. GENERAL NOTATION

For notational convenience, we write δ(P ) for the function which equals 1 if a state-
ment P is true and which equals 0 otherwise.

4.1.2. COLUMN AND ROW HILBERT SPACES

A (concrete) operator space on a Hilbert space H is a closed subspace of the bounded
operators on H . The concept, going back to Ruan’s thesis, also admits an ab-
stract characterization (see e.g. [152, Chapter 2.2]): let K (`2(N)) denote the com-
pact operators on the separable Hilbert space `2(N) and write K00 for the dense
∗-subalgebra of finite rank operators on `2(N). For a complex vector space E to-
gether with a sequence (‖·‖Mk (C)⊗E )k∈N of norms on the spaces Mk (C)⊗ E which
are compatible with respect to the canonical embeddings Mk (C)⊗E ,→ Mk+1(C)⊗E
define a norm on K00 ⊗E via

‖x‖K00⊗E := lim
k→∞

‖x‖Mk (C)⊗E .

Then, for a suitable Hilbert space H , there exists a linear embedding φ : E →B(H )
such that for every k ∈N the canonical map

idMk (C) ⊗φ : Mk (C)⊗E → Mk (C)⊗φ(E) ⊆ Mk (C)⊗B(H )

is isometric if and only if

‖
n∑

i=1
ai xi bi‖K00⊗E ≤ ‖

n∑
i=1

ai a∗
i ‖

1
2 ‖

n∑
i=1

b∗
i bi‖

1
2 sup

1≤i≤n
‖xi‖K00⊗E

for all n ∈ N and a1,b1, ..., an ,bn ∈ K00 ⊗C1, x1, ..., xn ∈ K00 ⊗E . This characteriza-
tion implies a one-to-one correspondence between the class of (concrete) operator
spaces and vector spaces E equipped with a sequence of norms as above. For more
information on the theory of operator spaces we refer to [77] and [152].

A nice class of examples of operator spaces are column and row Hilbert spaces.
For n ∈ N denote by ( fi )1≤i≤n an orthonormal basis of Cn , write Ei , j , 1 ≤ i , j ≤ n
for the matrix units with respect to this basis and set Ei := Ei ,i for the diagonal
projections. The column Hilbert operator space Cn of dimension n is the operator
space spanned by all matrix units Ei ,1, 1 ≤ i ≤ n in Mn(C) =B(Cn) with the operator
space structure induced by the restriction of the operator space structure of Mn(C)
as a C∗-algebra. Concretely, for x1, ..., xn ∈ Mk (C) where k ∈N,

‖
n∑

i=1
xi ⊗Ei ,0‖Mk (C)⊗Cn = ‖

n∑
i=1

x∗
i xi‖

1
2 .
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Similarly, the row Hilbert operator space Rn is spanned by all matrix units E1,i , 1 ≤
i ≤ n in Mn(C) with the operator space structure again induced by the restriction
of the operator space structure of Mk (C) as a C∗-algebra, i.e. for x1, ..., xn ∈ Mk (C)
where k ∈N,

‖
n∑

i=1
xi ⊗E0,i‖Mk (C)⊗Cn = ‖

n∑
i=1

xi x∗
i ‖

1
2 .

In the category of operator spaces there exists a natural concept of tensoring
two such spaces, namely the Haagerup tensor product which we denote by ⊗h and
for which we refer to [77, Section 9]. For two operator spaces X ⊆B(H ), Y ⊆B(K )
define for every k ∈ N the Haagerup operator space tensor norm ‖·‖h,Mk (C)⊗(X⊗Y ) on
Mk (C)⊗ (X ⊗Y ) via

‖x‖h,Mk (C)⊗(X⊗Y ) := inf{‖u‖‖v‖ | x = u ¯ v,u ∈ Mk,r (C)⊗ (X ⊗C1),

v ∈ Mr,k (C)⊗ (C1⊗Y ),r ∈N},

where u ¯ v is the canonical tensor matrix product induced by the identifications
Mk,r (C)⊗ (X ⊗C1) ∼= Mk,r (X ⊗C1), Mr,k (C)⊗ (C1⊗Y ) ∼= Mr,k (C1⊗Y ) and where one
checks that the set in the brackets is indeed non-empty. One further confirms
that the sequence of norms (‖·‖h,Mk (C)⊗(X⊗Y ))k∈N satisfies the conditions from above,
hence after completion they define a (unique) operator space X ⊗h Y which we call
the Haagerup tensor product of X and Y .

We shall mainly need the following completely isometric identifications

Cm ⊗h Cn
∼=Cm+n , Rm ⊗h Rn

∼=Rm+n , Cm ⊗h Rn
∼= Mm,n(C)

where m,n ∈N, see [77, Proposition 9.3.4 and 9.3.5].

4.1.3. WORDS IN GRAPHS

Let K = (V ,E) be an undirected and simplicial graph with vertex set V and edge
set E (for the corresponding notions review Section 2.5). In this chapter we will
always assume that K is finite. Similar to words in Coxeter groups (see Subsection
2.7.2) following [44] we introduce a suitable notion of words in graphs. A word in
K is an expression v = v1v2 · · ·vn with v1, ..., vn ∈V , i.e. a concatenation of elements
in V which we call the letters. We say that two words are shuffle equivalent (also
known as II-equivalent) if they are contained in the same equivalence class of the
equivalence relation generated by

v1 · · ·vi−1vi vi+1vi+2 · · ·vn ∼ v1 · · ·vi−1vi+1vi vi+2 · · ·vn if (vi , vi+1) ∈ E .

We say that two words are equivalent, denoted by the symbol ', if they are equiva-
lent through shuffle equivalence and the additional relation:

v1 · · ·vi vi+1vi+2 · · ·vn ∼ v1 · · ·vi vi+2 · · ·vn if vi = vi+1.

A word v1 · · ·vn is called reduced if whenever vi = v j for i < j then there exists
i < k < j such that (vi , vk ), (v j , vk ) 6∈ E . If v and w are equivalent reduced words then
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necessarily v and w are shuffle equivalent. For a word v we define its length |v| as
the number of letters in the shortest representative of w up to equivalence. We say
that a word v starts with v ∈ V if it is equivalent to a reduced word of the form
v v1 · · ·vn with v1, ..., vn ∈ V . Similarly we say that a word v ends with v ∈ V if it is
equivalent to a reduced word v1 · · ·vn v with v1, ..., vn ∈V .

4.1.4. GRAPH PRODUCTS OF OPERATOR ALGEBRAS

What makes Green’s graph products of groups (see Section 2.6) so interesting is
that the construction interpolates between free products and Cartesian products,
it covers important examples (e.g. right-angled Coxeter groups and right-angled
Artin groups, see Subsection 2.7.4) and it preserves many group theoretical proper-
ties (e.g. soficity [57], Haagerup property [7], residual finiteness [89], rapid decay
[56] and linearity [109]). In [44] Caspers and Fima introduced a suitable operator
algebraic analogue to graph products. Similar to the group case their construction
generalizes both Voiculescu’s free products and tensor products of operator alge-
bras. It further covers interesting examples (such as right-angled Hecke operator
algebras, see Subsection 4.3.1), it admits desirable stability properties (e.g. exact-
ness, Haagerup property and II1-factoriality, see [44]) and it is compatible with
Green’s construction (see Example 4.1.3 and Example 4.1.4).

In the following we present a slightly different viewpoint than in [44] by iden-
tifying Hilbert spaces up to shuffle equivalence. This makes the notation much
shorter and yields the same construction. Compare the construction with the one
in Subsection 3.6.1. As before let K = (V ,E) be a finite, undirected, simplicial graph.
Further, for every v ∈V let Av be a unital C∗-algebra equipped with a GNS-faithful
state ϕv . By this we mean that the GNS-representation of Av on the GNS-Hilbert
space L2(Av ,ϕv ) is faithful. For notational convenience we will view Av as a C∗-
subalgebra of the bounded operators on L2(Av ,ϕv ). Write A◦

v := {a ∈ Av |ϕv (a) = 0}
and set for a ∈ Av

a◦ := a −ϕv (a)1 ∈ A◦
v .

We further denote by L2(A◦
v ,ϕv ) the closure of A◦

v viewed as a subspace of L2(Av ,ϕv )
and define Ωv ∈ L2(Av ,ϕv ) to be the vector corresponding to the unit of Av . For a
reduced word v = v1 · · ·vn with v1, ..., vn ∈V set

Hv := L2(A◦
v1

,ϕv1 )⊗·· ·⊗L2(A◦
vn

,ϕvn ).

By convention we set H; := CΩ where Ω is a unit vector called the vacuum vector.
If v = v1 · · ·vn and w = w1 · · ·wn are reduced equivalent (hence shuffle equivalent)
words then Hv

∼=Hw naturally by applying flip maps to the vectors dictated by the
shuffle equivalence. More precisely, by [44, Lemma 1.3] if v and w are equivalent
reduced words, there exists a unique permutation σ of the numbers 1, . . . ,n such
that vσ(i ) = wi and such that if i < j and vi = v j then also σ(i ) < σ( j ). There hence
exists a unitary map Qv,w : Hv →Hw which maps ξ1 ⊗·· ·⊗ξn with ξ1 ∈ L2(A◦

v1
,ϕv1 ),

..., ξn ∈ L2(A◦
vn

,ϕvn ) to ξσ(1) ⊗·· ·⊗ξσ(n). From now on we will omit the unitary Qv,w

in the notation and identify the spaces Hv and Hw through Qv,w. Compared to
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[44] this significantly simplifies our notation and it is directly verifyable that our
constructions below agree with the ones in [44].

Let I be a set of representatives of all reduced words in K modulo shuffle equi-
valence and set H :=⊕

v∈I Hv. Each Av , v ∈V can be canonically represented on H

as follows: take x ∈ Av and ξ1 ⊗·· ·⊗ξd ∈Hw where w = w1 . . . wd with w1, ..., wd ∈V
is a reduced word. If w does not start with v we set

x(ξ1 ⊗·· ·⊗ξd ) := x◦Ωv ⊗ξ1 ⊗·· ·⊗ξd +ϕv (x)ξ1 ⊗·· ·⊗ξd .

If w starts with v we may assume (by shuffling the letters if necessary and by
identifying the corresponding Hilbert spaces as described above) that w1 = v and
we set

x(ξ1 ⊗·· ·⊗ξd ) := (xξ1 −〈xξ1,Ωv 〉Ωv )⊗ξ2 ⊗·· ·⊗ξd +〈xξ1,Ωv 〉ξ2 ⊗·· ·⊗ξd .

This defines a faithful ∗-representation λv : Av ,→B(H ).

Definition 4.1.1 ([44, Section 2.2]). Let K = (V ,E) be a finite, undirected, simplicial
graph and let (Av ,ϕv )v∈V be a family of unital C∗-algebras equipped with GNS-
faithful states. Then the (reduced) graph product C∗-algebra (A,ϕ) := ?v,K (Av ,ϕv ) is
the C∗-subalgebra A of B(H ) (with H as above) generated by

⋃
i∈I λi (Ai ) equipped

with the (GNS-faithful) graph product state ϕ : A →C, x 7→ 〈xΩ,Ω〉.
Because the ∗-representations λv are faithful, we usually identify the C∗-algebra

Av , v ∈V with its image in A. Similar to Theorem 3.6.2 the reduced graph product
can be characterized in the following way.

Theorem 4.1.2 ([44, Proposition 2.12]). Let K = (V ,E) be a finite, undirected, simplicial
graph and let (Av ,ϕv )v∈V be a family of unital C∗-algebras equipped with GNS-faithful
states. Then the (reduced) graph product A is the (up to isomorphism) unique C∗-algebra
such that:

(1) There exists a GNS-faithful state ϕ;

(2) There exist unital inclusions Av ⊆ A such that the union of all Av , v ∈ V generates
A and such that for all (v, v ′) ∈ E the elements in Av commute with the elements in
Av ′ ;

(3) ϕ|Av =ϕv for every v ∈V ;

(4) Freeness: For every reduced word v = v1...vn with v1, ..., vn ∈V and a1 ∈ A◦
v1

, ..., an ∈
A◦

vn
one has ϕ(a1...an) = 0.

From Theorem 4.1.2 the following examples can be deduced easily.

Example 4.1.3. (a) Let K = (V ,E) be a finite, undirected, simplicial graph and let
(Gv )v∈K be a family of groups. Then the reduced group C∗-algebra C∗

r (G) of the
graph product group G :=?v,K Gv identifies with the (reduced) graph product C∗-
algebra of the family (C∗

r (Gv ),τv )v∈I where τv denotes for every v ∈V the canonical
tracial state on C∗

r (Gv ), i.e.

(C∗
r (G),τ) ∼=?v,K (C∗

r (Gv ),τv ).
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(b) Let K = (V ,E) be a graph in which every two vertices are connected by an edge
and let (Av ,ϕv )v∈V be a family of unital C∗-algebras equipped with GNS-faithful
states. Then the (reduced) graph product canonically identifies with the tensor
product over all Av ⊆B(L2(Av ,ϕv )), v ∈V , i.e. ?v,K (Av ,ϕv ) ∼=⊗

v∈V (Av ,ϕv ).
(c) Let K = (V ,E) be a graph with no edges and let (Av ,ϕv )v∈V be a family of unital
C∗-algebras equipped with GNS-faithful states. Then the (reduced) graph product
canonically identifies with Voiculescu’s (reduced) free product C∗-algebra of the
family (Av ,ϕv )v∈V , i.e. ?v,K (Av ,ϕv ) ∼=?v∈V (Av ,ϕv ).

The graph product construction above also admits a von Neumann algebraic
counterpart which satisfies an analogue of Theorem 4.1.2 (see [44, Proposition
2.22]). If for every v ∈V , Nv is a von Neumann algebra and ϕv is a faithful normal
state on Nv then we define the graph product von Neumann algebra of (Nv ,ϕv )v∈V as

?v,K (Nv ,ϕv ) := (?v,K (Nv ,ϕv ))′′ ⊆B(H )

and view Nv , v ∈V as a von Neumann subalgebra of ?v,K (Nv ,ϕv ). We will usually
write

L2(N ,ϕ) :=H ,

and call this the (graph product) Fock space. The notation is justified as in [44] it
is shown that H is the Hilbert space of the standard form of the von Neumann
algebraic graph product.

Example 4.1.4. (a) Let K = (V ,E) be a finite, undirected, simplicial graph and let
(Gv )v∈K be a family of groups. Then the reduced group von Neumann algebra
L (G) of the graph product group G :=?v,K Gv identifies with the graph product von
Neumann algebra of the family (L (Gv ),τv )v∈I where τv denotes for every v ∈V the
canonical tracial state on L (Gv ), i.e.

(L (G),τ) ∼=?v,K (L (Gi ),τv ).

(b) Let K = (V ,E) be a graph in which every two vertices are connected by an
edge and let (Nv ,ϕv )v∈V be a family of von Neumann algebras equipped with
faithful normal states. Then the graph product canonically identifies with the
(von Neumann algebraic) tensor product over all Nv ⊆ B(L2(Nv ,ϕv )), v ∈ V , i.e.
?v,K (Nv ,ϕv ) ∼=⊗

v∈V (Nv ,ϕv ).
(c) Let K = (V ,E) be a graph with no edges and let (Nv ,ϕv )v∈V be a family of von
Neumann algebras equipped with faithful normal states. Then the graph product
canonically identifies with Voiculescu’s free product von Neumann algebra of the
family (Nv ,ϕv )v∈V , i.e. ?v,K (Nv ,ϕv ) ∼=?v∈V (Av ,ϕv ).

An operator a1 · · ·an with a1 ∈ A◦
v1

, ..., an ∈ A◦
vn

where v = v1 · · ·vn with v1, ...,vn ∈
K is a reduced word is called a reduced operator of type v. We refer to n as the length
of the operator and define Pv to be the orthogonal projection of H onto

⊕
v∈Iv Hv

where Iv is the set of representatives of all reduced words that start with v up to
shuffle equivalence. For n ∈N define

χn : A → A, a1 · · ·ar 7→ δ(r = n)a1 · · ·ar , (4.1.1)
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where a1 · · ·ar ∈ A is a reduced operator, i.e. χn is the word length projection of length
n.

The following proposition illustrates that, similar to the group case, graph pro-
ducts can be viewed as a well-behaved special case of amalgamated free products
(compare with Proposition 2.6.1).

Proposition 4.1.5 ([44, Theorem 2.15]). Let K = (V ,E) be a finite, undirected, simpli-
cial graph, let (Av ,ϕv )v∈V be a family of unital C∗-algebras equipped with faithful states
and let v0 ∈ V . Define subgraphs K1 := Star(v0), K2 := K \ {v0} of K and set (A0,ϕ0) :=
?v,Link(v0)(Av ,ϕv ), (A1,ϕ1) := ?v,K1 (Av ,ϕv ) and (A2,ϕ2) := ?v,K2 (Av ,ϕv ). Then we may
view A0 ⊆ A1, A0 ⊆ A2 and there exist faithful conditional expectations E1 : A1 → A0,
E2 : A2 → A0 such that ?v,K (Av ,ϕv ) is canonically isomorphic to the (reduced) amalga-
mated free product C∗-algebra (A1,E1)?A0 (A2,E2).

Similarly, let (Nv ,ϕv )v∈V be a family of von Neumann algebras equipped with faith-
ful normal states and set (N0,ϕ0) := ?v,Link(v0)(Nv ,ϕv ), (N1,ϕ1) := ?v,K1 (Nv ,ϕv ) and
(N2,ϕ2) :=?v,K2 (Nv ,ϕv ). Then we may view N0 ⊆ N1, N0 ⊆ N2 and there exist faithful
normal conditional expectations E1 : N1 → N0, E2 : N2 → N0 such that ?v,K (Av ,ϕv ) is
canonically isomorphic to the amalgamated free product (N1,E1)?N0 (N2,E2).

4.2. A GRAPH PRODUCT KHINTCHINE INEQUALITY

In this section we prove a Khintchine inequality for general C∗-algebraic graph pro-
ducts by introducing an intertwining technique between graph products and free
products. Inequalities of this type estimate the operator norm of a reduced opera-
tor of a given length with the norm of certain Haagerup tensor products of column
and row Hilbert spaces. In the case of free groups the concept goes back to Haa-
gerup’s fundamental paper [93]. For general free products and arbitrary length
a Khintchine type inequality has been proved by Ricard and Xu in [163, Section
2] who applied it in the context of the exactness and the completely contractive
approximation property of free products of C∗-algebras. Our estimate of norms
holds up to a bound that is polynomial in n. We make this more precise in the
current section.

Remark 4.2.1. If in the Ssection 4.3 we would only treat the case of Hecke C∗-
algebras coming from right-angled Coxeter groups which decompose as free pro-
ducts of finite Coxeter subgroups (see Example 2.7.1) the results from [163] would
be sufficient. Here however, we want a more general theorem. One of the prob-
lems that arise while proving such a theorem is that the analogue of [163, Lemma
2.3] in its form fails in a general graph product setting. We remedy this problem
by using maps that intertwine graph products with free products.

Let us now prepare for the proof of the main theorem of this section. We fix no-
tation for both a graph product and a free product. For the corresponding graph
theoretical notions review Section 2.5. As before, let K = (V ,E) be a finite, undi-
rected, simplicial graph and let I be a set of representatives of equivalence classes
of reduced words with letters in V (see Subsection 4.1.3). Let Av , v ∈ V be unital
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C∗-algebras with GNS-faithful states ϕv and let

(A,ϕ) :=?v,K (Av ,ϕv )

be its graph product with vacuum vector Ω. We also set the free product (i.e. the
graph product over K with all edges removed)

(A f ,ϕ f ) :=?v (Av ,ϕv )

with vacuum vector Ω f . For every v ∈ V we shall view Av as a C∗-subalgebra of
both A and A f . As before, define Pv ∈ B(L2(A,ϕ)) to be the orthogonal projection
of H onto

⊕
v∈Iv Hv where Iv is the set of representatives of all reduced words that

start with v up to shuffle equivalence and similarly let P f
v ∈ B(L2(A f ,ϕ f )) be the

free product projection onto words which start with v . Let K0 ∈ Cliq(K , l ) and let
V (K0) ∈ I be the word consisting of all letters in K0. We write P f

K0
for the projection

of L2(A f ,ϕ f ) onto the direct sum of all Hw where w starts with V (K0). Recall that
A◦

v is the set of a ∈ Av with ϕv (a) = 0.
View Av as a subalgebra of A, set Σ1 := Span{A◦

v | v ∈V } and define for n ∈N,

Σn := {a1 ⊗·· ·⊗an | a1 ∈ A◦
v1

, ..., an ∈ A◦
vn

where v1 · · ·vn reduced} ⊆Σ¯n
1 ,

where the latter is the n-fold algebraic tensor product.

Our first aim is to show that reduced operators of length d in A can be decom-
posed as sums of creation operators, annihilation operators, and diagonal ope-
rators in a sense to be made precise below. Crucial is that first the annihilation
operators act, then the diagonal operators and then the creation operators. That is,
we shall be looking for an analogue of the decomposition [163, Fact 2.6].

Remark 4.2.2. (a) Definition 4.2.3 below formally defines the following permuta-
tion. Let v = v1 · · ·vn with v1, ..., vn ∈V be a reduced word. Let 0 ≤ l ≤ n, 0 ≤ k ≤ n− l ,
K0 ∈ Cliq(K , l ) and (K1,K2) ∈ Comm(K0). As above, define V (K0) ∈ I to be the word
consisting of all letters in K0, define V (K1) ∈ I to be reduced the word consisting of
all letters in K1 and define V (K2) ∈ I to be the word consisting of all letters in K2.
Then, if possible, we permute the letters of v through shuffle equivalence in the
form

(vσ(1) · · ·vσ(k))(vσ(k+1) · · ·vσ(k+l ))(vσ(k+l+1) · · ·vσ(n)) '
k letters︷ ︸︸ ︷

(∗·· ·∗V (K1))

l letters︷ ︸︸ ︷
(V (K0) )

n−k−l letters︷ ︸︸ ︷
(V (K2)¦ · · ·¦),

(4.2.1)
where ∗ and ¦ are the remaining letters and each of the 3 respective terms in be-
tween brackets are shuffle equivalent themselves. This means that in between the
first brackets there is a word of length k that ends on V (K1) ∈ I , in between the
second brackets there is the clique of length l given by V (K0), and at the end there
is a word of length n −k − l that starts with V (K2). Moreover, we want that ∗·· ·∗
does not end on letters commuting with V (K0) and V (K1) and that ¦ · · ·¦ does not
start with letters commuting with V (K0) and V (K2). This means that the cliques K1
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and K2 are maximal for the property that a decomposition like (4.2.1) exists. If we
demand that vσ(1)...vσ(k), vσ(k+1)...vσ(k+l ) and vσ(k+l+1)...vσ(n) are in I , then there can
be at most one such permutation coming from shuffle equivalences.
(b) Of course not for every n ∈ N, 0 ≤ l ≤ n, 0 ≤ k ≤ n − l , K0 ∈ Cliq(K , l ), (K1,K2) ∈
Comm(K0) and reduced words v = v1 · · ·vn with v1, ..., vn ∈V a permutation σ as in
(a) exists since v cannot always be written in the from (4.2.1).

Definition 4.2.3. Let n ∈ N. Suppose that 0 ≤ l ≤ n, 0 ≤ k ≤ n − l , K0 = (V0,E0) ∈
Cliq(K , l ) and (K1,K2) ∈ Comm(K0) where K1 = (V1,E1) and K2 = (V2,E2). So if l = 0
we have that K0 is the empty clique, and Condition (2) below vanishes. Take a
reduced word v = v1 · · ·vn where v1, ..., vn ∈V . If existent, define σ(=σv

l ,k,K0,K1,K2
) as

the permutation of indices 1, . . . ,n that satisfies:

(1) v1 · · ·vn = vσ(1) · · ·vσ(n);

(2) {vσ(k+1), . . . , vσ(k+l )} =V0;

(3) |vσ(1) · · ·vσ(k)s| = k −1 whenever s ∈V1;

(4) |vσ(1) · · ·vσ(k)s| = k +1 whenever s ∈Link(K0)\V1;

(5) |svσ(k+l+1) · · ·vσ(n)| = n −k − l −1 whenever s ∈V2;

(6) |svσ(k+l+1) · · ·vσ(n)| = n −k − l +1 whenever s ∈Link(K0)\V2.

We shall moreover assume that vσ(1) · · ·vσ(k), vσ(k+1) · · ·vσ(k+l ) and vσ(k+l+1) · · ·vσ(n)

are in I (i.e. they are the representatives of their equivalence class) and that if
vi = v j for i < j then σ(i ) <σ( j ) so that σ comes from a shuffle equivalence. Then σ

is unique if it exists.

The permutation σ of Definition 4.2.3 does not necessarily exist. All expressions
below in which a non-existing σ occurs need to be interpreted as 0 and we shall
recall this at the relevant places.

Example 4.2.4. Consider the following graph

a

b

c d

e

f

1

This is the complete graph K5 consisting of vertices a,b,c,d ,e together with an
extra vertex f that is connected only to d and e. Say that a word is in I (i.e. is a
representative) if it is minimal in alphabetical order amongst all equivalent words.
Now suppose that we have a reduced word abcde f .
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• Example 1. Take K0 ∈ Cliq(K ,3) with vertex set V0 := {a,b,c} and (K1,K2) ∈
Comm(K0) where K1 has vertex set V1 := {d ,e} and where K2 =;. Set l = 3,k =
2. Then σ as in Definition 4.2.3 exists and it is the permutation moving the
word abcde f to (de)(abc) f (since every letter occurs uniquely it is clear what
the permutation is). Indeed, abc forms a clique, de ends on the vertices in K1

and there is no other letter commuting with the vertices of K1 at the end of
de and f has no letters commuting with abc at the start.

• Example 2. Take K0 ∈ Cliq(K ,2) with vertex set V0 := {a,b} and take (K1,K2) ∈
Comm(K0) where K1 has vertex set V1 := {d} and K2 has vertex set V2 := {c}.
Set l = 2, k = 2. Then σ as in Definition 4.2.3 does not exist. Indeed, by the
choice of k, l and K0 if σ exists there must be a word equivalent to abcde f of
the form (∗ and ¦ being undetermined letters) ∗∗ (ab)¦¦. By the choice of K1

we see that ∗∗ ends on d and there are no other letters in Link(K0) at the end
of ∗∗. So we must have ∗d(ab)¦ ¦. However, there is no choice for the letter
∗ (e is not allowed as it is in Link(K0) and f cannot be moved past ab).

Now we find the following decomposition.

Lemma 4.2.5. Let a1 · · ·an be a reduced operator of type v = v1 · · ·vn in the graph product
(A,ϕ). Suppose that we have a non-zero expression of the form

Q(1)
v1

a1Q(2)
v1

· · ·Q(1)
vn

anQ(2)
vn

, (4.2.2)

in B(L2(A,ϕ)), where Q( j )
vi

equals either Pvi or P⊥
vi

:= 1−Pvi . Then, for some permutation
α of the indices 1, . . . ,n coming from a shuffle equivalence and for some 0 ≤ r ≤ n and
0 ≤ m ≤ n − r we have that (4.2.2) equals

(Pvα(1) aα(1)P
⊥
vα(1)

) · · · (Pvα(r ) aα(r )P
⊥
vα(r )

)(Pvα(r+1) aα(r+1)Pvα(r+1) ) · · · (Pvα(m) aα(m)Pvα(m) )

× (P⊥
vα(m+1)

aα(m+1)Pvα(m+1) ) · · · (P⊥
vα(n)

aα(n)Pvα(n) ).

(4.2.3)

Further, for a non-zero expression of the form (4.2.3) we have that the induced subgraph of
K with vertex set {vα(r+1), ..., vα(m)} is in a clique.

Proof. We prove the statement of the lemma in a series of claims. To avoid cum-
bersome notation we shall not write the permutation of the shuffle equivalences in
the proof.

Claim 1. Up to shuffle equivalence the expression (4.2.2) is equal to

Q(1)
v1

a1Q(2)
v1

· · ·Q(1)
vm

amQ(2)
vm

(P⊥
vm+1

am+1Pvm+1 ) · · · (P⊥
vn

ad Pvn ). (4.2.4)

Moreover, the tail of annihilation operators is maximal in the sense that if for some
i ≤ m we have Q(2)

vi
= Pvi then Q(1)

vi
= Pvi .

Proof of Claim 1. Suppose that we are given an expression as in (4.2.4). Suppose
that for some i < m we have Q(1)

vi
= P⊥

vi
,Q(2)

vi
= Pvi . Then we need to show that
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vi commutes with vi+1 · · ·vm . To do so we may suppose the index i was chosen
maximally. Suppose that vi and vi+1 · · ·vm do not commute and let vk be the first
letter in vi+1 · · ·vm that does not commute with vi . Our choice of i yields that
Q(1)

vk
= Pvk . Indeed if Q(1)

vk
were to be P⊥

vk
then (4.2.4) is 0 in case Q(2)

vk
= P⊥

vk
and in case

Q(2)
vk

= Pvk this would contradict maximality of i . But then (4.2.4) contains a factor
Pvi Pvk = 0 which means that (4.2.4) would be zero which in turn is a contradiction.

Claim 2. The expression (4.2.2) is up to shuffle equivalence equal to:

Q(1)
v1

a1Q(2)
v1

· · ·Q(1)
vr

ar Q(2)
vr

(Pvr+1 ar+1Pvr+1 ) · · · (Pvm amPvm )

× (P⊥
vm+1

am+1Pvm+1 ) · · · (P⊥
vn

anPvn ).
(4.2.5)

Moreover, the tail of annihilation and diagonal operators is maximal in the sense
that if for some i ≤ r we have Q(1)

vi
= Pvi then Q(2)

vi
= P⊥

vi
.

Proof of Claim 2. Suppose that we are given a non-zero expression as in (4.2.5).
Suppose that for some i < r we have Q(1)

vi
= Pvi ,Q(2)

vi
= Pvi . Then we need to show

that vi commutes with vi+1 · · ·vr . To do so we may suppose the index i < r was
chosen maximally. Suppose that vi and vi+1 · · ·vr do not commute and let vk be the
first letter in vi+1 · · ·vr that does not commute with vi . We claim that our choice
of i yields that Q(2)

vk
= P⊥

vk
. Indeed, suppose that Q(2)

vk
= Pvk . Then if Q(1)

vk
= Pvk this

contradicts maximality of i and if Q(1)
vk

= P⊥
vk

it would contradict Claim 1. From
Q(2)

vk
= P⊥

vk
we find that Q(1)

vk
= Pvk since if Q(1)

vk
= P⊥

vk
then P⊥

vk
ak P⊥

vk
= 0. But then

(4.2.5) contains the factor Pvi Pvk = 0 with vi and vk non-commuting, which means
that (4.2.5) would be zero. As this is a contradiction the claim follows.

Claim 3. The expression (4.2.2) is up to shuffle equivalence equal to:

(Pv1 a1P⊥
v1

)...(Pvr ar P⊥
vr

)(Pvr+1 ar+1Pvr+1 ) · · · (Pvm amPvm )

× (P⊥
vm+1

am+1Pvm+1 )...(P⊥
vn

anPvn ).

Moreover vr+1 · · ·vm forms a clique.

Proof of Claim 3. This is obvious now from Claim 2 and the fact that P⊥
vi

avi P⊥
vi

= 0.
As Pvi Pv j is non-zero only if vi and v j commute we must have that vr+1 · · ·vm

forms a clique.

We may now directly conclude the lemma from Claim 3. The permutation α is
then the composition of the shuffle equivalences coming from the Claims 1, 2 and
3.

Proposition 4.2.6. Let a1 · · ·an ∈ A be a reduced operator of type v = v1...vn in the graph
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product (A,ϕ). We have the following equality of operators in B(L2(A,ϕ))

a1 · · ·an =
n∑

l=0

n−l∑
k=0

∑
K0∈Cliq(K ,l )

∑
(K1,K2)∈Comm(K0)

(Pvσ(1) aσ(1)P
⊥
vσ(1)

)...(Pvσ(k) aσ(k)P
⊥
vσ(k)

)

× (Pvσ(k+1) aσ(k+1)Pvσ(k+1) )...(Pvσ(k+l ) aσ(k+l )Pvσ(k+l ) )

× (P⊥
vσ(k+l+1)

aσ(k+l+1)Pvσ(k+l+1) )...(P⊥
vσ(n)

aσ(n)Pvσ(n) ),

(4.2.6)

where σ (changing over the summation) is as in Definition 4.2.3. If such σ does not exist
then the summand is understood as 0.

Proof. First note that we may decompose,

a1...an = (Pv1 +P⊥
v1

)a1(Pv1 +P⊥
v1

)...(Pvn +P⊥
vn

)an(Pvn +P⊥
vn

). (4.2.7)

What we showed in Lemma 4.2.5 and (4.2.7) is that the product a1 · · ·an decom-
poses as a sum of operators of the form (4.2.3) (where α depends on the summand).
The proof is finished by arguing that the summation in (4.2.6) runs exactly over all
these summands.

It is clear that each (non-zero) summand in (4.2.6) is an expression of the form
(4.2.3) with r = k and l = m − r . Conversely, take an expression of the form (4.2.3),
then the letters vα(r+1), ..., vα(m) induce a clique K0 = (V0,E0) by Lemma 4.2.5. Set
l := #V0 and k := r . Now in vα(1)...vα(r ) there may be letters at the end that commute
with the elements in V0. Let K1 = (V1,E1) be the clique of letters that appear at
the end of vα(1)...vα(r ) that commute with the elements in V0 that is maximal in
the following sense: there are no letters s appearing at the end of vα(1) · · ·vα(r ) that
commute with the elements in V0 and the elements in V1. Such a clique is unique
since if both K1 and K ′

1 would be such cliques, then so is K1 ∪K ′
1 and hence K1 = K ′

1
by the maximality. Similarly we may let K2 := (V2,E2) be a clique of letters that
appear at the start of vα(m+1) · · ·vα(d) that commute with the elements in V0 and
that is maximal. Then for this choice of K0,K1,K2 we have that σ satisfying (1) - (6)
of Definition 4.2.3 exists and it is moreover the only choice for which it exists. This
shows that each non-zero expression (4.2.3) occurs exactly once in the summation
(4.2.6).

In order to prove our Khintchine inequality we introduce the necessary nota-
tion. We define as in [163, Section 2] the following subspaces of B(L2(A f ,ϕ f )),

L1 := Span{P f
v av (P f

v )⊥ | v ∈V , a ∈ Av }, K1 := L∗
1 .

It is proved in [163, Lemma 2.3] that

L1
∼=

(⊕
v∈V

L2(A◦
v ,ϕv )

)
C

, K1
∼=

(⊕
v∈V

L2(A◦
v ,ϕv )

)
R

(4.2.8)

completely isometrically, where the subscript C (resp. R) denotes the column (resp.
row) Hilbert space structure. In particular, if each A◦

v is one-dimensional (as is the
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case for right-angled Hecke algebras) we have that L1 (resp. K1) is completely
isometrically isomorphic to the column Hilbert space C#V (resp. row Hilbert space
R#V ). We set k-fold Haagerup tensor products,

Lk := L⊗h k
1 , Kk = K ⊗h k

1 .

Fix K0 = (V0,E0) ∈ Cliq(K , l ). For a reduced word v = v1 · · ·vl in I consisting
precisely of all letters of K0 and a1 ∈ Av1 , ..., al ∈ Avl we define an element of
B(L2(A f ,ϕ f )) by setting for r > l ,

Diag(a1, ..., al ) : b1 · · ·bl bl+1 · · ·brΩ f 7→ (a1b1)◦ · · · (al bl )◦bl+1 · · ·brΩ f , (4.2.9)

where b1 ∈ A◦
w1

, ..., br ∈ A◦
wr

with w1, ..., wr ∈ V where w1 6= w2 6= ... 6= wr (that is
b1 · · ·br is a reduced operator in the free product). If r < l then the image in (4.2.9)
is 0.

Lemma 4.2.7. The operator defined in (4.2.9) is bounded.

Proof. Let r ∈ N and fix a word w = w1 · · ·wr with w1, ..., wr ∈ V and w1 6= w2 6= ... 6=
wr . Then

L2(A◦
w1

,ϕw1 )⊗·· ·⊗L2(A◦
wr

,ϕwr ) ⊆ L2(A f ,ϕ f )

is an invariant subspace for Diag(a1, . . . , al ). Moreover, note that (4.2.9) is for r ≥ l
just the tensor product operator

Pw1 a1Pw1 ⊗·· ·⊗Pwl al Pwl ⊗1⊗r−l , (4.2.10)

where Pwi ai Pwi acts on L2(A◦
wi

,ϕwi ). Clearly this operator is bounded.

Set the diagonal space
AK0 ⊆B(L2(A f ,ϕ f )) (4.2.11)

to be the linear span of all operators of the form (4.2.9) where AK0 inherits the
operator space structure of A f . Set for n ∈N

Xn :=
n⊕

l=0

n−l⊕
k=0

⊕
K0∈Cliq(K ,l )

⊕
(K1,K2)∈Comm(K0)

Lk ⊗h AK0 ⊗h Kn−k−l . (4.2.12)

Remark 4.2.8. In the case where the A◦
v , v ∈ V are all 1-dimensional, the space Xn

can also be understood in terms of bounded operators on a Hilbert space. Indeed,
the remarks after (4.2.8) and [22, Proposition 3.5] give the first two completely
isometric isomorphisms of

Lk ⊗h AK0 ⊗h Kn−k−l
∼=Ck ⊗h AK0 ⊗h Rn−k−l

∼=Mk,n−k−l (AK0 ) ∼= Mk,n−k−l (C)⊗ AK0 .
(4.2.13)

The third completely isometric isomorphism of (4.2.13) holds by the definition of
the operator space structure on AK0 as part of the C∗-algebra A f .
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Next consider the embedding jn : Σn → Xn , where the image of a1 ⊗ ·· · ⊗ an

is given as follows: Consider a summand of Xn indexed by (l ,k,K0,K1,K2) with
0 ≤ l ≤ n,0 ≤ k ≤ n − l and K0 ∈ Cliq(K , l ), (K1,K2) ∈ Comm(K0). Then the restriction
of the image of jn to this summand is given by

jn(a1 ⊗·· ·⊗an)|Lk⊗h AK0⊗h Kn−k−l :=(P f
vσ(1)

aσ(1)P
f ⊥
vσ(1)

)⊗·· ·⊗ (P f
vσ(k)

aσ(k)P
f ⊥
vσ(k)

)

⊗Diag(aσ(k+1), . . . , aσ(k+l ))

⊗ (P f ⊥
vσ(k+l+1)

aσ(k+l+1)P
f
vσ(k+l+1)

)⊗·· ·⊗ (P f ⊥
vσ(n)

aσ(n)P
f
vσ(n)

),

(4.2.14)

with σ given by Definition 4.2.3; if such σ is non-existent then the image of jn(a1 ⊗
·· ·⊗an) in the summand of Xn corresponding to (l ,k,K0,K1,K2) is 0. Let π f

n : Xn →
B(L2(A f ,ϕ f )) be the direct sums of product maps. For a 5-tuple (l ,k,K0,K1,K2) as
above, let

π
f
n,l ,k,K0,K1,K2

: Lk ⊗h AK0 ⊗h Kn−k−l →B(L2(A f ),ϕ f )

be the map π
f
n restricted to the corresponding summand of Xn . This map is com-

pletely bounded as follows from the very definition of the Haagerup tensor pro-
duct. Consequently, π f

n : Xn →B(L2(A f ,ϕ f )) is completely bounded by the number
of summands of Xn , i.e. ‖π f

n‖cb ≤ (#Cliq(K ))3n.

Definition of two partial isometries. Given a 5-tuple (l ,k,K0,K1,K2) as in the previous
paragraph, we define two partial isometries.

• We define a partial isometry

Ql ,k,K0,K1,K2 :L2(A,ϕ) → L2(A f ,ϕ f )

as follows. Consider a reduced operator b1 · · ·bn ∈ A of type v = v1...vn . We
need to define a permutation σQ =σv

Q,l ,k,K0,K1,K2
coming from a shuffle equi-

valence satisfying (1) – (4) of Definition 4.2.3 and the additional relation that
|svσQ (k+l+1)...vσQ (n)| = n−k− l +1 whenever s is a letter in the vertex set of K2.
Moreover we assume that this σQ is chosen such that each of the expressions
vσQ (k)...vσQ (1), vσQ (k+1)...vσQ (k+l ) and vσQ (k+l+1)...vσQ (n) are in I . If σQ exists it
is unique and we set

Ql ,k,K0,K1,K2 (b1 · · ·bnΩ) := bσQ (1) · · ·bσQ (n)Ω f .

If σQ does not exist we set Ql ,k,K0,K1,K2 (b1 · · ·bnΩ) := 0.

• We further define a partial isometry

Rl ,k,K0,K1 :L2(A,ϕ) → L2(A f ,ϕ f ), (4.2.15)
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as follows. Consider a reduced operator b1 · · ·bn ∈ A of type v = v1...vn . We
need to define a permutation σR =σv

R,l ,k,K0,K1
coming from a shuffle equiva-

lence satisfying (1) – (4) of Definition 4.2.3. Moreover we assume that this σR

is chosen such that each of the expressions

vσR (1)...vσR (k), wσR (k+1)...vσR (k+l ), vσR (k+l+1)...vσR (n)

is in I . If σR exists then it is unique and we set

Rl ,k,K0,K1 (b1 · · ·bnΩ) := bσR (1) · · ·bσR (n)Ω f .

If σR does not exist we set Rl ,k,K0,K1 (b1 · · ·bnΩ) := 0.

The maps Ql ,k,K0,K1,K2 and Rl ,k,K0,K1 preserve orthogonality and inner products and
are therefore partial isometries.

Proposition 4.2.9. Let x = a1 ⊗ ·· · ⊗ an ∈ Σn be an operator of type v = v1...vn and
let xn,l ,k,K0,K1,K2 with 0 ≤ l ≤ n, 0 ≤ k ≤ n − l , K0 = (V0,E0) ∈ Cliq(K , l ) and (K1,K2) ∈
Comm(K0) be the corresponding summand of jn(x) in Xn as in (4.2.14). We have

R∗
l ,k,K0,K1

π
f
n,l ,k,K0,K1,K2

(xn,l ,k,K0,K1,K2 )Ql ,n−l−k,K0,K1,K2

=(Pvσ(1) aσ(1)P
⊥
vσ(1)

) · · · (Pvσ(k) aσ(k)P
⊥
vσ(k)

)

× (Pvσ(k+1) aσ(k+1)Pvσ(k+1) ) · · · (Pvσ(k+l ) aσ(k+l )Pvσ(k+l ) )

× (P⊥
vσ(k+l+1)

aσ(k+l+1)Pvσ(k+l+1) ) · · · (P⊥
vσ(n)

aσ(n)Pvσ(n) ),

(4.2.16)

where σ is defined as in (1) – (6) of Definition 4.2.3 and where the right-hand side should
be understood as 0 if such σ does not exist.

Proof. Note that both sides of (4.2.16) equal 0 if a σ as in the statement of the propo-
sition does not exist, c.f. the definition of jn . So from now on we assume that σ
exists and that the right-hand side of (4.2.16) is non-zero for some elementary ten-
sor product a1 ⊗·· ·⊗an ∈Σn of type v = v1...vn .

We first argue that without loss of generality we may assume that the permu-
tation σ on the right-hand side of (4.2.16) is trivial. Indeed, if σ is non-trivial then
we may replace x by the element x ′ := aσ(1) ⊗ ·· · ⊗ aσ(n) ∈ Σn . Then note that the
left-hand sides of (4.2.16) coincide for x and x ′. Similarly the right-hand side of
(4.2.16) is the same for x and x ′.

So assume that σ is trivial. Now take a reduced operator b1...br of type w =
w1 · · ·wr . We first prove the proposition in the case where the permutation σQ :=
σw

Q,l ,n−l−k,K0,K1,K2
exists. In that case set w ′

1 := wσQ (1), ..., w ′
r := wσQ (r ) and

Ql ,n−l−k,K0,K1,K2 (b1 · · ·brΩ) =: b′
1...b′

rΩ f

where b′
1 := bσQ (1), ..., b′

r := bσQ (r ). As before, let V (K0) ∈ I be the word consisting of
all letters in K0 and let V (K2) ∈ I be the word consisting of all letters in K2. Then

w ′
1...w ′

r '
r−l−k︷ ︸︸ ︷

(∗·· ·∗V (K2))(V (K0))(¦ · · ·¦),
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where (¦ · · ·¦) has no letters in K1 at the start. We have by definition of π f
n,l ,k,K0,K1,K2

,

π
f
n,l ,k,K0,K1,K2

(xn,l ,k,K0,K1,K2 )

=(P f
v1

a1P f ⊥
v1

) · · · (P f
vk

ak P f ⊥
vk

)Diag(ak+1, · · · , ak+l )(P f ⊥
vk+l+1

ak+l+1P f
vk+l+1

) · · · (P f ⊥
vn

anP f
vn

).

Then, for the left-hand side of (4.2.16),

π
f
n,l ,k,K0,K1,K2

(xn,l ,k,K0,K1,K2 )Ql ,n−l−k,K0,K1,K2 (b1 · · ·brΩ)

=〈anb′
1Ω f ,Ω f 〉...〈ak+l+1b′

n−k−lΩ f ,Ω f 〉a1 · · ·ak (ak+1b′
n−k−l+1)◦...(ak+l b′

n−k )◦b′
n−k+1...b′

rΩ f .
(4.2.17)

Now, for the right-hand side of (4.2.16) we consider an expression,

(Pv1 a1P⊥
v1

) · · · (Pvk ak P⊥
vk

)(Pvk+1 ak+1Pvk+1 ) · · · (Pvk+l ak+l Pvk+l )

× (P⊥
vk+l+1

ak+l+1Pvk+l+1 ) · · · (P⊥
vn

anPvn )(b1 · · ·brΩ).
(4.2.18)

The assumption that σ is trivial yields that vk+l+1 · · ·vn starts with V (K2), that the
letters vk , ..., vk+l exhaust the vertex set of K0 and that the letters at the end of v1...vk

that commute with K0 are precisely given by the vertices in K1. If (4.2.18) is non-
zero then let us argue that there exists a word w ′

1...w ′
r as defined above. Indeed,

if (4.2.18) is non-zero, then we may shuffle b1...br into an operator b′
1...b′

r of type
w ′

1 · · ·w ′
r such that: w ′

1...w ′
n−l−k equals vn ...vk+l+1 and ends with V (K2); the letters

w ′
n−k−l+1, ..., w ′

d−k exhaust the vertex set of K0; w ′
n−k+1 · · ·w ′

r does not have a letter
of K1 up front (because if that happens then applying P⊥

vi
with i ≤ k will give zero).

So we conclude that (4.2.18) can only be non-zero if there exist w ′
1, ..., w ′

r as defined
above, in which case

(4.2.18)=(Pv1 a1P⊥
v1

)...(Pvk ak P⊥
vk

)(Pvk+1 ak+1Pvk+1 )...(Pvk+l ak+l Pvk+l )

× (P⊥
vk+l+1

ak+l+1Pvk+l+1 )...(P⊥
vn

anPvn )b′
1...b′

rΩ

=〈anb′
1Ω,Ω〉...〈ak+l+1b′

n−k−lΩ,Ω〉
×a1...ak (ak+1b′

n−k−l+1)◦...(ak+l b′
n−k )◦b′

n−k+1...b′
rΩ.

(4.2.19)

If one of the terms with a (ak+1b′
n−k−l+1)◦, ..., (ak+l b′

n−k )◦ is zero, then also this term
was zero in (4.2.17) and the proposition is proved. If none of these terms are
zero, then the image of (4.2.19) under Rl ,k,K0,K1 equals (4.2.17) and (4.2.18) is in
ker(Rl ,k,K0,K1 )⊥. This concludes the proposition in case σQ exists.

If σQ does not exist, then Ql ,n−l−k,K0,K1,K2 (b1 · · ·brΩ) = 0. On the other hand we
already noted that (4.2.19) can only be nonzero if a permutation σQ exists. So if σQ

is non-existent then also (4.2.19) is zero, yielding the proposition.

For n ∈N set the product map

ρn :Σn →B(L2(A,ϕ)), a1 ⊗·· ·⊗an 7→ a1 · · ·an .

and
πn : jn(Σn) →B(L2(A,ϕ)), jn(x) 7→ ρn(x)
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so that by definition πn ◦ jn = ρn . Of course the crucial part is to show that the map
πn is well-defined and completely bounded with linear bound in n. This is where
we use the announced intertwining argument between graph products and free
products.

Now we are ready for the main theorem of this chapter. Recall that the word
length projection χn was defined in (4.1.1).

Theorem 4.2.10 (Graph product Khintchine inequality). Let K = (V ,E) be a finite,
simplicial graph and consider a graph product (A,ϕ) =∗v,K (Av ,ϕv ) of unital C∗-algebras
Av with GNS-faithful states ϕv . Then for every n ∈N there exist maps

jn :χn(A) → Xn , πn : dom(πn) ⊆ Xn →χn(A),

with dom(πn) = jn(χn(A)) and where Xn is the operator space defined as in (4.2.12) such
that:

(1) πn ◦ jn is the identity on χn(A);

(2) ‖πn : dom(πn) → A‖cb ≤ (#Cliq(K ))3n.

Proof. Part (1) follows from Proposition 4.2.6 and by identifying χn(A) with Σn

canonically. From Proposition 4.2.9 we see that on the domain jn(χn(A)) the map
πn is given by the direct sum of the maps

R∗
l ,k,K0,K1

π
f
n,l ,k,K0,K1,K2

( · )Ql ,n−l−k,K0,K1,K2 .

In particular, πn is well-defined. As each of these summands is completely con-
tractive and there are at most (#Cliq(K ))3n summands, we see that πn is completely
bounded with the desired complete bound.

4.3. APPLICATION TO RIGHT-ANGLED HECKE C∗-ALGE-
BRAS

This section aims to apply the Khintchine inequality for arbitrary graph products
from Section 4.2 to right-angled Hecke C∗-algebras. As a consequence, we derive
a Haagerup type inequality for right-angled Coxeter groups and their Hecke de-
formations which will turn out to be very useful in Section 6.3.

4.3.1. RIGHT-ANGLED HECKE OPERATOR ALGEBRAS AS GRAPH
PRODUCTS

Similar to (operator algebras of) right-angled Coxeter groups (compare with Sub-
section 2.7.4, Example 4.1.3 and Example 4.1.4), Hecke C∗-algebras and Hecke-von
Neumann algebras of right-angled Coxeter groups admit a useful decomposition
in terms of graph products. This decomposition makes available several tools, one
of which is the inequality that we proved in Section 4.2.
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In the single-parameter version, the following statement appears in [46] where
it was used to deduce approximation properties (and subsequently the absence of
Cartan subalgebras) for right-angled Hecke-von Neumann algebras.

Proposition 4.3.1 ([46, Corollary 3.4]). Let (W,S) be a right-angled Coxeter system, let
q = (qs )s∈S ∈ R(W,S)

>0 be a multi-parameter and define a graph K = (V ,E) by V := S and
E := {(s, t ) | mst = 2}. Then

(C∗
r,q (W ),τq ) ∼=?s,K (C∗

r,qs
(Ws ),τqs )

via T (q)
w → T

(qs1 )
s1

..T
(qsn )
sn

where w = s1 · · · sn with s1, ..., sn ∈ S is a reduced expression. Sim-
ilarly,

(Nq (W ),τq ) ∼=?s,K (Nqs (Ws ),τqs ).

Proof. Let A be the ∗-subalgebra of ?s,K (C∗
r,qs

(Ws ),τqs ) generated by all elements

T (qs )
s , s ∈ S. From the defining properties of the Iwahori-Hecke algebra Cq [W ]

(see Theorem 3.1.1) and the defining commutation relations of the graph product
C∗-algebra it follows that there exists a ∗-isomorphism π : Cq [W ] → A given by
T (q)

s 7→ T (qs )
s . One easily checks that π intertwines the graph product state and

τq . From Lemma 3.5.1 it then follows that π extends to ∗-isomorphisms C∗
r,q (W ) ∼=

?s,K (C∗
r,qs

(Ws ),τqs ) and (Nq (W ),τq ) ∼=?s,K (Nqs (Ws ),τqs ).

Remark 4.3.2. (a) Note that reduced words in the graph K in Proposition 2.6.1 cor-
respond to reduced expressions of the corresponding Coxeter system. This will be
needed in Subsection 4.3.2.
(b) In combination with Proposition 4.1.5 the Proposition 2.6.1 implies that Hecke
operator algebras of right-angled Coxeter groups decompose as (iterated) amalga-
mated free products. This decomposition has for instance been used in [161] where
Raum and Skalski investigated the K-theory of right-angled Hecke C∗-algebras by
using results by Fima and Germain [82].

4.3.2. KHINTCHINE AND HAAGERUP TYPE INEQUALITIES FOR RIGHT-
ANGLED HECKE C∗-ALGEBRAS

Let us make the Khintchine inequality for arbitrary graph products of C∗-algebras
from Section 4.2 explicit in the setting of Subsection 4.3.1. For this, let (W,S) be
a finite rank right-angled Coxeter system and let q = (qs )s∈S ∈ R(W,S)

>0 be a multi-
parameter. Let K = (V ,E) be the graph associated to (W,S) defined in Proposition
4.3.1 and recall that we have a canonical isomorphism

(C∗
r,q (W ),τq ) ∼=?s,K (C∗

r,qs
(Ws ),τqs ).

We may specialize the reasoning in Section 4.2 to ?s,K (C∗
r,qs

(Ws ),τqs ), so define the
spaces AK0 of diagonal operators (see (4.2.11)) and the operator spaces Xn , n ∈ N
(see (4.2.12)) accordingly. We first observe that AK0 simplifies. Recall that Ps , s ∈
S and P f

K0
, K0 ∈ Cliq(K ) denote orthogonal projections that were defined in the

paragraph after Example 4.1.3 and in the paragraph after Remark 4.2.1.
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Lemma 4.3.3. Let (W,S) be a right-angled Coxeter system. For any K0 = (V0,E0) ∈
Cliq(K , l ) with l ∈N we have that AK0 = CP f

K0
. Moreover, for a reduced word v = s1 · · · sn

in I where {s1, . . . , sn} =V0 we have that

Diag
(
Ps1 T

(qs1 )
s1

Ps1 , ...,Psn T
(qsn )
sn

Psn

)
= (

∏
s∈V0

ps (q))P f
K0

.

Proof. For s ∈ S one has Ps T (qs )
s Ps = ps (q)Ps and C∗

r,qs
(Ws ) is a two-dimensional C∗-

algebra spanned by the unit and T (qs )
s . For a reduced word v = s1 · · · sn in I where

{s1, . . . , sn} = V0 and operators a1 ∈ C∗
r,qs1

(Ws1 ), ..., al ∈ C∗
r,qsn

(Wsn ) we then have that
Psi ai Psi is a scalar multiple of Psi so that Diag(a1, . . . , al ) is a scalar multiple of

P f
K0

, see (4.2.10). If ai = T
(qsi )
si

the scalar multiple is
∏

s∈V0 ps (q) which finishes the
proof.

Lemma 4.3.3 shows that we may identify AK0 with C completely isometrically.
Then in (4.2.13) note that Mk,d−k−l (C)⊗h C

∼= Mk,d−k−l (C). So for a right-angled Co-
xeter system we get by Lemma 4.3.3, (4.2.12) and (4.2.13) that

Xn =
n⊕

l=0

n−l⊕
k=0

⊕
K0∈Cliq(K ,l )

⊕
(K1,K2)∈Comm(K0)

Mk,n−k−l (C). (4.3.1)

Let pl ,k,K0,K1,K2 be the projection of Xn onto the summand Mk,n−k−l (C) indexed by
(l ,k,K0,K1,K2). We equip Mk,n−k−l (C) with the inner product 〈x, y〉Tr := (Trn−k−l )(y∗x),
where Trn−k−l is the non-normalized trace that takes the value 1 on rank 1 projec-
tions. We further equip Xn with the direct sum of these inner products and for

x ∈ Xn we let ‖x‖2,Tr := 〈x, x〉
1
2
Tr. Then, as for any finite-dimensional type I von Neu-

mann algebra, we have
‖x‖ ≤ ‖x‖2,Tr. (4.3.2)

By Theorem 4.2.10 (and Proposition 4.3.1) we obtain maps

jn :χn(C∗
r,q (W )) → Xn and πn : dom(πn) →χn(C∗

r,q (W )),

with dom(πn) = jn(χn(C∗
r,q (W ))) ⊆ Xn such that πn ◦ jn is the identity on C∗

r,q (W ) and
such that

‖πn : dom(πn) → Xn‖cb ≤ (#Cliq(K ))3n.

We now have the following orthogonality lemma.

Lemma 4.3.4. Let n ∈N, 0 ≤ l ≤ n, 0 ≤ k ≤ d − l , K0 = (V0,E0) ∈ Cliq(K , l ) and (K1,K2) ∈
Comm(K0). Let v,w ∈W be elements with length |v| = |w| = n. If the permutation σv given
in Definition 4.2.3 exists we have

〈pl ,k,K0,K1,K2 jn(T (q)
v ), jn(T (q)

w )〉Tr = δ(v ' w)
∏

s∈V0

(ps (q))2. (4.3.3)

If such σv does not exist then pl ,k,K0,K1,K2 jn(T (q)
v ) = 0.
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Proof. The final claim of the statement follows from the definition of jn . It hence
remains to prove (4.3.3) and we assume that σv as in Definition 4.2.3 exists. Since
the right-hand side of (4.3.3) contains the term δ(v ' w) we may assume that also
σw exists. Moreover, by shuffling the letters of v and w if necessary (which does
not change the operators T (q)

v and T (q)
w ), we may assume that σv and σw are the

identity permutation.
For s ∈ S set

es := P f
s T (qs )

s (P f
s )⊥ and e ′s = (P f

s )⊥T (qs )
s P f

s .

These elements form an orthonormal basis of the respective column Hilbert space
L1 and row Hilbert space K1. Now write a reduced expression v = s1 · · · sn with
s1, ..., sn ∈ S. By the assumption that σv was trivial we see that the generators
sk+1, ..., sk+l commute and form a clique K0 = (V0,E0) in K . From Lemma 4.3.3 we
deduce that

Diag
(
Psk+1 T

(qsk+1
)

sk+1
Psk+1 , ...,Psk+l T

(qsk+l
)

sk+l
Psk+l

)
= (

∏
s∈V0

ps (q))P f
K0

.

It now follows from the definition of jn that

pl ,k,K0,K1,K2 jn(T (q)
v ) = (

∏
s∈V0

ps (q))(es1 ⊗ ...⊗esk ⊗e ′sk+l+1
⊗ ...⊗e ′sn

).

From this we directly conclude (4.3.3) which finishes the proof.

Theorem 4.3.5 (Khintchine inequality for right-angled Hecke C∗-algebras). Let
(W,S) be a right-angled finite rank Coxeter system and define a graph K = (V ,E) by V := S

and E := {(s, t ) | mst = 2}. Let q = (qs )s∈S ∈ R(W,S)
>0 be a multi-parameter. Then for every

n ∈N≥1 there exist maps

jn :χn(C∗
r,q (W )) → Xn , πn : dom(πn) ⊆ Xn →χn(C∗

r,q (W ))

with jn(χn(C∗
q (W )) = dom(πn) where Xn is the operator space defined as in (4.3.1) such

that:

(1) πn ◦ jn is the identity on χn(C∗
r,q (W ));

(2) ‖πn : dom(πn) →C∗
r,q (W )‖cb ≤ (#Cliq(K ))3n;

(3) jn extends to a bounded map

L2(χn(C∗
r,q (W )),τq ) → L2(Xn ,Tr),

with bound majorized by
∏

s∈S ps (q).

Proof. The statements (1) and (2) are immediate from Proposition 4.3.1 and Theo-
rem 4.2.10. It thus remains to prove (3). Let v ∈ I have length n. Since ‖T (q)

v Ω‖2 = 1
we find from (4.3.3) that

‖ jn : L2(χn(C∗
r,q (W )),τq ) → L2(Xn ,Tr)‖ ≤ sup

v∈W,|v|=n
‖ jn(T (q)

v )‖2,Tr ≤
∏
s∈S

ps (q)

which completes the proof.
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As a consequence of Theorem 4.3.5 we derive a Haagerup type inequality for
Hecke C∗-algebras of right-angled Coxeter groups. Such a Haagerup type inequality
states that the norm of an operator of length n can be estimated with its 2-norm
up to a polynomial bound depending on n. It is a generalization of Haagerup’s
inequality for free groups Fm (see [93] or also [152, Section 9.6]) which entails that
there exists a constant C such that for every x ∈ C[Fm] ⊆ B(`2(Fm)) supported on
group elements of length n one has ‖x‖ ≤ C n‖xδe‖2. In particular, in this case the
polynomial can be chosen to be n, that is we have a linear estimate in the length n.
Haagerup and Khintchine inequalities have found a wide range of applications in
operator theory. We will give further applications to the trace-uniqueness problem
of Hecke C∗-algebras in Section 6.3.

Theorem 4.3.6 (Haagerup inequality for right-angled Hecke C∗-algebras). Let (W,S)

be a right-angled finite rank Coxeter system and let q = (qs )s∈S ∈ R(W,S)
>0 be a multi-

parameter. Define a graph K = (V ,E) by V := S and E := {(s, t ) | mst = 2}. Then for each
n ∈N≥1 and x ∈χn(C∗

r,q (W )) we have that

‖x‖ ≤ n(#Cliq(K ))3(
∏
s∈S

ps (q))‖xδe‖2.

Proof. By Theorem 4.3.5 and the inequality (4.3.2) we get for every x ∈χn(C∗
r,q (W ))

‖x‖ =‖(πn ◦ jn)(x)‖ ≤ ‖πn‖‖ jn(x)‖ ≤ ‖πn‖‖ jn(x)‖2,Tr

≤n(#Cliq(K ))3‖ jn(x)‖2,Tr ≤ n(#Cliq(K ))3(
∏
s∈S

ps (q))‖xδe‖2.

This completes the proof.





5
TOPOLOGICAL BOUNDARIES

AND COMPACTIFICATIONS OF
GRAPHS AND COXETER

GROUPS

The aim of this chapter is to introduce and study certain topological spaces associ-
ated with (countable) connected rooted graphs. These spaces reflect combinatorial
and order theoretic properties of the underlying graph and relate in the case of
hyperbolic graphs to Gromov’s hyperbolic compactification (see Subsection 2.5.2).
They are particularly tractable in the case of Cayley graphs of finite rank Coxeter
groups. In that context, we speak of the compactification and the boundary of the
group. As it turns out, the canonical action of the Coxeter group on its Cayley
graph induces a natural action on the compactification and the boundary. From
this, we deduce that in this case our construction coincides with spaces defined in
[37] (see also [130] and [129]). We further prove the amenability of the action, we
characterize when the compactification is small at infinity (see Subsection 2.3.2)
and we study classes of Coxeter groups for which the action is a topological boun-
dary action in the sense of Furstenberg (see Subsection 2.3.3). Section 5.3 then
reveals an intimate relationship between our construction and Hecke operator al-
gebras. This relationship will be crucial in the treatment of the characterization
of the simplicity of right-angled Hecke C∗-algebras in Chapter 6 and has several
other important applications (see Chapter 8 and Chapter 9).
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5. TOPOLOGICAL BOUNDARIES AND COMPACTIFICATIONS OF GRAPHS AND

COXETER GROUPS

The content of this chapter is based on parts of the articles

• M. Klisse, Topological boundaries of connected graphs and Coxeter groups, arXiv
preprint arXiv:2010.03414v1 (2020).

• M. Klisse, Topological boundaries of connected graphs and Coxeter groups, to ap-
pear in the Journal of Operator Theory;

• M. Klisse, Simplicity of right-angled Hecke C∗-algebras, to appear in Int. Math.
Res. Not. IMRN.

5.1. BOUNDARIES AND COMPACTIFICATIONS OF GRAPHS

Recall that hyperbolic graphs are graphs that satisfy a certain negative curvature
condition (see Subsection 2.5.2). The hyperbolic boundary ∂hK and the hyperbolic
compactification K ∪∂hK of such a graph K have a rich structure which provides
an excellent tool to study the underlying graph. Especially in the context of Cayley
graphs of groups (see Definition 2.5.4) the notion of hyperbolicity allows exploring
connections between algebraic properties of the group and geometric properties of
certain topological spaces (see [122] for a survey). This led to a number of break-
throughs in the fields of geometric and combinatoric group theory.

Following Gromov’s ideas, many similar constructions assigning topological
spaces to graphs and groups have been presented. In the following, we will walk
an analogous path by defining certain topological spaces associated with counta-
ble, undirected and simplicial connected rooted graphs. Our construction covers
several interesting examples and, if the graph is hyperbolic, nicely relates to Gro-
mov’s hyperbolic compactification and boundary.

All graphs appearing in this chapter are assumed to be countable, undirected
and simplicial. The reader may consult Section 2.5 again for the underlying graph
theoretical notions.

5.1.1. CONSTRUCTION AND BASIC PROPERTIES

Definition 5.1.1. A rooted graph (K ,o) is a graph K equipped with a root o ∈ K . If
K is connected, we impose a partial order ≤o on K by declaring x ≤o y if and only
if there exists a geodesic path starting in o and ending in y which passes x. If the
root o is clear, we often just write ≤ instead of ≤o . We call this the graph order on
(K ,o). Further, define relations ≥o , <o and >o (resp. ≥, < and >) in the natural way.
If the join or meet (with respect to the partial order) of two elements x, y ∈ K exists,
we denote it by x ∨o y (resp. x ∨ y) or x ∧o y (resp. x ∧ y).

One easily checks that the graph order indeed defines a partial order. Based on
it, we define a topological space associated with the connected rooted graph (K ,o)
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into which K naturally embeds as a dense subset. Let x = (xi )i∈N be a sequence in
K . We say that x o-converges if for every x ∈ K one either has x ≤ xi for all large
enough i or x � xi for all large enough i . Write x ≤o x (resp. x ≤ x) in the first case
and x �o x (resp. x � x) in the second one. Note that constant sequences in K neces-
sarily o-converge. We say that x o-converges to infinity if further supx≤x dK (x,o) =∞.
One easily checks that infinite geodesic paths always o-converge to infinity. On
the set of all sequences in K which o-converge we define an equivalence relation
∼o (resp. ∼) by declaring x ∼o y if and only if for every x ∈ K the implications
x ≤ x ⇔ x ≤ y hold. Denote by [x]o (resp. [x]) the corresponding equivalence class
of a sequence x and write ∂(K ,o) for the set of all equivalence classes of sequences
which o-converge to infinity. We call this set the boundary of (K ,o). Similarly, the
bordification (K ,o) is the set of all equivalence classes of sequences in K which o-
converge. We will view K as a subset of its bordification by identifying the ele-
ments in K with equivalence classes of constant sequences.

The following lemma is easy to check.

Lemma 5.1.2. Let (K ,o) be a connected rooted graph. Then the graph order on (K ,o)
extends to a partial order on (K ,o) via

[x] ≤o [y] :⇔ x ≤o y for every x ∈ K with x ≤o x

for [x], [y] ∈ (K ,o).

As before, we often just write ≤ instead of ≤o for the extended graph order. We
equip (K ,o) with the topology generated by the subbase of sets of the form

Ux :=
{

z ∈ (K ,o) | x ≤ z
}

and U c
x :=

{
z ∈ (K ,o) | x � z

}
where x ∈ K . In particular, Ux is clopen (closed and open) in (K ,o). Further, we
impose the subspace topology on ∂(K ,o).

Lemma 5.1.3. Let (K ,o) be a connected rooted graph. Then the following statements hold:

• (K ,o) contains K as a dense subset;

• For x ∈ K the one point set {x} is clopen if x has finite degree;

• If the graph is locally finite, then K is a discrete subset of (K ,o) and ∂(K ,o) = (K ,o)\
K .

Proof. The density of K ⊆ (K ,o) is clear. If x ∈ K has finite degree, then {x} is open
because either {x} = ⋂

y∈K :x<y,dK (x,y)=1(Ux ∩U c
y ) or {x} = Ux . In particular, if the

graph is locally finite, K is a discrete subset of (K ,o). It remains to show that
∂(K ,o) = (K ,o) \ K . For this, let z ∈ (K ,o) be a point represented by a sequence
x = (xi )i∈N ⊆ K which o-converges but which does not o-converge to infinity. Then
l := sup{dK (y,o) | y ∈ K with y ≤ z} is finite. Because K is locally finite there exists
i0 ∈ N such that xi ∉ ⋃

y∈K :dK (y,o)=l+1 Uy for all i ≥ i0. But then dK (xi ,o) ≤ l for all
i ≥ i0. In particular, again by the local finiteness of K , there exists a subsequence of
x which is constant. But x o-converges, so z = y for some y ∈ K . This implies the
claim.
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Remark 5.1.4. (a) It is in general not true that for a connected rooted graph (K ,o)
the set K ⊆ (K ,o) is open. Indeed, if we consider the first graph in Figure 5.1 with
the indicated sequence (zi )i∈N of boundary points represented by infinite geodesic
paths, then zi → z. The example in particular demonstrates that the boundary
∂(K ,o) is not necessarily compact.
(b) Other than in the context of trees it is in general not true that for a connected
rooted graph (K ,o) and an element x ∈ K the openness of the one point set {x}
implies that x has finite degree. Indeed, consider the second graph in Figure 5.1.
Its vertex z does not have finite degree but the one point set {z} is open since {z} =
Uz ∩U c

z ′ .
(c) Other than for the Gromov compactification of a hyperbolic graph, in general
not every element of the bordification (K ,o) is represented by a (possibly finite)
geodesic path; not even in the locally finite case. Consider for instance the se-
quence (xi )i∈N indicated in the third graph of Figure 5.1. It o-converges but the
corresponding equivalence class can not be represented by a geodesic path.

z1 z2 z3 z4 z5 ...

• • • • • ...

• • • • • ...

•
z

•
o

•
z′

• • • • • ...

•
z

•
o

•x3

•x2

•x1

•
o

•

•

•
x

•

•

•
y

Figure 5.1: Example (a), (b) and (c)

Definition 5.1.5. Let (K ,o) be a connected rooted graph and let

π : B(`2(K )) →B(`2(K ))/K (`2(K ))

be the quotient map where K (`2(K )) denotes the compact operators in B(`2(K )).
For every element x ∈ K let Px ∈ `∞(K ) ⊆B(`2(K )) be the orthogonal projection onto
the subspace

Span
{
δy | y ∈ K with y ≤ x

}⊆ `2(K ).

Denote by D(K ,o) the (commutative) unital C∗-algebra generated by all Px , x ∈ K .
Note that Po = 1.

Proposition 5.1.6. Let (K ,o) be a connected rooted graph. Then, Spec(D(K ,o)) ∼= (K ,o)
where Spec(D(K ,o)) denotes the character spectrum of D(K ,o). In particular, (K ,o) is
a compact Hausdorff space. Further, Spec(π(D(K ,o))) ∼= ∂(K ,o) where Spec(π(D(K ,o)))

denotes the character spectrum of π(D(K ,o)) and where ∂(K ,o) is the closure of ∂(K ,o) in
(K ,o).
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Proof. Let x be a sequence in K which o-converges. It is clear that limi 〈(·)δxi ,δxi 〉 ∈
Spec(D(K ,o)) is well-defined where the limit is taken in the weak-∗ topology. De-
fine a map ψ : (K ,o) → Spec(D(K ,o)) by z 7→ lim〈(·)δxi ,δxi 〉 for z ∈ (K ,o) where x is a
sequence representing z. The image of z does not depend on the choice of the re-
presenting sequence for z. Indeed, let x and y be sequences in K which o-converge
and are equivalent to each other. For all x ∈ K one has

lim
i
〈Pxδxi ,δxi 〉 =

{
1 , if x ≤ x

0 , else
=

{
1 , if x ≤ y

0 , else
= lim

i
〈Pxδyi ,δyi 〉,

implying that limi 〈(·)δxi ,δxi 〉 and limi 〈(·)δyi ,δyi 〉 coincide on ∗-Alg ({Px | x ∈ K }). Hence,
ψ is well-defined.

We proceed by showing that ψ is continuous, injective, surjective and closed.

• Continuity: The continuity follows in the same way as the well-definedness
above.

• Injectivity: Let x and y be sequences in K which o-converge and which are
not equivalent to each other. Without loss of generality, we can assume that
there exists x ∈ K with x ≤ x and x � y. Then,

lim
i
〈Pxδxi ,δxi 〉 = 1 and lim

i
〈Pxδyi ,δyi 〉 = 0,

which implies that ψ ([x]) 6=ψ([
y
])

.

• Surjectivity: Let χ ∈ Spec(D(K ,o)) be a character on D(K ,o). Define the set
S := {x ∈ K | χ(Px ) = 1} and choose an enumeration y1, y2, ... of S (where we
assume that the sequence becomes constant if S is finite) and an enumera-
tion y ′

1, y ′
2, ... of K \S (where we assume that the sequence becomes constant

if K \ S is finite). For every i ∈ N the intersection Ii = K ∩ (Uy1 ∩U c
y ′

1
)∩ ...∩

(Uyi ∩U c
y ′

i
) must be non-empty because otherwise Py1 (1−Py ′

1
)...Pyi (1−Py ′

i
) = 0

and hence

1 =χ(Py1 )χ(1−Py1 )...χ(Pyi )χ(1−Py ′
i
) =χ(Py1 (1−Py ′

1
)...Pyi (1−Py ′

i
)) = 0.

So choose for every i ∈ N an element xi ∈ Ii and consider the sequence x :=
(xi )i∈N in K . By construction the sequence o-converges and for z := [x] ∈ (K ,o)
we have ψ(z) =χ. The surjectivity follows.

• Closedness: It suffices to show that for every x ∈ K the sets ψ(Ux ) and ψ(U c
x )

are closed in Spec(D(K ,o)). Fix x ∈ K , let (zi )i∈I ⊆Ux be a net and let z ∈ (K ,o)
with ψ(zi ) →ψ(z). We have

(
ψ(z)

)
(Px ) = lim

(
ψ(zi )

)
(Px ) = 1, so z ∈Ux . Hence,

ψ(Ux ) is closed in Spec(D(K ,o)). The closedness of ψ(U c
x ) follows in the same

way.

We have shown that ψ is a homeomorphism. The existence of a homeomorphism
between Spec(π(D(K ,o))) and ∂(K ,o) follows in a similar way.
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Motivated by Proposition 5.1.6 we will often speak about (K ,o) as the compacti-
fication of the graph K .

Remark 5.1.7. (a) The maps in Proposition 5.1.6 induce isomorphisms D(K ,o) ∼=
C ((K ,o)) via Px 7→ χUx and π(D(K ,o)) ∼=C (∂(K ,o)) via π(Px ) 7→ χ

Ux∩∂(K ,o), where χUx

(resp. χ
Ux∩∂(K ,o)) denotes the characteristic function on Ux (resp. Ux ∩∂(K ,o)).

(b) The C∗-algebra D(K ,o) appearing in Proposition 5.1.6 is separable. This implies
that the topological space (K ,o) is metrizable. The same holds for ∂(K ,o) and hence
for ∂(K ,o).
(c) If (K ,o) is a locally finite connected rooted graph, then Lemma 5.1.3 and Propo-
sition 5.1.6 imply that ∂(K ,o) = ∂(K ,o) ∼= Spec(π(D(K ,o))) is a (metrizable) compact
Hausdorff space.

As mentioned in Remark 5.1.4, in general not every element of the compacti-
fication (K ,o) is represented by a (possibly finite) geodesic path. Proposition 5.1.9
characterizes when this is the case. Its proof requires the following simple lemma.

Lemma 5.1.8. Let (K ,o) be a connected rooted graph and let (xi )i∈N ⊆ K be a sequence
with x1 ≤ x2 ≤ .... Then the sequence converges to a point in (K ,o) which can be represented
by a (possibly finite) geodesic path.

Proof. Choose a geodesic path starting in o and ending in x1 and denote it by [o, x1].
Because x1 ≤ x2, there exists a geodesic path starting in o and ending in x2 which
passes x1. Denote by [x1, x2] its tail starting in x1 and ending in x2. Further, let
[o, x1] [x1, x2] be the concatenation of [o, x1] and [x1, x2]. It is geodesic as well. Pro-
ceeding like this we get a geodesic path α := [o, x1] [x1, x2] [x2, x3] .... If the path is
finite, then the convergence of the sequence (xi )i∈N is clear, so assume that α is in-
finite. We claim that xi → [α]. Indeed, if y ≤ [α], then y ≤ αi for all large enough i
and hence y ≤ xn for all large enough n. If y � [α], then y �αi for all large enough
i and then also y � xn for all large enough n. Hence, xi → [α].

Proposition 5.1.9. Let (K ,o) be a connected rooted graph. Then the following statements
are equivalent:

(1) Every element in (K ,o) is represented by a (possibly finite) geodesic path in K ;

(2) For every clopen subset S ⊆ (K ,o) the number of minimal elements in S is finite;

(3) For every x, y ∈ K the number of minimal elements in Ux ∩Uy is finite.

In particular, if (K ,o) satisfies one (and hence all) of the conditions above, then ∂(K ,o) =
(K ,o) \ K .

Proof. “(1) ⇒ (2)”: Assume that every element in (K ,o) is represented by a (possi-
bly finite) geodesic path in K and that there exists a clopen subset S ⊆ (K ,o) of K
for which #T =∞, where T := {

z ∈ S | z minimal element in S
}
. By the first assump-

tion we have (K ,o) = K ∪∂(K ,o). Further, for every boundary point z ∈ S ∩∂(K ,o)
represented by an infinite geodesic path α= (αi )i∈N with α0 = o we find i ∈N with
αi ∈ S (as S is open). But then αi ≤ z and hence z ∉ T . This implies that T ⊆ K ∩S,
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so
⋃

x∈T Ux is an infinite open cover of S which has no finite subcover. But by
the compactness of (K ,o) the subset S must be compact as well. This leads to a
contradiction.

“(2)⇒ (3)”: This implication is clear.
“(3) ⇒ (1)”: Assume that for every x, y ∈ K the number of minimal elements

in Ux ∩Uy is finite and let z ∈ (K ,o). Define the subset S := {x ∈ K | x ≤ z} of K
and choose a (possibly finite) enumeration y1, y2, ... of S . We inductively define
elements x1 ≤ x2 ≤ ... in S with yi ≤ xi+1 < z for all i . Set x1 := o ∈ S and assume
that for i ∈ N elements x1, ..., xi ∈ S with o = x1 ≤ ... ≤ xi and y j ≤ x j+1 < z for j =
1, ..., i −1 have been defined. The intersection K ∩Uxi ∩Uyi must be non-empty and
Uxi ∩Uyi ⊆

⋃
y∈Uxi ∩Uyi minimal Uy where the union is finite by our assumption. We

hence find y ∈ K ∩Uxi ∩Uyi with z ∈ Uy . Set xi+1 := y , then this element satisfies
the condition x1 ≤ ... ≤ xi+1 and yi ≤ xi+1 < z. Now, Lemma 5.1.8 implies that the
sequence (xi )i∈N converges to a boundary point z ′ which can be represented by
an infinite geodesic path. By construction, for every x ∈ S one has x ≤ z ′ and for
x ∈ K \S one has x � z ′. Hence, z ′ = z.

We have shown the equivalence of the statements (1), (2) and (3). If (K ,o) satis-
fies one (and hence all) of these conditions, it is clear that ∂(K ,o) = (K ,o) \ K . The
claim follows.

Remark 5.1.10. Let (K ,o) be a connected rooted graph. One can show that the set of
equivalence classes of infinite geodesic paths in K does not depend on the choice
of the root o ∈ K . Indeed, let o′ ∈ K be a second root. Assume that α, β are infinite
geodesic paths which are equivalent with respect to o. One finds M ∈N such that
for all n ≥ M there exist kn , ln ∈N with αn ≤o βkn ≤o αln . That in particular implies
that we find a geodesic path starting in αn , passing βkn and ending in αln . Denote
this path by

[
αn ,αln

]
. Now, there is a geodesic path α′ starting in o′ which eventu-

ally flows into α, i.e. there exist N ∈N, i ∈ Z such that α′
n = αi+n for all n ≥ N (see

e.g. [33, Lemma E.2]). For n ≥ N −i write
[
o′,αn

]
for the corresponding head of this

path starting in o′ and ending in αn . Then, for n ≥ max{M , N + i } we have that the
concatenation

[
o′,αn

][
αn ,αln

]
is a geodesic path starting in o′, passing αn , passing

βkn and ending in αln . We get that αn ≤o′ βkn ≤o′ αln for all n ≥ max{M , N + i }. It is
then obvious that α and β are equivalent with respect to o′. However, even though
the set of equivalence classes of infinite geodesic paths in K does not depend on
the choice of the root o ∈ K , the topology of (K ,o) can; even in the setting of Propo-
sition 5.1.9. Consider for instance the third graph in Figure 5.1. Then the limit of
the indicated sequence (xi )i∈N ⊆ K depends on whether one views it as a sequence
in (K , x) or as a sequence in (K , y). Note that the connected rooted graphs (K , x) and
(K , y) satisfy the equivalent conditions in Proposition 5.1.9 whereas (K ,o) does not.

In general, the graph order of a connected rooted graph (K ,o) does not necessa-
rily define a (complete) meet-semilattice. However, the graphs that we are mainly
interested in in this thesis satisfy this condition (see Example 5.1.11). The meet-
semilattice property has the technical advantage that Ux ∩Uy =Ux∨y , Px Py = Px∨y

if
{

x, y
}

has an upper bound and Ux ∩Uy = ;,Px Py = 0 else. This in particular
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implies that
∗-Alg ({Px | x ∈ K }) = Span ({Px | x ∈ K }) .

Example 5.1.11. (a) The graph orders of connected rooted trees define complete
meet-semilattices.
(b) Let (W,S) be a Coxeter group, let Cay(W,S) be the Cayley graph of W with
respect to the generating set S and identify elements in W with the corresponding
vertices in the graph. It is easy to check that under this identification the graph
order of the connected rooted graph (Cay(W,S),e) coincides with the weak right
Bruhat order of (W,S) (see Subsection 2.7.2). In particular, by Proposition 2.7.4, the
graph order of (Cay(W,S),e) defines a complete meet-semilattice.

In combination with the discussion above Proposition 5.1.9 immediately im-
plies the following statement.

Corollary 5.1.12. Let (K ,o) be a connected rooted graph whose graph order defines a com-
plete meet-semilattice. Then ∂(K ,o) = (K ,o)\K and every element in ∂(K ,o) is represented
by an infinite geodesic path in K .

Theorem 5.1.13. Let (K ,o) be a connected rooted graph for which the graph order defines
a complete meet-semilattice. Then, D(K ,o) is the universal C∗-algebra generated by pro-
jections (Px )x∈K with Px Py = Px∨y for all x, y ∈ K where we assume that Px∨y = 0 if the
join x ∨ y does not exist.

Proof. Let A be the universal C∗-algebra generated by projections (P̃x )x∈K with
P̃x P̃y = P̃x∨y for all x, y ∈ K and let χ be a character on A . It suffices to show that the
map Px 7→χ(P̃x ) defines a character on D(K ,o). As in the proof of Proposition 5.1.6,
define the set S := {x ∈ K |χ(P̃x ) = 1}. For i ∈N define xi :=∨

x∈S :dK (x,o)≤i x and let z ∈
(K ,o) be the point this sequence converges to (see Lemma 5.1.8). Further, let ψ be
the homeomorphism appearing in the proof of Proposition 5.1.6. Then, (ψ(z))(Px ) =
1 =χ(P̃x ) if x ∈S and (ψ(z))(Px ) = 0 =χ(P̃x ) if x ∉S . The claim follows.

We finish this subsection with three spaces that arise as special cases from our
construction and which serve as additional motivation.

Example 5.1.14. (a) Let S be a countable (discrete) set and let {•} be the one-point
set. Define a graph K = (V ,E) via V := S ∪ {•} and E := {(•, s) | s ∈ S}∪ {(s,•) | s ∈ S}.
Then, by Proposition 5.1.6, (K ,•) is a compact Hausdorff space. It is easy to check
that it identifies with the one-point compactification of the discrete set S.
(b) Let n := (ni )i∈N ⊆N be a sequence of natural numbers with ni > 1, define N0 := 1,
N1 := n1, N2 := n1n2, ... and consider the set Gn consisting of all formal sums of
the form x := ∑∞

i=1 xi Ni−1 with xi ∈ {0,1, ...,ni − 1} where only finitely many of the
coefficients xi are non-zero. Set 0 := ∑∞

i=1 0Ni−1. The set Gn induces a locally finite
graph K = (V ,E) via V := Gn and where distinct vertices x = ∑∞

i=1 xi Ni−1 and y =∑∞
i=1 yi Ni−1 are adjacent to each other if and only if there exists L ∈N such that

x1 = y1, ..., xL = yL , xL+1 = 0 6= yL+1 and xL+2 = yL+2 = xL+3 = yL+3 = ... = 0
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or

x1 = y1, ..., xL = yL , xL+1 6= 0 = yL+1 and xL+2 = yL+2 = xL+3 = yL+3 = ... = 0.

The graph order of (K ,0) gives rise to a complete meet-semilattice. Hence, by
Proposition 5.1.6 the compactification Gn := (K ,0) is a metrizable compact space. It
identifies with the Cantor set

∏∞
i=1Z/niZ where the product is equipped with the

product topology and where the Z/niZ are viewed as discrete topological spaces.
Note that the map Gn → Gn, x 7→ x+1N0 (addition with carryover) induces a homeo-
morphism of Gn. The induced action of Z on Gn is the well-studied odometer action
with respect to n and the corresponding crossed product C (Gn)or Z is the Bunce-
Deddens algebra with respect to n (see [36] and [65, Sections VIII.4 and V.3]). In the
case where ni is the i -th prime number, Gn identifies with the well-known profinite
completion of the integers.
(c) The positive integers N≥1 induce a locally finite graph K = (V ,E) with V :=N≥1

and
E := {(m,n) ∈N≥1 ×N≥1 | m = pn or n = pm for a prime number p}.

In the graph order with respect to the root o := 1 one has m ≤ n for m,n ∈ N≥1 if
and only if m | n. It hence defines a complete meet-semilattice where the meet
of a subset T ⊆ K is given by the greatest common divisor gcd(T ). By Theorem
5.1.6 the corresponding compactification (N≥1,1) is a metrizable compact space and
by Proposition 5.1.9 every element in (N≥1,1) can be represented by a (possibly
infinite) geodesic path. The space can hence be viewed as the set of supernatural
numbers. Further, the semigroup action of N≥1 on itself by multiplication extends
to a continuous semigroup action on (N≥1,1).

5.1.2. HYPERBOLIC GRAPHS AND TREES

In this subsection we will see that for a hyperbolic connected rooted graph (K ,o)
the topological spaces ∂(K ,o) and (K ,o) behave well with respect to the hyperbolic
(Gromov) boundary ∂hK and the corresponding compactification K ∪∂hK of K . In
the case where K is a tree, both spaces turn out to be homeomorphic to each other.

Theorem 5.1.15. Let (K ,o) be a hyperbolic connected rooted graph. Then the map φ :
∂(K ,o) → ∂hK given by φ ([x]) = [x]h for a sequence x which o-converges to infinity is
well-defined, continuous and surjective. If the graph is locally finite, then φ extends to a
continuous surjection φ̃ : (K ,o) → K ∪∂hK with φ̃|K = idK .

Proof. Well-defined: Let x, y be equivalent sequences which o-converge to infinity.
These sequences converge to infinity in the sense that liminfi , j 〈xi , x j 〉o = ∞ and
liminfi , j 〈yi , y j 〉o = ∞. Indeed, if we assume that liminfi , j 〈xi , x j 〉o < ∞, then there
exist strictly increasing sequences (mi )i∈N, (ni )i∈N ⊆N such that limi→∞〈xmi , xni 〉o <
∞. Because x o-converges to infinity, for every i ∈N there exists an element zi ∈ K
such that zi ≤ xmi , zi ≤ xni and we can choose zi in such a way that dK (zi ,o) →∞.
This implies〈

xmi , xni

〉
o = 1

2

(
dK (xmi ,o)+dK (xni ,o)−dK (xmi , xni )

)
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≥ 1

2

(
dK (xmi ,o)+dK (xni ,o)− (dK (zi , xmi )+dK (zi , xni ))

)
= 1

2
(dK (xmi ,o)+dK (xni ,o)− (dK (xmi ,o)

−dK (zi ,o)+dK (xni ,o)−dK (zi ,o)))

= dK (zi ,o)

→ ∞
in contradiction to our assumption. Hence, x must converge to infinity. In a similar
way one checks that the sequence y converges to infinity and that x ∼h y. We get
that φ is well-defined.

Continuity: Let (
[
xi

]
)i∈I ⊆ ∂(K ,o) be a net of equivalence classes of sequences

xi , i ∈ I which o-converge to infinity that converges to a point z ∈ ∂(K ,o). Let x be
a sequence which o-converges to infinity and which represents z. We claim that[
xi

]
h →φ(z) = [x]h . As the sets

{
U

(
φ(z),R

)}
R>0 with

U
(
φ(z),R

)
:= {z ′ ∈ ∂hK | there are sequences y1,y2 converging to infinity

with φ(z) = [
y1]

h , z ′ = [
y2]

h and liminf
i , j→∞

〈
y1

i , y2
j

〉
o
> R}

define a neighborhood basis of φ(z), it suffices to show that for every R > 0,
[
xi

]
h ∈

U (φ(z),R) for i large enough. For R > 0 we find yR ∈ K with yR ≤ z and dK (yR ,o) > R.
Further, as

[
xi

] → z, there exists i0(R) ∈ I such that yR ≤ [
xi

]
for every i ≥ i0(R).

We claim that
[
xi

]
h ∈ U (φ(z),R) for every i ≥ i0(R). Assume that this is not the

case. Then, as above, for fixed i ≥ i0(R) we find strictly increasing sequences
(m j ) j∈N, (n j ) j∈N ⊆N such that lim j→∞〈xm j , xi

n j
〉o ≤ R. Without loss of generality we

can assume that xR ≤ xm j , xi
n j

for every j ∈N. Then,

〈xm j , xi
n j
〉o = 1

2

(
dK (xm j ,o)+dK (xi

n j
,o)−dK (xm j , xi

n j
)
)

≥ 1

2

(
dK (xm j ,o)+dK (xi

n j
,o)− (dK (yR , xm j )+dK (yR , xi

n j
))

)
= dK

(
yR ,o

)
> R

in contradiction to our assumption. This implies that
[
xi

]
h ∈U (φ(z),R) for i ≥ i0(R),

so
[
xi

]
h →φ(z) = [x]h .

Surjectivity: That is clear.
We have shown that the map φ is well-defined, continuous and surjective. If

the graph is locally finite, K is an open subset of (K ,o). Using this, one checks in the
same way as above that the identity map on K continuously extends to a surjection
φ̃ : (K ,o) → K ∪∂hK with φ̃|∂(K ,o) =φ.

In the case of a tree Theorem 5.1.15 can be strengthened.

Corollary 5.1.16. Let (T ,o) be a connected rooted tree. Then the identity on T extends
to a homeomorphism ∂(T ,o) ∼= ∂hT .
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Proof. It suffices to show that the map [x] 7→ [x]h is injective. By Proposition 5.1.9 it
further suffices to consider equivalence classes of infinite geodesic paths. So let α,
β be infinite geodesic paths with [α]h = [

β
]

h , i.e. supi dT (αi ,βi ) <∞. Then, since T

is a tree, α and β must eventually flow together which implies that [α] = [
β
]
.

Besides from Corollary 5.1.16 the compactification of trees has another useful
property.

Lemma 5.1.17. Let (T ,o) be a rooted tree. Then, every element z ∈ ∂(T ,o) is maximal
in the sense that if z ′ ∈ ∂(T ,o) is another element with z ≤ z ′ (in the partial order from
Lemma 5.1.2), then z = z ′.

Proof. Let z, z ′ ∈ ∂(T ,o) be elements with z ≤ z ′. By Proposition 5.1.9 there exist
infinite geodesic paths α, β which represent z, z ′. Assume that α0 = β0 = o. We
have α1 ≤ z and hence α1 ≤ z ′. Because geodesic paths between two points of a tree
are unique, β passes α1 and hence α1 = β1. By the same argument we get α2 = β2,
α3 =β3, ..., therefore z = z ′.

5.2. BOUNDARIES AND COMPACTIFICATIONS OF COXE-
TER GROUPS

The most important graphs that we consider in this chapter are Cayley graphs of
Coxeter systems. Even though some of the results hold in greater generality we
restrict to finite rank Coxeter groups to avoid technical subtleties and to keep the
statements consistent with each other.

Definition 5.2.1. Let (W,S) be a finite rank Coxeter system. As before, let Cay(W,S)
be the Cayley graph of W with respect to the generating set S and view it as a con-
nected rooted graph with root e ∈W . We call ∂(W,S) := ∂(Cay(W,S),e) the boundary
of (W,S) and (W,S) := (Cay(W,S),e) the compactification of (W,S). For convenience,
we will often write ∂W and W if the generating set S is clear.

By what we have seen in Subsection 5.1.1, the spaces ∂(W,S), (W,S) are me-
trizable compact spaces and W ⊆ (W,S) is both dense and discrete with ∂(W,S) =
(W,S) \ W . Further, by Corollary 5.1.12 every element in ∂(W,S) is represented by
an infinite geodesic path. In the following we will make use of these facts without
any further mention.

5.2.1. LEFT ACTIONS OF COXETER GROUPS ON THEIR COMPACTIFI-
CATION

Theorem 5.2.2. Let (W,S) be a finite rank Coxeter system. Then the canonical action
of W on itself via left multiplication extends to a continuous action W æ (W,S) with
W.(∂(W,S)) = ∂(W,S).
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Proof. It suffices to show that for every s ∈ S the map w 7→ sw continuously extends
to the boundary. First let α, β be equivalent infinite geodesic paths. It is clear that
(s.αn)n∈N, (s.βn)n∈N are infinite geodesic paths as well, hence the elements [s.α] :=
[(s.αn)n∈N] ∈ ∂W and

[
s.β

]
:= [

(s.βn)n∈N
] ∈ ∂W are well-defined. Without loss of

generality we can assume that α0 =β0 = e. Then, for every n ∈N there exist minimal
kn , ln ∈N with αn ≤βkn and βn ≤αln .

• Case 1: Assume that s ≤ [α] = [
β
]

and let v ≤ [s.α]. Then there exists N ∈ N
such that s ≤ αn and v ≤ sαn for all n ≥ N . Since then s ≤ αn ≤ βkn , Lemma
2.7.5 implies that v ≤ sαn ≤ sβkn ≤ [

s.β
]

for all n ≥ N . The same argument can
be used to show that if v ≤ [

s.β
]
, then v ≤ [s.α] which implies that [s.α] = [

s.β
]
.

• Case 2: Assume that s � [α] = [
β
]

and let v ≤ [s.α]. Then, there exists N ∈ N
such that s � αn , s � βkn and v ≤ sαn for all n ≥ N . Again, an application of
Lemma 2.7.5 to sαn and sβkn implies that v ≤ sαn ≤ sβkn ≤ [

s.β
]

for all n ≥ N .
The same argument implies that if v ≤ [

s.β
]
, then v ≤ [s.α]. We get [s.α] = [

s.β
]
.

We have shown that the map w 7→ sw extends to the boundary via s. [α] := [(s.αn)n∈N]
∈ ∂W for [α] ∈ ∂W . It remains to show that the extension is continuous. Because
W is metrizable, it suffices to consider sequences. Let (zi )i∈N ⊆ W be a sequence
converging to a boundary point z ∈ ∂W and let αi (resp. α) be (possibly finite)
geodesic paths representing zi (resp. z). Again, we can assume that αi

0 =α0 = e.

• Case 1: Assume that s ≤ z = [α] ∈ ∂W and let v ∈ W with v ≤ s.z. There exists
N ∈ N with s ≤ αn and v ≤ sαn for all n ≥ N . Further, for n ≥ N there exists
i0 (n) ∈N with s ≤αn ≤ zi for i ≥ i0 (n). Lemma 2.7.5 implies that v ≤ sαn ≤ s.zi

for all n ≥ N , i ≥ i0 (n), so in particular v ≤ s.zi for all i ≥ i0 (N ). Now, let
v ∈W with v� s.z. We have to show that v� s.zi for i large enough. Assume
without loss of generality that v ≤ s.zi for all i ∈ N. There exists i0 ∈ N with
s ≤ zi for all i ≥ i0 and hence s � v. We get with Lemma 2.7.5 that sv ≤ zi

for all i ≥ i0. But zi → z, so sv ≤ z as well. Again, using Lemma 2.7.5 we get
v ≤ s.z in contradiction to our choice of v. This implies that s.zi → s.z.

We have hence shown that if z ∈ ∂W with s ≤ z, then s.zi → s.z for every sequence
(zi )i∈N ⊆W with zi → z.

• Case 2: Assume that s � z = [α] ∈ ∂W and let v ∈ W with v ≤ s.z. There exists
N ∈ N with s � αn and v ≤ sαn for all n ≥ N . Further, for n ∈ N there exists
i0 (n) ∈ N with αn ≤ zi and s � zi for all i ≥ i0 (n). Lemma 2.7.5 implies that
v ≤ sαn ≤ s.zi for all n ≥ N , i ≥ i0(n), so in particular v ≤ s.zi for all i ≥ i0 (N ).
Now, let v ∈ W with v� s.z. Again, we have to show that v� s.zi for i large
enough. Assume without loss of generality that v ≤ s.zi for all i ∈N. Because
W is (sequentially) compact, we find a subsequence (s.zik )k∈N of (s.zi )i∈N con-
verging to a boundary point z ′ ∈ ∂W . Then, s ≤ z ′ and v ≤ z ′. By what we
have shown in Case 1, we get that zik → s.z ′ which implies s.z ′ = z. But then
v ≤ z ′ = s.z in contradiction to our choice of v. This implies that s.zi → s.z.

The claim follows.
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An immediate implication of Theorem 5.1.15 is the following.

Corollary 5.2.3. Let (W,S) be a word hyperbolic Coxeter system. Then the map φ̃ :
(W,S) →W ∪∂hW given by φ̃ (w) = w for w ∈W and φ̃ ([α]) = [α]h for an infinite geodesic
path α is well-defined, continuous, W -equivariant and surjective with φ̃(∂(W,S)) = ∂hW .

In particular, in the setting of Corollary 5.2.3, by Proposition 2.5.5 the action of
W on the compactification W is amenable (in the sense of Definition 2.3.7). But we
can do better, as we will see in Subsection 5.2.2 and Subsection 5.2.3.

5.2.2. COMBINATORIAL COMPACTIFICATIONS AND HOROFUNCTION
COMPACTIFICATIONS

As it turns out, in the case of Cayley graphs of Coxeter groups our construction
coincides with Caprace-Lécureux’s minimal combinatorial compactification asso-
ciated with the Coxeter complex of the system (see [37], [130]) and hence relates to
Lam-Thomas’ results in [129]. Let us elaborate on this, for details of the construc-
tion see [37]. Let X be a locally finite building of type (W,S) with chamber set Ch(X )
and denote the corresponding set of spherical residues by Ressph(X ). Given a
spherical residueσ ∈Ressph(X ) the associated combinatorial projection projσ : Ch(X ) →
St(σ) associates to a chamber C the chamber of the star St(σ) of σ (i.e. the set of all
residues containing σ in their boundaries) closest to C . It may be extended to a
map on the set of all (spherical) residues of X and hence induces a map

πRes : Ressph(X ) → ∏
σ∈Ressph(X )

St(σ),R 7→ (projσ(R))σ∈Ressph(X ).

Equip
∏
σ∈Ressph(X ) St(σ) with the product topology where each star is discrete. Then

the minimal combinatorial compactification C1(X ) of X can be defined as the closure
C1(X ) :=πRes(Ch(X )) (see [37, Proposition 2.12]) and the maximal combinatorial com-
pactification of X is Csph(X ) :=πRes(Ressph(X )). In particular, C1(X ) is a closed subset
of Csph(X ). One can show that the Aut(X )-action on X extends in a canonical way
to continuous actions on C1(X ) and Csph(X ).

The following theorem builds a connection between Caprace-Lécureux’s com-
binatorial compactifications and our construction. It holds in greater generality,
but we restrict to compactifications of finite rank Coxeter systems. The theo-
rem states that for a finite rank Coxeter system (W,S) and the Coxeter complex Σ

Caprace-Lécureux’s minimal combinatorial compactification C1(W,S) := C1(Σ) co-
incides with the space (W,S). Its proof is based on the characterization [37, The-
orem 3.1] of C1(W,S) as the horofunction compactification of the chamber graph
(i.e. the set of chambers with the gallery distance) of the locally finite building
Σ. Recall that the chamber graph of Σ is just the Cayley graph Cay(W,S) with the
usual metric.

The horofunction compactificiation is constructed as follows. Following [31,
Chapter II.8], let (Y ,d) be a metric space and consider the space C (Y ) of continuous
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functions on Y equipped with the topology of uniform convergence on bounded
sets. Given a base point y0 ∈ Y define the subspace C (Y , y0) := { f ∈C (Y ) | f (y0) = 0}.
It is homeomorphic to the quotient C∗(Y ) of C (Y ) by the 1-dimensional subspace
of constant functions, so in particular C (Y , y0) does not depend on the choice of
y0 ∈ Y . The space Y (continuously and injectively) embeds into C (Y , y0) via y 7→
fy := d(y, ·)−d(y, y0). We can hence view Y as a subspace of C (Y , y0). The closure of
Y in C (Y , y0) is then denoted by Ŷ . If Y is proper, Ŷ is a compact Hausdorff space
(see [31, Exercise 8.15]) which is called the horofunction compactification of Y .

Note that the chamber graph Cay(W,S) of Σ is a proper metric space and that
in this case the topology of uniform convergence on bounded sets on C (W,e) :=
C (Cay(W,S),e) coincides with the topology of pointwise convergence. By [37, The-
orem 3.1] the minimal combinatorial compactification C1(W,S) is Aut(Σ)-equivari-
antly homeomorphic to the horofunction compactification of Cay(W,S) via πRes(Ch(Σ))
3πRes(w) 7→ fw = ∣∣w−1(·)∣∣−|w| where w ∈Ch(Σ) =W .

Theorem 5.2.4. Let (W,S) be a finite rank Coxeter system. Then the map

W →C (W,e),w 7→ fw := ∣∣w−1(·)∣∣−|w|

induces a W -equivariant homeomorphism between (W,S) and áCay(W,S). In particular,
(W,S) is W -equivariantly homeomorphic to the minimal combinatorial compactification
C1(W,S).

Proof. By the compactness of W it suffices to show that the map W →C (W,e), w 7→
fw := ∣∣w−1(·)∣∣−|w| extends to a well-defined, bijective and continuous map φ : W →áCay(W,S) via (φ(z))(v) := limi

(∣∣α−1
i v

∣∣−|αi |
)
, where v ∈W and α is a (possibly finite)

geodesic path representing z ∈W .
Well-defined: Let α and β be equivalent infinite geodesic paths and consider

v ∈W with reduced expression v = s1...sn . We have that

∣∣α−1
i v

∣∣−|αi | =
n−1∑
j=0

(∣∣∣(s j ...s1αi
)−1 s j+1

∣∣∣− ∣∣∣(s j ...s1αi
)−1

∣∣∣) . (5.2.1)

Theorem 5.2.2 implies that for every j = 0, ...,n −1 the sequences (s j ...s1αi )i∈N and
(s j ...s1βi )i∈N are equivalent infinite geodesic paths. By (5.2.1) it hence suffices to
show that limi

(∣∣α−1
i s

∣∣−|αi |
) = limi

(∣∣β−1
i s

∣∣− ∣∣βi
∣∣) for all s ∈ S. Because α and β are

equivalent we either have s ≤ αi ,βi for i large enough or s � αi ,βi for i large
enough. In the first case,

lim
i→∞

(∣∣α−1
i s

∣∣−|αi |
)= (−1) = lim

i→∞
(∣∣β−1

i s
∣∣− ∣∣βi

∣∣)
and in the second one

lim
i→∞

(∣∣α−1
i s

∣∣−|αi |
)= 1 = lim

i→∞
(∣∣β−1

i s
∣∣− ∣∣βi

∣∣) .

We get that φ is indeed well-defined.
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Continuity: Let v ∈ W with reduced expression v = s1...sn . The equality (5.2.1)
implies that for every z ∈ W , (φ(z))(v) = ∑n−1

j=0 φ(s j ...s1.z)(s j+1). It hence suffices to
show that for every s ∈ S and every sequence (zi )i∈N ⊆ W converging to a point
z ∈ W the equality (φ(z))(s) = limi (φ(zi ))(s) holds. A straightforward modification
of the argument above implies the desired statement.

Surjectivity: The surjectivity is clear.
Injectivity: Let z, z ′ ∈W with z 6= z ′. Then there exists v ∈W with v ≤ z but v� z ′.

Let α be a (possibly finite) geodesic path representing z and β a (possibly finite)
geodesic path representing z ′ with α0 =β0 = e. Then,

(φ(z))(v) = lim
i→∞

(∣∣α−1
i v

∣∣−|αi |
)=−|v| 6= lim

i→∞
(∣∣β−1

i v
∣∣− ∣∣βi

∣∣)= (φ(z ′))(v)

and hence φ(z) 6=φ(z ′). The claim follows.

Remark 5.2.5. In general it is not true that for a connected rooted graph (K ,o) the
map K →C (K ,o), x 7→ fx := dK (x, ·)−dK (x,o) extends to a homeomorphism between
(K ,o) and K̂ ; not even in the locally finite case or in the setting of Proposition 5.1.9.
Indeed, as mentioned above the horofunction compactification does not depend
on the choice of the base point whereas (K ,o) can depend on the choice of the root
o (see for instance Remark 5.1.10).

5.2.3. AMENABILITY OF THE CANONICAL ACTIONS

The main result in [130, Section 5] states that for a finite rank Coxeter system (W,S)
the action of W on the maximal combinatorial compactification Csph(Σ) is amena-
ble. Because C1(W,S) is a closed subset of Csph(Σ) we deduce with Theorem 5.2.4
that the actions W æ (W,S) and W æ ∂(W,S) are amenable. For the convenience of
the reader, we will give a direct proof of this fact. The approach is similar to that
in [130].

The following construction is due to Dranishnikov and Januszkiewicz, see [71].
Similar constructions appear in [80] and [141].

For every Coxeter system (W,S) there exists a cell complex Σ(W,S), the Davis
complex of (W,S), which is the geometric realization of a partially ordered set. The
construction goes as follows. Consider the set

P := {
wWT | w ∈W , T ⊆ S with WT finite

}
of special cosets, partially ordered by inclusion. It gives rise to a simplicial com-
plex whose vertex set is P and whose simplices are all finite chains (i.e. totally
ordered subsets) of P . Then, the cell complex Σ(W,S) is defined to be the geome-
tric realization of this simplicial complex. There is a canonical action of the group
W on Σ(W,S) coming from the left action of W on itself. Further, every reflection
t ∈ {

w−1sw | s ∈ S,w ∈W
}

has its mirror of fixed points and for every mirror the cor-
responding complement consists of exactly two connected components.
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Assume that W is infinite, of finite rank and let W0CW be a finite-index normal
torsion-free subgroup. By Selberg’s Lemma [165] such a subgroup always exists.
Let H be the finite set of orbits for the W0-action on the set of all mirrors and fix
[h] ∈ H where h is a mirror. Define the tree T[h] whose vertices are the connec-
ted components of Σ(W,S) \

(⋃
γ∈W0 γh

)
and where two vertices are adjacent if and

only if the corresponding connected components intersect after taking their clo-
sure in Σ(W,S). This indeed defines a tree, as argued in [71]. Further, there exists
a W0-equivariant simplicial map Σ(W,S) → T[h] sending a vertex to the connected
component of Σ(W,S) \

(⋃
γ∈W0 γh

)
it belongs to. The corresponding diagonal map

µ: Σ(W,S) → X := ∏
Λ∈H

TΛ

is a W -equivariant embedding and the `1-metric on
∏
Λ∈H TΛ restricted to the im-

age of W under µ agrees with with the word metric on W , for details see [71]. Write
dΛ for the graph metric on TΛ, Λ ∈H and dX :=∑

Λ∈H dΛ ◦pΛ for the `1-metric on
X where pΛ: X � TΛ denotes the canonical projection. Further set o := µ(e) and
oΛ := pΛ(o) for Λ ∈H .

Lemma 5.2.6. For every vertex x ∈ X the W0-stabilizer W x
0 := {w ∈W0 | w.x = x} is trivial.

Proof. For every w ∈W0 \ {e} we have∑
Λ∈H

dΛ(wi .oΛ,oΛ) = dX (µ(wi ),µ (e)) = |wi |→∞,

because w is torsion-free. This implies that there exists Λ ∈H with dΛ(wi .oΛ,oΛ) →
∞ and hence, since

dΛ(wi .oΛ,oΛ) ≤ dΛ(wi .oΛ,wi .x)+dΛ(wi .x, x)+dΛ(x,oΛ)

= dΛ(wi .x, x)+2dΛ(x,oΛ)

for x ∈TΛ, w does not fix any vertex in X .

The proof of the amenability of the actions W æ (W,S) and W æ ∂ (W,S) of a
Coxeter system (W,S) requires the following statement from [33].

Proposition 5.2.7 ([33, Proposition 5.2.1]). Let G be a countable group, X a compact
G-space and K a countable G-space. Assume that for every x ∈ K the restricted action of
the stabilizer subgroup Gx on X is amenable. Further, assume that there exists a net of
Borel maps ζi : X →Prob(K ) (meaning that for every y ∈ K the function X 3 x 7→ ζx

i (y) ∈R
is Borel) such that

lim
i

∫
X

∥∥g .ζx
n −ζg .x

n

∥∥
1 dm (x) = 0

for every g ∈ G and every regular Borel probability measure m on X . Then the action
G æ X is amenable.

We will further need the following well-known statement whose proof we in-
clude for convenience.
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Lemma 5.2.8. Let G be a discrete group continuously acting on a compact Hausdorff
space X and N CG a finite-index normal subgroup for which the restricted action N æ X
is amenable. Then G acts amenably as well.

Proof. By the finiteness of G/N its trivial action on the one-point space {•} is ame-
nable. Because N acts amenably on X , we get with [33, Proposition 5.1.11] that the
diagonal action of G on X × {•} ∼= X is amenable.

Theorem 5.2.9. Let (W,S) be a finite rank Coxeter system. Then the actions W æ (W,S)
and W æ ∂(W,S) are amenable.

Proof. If W is finite, the statement is clear. So let us assume that W is infinite,
let W0 CW be a finite-index normal torsion-free subgroup and adopt the notation
from before. As mentioned before, the restriction µ|W of µ to W is a W -equivariant
embedding where X is equipped with the metric dX . In particular, for every Λ ∈
H , pΛ ◦ (µ|W ) is monotone with respect to the graph order on (TΛ,oΛ) and the
standard order on W . One checks that pΛ ◦ (µ|W ) extends to a well-defined map
pΛ ◦ (µ|W ): W → (TΛ,oΛ) via pΛ ◦ (µ|W ) (z) := lim(pΛ◦(µ|W ))(αi ) where α is an infinite
geodesic path representing z. For z ∈ W let αz := (αi

z )i∈N be the unique geodesic
path in TΛ starting in oΛ and ending in (resp. representing) pΛ ◦ (µ|W )(z), where
the path is assumed to eventually become constant if pΛ ◦ (µ|W )(z) ∈ TΛ. For n ∈
N define maps λΛ,n : W → Prob(TΛ) by λz

Λ,n := 1
n

∑n−1
i=0 δαi

z
∈ Prob(TΛ). As in [33,

Lemma 5.2.6] one checks that supz ‖w.λz
Λ,n −λw.z

Λ,n‖1 ≤ 2dΛ(w.oΛ,oΛ)/n for every w ∈
W0. We further claim that λΛ,n is Borel. Indeed, fix x ∈ TΛ and consider the map
f : W → R given by z 7→ λz

Λ,n(x). For z ∈ W we have f (z) = 1/n if dΛ(x,oΛ) < n,
x ≤ pΛ ◦ (µ|W )(z) and f (z) = 0 in every other case. For x ∈TΛ with dΛ(x,oΛ) < n one
gets that for every open set U ⊆R, f −1(U ) =W if

{
0, 1

n

}⊆U , f −1(U ) =; if 0, 1
n ∉U ,

f −1(U ) =
{

z ∈W | x � pΛ ◦ (µ|W ) (z)
}
= ⋂

w∈W : pΛ◦µ(w)≥x
U c

w

if 0 ∈U , 1
n ∉U and

f −1(U ) =
{

z ∈W | x ≤ pΛ ◦ (µ|W ) (z)
}
= ⋃

w∈W : pΛ◦µ(w)≥x
Uw

if 0 ∉U , 1
n ∈U . For x ∈ TΛ with dΛ(x,oΛ) ≥ n one further has f −1(U ) ∈ {;,W }. This

implies that λΛ,n is indeed a Borel map. Now, define Borel maps λn : W →Prob(X )
by λz

n(x) :=∏
Λ∈H λz

Λ,n ◦pΛ(x) for x ∈ X . We have

sup
z∈W

∥∥w.λz
n −λw.z

n

∥∥
1 = sup

z∈W

∑
x∈X

∣∣λz
n(w−1.x)−λw.z

n (x)
∣∣

= sup
z∈W

∑
x∈X

∣∣∣∣∣ ∏
Λ∈H

λz
Λ,n ◦pΛ(w−1.x)− ∏

Λ∈H

λw.z
Λ,n ◦pΛ(x)

∣∣∣∣∣
≤ sup

z∈W

∑
Λ∈H

∑
x∈TΛ

∣∣∣λz
Λ,n(w−1.x)−λw.z

Λ,n(x)
∣∣∣
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= sup
z∈W

∑
Λ∈H

∥∥∥w.λz
Λ,n −λw.z

Λ,n

∥∥∥
1

≤ ∑
Λ∈H

2dΛ(w.oΛ,oΛ)

n

≤ 2dX (w.o,o)

n
→ 0

for every w ∈W0. As by Lemma 5.2.6 all the stabilizer subgroups W x
0 are trivial, the

above implies in combination with Proposition 5.2.7 the amenability of the action
W0 æ W . The amenability of the action W æ W (resp. W æ ∂W ) then follows from
Lemma 5.2.8.

5.2.4. SMALLNESS AT INFINITY

Recall that an equivariant compactification of a discrete group G is a compact
Hausdorff space G containing G as a dense open subset for which the left transla-
tion action of G on itself extends to a continuous action on G (see Subsection 2.3.2).
It is further said to be small at infinity if for every net (gi )i∈I ⊆G with gi → z ∈G \G
and g ′ ∈G , one has that gi g ′ → z. From what we have seen before it is clear that for
every finite rank Coxeter system (W,S) the corresponding space (W,S) is an equi-
variant compactification in the sense of Definition 2.3.9. In this subsection we will
be concerned with the question for when (W,S) is also small at infinity, as this pro-
perty will allow us to deduce rigidity properties of Hecke-von Neumann algebras
in Chapter 9.

Definition 5.2.10. We call a finite rank Coxeter system (W,S) small at infinity if
(W,S) is small at infinity. If the generating set S is clear, we will also say that W is
small at infinity.

Theorem 5.2.11. Let (W,S) be a finite rank Coxeter system. Then the following state-
ments are equivalent:

(1) W is small at infinity;

(2) #CW (s) <∞ for every s ∈ S.

Here CW (s) := {w ∈W | sw = ws} denotes the centralizer of s in W .

Proof. “(1) ⇒ (2)”: Let s ∈ S be a generator with #CW (s) =∞. By the compactness of
W one can find a sequence (wi )i∈N ⊆CW (s) converging to a boundary point z ∈ ∂W .
It can be chosen in such a way that s �wi for every i ∈N. But then wi s 9 z since
s� z, i.e. W is not small at infinity.

“(2) ⇒ (1)”: Let W not be small at infinity. Choose a convergent sequence
(wi )i∈N ⊆ W with limit point z ∈ ∂W and an element v ∈ W such that wi v9 z. One
can assume that v = s for some s ∈ S and that there exist w ∈ W , i0 ∈N with w ≤ wi

and w� wi s for all i ≥ i0. Further, we can assume that s always cancels the first
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letter of wi . Indeed, for i ≥ i0, wi is of the form wi = wui with |wui | = |w|+ |ui | and
the multiplication of wui with s cancels some letter in the reduced expression t1...tn

for w. As w consists of finitely many letters, by possibly going over to some sub-
sequence, we can assume that multiplication by s always cancels the same letter,
say t j , in the expression. Then, by possibly replacing wi by (t1...t j−1)−1wi , we can
further assume that s cancels the first letter of wi . Call this letter t . We get that for
i ≥ i0, wi is of the form wi = tvi where |tvi | = |vi |+1 and wi s = vi . This implies

s = w−1
i twi = (w−1

i0
wi )−1s(w−1

i0
wi ),

i.e. w−1
i0

wi ∈CW (s) for every i ≥ i0. We get that #CW (s) =∞.

Reflection centralizers of Coxeter groups have been studied in [2] and [32]. The
main theorem in [32] describes the centralizer CW (s) of a generator s in a Coxeter
group W as a semidirect product of its reflection subgroup by the fundamental
group of the connected component of the odd Coxeter diagram of W containing
s. In combination with Theorem 5.2.11 this has the following immediate conse-
quence.

Corollary 5.2.12. Let (W,S) be a finite rank Coxeter system for which the corresponding
odd Coxeter diagram contains a cycle. Then (W,S) is not small at infinity.

Remark 5.2.13. In [24] the gradient Sp -property, introduced in [47], [48], was stu-
died by Borst, Caspers and Wasilewski in the context of group von Neumann al-
gebras of Coxeter groups. As proved in [24, Theorem 5.15], for p ∈ [1,∞] the quan-
tum Markov semi-group associated with the word length function of the system
(W,S) is gradient-Sp if and only if (W,S) is small at infinity. In [24, Subsection 5.4]
necessary and sufficient conditions are given for this to happen. Following [24,
Definition 5.5] and [24, Definition 5.6], define GraphS (W ) to be the complete sim-
plicial graph with vertex set V = S and labels mst associated with the edges (s, t ).
Let k ≥ 1 and s1, t1, ..., sk , tk ∈ S be given and let P = (s1, t1, s2, t2, ..., sk , tk ) be a path in
GraphS (W ) that has even length. Then P is called a parity path if its edges all have
finite labels, if s1 6= t1, ..., sk 6= tk , if

sl+1 =
{

sl , if msl tl even
tl , if msl tl odd

for l = 1, ...,k −1, and if tl+1 ∉ {sl , tl }. A parity path is called cyclic if

P := (s1, t1, ..., sk , tk , s1, t1)

is a parity path. By [24, Theorem 5.8], if (W,S) admits a cyclic parity path P =
(s1, t1, ..., sk , tk ) in GraphS (W ) for which all labels msl tl ,msl tl+1 ,mtl tl+1 are not equal
to 2, then (W,S) is not small at infinity. Moreover, by [24, Theorem 5.9], if there
does not exist a cyclic parity path in GraphS (W ) then (W,S) is small at infinity.

Let us collect some other consequences of Theorem 5.2.11.
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The proof of the following proposition makes use of the fact that irreducible
affine type Coxeter groups arise as subgroups generated by (affine) reflections as-
sociated with crystallographic root systems. We discussed the details of this repre-
sentation in Subsection 2.7.3.

Proposition 5.2.14. An irreducible Coxeter system of affine type is small at infinity if and
only if it is the infinite dihedral group.

Proof. Let (W,S) be an irreducible affine Coxeter system and denote the associated
crystallographic root system by Φ ⊆ V where V is a finite-dimensional real Eu-
clidean vector space with canonical inner product 〈·, ·〉. The Coxeter diagram is of
one of the following forms: (Ãn)n≥2, (B̃n)n≥3, (C̃n)n≥2, (D̃n)n≥4, (Ẽn)6≤n≤8, F̃4, G̃2, Ĩ1.

• Case 1: If the Coxeter system is of the form (Ãn)n≥2, (B̃n)n≥3, (C̃n)n≥2, (D̃n)n≥4,
(Ẽn)6≤n≤8, F̃4 or G̃2, then #S ≥ 3. Therefore, the reflection hyperplane Hα,i

with α ∈Φ, i ∈ Z corresponding to a generator s ∈ S is at least 1-dimensional
and one finds an element β ∈Φ that is linearly independent from α. We have
that γ :=β−〈

α,β
〉
α∨ ∈Φ and the translation tβ∨+γ∨ = tβ∨ tγ∨ corresponds to an

infinite order element in the Coxeter group W . By

β∨+γ∨ = 2〈
β,β

〉 (
2β− 2

〈
α,β

〉
〈α,α〉 α

)
∈ Hα,0,

the translation tβ∨+γ∨ stabilizes the hyperplane Hα,i , hence the element com-
mutes with s. It follows from Theorem 5.2.11 that W is not small at infinity.

• Case 2: If (W,S) is infinite dihedral, i.e. W = 〈
s, t | s2 = t 2 = e

〉
, then obviously

#CW (s) = #CW (t ) = 2.

This finishes the proof.

Recall that by Corollary 5.2.3 for every word hyperbolic Coxeter system (W,S)
the map

φ̃: (W,S) →W ∪∂hW

given by φ̃(w) = w for w ∈W and φ̃([α]) = [α]h for an infinite geodesic path α is well-
defined, continuous, W -equivariant and surjective with φ̃(∂(W,S)) = ∂hW . The in-
jectivity of φ̃ gives information on whether or not the system is small at infinity, as
the next theorem illustrates.

Theorem 5.2.15. Let (W,S) be a finite rank Coxeter system. Then (W,S) is small at
infinity if and only if W is word hyperbolic and the map φ̃ (resp. its restriction φ̃|∂(W,S))
from Corollary 5.2.3 is a homeomorphism.

Proof. “⇒”: Let (W,S) be small at infinity and assume that the system is not word
hyperbolic. By Moussong’s characterization of word hyperbolic Coxeter groups
Theorem 2.7.16 S contains a subset T ⊆ S such that (WT ,T ) is either of affine type
with #T ≥ 3 or the Coxeter system decomposes as (WT ,T ) = (WT ′ ×WT ′′ ,T ′ ∪T ′′)
with both WT ′ and WT ′′ infinite. In the first case we deduce with Proposition 5.2.14
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that W is not small at infinity which contradicts our assumption. In the second
case the same contradiction follows from Theorem 5.2.11 and CW (s) ⊇ Ws ×WT ′′
for every s ∈ T ′. Hence, (W,S) must be word hyperbolic. It remains to show that
the map φ̃ is injective. For this, let α and β be infinite geodesic paths with [α]h =[
β
]

h . By supi

∣∣α−1
i βi

∣∣<∞ the set
{
α−1

i βi | i ∈N}⊆W is bounded with respect to the
word metric on W . We hence find a strictly increasing sequence (ik )k∈N ⊆ N and
an element w ∈ W with α−1

ik
βik = w for all k ∈ N. But (W,S) is small at infinity, so[

β
]= limk βik = limk αik w = [α]. This implies that φ̃ is indeed injective.

“⇐”: By Proposition 2.5.6 the hyperbolic compactification of a word hyperbolic
group is small at infinity. Hence, if (W,S) is word hyperbolic and the map φ̃ is a
homeomorphism, then (W,S) is small at infinity.

Proposition 5.2.16. Let (W,S) be a finite rank Coxeter system that is a free product of
finite Coxeter groups, meaning that S is the disjoint union of non-empty subsets S1, ...,Sn ⊆
S whose corresponding special subgroups WS1 , ...,WSn are all finite with W = WS1 ? ...?
WSn . Then (W,S) is small at infinity.

Proof. Let (W,S) be an irreducible Coxeter system that is a free product of finite
Coxeter groups. The corresponding Cayley graph Cay(W,S) is locally finite and
hyperbolic. By Theorem 5.2.15 it suffices to prove the injectivity of the map φ̃. Let
α and β be two infinite geodesic paths with α ∼h β. For every i ∈N let s1...si be a
reduced expression for αi and let t1...ti be a reduced expression for βi . It is clear
that s1 and t1 must lie in the same component of the free product. The same is true
for s2, t2, .... As the free product components WS1 , ..., WSn are finite, there exists
i ∈N such that s1, ..., si (and hence t1, ..., ti ) all lie in the same component and such
that si+1 (resp. ti+1) lies in a different component. By sup j |α−1

j β j | <∞ we then get
si ...s1t1...ti = e. Proceeding like this, one concludes that there exists an increasing
sequence (ik )k∈N ⊆N with αik = βik for every k ∈N. This implies [α] = [

β
]
, i.e. φ̃ is

injective.

Corollary 5.2.17. An irreducible finite rank right-angled Coxeter system is small at infi-
nity if and only if it is a free product of finite Coxeter groups.

Proof. “⇐”: This follows from Lemma 5.2.16. “⇒”: Let (W,S) be an irreducible
right-angled Coxeter system that is not a free product of finite Coxeter groups.
One easily checks that S contains elements r, s, t with coefficients mr s = mr t = 2 and
mst =∞. In particular, CW (r ) ⊇ 〈s, t〉 ∼= D∞ where D∞ denotes the infinite dihedral
group. But then #CW (r ) =∞, so W is not small at infinity by Theorem 5.2.11.

Remark 5.2.18. Not every Coxeter system that is small at infinity is a free product
of finite Coxeter groups. Consider for instance the group W represented by

〈r, s, t | mr r = mss = mt t = 2,mr s = 3,mr t = 2,mst =∞〉 .

It is irreducible and non-affine. Obviously, all of its reflection centralizers are finite,
so W is small at infinity. However, W can not be decomposed into a non-trivial free
product because, by mr s = 3 and mr t = 2, then the generators r , s and t would all
have to sit in the same component of that decomposition.
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5.2.5. BOUNDARY ACTIONS OF COXETER GROUPS

In this subsection we study two classes of Coxeter systems (W,S) whose associ-
ated boundary ∂(W,S) is a W -boundary in the sense of Furstenberg (see Subsection
2.3.3). We will further consider the question for topological freeness of the action
W æ ∂(W,S). Recall that the notion of boundary actions (as well as topological
freeness) plays a crucial rule in Kalantar-Kennedy’s approach to the C∗-simplicity
problem for (discrete) groups in [120]. Our approach to the simplicity of Hecke
C∗-algebras of right-angled Coxeter groups in Section 6.2 has a similar flavor.

To simplify the statements and proofs of this and the later chapters, we intro-
duce the following notion.

Definition 5.2.19. Let (W,S) be a right-angled finite rank Coxeter system. A path
s1...sn ∈W in the Coxeter diagram of (W,S) is a product of generators s1, ..., sn ∈ S with
msi si+1 =∞ for i = 1, ...n −1. We say that the path is closed if ms1sn =∞ and that the
path covers the whole graph if {s1, ..., sn} = S.

Remark 5.2.20. Let (W,S) be a right-angled finite rank Coxeter system. For a closed
path g := s1...sn ∈ W in the Coxeter diagram of (W,S) that covers the whole graph
we have that

∣∣sg
∣∣ > ∣∣g∣∣ for every s ∈ S \ {s1} and CW (g) = {

gi | i ∈Z}
. In particular,∣∣gn

∣∣= |n| ∣∣g∣∣ for every n ∈Z.

In the case of an irreducible right-angled Coxeter system, we can completely
characterize when the corresponding action on the boundary is a boundary action.
Note that the only Coxeter group generated by one element is the finite group Z2

whose boundary is empty.

Theorem 5.2.21. Let (W,S) be a finite rank right-angled irreducible Coxeter system. Then
the following statements hold:

• If #S = 2, then the action W æ ∂(W,S) is minimal but not strongly proximal;

• If #S ≥ 3, then the action W æ ∂(W,S) is a boundary action.

Proof. In the case #S = 2 the Coxeter group W is the infinite dihedral group

D∞ = 〈
s, t | s2 = t 2 = e

〉
whose boundary ∂D∞ consists of the two points z1 := st st ... and z2 := t st s.... It is
clear that the action D∞ æ ∂D∞ is minimal. It is not strongly proximal because
for the probability measure µ := 1

2 (δz1 +δz2 ) ∈Prob(∂D∞) the equalities s.µ= t .µ=µ
hold, i.e. W.µ= {

µ
}
.

Let us now assume that (W,S) is a right-angled irreducible Coxeter system with
#S ≥ 3. Recall that if we have cancellation of the form s1...sn = s1...ŝi ...ŝ j ...sn for
s1, ..., sn ∈ S, then si = s j and si commutes with every letter in the reduced expres-
sion for si+1...s j−1 (see Subsection 2.7.4). In the following we will often implicitly
make use of this property.

Minimality: Let α and β be arbitrary infinite geodesic paths with α0 =β0 = e. We
have to show that

[
β
] ∈W. [α]. Since S is finite, we find t ∈ S and a strictly increasing
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sequence (ik )k∈N ⊆Nwith t ≤L βik for every k ∈N. Further, let t ′ :=α1 ∈ S and choose
a path s0...sn+1 in the Coxeter diagram of (W,S) which covers the whole graph with
s0 = t ′, sn+1 = t . We claim that (βik sn ...s1). [α] → [

β
]
. Indeed, by the choice of s1, ..., sn

one gets βik ≤ (βik sn ...s1)α j ≤ (βik sn ...s1). [α] for all j ,k ∈N, so for every w ∈ W with
w ≤ [

β
]

one eventually has (βik sn ...s1). [α] ∈Uw = {z ∈W | w ≤ z}.
Now let w ∈ W with w �

[
β
]

and let w = t1...tn be a reduced expression for
w. We have to show that w � (βik sn ...s1). [α] eventually. Assume that this is not
the case. By possibly going over to a subsequence we can then assume that w ≤
(βik sn ...s1). [α] for all k ∈N. Let us proceed inductively:

• By the choice of s1, ..., sn one either has t1 ≤ βik or t1 = sn and t1 commutes
with every letter of βik . Only the first case is possible because msn ,t =∞, so
t1 ≤βik .

• Further, one either has t1t2 ≤βik or t2 = sn and t2 commutes with every letter
of t1βik . In the second case we would get that t1 = t and that t commutes with
every letter of βik . But for k ≥ 1 the letter t appears more than once in the
reduced expression for βik which leads to a contradiction. Hence, t1t2 ≤ βik

for k ≥ 1.

Proceeding like this, we get that w ≤ βik for large enough k, in contradiction to
w�

[
β
]
. Therefore, for every w ∈ W with w�

[
β
]
, (βik sn ...s1). [α] ∈ U c

w eventually.
This implies that indeed (βik sn ...s1). [α] → [

β
]
, i.e.

[
β
] ∈W. [α].

Strong proximality: We have to show that for every probability measure µ ∈
Prob(∂W ) there exists z ∈ ∂W with δz ∈W.µ where the closure is taken in the weak-
∗ topology. The argument is similar to the one above. Choose a closed path s1...sn

in the Coxeter diagram of (W,S) that covers the whole graph. Obviously, the se-
quences

(
gk

)
k∈N and

(
g−k

)
k∈N converge to boundary points g∞ and g−∞. For z ∈ ∂W

we either have s1 ≤ gk .z for some k ∈N or z = g−∞. In the first case, gk .z → g∞ and in
the second case gk .z → g−∞. This implies that for µ ∈Prob(∂W ) there exists λ ∈ [0,1]
with

λδg∞ + (1−λ)δg−∞ = lim
k→∞

gk .µ ∈W.µ.

Now, choose a second closed path t1...tm in the Coxeter diagram of (W,S) that
covers the whole graph with t1 ∉ {s1, sn} and set h := t1...tm . Again, the sequences(
hk

)
k∈N and

(
h−k

)
k∈N converge to boundary points h∞ and h−∞. Further, hk .g∞ →

h∞ and hk .g−∞ → h∞ from which we conclude that

δh∞ = lim
k→∞

(
λδg∞ + (1−λ)δg−∞

) ∈W.µ.

The claim follows.

For Coxeter systems which are small at infinity a characterization of the form as
in Theorem 5.2.21 is possible as well. Note that by Theorem 5.2.11 and Proposition
5.2.14 the only amenable finite rank irreducible Coxeter groups that are small at
infinity are either the finite ones or the infinite dihedral group which is already
covered by Theorem 5.2.21.



5

110
5. TOPOLOGICAL BOUNDARIES AND COMPACTIFICATIONS OF GRAPHS AND

COXETER GROUPS

Theorem 5.2.22. Let (W,S) be a non-amenable finite rank Coxeter system that is small at
infinity. Then the action W æ ∂(W,S) is a boundary action.

Proof. By Theorem 5.2.15 the group W is word hyperbolic and the boundary ∂(W,S)
coincides with the hyperbolic boundary ∂hW . It is well-known that the action of a
non-amenable word hyperbolic group is a boundary action (see for instance [120,
Remark 5.6]). This proves the statement.

Remark 5.2.23. Let (W,S) be a right-angled irreducible Coxeter system with 3 ≤
#S < ∞. Note that by the same argument as in the proof of Theorem 5.2.21 the
action W æ (W,S) is strongly proximal. Indeed, the elements g and h appearing
in the proof of Theorem 5.2.21 have the property that the limits g±∞ := limg±l and
h±∞ := limh±l exist and that gk .z → g∞ for every z ∈ (W,S)\

{
g−∞}

and hk .z → h∞ for
every z ∈ (W,S) \ {h−∞}. Further, h−∞ 6= g±∞. We deduce that the action W æ (W,S)
is strongly proximal. If the Coxeter system (W,S) is non-amenable and small at
infinity, the strong proximality of the action W æ (W,S) also holds. That follows
from Theorem 5.2.15 and [88, Corollaire 20].

We now turn our attention to the question for topological freeness of the natural
action of a Coxeter group on its compactification and its boundary.

Lemma 5.2.24. Let (W,S) be a finite rank Coxeter system. Then the natural action of W
on its compactification (W,S) is topologically free.

Proof. The statement immediately follows from the fact that W is a dense subset of
W .

Again, in the right-angled case we can characterize when the corresponding
action of the Coxeter group on its boundary is topologically free. The argument
requires a technical lemma.

Lemma 5.2.25. Let (W,S) be a finite rank right-angled irreducible Coxeter system. For
w ∈ W \ {e}, z ∈ ∂(W,S) with w.z = z there exist elements u,v ∈ W with w = uv−1, |w| =
|u|+ |v| and u,v ≤ z.

Proof. Let w ∈W , z ∈ ∂(W,S) be elements with w.z = z and let w = s1...sn be a reduced
expression for w. We claim that for every 1 ≤ k ≤ n we find integers i1 < ... < il and
j1 < ... < jm such that

{n −k +1, ...,n} = {
i1, ..., il , j1, ..., jm

}
, w = (s1...sn−k )(si1 ...sil )(s j1 ...s jm )

is a reduced expression for w, s jm ...s j1 ≤ z and si1 ...sil ≤ (si1 ...sil )(s j1 ...s jm ).z. We
prove this by induction over k.

• For k = 1 we have that either sn ≤ z or sn � z. In the first case set l = 0, m = 1
and j1 = n. Then, w = (s1...sn−1) s j1 is a reduced expression for w with s j1 ≤ z.
In the second case set l = 1, m = 0 and i1 = n. Then again, w = (s1...sn−1)si1 is
a reduced expression for w with si1 ≤ si1 .z. We get that for k = 1 the claimed
statement holds.
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• Now assume that the claim holds for k ∈ N, i.e. we have i1 < ... < il and
j1 < ... < jm with {n −k +1, ...,n} = {

i1, ..., il , j1, ..., jm
}

such that

w = (s1...sn−k )(si1 ...sil )(s j1 ...s jm )

is a reduced expression for w, s jm ...s j1 ≤ z and si1 ...sil ≤ (si1 ...sil )(s j1 ...s jm ).z.
Now, either sn−k ≤ (si1 ...sil )(s j1 ...s jm ).z or sn−k � (si1 ...sil )(s j1 ...s jm ).z. In the
first case, since sn−k (si1 ...sil )(s j1 ...s jm ) is reduced and si1 ...sil ≤ (si1 ...sil )(s j1 ...s jm ).z,
we get that sn−k commutes with si1 ...sil and sn−k ≤ (s j1 ...s jm ).z. Hence,

{n −k, ...,n} = {
i1, ..., il ,n −k, j1, ..., jm

}
,

w = (s1...sn−k−1)(si1 ...sil )(sn−k s j1 ...s jm ) is a reduced expression for w, s jm ...s j1 sn−k

≤ z and si1 ...sil ≤ (si1 ...sil )(sn−k s j1 ...s jm ).z. In the second case,

{n −k, ...,n} = {
n −k, i1, ..., il , j1, ..., jm

}
,

w = (s1...sn−k−1)(sn−k si1 ...sil )(s j1 ...s jm ) is a reduced expression for w, s j1 ...s jm ≤
z and sn−k si1 ...sil ≤ (sn−k si1 ...sil )(s j1 ...s jm ).z. In both cases we get that the claim
also holds for k +1.

This completes the induction argument.
For k = n we get that there exist i1 < ... < il and j1 < ... < jm with {1, ...,n} ={

i1, ..., il , j1, ..., jm
}

such that w = (si1 ...sil )(s j1 ...s jm ) is a reduced expression for w,
s jm ...s j1 ≤ z and si1 ...sil ≤ (si1 ...sil )(s j1 ...s jm ).z = w.z = z. The lemma then follows
via u := si1 ...sil and v := s jm ...s j1 .

Proposition 5.2.26. Let (W,S) be a right-angled irreducible Coxeter system with 2 ≤ #S <
∞. Then the action W æ ∂(W,S) is topologically free if and only if #S ≥ 3.

Proof. “⇒”: Again, for #S = 2 the Coxeter group W is the infinite dihedral group

D∞ = 〈
s, t | s2 = t 2 = e

〉
with boundary ∂D∞ = {z1, z2} where z1 := st st ... and z2 := t st s.... Obviously, ∂D∞
carries the discrete topology and (∂D∞)st = {z1, z2}. Hence, the action is not topo-
logically free.

“⇐”: Let #S ≥ 3 and assume that the action is not topologically free. We find
w ∈ W \ {e} such that (∂W )w contains an inner point. Without loss of generality we
can assume that w with that property has minimal length. Fix some inner point
z ∈ (∂W )w. By Lemma 5.2.25 there exist u,v ∈ W with w = uv−1, |w| = |u| + |v| and
u,v ≤ z. Let u = s1...sn , v = t1...tm be reduced expressions for u, v. Without loss of
generality one can assume that n ≤ m. We claim that every letter of u commutes
with every letter of v and that the letters are pairwise different.

• If s1 = t1, then (∂W )(s2...sn )(tm ...t2) = s1.(∂W )w. But we assumed w to have mini-
mal length, so s1 6= t1. By s1, t1 ≤ z for z ∈ (∂W )w we further get ms1t1 = 2.

• If s2 = t1, then (∂W )(s1s3...sn )(tm ...t2) = s2.(∂W )w. Again, by the minimality of w
we get s2 6= t1 with ms2t1 = 2. In the same way, t2 6= s1, ms1t2 = 2 and s2 6= t2,
ms2t2 = 2.
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• ....

Proceeding like this we find that every letter of u commutes with every letter of v
and that the letters are pairwise different.

Claim. We have |un | = n |u|, |vn | = n |v| and un ,vn ≤ z for every n ∈N.
Proof of Claim. Let α be an infinite geodesic path representing z with α0 = e.

By u,v ≤ z and the above we can assume that αl = t1...tm s1...sn wl for l ≥ m +n +1
with |αl | = |u| + |v| + |wl |. The identities u ≤ z and z = uv−1z imply that for every
i ∈ {1, ...,n −1} one has si si+1...sn (tm ...t1) z = (si−1...s1) z ≥ si , so for l large enough
si ≤ si si+1...sn s1...sn wl = si si+1...sn uwl . We get |si (si+1...sn)u| = |(si+1...sn)u| +1 and
hence (via induction over i , starting with i = n) that

∣∣u2
∣∣ = 2 |u|. This implies

|un | = n |u| for every n ∈ N and in a similar way |vn | = n |v| for every n ∈ N. Now,
because each letter of u commutes with each letter of v, we have u−n z = v−n z ≥ u
for every n ∈ N. Inductively we get that un ≤ z for every n ∈ N. In a similar way,
vn ≤ z for every n ∈N. The claim follows.

The claim in particular implies that v−1.z = z and hence z ∈ (∂W )u. But then
w = u and v = e by the minimality of w and n ≤ m. Heuristically, z starts with ar-
bitrarily large powers of w, but there can also appear other expressions in front of
z. To make this precise, for every i ∈ N one can find wi ∈ W with wi w = wwi and
|wi w| = |wi | + |w| such that wi wi → z. Let s, t ∈ S with s ≤L w, mst = ∞ and write
(t s)∞ := limk (t s)k ∈ ∂W . Assume that w is not of the form w = (st )l for some l ∈ N.
Then wi wi (t s)∞ ∉ (∂W )w for every i ∈N. But wi wi (t s)∞ ∈ ∂W \ (∂W )w is a sequence
converging to z which contradicts our assumption that z is an inner point. Hence,
w = (st )l for some l ∈N. By the minimality of w, l = 1, so in particular wi (st )i → z.
Because #S ≥ 3 one can find r ∈ S such that either msr =∞ or mtr =∞. If msr =∞,
then wi (st )i s(r s)∞ ∈ ∂W \ (∂W )w is a sequence converging to z and if mtr =∞, then
wi (st )i (r t )∞ ∈ ∂W \ (∂W )w is a sequence converging to z where (r s)∞ := limk (r s)k

and (r t )∞ := limk (r t )k . In both cases z turns out not to be an inner point, in con-
tradiction to our assumption. Hence, the action W æ ∂W must be topologically
free.

Remark 5.2.27. The proof of Proposition 5.2.26 is direct and only uses combinatorial
arguments. We chose to present it that way because of its self-containedness. How-
ever, the same statement can also be shown by an operator algebraic approach. In-
deed, if (W,S) is an irreducible right-angled Coxeter system with 3 ≤ #S <∞, then
W is C∗-simple (see for instance [80], [101], [61] or [49]). The C∗-simplicity and
the minimality of the action W æ ∂(W,S) then imply with [30, Theorem 7.1] that
the reduced crossed product C (∂(W,S))or W is simple. By Theorem 5.2.9 and [33,
Theorem 4.3.4] the reduced crossed product coincides with the universal one. The
topological freeness of the action W æ ∂(W,S) hence follows with [9, Theorem 2].

Lemma 5.2.28. Let (W,S) be a finite rank non-amenable Coxeter system that is small at
infinity. Then the action W æ ∂(W,S) is topologically free.

Proof. As in the proof of Theorem 5.2.22, the group W is word hyperbolic and the
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boundary ∂(W,S) coincides with the hyperbolic boundary ∂hW . The topological
freeness then follows from [88, Corollaire 20].

An extension of the results above to broader classes (or even a complete charac-
terization) of Coxeter systems (W,S) whose respective boundary defines a boun-
dary in the sense of Furstenberg and whose respective action W æ ∂(W,S) is topo-
logically free would be very interesting.

As discussed in Subsection 2.3.3 one of the main results in [120] states that a
discrete group is C∗-simple if and only if it admits a topologically free boundary
action. Further, by [30, Corollary 4.3] and [95, Theorem 3.3], the reduced group C∗-
algebra of a discrete group carries a unique tracial state if and only if the group’s
amenable radical (i.e. its largest normal amenable subgroup) is trivial. Because C∗-
simplicity implies the triviality of the amenable radical, in the context of right-
angled Coxeter groups Theorem 5.2.21 and Proposition 5.2.26 lead to a new proof
of a well-known C∗-simplicity and trace-uniqueness result (see [80], [101], [61]).

Corollary 5.2.29. Let (W,S) be a right-angled irreducible Coxeter system with 3 ≤ #S <
∞. Then the reduced group C∗-algebra C∗

r (W ) is simple and has unique tracial state.

Note that an action of a group G on a compact Hausdorff space X is mini-
mal if and only if C (X ) does not contain any non-trivial G-invariant ideal. We
close this subsection with a result that relates to the ideal structure of the C∗-
algebra C (∂(W,S)). Recall that by Proposition 5.1.6 (and Remark 5.1.7), π(D(W,S)) ∼=
C (∂(W,S)) via π(Pw) 7→χUw∩∂(W,S) where D(W,S) :=D(Cay(W,S),e).

Proposition 5.2.30. Let (W,S) be a finite rank Coxeter system and let I be a non-zero ideal
in π(D(W,S)). Then I intersects non-trivially with the ∗-algebra Span {π(Pw) | w ∈W } ⊆
π(D(W,S)).

Proof. Let I be a non-zero ideal in C (∂W ) ∼=π(D(W,S)) and assume that I intersects
the ∗-algebra Span

{
χUw∩∂W | w ∈W

}
trivially. Denote the quotient map C (∂W ) →

C (∂W )/I by ρ. Let further x := ∑
w∈W λwχUw∩∂W ∈ C (∂W ) with λw ∈ C be a non-

zero element where we assume that the sum is finite. The space ∂W is compact,
therefore there exists z ∈ ∂W with

‖x‖ =
∣∣∣∣∣ ∑

w∈W : w≤z
λw

∣∣∣∣∣ .

Define the finite set S := {
v ∈W |λv 6= 0 and v� z

}
and let (αi )i∈N ⊆W be an infinite

geodesic path representing the element z. Then, for every i ∈ N the continuous
function Pi := χUαi ∩∂W

∏
v∈SχU c

v ∩∂W ∈C (∂W ) is a projection with ρ(Pi ) 6= 0. Indeed,
Pi (z) = 1 implies that Pi 6= 0 and hence ρ(Pi ) 6= 0 because Pi ∈ Span

{
χUw∩∂W | w ∈W

}
.

We get that

∥∥ρ(x)
∥∥ ≥ lim

i→∞

∥∥∥∥∥ ∑
w∈W

λwρ(χUw∩∂W Pi )

∥∥∥∥∥
= lim

i→∞

∥∥∥∥∥ ∑
w∈W : w∉S

λwρ(χUw∨αi ∩∂W

∏
v∈S

χU c
v ∩∂W )

∥∥∥∥∥
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= lim
i→∞

∥∥∥∥∥
( ∑

w∈W : w≤z
λw

)
ρ(Pi )

∥∥∥∥∥
= ‖x‖ .

But then ρ must be isometric, i.e. I = 0 in contradiction to our assumption. We
deduce the claim.

5.2.6. OPERATOR ALGEBRAIC DESCRIPTION OF THE CANONICAL AC-
TIONS IN THE RIGHT-ANGLED CASE

Proposition 5.1.6 and Remark 5.1.7 imply that for every Coxeter system (W,S) the
C∗-algebras C ((W,S)) and C (∂(W,S)) can be realized very concretely as spectra of
commutative C∗-algebras generated by projections. Indeed, if we denote by

π : B(`2(W )) →B(`2(W ))/K (`2(W ))

the quotient map onto the Calkin algebra and if we define Pw ∈ `∞(K ) ⊆B(`2(K )),
w ∈W to be the orthogonal projection onto the subspace

Span
{
δv | v ∈W with w ≤R v

}⊆ `2(W ),

then D(W,S) ∼=C ((W,S)) via Pw 7→χUw where D(W,S) :=C∗({Pw | w ∈W }) ⊆B(`2(W ))
and π(D(W,S)) ∼= C (∂(W,S)) via π(Pw) 7→ χUw∩∂(W,S). For brevity from now on we
will write P̃w :=π(Pw), w ∈W .

In some cases (such as in the setting of Subsection 5.2.3, Subsection 5.2.4 and
Subsection 5.2.5) it is useful to work with the concrete description of the spaces
(W,S) and ∂(W,S) whereas in other cases it makes sense to work with the C∗-
algebras D(W,S) and π(D(W,S)) instead. For instance, in the right-angled case the
actions W æ (W,S) and W æ ∂(W,S) have an accessible and useful description on
the level of operator algebras. Note that for every Coxeter system (W,S) the in-
duced action W æ D(W,S) is inner and given by v.Pw = T (1)

v PwT (1)
v−1 for v,w ∈ W , i.e.

the action is implemented by conjugation by the left regular representation opera-
tors.

Proposition 5.2.31. Let (W,S) be a right-angled Coxeter system and w ∈W , s ∈ S. Then
the following equalities hold:

(1) s.Pw = Psw if w ∉CW (s);

(2) s.Pw = Psw −Pw if w ∈CW (s) and s ≤ w;

(3) s.Pw = Pw if w ∈CW (s) and s�w.

Here CW (s) := {v ∈W | sv = vs} denotes the centralizer of s in W .
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Proof. First observe that by Proposition 2.7.5 for all s ∈ S and v,w ∈ W with s ≤ w,
s� v or s�w, s ≤ v,

(s.Pw)δv = T (1)
s Pwδsv =

{
δv , if w ≤ sv

0 , if w� sv
=

{
δv , if sw ≤ v

0 , if sw� v
= Pswδv. (5.2.2)

We will cover the remaining cases in the following.

(1): Assume that w ∉CW (s). If s ≤ w and s ≤ v, then w� sv and sw� v. Indeed, if
we assume that w ≤ sv, then s ≤ sv in contradiction to s� sv. Further, if we assume
that sw ≤ v, then there exists u ∈ W with v = (sw)u and |v| = |sw| + |u|. Because
(W,S) is right-angled s ≤ v implies that s ≤ u and sw ∈CW (s). But then w ∈CW (s) in
contradiction to the assumption w ∉CW (s). We get that (s.Pw)δv = 0 = Pswδv.

If s �w and s � v, then one obtains in the same way w� sv and sw� v which
implies (s.Pw)δv = 0 = Pswδv. With (5.2.2) this covers all possible cases. Hence,
s.Pw = Psw.

(2): Assume that w ∈ CW (s) and s ≤ w. If s � v, then (5.2.2) implies (s.Pw)δv =
Pswδv and hence (s.Pw)(1−Ps ) = Psw(1−Ps ). If s ≤ v, then w� sv implies (s.Pw)δv = 0
and hence (s.Pw)Ps = 0. Combined this leads to

s.Pw = (s.Pw)(1−Ps )+ (s.Pw)Ps = Psw(1−Ps ) = Psw −Psw∨s = Psw −Pw.

(3): Assume that w ∈CW (s) and s �w. If s ≤ v, then (s.Pw)δv = Pswδv = Pw∨sδv =
PwPsδv = Pwδv by (5.2.2). So consider the case where s � v. If w ≤ v, then v = wu for
some u ∈W with |v| = |w|+|u| and s�u. Hence, sv = w(su) ≥ w. Conversely, if w ≤ sv,
then sv = wu for some u ∈ W with |sv| = |w| + |u| and s ≤ u. We get that v = s(sv) =
w(su) ≥ w. Together this gives (s.Pw)δv = Pwδv, that is s.Pw = Pw as claimed.

Remark 5.2.32. Let (W,S) be a Coxeter system. Recall that W equipped with the
weak right Bruhat order defines a complete meet-semilattice. If existent, denote
the corresponding join of two elements v,w ∈ W by v∨w. We then have PvPw =
Pv∨w for all v,w ∈ W where we assume that Pv∨w = 0 if the join v∨w does not exist
(compare with Theorem 5.1.13). In particular, the equalities Ps Pt = 0 (i.e. Ps and Pt

are orthogonal to each other) if mst =∞ and Ps Pt = Pst if mst = 2 hold (this follows
for instance from [67, Lemma 4.3.3]). Now assume that (W,S) is right-angled, that
q ∈R(W,S)

>0 and that s ∈ S, w ∈W . In combination with Proposition 5.2.31 the equality
T (q)

s = T (1)
s +ps (q)Ps then leads to a description of the conjugation of the generating

projections in D(W,S) with the Hecke operators T (q)
s , s ∈ S. In particular, for s ∈ S,

w ∈W with w ∉CW (s) and s�w the identities

T (q)
s (1−Ps )T (q)

s = T (1)
s (1−Ps )T (1)

s = Ps

and
T (q)

s PwT (q)
s = T (1)

s PwT (1)
s = Psw

hold.
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5.2.7. PROBABILITY MEASURES ON THE BOUNDARY AND THE COM-
PACTIFICATION

Our characterization of the simplicity of the Hecke C∗-algebras of a right-angled
Coxeter system (W,S) is inspired by Haagerup’s approach to the unique trace pro-
perty of group C∗-algebras in [95]. The translation of the techniques into the de-
formed setting requires the study of probability measures on the compactification
(W,S) and the boundary ∂(W,S). The aim of this subsection is to prove that such
measures in a certain sense decrease very rapidly. Recall that probability mea-
sures on a given compact Hausdorff space correspond to states on the C∗-algebra
of continuous functions on that space. We can hence make use of the convenient
description D(W,S) ∼=C ((W,S)) and π(D(W,S)) ∼=C (∂(W,S)) where the notation is the
same as before.

Lemma 5.2.33. Let (W,S) be a right-angled, finite rank Coxeter system. For every u ∈W
and 0 < q < 1 the operator Qu

q on `2(W ) defined by

Qu
q :=

∞∑
l=|u|

∑
w∈W : |w|=l ,u≤w−1

q l Pw

exists (where the limit is taken with respect to the operator norm) and is contained in the
C∗-algebra D(W,S) ⊆B(`2(W )).

Proof. It suffices to show that the sequence (Qu
q,i )i≥|u| with

Qu
q,i :=

i∑
l=|u|

∑
w∈W : |w|=l ,u≤w−1

q l Pw ∈D(W,S)

is a Cauchy sequence. For v ∈ W and l ∈ N set κv(l ) := #
{

w ∈W | w ≤ v and |w| = l
}
.

It has been shown in [46, Lemma 4.4] that κv(l ) ≤ C l #S−2 for some constant C > 0.
Using this in the third line of the following inequalities, we get that for i < j with
i ≥ |u| and ξ ∈ `2(W ),

‖(Qu
q, j −Qu

q,i )ξ‖2 =
∥∥∥∥∥ ∑

v∈W

(
j∑

l=i+1

∑
w∈W : |w|=l ,w≤v,u≤w−1

q l

)
ξ(v)δv

∥∥∥∥∥
2

≤

√√√√ ∑
v∈W

(
j∑

l=i+1
q lκv(l )

)2

|ξ(v)|2

≤ C

(
j∑

l=i+1
q l l #S−2

)
‖ξ‖2 .

For 0 < q < 1 the series
∑∞

l=1 q l l #S−2 converges. This implies the claim.

Lemma 5.2.34. Let (W,S) be an irreducible right-angled, finite rank Coxeter system, let
g := s1...sn ∈ W be a path in the Coxeter diagram of (W,S) that covers the whole graph
and let q = (qs )s∈S ∈ R(W,S)

>0 . Then the series
∑

w∈W qw converges if and only if the series∑
w∈W : g≤w−1 qw converges.
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Proof. Because all summands of the series are positive it is clear that the conver-
gence of

∑
w∈W qw implies the convergence of

∑
w∈W : g≤w−1 qw. So assume that the

series
∑

w∈W : g≤w−1 qw converges. For every i , j ∈N with i < j we have that∣∣∣∣∣ ∑
w∈W :|w|≤i

qw − ∑
w∈W : |w|≤ j

qw

∣∣∣∣∣
= ∑

w∈W :i<|w|≤ j
qw

= ∑
w∈W :i<|w|≤ j , sn≤w−1

qw + ∑
w∈W :i<|w|≤ j , sn�w−1

qw

= ∑
w∈W :i−1<|w|≤ j−1, sn�w−1

qsn qw + ∑
w∈W :i<|w|≤ j , sn�w−1

qw

≤ (1+qsn )
∑

w∈W :i−1<|w|≤ j , sn�w−1

qw

= 1+qsn

qg−1

∑
w∈W :i−1<|w|≤ j , sn�w−1

qg−1 qw

= 1+qsn

qg

∑
w∈W :i−1<|g−1w−1|≤ j , g≤w−1

qw

= 1+qsn

qg

∑
w∈W :i−1+n<|w|≤ j+n, g≤w−1

qw,

where the fifth equality follows from the fact that

{wg−1 | w ∈W with sn �w−1} = {w ∈W | g ≤ w−1}

since g = s1...sn is a path in the Coxeter diagram of (W,S). That implies that the
sequence of partial sums of

∑
w∈W qw is a Cauchy sequence and hence that the series

converges.

The following proposition will play a crucial role in Subsection 6.1.2 and Sec-
tion 6.2. Recall that R′(W,S) is the closure of

R′(W,S) :=
{

(qεs
s )s∈S | q ∈R(W,S)∩R(W,S)

>0 , ε ∈ {−1,1}(W,S)
}

in R(W,S)
>0 , where R(W,S) denotes the region of convergence of the growth series of

(W,S) (compare with Subsection 2.7.7).

Proposition 5.2.35. Let (W,S) be a right-angled, irreducible, finite rank Coxeter system,
q = (qs )s∈S ∈ R(W,S)

>0 \ R′(W,S) and let g := s1...sn ∈ W be a path in the Coxeter diagram
of (W,S) that covers the whole graph. Then, for every state φ on D(W,S) there exists a
sequence (wi )i∈N ⊆ W of group elements with increasing word length such that g ≤ w−1

i
for all i ∈N and q−1

wi
φ(Pwi ) → 0.

The same statement holds, if one replaces D(W,S) by π(D(W,S)) and Pwi by P̃wi .
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Proof. The set R(W,S)
>0 \ R′(W,S) is open in R

(W,S)
>0 , so there exist positive real num-

bers q ′,λ ∈ (0,1) such that q ′q := (q ′qs )s∈S ∈ R(W,S)
>0 \ R′(W,S) and λq ′q := (λq ′qs )s∈S ∈

R
(W,S)
>0 \R′(W,S). In particular, Lemma 5.2.34 implies that the series

∑
g≤w−1 λ|w|(q ′q)w

diverges. By the root test criterium for convergence,

limsup
l

( ∑
w∈W : |w|=l ,g≤w−1

λl (q ′q)w

)1/l

≥ 1

and hence

limsup
l

( ∑
w∈W : |w|=l ,g≤w−1

(q ′q)w

)1/l

> 1.

One can thus find a strictly increasing sequence (li )i∈N ⊆ N and a constant C > 1
such that for all i ∈N, ( ∑

w∈W : |w|=li ,g≤w−1

(q ′q)w

)1/li

≥C . (5.2.3)

For w ∈W define the set

Cw := {
v ∈W | g ≤ v−1 and zv = zw for all z = (zs )s∈S ∈C(W,S)}

and note that the elements in Cw all have the same length. Choose for every i ∈N an
element wi ∈ W with #Cwi (q ′q)wi = max|w|=li ,g≤w−1 #Cw(q ′q)w that has length li and
satisfies g ≤ w−1

i . Since by the definition of Cwi the equality #Cv(q ′q)v = #Cwi (q ′q)wi

holds for all v ∈Cwi , this element can be chosen in such a way that φ(Pwi ) ≤φ(Pv) for
all v ∈Cwi . Now, by picking a suitable subset M ⊆W of elements w ∈W with length
li and g ≤ w−1, the sum

∑
w∈W : |w|=li ,g≤w−1 (q ′q)w can be written as

∑
w∈M #Cw(q ′q)w.

By the choice of wi we hence have∑
w∈W : |w|=li ,g≤w−1

(q ′q)w ≤ (li +1)#S #Cwi (q ′q)wi

which implies in combination with (5.2.3) that for all i ∈N,

#Cwi (q ′)li qwi ≥
C li

(li +1)#S
. (5.2.4)

It follows from Lemma 5.2.33 that the series
∑

w∈W : g≤w−1 (q ′)|w|φ(Pw) converges. By
the same argument as above we hence have that

limsup
l

( ∑
w∈W : |w|=l ,g≤w−1

(q ′)lφ(Pw)

)1/l

< 1.

One can therefore assume (by possibly going over to a further subsequence) that( ∑
w∈W : |w|=li , g≤w−1

(q ′)liφ(Pw)

)1/li

≤ L



5.3. THE CONNECTION TO HECKE C∗-ALGEBRAS

5

119

for all i ∈N where 0 < L < 1 . But then, by the choice of wi ,

#Cwi (q ′)liφ(Pwi ) ≤ (q ′)li
∑

w∈Cwi

φ(Pw) ≤ ∑
w∈W : |w|=li ,g≤w−1

(q ′)liφ(Pw) ≤ Lli

and thus with (5.2.4)

0 ≤ q−1
wi
φ(Pwi ) < Lli

#Cwi (q ′)li qwi

≤ (li +1)#S
(

L

C

)li

→ 0.

This implies the first part of the statement. The second part is an immediate con-
sequence since π(A(W )) is a quotient of A(W ). That finishes the proof.

Remark 5.2.36. The proof of Proposition 5.2.35 significantly simplifies in the case
of single-parameters q . Indeed, if we follow the notation of Proposition 5.2.35 and
assume that qs = qt for all s, t ∈ S, Lemma 5.2.33 implies that for i ∈N and 0 < q ′ < 1,∑

w∈W : |w|=i ,g≤w−1

(q ′)iφ(Pw) ≤φ(Qg
q ′ ).

One can thus find an element wi of length i with g ≤ w−1
i such that

φ(Pwi ) ≤
(
#Lg

i (q ′)i
)−1

φ(Qg
q ′ )

where Lg
i := {

w ∈W | |w| = i , g ≤ w−1
i

}
. We get that

q−1
wi
φ(Pwi ) ≤

φ(Qg
q ′ )

#Lg
i (q ′q)wi

.

The Cauchy-Hadamard formula (for radii of convergence of power series) implies
that for increasing i , if q ′ is close enough to 1, the expression on the right ap-
proaches 0.

5.3. THE CONNECTION TO HECKE C∗-ALGEBRAS

The main reason for our study of compactifications and boundaries of connected
rooted graphs (or more precisely Cayley graphs of Coxeter systems) is the con-
struction’s intimate relationship with Hecke operator algebras of Coxeter systems
which will be crucial for several results of the later chapters. In the following, we
will adopt the notation of Subsection 5.2.6.

Let (W,S) be a finite rank Coxeter system. For every q = (qs )s∈S ∈ R(W,S)
>0 , s ∈ S

the operator T (q)
s can be written as T (q)

s = T (1)
s +ps (q)Ps and the map qs 7→ ps (q) =

q
− 1

2
s (qs − 1) is injective on R>0. This implies that for all q = (qs )s∈S , q ′ = (q ′

s )s∈S ∈
R

(W,S)
>0 with qs 6= q ′

s for all s ∈ S the C∗-subalgebra A(W,S) of B(`2(W )) generated by
C∗

r,q (W ) and C∗
r,q ′ (W ) does not depend on the choice of the different parameters q
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and q ′. It is the smallest C∗-subalgebra of B(`2(W )) that contains all Hecke C∗-
algebras of the system (W,S) and there exists a natural isomorphism

ι :A(W,S) ∼=C ((W,S))or W via Pw 7→χUw and T (1)
w 7→λw

where (as before) Uw := {z ∈ W | w ≤ z}. Here C ((W,S))or W ⊆ B(`2(W )⊗`2(W ))
denotes the reduced crossed product C∗-algebra associated with the canonical ac-
tion W æ (W,S). The isomorphism is being implemented by conjugation with the
unitary U ∈B(`2(W )⊗`2(W )) defined by U (δv ⊗δw) := δv ⊗δwv for v,w ∈W in com-
bination with the identification in Remark 5.1.7. Indeed, for u,v,w,w′ ∈W ,

U (Puλv)(δw ⊗δw′ ) = U ((vw′)−1.Pu)δw)⊗δvw′ )

= U (T (1)
(vw′)−1 Puδvw′w)⊗δvw′ )

=
{
δw ⊗δvw′w , if u ≤ vw′w
0 , if u� vw′w

= (1⊗PuT (1)
v )U (δw ⊗δw′ )

so A(W,S) ∼= C1 ⊗A(W,S) ∼= D(W,S)or W where we identified in our calculation
the element Pu with its image in B(`2(W )⊗`2(W )) (for the corresponding nota-
tion revisit Section 2.3). By Remark 5.1.7 the latter C∗-algebra is isomorphic to
C ((W,S))or W , so A(W,S) ∼=C ((W,S))or W as claimed. In the same way there exists
an isomorphism

κ :π(A(W,S)) ∼=C (∂(W,S))or W via P̃w 7→χUw∩C (∂W ) and T (1)
w 7→λw.

Let us pick up some of the implications of the previous sections.
Corollary 5.2.9 and [33, Theorem 4.3.4] lead to the following statement. Recall

that a C∗-algebra is called nuclear if for every other C∗-algebra the corresponding
algebraic tensor product admits a unique C∗-norm.

Corollary 5.3.1. Let (W,S) be a finite rank Coxeter system. Then the C∗-algebras A(W,S)
and π(A(W,S)) are nuclear.

The results of Subsection 5.2.5 have the following consequences.

Corollary 5.3.2. Let (W,S) be a finite rank Coxeter system. Assume that W is either
small at infinity and non-amenable or that the system is irreducible and right-angled with
#S ≥ 3. Then A(W,S) contains A(W,S)∩K (`2(W )) as its unique non-trivial ideal. Fur-
ther, C ((W,S)) and C (∂(W,S)) carry no W -invariant tracial states and both A(W,S) and
π(A(W,S)) are traceless.

Proof. The simplicity of π(A(W,S)) follows from the identification

π(A(W,S)) ∼=C (∂(W,S))or W

in combination with Theorem 5.2.9, Theorem 5.2.22, Theorem 5.2.21 and [9]. Let
I CA(W,S) be a non-trivial ideal. By Lemma 5.2.24, Corollary 5.2.9 and [9, Theorem
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2], I intersects non-trivially with the unital C∗-algebra D(W,S) generated by all Pw,
w ∈W . Because D(W,S)∩K (`2(W )) is a W -equivariant ideal in D(W,S) it is easy to
see that D(W,S)∩K (`2(W )) ⊆ I ∩D(W,S), hence A(W,S)∩K (`2(W )) ⊆ I . But by the
simplicity of π(A(W,S)), A(W,S)∩K (`2(W )) is a maximal non-trivial ideal, so I =
A(W,S)∩K (`2(W )). We get that the C∗-algebra A(W,S) contains A(W,S)∩K (`2(W ))
as its unique non-trivial ideal.

To show the remaining statements, it suffices to show that C (W ) carries no W -
invariant tracial state. Indeed, if C (W ) carries no W -invariant tracial state then
C (∂W ) obviously also carries no W -invariant state. That A(W,S) ∼=C (W )or W and
π(A(W,S)) ∼= C (∂W )or W are both traceless then follows with [125, Corollary 1.4].
So let us show that C (W ) carries no W -invariant state. For this, assume that τ is
such a state. The strong proximality of the action W æW implies that δz ∈W. {τ} =
{τ} for some z ∈W , i.e. τ= δz . But δz is obviously not W -invariant. This leads to a
contradiction.

We have seen that for every q ∈R(W,S)
>0 the map ι restricts to a natural embedding

of C∗
r,q (W ) into C ((W,S))or W . Motivated by this, let us investigate for which Hecke

C∗-algebras a similar statement holds for κ◦π.
The one-dimensional central projections appearing in the following proposi-

tion already occur in [76], [66], [67], [86] and [160]. As will be exploited in Sub-
section 6.1.2 they induce characters on the Hecke C∗-algebras of the system and
are in the case of right-angled Coxeter groups already contained in the correspon-
ding Hecke C∗-algebras (see Subsection 6.1.1). Following the notation in [160],
for a Coxeter system (W,S) write qs,ε := εs qεs

s and qw,ε := qs1,ε...qsn ,ε for q ∈ R(W,S)
>0 ,

ε ∈ {−1,1}(W,S) and w ∈W . Further set pq := (
p

qs )s∈S ∈R(W,S)
>0 .

Proposition 5.3.3 ([67, Lemma 19.2.5]). Let (W,S) be a finite rank Coxeter system, let
q = (qs )s∈S ∈ R(W,S)

>0 with 0 < qs ≤ 1 for all s ∈ S be a multi-parameter and let W (z) =∑
w∈W zw be the growth series of (W,S) (see Subsection 2.7.7). Further let ε = (εs )s∈S ∈

{−1,1}(W,S), qε := (εs qεs
s )s∈S and assume that

∣∣qε∣∣ := (qεs
s )s∈S ∈R(W,S). Then the operator

Eq,ε : `2(W ) → `2(W ),δw 7→ (p
q
)

w,εηq,ε

with ηq,ε := (W (
∣∣qε∣∣))−1 ∑

w∈W
(p

q
)

w,εδw is bounded, it is a central projection in Nq (W )
and it satisfies

T (q)
w Eq,ε = Eq,εT (q)

w = (p
q
)

w,εEq,ε

for all w ∈W . For distinct ε,ε′ ∈ {−1,1}(W,S) with
∣∣qε∣∣ ,

∣∣qε′ ∣∣ ∈R(W,S) the projections Eq,ε

and Eq,ε′ are orthogonal to each other.

Proof. First note that indeed ηq,ε ∈ `2(W ) with
∥∥ηq,ε

∥∥
2 = 1. By the Cauchy-Schwarz

inequality, for every ξ :=∑
w∈W ξ(w)δw ∈ `2(W ),

∥∥Eq,εξ
∥∥

2 =
∥∥∥∥∥ ∑

w∈W
εw

∣∣qε∣∣ 1
2
w ξ(w)ηq,ε

∥∥∥∥∥
2

≤
∣∣∣∣∣ ∑

w∈W
εw

∣∣qε∣∣ 1
2
w ξ(w)

∣∣∣∣∣≤W (
∣∣qε∣∣)‖ξ‖2
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so Eq,ε is a bounded operator on `2(W ). Now, for w ∈W ,

T (q),r
s Eq,εδw = (p

q
)

w,εT (q),r
s ηq,ε

=
(p

q
)

w,ε

W (
∣∣qε∣∣) ∑

v∈W

(p
q
)

v,εT (q),r
s δv

=
(p

q
)

w,ε

W (
∣∣qε∣∣) ∑

v∈W :s�L v

[(p
q
)

v,εδvs +
(p

q
)

vs,εδv +
(p

q
)

vs,ε ps (q)δvs

]
In the case where εs = 1 we thus conclude

T (q),r
s Eq,εδw =

(p
q
)

w,ε

W (
∣∣qε∣∣) ∑

v∈W :s�L v

p
qs

[(p
q
)

vs,εδvs +
(p

q
)

v,εδv

]
= p

qs
(p

q
)

w,εηq,ε

whereas in the case where εs = (−1),

T (q),r
s Eq,εδw =

(p
q
)

w,ε

W (
∣∣qε∣∣) ∑

v∈W :s�L v

− 1p
qs

[(p
q
)

vs,εδvs +
(p

q
)

v,εδv

]
= − 1p

qs

(p
q
)

w,εηq,ε.

A similar calculation implies that Eq,εT (q),r
s δw =p

qs
(p

q
)

w,εηq,ε if εs = 1 and T (q),r
s Eq,ε

δw = −(
p

qs )−1
(p

q
)

w,εηq,ε if εs = (−1), so T (q),r
s Eq,ε = Eq,εT (q),r

s . In an analogous

way, T (q)
s Eq,ε = Eq,εT (q)

s = (p
q
)

s,εEq,ε for all s ∈ S from which we deduce that Eq,ε ∈
(N r

q (W ))′ =Nq (W ) is a central element of Nq (W ). The calculations also imply that
Eq,ε is an orthogonal projection onto the 1-dimensional subspace Cηq,ε of `2(W ). It
is further easy to check that for distinct elements ε,ε′ ∈ {−1,1}(W,S) with

∣∣qε∣∣ ,
∣∣qε′ ∣∣ ∈

R(W,S) the projections Eq,ε and Eq,ε′ are orthogonal to each other.

Remark 5.3.4. In [160] Raum and Skalski introduced the notion of Hecke eigenvectors
(for the parameter q). These are non-zero elements η ∈ `2(W ) satisfying T (q)

s η ∈ Cη
for all s ∈ S. In the case of right-angled Coxeter groups the central projections con-
sidered in Proposition 5.3.3 are exactly the orthogonal projections onto the Hecke
eigenspaces. Note that they are always of finite rank.

Theorem 5.3.5. Let (W,S) be a finite rank Coxeter system for which W is infinite and let
q ∈ R(W,S)

>0 . Then Nq (W )∩K (`2(W )) 6= 0 if and only if q ∈ R′(W,S) with R′(W,S) as in
Subsection 2.7.7.

Proof. “⇒”: First assume that q ∈R(W,S)∩R(W,S)
>0 . The existence of the one-dimensional

central projection Eq,1 appearing in Proposition 5.3.3 then implies that the inter-
section Nq (W )∩K (`2(W )) is non-trivial. For general q ∈R′(W,S) note that the iso-
morphism in Proposition 3.5.2 is unitarily implemented. The non-triviality hence
follows from the above.
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“⇐”: First let q ∈ R(W,S)
>0 \ R(W,S) with 0 < qs ≤ 1 for every s ∈ S and assume

that Nq (W )∩K (`2(W )) 6= 0. Then Nq (W )∩K (`2(W )) contains a non-zero positive
operator and also its finite-rank spectral projections. Since N r

q (W ) = JNq (W )J ,
where J is the (unitary) modular conjugation operator (see Section 3.4), this implies
that N r

q (W ) also contains a finite-rank projection which we denote by P . Because
P commutes with the elements in Nq (W ), the Hilbert subspace H := P`2(W ) is
invariant under Nq (W ). Let (ξi )i=1,...,n be an orthonormal basis of P`2(W ). Then,
by Lemma 3.4.7,

‖Pδe‖2
2 ≤ q−1

w ‖T (q)
w Pδe‖2

2 =
n∑

i=1
q−1

w |〈ξi ,T (q)
w Pδe〉|2 =

n∑
i=1

q−1
w |〈ξi ,δw〉|2

for every w ∈W . Let us distinguish two cases:

• Case 1: Assume that there exists a constant C > 0 such that for every w ∈ W
there exists some 1 ≤ i ≤ n with q−1

w |〈ξi ,δw〉|2 >C . We get that

n∑
i=1

‖ξi‖2
2 =

n∑
i=1

∑
w∈W

|〈ξi ,δw〉|2 >C
∑

w∈W
qw.

But q ∈ R(W,S)
>0 \ R(W,S), so the sum on the right-hand side diverges in con-

tradiction to
∑n

i=1 ‖ξi‖2
2 <∞. This implies that there exists no such constant

C .

• Case 2: Assume that there exists a sequence (w j ) j∈N ⊆W with q−1
w j

|〈ξi ,δw j 〉|2 →
0 for 1 ≤ i ≤ n. Then,

‖Pδe‖2
2 ≤

n∑
i=1

q−1
w j

|〈ξi ,δw j 〉|2 → 0,

i.e. Pδe = 0. But then P = 0 since Pδw = PT (q)
w δe = T (q)

w Pδe = 0 for every w ∈W .
This is a contradiction to our assumption.

Since both cases lead to a contradiction, the intersection Nq (W )∩K (`2(W )) must
be trivial. Again, for general q ∈R(W,S)

>0 \R′(W,S) the statement follows with Propo-
sition 3.5.2.

Remark 5.3.6. For right-angled Coxeter systems the statement in Theorem 5.3.5 is
a consequence of the results in [160] (see also [86]).

Corollary 5.3.7. Let (W,S) be a finite rank Coxeter system. For q ∈ R(W,S)
>0 \ R′(W,S)

the map κ◦ (π|A(W )) : A(W ) →C (∂(W,S))or W restricts to an embedding of C∗
r,q (W ) into

C (∂(W,S))or W .

One of the main ideas in [120] is the observation of the fact that for a discrete
group G the G-injective envelope IG (C) of C (i.e. the unique G-injective and G-
essential extension of C) carries a natural C∗-algebra structure for which IG (C) ∼=
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C (∂F G). Here, ∂F G denotes the Furstenberg boundary of the group G . The con-
struction of ∂F G by means of Hamana’s theory of G-injective envelopes implies
some powerful rigidity results.

In [149] Ozawa conjectured that for every exact C∗-algebra A there is a nu-
clear C∗-algebra N (A ) such that A ⊆ N (A ) ⊆ I (A ). Here I (A ) denotes the injective
envelope of A . (For more information on operator systems and (G-)injective en-
velopes we refer to [97], [98],[99], [100] and Paulsen’s book [151].) Embeddings of
this form have the striking advantage that properties of the larger C∗-algebra (for
instance simplicity and primeness) are reflected by the properties of A . Ozawa
proved his conjecture in the case of reduced group C∗-algebras of word hyperbolic
groups G by choosing N (C∗

r (G)) to be the crossed product C (∂hG)or G . Kalantar and
Kennedy extended his result in [120, Section 4] to general exact group C∗-algebras
by replacing the crossed product by C (∂hG) by the crossed product C (∂F G)or G .
However, in full generality Ozawa’s conjecture remains a major open problem.

The following corollary provides an embedding of certain Hecke C∗-algebras
which is similar to the one above.

Proposition 5.3.8. Let (W,S) be a finite rank Coxeter system. Assume that W is either
small at infinity or that the system is irreducible and right-angled with #S ≥ 3. Then
IW (C (∂(W,S))) =C (∂F W ) where IW (C (∂(W,S))) is the W -injective envelope of C (∂(W,S)).
Further, for every q ∈R(W,S)

>0 \R′(W,S) there are natural embeddings

C∗
r,q (W ) ,→C (∂(W,S))or W ,→C (∂F W )or W ,→ I (C∗

r (W )).

In particular, I (C∗
r,q (W )) ,→ I (C∗

r (W )) for every q ∈R(W,S)
>0 \R′(W,S).

Proof. By Theorem 5.2.21 and Theorem 5.2.22 ∂W is a W -boundary. Hence ∂W is
a continuous W -equivariant quotient of the Furstenberg boundary ∂F W (see [85,
Proposition 4.6]). This induces a W -equivariant embedding C (∂W ) ,→C (∂F W ). The
equality IW (C (∂(W,S))) = C (∂F W ) then follows in the same way as in the proof
of [120, Corollary 5.5]. We further deduce the existence of the chain C∗

r,q (W ) ,→
C (∂W )or W ,→ C (∂F W )or W ,→ I (C∗

r (W )) of inclusions from Corollary 5.3.7, from
[100, Theorem 3.4] and by extending the W -equivariant embedding C (∂W ) ,→C (∂F W )
to an embedding C (∂W )or W ,→ C (∂F W )or W of the corresponding crossed pro-
ducts.

It remains to show that I (C∗
r,q (W )) ,→ I (C∗

r (W )) for every q ∈R(W,S)
>0 \R′(W,S). But

this is clear since by the injectivity of I (C∗
r (W )) and C∗

r,q (W ) ,→ I (C∗
r (W )) the injective

envelope I (C∗
r,q (W )) is contained in I (C∗

r (W )) as an operator system. Hence, every
completely positive projection θ : B(`2(W )) → I (C∗

r (W )) restricts to the identity on
I (C∗

r,q (W )). But the C∗-algebra structure of I (C∗
r (W )) is given by the Choi-Effros

product associated with θ, so this induces an embedding I (C∗
r,q (W )) ,→ I (C∗

r (W )).

Remark 5.3.9. Proposition 5.3.8 holds for all Coxeter systems whose canonical ac-
tion W æ ∂(W,S) is a boundary action. Considering Ozawa’s conjecture it would
be interesting to know if the embedding I (C∗

r,q (W )) ,→ I (C∗
r (W )), q ∈R(W,S)

>0 \R′(W,S)
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is always surjective, i.e. if I (C∗
r,q (W )) does not depend on the choice of the pa-

rameter q . In that case, C∗
r,q (W ) would turn out to be a prime C∗-algebra for all

q ∈R(W,S)
>0 \R′(W,S) (see [100, Corollary 3.5]).





6
IDEAL STRUCTURE AND

TRACE-UNIQUENESS OF HECKE
C∗-ALGEBRAS

The aim of this chapter, which contains some of the main results of this thesis and
combines almost all the tools developed in the previous chapters, is the study of
the (non-)simplicity and trace-uniqueness of Hecke C∗-algebras.

We begin by studying the central projections from Proposition 5.3.3 in com-
bination with the Haagerup type inequality in Theorem 4.3.6. If present these
projections induce characters on the corresponding Hecke C∗-algebra which leads
to non-simplicity results, see Subsection 6.1.2. Much in the spirit of [86, Sec-
tion 6], we further apply results by Dykema (see [75]) to free products of finite-
dimensional right-angled Hecke C∗-algebras to fully characterize their ideal struc-
ture and trace-uniqueness. In Section 6.2 we will then use our findings from Sub-
section 5.2.5 to completely characterize the simplicity of right-angled Hecke C∗-
algebras and (by again applying the Haagerup inequality in Theorem 4.3.6) we
deduce trace-uniqueness results for right-angled Hecke C∗-algebras.

The content of this chapter is based on parts of the articles

• M. Caspers, M. Klisse, N.S. Larsen, Graph product Khintchine inequalities and
Hecke C∗-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exact-
ness, J. Funct. Anal. 280 (2021), no. 1, Paper No. 108795, 41 pp.

• M. Klisse, Simplicity of right-angled Hecke C∗-algebras, to appear in Int. Math.
Res. Not. IMRN.

127



6

128 6. IDEAL STRUCTURE AND TRACE-UNIQUENESS OF HECKE C∗-ALGEBRAS

6.1. NON-SIMPLICITY OF HECKE C∗-ALGEBRAS

Motivated by the connection of Hecke operator algebras with the `2-cohomology
of buildings (see [76], [66] and also [67]), in [67, Chapter 19] Davis formulated the
question for a classification of factorial Hecke-von Neumann algebras. In the right-
angled single-parameter setting such a classification was obtained by Garncarek
(see [86] and also Remark 3.5.7) whose results were later extended to the multi-
parameter case by Raum and Skalski in [160]. Using a combinatorial approach they
proved that the Hecke-von Neumann algebra Nq (W ) of a right-angled irreducible
Coxeter system (W,S) with #S ≥ 3 is a factor if and only if q ∈R(W,S)

>0 \R′(W,S) where
R′(W,S) is defined as in Subsection 2.7.7. For general (not necessarily right-angled)
Hecke-von Neumann algebras the factoriality problem is still wide open. The C∗-
algebraic analogs to factoriality are the notions of simplicity and the uniqueness of
the tracial state. Recall that a C∗-algebra is called simple if it does not contain any
non-trivial closed two-sided ideal.

6.1.1. CENTRAL PROJECTIONS IN HECKE C∗-ALGEBRAS

Let (W,S) be a finite rank Coxeter system, let q = (qs )s∈S ∈ R(W,S)
>0 with 0 < qs ≤ 1

for all s ∈ S be a multi-parameter and let W (z) = ∑
w∈W zw be the growth series of

(W,S). Recall that by Proposition 5.3.3, if there exists ε = (εs )s∈S ∈ {−1,1}(W,S) with∣∣qε∣∣ = (
qεs

s
)

s∈S ∈ R(W,S), then the Hecke-von Neumann algebra Nq (W ) contains a
central projection Eq,ε with T (q)

w Eq,ε =
(p

q
)

w,εEq,ε for all w ∈W .
In [160] Raum and Skalski, generalizing the single-parameter results by Garn-

carek [86], proved that for a right-angled, irreducible, finite rank Coxeter system
(W,S) with at least three generators and q = (qs )s∈S ∈ R(W,S)

>0 with 0 < qs ≤ 1 for all
s ∈ S the corresponding Hecke-von Neumann algebra Nq (W ) decomposes as

Nq (W ) ∼=M ⊕ ⊕
ε∈{−1,1}(W,S): |qε|∈R′(W,S)

C

where M is a factor and where the direct summands C correspond to the central
projections Eq,ε; that is the center of Nq (W ) is the linear span of the unit and the
projections Eq,ε. Note that by Proposition 3.5.2 the assumption that 0 < qs ≤ 1 for all
s ∈ S is not really restrictive. The statement further implies that Nq (W ) is a factor if
and only if q ∈R(W,S)

>0 \R′(W,S). It is a natural question whether for q ∈R′(W,S) the
central projections in Nq (W ) are already contained in the corresponding Hecke C∗-
algebra C∗

r,q (W ). We will prove this by using the Haagerup-type inequality from
Theorem 4.3.6. We will further need the following easy lemma.

Lemma 6.1.1. Let (W,S) be a finite rank Coxeter system. Then the intersection R(W,S)∩
R

(W,S)
>0 of the region of convergence R(W,S) of the growth series W (z) = ∑

w∈W zw with
R

(W,S)
>0 is open in R(W,S)

>0 .

Proof. Assume that the set R(W,S)∩R(W,S)
>0 is not open in R(W,S)

>0 and let q ∈R(W,S)∩
R

(W,S)
>0 be a point on its boundary. Since

∑
w∈W qw converges, the power series
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f (z) := ∑
w∈W qwz |w| absolutely converges for all z ∈ C with |z| ≤ 1. But the radius

of convergence of f coincides with the distance of the origin to the closest pole of
f , hence there exists λ> 1 such that

∑
w∈W qwz |w| absolutely converges for all z ∈ C

with |z| < λ. This implies that (2−1(1+λ)qs )s∈S ∈ R ∩R(W,S)
>0 which contradicts the

choice of q .

Proposition 6.1.2. Let (W,S) be a right-angled, finite rank Coxeter system and let q =
(qs )s∈S ∈ R(W,S)

>0 with 0 < qs ≤ 1 for all s ∈ S. Further, let ε ∈ {−1,1}(W,S), qε := (
εs qεs

s
)

s∈S
and assume that

∣∣qε∣∣ := (
qεs

s
)

s∈S ∈ R(W,S). Then the corresponding central projection
Eq,ε ∈ Nq (W ) ⊆ B(`2(W )) from Proposition 5.3.3 is already contained in the Hecke C∗-
algebra C∗

r,q (W ) and is given by the norm limit

1

W (
∣∣qε∣∣)

∞∑
i=0

∑
w: |w|=i

(p
q
)

w,εT (q)
w .

Proof. By the assumption
∣∣qε∣∣ ∈ R(W,S), so Lemma 6.1.1 implies that there exists

λ > 1 such that still
∣∣λqε

∣∣ := (
λqεs

s
)

s∈S ∈ R(W,S). Using the root test criterium for
convergence,

limsup
l

( ∑
w∈W : |w|=l

λl ∣∣qw,ε
∣∣)1/l

≤ 1

and hence

limsup
l

( ∑
w∈W : |w|=l

∣∣qw,ε
∣∣)1/l

< 1.

One can therefore find l0 ∈N and 0 < L < 1 such that for all l ≥ l0,∑
w∈W : |w|=l

∣∣qw,ε
∣∣< Ll . (6.1.1)

Now set E (i )
q,ε := (

W (
∣∣qε∣∣))−1 ∑i

l=0

∑
w: |w|=l

(p
q
)

w,εT (q)
w . For i , j ∈Nwith i < j and i ≥ l0

we have by Theorem 4.3.6 and the inequality (6.1.1) that∥∥∥E ( j )
q,ε−E (i )

q,ε

∥∥∥ ≤ 1

W (
∣∣qε∣∣)

j∑
l=i+1

∥∥∥∥∥ ∑
w: |w|=l

(p
q
)

w,εT (q)
w

∥∥∥∥∥
≤ 1

W (
∣∣qε∣∣)

j∑
l=i+1

C l
√ ∑

w: |w|=l

∣∣qw,ε
∣∣

< 1

W (
∣∣qε∣∣)

j∑
l=i+1

C l L
l
2

for some C > 0. The series
∑∞

l=0 lL
l
2 converges, so (E (i )

q,ε)i∈N ⊆C∗
r,q (W ) converges to

1

W (
∣∣qε∣∣)

∞∑
i=0

∑
w: |w|=i

(p
q
)

w,εT (q)
w ∈C∗

r,q (W ).

The remaining statements follow from short calculations which are similar to the
ones in the proof of Proposition 5.3.3.
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The following corollary follows from the discussion above and Proposition
3.5.2.

Corollary 6.1.3. Let (W,S) be a right-angled, finite rank Coxeter system with #S ≥ 3 and
let q ∈ R(W,S)

>0 . Then the center of the Hecke C∗-algebra C∗
r,q (W ) coincides with the center

of the Hecke-von Neumann algebra Nq (W ).

One other immediate consequence is that right-angled Hecke C∗-algebras ad-
mit a decomposition that is analogous to the one of their von Neumann-algebraic
counterparts.

Corollary 6.1.4. Let (W,S) be a right-angled, finite rank Coxeter system with #S ≥ 3 and
let q = (qs )s∈S ∈R(W,S)

>0 . Then the corresponding Hecke C∗-algebra C∗
r,q (W ) decomposes as

C∗
r,q (W ) ∼=π(C∗

r,q (W ))⊕ ⊕
ε∈{−1,1}(W,S): |qε|∈R′(W,S)

C,

where π denotes the quotient map of B(`2(W )) onto B(`2(W ))/K (`2(W )).

Proof. By Proposition 6.1.2 C∗
r,q (W ) decomposes as A⊕⊕

ε∈{−1,1}(W,S): |qε|∈R′(W,S)Cwhere

A =C∗
r,q (W )

∏
ε∈{−1,1}(W,S): |qε|∈R′(W,S)

(1−Eq,ε) ⊆B(`2(W )).

By [160, Theorem A] the von Neumann algebra A′′ ⊆ B(`2(W )) is a factor, ne-
cessarily of type II1, so A contains no compact operators. This implies that A ∼=
π(C∗

r,q (W )) from which the claim follows.

6.1.2. CHARACTERS ON HECKE C∗-ALGEBRAS

Recall that, since the (spatial) tensor product of two C∗-algebras is simple if and
only if both C∗-algebras are simple, we may by Proposition 3.5.2 and Proposition
3.5.5 restrict in the treatment of the simplicity of Hecke C∗-algebras to irreducible
Coxeter systems (W,S) and parameters q = (qs )s∈S ∈R(W,S)

>0 with 0 < qs ≤ 1. The same
is true for the uniqueness of the tracial state, see e.g. [17, Proposition 14].

The operators appearing in Proposition 5.3.3 and Proposition 6.1.2 are projec-
tions onto one-dimensional subspaces of `2(W ) and thus induce characters on the
right-angled Hecke C∗-algebras as the following lemma illustrates.

Lemma 6.1.5. Let (W,S) be a finite rank Coxeter system and q = (qs )s∈S ∈R(W,S) a multi-
parameter. Assume moreover that ε= (εs )s∈S ∈ {−1,1}(W,S) with

∣∣qε∣∣ := (qεs
s )s∈S ∈R′(W,S).

Then T (q)
s 7→ εs q

εs
2

s defines a character (i.e. a unital, linear, multiplicative functional) on
the Hecke C∗-algebra C∗

r,q (W ) that we denote by χqε . In particular, C∗
r,q (W ) is not simple

and does not have unique tracial state.

Proof. By Proposition 3.5.2 we can assume that 0 < qs ≤ 1 for all s ∈ S. First consider
the case where

∣∣qε∣∣ ∈R′(W,S). By Proposition 5.3.3 there exists a central projection



6.1. NON-SIMPLICITY OF HECKE C∗-ALGEBRAS

6

131

Eq,ε ∈ Nq (W ) with Eq,εT (q)
w = (

p
q)w,εEq,ε for every w ∈ W . Hence the map χqε ( · ) :=

τq ( ·Eq,ε)/
∥∥Eq,εδe

∥∥
2 defines a character on C∗

r,q (W ) with χqε (T (q)
s ) = εs q

εs
2

s for s ∈ S.
Its kernel is a non-trivial maximal ideal in C∗

r,q (W ), i.e. C∗
r,q (W ) is not simple and

does not have a unique tracial state.
For q ∈ R′(W,S) \ R′(W,S) choose a sequence (qn)n∈N ⊆ R′(W,S) with qn → q

and 0 < (qn)s ≤ qs for all s ∈ S. One easily checks that the map χ: T (q)
w 7→ q

1
2

w de-
fines a character on Cq [W ]. For finite sums x := ∑

w∈W x(w)T (q)
w ∈ Cq [W ] and xn :=∑

w∈W x(w)T (qn )
w ∈ Cqn [W ] with complex coefficients we have xn → x in B(`2(W ))

and χ(qn )ε (xn) →χ(x) with χ(qn )ε defined as above. This implies that∣∣χ(x)
∣∣= lim

n→∞
∣∣χqn (xn)

∣∣≤ lim
n

‖xn‖ = ‖x‖ ,

so χ extends to a character on C∗
r,q (W ). Again, this implies that C∗

r,q (W ) is not
simple and does not have unique tracial state.

It follows from Lemma 6.1.5 that Hecke C∗-algebras coming from irreducible
Coxeter systems of spherical or affine type are never simple and never have a
unique tracial state.

Corollary 6.1.6. Let (W,S) be an irreducible Coxeter system of spherical or affine type.
Then for any choice of parameter q ∈ R(W,S)

>0 there exists a character on the corresponding
Hecke C∗-algebra C∗

r,q (W ). In particular, C∗
r,q (W ) is not simple and does not have unique

tracial state.

Proof. First assume that (W,S) has finite rank and let q = (qs )s∈S ∈ R(W,S)
>0 with 0 <

qs ≤ 1 for every s ∈ S. Being of spherical or affine type the Coxeter group W is
amenable, see 2.7.20. Hence by Proposition 2.7.20 the radius of convergence of
the power series

∑
w∈W z |w| is one. But then q ∈ R(W,S)∩R(W,S)

>0 , so C∗
r,q (W ) admits

a character by Lemma 6.1.5. For general q ∈ R(W,S)
>0 , the statement follows with

Proposition 3.5.2.
Next assume that |S| = ∞ and so (W,S) is of spherical type. Again, the map

χ: T (q)
w 7→ q

1
2

w , w ∈W defines a character on Cq [W ]. For every finite sum

x := ∑
w∈W

x (w)T (q)
w ∈Cq [W ]

with complex-valued coefficients there exists a finite subset T ⊆ S such that the
support {w ∈W | x(w) 6= 0} of x is contained in the special subgroup WT of W ge-
nerated by T . Now WT is also a Coxeter group with the same exponents as W
(see e.g. [67, Theorem 4.1.6 (i), Theorem 3.4.2 (i)]) and by Proposition 3.4.5 the C∗-
algebra C∗

r,qT
(WT ) with qT := (qt )t∈T canonically embeds into C∗

r,q (W ). Under this

identification we have x ∈ C∗
r,q (WT ). But the map T (q)

w 7→ q
1
2

w is a character on the
finite-dimensional C∗-algebra C∗

r,q (WT ), hence
∥∥χ(x)

∥∥≤ ‖x‖. As this holds for every
x ∈Cq [W ], χ extends to a character on C∗

r,q (W ).
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Using the results from Section 5.2 in combination with Lemma 6.1.5, in the
right-angled case we can completely characterize the character space of the corres-
ponding Hecke C∗-algebras.

Proposition 6.1.7. Let (W,S) be a right-angled, irreducible, finite rank Coxeter system
and q = (qs )s∈S ∈R(W,S)

>0 . Then the set of characters of the corresponding Hecke C∗-algebra
C∗

r,q (W ) is given by

{χqε | ε ∈ {−1,1}(W,S) with
∣∣qε∣∣ ∈R′(W,S)},

where
∣∣qε∣∣ := (qεs

s )s∈S ∈R(W,S)
>0 and where χqε satisfies χqε (T (q)

s ) := εs q
εs
2

s for all s ∈ S.

Proof. By Proposition 3.5.2 we can assume that 0 < qs ≤ 1 for all s ∈ S. It follows
from Lemma 6.1.5 that for every ε ∈ {−1,1}(W,S) with

∣∣qε∣∣ ∈ R′(W,S) the character
χqε exists. Conversely, let χ be a state on A(W,S) which restricts to a character
on C∗

r,q (W ) where A(W,S) is defined as in Section 5.3. For s ∈ S the Hecke rela-

tion (T (q)
s )2 = 1+ ps (q)T (q)

s implies (χ(T (q)
s ))2 − ps (q)χ(T (q)

s ) = 1 and hence χ(T (q)
s ) ∈

{q
1
2
s ,−q

− 1
2

s }. One can thus find ε ∈ {−1,1}(W,S) with χ = χqε . Now assume that
∣∣qε∣∣ ∉

R′(W,S), fix s ∈ S and choose a path g := s1...sn ∈W in the Coxeter diagram of (W,S)
that covers the whole graph and for which mss1 =∞. By Proposition 5.2.35 there
exists a sequence (wi )i∈N ⊆ W of increasing word length with g ≤ w−1

i for all i ∈ N
and

∣∣q−1
wi ,εχ(Pwi )

∣∣ → 0. We further have that Pwi s ≤ Pwi , so χ(Pwi s ) ≤ χ(Pwi ). Using
that T (q)

wi
and T (q)

w−1
i

lie in the multiplicative domain of χ (see for instance [33, Propo-

sition 1.5.7]) in combination with Proposition 5.2.31 (as well as Remark 5.2.32) one
concludes

|χ(T (q)
s )| = ∣∣q−1

wi ,ε

∣∣ ∣∣∣∣χ(T (q)
wi

(1−Ps )T (q)
s T (q)

w−1
i

)+χ(T (q)
wi

Ps T (q)
s T (q)

w−1
i

)

∣∣∣∣
≤

∣∣∣∣q−1
wi ,εχ(T (q)

wi
T (1)

s T (1)
w−1

i

Pwi s )

∣∣∣∣+ ∣∣∣∣q−1
wi ,εχ(Pwi s T (1)

wi
T (q)

s T (q)

w−1
i

)

∣∣∣∣
=

∣∣∣∣q−1/2
wi ,ε χ(T (1)

sw−1
i

Pwi s )

∣∣∣∣+ ∣∣q−1/2
s,ε q−1/2

wi ,ε χ(Pwi s T (1)
wi

)
∣∣ .

The Cauchy-Schwarz inequality then implies

|χ(T (q)
s )| ≤ (1+q−1/2

s )
√∣∣q−1

wi ,εχ(Pwi s )
∣∣→ 0.

This contradicts χ(T (q)
s ) ∈ {q

1
2
s ,−q

− 1
2

s }.

6.1.3. DECOMPOSITION OF HECKE C∗-ALGEBRAS OF FREE PRODUCTS
OF RIGHT-ANGLED ABELIAN COXETER GROUPS

In [75] Dykema studied the simplicity and the unique trace property of reduced
free products of C∗-algebras and carefully investigated the ideal structure of free
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products of finite-dimensional C∗-algebras. In the case of free products of abelian
Coxeter groups this allows us to fully characterize the simplicity and the unique-
ness of the canonical tracial state of the corresponding Hecke C∗-algebras. The
statement that we will employ is the following.

Proposition 6.1.8 ([75, Corollary 4.10]). Let l ∈ N with l ≥ 2 and consider for every
1 ≤ m ≤ l a compact Hausdorff space Xm endowed with a regular Borel probability measure
µm whose support is all of Xm . Assume that each Xm consists of at least two points and
exclude the case where N = 2 and where the spaces X1, X2 do consist of exactly two points.
Further assume that µm has at most finitely many atoms each of which is an isolated point
and denote by φm : f 7→ ∫

f dµm the induced state on C (Xm). Define

L+ :=
{

(xm)l
m=1 ∈

l∏
m=1

Xm | l −1 <
l∑

m=1
µm({xm})

}

and

L0 :=
{

(xm)l
m=1 ∈

l∏
m=1

Xm | l −1 =
l∑

m=1
µm({xm})

}
.

Then the reduced free product C∗-algebra (A,φ) := ?1≤m≤l (C (Xm),φm) has stable rank 1
and decomposes as

A ∼= A0 ⊕
⊕

x∈L+
C.

If L0 = ;, then A0 is simple and carries a unique tracial state. If L0 6= ;, then there exist
distinct characters (χx : A0 → C)x∈L0 such that the intersection

⋂
x∈L0 ker(χx ) is simple,

non-unital and carries a unique tracial state.

Let us now assume that (W,S) is a Coxeter system where W is of the form
W = Z

k1
2 ∗ ·· · ∗Zkl

2 with l ,k1 ≥ 2 and k2, . . . ,kl ∈ N (compare with Example 2.7.1).
For each 1 ≤ m ≤ l denote by s(m)

1 , . . . , s(m)
km

the mutually commuting generators cor-

responding to the component Zkm
2 of W and set Sm := {s(m)

1 , . . . , s(m)
km

}, so in particular

S =⋃l
m=1 Sm . Let q = (qs )s∈S ∈ R(W,S)

>0 . By Proposition 3.5.5 and Proposition 4.3.1 the
Hecke C∗-algebra C∗

r,q (W ) decomposes as a reduced free product

(C∗
r,q (W ) ,τq ) ∼=?1≤m≤l

(
km⊗
i=1

(C∗
r,q

s(m)
i

(Ws(m)
i

),τq
s(m)
i

)

)

over the canonical traces. By Proposition 6.1.2, for every s ∈ S the 2-dimensional
commutative C∗-algebra C∗

r,qs
(Ws ) contains orthogonal projections

p
qs

qs +1
T (qs )

s + 1

qs +1
and −

p
qs

qs +1
T (qs )

s + qs

qs +1

which sum to 1, hence C∗
r,q (m)

si

(Ws(m)
i

) ∼= C (Z2) where the canonical tracial state τqs

corresponds to the measure µs which maps the identity e ∈ Z2 to (1+ qs )−1 and
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which maps the generator s to qs (1+qs )−1. In the notation of Proposition 6.1.8 we
get that

(C∗
r,q (W ) ,τq ) ∼=?1≤m≤l (C (Zkm

2 ),φm), (6.1.2)

where µm(w) = qw
∏km

i=1(1+qs(m)
i

)−1 for w ∈Zkm
2 .

Proposition 6.1.9. Let (W,S) be a Coxeter system of the form W = Zk1
2 ? · · ·?Zkl

2 where
l ,k1, . . . ,kl ∈N and q = (qs )s∈S ∈ R(W,S)

>0 . Then the growth series W (z) of W is equal to the
Taylor expansion of the function

z 7→
(

l∑
m=1

km∏
i=1

(1+ zs(m)
i

)−1 − (l −1)

)−1

. (6.1.3)

The series converges for every element in

Ω :=
{

(zs )s∈S ∈R(W,S)
>0 ∩ [0,1]S |

l∑
m=1

km∏
i=1

(1+ zs(m)
i

)−1 > l −1

}

i.e. Ω ⊆ R(W,S) where R(W,S) is the region of convergence of W (z), as defined in Sub-
section 2.7.7.

Proof. It has been shown in Example 2.7.19 that for all z ∈C(W,S) for which
∑

w∈W zw

absolutely converges,

W (z) =
(

l∑
m=1

km∏
i=1

(1+ zs(m)
i

)−1 − (l −1)

)−1

. (6.1.4)

This implies that the growth series W (z) of W is equal to the Taylor expansion of
(6.1.3) in 0. From (6.1.4) we also find that

W (z) = (1−F (z))−1
∏
s∈S

(1+ zs ) (6.1.5)

with the polynomial

F (z) := 1+ (l −1)
∏
s∈S

(1+ zs )−
l∑

m=1

∏
n 6=m

kn∏
j=1

(1+ zs(n)
j

).

One has F (0) = 0. With DαF denoting the higher order partial derivative of F with
respect to 0 6=α ∈ {0,1}S we have

DαF
∣∣

z=0 =
[

(l −1)
∏

s∈S: αs=0
(1+ zs )−

∑
m∈J

∏
n 6=m

∏
j∈Kn

(1+ zs(n)
j

)

]
z=0

= (l −1)−
∑

m∈J
1
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≥ 0,

where J := {
m | 1 ≤ m ≤ l with αs = 0 for all s ∈ Sm

}
and

Kn := { j | 1 ≤ j ≤ km with αs(n)
j

= 0}.

This implies that F has only positive coefficients. Hence for z ∈Ω we have F (z) ≥ 0.
Moreover, for z ∈Ω we have W (z) > 0 and so by (6.1.5), 0 ≤ F (z) < 1. In particular,
the terms in the series

∑∞
m=0(F (z))m can be expanded and rearranged to get the

(converging) Taylor series of (1− F (z))−1. The same is true for the product (1−
F (z))−1 ∏

s∈S (1+ zs ). We get that the Taylor series of the function in (6.1.3) (which is
the growth series W (z)) converges on Ω.

In combination with Proposition 6.1.8, Proposition 6.1.9 implies the following.

Theorem 6.1.10. Let (W,S) be a Coxeter system of the form W = Zk1
2 ? · · ·?Zkl

2 where
l ,k1 ≥ 2 and let q = (qs )s∈S ∈R(W,S)

>0 . Then the following statements are equivalent.

(1) C∗
r,q (W ) is simple;

(2) C∗
r,q (W ) carries a unique tracial state;

(3) q ∉R′(W,S), where R′(W,S) is defined as in Subsection 2.7.7.

Proof. “(1) ⇔ (2)”: The equivalence of the first two statements follows from Propo-
sition 6.1.8.

“(2) ⇒ (3)”: Assume that q ∈R′(W,S). Then C∗
r,q (W ) is not simple and does not

have unique tracial state by Lemma 6.1.5.
“(3) ⇒ (1)”: Assume that C∗

r,q (W ) is not simple. By Proposition 3.5.2 we may fur-
ther assume that 0 < qs ≤ 1 for every s ∈ S. Using Proposition 6.1.8 in combination
with (6.1.2) we get that the set{

(w1, ...,wl ) ∈
l∏

m=1
Z

km
2 | l −1 ≤

l∑
m=1

qwm

km∏
i=1

(1+qs(m)
i

)−1

}

is not empty, so in particular

l −1 ≤ max
(w1,...,wl )∈

∏l
m=1Z

km
2

(
l∑

m=1
qwm

km∏
i=1

(1+qs(m)
i

)−1

)
≤

l∑
m=1

km∏
i=1

(1+qs(m)
i

)−1.

Comparing this with Proposition 6.1.9, we get that q ∈R′(W,S).

Remark 6.1.11. In the proof of Theorem 6.1.10 we only used the simplicity and
trace-uniqueness part of Proposition 6.1.8. For (W,S) as above the full statement
of the proposition also provides a detailed description of the ideal structure of
C∗

r,q (W ) for q ∈R′(W,S) (which coincides with our findings in Corollary 6.1.4). Fur-
ther we conclude that for l ≥ 3 the Hecke C∗-algebra C∗

r,q (W ) has stable rank 1 for
every q ∈R(W,S)

>0 .
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Remark 6.1.12. In [120] a new approach to C∗-simplicity results was obtained via
Furstenberg/Hamana boundaries (see [97], [98], [99], [100], [84], [85]), see also [30],
[95], [125], [16] and [121]. In [16] the Furstenberg boundary of a general unitary
representation of a discrete group was defined and investigated in relation to trace-
uniqueness properties. Proposition 3.5.6 shows that Hecke C∗-algebras of a right-
angled Coxeter group are C∗-algebras generated by such a unitary representation.
It would be interesting to exploit this connection. However, in light of the results
from [16], it is not clear how manageable the Furstenberg-Hamana boundary is.

6.2. SIMPLICITY OF RIGHT-ANGLED HECKE C∗-ALGEBRAS

Using the results and ideas from Section 5.2 we will now extend the simplicity
results from Subsection 6.1.3 to arbitrary right-angled Coxeter systems. Our ap-
proach is inspired by [95]. Recall that for a finite rank Coxeter system (W,S) and
q ∈R(W,S)

>0 \R′(W,S) the Hecke C∗-algebra C∗
r,q (W ) can be viewed as a C∗-subalgebra

of π(A(W )) where π and A(W,S) are defined as in Section 5.3. We will use this ob-
servation frequently.

Proposition 6.2.1. Let (W,S) be a right-angled, irreducible, finite rank Coxeter system,
q = (qs )s∈S ∈ R(W,S)

>0 \ R′(W,S) with 0 < qs ≤ 1 for all s ∈ S and let I 6=C∗
r,q (W ) be an ideal

of C∗
r,q (W ) where we view C∗

r,q (W ) as a C∗-subalgebra of π(A(W,S)). Then, for every two
elements s, t ∈ S with mst =∞ there exists a state φ on π(A(W,S)) that vanishes on I and
which satisfies φ(Ps ) = 1, φ(Pt ) = 0.

Proof. Choose a state on C∗
r,q (W ) that vanishes on I . We can extend it to a state ψ

on π(A(W,S)). Further let g := s1...sn ∈W with s1 := s, s2 := t be a path in the Coxeter
diagram of (W,S) that covers the whole graph and let (wi )i∈N ⊆W be a sequence as
in Proposition 5.2.35, i.e. the wi have increasing word length, g ≤ w−1

i for all i ∈N
and q−1

wi
ψ(P̃wi ) → 0. Note that ψ(T (q)

wi
T (q)

w−1
i

) = 0 is not possible since then Lemma

3.4.7 and the Cauchy-Schwarz inequality would imply

0 =ψ(T (q)
wi

T (q)

w−1
i

) ≥ qwi s1ψ((T (q)
s1

)2) ≥ qwi s1 |ψ(T (q)
s1

)|2

and thusψ((T (q)
s1

)2) =ψ(T (q)
s1

) = 0. This contradicts the identity (T (q)
s1

)2 = 1+ps
(
q
)

T (q)
s1

.
With Proposition 5.2.31 (as well as Remark 5.2.32) and Lemma 3.4.7 we get that for
i ∈N,∣∣∣∣∣∣∣

ψ(T (q)
wi

P̃s T (q)

w−1
i

)

ψ(T (q)
wi

T (q)

w−1
i

)
−1

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
ψ(T (q)

wi
(P̃s −1)T (q)

w−1
i

)

ψ(T (q)
wi

T (q)

w−1
i

)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

ψ(P̃wi )

ψ(T (q)
wi

T (q)

w−1
i

)

∣∣∣∣∣∣∣≤ q−1
wi
ψ(P̃wi ) → 0.

The weak-∗ compactness of the state space S (π(A(W,S))) implies that we can find
a subsequence of(

(ψ(T (q)
wi

T (q)

w−1
i

))−1ψ(T (q)
wi

(·)T (q)

w−1
i

)

)
i∈N

⊆S (π(A(W,S)))
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that weak-∗ converges to a state φ. By construction, this state vanishes on the ideal
I , we have φ(P̃s ) = 1 and hence also φ(P̃t ) = 0 since 0 ≤ P̃t ≤ 1− P̃s .

The following corollary immediately follows from Proposition 3.4.6.

Corollary 6.2.2. Let (W,S) be a right-angled Coxeter system, q = (qs )s∈S ∈ R(W,S)
>0 , l ∈N

and let g := s1...sn ∈W be a closed path in the Coxeter diagram of (W,S). Then there exists
an operator x ∈A(W,S) such that T (q)

gl decomposes as T (q)

gl = T (1)
gl +Ps1 x.

Proof. Write t1...tm for the reduced expression gl = (s1...sn)(s1...sn)...(s1...sn) of gl

where m = nl . By Proposition 3.4.6 the operator T (q)

gl decomposes as

T (q)

gl = T (1)
gl +

m∑
i=1

pti (q)T (1)
t1...ti−1

Pti T (1)
ti+1...tm

,

where the first summand corresponds to the triple (e,;,gl ) ∈ Agl and the other
summands correspond to triples (t1...ti−1, ti , ti+1...tm) ∈ Agl with i = 1, ...,m (since
g is a closed path in the Coxeter diagram of (W,S) all triples in Agl are of these
forms); here the set Agl is defined as in Proposition 3.4.6. Using the description in
Proposition 5.2.31 we get that

T (q)

gl = T (1)
gl +

m∑
i=1

pti (q)T (1)
t1...ti−2

Pti−1ti T (1)
ti−1ti+1...tm

= ... = T (1)
gl +

m∑
i=1

pti (q)Pt1...ti T (1)
t1...t̂i ...tm

,

so the claim follows by setting x :=∑m
i=1 pti (q)Pt1...ti T (1)

t1...t̂i ...tn
.

Recall that the inner action of the group W on π(A(W,S)) defined by w.x :=
T (1)

w xT (1)
w−1 for w ∈ W , x ∈ π(A(W,S)) induces an action of W on the state space of

π(A(W,S)) via (w.φ)(x) :=φ(T (1)
w−1 xT (1)

w ) forφ ∈S (π(A(W,S))), w ∈W and x ∈π(A(W,S)).
We are now ready to characterize the simplicity of right-angled Hecke C∗-alge-

bras.

Theorem 6.2.3. Let (W,S) be an irreducible, right-angled, finite rank Coxeter system and
let q = (qs )s∈S ∈R(W,S)

>0 be a multi-parameter. Then the Hecke C∗-algebra C∗
r,q (W ) is simple

if and only if q ∈R(W,S)
>0 \R′(W,S).

Proof. By Proposition 6.1.7 the Hecke C∗-algebra C∗
r,q (W ) is not simple for q ∈

R′(W,S). For the treatment of the case where q ∈ R(W,S)
>0 \ R′(W,S) by Proposition

3.5.2 it suffices to consider multi-parameters with 0 < qs ≤ 1 for all s ∈ S. View
C∗

r,q (W ) as a C∗-subalgebra of π(A(W,S)) and assume that I 6=C∗
r,q (W ) is an ideal in

C∗
r,q (W ). Further choose a closed path g := s1...sn in the Coxeter diagram of (W,S)

that covers the whole graph. Proposition 6.2.1 implies that we can find a state φ
on π(A(W,S)) that vanishes on I and for which φ(P̃s1 ) = 1, φ(P̃sn ) = 0 holds. In par-
ticular the projections P̃s1 , P̃sn are contained in the multiplicative domain of φ (see
for instance [33, Proposition 1.5.7]).
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By the identification π(D(W,S)) ∼= C (∂(W,S)) and the equality φ(P̃s1 ) = 1 the re-
striction of φ to π(D(W,S)) corresponds to a probability measure µ on the boun-
dary ∂(W,S) whose support is contained in the set of all z ∈ ∂(W,S) with s1 ≤ z. The
sequence (gi .µ)i∈N hence weak-∗ converges to the point mass δg∞ ∈ Prob(∂(W,S))
where g∞ := liml gl ∈ ∂(W,S) (compare also with the proof of Theorem 5.2.21). This
implies that there exists an increasing sequence (ik )k∈N ⊆ N for which

(
gik .φ

)
k∈N

weak-∗ converges to a state ψ whose restriction to π(D(W,S)) is multiplicative. The
product sn ...s1 also defines a path in the Coxeter diagram of (W,S). Using Corollary
6.2.2 and φ(P̃sn ) = 0 one deduces that for a ∈ I

ψ(a) = lim
k
φ(T (1)

g−ik
aT (1)

gik
) = lim

k
φ(T (q)

g−ik
aT (q)

gik
) = 0,

so ψ vanishes on the ideal I .
Now, let J be the ideal in π(A(W )) generated by I . Since π(A(W,S)) identifies

with the crossed product C∗-algebra C (∂(W,S))or W , every element in π(A(W,S))

can be approximated by finite sums of the form
∑

w∈W fwT (1)
w where fw ∈π(D(W,S)).

Using T (1)
s = T (q)

s − ps (q)Ps for s ∈ S, one concludes via induction that every such
operator can be written as a finite sum the form

∑
w∈W gwT (q)

w for suitable gw ∈
π(D(W,S)). But for all a ∈ I , g ,h ∈π(D(W,S)) and v,w ∈W we have that

ψ((g T (q)
w )a(T (q)

v h)) =ψ(g )ψ(T (q)
w aT (q)

v )ψ(h) = 0

since T (q)
w aT (q)

v ∈ I , so the state ψ vanishes on J . In particular, since ψ 6= 0, J can
not coincide with the whole C∗-algebra π(A(W,S)). But π(A(W,S)) is simple by
Corollary 5.3.2, so J = 0. We get that C∗

r,q (W ) must be simple as well. This completes
the proof.

Corollary 6.2.4. Let (W,S) be an irreducible, right-angled Coxeter system with #S =∞
and let q = (qs )s∈S ∈ R(W,S)

>0 . Then the Hecke C∗-algebra C∗
r,q (W ) is simple if and only if

there exists a finite subset T ⊆ S such that the Hecke C∗-algebra C∗
r,qT

(WT ) with qT :=
(qt )t∈T is simple.

Proof. Again, by Proposition 3.5.2 it suffices to consider multi-parameters with
0 < qs ≤ 1 for s ∈ S. First assume that for all finite subsets T ⊆ S the Hecke C∗-

algebra C∗
r,qT

(WT ) is not simple. The map χ : T (q)
w 7→ q

1
2

w , w ∈ W defines a character

on Cq [W ]. Further, for every element x :=∑
w∈W x(w)T (q)

w ∈ Cq [W ] with x(w) ∈ C for
all w ∈ W there exists a finite subset T ⊆ S such that the support {w ∈ W | x(w) 6= 0}
of x is contained in the special subgroup WT . By Proposition 3.4.5, C∗

r,qT
(WT )

canonically embeds into C∗
r,q (W ). Since by the assumption C∗

r,qT
(WT ) is not simple,

Theorem 6.2.3 implies in combination with Proposition 6.1.7 that the restriction
of χ to CqT [WT ] continuously extends to a character χT on C∗

r,qT
(WT ). But then,∣∣χ(x)

∣∣= ∣∣χT (x)
∣∣≤ ‖x‖, so (as x was arbitrary) χ continuously extends to a character

on C∗
r,q (W ). Hence C∗

r,q (W ) is not simple.
Conversely assume that there exists a finite subset T ⊆ S for which C∗

r,qT
(WT )

is simple. Then from Theorem 6.2.3 it follows that the C∗-algebra C∗
r,qT ′ (WT ′ ) is
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simple for all finite subsets T ′ ⊆ S with T ⊆ T ′. It is a standard fact that inductive
limits of simple C∗-algebras are simple (see e.g. [20, II.8.2.5]), so the simplicity of
C∗

r,q (W ) follows from Proposition 3.5.3.

The following example demonstrates that there exist infinitely generated right-
angled, irreducible Coxeter systems and corresponding multi-parameters whose
respective Hecke C∗-algebras are non-simple.

Example 6.2.5. Let S = {s1, s2, ...} be a countable set and consider the Coxeter group
W generated by S subject to the relations defined by mss = 2 for all s ∈ S and mst =∞
for all s, t ∈ S, s 6= t . Define q := (qs )s∈S ∈ R(W,S)

>0 by qsi := 2−i for i ∈ N≥1. Then for
every finite subset T ⊆ S one checks that

∑
s∈T

1

1+qs
≥

#T∑
i=1

1

1+2−i
≥ #T −1

and hence, by the analysis in Subsection 6.1.3, the C∗-algebra C∗
r,qT

(WT ) is not sim-
ple. Corollary 6.2.4 then implies that C∗

r,q (W ) is not simple.

6.3. THE UNIQUE TRACE PROPERTY

Unfortunately, there seems to be no obvious way to treat the uniqueness of the
canonical tracial state of right-angled Hecke C∗-algebras with the methods em-
ployed in Section 6.2. In this section we will therefore walk an alternative path by
using an approach inspired by Powers’ averaging argument in [157]. This requires
the introduction of suitable averaging operators on the corresponding Hecke alge-
bra which average over a finite subset of the Coxeter group. The following state-
ments apply in greater generality. Therefore we will formulate our approach for
arbitrary discrete groups.

Let G be a discrete group. Denote the left regular representation of G by λ, let τ
be the canonical tracial state on C∗

r (G) and fix some finite subset F ⊆G . Every such
F defines an averaging operator ΦF on C∗

r (G) given by

ΦF (x) := 1

|F |
∑
g∈F

λg−1 xλg .

The map ΦF is trace-preserving, unital and completely positive. In particular it
induces a bounded operator Φ̃F on `2(G)ªCδe given by Φ̃F (xδe ) :=ΦF (x)δe for all
x ∈Cc (G) with τ(x) = 0. Indeed, the Kadison-Schwarz inequality implies that

‖ΦF (x)δe‖2
2 = τ(ΦF (x)∗ΦF (x)) ≤ τ(ΦF (x∗x)) = τ(x∗x) = ‖xδe‖2

2 .

Proposition 6.3.1. Let G be a discrete group with the property that there exist three ele-
ments g1, g2, g3 ∈G and a subset D ⊆G \{e} such that D∪g1Dg−1

1 =G \{e} and the sets D,
g2Dg−1

2 and g3Dg−1
3 are pairwise disjoint. Take F := {

e, g1, g2, g3
}
. Then the operator Φ̃F

on `2(G)ªCδe has norm strictly smaller than one.
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The proof of Proposition 6.3.1 is based on Ching’s following variation of Pukán-
szky’s 14ε-argument in [158, Lemma 10].

Lemma 6.3.2 ([53, Lemma 4]). Let G be a group as in Proposition 6.3.1. Then

‖(x −τ (x))δe‖2 ≤ 14 max
i=1,2,3

‖(x −λg−1
i

xλgi )δe‖2

for every x ∈C∗
r (G).

Further, we shall need that for arbitrary vectors ξ0, . . . ,ξn in a Hilbert space H

we have the following equality, which for n = 1 is known as the parallelogram law:

‖
n∑

i=0
ξi‖2 + ∑

0≤i< j≤n
‖ξi −ξ j ‖2 = (n +1)

n∑
i=0

‖ξi‖2. (6.3.1)

Note that (6.3.1) can be verified directly by writing out all norms as inner products.

Proof of Proposition 6.3.1. The norm of Φ̃F : `2(G)ªCδe → `2(G)ªCδe is clearly ma-
jorized by 1. Now suppose that ‖Φ̃F ‖ = 1 and take a sequence xk ∈ Cc (G) with
τ(xk ) = 0 and ‖xkδe‖2 = 1 such that ‖Φ̃F (xkδe )‖2 ↗ 1. Set ξk

i = λg−1
i

xkλgi δe with
g1, g2, g3 as in the proposition and g0 := e. By (6.3.1) we have

∑
0≤i< j≤3

‖ξk
i −ξk

j ‖2
2 = 4

3∑
i=0

‖ξk
i ‖2

2 −‖
3∑

i=0
ξk

i ‖2
2 = 42 −‖4Φ̃F (xkδe )‖2

2 → 42 −42 = 0.

Therefore each of the individual summands on the left-hand side converges to 0 as
k →∞. Since ξk

0 = xkδe we see from Lemma 6.3.2 that ‖xkδe‖2 = ‖xkδe −τ(xk )δe‖2
2 →

0. This contradicts that ‖xkδe‖2 = 1. We conclude that ‖Φ̃F ‖ < 1.

Let us now bring together Theorem 4.3.6 and Lemma 6.3.2.

Theorem 6.3.3. Let (W,S) be a irreducible, right-angled, finite rank Coxeter system with
#S ≥ 3. Then there exists an open neighborhood U ⊆ R

(W,S)
>0 of 1 such that for all q =

(qs )s∈S ∈U the Hecke C∗-algebra C∗
r,q (W ) has unique tracial state.

Proof. As (W,S) is irreducible with #S ≥ 3 we find a path st0...tn in the Coxeter
diagram of (W,S) that covers the whole graph and for which t1 6= s. Then w1 :=
t0 · · · tn · · · t0, w2 := s, w3 := t1 and D := {w ∈W | t0 ≤ w} satisfy the conditions from
Proposition 6.3.1. For every reduced expression w = s1 · · · sm in W consider the
operator

m∏
i=1

(
1−qsi

1+qsi

+ 2
p

qsi

1+qsi

T (q)
si

)
∈C∗

r,q (W ).

By the same arguments as in the proof of Proposition 3.5.6 this operator is unitary
and does not depend on the reduced expression for w. By abuse of notation we
will denote it by πq,1(T (1)

w ). Choose a positive integer d with |w| ≤ d for all w in
F := {e,w1,w2,w3} and define a “deformed” averaging operator Φq on C∗

r,q (W ) by

Φq (x) = 1

|F |
∑

w∈F
πq,1(T (1)

w−1 )xπq,1(T (1)
w ).
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Again, these maps are trace-preserving, unital, completely positive and they in-
duce contractive linear operators Φ̃q on `2(W ) ªCδe via Φ̃q (xδe ) := Φq (x)δe for
x ∈ Cq [W ]. One easily checks that ‖Φ̃q‖ → ‖Φ̃F ‖ for q → 1. In particular, Propo-
sition 6.3.1 implies that there exists an open neighborhood U ⊆ R

(W,S)
>0 of 1 such

that Φ̃q has norm strictly smaller than one for all q ∈U .
For r ∈ N denote by χr the word length projection on C∗

r,q (W ) from equation
(4.1.1) and put χ≤d := ∑d

r=0χr . Let l ≥ 1 and x ∈ χ≤d (Cq [W ]). Note that for every
w ∈ F we have χr (πq,1(T (1)

w )) = 0 for r ≥ d . As Φl
q averages over {πq,1(T (1)

w ) | w ∈ F }

and χr (x) = 0 for r ≥ d , we get that χr (Φl
q (x)) = 0 for r ≥ (2l +1)d . In particular

‖Φl
q (x)−τq (x)‖ ≤

(2l+1)d∑
r=1

‖χr (Φl
q (x))‖

by the triangle inequality and with C := (#Cliq(K ))3(
∏

s∈S ps (q)) (where K is defined
as in Theorem 4.3.6) we have

‖Φl
q (x)−τq (x)‖ ≤

(2l+1)d∑
r=1

Cr‖χr (Φl
q (x))δe‖2

by Theorem 4.3.6. The Cauchy-Schwarz inequality then implies

‖Φl
q (x)−τq (x)‖ ≤ ((2l +1)d)

1
2

(
(2l+1)d∑

r=1
C 2r 2‖χr (Φl

q (x))δe‖2
2

) 1
2

≤ C ((2l +1)d)
3
2

(
(2l+1)d∑

r=1
‖χr (Φl

q (x))δe‖2
2

) 1
2

= C ((2l +1)d)
3
2 ‖Φl

q (x)δe −τq ◦Φl
q (x)δe‖2

≤ C ((2l +1)d)
3
2 ‖Φ̃q‖l‖xδe −τq (x)δe‖2.

For q ∈U this converges to 0 as l →∞. The unique trace property of C∗
r,q (W ), q ∈U

now follows by a standard argument (see for instance [157]): Let x ∈ C∗
r,q (W ) be

positive. For every ε > 0 we find xε ∈ Cq [W ] with ‖x −xε‖ < ε
3 . For l large enough

this implies

‖Φl
q (x)−τq (x)‖ ≤ ‖Φl

q (x −xε)‖+‖Φl
q (xε)−τq (xε)‖+‖τq (xε)−τq (x)‖ < ε,

so Φl
q (x) → τq (x). For every tracial state τ′ on C∗

r,q (W ) we get that

τ′(x) = τ′(Φl
q (x)) = τq (x),

that is C∗
r,q (W ) carries τq as its unique tracial state.





7
THE RELATIVE HAAGERUP

PROPERTY

The present chapter will be somewhat isolated from the rest of this dissertation.
Its aim is the introduction and examination of a generalized version of the re-
lative Haagerup property (see [23] and [155]) for a unital, expected inclusion of
arbitrary σ-finite von Neumann algebras. We will show that if the smaller alge-
bra is finite then the notion only depends on the inclusion itself, and not on the
choice of the conditional expectation. Further, several variations of the definition
are shown to be equivalent in this case, and in particular the approximating maps
can be chosen to be unital and preserving the reference state. The concept is then
applied to amalgamated free products of von Neumann algebras and used to de-
duce that the standard Haagerup property for a von Neumann algebra is stable
under taking reduced free products with amalgamation over finite-dimensional
subalgebras. These results are illustrated by examples coming from von Neumann
algebras of quantum orthogonal groups and will play a role in Chapter 8.

The content of these sections is entirely based on the article

• M. Caspers, M. Klisse, A. Skalski, G. Vos, M. Wasilewski, Relative Haagerup
property for arbitrary von Neumann algebras, arXiv preprint arXiv:2110.15078
(2021).

7.1. PRELIMINARIES

Let us begin by recalling some facts regarding von Neumann algebras, their modu-
lar theory and completely positive approximations. Throughout the whole chapter

143
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we will assume that the von Neumann algebras we study are σ-finite, i.e. that they
admit faithful normal states.

7.1.1. GENERAL VON NEUMANN ALGEBRA THEORY

Let H be a Hilbert space and M ⊆ B(H ) a von Neumann algebra. A self-adjoint
(possibly unbounded) operator h on H is said to be affiliated with M if for all k ∈N
the corresponding spectral projection E[−k,k](h) is an element of M . Equivalently, h
is affiliated with M if and only if h commutes with all unitaries in the commutant
M ′ ⊆B(H ).

We will always assume inclusions of von Neumann algebras N ⊆M to be uni-
tal in the sense that 1M ∈ N , and conditional expectations to be faithful and nor-
mal. We will usually repeat these conditions throughout the chapter. For a func-
tional ϕ ∈ M∗ in the predual of M and elements a,b ∈ M we denote by aϕb ∈ M∗
the normal functional given by (aϕb)(x) :=ϕ(bax) for x ∈M , and further write aϕ
for aϕ1 and ϕb for 1ϕb. If ϕ ∈ M∗ is faithful, normal and positive, as before we
write L2(M ,ϕ) for the GNS-Hilbert space associated with ϕ and Ωϕ for the cor-
responding cyclic vector. We will usually identify M with its image under the
GNS-representation, so that M ⊆B(L2(M ,ϕ)). We further write ‖x‖2,ϕ :=ϕ(x∗x)1/2

for x ∈M or, if ϕ is clear from the context, ‖x‖2 := ‖x‖2,ϕ.

The following lemma is standard.

Lemma 7.1.1. Let ϕ be a faithful normal state on a von Neumann algebra M . Then, on
bounded subsets of M the strong topology coincides with the topology induced by the norm
‖x‖2,ϕ =ϕ(x∗x)1/2, x ∈M .

Proof. Assume M ⊆ B(L2(M ,ϕ)) and recall that on bounded sets the strong topo-
logy of M does not change under the choice of a faithful representation. Now if
(xi )i∈I ⊆M is a net that strongly converges to x, then ‖xi −x‖2,ϕ = ‖(xi −x)Ωϕ‖2 → 0.
Conversely, suppose that (xi )i∈I ⊆M is a bounded net in M such that ‖xi − x‖2,ϕ =
‖(xi − x)Ωϕ‖2 → 0. Then for a ∈ M analytic for the modular group σϕ (see Subsec-
tion 7.1.2) we have by [172, Lemma 3.18 (i)] that

‖(xi −x)aΩϕ‖2 ≤ ‖σϕi /2(a)‖‖(xi −x)Ωϕ‖2 → 0.

Since by [172, Lemma VIII.2.3] such elements aΩϕ, a ∈ M are dense in L2(M ,ϕ)
and (xi )i∈I is bounded, we conclude by a 2ε-estimate that xi → x strongly.

Remark 7.1.2. Note that one implication in the proof of Lemma 7.1.1 does not re-
quire the uniform boundedness assumption, provided that we assume that M is
represented on its standard Hilbert space L2(M ,ϕ).



7.1. PRELIMINARIES

7

145

7.1.2. TOMITA-TAKESAKI MODULAR THEORY

Let M be a von Neumann algebra with a faithful normal positive functional ϕ ∈
M∗. We let Sϕ be the closure of the operator

L2(M ,ϕ) → L2(M ,ϕ), xΩϕ 7→ x∗Ωϕ, x ∈M .

Let Sϕ = Jϕ∆1/2
ϕ be the (anti-linear) polar decomposition where Jϕ is the modular

conjugation and ∆ϕ the modular operator. We have the modular automorphism group
σ
ϕ
t (x) =∆i t

ϕ x∆−i t
ϕ , t ∈ R. Then (M ,L2(M ,ϕ), Jϕ,L2(M ,ϕ)+) is the standard form of M

(see [91]), where the positive cone is given by

L2(M ,ϕ)+ := {x(J x J )Ωϕ | x ∈M } ⊆ L2(M ,ϕ).

The standard form is uniquely determined up to a unique (unitarily implemented)
isomorphism. For x ∈ M and ξ ∈ L2(M ,ϕ) we write ξx := Jϕx∗ Jϕξ. An element x ∈
M is called analytic for σϕ if the function R 3 t 7→σ

ϕ
t (x) ∈M extends to a (necessarily

unique) analytic function on the complex plane C. In this case we write σϕz (x) for
the extension at z ∈C.

The centralizer of a von Neumann algebra with respect to a faithful normal state
ϕ is the set Mϕ := {x ∈ M | ϕ(x y) = ϕ(y x) for all y ∈ M }, by [172, Theorem VIII.2.6]
equivalently described as {x ∈ M | σϕt (x) = x for all t ∈ R}. In the following we will
often consider the situation where N ⊆ M is a unital embedding, equipped with
a faithful normal conditional expectation EN : M → N , where τ ∈ N∗ is a faithful
tracial state and where ϕ= τ◦EN . Then an easy computation shows that N ⊆Mϕ.

7.1.3. COMPLETELY POSITIVE MAPS

Let A ,B be von Neumann algebras with faithful normal positive functionals ϕ
and ψ respectively. For a linear map Φ : A → B we say that its L2-implementation
Φ(2) (with respect to ϕ andψ) exists if the map xΩϕ 7→Φ(x)Ωψ extends to a bounded
operator Φ(2) : L2(A ,ϕ) → L2(B,ψ). This is the case if and only if there exists a
constant C > 0 such that for all x ∈A ,

ψ(Φ(x)∗Φ(x)) ≤Cϕ(x∗x).

In particular, if Φ is 2-positive with ψ◦Φ≤ϕ, the Kadison-Schwarz inequality im-
plies that Φ(2) exists with ‖Φ(2)‖ ≤ ‖Φ(1)‖1/2. Indeed, for x ∈A

‖Φ(x)Ωψ‖2
2 = ψ(Φ(x)∗Φ(x)) ≤ ‖Φ(1)‖ψ(Φ(x∗x))

≤ ‖Φ(1)‖ϕ(x∗x) = ‖Φ(1)‖‖xΩϕ‖2
2.

This implies that if Φ is contractive then so is Φ(2).

The general principle of the following lemma was used as part of a proof in
[41] and [116] a number of times. Here we present it separately. We will also
need several straightforward variations of this lemma. Because they can be proved
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in a very similar way, we shall not state them here. The essence of the result is
that, given two nets of maps with suitable properties that strongly converge to the
identity, the composition of these maps gives rise to a net that also converges to
the identity in the strong operator topology.

Lemma 7.1.3. Let (A ,ϕ) and (B,ϕ j ), j ∈N be pairs of von Neumann algebras equipped
with faithful normal states. Consider a normal completely positive map π : A → B, a
bounded sequence of normal completely positive maps (Ψ j : B → A ) j∈N and for every
j ∈ N a bounded net of completely positive maps (Φ j ,k : B → B)k∈K j . Assume that for
all j ∈ N, k ∈ K j the inequalities ϕ j ◦π ≤ ϕ, ϕ ◦Ψ j ≤ ϕ j and ϕ j ◦Φ j ,k ≤ ϕ j hold, that
Ψ j ◦π(x) → x strongly in j for every x ∈ A and that for every j ∈ N, x ∈ B we have
Φ j ,k (x) → x strongly in k. Then there exists a directed set F and a function ( j̃ , k̃): F →
{( j ,k) | j ∈N,k ∈ K j }, F 7→ ( j̃ (F ), k̃(F )) such that Ψ j̃ (F ) ◦Φ j̃ (F ),k̃(F ) ◦π(x) → x strongly in F

for every x ∈ A.

Proof. For j ∈N and k ∈ K j write

π(2)
j : L2(A ,ϕ) → L2(B,ϕ j ), xΩϕ 7→π(x)Ωϕ j ,

Ψ(2)
j : L2(B,ϕ j ) → L2(A ,ϕ), xΩϕ j 7→Φ j ,k (x)Ωϕ,

Φ(2)
j ,k : L2(B,ϕ j ) → L2(B,ϕ j ), xΩϕ j 7→Φ j ,k (x)Ωϕ j

for the corresponding L2-implementations with respect to ϕ and ϕ j . Let C ≥ 1 be
a bound for the norms of (Ψ j ) j∈N and hence for the norms of (Ψ(2)

j ) j∈N. We shall
make use of the fact that on bounded sets the strong topology coincides with the
L2-topology determined by a state, see Lemma 7.1.1. Therefore we have strong
limitsΨ(2)

j π(2)
j → 1 in B(L2(A ,ϕ)) andΦ(2)

j ,k → 1 in B(L2(B,ϕ j )). Now let F ⊆ L2(A ,ϕ)

be a finite subset. We may find j = j̃ (F ) ∈N such that for all ξ ∈ F ,

‖Ψ(2)
j π(2)

j ξ−ξ‖2 < |F |−1.

In turn, we may find k = k̃( j ,F ) = k̃(F ) such that for all ξ ∈ F ,

‖Φ(2)
j ,kπ

(2)
j ξ−π(2)

j ξ‖2 < |F |−1.

From the triangle inequality and by using that the operator norm ofΨ(2)
j is bounded

by C ,

‖Ψ(2)
j Φ(2)

j ,kπ
(2)
j ξ−ξ‖2 ≤ ‖Ψ(2)

j Φ(2)
j ,kπ

(2)
j ξ−Ψ(2)

j π(2)
j ξ‖2 +‖Ψ(2)

j π(2)
j ξ−ξ‖2

≤ ‖Ψ(2)
j ‖‖Φ(2)

j ,kπ
(2)
j ξ−π(2)

j ξ‖2 +‖Ψ(2)
j π(2)

j ξ−ξ‖2

< (1+C )|F |−1.

This implies that Ψ(2)
j̃ (F )

Φ(2)
j̃ (F ),k̃(F )

π(2)
j̃ (F )

→ 1 strongly in B(L2(A ,ϕ)) where the net is

indexed by all finite subsets of L2(A ,ϕ) partially ordered by inclusion. Using once
more Lemma 7.1.1, one sees that for x ∈ A we have that Ψ j̃ (F ) ◦Φ j̃ (F ),k̃(F ) ◦π(x) → x

strongly. The claim follows.
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7.2. RELATIVE HAAGERUP PROPERTY

The Haagerup property can be traced back to Haagerup’s celebrated article [93], in
which he noted that the free group admits a sequence of positive-definite functions
vanishing at infinity which pointwise converges to a constant function equal to 1;
in other words, the free group von Neumann algebra admits a sequence of unital
completely positive Herz-Schur multipliers which are in a certain sense “small”
and yet converge to the identity operator. Soon after that Choda gave in [55] a
definition of the Haagerup property for a von Neumann algebra M equipped with
a faithful normal tracial state in terms of the existence of abstract approximating
maps on M , which behave well with respect to the trace in question.

Definition 7.2.1 ([55]). Let M be a von Neumann algebra equipped with a faithful
normal tracial state τ. We say that M has the Haagerup property if there exists a net
(Φi )i∈I of τ-preserving unital completely positive normal maps Φi : M → M such
that for every i ∈ I the L2-implementation Φ(2)

i is compact with Φi → idM in the
point-ultraweak topology.

For several years the study focused on finite von Neumann algebras, mainly
as the motivating examples came from discrete groups. This changed with the ar-
ticles [29], [58], which established the Haagerup property for the von Neumann
algebras of certain discrete quantum groups, and the paper [68], which introduced
and studied the analogous property for quantum groups themselves. Soon af-
ter that Okayasu and Tomatsu on one hand, and Caspers and Skalski on another
gave a definition of the Haagerup property for an arbitrary von Neumann algebra
equipped with a faithful normal semifinite weight and proved that the notion does
not depend on the choice of the weight in question (see [41], [42], [143] as well as
[40] and references therein). In all the cases above the Haagerup property should
be thought of as a natural weakening of amenability/injectivity, which permits ap-
plying several approximation ideas and techniques beyond the class of amenable
groups or algebras.

In several group theoretic and operator algebraic contexts it is important to
consider also “relative” properties; for example, relative Property (T) is key to
showing that Z2oSL2(Z) does not have the Haagerup property, which in turn has
several von Neumann algebraic consequences (see e.g. [114]). In the context of
finite von Neumann algebras the relative Haagerup property first appeared in [23]
in the study of Jones’ towers associated with irreducible finite index subfactors,
and was later applied in [155] as a key tool to obtain deep structural results about
algebras admitting a certain type of Cartan inclusion (i.e. maximal abelian sub-
algebras with a “sufficiently rich” normalizer). Such Cartan inclusions are deeply
related to von Neumann algebras of equivalence relations by the celebrated results
of Feldman and Moore in [78]. The case of Cartan subalgebras was also the first
in which a definition of a relative Haagerup property was proposed beyond finite
von Neumann algebras (see [176] and [6]). Notably the latter developments took
place even before the usual Haagerup property for arbitrary von Neumann alge-
bras was well understood.
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In this section we introduce the relative Haagerup property for inclusions of
general σ-finite von Neumann algebras and consider natural variations of the def-
inition. For this, fix a triple (M ,N ,ϕ) where N ⊆ M is a unital inclusion of von
Neumann algebras and where ϕ is a faithful normal positive functional on M

whose corresponding modular automorphism group (σϕt )t∈R satisfies σϕt (N ) ⊆ N

for all t ∈ R. To keep the notation short, we will often just write (M ,N ,ϕ) and
will implicitly assume that the triple satisfies the mentioned conditions. By [172,
Theorem IX.4.2] the assumption σ

ϕ
t (N ) ⊆ N , t ∈ R is equivalent to the existence

of a (uniquely determined) ϕ-preserving (necessarily faithful) normal conditional
expectation Eϕ

N
: M →N . If the corresponding functional ϕ is clear, we will often

just write EN instead of Eϕ
N

(compare also with Subsection 7.2.2).

7.2.1. FIRST DEFINITION OF THE RELATIVE HAAGERUP PROPERTY

For a triple (M ,N ,ϕ) as before define the Jones projection

eϕ
N

:= E(2)
N

: L2(M ,ϕ) → L2(M ,ϕ)

which is the orthogonal projection onto L2(N ,ϕ) ⊆ L2(M ,ϕ) and let

〈M ,N 〉 ⊆B(L2(M ,ϕ))

be the von Neumann subalgebra generated by eϕ
N

and M . This is the Jones con-
struction. We will usually write eN instead of eϕ

N
if there is no ambiguity. Further

set
K00(M ,N ,ϕ) := Span{xeN y | x, y ∈M } ⊆B(L2(M ,ϕ))

and
K (M ,N ,ϕ) :=K00(M ,N ,ϕ).

Then K00(M ,N ,ϕ) is a (not necessarily closed) two-sided ideal in 〈M ,N 〉 whose
elements are called the finite rank operators relative to N . Similarly, K (M ,N ,ϕ) is
a closed two-sided ideal in 〈M ,N 〉 whose elements are called the compact operators
relative to N . Note that if N = C1M , then eN is a rank one projection and the
operators in K (M ,N ,ϕ) are precisely the compact operators on L2(M ,ϕ).

In the following it is often convenient to identify a finite rank operator aeN b ∈
K00(M ,N ,ϕ), a,b ∈M with the map aEN (b·) : M →M . The latter does not depend
on ϕ (but only on the conditional expectation EN ), and the notation is naturally
compatible with the inclusion M ⊆ L2(M ,ϕ). We will often write aEN b := aEN (b · ).
Definition 7.2.2. Let N ⊆ M be a unital inclusion of von Neumann algebras and
let ϕ be a faithful normal positive functional on M with σ

ϕ
t (N ) ⊆ N for all t ∈ R.

We say that the triple (M ,N ,ϕ) has the relative Haagerup property (or just property
(rHAP)) if there exists a net (Φi )i∈I of normal maps Φi : M →M such that

(1) Φi is completely positive and supi ‖Φi‖ <∞ for all i ∈ I ;
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(2) Φi is an N -N -bimodule map for all i ∈ I ;

(3) Φi (x) → x strongly for every x ∈M ;

(4) ϕ◦Φi ≤ϕ for all i ∈ I ;

(5) For every i ∈ I the L2-implementation

Φ(2)
i : L2(M ,ϕ) → L2(M ,ϕ), xΩϕ 7→Φi (x)Ωϕ,

is contained in K (M ,N ,ϕ).

Remark 7.2.3. (a) In many applications ϕ will be a faithful normal state, but for
notational convenience we shall rather work in the more general setting. Note that
we may always normalize ϕ to be a state and that the definition of the relative
Haagerup property does not change under this normalization.
(b) Note that in [155] (see also [117]) a different notion of relative compactness is
used to define the relative Haagerup property. It coincides with ours in the case
where N ′∩M ⊆ N . However, the alternative notion is not very suitable beyond
the tracial situation since it requires the existence of finite projections. We will
return to this issue in Subsection 7.5.1.
(c) In the case where N =C1M , Definition 7.2.2 recovers the usual definition of the
(non-relative) Haagerup property, see [41, Definition 3.1].

There is a number of immediate variations of Definition 7.2.2. For instance, one
may replace the condition (1) by one of the following stronger conditions:

(1′) For every i ∈ I the map Φi is contractive completely positive.

(1′′) For every i ∈ I the map Φi is unital completely positive.

We may also replace the condition (4) by the following condition:

(4′) ϕ◦Φi =ϕ.

One of the results that we shall prove is that if the subalgebra N is finite, then
condition (4) is redundant. We will further prove that in this setting the appro-
ximating maps Φi , i ∈ I can be chosen to be unital and state-preserving implying
that all the variations of the relative Haagerup property from above coincide. To
simplify the statements of the following subsections, let us introduce the following
auxiliary notion, which is a priori weaker.

Definition 7.2.4. Let N ⊆ M be a unital inclusion of von Neumann algebras and
let ϕ be a faithful normal positive functional on M with σ

ϕ
t (N ) ⊆ N for all t ∈ R.

We say that the triple (M ,N ,ϕ) has property (rHAP)− if there exists a net (Φi )i∈I of
normal maps Φi : M →M such that

(1) Φi is completely positive for all i ∈ I ;

(2) Φi is an N -N -bimodule map for all i ∈ I ;

(3) ‖Φi (x)−x‖2,ϕ→ 0 for every x ∈M ;
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(4) For every i ∈ I the L2-implementation

Φ(2)
i : L2(M ,ϕ) → L2(M ,ϕ), xΩϕ 7→Φi (x)Ωϕ,

exists and is contained in K (M ,N ,ϕ).

7.2.2. DEPENDENCE ON THE POSITIVE FUNCTIONAL: REDUCTION
TO THE DEPENDENCE ON THE CONDITIONAL EXPECTATION

Let N ⊆M be a unital inclusion of von Neumann algebras which admits a faithful
normal conditional expectation EN : M →N . Recall that for every faithful normal
positive functional ϕ on M with ϕ◦EN =ϕ the corresponding modular automor-
phism group (σϕt )t∈R satisfies σϕt (N ) ⊆N for all t ∈ R. Note that such a functional
always exists, as it suffices to pick a faithful normal state ω ∈ N∗ (which exists by
our standing σ-finiteness assumption) and set ϕ = ω ◦EN . In this subsection we
will examine the dependence of the relative Haagerup property of (M ,N ,ϕ) on
the functional ϕ. We shall prove that the property rather depends on the condi-
tional expectation EN than on ϕ.

Lemma 7.2.5. Let Φ : M → M be N -N -bimodular. Then the following statements are
equivalent:

(1) EN ◦Φ≤ EN (resp. EN ◦Φ= EN ).

(2) For all ϕ ∈M+∗ with ϕ◦EN =ϕ we have ϕ◦Φ≤ϕ (resp. ϕ◦Φ=ϕ).

(3) There exists a faithful functional ϕ ∈M+∗ with ϕ◦EN =ϕ such that ϕ◦Φ≤ϕ (resp.
ϕ◦Φ=ϕ).

Further, the following statements are equivalent:

(4) There exists C > 0 such that EN (Φ(x)∗Φ(x)) ≤CEN (x∗x) for all x ∈M .

(5) There exists C > 0 such that for all ϕ ∈ M+∗ with ϕ ◦EN = ϕ and x ∈ M we have
ϕ(Φ(x)∗Φ(x)) ≤Cϕ(x∗x).

(6) There exists C > 0 and a faithful functional ϕ ∈ M+∗ with ϕ◦EN = ϕ such that for
all x ∈M we have ϕ(Φ(x)∗Φ(x)) ≤Cϕ(x∗x).

In particular, if the L2-implementation of Φ with respect to ϕ exists, then it exists with
respect to any other ψ with ψ◦EN =ψ.

Proof. We prove the statements for the inequalities; the respective cases with equa-
lities follow similarly. The implications “(1) ⇔ (2) ⇒ (3)” of the first three state-
ments are trivial. For the implication “(3) ⇒ (1)” take ϕ as in (3). For x ∈ N con-
sider the positive functional x∗ϕx ∈ M+∗ which again satisfies (x∗ϕx)◦EN = x∗ϕx.
Then, for y ∈M+

(x∗ϕx)◦EN ◦Φ(y) =ϕ◦EN ◦Φ(x y x∗) ≤ϕ◦EN (x y x∗) = (x∗ϕx)◦EN (y).
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Since the restrictions of functionals x∗ϕx, x ∈N to N are dense in N +∗ we conclude
that EN ◦Φ≤ EN .

The equivalence of the statements (4), (5) and (6) follows similarly.

The following lemma shows that in good circumstances compactness of the
L2-implementations does not depend on the choice of the state.

Lemma 7.2.6. Let ϕ,ψ ∈ M+∗ be faithful with ϕ ◦EN = ϕ and ψ ◦EN = ψ. Let further
Φ : M →M be a completely positive N -N -bimodule map whose L2-implementation Φ(2)

ϕ

with respect to ϕ exists (hence, by Lemma 7.2.5, the L2-implementation Φ(2)
ψ of Φ with

respect to ψ exists as well). Then, Φ(2)
ϕ ∈K (M ,N ,ϕ) if and only if Φ(2)

ψ ∈K (M ,N ,ψ).

Proof. Let U be the unique unitary mapping the standard form (M ,L2(M ,ϕ), Jϕ,Pϕ)
to the standard form (M ,L2(M ,ψ), Jψ,Pψ), see [91, Theorem 2.3]. It restricts to
the unique unitary map between the standard forms (N ,L2(N ,ϕ), Jϕ|N ,Pϕ|N ) and
(N ,L2(N ,ψ), Jψ|N ,Pψ|N ). Indeed, for all x ∈ M , ϕ(x) = 〈xUΩϕ,UΩϕ〉 and by [91,
Lemma 2.10], UΩϕ is the unique element in L2(M ,ψ) satisfying this equation. On
the other hand, applying [91, Lemma 2.10] to ϕ|N implies the existence of a unique
vector ξ ∈ L2(N ,ψ) such that ϕ(x) = 〈xξ,ξ〉 for all x ∈ N . By approximating ξ by
elements in N Ωψ and by using the assumptions ϕ ◦ EN = ϕ and ψ ◦ EN = ψ one
deduces that for all x ∈M ,

ϕ(x) =ϕ◦EN (x) = 〈EN (x)ξ,ξ〉 = 〈xξ,ξ〉

and hence UΩϕ = ξ ∈ L2(N ,ψ). This implies U (N Ωϕ) ⊆ L2(N ,ψ) and therefore (by
density and symmetry) U (L2(N ,ϕ)) = L2(N ,ψ). Finally, using that σϕt (N ) =N and
hence Jϕ|N = (Jϕ)|L2(N ,ϕ) (and similarly Jψ|N = (Jψ)|L2(N ,ψ)) it is straightforward to
check that the restriction of U satisfies the other properties of the unique unitary
mapping between the standard forms

(N ,L2(N ,ϕ), Jϕ|N ,Pϕ|N ) and (N ,L2(N ,ψ), Jψ|N ,Pψ|N ).

Since eϕ
N

= (Eϕ
N

)(2) is the orthogonal projection of L2(M ,ϕ) onto L2(N ,ϕ) and
eψ

N
= (Eψ

N
)(2) is the orthogonal projection of L2(M ,ψ) onto L2(N ,ψ), we see that

U∗eψ
N

U = eϕ
N

. Hence, for every map Λ of the form Λ= aEN b with a,b ∈M the L2-
implementation Λ(2)

ϕ with respect to ϕ and the L2-implementation Λ(2)
ψ with respect

to ψ exist with Λ(2)
ϕ = aeϕ

N
b =U∗aeψ

N
bU =U∗Λ(2)

ψ U .
Now assume that Φ(2)

ϕ ∈ K (M ,N ,ϕ). Then there exists a sequence (Φk : M →
M )k∈N of maps of the form Φk = ∑Nk

i=1 ai ,kEN bi ,k with Nk ∈ N and a1,k ,b1,k , ...,
aNk ,k , bNk ,k ∈M whose L2-implementationsΦ(2)

k,ϕ ∈K00(M ,N ,ϕ) (with respect toϕ)

norm-converge to Φ(2)
ϕ . By the above, UΦ(2)

k,ϕU∗ ∈K00(M ,N ,ψ) is given by xΩψ 7→
Φk (x)Ωψ for x ∈ M . We claim that the sequence (UΦ(2)

k,ϕU∗)k∈N ⊆ K00(M ,N ,ψ)

norm-converges to Φ(2)
ψ . Indeed, by the density of the set of all elements of the

form x(ϕ|N )x∗, x ∈N in N +∗ we find a net (xi )i∈I ⊆N such that xi (ϕ|N )x∗
i →ψ|N .
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In combination with ϕ ◦EN = ϕ and ψ ◦EN = ψ this also implies xiϕx∗
i → ψ. For

y ∈M and k ∈N,

‖(Φ(2)
ψ −UΦ(2)

k,ϕU∗)yΩψ‖2
2,ψ = ‖(Φ(y)−Φk (y))Ωψ‖2

2,ψ

= lim
i

‖(Φ(y)−Φk (y))xiΩϕ‖2
2,ϕ

= lim
i

‖(Φ(2)
ϕ −Φ(2)

k,ϕ)y xiΩϕ‖2
2,ϕ

≤ lim
i

‖Φ(2)
ϕ −Φ(2)

k,ϕ‖2ϕ(x∗
i y∗y xi )

= ‖Φ(2)
ϕ −Φ(2)

k,ϕ‖2ψ(y∗y),

where in the third step we used the N -N -bimodularity of Φ and the right N -
modularity of Φk . Now, Φ(2)

k,ϕ → Φ(2)
ϕ and (UΦ(2)

k,ϕU∗)k∈N is a Cauchy sequence,

hence the above inequality leads to UΦ(2)
k,ϕU∗ → Φ(2)

ψ as claimed. In particular,

Φ(2)
ψ ∈K (M ,N ,ψ) which finishes the proof.

Theorem 7.2.7. Let N ⊆M be a unital inclusion of von Neumann algebras which admits
a faithful normal conditional expectation EN : M →N . Further, let ϕ,ψ ∈M+∗ be faithful
normal positive functionals with ϕ◦EN = ϕ and ψ◦EN =ψ. Then the triple (M ,N ,ϕ)
has property (rHAP) (resp. property (rHAP)−) if and only if the triple (M ,N ,ψ) has pro-
perty (rHAP) (resp. property (rHAP)−). In particular, property (rHAP) (resp. property
(rHAP)−) only depends on the triple (M ,N ,EN ).

Proof. It follows from Lemma 7.2.5 and Lemma 7.2.6 that if (Φ j ) j∈J is a net of ap-
proximating maps witnessing the relative Haagerup property of (M ,N ,ϕ) (resp.
property (rHAP)− of (M ,N ,ϕ)), then it also witnesses the Haagerup property of
(M ,N ,ψ) (resp. property (rHAP)− of (M ,N ,ψ)) and vice versa.

We will later see that in the case where the von Neumann subalgebra N is finite
the statement in Theorem 7.2.7 can be strengthened: in this case property (rHAP)
(and equivalently property (rHAP)−) does not even depend on the choice of the
conditional expectation EN .

Motivated by Theorem 7.2.7 we introduce the following natural definition.

Definition 7.2.8. Let N ⊆M be a unital inclusion of von Neumann algebras which
admits a faithful normal conditional expectation EN : M → N . We say that the
triple (M ,N ,EN ) has the relative Haagerup property (or just property (rHAP)) if the
triple (M ,N ,ϕ) has the relative Haagerup property for some (equivalently any)
faithful normal positive functional ϕ ∈M+∗ with ϕ◦EN =ϕ. The same terminology
shall be adopted for property (rHAP)−.



7.2. RELATIVE HAAGERUP PROPERTY

7

153

7.2.3. STATE-PRESERVATION, CONTRACTIVITY AND UNITALITY OF THE
APPROXIMATING MAPS IN A SPECIAL CASE

In this subsection we will prove that the relative Haagerup property of certain
triples (M ,N ,EN ) may be witnessed by approximating maps that satisfy extra
conditions, such as state-preservation, contractivity and unitality. This will play a
crucial role in Section 7.4. The approach is inspired by [13, Section 2], where ideas
from [116] were used.

Lemma 7.2.9. Let M be a von Neumann algebra, ϕ ∈ M∗ a faithful normal state and
y ∈M . If yϕ=ϕy (i.e. y ∈Mϕ), then yΩϕ =Ωϕy .

Proof. As mentioned in Subsection 7.1.2, by [172, Theorem VIII.2.6] we have that
σ
ϕ
t (y) = y for all t ∈R. But then y is analytic and moreover σϕ−i /2(y) = y . Hence

Ωϕy = Jϕy∗ JϕΩϕ = Jϕσ
ϕ

−i /2(y∗)JϕΩϕ = Jϕ∆
1/2
ϕ y∗∆−1/2

ϕ JϕΩϕ = Sϕy∗SϕΩϕ = yΩϕ.

The claim follows.

Proposition 7.2.10. Let N ⊆ M be a unital inclusion of von Neumann algebras that
admits a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈
N∗ be a faithful normal tracial state that we extend to a state ϕ := τ◦EN on M . Let further
Φ : M →M be a normal, completely positive, N -N -bimodular map for which there exists
δ > 0 such that c := Φ(1) ≤ 1−δ and ϕ ◦Φ ≤ (1−δ)ϕ. Then one can find a,b ∈ N ′∩M

such that a ≥ 0, EN (a) = 1, aEN (b∗b) = EN (b∗b)a = 1− c and bϕb∗ =ϕ−ϕ◦Φ.

Proof. The complete positivity of Φ implies that 0 ≤ ‖Φ‖ = ‖Φ(1)‖ = ‖c‖ ≤ 1−δ, hence
the map Φ must be contractive. It is clear that c =Φ(1) ≥ 0. Further, since EN (1−c) >
EN (δ) = δ, the element EN (1−c) ∈N is boundedly invertible. Additionally, the N -
N -bimodularity of Φ implies that for every n ∈N ,

nc = nΦ(1) =Φ(n) =Φ(1)n = cn,

so c ∈N ′∩M . The latter two observations imply that for

a := (1− c)(EN (1− c))−1

we have a ∈N ′∩M , a ≥ 0 and EN (a) = 1.
Consider the positive normal functional ϕ−ϕ ◦Φ ∈ M∗. By [91, Lemma 2.10]

there exists a unique vector ξ ∈ L2(M ,ϕ)+ such that (ϕ−ϕ ◦Φ)(x) = 〈xξ,ξ〉 for all
x ∈M . Note that {JϕxΩϕ | x ∈M } is dense in L2(M ,ϕ) and define the linear map

b : L2(M ,ϕ) → L2(M ,ϕ), JϕxΩϕ 7→ Jϕxξ.

It is contractive since

‖b(JϕxΩϕ)‖2
2 = ‖Jϕxξ‖2

2 = ‖xξ‖2
2 = (ϕ−ϕ◦Φ)(x∗x) ≤ϕ(x∗x) = ‖xΩϕ‖2

2 = ‖JϕxΩϕ‖2
2

for all x ∈M . Further, for x, y ∈M ,

b Jϕx Jϕ(JϕyΩϕ) = b Jϕx yΩϕ = Jϕx yξ= Jϕx Jϕ Jϕyξ= Jϕx Jϕb(JϕyΩϕ).
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It hence follows that b and Jϕx Jϕ commute and therefore that b ∈ (JϕM Jϕ)′ =M ′′ =
M .

We claim that a and b from above satisfy the required conditions. It remains to
show that b ∈N ′∩M , bϕb∗ =ϕ−ϕ◦Φ and aEN (b∗b) = EN (b∗b)a = 1− c.

• b ∈N ′∩M : By the assumption we have ϕ−ϕ◦Φ≥ δϕ and therefore ϕ−ϕ◦Φ is
a faithful normal functional. For x ∈ M , n ∈ N the N -N -bimodularity of Φ
and the traciality of ϕ on N (implying that n is contained in the centralizer of
ϕ) imply that ϕ◦Φ(xn) =ϕ(Φ(x)n) =ϕ(nΦ(x)) =ϕ◦Φ(nx), hence n(ϕ−ϕ◦Φ) =
(ϕ−ϕ◦φ)n. The unique isomorphism between the standard forms induced
by ϕ and ϕ−ϕ ◦Φ maps ξ to the canonical cyclic vector in L2(M ,ϕ−ϕ ◦Φ).
Hence, from Lemma 7.2.9 applied to ϕ−ϕ ◦Φ we get nξ = ξn for all n ∈ N ,
which, together with the fact that JϕnΩϕ = n∗Ωϕ, implies that for x ∈M

bn(JϕxΩϕ) = b Jϕx JϕnΩϕ = b Jϕxn∗Ωϕ = Jϕxn∗ξ
= Jϕxξn∗ = Jϕx Jϕn Jϕξ= n Jϕxξ= nb(JϕxΩϕ),

so b ∈N ′∩M by the density of {JϕxΩϕ | x ∈M } in L2(M ,ϕ).

• bϕb∗ =ϕ−ϕ◦Φ: For every x ∈M the equality

(bϕb∗)(x) = 〈
xbΩϕ,bΩϕ

〉= 〈xξ,ξ〉 = (ϕ−ϕ◦Φ)(x)

holds, i.e. bϕb∗ =ϕ−ϕ◦Φ.

• aEN (b∗b) = EN (b∗b)a = 1− c: For x ∈ M we find by b ∈ N ′∩M and bϕb∗ =
ϕ−ϕ◦Φ that

ϕ(xEN (b∗b)) =ϕ(EN (x)b∗b) =ϕ(b∗EN (x)b) = (ϕ−ϕ◦Φ)(EN (x))

= ϕ(EN (x))−ϕ(EN (x)Φ(1)) =ϕ(x)−ϕ(xEN (Φ(1))) =ϕ(xEN (1− c))

and hence EN (1−c) = EN (b∗b). It follows by the definition of a that aEN (b∗b)
= aEN (1− c) = 1− c and similarly, as a ∈N ′∩M , we have EN (b∗b)a = 1− c.

Lemma 7.2.11. Let N ⊆M be a unital inclusion of von Neumann algebras which admits
a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be
a faithful normal tracial state that we extend to a state ϕ := τ ◦ EN on M . Let further
x ∈ N ′∩M be an element which is analytic for σϕ. Then EN (y x) = EN (σϕi (x)y) for all
y ∈M .

Proof. For n ∈N we have by the traciality of ϕ on N (implying that n is contained
in the centralizer of ϕ) that

nσϕz (x) =σϕz (n)σϕz (x) =σϕz (nx) =σϕz (xn) =σϕz (x)σϕz (n) =σϕz (x)n.
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for all z ∈ C. Therefore, σϕz (x) ∈ N ′ ∩M and in particular σϕi (x) ∈ N ′ ∩M . One
further calculates that for y ∈M ,

(ϕn)(EN (y x)) = ϕ(EN (ny x)) =ϕ(ny x) =ϕ(σϕi (x)ny)

= ϕ(nσϕi (x)y) = (ϕn)(EN (σϕi (x)y)).

Since the set of all functionals of the form ϕn, n ∈ N is dense in N∗ we find that
EN (y x) = EN (σϕi (x)y), as claimed.

Lemma 7.2.12. Let N ⊆ M be a unital inclusion of von Neumann algebras that admits
a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be
a faithful normal tracial state that we extend to a state ϕ := τ◦EN on M . Let h1,h2 ∈M

and let h3,h4 ∈ N ′∩M be analytic for σϕ. Suppose that Φ : M → M is a normal map
such that Φ(2)

ϕ ∈K (M ,N ,ϕ) and define the map Φ̃ := h1Φ(h2 · h3)h4. Then we also have
that Φ̃(2)

ϕ ∈K (M ,N ,ϕ).

Proof. Note first that by [172, VIII.3.18(i)] (and its proof) Φ̃ has a bounded L2-
implementation, with ‖Φ̃(2)

ϕ ‖ ≤ C‖Φ(2)
ϕ ‖, with the constant C > 0 depending on h1,

h2, h3, h4. It thus suffices to show that the passage Φ → Φ̃ preserves the pro-
perty of having a finite-rank implementation. Let then a,b ∈ M so that aeN b is
in K00(M ,N ,ϕ). So for x ∈M we have by Lemma 7.2.11,

h1(aeN b)(h2xh3)h4Ωϕ = h1ah4eN (σϕi (h3)bh2x)Ωϕ,

and so this map is in K00(M ,N ,ϕ).

We are now ready to formulate the main result of this subsection. In combina-
tion with Lemma 7.2.14 it will later allow us to deduce that the relative Haagerup
property of a triple (M ,N ,EN ) with finite N may be witnessed by unital and
state-preserving maps. Its proof is inspired by [13, Section 2].

Theorem 7.2.13. Let N ⊆ M be a unital inclusion of von Neumann algebras which
admits a faithful normal conditional expectation EN . Assume that N is finite, let τ ∈N∗
be a faithful normal tracial state that we extend to a stateϕ := τ◦EN on M and suppose that
the triple (M ,N ,ϕ) has property (rHAP) witnessed by contractive approximating maps.
Then, if all the elements of M are analytic with respect to the modular automorphism group
of ϕ – for example if there exists a boundedly invertible element h ∈ M+ with σ

ϕ
t (x) =

hi t xh−i t for all t ∈R, x ∈M - property (rHAP) of (M ,N ,ϕ) may be witnessed by unital
and state-preserving approximating maps, i.e. we may assume that (1′′) and (4′) hold.

Proof. Let (Φ j ) j∈J1 be a net of contractive approximating maps witnessing property
(rHAP) of the triple (M ,N ,ϕ) and choose a net (δ j ) j∈J2 with δ j → 0. We now set
J = J1 × J2 with the product partial order and for j = ( j1, j2) ∈ J we set Φ j =Φ j1 and
δ j = δ j2 . Then for all j ∈ J ,

c j := (1−δ j )Φ j (1) ≤ 1−δ j and (1−δ j )(ϕ◦Φ j ) ≤ (1−δ j )ϕ.
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In particular, we may apply Proposition 7.2.10 to (1−δ j )Φ j to find elements a j , b j

∈ N ′∩M with a j ≥ 0, EN (a j ) = 1, a jEN (b∗
j b j ) = EN (b∗

j b j )a j = 1− c j and b jϕb∗
j =

ϕ− (1−δ j )(ϕ◦Φ j ). For j ∈ J define

Ψ j : M →M , Ψ j (x) := (1−δ j )Φ j (x)+a jEN (b∗
j xb j ).

It is clear that Ψ j is normal completely positive and N -N -bimodular. Further,

Ψ j (1) = (1−δ j )Φ j (1)+a jEN (b∗
j b j ) = c j + (1− c j ) = 1

and for any x ∈M

ϕ◦Ψ j (x) = (1−δ j )ϕ(Φ j (x))+ϕ(a jEN (b∗
j xb j ))

= (1−δ j )ϕ(Φ j (x))+ϕ(EN (a j )b∗
j xb j )

= (1−δ j )ϕ(Φ j (x))+ (b jϕb∗
j )(x)

= (1−δ j )ϕ(Φ j (x))+ϕ(x)− (1−δ j )ϕ(Φ j (x))

= ϕ(x),

so the Ψ j are unital and ϕ-preserving.

For the relative compactness note that by the assumption that every element in
M is analytic for σϕ, Lemma 7.2.11 implies that for all x ∈M

Ψ j (x) = (1−δ j )Φ j (x)+a jEN (σϕi (b j )b∗
j x),

hence,
Ψ(2)

j = (1−δ j )Φ(2)
j +a j eN σ

ϕ

i (b j )b∗
j ∈K (M ,N ,ϕ).

It remains to show that for every x ∈ M , Ψ j (x) → x strongly. For this, estimate for
x ≥ 0,

(Ψ j − (1−δ j )Φ j )(x) = a1/2
j EN (b∗

j xb j )a1/2
j

≤ ‖x‖a1/2
j EN (b∗

j b j )a1/2
j

= ‖x‖(1− c j ).

Since c j = (1−δ j )Φ j (1) → 1 and (1−δ j )Φ j (x) → x strongly it then follows that

Ψ j (x) = (Ψ j (x)− (1−δ j )Φ j (x))+ (1−δ j )Φ j (x) → x

strongly for every x ∈M . This completes the proof.

Another important statement that was proved in [42] in case of the usual (non-
relative) Haagerup property is the following lemma. It will later ensure the con-
tractivity of certain approximating maps and allow us to apply Theorem 7.2.13 in
a suitable setting.
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Lemma 7.2.14. Let M be a finite von Neumann algebra equipped with a faithful normal
tracial state τ ∈ M∗ and let N ⊆ M be a unital inclusion. Assume that h ∈ N ′∩M is
a boundedly invertible self-adjoint element and define ϕ ∈ M∗ by ϕ(x) := τ(hxh) for x ∈
M . Then, if (M ,N ,ϕ) has property (rHAP), the approximating maps (Φi )i∈I witnessing
property (rHAP) may be chosen contractively, i.e. we may assume that (1′) holds.

Proof. The proof is given in [42, Lemma 4.3]. One only needs to check that the
condition h ∈ N ′ ∩M+ ensures that the maps Φ′

k , Φl
k and Ψ j defined there are

N -N -bimodule maps that are compact relative to N . Let us comment on this.
In Step 1 of the proof of [42, Lemma 4.3] it is shown that the approximating

maps Φk witnessing the Haagerup property may be chosen such that supk ‖Φk‖ <
∞. In the current setup of (rHAP) this is automatic (see Definition 7.2.2) and so we
may skip this step.

We now turn to Step 2 in the proof of [42, Lemma 4.3]. Let Φk be the appro-
ximating maps witnessing the (rHAP) for (M ,N ,ϕ). In particular Φk is N -N -
bimodular and Φ(2)

k ∈ K (M ,N ,ϕ). By [172, Theorem VIII.2.211] we have σϕt (x) =
hi t xh−i t , t ∈R, x ∈M . Now recall the map defined in [42, Lemma 4.3] given by

Φl
k (x) =

√
1

lπ

∫ ∞

−∞
e−t 2/lσ

ϕ
t (Φk (σϕ−t (x)))d t

=
√

1

lπ

∫ ∞

−∞
e−t 2/l hi tΦk (h−i t xhi t )h−i t d t .

(7.2.1)

Since h ∈N ′∩M this map is N -N -bimodular. Since σϕt (hi s ) = hi s , s, t ∈R it follows
from Lemma 7.2.12 that the L2-implementation of

x 7→σ
ϕ
t (Φk (σϕ−t (x))) = hi tΦk (h−i t xhi t )h−i t , t ∈R, (7.2.2)

exists and is compact, i.e. contained in K (M ,N ,ϕ). By assumption h is boundedly
invertible and so t 7→ hi t depends continuously (in norm) on t . Hence the map
(7.2.2) depends continuously on t and it follows that (7.2.1) is compact.

Next, in the proof of [42, Lemma 4.3] the following operators were defined:

g l
k =Φl

k (1), f n,l
k = Fn(g l

k ),

where Fn(z) = e−n(z−1)2
, z ∈ C,n ∈ N. Since Φl

k is N -N -bimodular it follows that
g l

k ∈ N ′ ∩M . Therefore also f n,l
k ∈ N ′ ∩M . Then the proof of [42, Lemma 4.3]

defines for suitable n( j ),k( j ), l ( j ) ∈N,ε j > 0 depending on some j in a directed set
the map Ψ j : M →M via the formula:

Ψ j ( · ) = 1

(1+ε j )2 f n( j ),l ( j )
k( j ) Φ

l ( j )
k( j )( · ) f n( j ),l ( j )

k( j ) .

Since f n( j ),l ( j )
k( j ) ∈ N ′∩M it follows that Ψ j is both N -N -bimodular and compact,

i.e. Ψ(2)
j ∈ K (M ,N ,ϕ). The last part of the proof of [42, Lemma 4.3] shows that

Ψ(2)
j → 1 strongly and this holds true here as well with the same proof. By Lemma

7.1.1 this shows that for every x ∈M we have Ψ j (x) → x strongly.
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7.3. FOR FINITE N : TRANSLATION INTO THE FINITE SET-
TING

As in [41], the key idea of the proof of the main results in Section 7.4 uses crossed
products by modular actions and the passage to the semifinite setting that (Takai-)
Takesaki duality permits. However, the relative context makes the technical details
much more demanding and makes adapting the earlier methods – including those
developed in [13] – significantly more complicated.

Let again N ⊆ M be a unital inclusion of von Neumann algebras which ad-
mits a faithful normal conditional expectation EN . Assume moreover that N is a
general σ-finite von Neumann algebra, though in many of the statements below
we shall add the assumption that N is finite. This section aims to characterize the
relative Haagerup property (resp. property (rHAP)−) of the triple (M ,N ,EN ) in
terms of the structure of certain corners of crossed product von Neumann alge-
bras associated with the modular automorphism group of some faithful ϕ ∈ M+∗
with ϕ◦EN =ϕ. These statements will play a crucial role in Section 7.4.

7.3.1. CROSSED PRODUCTS

Let us first recall some of the theory of crossed product von Neumann algebras
and their duality for which we refer to [172, Section X.2]. For this, fix an action
Ræα M on M ⊆B(H ), define the corresponding fixed point algebra

Mα := {x ∈M |αt (x) = x for all t ∈R}

and let MoαR⊆B(L2(R,H )) ∼=B(H ⊗L2(R)) be the corresponding crossed product
von Neumann algebra (see also Section 2.3). Recall that it is generated by the
operators π(x), x ∈M and λt , t ∈R where

(π(x)ξ)(t ) =α−t (x)(ξ(t )) and (λtξ)(s) = ξ(s − t )

for s, t ∈ R, x ∈ M , ξ ∈ L2(R,H ). We will also occasionally use λ to denote the left
regular representation of R, which should not cause any confusion. Recall that this
construction does not depend on the choice of the embedding M ⊆B(H ) and that
M ∼= π(M). For notational convenience we will therefore omit the faithful normal
representation π in our notation and identify M with π(M ) and N with π(N ).
Note that π(x) = x⊗1 for all x ∈Mα. Set further λ( f ) := ∫

R f (t )λt d t for f ∈ L1(R) and

L (R) := {λ( f ) | f ∈ L1(R)}′′ = {λs | s ∈R}′′ ⊆B(L2(R,H )).

Remark 7.3.1. For f ∈ L1(R) we denote by

f̂ (s) :=
∫
R

f (t )e i st d t ∈ L∞(R),

its Fourier transform. Let F2 : L2(R) → L2(R), f 7→ (2π)−
1
2 f̂ be the unitary Fourier

transform operator on L2(R). Then F2λ( f )F∗
2 is the operator of multiplication by
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f̂ . We shall occasionally extend our notation in the following way. Let f ∈ L2(R)
be such that its Fourier transform f̂ is in L∞(R). We shall write λ( f ) for F∗

2 f̂ F2

where we view f̂ as a multiplication operator. This is naturally compatible with
the earlier notation for f ∈ L1(R)

Let R α̂æMoαR be the dual action determined by

α̂t (x) = x, and α̂t (λs ) = exp(−i st )λs , (7.3.1)

for x ∈M , s, t ∈R and recall that its fixed point algebra is given by

M = (MoαR)α̂. (7.3.2)

The expression

Tα̂(x) :=
∫
R
α̂s (x)d s, x ∈ (MoαR)+,

defines a faithful normal semi-finite operator-valued weight on MoαRwhich takes
values in the extended positive part of M . Choose f ∈ L1(R)∩L2(R) with ‖ f ‖2 =
1 such that the support of the Fourier transform f̂ equals R. We keep f fixed
throughout the whole subsection. One has Tα̂(λ( f )∗λ( f )) = ‖ f ‖2

2 = 1, hence we may
define the unital normal completely positive map

T f := T f ,α̂ : MoαR→ M , x 7→ Tα̂(λ( f )∗xλ( f )).

By Lemma 7.1.1 T f is strongly continuous on the unit ball. For a given map Φ :
MoαR→MoαR and a positive normal functional ϕ ∈M∗ we further define

Φ̃ f : M →M , Φ̃ f (x) := T f (Φ(x))

and
ϕ̂ f : MoαR→C, ϕ̂ f (x) :=ϕ(T f (x)).

The functional ϕ̂ f is normal and positive. It is moreover a state if ϕ is a state.
Since we assumed the support of f̂ to be equal to R, by Remark 7.3.1 the support
projection of λ( f ) equals 1. It follows that ϕ̂ f is faithful if and only if ϕ is faithful.

Lemma 7.3.2. Assume that N ⊆ Mα. Then T f is N -N -bimodular, meaning that for
x, y ∈N , a ∈MoαR we have T f (xay) = xT f (a)y .

Proof. As N ⊆ Mα we have that N and λ( f ) commute. From the definition of Tα̂
and (7.3.2) we get that for x, y ∈N and a ∈MoαR,

Tα̂(λ( f )∗xayλ( f )) = Tα̂(xλ( f )∗aλ( f )y) = xTα̂(λ( f )∗aλ( f ))y.

This concludes the proof.
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We recall the following formula which was proved in [41, Lemma 5.2] (which
extends [92, Theorem 3.1 (c)]) in case k = g ; the general case then follows from the
polarization identity. For k, g ∈ L2(R) such that k̂, ĝ ∈ L∞(R) and x ∈M we have

Tα̂(λ(k)∗xλ(g )) =
∫
R

k(t )g (t )α−t (x)d t . (7.3.3)

We shall need the following consequence of it. For g ∈ L1(R) define g∗(t ) := g (−t ),
which is the involution for the convolution algebra L1(R).

Lemma 7.3.3. Let h ∈Cc (R) and let x ∈M . Then, for k, g ∈ L1(R)∩L2(R) and a :=λ(h)x,

Tα̂(λ(k)∗aλ(g )) =
∫
R

∫
R

k∗(s)g (t )h(−s − t )α−t (x)d sd t ,

and
Tα̂(λ(k)∗λ(g )a) =

∫
R

∫
R

k∗(s)g (t )h(−s − t )xd sd t .

Proof. We have λ(k)∗a =λ(h∗∗k)∗x. The equality (7.3.3) then implies

Tα̂(λ(k)∗aλ(g )) = Tα̂(λ(h∗∗k)∗xλ(g ))

=
∫
R

(h∗∗k)(t )g (t )α−t (x)d t

=
∫
R

∫
R

k∗(s)g (t )h(−s − t )α−t (x)d sd t .

This concludes the proof of the first formula. The second formula follows from the
first after observing that Tα̂(λ(k)∗λ(g )a) = Tα̂(λ(k)∗λ(g )λ(h))x.

7.3.2. PASSAGE TO CROSSED PRODUCTS

Let us now study the stability of the relative Haagerup property with respect to
certain crossed products. The setting is the same as in Subsection 7.3.1.

Proposition 7.3.4. Let Φ : MoαR→MoαR be a linear map and fix f ∈ L1(R)∩L2(R) as
before. Then the following statements hold:

(1) If Φ is completely positive then so is Φ̃ f .

(2) Assume that N ⊆ Mα. If Φ is an N -N -bimodule map then Φ̃ f is an N -N -
bimodule map.

In the remaining statements let ϕ ∈ M+∗ be a faithful normal positive functional with
ϕ◦EN =ϕ and ϕ◦αt =ϕ for all t ∈R. Then:

(3) If ϕ̂ f ◦Φ≤ ϕ̂ f (resp. ϕ̂ f ◦Φ= ϕ̂ f ) then ϕ◦ Φ̃ f ≤ϕ (resp. ϕ◦ Φ̃ f =ϕ).

(4) If the L2-implementation of Φ with respect to ϕ̂ f exists, then the L2-implementation
of Φ̃ f with respect to ϕ exists as well.
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Now, if N ⊆Mα, EN ◦αt = EN for all t ∈R and f is continuous, then:

(5) If Φ ∈K00(MoαR,N ,ϕ̂ f ), then Φ̃ f ∈K00(M ,N ,ϕ).

(6) If Φ ∈K (MoαR,N ,ϕ̂ f ), then Φ̃ f ∈K (M ,N ,ϕ).

Proof. (1) is straightforward from the constructions and (2) follows from Lemma
7.3.2.

(3): If ϕ̂ f ◦Φ≤ ϕ̂ f we have for x ∈M+, using (7.3.3) and the α-invariance of ϕ,

ϕ◦ Φ̃ f (x) = ϕ(T f (Φ(x))) = ϕ̂ f (Φ(x)) ≤ ϕ̂ f (x)

= ϕ(Tα̂(λ( f )∗xλ( f ))) =
∫
R
| f (t )|2ϕ(α−t (x))d t =ϕ(x).

Moreover, if ϕ̂ f ◦Φ= ϕ̂ f then the inequality above is actually an equality.
(4): Assume that there exists a constant C > 0 such that ϕ̂ f (Φ(x)∗Φ(x)) ≤C ϕ̂ f (x∗x)

for all x ∈M . Then, by the Kadison-Schwarz inequality and (7.3.3),

ϕ(Φ̃ f (x)∗Φ̃ f (x)) =ϕ(T f (Φ(x))∗T f (Φ(x))) ≤ ϕ̂ f (Φ(x)∗Φ(x)) ≤C ϕ̂ f (x∗x) =Cϕ(x∗x)

for all x ∈M , where we use the fact (proved above) that ϕ and ϕ̂ f coincide on M+.
This implies that the L2-implementation of Φ̃ f with respect to ϕ exists.

(5): By Lemma 7.3.2 and the discussion before, FN = EN ◦T f is the unique faith-
ful normal ϕ̂ f -preserving conditional expectation of MoαR onto N . Let a,b ∈
MoαR. By N ⊆Mα we have for x ∈M ,

ã(aFN b) f (x) := T f (aFN (bx)) = T f (a)FN (bx) (7.3.4)

We shall show that FN (bx) = EN (b̃x) for all x ∈ M , where b̃ := Tα̂(λ( f )∗λ( f )b). For
this it suffices to consider the case where b = λ(h)y for some compactly supported
function h ∈Cc (R) and y ∈M , since such elements span a σ-weakly dense subset of
MoαR and the map b 7→ b̃ is σ-weakly continuous. Using Lemma 7.3.3 twice and
the fact that EN ◦αt = EN for all t ∈R one has

FN (bx) = EN ◦T f (bx)

= EN

(∫
R

∫
R

f ∗(s) f (t )h(−s − t )α−t (y x)d sd t

)
=

∫
R

∫
R

f ∗(s) f (t )h(−s − t )EN (y x)d sd t

= EN

(∫
R

∫
R

f ∗(s) f (t )h(−s − t )yd sd t x

)
= EN (b̃x),

as claimed. Combining this equality and (7.3.4) we get that ã(aEN b) f = T f (a)EN b̃.
By considering linear combinations of such expressions one gets that if Φ is con-
tained in K00(MoαR,N ,ϕ̂ f ) then also Φ̃ f ∈K00(M ,N ,ϕ). This proves (5).

(6): The statement follows directly from (5) by approximation and the fact that
‖Φ̃ f ‖ ≤ ‖Φ‖.



7

162 7. THE RELATIVE HAAGERUP PROPERTY

In the following we will direct our attention to certain choices of functions f ∈
L1(R)∩L2(R) with ‖ f ‖2 = 1 whose support of the Fourier transform f̂ equals R. For
this, define for j ∈N the L2-normalized Gaussian

f j :R→R, f j (s) :=
(

j

π

)1/4

exp(− j s2/2).

Further set for a given map Φ : MoαR→ MoαR and a positive normal functional
ϕ ∈M∗

ϕ̂ j := ϕ̂ f j and Φ̃ j := Φ̃ f j .

Theorem 7.3.5. Let N ⊆M be a unital inclusion of von Neumann algebras with a faith-
ful normal conditional expectation EN : M →N . Let further ϕ ∈M+∗ be a faithful normal
positive functional with ϕ◦EN =ϕ and Ræα M be an action such that N ⊆Mα. Finally
assume that EN ◦αt = EN (or, equivalently under the earlier assumptions, that ϕ=ϕ◦αt )
for all t ∈R. Then the following statements hold:

(1) If for all j ∈ N the triple (MoαR,N ,ϕ̂ j ) has property (rHAP) (resp. property
(rHAP)−), then (M ,N ,ϕ) has property (rHAP) (resp. property (rHAP)−).

(2) If for all j ∈ N property (rHAP) of (MoαR,N ,ϕ̂ j ) is witnessed by unital (resp.
ϕ̂ j -preserving) approximating maps (see (1′′) and (4′) in Subsection 7.2.1), then
also property (rHAP) of (M ,N ,ϕ) may be witnessed by unital (resp. ϕ-preserving)
approximating maps.

Proof. (1): For fixed j ∈N let (Φ j ,k )k∈K j be a bounded net of normal completely po-
sitive maps witnessing the relative Haagerup property of (MoαR,N ,ϕ̂ j ). In par-
ticular, Φ j ,k → 1 in the point-strong topology in k. Set Φ̃ j ,k := T f j ◦Φ j ,k . As s 7→αs (x)

is strongly continuous for x ∈ M and f j is L2-normalized with mass concentrated
around 0, Lemma 7.3.3 shows that for x ∈M ,

T f j (x) =
∫
R
| f j (s)|2αs (x)d s → x

as j → ∞ in the strong topology. Lemma 7.1.3 then shows that we may find a
directed set F and a function ( j̃ , k̃) : F → {( j ,k) | j ∈N,k ∈ K j }, F 7→ ( j̃ (F ), k̃(F )) such
that the net (Φ̃ j̃ (F ),k̃(F ))F∈F converges to the identity in the point-strong topology.
By Proposition 7.3.4 these maps then witness the relative Haagerup property for
(M ,N ,ϕ). In the same way, using a variant of Lemma 7.1.3, we can deduce that
if (MoαR,N ,ϕ̂ j ) has property (rHAP)−, then (M ,N ,ϕ) has property (rHAP)− as
well.

(2): Note that if Φ j ,k is unital for all k ∈N, then Φ̃ j ,k is unital as well and if Φ j ,k

is ϕ̂ j -preserving for all k ∈N, then Φ̃ j ,k is ϕ-preserving, c.f. Proposition 7.3.4.

We will now apply this theorem to the modular automorphism group σϕ of ϕ
as well as its dual action.
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Theorem 7.3.6. Let N ⊆M be a unital inclusion of von Neumann algebras with a faith-
ful normal conditional expectation EN : M →N . Assume that N is finite and let τ ∈N∗
be a faithful normal tracial state. Further define the faithful normal (possibly non-tracial)
state ϕ := τ◦EN on M . Then the following statements hold:

(1) If for all j ∈ N the triple (MoσϕR,N ,ϕ̂ j ) has property (rHAP) (resp. property
(rHAP)−), then (M ,N ,ϕ) has property (rHAP) (resp. property (rHAP)−).

(2) If for all j ∈ N property (rHAP) of (MoαR,N ,ϕ̂ j ) is witnessed by unital (resp.
ϕ̂ j -preserving) approximating maps, then also property (rHAP) of (M ,N ,ϕ) may
be witnessed by unital (resp. ϕ-preserving) approximating maps.

Proof. This is Theorem 7.3.5 for α = σϕ; the assumptions are satisfied, as follows
from the fact that N ⊆Mϕ.

We will also prove the converse of Theorem 7.3.6 by using crossed product
duality. We first recall the following well-known lemma. We will use the fact that
every function g ∈ L∞(R) may be viewed as a multiplication operator on L2(R).

Lemma 7.3.7. For g ,h ∈Cb(R)∩L2(R) we have that gλ(h) ∈B(L2(R)) is Hilbert-Schmidt
with

Tr((gλ(h))∗gλ(h)) = ‖g‖2
2‖h‖2

2.

Proof. Let S2(H ) denote the Hilbert-Schmidt operators on a Hilbert space H . We
have linear identifications H ⊗H ∼= S2(H ) where ξ⊗η corresponds to the rank
1 operator v 7→ ξη∗(v). We identify L2(R) with L2(R) linearly and isometrically
through the pairing 〈ξ,η〉 = ∫

R ξ(s)η(s)d s. Therefore we have isometric linear iden-
tifications

S2(L2(R)) ∼= L2(R)⊗L2(R) ∼= L2(R2), (7.3.5)

where the rank 1 operator ξη∗ corresponds to the function (s, t ) 7→ ξ(s)η(t ).
Now, gλ(h) is an integral operator on L2(R) with a square-integrable kernel

K (x, y) := g (x)h(x−y). Then gλ(h) is Hilbert-Schmidt and corresponds to K ∈ L2(R2)
in (7.3.5), so that ‖gλ(h)‖S2 = ‖K ‖2 = ‖g‖2‖h‖2.

Further recall that for j ∈N the Gaussian f j was defined by

f j (s) := j 1/4π−1/4exp(− j s2/2)

s ∈R and f̂ j denotes its Fourier transform. Both these functions are L2-normalized
by definition and the Plancherel identity. Define for i , j ∈N a positive linear func-
tional ψi , j on B(L2(R)) by

ψi , j (x) := Tr(( f̂iλ( f j ))∗x f̂iλ( f j )).

It is a state by Lemma 7.3.7. We will need the following elementary lemma for
which we give a short non-explicit proof following from the results in [41].
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Lemma 7.3.8. For all i , j ∈ N the pair (B(L2(R)),ψi , j ) has the Haagerup property in
the sense that the triple (B(L2(R)),C,ψi , j ) has the relative Haagerup property, see [41,
Definition 3.1]. Moreover, the approximating maps may be chosen to be unital and ψi , j -
preserving.

Proof. According to [41, Proposition 3.4], (B(L2(R),Tr) has the Haagerup property.
By [41, Theorem 1.3] the Haagerup property does not depend on the choice of
the faithful normal semi-finite weight and hence (B(L2(R)),ψi , j ) has the Haagerup
property for all i , j ∈N. In [42, Theorem 5.1] it was proved that the approximating
maps may be taken unital and state-preserving. This finishes the proof.

As before, let N ⊆ M be a unital inclusion of von Neumann algebras which
admits a faithful normal conditional expectation EN and fix a faithful normal state
ϕ on M with ϕ = ϕ ◦ EN . Let σϕ be the corresponding modular automorphism
group, MoσϕR the crossed product von Neumann algebra and let

θ := σ̂ϕ :RæMoσϕR

be the dual action as defined in (7.3.1). Define for j ∈ N the state ϕ̂ j := ϕ ◦T f j ,θ

on MoσϕR as before and recall that M (hence also N ) is invariant under θ. We
may in turn consider the double crossed product which admits an isomorphism of
von Neumann algebras (i.e. a bijective ∗-homomorphism, which is automatically
normal by [164, Theorem 1.13.2]),

(MoσϕR)oθR
∼=M ⊗B(L2(R)). (7.3.6)

Let us describe what this isomorphism looks like. For g ∈ L∞(R) write µ(g ) :=
1M ⊗ g ∈ M ⊗B(L2(R)) for the multiplication operator acting in the second tensor
leg. The double crossed product above is generated by MoσϕR and the left regular
representation of the second copy of R, denoted here by λθt , t ∈ R. Under the iso-
morphism, MoσϕR is identified as a subalgebra of M⊗B(L2(R)) via inclusion. Fur-
ther, λθt is identified for every t ∈R with µ(et ) = 1M ⊗et where et (s) := exp(−i st ) for
s ∈R. Under this correspondence, λθ( f j ) =µ( f̂ j ). We find that for x ∈M ⊗B(L2(R)),

(ϕ◦T f j ,θ ◦T fi ,θ̂)(x) = ϕ
(
Tθ

(
λ( f j )∗Tθ̂

(
µ( f̂i )∗xµ( f̂i )

)
λ( f j )

))
= ϕ

(
Tθ

(
Tθ̂

(
λ( f j )∗µ( f̂i )∗xµ( f̂i )λ( f j )

)))
.

By [172, Theorem X.2.3] and the fact that ϕ◦σϕt = ϕ we have that (formally, being
imprecise about domains) the normal semi-finite faithful weightϕ◦Tθ◦Tθ̂ coincides
with ϕ⊗Tr. Hence, for i , j ∈N we have equality of states

ϕ◦T f j ,θ ◦T fi ,θ̂ =ϕ⊗ψi , j .

The following theorem now provides a passage to study the relative Haagerup
property on the continuous core of a von Neumann algebra, which is semi-finite.

Theorem 7.3.9. Let N ⊆M be a unital inclusion of von Neumann algebras which admits
a faithful normal conditional expectation EN and assume that N is finite with a faithful
normal tracial state τ ∈N∗. Set ϕ= τ◦EN ∈M∗. Then the following two statements hold:
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(1) The triple (M ,N ,ϕ) has property (rHAP) (resp. property (rHAP)−) if and only if
(MoσϕR,N ,ϕ̂ j ) has property (rHAP) (resp. property (rHAP)−) for all j ∈N.

(2) If property (rHAP) of (M ,N ,ϕ) is witnessed by unital (resp. ϕ-preserving) maps,
then for all j ∈N property (rHAP) of (MoαR,N ,ϕ̂ j ) is witnessed by unital (resp.
ϕ̂ j -preserving) maps, and vice versa.

Proof. The if statements were proven in Theorem 7.3.6. For the converse of (1)
assume that (M ,N ,ϕ) has the relative Haagerup property. (B(L2(R)),C,ψi , j ) has
the relative Haagerup property for all i , j ∈ N, see Lemma 7.3.8. Therefore by a
suitable modification of [41, Lemma 3.5], we see that (M ⊗B(L2(R)),N ⊗C,ϕ⊗ψi , j )
has the relative Haagerup property for all i , j ∈ N. It follows from Theorem 7.3.5
and the discussion above that the triple (MoσϕR,N ,ϕ̂ j ) has the relative Haagerup
property.1

The statements in (2) and the statement about property (rHAP)− follow in the
same way.

7.3.3. PASSAGE TO CORNERS OF CROSSED PRODUCTS

In the last subsection we characterized the relative Haagerup property of the triple
(M ,N ,ϕ) for finite N with a faithful normal tracial state τ ∈ N∗ and ϕ := τ◦EN ∈
M∗ in terms of the crossed product triples (M oαR,N ,ϕ̂ j ), j ∈N. In the following
we will pass over to suitable corners of these crossed products which allows us
to translate our investigations into the setting of finite von Neumann algebras. In
this setting the following lemma will be useful.

Lemma 7.3.10. Let N ⊆ M be a unital inclusion of finite von Neumann algebras, let
τ ∈M∗ be a faithful normal tracial state and let EN : M →N be the unique τ-preserving
faithful normal conditional expectation onto N . Further, let h ∈ N ′∩M be self-adjoint
and boundedly invertible. For a linear completely positive map Φ : M →M set

Φh(x) = h−1Φ(hxh)h−1.

Then, the L2-implementation Φ(2) of Φ with respect to τ exists if and only if the L2-
implementation (Φh)(2) of Φh with respect to hτh exists. Further, Φ(2) ∈ K (M ,N ,τ)
if and only if (Φh)(2) ∈K (M ,N ,hτh).

Proof. Note first that the assumptions on h imply that EN (h2) is a positive boun-
dedly invertible element of the center Z (N ) of N . Indeed, we have for all n ∈N

the equality nEN (h2) = EN (nh2) = EN (h2n) = EN (h2)n, and if h is boundedly inver-
tible, then h2 ≥ c1M for some c > 0, hence EN (h2) ≥ c1M .

The map Eh
N

: x 7→ EN (h2)−1/2EN (hxh)EN (h2)−1/2 is the unique normal hτh-
preserving conditional expectation onto N . Indeed, we can verify it is an idem-
potent, normal, unital, completely positive map with image equal to N and for

1 Note that in the picture above π(x) = x ⊗1 and hence π(N ) = N ⊗C since ϕ is tracial on N . This is
used implicitly in the identifications of N in the double crossed product isomorphism (7.3.6).
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any x ∈M we have

(hτh)(Eh
N (x)) = τ(hEN (h2)−1/2EN (hxh)EN (h2)−1/2h)

= τ(EN (h2EN (h2)−1EN (hxh)))

= τ(EN (h2)EN (h2)−1EN (hxh))

= τ(EN (hxh))

= τ(hxh)

= (hτh)(x).

Now assume that the L2-implementation Φ(2) of Φ with respect to τ exists, i.e.
that there exists a constant C > 0 such that τ(Φ(x)∗Φ(x)) ≤ Cτ(x∗x) for all x ∈ M .
Then

(hτh)(Φh(x)∗Φh(x)) = τ(Φ(hx∗h)h−2Φ(hxh)) ≤ ∥∥h−2∥∥τ(Φ(hx∗h)Φ(hxh))

≤ C
∥∥h−2∥∥τ(hx∗hhxh) ≤C

∥∥h−2∥∥∥∥h2∥∥τ(hx∗xh) =C
∥∥h−2∥∥∥∥h2∥∥ (hτh)(x∗x)

for all x ∈M , so the L2-implementation (Φh)(2) exists as well.
The converse implication follows, as Φ= (Φh)h−1

.
For elements a,b, x ∈M the equality

(aEN b)h(x) = h−1aEN (bhxh)h−1

= h−1aEN (h2)1/2Eh
N (h−1bhx)EN (h2)1/2h−1

= (h−1aEN (h2)h−1)Eh
N (h−1bhx)

= (h−1aEN (h2)h−1Eh
N h−1bh)(x)

implies by taking linear combinations and approximation that ifΦ(2) ∈K (M ,N ,τ),
then (Φh)(2) ∈ K (M ,N ,hτh). The converse statement follows as before, which
finishes the proof.

Now, for a triple (M ,N ,ϕ) let h be the unique (possibly unbounded) positive
self-adjoint operator affiliated with M oσϕ R such that hi t = λt for all t ∈ R. If we
further assume that N ⊆ Mσϕ (which implies that N is finite with a tracial state
ϕ|N ) we have for x ∈N that λt xλ∗

t =σϕt (x) = x and hence λt ∈N ′∩(Moσϕ R). This
implies that h is affiliated with N ′∩ (Moσϕ R) and so its finite spectral projections
are elements in N ′∩ (M oσϕ R). Set for k ∈N

pk =χ[k−1,k](h) and hk = hpk .

Here χ[k−1,k] denotes the indicator function of [k−1,k] ⊆ R and pk is the correspon-
ding spectral projection. Then, for every k ∈ N, hk is boundedly invertible in the
corner algebra pk (M oσϕ R)pk and we write h−1

k for its inverse which we view as
an operator in M oσϕ R.

Denote by ϕ̂ := ϕ ◦Tθ the dual weight of ϕ and let τo be the unique faithful
normal semi-finite weight on M oσϕ R whose Connes cocycle derivative satisfies
(Dϕ̂/Dτo)t = hi t for all t ∈ R (we refer to [94, Lemma 5.2]; the proofs below stay
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within the realm of bounded functionals). It is a trace on MoσϕRwhich is formally
given by

τo(x) =ϕ◦Tθ(h− 1
2 xh− 1

2 ), x ∈ (M oσϕ R)+.

By construction we have

ϕ̂ j (pk xpk ) = τo(h
1
2
k λ( f j )∗xλ( f j )h

1
2
k ), x ∈M oσϕ R. (7.3.7)

for all j ∈N, where ϕ̂ j and f j are defined as in Subsection 7.3.2. Further note that
the operators λ( f j ) and hk commute.

Remark 7.3.11. Following Remark 7.3.1, for k ∈ N the operators pk and hk can be
described in terms of multiplication operators conjugated with the Fourier unitary
F2. Indeed, F2λt F

∗
2 is the multiplication operator on L2(R,H ) with the function

(s 7→ e i t s ) and therefore (under proper identification of the domains) F2hF∗
2 coin-

cides with the multiplication operator with (s 7→ e s ). It follows that for all k ∈ N,
F2pkF∗

2 is the multiplication with (Ik : s 7→ χ[− log(k),log(k)](s)) and F2hkF∗
2 is the

multiplication with (Jk : s 7→χ[− log(k),log(k)](s)e s ). Therefore, by Remark 7.3.1,

pk =λ(Îk ), hk =λ( Ĵk ), and h−1
k =λ( Ĵ−1

k ),

where J−1
k is the function (s 7→χ[− log(k),log(k)]e

−s ). We also have that

λ( f j )hk =λ( f j )λ( Ĵk ) =λ( f j ∗ Ĵk ) =F∗
2 f̂ j JkF2, (7.3.8)

where we view the product f̂ j Jk as a multiplication operator. Since the Fourier
transform of f j is Gaussian we see that F∗

2 f̂ j JkF2 is positive and boundedly in-
vertible in the corner algebra pk (MoσϕR)pk . Further, by (7.3.3) and the Plancherel
identity,

Tθ(h−1
k ) = Tθ(λ( �J−1/2

k )λ( �J−1/2
k )) = ‖�J−1/2

k ‖2
2 = ‖J−1/2

k ‖2
2 = k −k−1.

It follows that

τo(pk ) =ϕ(Tθ(h−1/2pk h−1/2)) =ϕ(Tθ(h−1
k )) = k −k−1.

In particular, τo(pk ) <∞. Since τo is tracial we also have for x ∈M oσϕ R,

τo(pk xpk ) =ϕ◦Tθ(h−1
k pk xpk ). (7.3.9)

In the next statements it is notationally more convenient to work with property
(rHAP) (resp. property (rHAP)−) for general faithful normal positive functionals
instead of just states, see Remark 7.2.3. Note that pk ϕ̂ j pk , j ∈N is not a state, but a
positive scalar multiple of a state.

We shall use the fact that the unique faithful normal ϕ̂ j -preserving conditional

expectation E
ϕ̂ j

N
of M oσϕ R onto N is given by E

ϕ̂ j

N
= EN ◦T f j . This fact was used

in the proof of Proposition 7.3.4 already.
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Lemma 7.3.12. For every k ∈ N, j ∈ N there is a faithful normal pk ϕ̂ j pk -preserving
conditional expectation of pk (M oσϕ R)pk onto pkN pk given by

x 7→µ−1
k pkEN (T f j (x))pk =µ−1

k pkE
ϕ̂ j

N
(x)pk (7.3.10)

where µk := T f j (pk ) = ‖ f̂ jχ[− log(k),log(k)]‖2
2. In particular, T f j (pk ) is a scalar multiple of the

identity.

Proof. First note that by Remark 7.3.1 and Remark 7.3.11 the operator pkλ( f j ) co-
incides with λ(g j ,k ) where g j ,k is the inverse Fourier transform of the function
f̂ jχ[− log(k),log(k)]. The equality (7.3.3) then implies that

T f j (pk ) = Tθ(λ( f j )∗pkλ( f j )) = Tθ(λ(g j ,k )∗λ(g j ,k )) = ‖g j ,k‖2
2 =µk (7.3.11)

is a multiple of the identity.
For x ∈ pk (M oσϕ R)pk expand

(pk ϕ̂ j pk )(pkE
ϕ̂ j

N
(x)pk ) = ϕ̂ j (pkE

ϕ̂ j

N
(x)pk )

= (ϕ◦T f j )(pkEN (T f j (x))pk )

= (ϕ◦Tθ)(λ( f j )∗pkEN (T f j (x))pkλ( f j )).

Since N ⊆Mσϕ we see that

(pk ϕ̂ j pk )(pkE
ϕ̂ j

N
(x)pk ) = (ϕ◦Tθ)(EN (T f j (x))λ( f j )∗pkλ( f j ))

= ϕ(EN (T f j (x))T f j (pk )).

With (7.3.11) we can continue as follows:

(pk ϕ̂ j pk )(pkE
ϕ̂ j

N
(x)pk ) =µkϕ(EN (T f j (x))) =µkϕ(T f j (x)) =µk ϕ̂ j (x) =µk ϕ̂ j (pk xpk ).

This proves that (7.3.10) is pk ϕ̂ j pk -preserving, as claimed. For x ∈ N ⊆ Mσϕ we
have that x and pk commute. Therefore, using the N -module property of the maps
involved,

pkEN (T f j (pk xpk ))pk = pk xpkEN (T f j (pk )) =µk pk xpk .

This shows that the map x 7→ µ−1
k pkEN (T f j (x))pk is a unital (the unit being pk )

normal completely positive projection onto pkN pk (see [33, Theorem 1.5.10]).

Lemma 7.3.13. Let N ⊆ M be a unital inclusion of von Neumann algebras which admits
a faithful normal conditional expectation EN . Assume that N is finite and let τ ∈ N∗ be
a faithful normal tracial state that we extend to a state ϕ := τ◦EN on M . Then we have
EN (T f j (xa)) = EN (T f j (ax)) and EN (Tθ(xa)) = EN (Tθ(ax)) for every j ∈N, a ∈L (R) and
x ∈M oσϕ R.

Proof. We first prove that EN (T f j (xa)) = EN (T f j (ax)). Suppose a = λ(k) and x =
yλ(g ) for y ∈ M , k ∈ L1(R) and g ∈ Cc (R). Let us first compute T f j (xa) and T f j (ax).
By the formula (7.3.3) we have

T f j (xa) =
∫
R

f ∗
j (−t )(g ∗k ∗ f j )(t )σϕ−t (y)d t .
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By a similar computation we get

T f j (ax) =
∫
R

( f ∗
j ∗k)(−t )(g ∗ f j )(t )σϕ−t (y)d t .

We now apply EN to these expressions and use the fact that N is contained in the
centralizer of ϕ, so EN (σϕ−t (y)) = EN (y). It therefore suffices to prove the equality
of the integrals

∫
R f ∗

j (−t )(g ∗k ∗ f j )(t )d t and
∫
R( f ∗

j ∗k)(−t )(g ∗ f j )(t )d t . Using the
commutativity of the convolution on R, we can rewrite the first one as∫

R

∫
R

f ∗
j (−t )(g ∗ f j )(t − s)k(s)d sd t

and the second one is equal to∫
R

∫
R

f ∗
j (−t − s)k(s)(g ∗ f j (t ))d sd t .

In the second integral we can introduce a new variable t ′ := t + s and it transforms
into ∫

R

∫
R

f ∗
j (−t ′)(g ∗ f j )(t ′− s)k(s)d sd t ′,

which is equal to the first one. For arbitrary a ∈L (R) and x ∈M oσϕ R we can find
bounded nets (ai )i∈I and (xi )i∈I formed by linear combinations of elements of the
form discussed above that converge strongly to a and x, respectively, as a conse-
quence of Kaplansky’s density theorem. As multiplication is strongly continuous
on bounded subsets, we have strong limits limi∈I ai xi = ax and limi∈I xi ai . As both
EN and T f j are strongly continuous on bounded subsets, we may conclude.

The equality EN (Tθ(xa)) = EN (Tθ(ax)) follows by a similar computation.

The ideas appearing in the proof of the next statements are of a similar type.

Proposition 7.3.14. Let N ⊆ M be a unital inclusion of von Neumann algebras which
admits a faithful normal conditional expectation EN . Assume that N is finite and let
τ ∈N∗ be a faithful normal tracial state that we extend to a state ϕ := τ◦EN on M . Then,
for every j ∈N, the following statements hold:

(1) The triple (M oσϕ R,N ,ϕ̂ j ) satisfies property (rHAP) if and only if (pk (M oσϕ

R)pk , pkN pk , pk ϕ̂ j pk ) satisfies property (rHAP) for every k ∈ N. Moreover, the
(rHAP) may be witnessed by contractive maps, i.e. we may assume that (1′) holds.

(2) If for every k ∈N the property (rHAP) of the triple (pk (MoσϕR)pk , pkN pk , pk ϕ̂ j pk )
is witnessed by unital pk ϕ̂ j pk -preserving approximating maps, then the relative
Haagerup property of (Moσϕ R,N ,ϕ̂ j ) is witnessed by unital ϕ̂ j -preserving maps.

(3) If the triple (MoσϕR,N ,ϕ̂ j ) satisfies property (rHAP)− then the triple (pk (Moσϕ

R)pk , pkN pk , pk ϕ̂ j pk ) satisfies property (rHAP)− for every k ∈N.
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Proof. First part of (1): For the “⇒” direction assume that (Moσϕ R,N ,ϕ̂ j ) satisfies
property (rHAP), that it is witnessed by a net of maps (Φi )i∈I and fix k ∈N. We will
show that (pkΦi ( · )pk )i∈I is a net of approximating maps witnessing the relative
Haagerup property of (pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ).

It is clear that for every i ∈ I the map pkΦi ( · )pk is completely positive, that the
net (pkΦi ( ·)pk )i∈I admits a uniform bound on its norms and that pkΦi ( ·)pk → id in
the point-strong topology in i as maps on pk (M oσϕ R)pk .

By our assumptions, N ⊆ Mσϕ and hence pk and N commute. Hence for
a,b ∈N , x ∈ pk (M oσϕ R)pk we have

pkΦi (pk apk xpk bpk )pk = pkΦi (apk xpk b)pk

= pk aΦi (pk xpk )bpk

= pk apkΦi (pk xpk )pk bpk ,

which shows that pkΦi ( · )pk is a pkN pk -pkN pk -bimodule map for every i ∈ I .
We have by [172, Theorem VIII.3.19.(vi)], [172, Theorem X.1.17.(ii)] and the fact

that pk and λ( f j ) commute that

σ
ϕ̂ j
t (pk ) =λ( f j )i tσ

ϕ̂
t (pk )λ( f j )−i t =λ( f j )i t pkλ( f j )−i t = pk .

Therefore by [41, Lemma 2.3], for x ∈ pk (M oσϕ R)pk positive,

(pk ϕ̂ j pk )(pkΦi (x)pk ) = ϕ̂ j (pkΦi (x)pk ) ≤ ϕ̂ j (Φi (x)) ≤ ϕ̂ j (x) = (pk ϕ̂ j pk )(x),

i.e. (pk ϕ̂ j pk )◦ (pkΦi ( · )pk ) ≤ pk ϕ̂ j pk .

Now, for every map Φ on M oσϕ R of the form Φ= aE
ϕ̂ j

N
(·)b with a,b ∈M oσϕ R

and x ∈ pk (M oσϕ R)pk we have, using Lemma 7.3.13 (recalling that E
ϕ̂ j

N
= EN ◦T f j )

and the fact that pk commutes with N , that

pkΦ(x)pk = pk aE
ϕ̂ j

N
(bpk xpk )pk = pk aE

ϕ̂ j

N
(pk bpk x)pk = (pk apk )E

ϕ̂ j

N
(pk bpk x).

Lemma 7.3.12 then implies that (pkΦ(·)pk )(2) ∈K00(pk (MoσϕR)pk , pkN pk , pk ϕ̂ j pk ).
By taking linear combinations and approximating we see that if Φ is a map on
M oσϕ R with Φ(2) ∈K (M oσϕ R,N ,ϕ̂ j ) then

(pkΦ( · )pk )(2) ∈K (pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ).

Therefore for the approximating maps Φi , i ∈ I we conclude that

(pkΦi ( · )pk )(2) ∈K (pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ).

This shows that (pkΦi ( ·)pk )i∈I indeed witnesses the relative Haagerup property of
the triple (pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ).

(3): Note that if (M oσϕ R,N ,ϕ̂ j ) has property (rHAP)− witnessed by the net
(Φi )i∈I , then property (rHAP)− of (pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ) follows in a
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very similar way as above. The only condition that remains to be checked is
that the L2-implementation (pkΦi ( · )pk )(2) exists. For this, assume that there ex-
ists C > 0 with ϕ̂ j (Φi (x)∗Φi (x)) ≤ C ϕ̂ j (x∗x) for all x ∈ M oσϕ R. Then, using again
[41, Lemma2.3] for the second inequality,

(pk ϕ̂ j pk )((pkΦi (x)pk )∗(pkΦi (x)pk )) = ϕ̂ j (pkΦi (x∗)pkΦi (x)pk )

≤ ϕ̂ j (pkΦi (x)∗Φi (x)pk )

≤ ϕ̂ j (Φi (x)∗Φi (x))

≤ C ϕ̂ j (x∗x)

= C (pk ϕ̂ j pk )(x∗x)

for all x ∈ pk (M oσϕ R)pk . The claim follows.

Second part of (1): For the “⇐” direction assume that for every k ∈ N the triple
(pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ) satisfies property (rHAP) witnessed by approxi-
mating maps (Φk,i )i∈Ik . We wish to apply Lemma 7.2.14 for which we check the
conditions. By N ⊆ Mσϕ we have that N and λt commute for every t ∈ R and
hence so do N and hk . In particular, hk ∈ (pkN pk )′∩pk (Moσϕ R)pk . By (7.3.8) and
the remarks after it, it follows that λ( f j )hk is positive and boundedly invertible.
Now, from (7.3.7) we see that the conditions of Lemma 7.2.14 are fulfilled and this
lemma shows that the maps of the net (Φk,i )i∈Ik can be chosen contractively, i.e. we
may assume that (1′) holds.

We shall prove that (Φk,i (pk · pk ))k∈N,i∈Ik
induces a net witnessing property

(rHAP) of (M oσϕ R,N ,ϕ̂ j ). This in particular shows that we may assume (1′).
By the contractivity of the Φk,i it is clear that the maps Φk,i (pk · pk ) are com-

pletely positive with a uniform bound on their norms.
Since N and pk commute we see that for a,b ∈N and x ∈M oσϕ R

Φk,i (pk axbpk ) = Φk,i (pk apk xpk bpk )

= pk apkΦk,i (pk xpk )pk bpk

= apkΦk,i (pk xpk )pk b

= aΦk,i (pk xpk )b.

Therefore Φk,i (pk · pk ) is an N -N -bimodule map for every k ∈N, i ∈ Ik .
We have, using again [41, Lemma 2.3], that for x ∈ (M oσϕ R)+

ϕ̂ j (Φk,i (pk xpk )) = ϕ̂ j (pkΦk,i (pk xpk )pk )

= (pk ϕ̂ j pk )(Φk,i (pk xpk ))

≤ (pk ϕ̂ j pk )(pk xpk )

= ϕ̂ j (pk xpk ) ≤ ϕ̂ j (x).

i.e. ϕ̂ j ◦Φk,i (pk · pk ) ≤ ϕ̂ j .
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We claim that (Φk,i (pk · pk ))(2) ∈ K (M oσϕ R,N ,ϕ̂ j ) for all k ∈ N, i ∈ Ik . In-
deed, take an arbitrary map Φ of the form Φ(x) = pk apkEN (T f j (pk bpk x)) for x ∈
M oσϕ R where a,b ∈ M oσϕ R. The L2-implementations of such operators span
K00(pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ) by Lemma 7.3.12. Lemma 7.3.13 and the fact
that pk and N commute show that for x ∈M oσϕ R,

Φ(pk xpk ) = pk apkEN (T f j (pk bpk xpk )) = pk apkEN (T f j (pk bpk x)).

Then, since EN ◦T f j is the faithful normal ϕ̂ j -preserving conditional expectation
of M oσϕ R onto N , this implies that (Φ(pk · pk ))(2) ∈ K00(M oσϕ R,N ,ϕ̂ j ). By ta-
king linear combinations and approximation we see that if Φ(2) ∈ K (pk (M oσϕ

R)pk , pkN pk , pk ϕ̂ j pk ), then (Φ(pk ·pk ))(2) ∈K (M oσϕ R,N ,ϕ̂ j ). We conclude that

(Φk,i (pk · pk ))(2) ∈K (M oσϕ R,N ,ϕ̂ j ).

Now, for x ∈M oσϕ R we see that

lim
k→∞

lim
i∈Ik

Φk,i (pk xpk ) = x,

in the strong topology. Then a variant of Lemma 7.1.3 shows that there is a di-
rected set F and a function (k̃, ĩ ) : F → {(k, i ) | k ∈ N, i ∈ Ik }, F 7→ (k̃(F ), ĩ (F )) such
(Φk̃(F ),ĩ (F ))F∈F witnesses the relative Haagerup property of (M oσϕ R,N ,ϕ̂ j ).

(2): It only remains to show that if for every k ∈ N the property (rHAP) of the
triple (pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ) is witnessed by unital pk ϕ̂ j pk -preserving
approximating maps, then the relative Haagerup property of (M oσϕ R,N ,ϕ̂ j ) is
witnessed by unital ϕ̂ j -preserving maps. For this, assume that the maps (Φk,i )i∈I

from before are unital and pk ϕ̂ j pk -preserving and choose a sequence (εk )k∈N ⊆ (0,1)

with εk → 0. Recall that pk ∈N ′∩(MoσϕR) and note that E
ϕ̂ j

N
(1−(1−εk )pk ) ≥ εk . We

then have E
ϕ̂ j

N
(1− (1− εk )pk ) ∈ N ∩N ′, the inverse (E

ϕ̂ j

N
(1− (1− εk )pk ))−1 ∈ N ∩N ′

exists and ak := (1− (1−εk )pk )(E
ϕ̂ j

N
(1− (1−εk )pk ))−1 ∈N ′∩ (Moσϕ R) is positive. Set

bk := 1− (1−εk )pk ≥ 0. Define the maps

Φ̃k,i ( · ) := (1−εk )Φk,i (pk · pk )+akE
ϕ̂ j

N
(b1/2

k · b1/2
k ).

Obviously Φ̃k,i is normal, completely positive and N -N -bimodular. We may fin-
ish the proof as in Theorem 7.2.13 now; since the statement of that theorem is not
directly applicable here we will give the complete proof for the convenience of the
reader.

We have

Φ̃k,i (1) = (1−εk )Φk,i (pk )+akE
ϕ̂ j

N
(bk ) = (1−εk )pk + (1− (1−εk )pk ) = 1.

Now, since Φk,i is pk ϕ̂ j pk -preserving we have that ϕ̂ j ◦Φk,i (pk xpk ) = ϕ̂ j (pk xpk ) for
all x ∈M oσϕ R, and hence with Lemma 7.3.13 we deduce that

ϕ̂ j ◦ Φ̃k,i (x) = (1−εk )ϕ̂ j (Φk,i (pk xpk ))+ ϕ̂ j (akE
ϕ̂ j

N
(b1/2

k xb1/2
k ))
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= (1−εk )ϕ̂ j (pk xpk )+ ϕ̂ j (E
ϕ̂ j

N
(ak )b1/2

k xb1/2
k )

= (1−εk )ϕ̂ j ◦Eϕ̂ j

N
(pk xpk )+ ϕ̂ j ◦Eϕ̂ j

N
(b1/2

k xb1/2
k )

= (1−εk )ϕ̂ j ◦Eϕ̂ j

N
(pk x)+ ϕ̂ j ◦Eϕ̂ j

N
(bk x)

= (1−εk )ϕ̂ j (pk x)+ ϕ̂ j (bk x)

= ϕ̂ j (x).

By the fact that (Φk,i (pk ·pk ))(2) ∈K (MoσϕR,N ,ϕ̂ j ) and by Lemma 7.3.13, we have

Φ̃(2)
k,i = (1−εk )(Φk,i (pk · pk ))(2) +ak e

ϕ̂ j

N
bk ∈K (M oσϕ R,N ,ϕ̂ j ).

Further, for every x ∈ (M oσϕ R)+,

Φ̃k,i (x)− (1−εk )Φk,i (pk xpk ) = akE
ϕ̂ j

N
(b1/2

k xb1/2
k )

≤ ‖x‖akE
ϕ̂ j

N
(bk )

= ‖x‖ (1− (1−εk )pk ),

from which we deduce that limF∈F Φ̃k̃(F ),ĩ (F ) = idMoσϕR
. This implies that the net

(Φ̃k̃(F ),ĩ (F ))F∈F of unital ϕ̂ j -preserving maps witnesses the relative Haagerup pro-
perty of (M oσϕ R,N ,ϕ̂ j ).

We are now ready to formulate the key statement of this subsection. Note that
for every k ∈ N the von Neumann algebra pk (M oσϕ R)pk is finite with a faithful
normal tracial state pkτopk .

Proposition 7.3.15. Let N ⊆ M be a unital inclusion of von Neumann algebras which
admits a faithful normal conditional expectation EN . Assume that N is finite and let
τ ∈N∗ be a faithful normal tracial state that we extend to a state ϕ := τ◦EN on M . Then
the following are equivalent:

(1) The triple (M ,N ,ϕ) has property (rHAP);

(2) (M oσϕ R,N ,ϕ̂ j ) has property (rHAP) for every j ∈N;

(3) (pk (M oσϕ R)pk , pkN pk , pkτopk ) has property (rHAP) for every k ∈N.

Further, the following statement holds:

(4) If the triple (M ,N ,ϕ) has property (rHAP)−, then (pk (MoσϕR)pk , pkN pk , pkτopk )
has property (rHAP)− for every k ∈N.

Proof. The equivalence “(1) ⇔ (2)” was proved in Theorem 7.3.9.
“(2) ⇒ (3)”: Assume that for j ∈ N the triple (M oσϕ R,N ,ϕ̂ j ) has property

(rHAP) and fix k ∈N. Then by Proposition 7.3.14, the triple (pk (MoσϕR)pk , pkN pk ,
pk ϕ̂ j pk ) also has the (rHAP). Let (Φi )i∈I be a net of suitable approximating maps
and define the self-adjoint boundedly invertible operator A j ,k :=λ( f j )h1/2

k ∈ (pkN pk )′∩
(pk (M oσϕ R)pk ). By (7.3.7) for every x ∈ pk (M oσϕ R)pk the equality

(pk ϕ̂ j pk )(x) = τo(A∗
j ,k x A j ,k ) = (A j ,k pkτopk A j ,k )(x)
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holds and hence Lemma 7.3.10 implies that the L2-implementation of the map
Φ′

i ( ·) := A j ,kΦi (A−1
j ,k · A−1

j ,k )A j ,k exists and is contained in K (pk (Moσϕ R)pk , pkN pk ,

pkτopk ). Similarly to the proof of Proposition 7.3.14 one checks that the net (Φ′
i )i∈I

witnesses property (rHAP) of (pk (M oσϕ R)pk , pkN pk , pkτopk ). We omit the de-
tails.

“(2) ⇐ (3)” Now assume that the triple (pk (M oσϕ R)pk , pkN pk , pkτopk ) has
property (rHAP) for every k ∈ N. It suffices to show that the triple (pk (M oσϕ

R)pk , pkN pk , pk ϕ̂ j pk ) has property (rHAP) as it implies the desired statement by
Proposition 7.3.14. So let (Φi )i∈I be a net that witnesses property (rHAP) of (pk (Moσϕ

R)pk , pkN pk , pkτopk ) and set Φ′
i := A−1

j ,kΦi (A j ,k · A j ,k )A−1
j ,k . Lemma 7.3.10 and (7.3.7)

imply that for every i ∈ I the L2-implementation (Φ′
i )(2) of Φ′

i with respect to the po-
sitive functional pk ϕ̂ j pk is contained in K (pk (MoσϕR)pk , pkN pk , pk ϕ̂ j pk ). Again,
similarly to the proof of Proposition 7.3.14 one checks that the net (Φ′

i )i∈I witnesses
property (rHAP).

It remains to show (4). The statement easily follows from Proposition 7.3.9,
Proposition 7.3.14 and the arguments used in the proof of the implication “(2) ⇒
(3)”.

7.4. MAIN RESULTS

After the main work has been done in Section 7.3 we can now put the pieces to-
gether. This allows us to show that in the case of a finite von Neumann subalgebra
the notion of relative Haagerup property is independent of the choice of the cor-
responding faithful normal conditional expectation, that the approximating maps
may be chosen to be unital and state-preserving and that property (rHAP) and pro-
perty (rHAP)− are equivalent. The general notation will be the same as in Section
7.3.

7.4.1. INDEPENDENCE OF THE CONDITIONAL EXPECTATION

Let N ⊆ M be a unital inclusion of von Neumann algebras for which N is fi-
nite with a faithful normal tracial state τ ∈ N∗. Let further EN ,FN : M → N be
two faithful normal conditional expectations and extend τ to states ϕ := τ◦EN and
ψ := τ◦FN on M . In this subsection we will prove that the triple (M ,N ,EN ) has
property (rHAP) if and only if the triple (M ,N ,FN ) does, i.e. the relative Haage-
rup property is an intrinsic invariant of the inclusion N ⊆M . This extends results
by Jolissaint, see [116]. Let us first introduce some notation.

As in Section 7.3 consider the crossed product von Neumann algebra M oσϕ R

which contains the projections pk ∈N ′∩ (M oσϕ R), k ∈N and carries the canonical
normal semi-finite tracial weight τo which we will from now on denote by τo,1.
For t ∈Rwrite λϕt for the left regular representation operators in MoσϕR. Similarly,
we write τo,2 for the canonical normal semi-finite tracial weight on M oσψ R and
denote the corresponding left regular representation operators by λ

ψ
t , t ∈R.
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For t ∈R let ut := (Dϕ/Dψ)t ∈M be the Connes cocycle Radon-Nikodym deriva-
tive, so in particular utσ

ϕ
t (us ) = ut+s and σ

ψ
t (x) = u∗

t σ
ϕ
t (x)ut hold for all s, t ∈ R.

Then (see [172, Proof of Theorem X.1.7]) there exists an isomorphism ρ : MoσψR→
M oσϕ R of von Neumann algebras which restricts to the identity on M and for
which ρ(λψt ) = utλ

ϕ
t for all t ∈ R. This implies that the dual actions θϕ and θψ

of σϕ and σψ respectively are related by the equality θ
ϕ
t ◦ρ = ρ ◦θψt , t ∈ R. Further,

τo,1◦ρ = τo,2 (see the footnote 2). Denote by hψ the unique unbounded self-adjoint
positive operator affiliated with M oσψ R such that hi t

ψ =λψt for all t ∈R and set

pψ,k :=χ[k−1,k](hψ) and qk := ρ(pψ,k ).

for k ∈N. Further, define

hψ,k := ρ(χ[k−1,k](hψ)hψ) = ρ(pψ,k hψ).

Recall that for all k ∈N and t ∈R we write hi t =λϕt , pk :=χ[k−1,k](h), and hk := pk h.
The following statement compares to Lemma 7.3.12.

Lemma 7.4.1. For every k ∈ N there is a (unique) faithful normal pkτo,1pk -preserving
conditional expectation E1,k : pk (M oσϕ R)pk → pkN pk given by

x 7→ ν−1
k pkEN (Tθϕ (h−1

k x))pk ,

where νk := Tθϕ (h−1
k ) = k−k−1. In particular, Tθϕ (h−1

k ) is a scalar multiple of the identity.

Proof. The proof is essentially the same as that of Lemma 7.3.12. First note that by
Remark 7.3.11 the operator hk coincides with λ( Ĵk ) where Jk (s) = χ[− log(k),log(k)]e

s

and that νk = Tθϕ (h−1
k ) = k −k−1 is a multiple of the identity. For x ∈ pk (M oσϕ R)pk

one checks using (7.3.9) for the second and last equality, that

(pkτo,1pk )(pkEN (Tθϕ (h−1
k x))pk ) = τo,1(pkEN (Tθϕ (h−1

k x))pk )

= ϕ◦Tθϕ (pk h−1
k EN (Tθϕ (h−1

k x))pk )

= ϕ◦Tθϕ (h−1
k EN (Tθϕ (h−1

k x)))

= ϕ
(
Tθϕ (h−1

k )EN (Tθϕ (h−1
k x))

)
= νkϕ

(
EN (Tθϕ (h−1

k x))
)

= νkϕ◦Tθϕ (h−1
k x))

= νkτo,1(pk xpk ),

2 This is well-known to specialists, but it seems that the statement does not appear explicitly in [172].
The argument goes as follows. Firstly, as ρ intertwines the dual actions on Moσψ R and Moσϕ R we
find that ϕ̂ ◦ρ is the dual weight of ϕ in the crossed product M oσψ R. Let t ∈ R. By [172, Theorem

X.1.17] we have Connes cocycle derivative
(

Dψ̂
Dϕ̂◦ρ

)
t
= ut = ρ(ut ). Then by the chain rule [172, Theorem

VIII.3.7], (
Dτo,2

Dτo,1 ◦ρ
)

t
=

(
Dτo,2

Dψ̂

)
t

(
Dψ̂

Dϕ̂◦ρ
)

t

(
Dϕ̂◦ρ

Dτo,1 ◦ρ
)

t
=λψ−tρ

−1(utλ
ϕ
t ) = 1.

Hence τo,1 ◦ρ = τo,2.
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hence E1,k is indeed pkτo,1pk -preserving. Here we used in the fourth line that N

is invariant under the dual action θϕ and in the fifth line that Tθϕ (h−1
k ) is a multiple

of the identity.
From Lemma 7.3.13 we see that

ν−1
k pkEN (Tθϕ (h−1

k · ))pk = ν−1
k pkEN (Tθϕ (h−1/2

k · h−1/2
k ))pk ,

and from the right-hand side of this expression it is clear that the map is completely
positive. The remaining statements (i.e. that E1,k is a unital faithful normal pkN pk -
pkN pk -bimodule map) are then easy to check.

The following lemma provides the analogous statement for the functional qkτo,1qk

and the inclusion qkN qk ⊆ qk (M oσϕ R)qk . We omit the proof.

Lemma 7.4.2. For every k ∈ N there is a (unique) faithful normal qkτo,1qk -preserving
conditional expectation E2,k : qk (M oσϕ R)qk → qkN qk given by

x 7→ ν−1
k qkEN (Tθϕ (h−1

ψ,k x))qk ,

where νk := k −k−1 as before.

Proposition 7.4.3. Let N ⊆M be a unital inclusion of von Neumann algebras for which
N is finite with a faithful normal tracial state τ ∈ N∗. Let further EN ,FN : M → N

be two faithful normal conditional expectations and extend τ to states ϕ := τ ◦ EN and
ψ := τ◦FN on M . Then the following statements are equivalent:

(1) For every k ∈N the triple (pk (MoσϕR)pk , pkN pk , pkτo,1pk ) has property (rHAP).

(2) For every k ∈N the triple (qk (MoσϕR)qk , qkN qk , qkτo,1qk ) has property (rHAP).

Proof. By symmetry it suffices to consider the direction “(2) ⇒ (1)”. For this, fix
k, l ∈N and let (Φl ,i )i∈Il be a net of maps witnessing the relative Haagerup property
of the triple (ql (M oσϕ R)ql , ql N ql , qlτo,1ql ), which we can assume to be contrac-
tive by Lemma 7.2.14. Define for i ∈ Il the normal completely positive contractive
map

Φ′
k,l ,i : pk (M oσϕ R)pk → pk (M oσϕ R)pk , x 7→ pkΦl ,i (ql xql )pk .

As N ⊆Mσϕ and N ⊆Mσψ , N commutes with both ql and pk . Thus we have that
for x ∈ pk (M oσϕ R)pk and a,b ∈N

Φ′
k,l ,i (pk apk xpk bpk ) = pkΦl ,i (ql pk apk xpk bpk ql )pk

= pkΦl ,i (ql axbql )pk

= pkΦl ,i (ql aql xql bql )pk

= pk ql aqlΦl ,i (ql xql )ql bql pk

= pk aΦl ,i (ql xql )bpk

= pk apkΦl ,i (ql xql )pk bpk

= pk apkΦ
′
k,l ,i (x)pk bpk ,
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i.e. Φ′
k,l ,i is pkN pk -pkN pk -bimodular. Further, (pkτo,1pk )◦Φ′

k,l ,i ≤ pkτo,1pk since
for all positive x ∈ pk (M oσϕ R)pk we have

(pkτo,1pk )◦Φ′
k,l ,i (x) = τo1 (pkΦl ,i (ql pk xpk ql )pk ) ≤ τo,1(Φl ,i (ql pk xpk ql ))

= τo,1(qlΦl ,i (ql pk xpk ql )ql ) ≤ τo,1(ql pk xpk ql )

≤ (pkτo,1pk )(x).

For every map Φ on ql (M oσϕ R)ql of the form Φ= aE2,l b with a,b ∈ ql (M oσϕ

R)ql and x ∈ pk (M oσϕ R)pk we have by Lemma 7.4.2 that

pkΦ(ql xql )pk = pk aE2,l (bql xql )pk

= ν−1
l pk aqlEN (Tθϕ (h−1

ψ,l bql xql ))ql pk

= ν−1
l pk apkEN (Tθϕ (h−1

ψ,l bql xql )).

Now we may use the isomorphism ρ and apply Lemma 7.3.13 to M oσψ R to get

pkΦ(ql xql )pk = ν−1
l pk apkEN (Tθψ (pψ,l h−1

ψ ρ−1(b)pψ,lρ
−1(x)pψ,l ))

= ν−1
l pk apkEN (Tθψ (pψ,l h−1

ψ ρ−1(b)pψ,lρ
−1(x))

= ν−1
l pk apkEN (Tθϕ (ql h−1

ψ,l bql x)).

Then by Lemma 7.3.13 applied to M oσϕ R for the second equality and Lemma
7.4.1 for the last equality, we find

pkΦ(ql xql )pk = ν−1
l pk apkEN (Tθϕ (ql h−1

ψ,l bql xpk ))

= ν−1
l pk apkEN (Tθϕ (h−1

k (hk ql h−1
ψ,l bql x)))pk

= νkν
−1
l pk aE1,k ((hk ql h−1

ψ,l bql )x).

Thus (pkΦ(ql · ql )pk )(2) ∈ K00(pk (M oσϕ R)pk , pkN pk , pkτo,1pk ). By taking linear
combinations and approximation we see that if Φ(2) ∈ K (ql (M oσϕ R)ql , ql N ql ,
qlτo,1ql ), then also pkΦ(ql · ql )pk )(2) ∈ K (pk (M oσϕ R)pk , pkN pk , pkτo,1pk ). In
particular, (Φ′

k,l ,i )(2) ∈K (pk (M oσϕ R)pk , pkN pk , pkτo,1pk ) for k, l ∈N and i ∈ Il .
For every x ∈ pk (M oσϕ R)pk we have that

lim
l→∞

lim
i∈Il

Φ′
k,l ,i (x) = x

in the strong topology. A variant of Lemma 7.1.3 then shows that there is a di-
rected set F and an increasing function (l̃ , ĩ ) : F → {(l , i ) | k ∈N, i ∈ Il }, F 7→ (l̃ (F ), ĩ (F ))
such that (Φ′

k,l̃ (F ),ĩ (F )
)F∈F witnesses the relative Haagerup property of (pk (M oσϕ

R)pk , pkN pk , pkτo,1pk ).

Theorem 7.4.4. Let N ⊆ M be a unital inclusion of von Neumann algebras with N

finite. Let EN ,FN : M → N be two faithful normal conditional expectations. Then the
triple (M ,N ,EN ) has (rHAP) if and only if the triple (M ,N ,FN ) has (rHAP).
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Proof. Assume that the triple (M ,N ,EN ) has the relative Haagerup property. Let
τ be a faithful normal tracial state on N that we extend to a state ϕ := τ ◦EN on
M . Theorem 7.3.15 implies that for every k ∈N, (pk (MoσϕR)pk , pkN pk , pkτo,1pk )
has the (rHAP). With Proposition 7.4.3 we get that for every k ∈ N the triple
(qk (M oσϕ R)qk , qkN qk , qkτo,1qk ) has the (rHAP). The isomorphism ρ restricts
to an isomorphism qk (M oσϕ R)qk

∼= pψ,k (M oσψ R)pψ,k which maps qkN qk onto
pψ,kN pψ,k and for which (qkτo,1qk )◦ρ = pψ,kτo,2pψ,k . Combining this with The-
orem 7.3.15 implies that (M ,N ,FN ) has the (rHAP).

7.4.2. UNITALITY AND STATE-PRESERVATION OF THE APPROXIMA-
TING MAPS

The following theorem states that for triples (M ,N ,ϕ) with N finite the approxi-
mating maps may be assumed to be unital and state-preserving. The proof com-
bines the passage to suitable crossed products and corners of crossed products
from Section 7.3 with the case considered in Subsection 7.2.3.

Theorem 7.4.5. Let N ⊆M be a unital inclusion of von Neumann algebras which admits
a faithful normal conditional expectation EN . Assume that N is finite. Let τ ∈ N∗ be a
faithful normal (possibly non-tracial) state that we extend to a state ϕ := τ◦EN on M and
assume that the triple (M ,N ,ϕ) has property (rHAP). Then property (rHAP) may be
witnessed by a net of unital and ϕ-preserving approximating maps, i.e. we may assume
(1′′) and (4′).

Proof. First assume that τ is tracial. Since the triple (M ,N ,ϕ) has property (rHAP)
we get with Theorem 7.3.9 and Proposition 7.3.14 that for all j ∈N, k ∈N the triple
(pk (M oσϕ R)pk , pkN pk , pk ϕ̂ j pk ) has property (rHAP) as well and that it may be
witnessed by a net of contractive approximating maps. As we have seen before,
for every k ∈ N the element h1/2

k λ( f j ) ∈ pk (M oσϕ R)pk is positive and boundedly
invertible in pk (M oσϕ R)pk . Further, by (7.3.7) and [172, Theorem VIII.2.11] the
equality

σ
pk ϕ̂ j pk
t (x) = (h1/2

k λ( f j ))i t x(h1/2
k λ( f j ))−i t

holds for all x ∈ pk (M oσϕ R)pk , t ∈ R. Theorem 7.2.13 then implies that property
(rHAP) of (pk (Moσϕ R)pk , pkN pk , pk ϕ̂ j pk ) may for every j ,k ∈N be witnessed by
a net of unital (pk ϕ̂ j pk )-preserving maps. By applying the converse directions of
Proposition 7.3.14 and Theorem 7.3.9 we deduce the claimed statement.

Now we show that we may replace τ by any non-tracial faithful state in N∗. Let
still τ ∈N∗ be a faithful tracial state. Let (Φi )i∈I be approximating maps witnessing
the (rHAP) for (M ,N ,τ◦EN ) which by the previous paragraph may be taken unital
and τ ◦EN -preserving. The proof of Theorem 7.2.7, exploiting Lemmas 7.2.5 and
7.2.6 shows that (Φi )i∈I also witness the (rHAP) for (M ,N ,ϕ◦EN ) for any faithful
state ϕ ∈ N∗. Further Lemma 7.2.5 shows that Φi is ϕ◦EN -preserving and we are
done.



7.4. MAIN RESULTS

7

179

7.4.3. EQUIVALENCE OF (RHAP) AND (RHAP)−

In [13] among other things Bannon and Fang prove that for triples (M ,N ,τ) of
finite von Neumann algebras with a tracial state τ ∈M∗ the subtraciality condition
in Popa’s notion of the relative Haagerup property is redundant. It is easy to check
that their proof translates into our setting, which leads to the following variation
of [13, Theorem 2.2].

Theorem 7.4.6 (Bannon-Fang). Let M be a finite von Neumann algebra equipped with a
faithful normal tracial state τ ∈M∗ and let N ⊆M be a unital inclusion of von Neumann
algebras. If the triple (M ,N ,τ) has property (rHAP)−, then it has property (rHAP).
Further, property (rHAP) may be witnessed by unital and trace-preserving approximating
maps.

In combination with Theorem 7.4.5 the following theorem provides a generali-
zation of Theorem 7.4.6.

Theorem 7.4.7. Let N ⊆M be a unital inclusion of von Neumann algebras which admits
a faithful normal conditional expectation EN . Assume that N is finite. Let τ ∈ N∗ be a
faithful normal state that we extend to a state ϕ := τ◦EN on M . Then the triple (M ,N ,ϕ)
has property (rHAP) if and only if it has property (rHAP)−.

Proof. By Theorem 7.2.7 we may without loss of generality assume that τ is tracial
on N . It is clear that property (rHAP) implies property (rHAP)−. Conversely, if the
triple (M ,N ,ϕ) has property (rHAP)−, then we deduce from Theorem 7.3.15 that
for every k ∈N the triple (pk (M oσϕ R)pk , pkN pk , pkτo,1pk ) has property (rHAP)−

as well. Recall that pk (MoσϕR)pk is finite since pkτopk is a faithful normal tracial
state. We can hence apply Theorem 7.4.6 to deduce that (pk (M oσϕ R)pk , pkN pk ,
pkτo,1pk ) has (rHAP) for every k ∈ N. In combination with Theorem 7.3.15 this
implies that the triple (M ,N ,ϕ) has property (rHAP).

We finish this subsection with an easy lemma which will be needed later on. It
could be formulated in greater generality, but this is the form we will use in Section
7.7.

Lemma 7.4.8. Let N ⊆M1 ⊆M be a unital inclusion of von Neumann algebras with N

finite. Assume that we have faithful normal conditional expectations E1 : M1 → N and
F1 : M → M1 and a faithful tracial state τ ∈ N∗. Set ϕ = τ ◦ E1 ◦ F1. Then if the triple
(M ,N ,ϕ) has property (rHAP) then the triple (M1,N ,ϕ|M1 ) also has property (rHAP).

Proof. Suppose that (Φi )i∈I is a net of approximations (unital, ϕ-preserving maps
on M ) satisfying the conditions in the property (rHAP) for the triple (M ,N ,ϕ). For
each i ∈ I define Ψi := F1 ◦Φi |M1 . Our conditions guarantee that F1 is ϕ-preserving,
so Ψi is a normal, unital, completely positive, N -bimodular, ϕ|M1 preserving map
on M1. Due to the last theorem, we need only to check that (Ψi )i∈I satisfy the
conditions in the property (rHAP)− (for the triple (M1,N ,ϕ|M1 )). Condition (iii)
holds as for x ∈ M1 we have Ψi (x) − x = F1(Φi (x) − x) and F

(2)
1 is the orthogonal

projection from L2(M ,ϕ) onto L2(M1,ϕ|M1 ).
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To verify the last condition we assume first that Φi is of the form a(E1 ◦F1)(b·)
for some a,b ∈M . But then for x ∈M1 we have

Ψi (x) = F1(a(E1 ◦F1)(bx))) = F1(a)(E1 ◦F1)(bx))) = F1(a)E1(F1(b)x),

so we get that Ψ(2)
i ∈ K00(M1,N ,ϕ|M1 ). Taking linear combinations and approxi-

mation ends the proof.

7.5. FIRST EXAMPLES

In this section we first put our definitions and main results in concrete context,
discussing examples of the Haagerup (and non-Haagerup) inclusions arising in
the framework of Cartan subalgebras, as studied in [116], [176] and [6] and then
present the case of the bigger algebra being just B(H ). The examples related to
the latter situation show that the relative Haagerup property is not implied by
coamenability as defined in [153].

7.5.1. EXAMPLES FROM EQUIVALENCE RELATIONS AND GROUPOIDS

In this subsection we will discuss examples of inclusions of von Neumann algebras
which satisfy the relative Haagerup property and have already appeared in the
literature. As mentioned in the introduction, the notion of the Haagerup property
regarding the von Neumann inclusions beyond the finite context first appeared
in the study of von Neumann algebras associated with groupoids/equivalence
relations.

The first result here is due to [116], still in the finite context. Note that Jolissaint
uses the definition of the Haagerup inclusion N ⊆M due to Popa in [155], namely
the one using the larger ideal of “generalized compacts” than the one employed in
this paper, but also note that due to [155, Proposition 2.2] both notions coincide if
N ′∩M ⊆N ′, so for example if N is a maximal abelian subalgebra in M , which is
the case of interest for the result below.

Theorem 7.5.1 ([116, Theorem 2.1]). Let R be a measure-preserving standard equiva-
lence relation on a set X (with the measure ν on R induced by the invariant probability
measure µ on X ). Then the following are equivalent:

(1) R has the Haagerup property, i.e. it admits a sequence of positive definite func-
tions (ϕn : R → C)n∈N which are bounded by 1 on the diagonal, converge to 1
ν-almost everywhere and satisfy the vanishing property, meaning that for every
n ∈N and ε> 0 one has ν({(x, y) ∈R | |ϕn(x, y)| > ε}) <∞;

(2) The von Neumann inclusion L∞(X ,µ) ⊆L (R) of finite von Neumann algebras has
the relative Haagerup property.
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The definition beyond the finite case has first been considered in [176]; a more
detailed study has been conducted by Anantharaman-Delaroche in [6]. Note that
both these papers use the notion of the relative Haagerup property for arbitrary
(expected) von Neumann inclusions identical to the one studied here. We will
now describe the setup.

Let G be a measured groupoid with countable fibers, equipped with a quasi-
invariant probability measure µ on the unit space G (0) (note that a measure-preser-
ving standard equivalence relation as considered above is one source of such ex-
amples). Again µ induces a measure ν on G ; we further obtain a (not necessarily
finite) von Neumann algebra L (G ) ⊂B(L2(G ,ν)). The following result holds.

Theorem 7.5.2 ([6, Theorem 1]). Let G be a measured groupoid with countable fibers, as
above. Then the following conditions are equivalent:

(1) G has the Haagerup property, i.e. it admits a sequence of positive-definite func-
tions (Fn : G → C)n∈N which are equal to 1 on G (0), converge to 1 ν-almost every-
where and satisfy the vanishing property, meaning that for every n ∈N and ε> 0
one has ν({g ∈G : |ϕn(g )| > ε}) <∞;

(2) The von Neumann inclusion L∞(G (0),µ) ⊆ L (G ) has the relative Haagerup pro-
perty.

Ueda shows in [176, Lemma 5] (and then Anantharaman-Delaroche reproves
it in [6, Theorem 3]) that a property of a groupoid as above called treeability im-
plies the Haagerup property. [6, Theorem 5] also shows that for ergodic measured
groupoid with countable fibers the Haagerup property is incompatible with Pro-
perty (T); we are however not aware of explicit examples of such Property (T)
groupoids leading to von Neumann algebras which are not finite, and a general
intuition regarding Property (T) objects says that these should naturally lead to
finite von Neumann algebras (for example, discrete property (T) quantum groups
are necessarily unimodular, see [81]).

7.5.2. EXAMPLES AND COUNTEREXAMPLES WITH M =B(H )

We end this subsection with the example where M = B(H ) and study which
triples (B(H ),N ,EN ) have (rHAP). Since the conditional expectation EN is as-
sumed to be normal it follows by a result of Tomiyama from [174] that N must be
a direct sum of type I factors, so N ∼= ⊕

i∈I B(Ki ) for some index set I . Note that
each B(Ki ) may occur in B(H ) with a certain multiplicity mi ∈N∪ {∞}. In gene-
ral, we have that N is spatially isomorphic to

⊕
i∈I B(Ki )⊗C1mi where 1mi is the

identity acting on a Hilbert space of dimension mi . For simplicity in the examples
below we assume that all multiplicities mi equal 1 and ignore the spatial isomor-
phism. In that case the normal conditional expectation of B(H ) onto

⊕
i∈I B(Ki )

is unique and determined by EN (x) = ∑
i∈I pi xpi where pi is the projection onto

Ki . Therefore, in this case we can speak not only of the Haagerup property of
the inclusion N ⊆ B(H ), but also about maps being compact and of finite index
relative to this inclusion.
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Theorem 7.5.3. Assume that H is a separable Hilbert space, that H = ⊕
i∈I Ki , where

I is an index set and that the dimension of Ki does not depend on i ∈ I . Put N =⊕
i∈I B(Ki ) ⊆B(H ). Then the triple (B(H ),N ,EN ) has the property (rHAP).

Proof. We may assume that Ki =K for a single (separable) Hilbert space K . The
inclusion N ⊆B(H ) is then isomorphic to the inclusion `∞(I )⊗B(K ) ⊆B(`2(I ))⊗
B(K ). In the case where I is finite `∞(I ) ⊆ B(`2(I )) is a finite-dimensional inclu-
sion which clearly has (rHAP). In the case where I is infinite we may assume that
I =Z and the inclusion `∞(Z) ⊆B(`2(Z)) has the (rHAP) with approximating maps
given by the (Fejér-)Herz-Schur multipliers Tn with

Tn((xi , j )i , j∈Z) = (W (i − j )xi , j )i , j∈Z, W (k) := max(1− |k|
n

,0).

Since W = 1
n (χ[0,n])∗ ∗χ[0,n] is positive definite and converges to the identity point-

wise it follows that Tn is completely positive and T (2)
n converges to the identity

strongly. Further T (2)
n is finite rank relative to `∞(Z), so certainly compact. In both

cases (I being finite or infinite), we tensor the approximating maps with IdB(K )

and find that `∞(I )⊗B(K ) ⊆B(`2(I ))⊗B(K ) has (rHAP).

With a bit more work Theorem 7.5.3 could be proved in larger generality by
relaxing the assumption that the multiplicities are trivial and that the dimension
is constant (as opposed to say for example uniformly bounded). However, we
cannot admit just any subalgebra N as the following counterexample shows.

Theorem 7.5.4. Let H =K1⊕K2, where K1,K2 are Hilbert spaces such that dim(K1) <
∞ and dim(K2) =∞. Set N = B(K1)⊕B(K2). Then the triple (B(H ),N ,EN ) does
not have the property (rHAP).

Proof. Let p be the projection of H onto K1. Let Φ : B(H ) → B(H ) be a normal
linear map. The proof is based on two claims.

Claim 1: If Φ is an N -N -bimodule map then B(H )p is an invariant subspace.
Moreover, the restriction of Φ to B(H )p lies in the linear span of the two maps
xp 7→ pxp and xp 7→ (1−p)xp.
Proof of Claim 1. Note that p is contained in N from which the first statement fol-
lows. For the second part let E i

k,l be matrix units with respect to some basis of
Ki . Then for x ∈ B(H ) we have Φ(E i

k,k xE i
l ,l ) = E i

k,kΦ(x)E i
k,k so that E i

k,kB(H )E i
k,k

is an eigenspace of Φ (i.e. Φ is a Schur multiplier). Moreover Φ(E i
k ′,k ′xE i

l ′,l ′ ) =
E i

k ′,kΦ(E i
k,k ′xE i

l ′,l )E i
l ,l ′ so that the eigenvalues of these spaces only depend on i . This

in particular implies the claim.

Claim 2: If Φ is compact relative to the inclusion N ⊆ B(H ) then B(H )p is an
invariant subspace. Moreover, the restriction of Φ to B(H )p is compact (in the
non-relative sense).
Proof of Claim 2. By approximation it suffices to prove Claim 2 with ‘compact’
replaced by ‘finite rank’. So assume that Φ = aEN b with a,b ∈ B(H ). Note that
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p ∈N ∩N ′ and therefore aEN (bxp) = apEN (bx)p = aEN (pbxp). The first of these
equalities shows that B(H )p is invariant. Further x 7→ (pxp) is finite rank as p
projects onto a finite-dimensional space. This proves the claim.

Remainder of the proof. Suppose that Φ is both N -N -bimodular and compact rela-
tive to N . By Claim 1 we know that there are scalars λ1,λ2 ∈ C such that Φ(xp) =
λ1pxp +λ2(1− p)xp. If λ2 6= 0 then the associated L2-map is not compact (in the
non-relative sense) since (1−p) projects onto an infinite-dimensional Hilbert space.
This contradicts Claim 2 because the restriction of Φ to B(H )p is compact. We
conclude that λ2 = 0 for any normal map Φ : M →M that is N -N -bimodular and
compact relative to N . But then we can never find a net of such maps that approxi-
mates the identity map on B(H ) in the point-strong topology. Hence the inclusion
N ⊆B(H ) fails to have (rHAP).

Remark 7.5.5. Recall that a unital inclusion of von Neumann algebras N ⊆ M is
said to be co-amenable if there exists a (not necessarily normal) conditional expecta-
tion from N ′ onto M ′, where the commutants are taken with respect to any Hilbert
space realization of M . Theorem 7.5.4 shows – surprisingly – that a co-amenable
inclusion in general need not have (rHAP). Note that this also means that a naive
extension of the definition of relative Haagerup property in terms of correspon-
dences, modeled on the notion of strictly mixing bimodules (see [144, Theorem 9])
valid for the non-relative Haagerup property, cannot be equivalent to the defini-
tion studied in our paper. Indeed, the last fact, together with the examples above,
would contradict [14, Theorem 2.4].

7.6. PROPERTY (RHAP) FOR FINITE-DIMENSIONAL SUB-
ALGEBRAS

In this section we consider the case of finite-dimensional subalgebras and show
equivalence of the relative Haagerup property and the non-relative Haagerup pro-
perty. For this, we fix a unital inclusion N ⊆ M of von Neumann algebras and
assume that it admits a faithful normal conditional expectation EN . Assume that
N is finite-dimensional and let τ ∈N∗ be a faithful normal tracial state on N that
we extend to a state ϕ := τ◦EN on M . We will prove that the triple (M ,N ,ϕ) has
property (rHAP) if and only if (M ,C,ϕ) does. Recall that by Theorem 7.2.7 the
Haagerup property of (M ,N ,ϕ) does not depend on the choice of the state τ.

Denote by z1, ..., zn ∈ Z (N ) the minimal central projections of N . There exist
natural numbers n1, ...,nk ∈N such that zkN ∼= Mnk (C) for k = 1, ...,n. Let ( f k

i )1≤i≤nk

be an orthonormal basis of Cnk , write E k
i , j , 1 ≤ i , j ≤ nk for the matrix units with

respect to this basis and set E k
i := E k

i ,i for the diagonal projections. We have that
E k

i , j f k
l = δ j ,l f k

i for all k ∈ N, 1 ≤ i , j , l ≤ nk and
∑n

k=1

∑nk
i=1 E k

i = 1. Set d := ∑n
k=1 nk ,

choose an orthonormal basis ( fk,i )1≤k≤n, 1≤i≤nk
of Cd with corresponding matrix
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units e(k,i ),(l , j ) ∈ Md (C) where 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk , 1 ≤ j ≤ nl and define

p :=
n∑

k=1
E k

1 . (7.6.1)

For a general linear map Φ: pM p → pM p we may define a linear map Φ̃: M →
M by

Φ̃(E k
i xE l

j ) := E k
i ,1Φ(E k

1,i xE l
j ,1)E l

1, j (7.6.2)

for all 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk , 1 ≤ j ≤ nl and x ∈M .
Let us study the properties of Φ̃.

Lemma 7.6.1. Let Φ : pM p → pM p be a linear map. Define

U :=
n∑

k=1

nk∑
i=1

e(1,1),(k,i ) ⊗E k
i ,1 ∈ Md (C)⊗M , V :=

n∑
k=1

nk∑
i=1

fk,i ⊗E k
1,i ∈Cd ⊗M .

Then,
Φ̃(x) =V ∗(idB(L2(N ,τ)) ⊗Φ)

(
U∗(1⊗x)U

)
V .

Proof. We have for x ∈ zkM zl with 1 ≤ k, l ≤ n that

U∗(1⊗x)U =
nk∑

i=1

nl∑
j=1

e(k,i ),(l , j ) ⊗E k
1,i xE l

j ,1

so that

V ∗(idB(L2(N ,τ)) ⊗Φ)
(
U∗(1⊗x)U

)
V =

nk∑
i=1

nl∑
j=1

E k
i ,1Φ(E k

1,i xE l
j ,1)E l

1, j .

By definition this expression coincides with Φ̃(x). The claim follows.

Lemma 7.6.2. If Φ: pM p → pM p is a unital normal completely positive map, then Φ̃ is
contractive, normal and completely positive.

Proof. The normality and the complete positivity follow from Lemma 7.6.1. We
further have

‖Φ̃‖ = Φ̃(1) = Φ̃
(

n∑
k=1

nk∑
i=1

E k
i

)
=

n∑
k=1

nk∑
i=1

E k
i ,1Φ(E k

1 )E k
1,i

≤
n∑

k=1

nk∑
i=1

E k
i ,1E k

1,i =
n∑

k=1

nk∑
i=1

E k
i = 1,

i.e. Φ̃ is contractive.

Lemma 7.6.3. Let Φ: pM p → pM p be a linear map. Then Φ̃ is an N -N -bimodule map.
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Proof. Let x ∈M . For 1 ≤ l ,k,m ≤ n and 1 ≤ r, s ≤ nl , 1 ≤ i ≤ nk , 1 ≤ j ≤ nm we have

E l
r,sΦ̃(E k

i xE m
j ) = E l

r,s E k
i ,1Φ(E k

1,i xE m
j ,1)E m

1, j

= δs,iδl ,k E k
r,1Φ(E k

1,i xE m
j ,1)E m

1, j

= E k
r,1Φ(E k

1,r E l
r,s E k

i xE m
j E m

j ,1)E m
1, j .

We hence find that for y ∈ E k
i xE m

j , E l
r,sΦ̃(y) = Φ̃(E l

r,s y). The linearity of Φ̃ then im-
plies that it is a left N -module map. A similar argument applies to the right-
handed case.

Proposition 7.6.4. Define the map

Diag: pM p → pM p, x 7→
n∑

k=1

ϕ(E k
1 xE k

1 )

ϕ(E k
1 )

E k
1 .

Then �Diag= EN .

Proof. It is clear that the map Diag is linear unital normal and completely positive.
Hence, by Lemma 7.6.2 and Lemma 7.6.3, �Diag is contractive normal completely
positive and N -N -bimodular. It is easy to check that �Diag is even unital. In
particular, �Diag restricts to the identity on N . It is further clear that �Diag is faithful
and that it maps M onto N , so �Diag is a faithful normal conditional expectation.
For x ∈M and 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk , 1 ≤ j ≤ nl we have

ϕ◦ �Diag(E k
i xE l

j ) = ϕ
(
E k

i ,1Diag(E k
1,i xE l

j ,1)E l
1, j

)
=

n∑
m=1

ϕ(E m
1 E k

1,i xE l
j ,1E m

1 )

ϕ(E m
1 )

ϕ
(
E k

i ,1E m
1 E l

1, j

)
=

ϕ(E l
1E k

1,i xE l
j ,1E l

1)

ϕ(E l
1)

ϕ(E k
i ,1E l

1E l
1, j )

= δk,l

ϕ(E l
1,i xE l

j ,1)

ϕ(E l
1)

ϕ(E l
i ,1E l

1, j )

= δk,l

ϕ(E l
1,i xE l

j ,1)

τ(E l
1)

τ(E l
i , j ).

But then, since τ is tracial,

ϕ◦ �Diag(E k
i xE l

j ) = δi , jδk,lϕ(E l
1,i xE l

i ,1) = δi , jδk,lτ(EN (E l
1,i xE l

i ,1))

= δi , jδk,lτ(E l
1,iEN (x)E l

i ,1) = τ(E k
i EN (x)E l

j )

= ϕ(E k
i xE l

j ),

i.e. �Diag is ϕ-preserving. Since EN is the unique faithful normal ϕ-preserving
conditional expectation onto N , we get that �Diag= EN .



7

186 7. THE RELATIVE HAAGERUP PROPERTY

Lemma 7.6.5. Let Φ: pM p → pM p be a normal completely positive map with ϕ◦Φ≤ϕ
and assume that the L2-implementation Φ(2) of Φ with respect to ϕ|pM p is a compact
operator. Then Φ̃ satisfies ϕ◦ Φ̃≤ϕ and (Φ̃)(2) ∈K (M ,N ,ϕ).

Proof. For 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk , 1 ≤ j ≤ nl and x ∈ M positive we have by the
traciality of τ,

ϕ◦ Φ̃(E k
i xE l

j ) = ϕ
(
E k

i ,1Φ(E k
1,i xE l

j ,1)E l
1, j

)
= τ

(
E k

i ,1EN

(
Φ(E k

1,i xE l
j ,1)

)
E l

1, j

)
= δi , jδk,lτ

(
E k

1 EN (Φ(E k
1,i xE k

i ,1))
)
,

so in particular ϕ◦ Φ̃(E k
i xE l

j ) ≥ 0. We get (as N is contained in the centralizer Mϕ)

ϕ◦ Φ̃(E k
i xE l

j ) = δi , jδk,lτ
(
E k

1 EN (Φ(E k
1,i xE k

i ,1))
)

≤ δi , jδk,lτ
(
EN (Φ(E k

1,i xE k
i ,1))

)
≤ δi , jδk,lϕ(E k

1,i xE k
i ,1)

= ϕ(E k
i xE l

j ).

This implies that Φ̃ indeed satisfies ϕ◦ Φ̃≤ϕ. In particular, the L2-implementation
of Φ̃ with respect to ϕ exists.

It remains to show that (Φ̃)(2) ∈ K (M ,N ,ϕ). For this, let Ψ: pM p → pM p be
a map with Ψ(2) = aeCb where a,b ∈ pM p and eC denotes the rank one projection
(ϕ|pM p (·)p)(2) ∈B(L2(pM p,ϕ|pM p )). For 1 ≤ k, l ≤ n, 1 ≤ i ≤ nk , 1 ≤ j ≤ nl and x ∈M

we then have

Ψ̃(E k
i xE l

j ) = E k
i ,1aϕ(bE k

1,i xE l
j ,1)E l

1, j = E k
i ,1aϕ(bE k

1,i xE l
j ,1)E l

1E l
1, j .

Note that by Proposition 7.6.4,

EN (bE k
1,i xE l

j ,1) =
n∑

r=1
EN (E r

1 bE k
1,i xE l

j ,1)

=
n∑

r=1

�Diag(E r
1 bE k

1,i xE l
j ,1)

=
n∑

r=1
E r

1 Diag(E r
1 bE k

1,i xE l
j ,1)E l

1

=
n∑

r=1

n∑
m=1

ϕ(E m
1 E r

1 bE k
1,i xE l

j ,1E m
1 )

ϕ(E m
1 )

E r
1 E m

1 E l
1

=
ϕ(E l

1bE k
1,i xE l

j ,1)

ϕ(E l
1)

E l
1
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=
ϕ(bE k

1,i xE l
j ,1)

ϕ(E l
1)

E l
1,

where in the last equality we again used that τ is tracial. Hence

Ψ̃(E k
i xE l

j ) =ϕ(E l
1)E k

i ,1aEN (bE k
1,i xE l

j ,1)E l
1, j =ϕ(E l

1)E k
i ,1aEN (bE k

1,i E k
i xE l

j ). (7.6.3)

Fix now suitable t0, j0,k0, l0 and x ∈M and compute the following expression:(
n∑

k=1

n∑
l=1

n∑
r=1

nk∑
t=1

ϕ(E r
1 )E k

t ,1aE l
1eN E r

1 bE k
1,t

)
(E k0

t0
xE l0

j0
Ωϕ)

=
n∑

l=1

n∑
r=1

ϕ(E r
1 )E k0

t0,1aE l
1EN (E r

1 bE k0
1,t0

xE l0
j0

)Ωϕ

=
n∑

l=1
ϕ(E l

1)E k0
t0,1aE l

1EN (bE k0
1,t0

xE l0
j0,1)E l0

1, j0
Ωϕ.

Now the equality (7.6.3) implies that the value of the conditional expectation ap-
pearing in the last formula is a scalar multiple of E l0

1 , so the whole expression
equals

ϕ(E l0
1 )E k0

t0,1aEN (bE k0
1,t0

xE l0
j0

)Ωϕ = Ψ̃(E k0
t0

xE l0
j0

)Ωϕ.

Hence we arrive at

(Ψ̃)(2) =
n∑

k=1

n∑
l=1

n∑
r=1

nk∑
t=1

ϕ(E r
1 )E k

t ,1aE l
1eN E r

1 bE k
1,t ∈K00(M ,N ,ϕ).

By taking linear combinations this implies that for every map Ψ with Ψ(2) ∈
K00(pM p,C,ϕ) the L2-implementation of Ψ̃ is contained in K00(M ,N ,ϕ). Via ap-
proximation we then see that (Φ̃)(2) ∈K (M ,N ,ϕ).

We are now ready to prove the main theorem of this section.

Theorem 7.6.6. Let N ⊆M be a unital inclusion of von Neumann algebras and assume
that it admits a faithful normal conditional expectation EN : M →N . Assume that N is
finite-dimensional and let τ ∈ N∗ be a faithful state on N that we extend to a state ϕ :=
τ◦EN on M . Then M has the Haagerup property (in the sense that the triple (M ,C,ϕ)
has the relative Haagerup property) if and only if the triple (M ,N ,ϕ) has the relative
Haagerup property.

Proof. By Theorem 7.2.7 we may assume without loss of generality that τ is tracial.
“⇐”: Assume that the triple (M ,N ,ϕ) has the relative Haagerup property and

let (Φi )i∈I be a net of normal completely positive maps witnessing it. Since N

is finite-dimensional, eN is a finite rank projection. In particular, K00(M ,N ,ϕ)
consists of finite rank operators and hence K (M ,N ,ϕ) ⊆K (M ,C,ϕ). In particular,
Φ(2)

i ∈K (M ,C,ϕ) for every i ∈ I . Further, Φi (x) → x strongly for every x ∈M . This
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implies that the net (Φi )i∈I also witnesses the relative Haagerup property of the
triple (M ,C,ϕ).

“⇒”: Assume that M has the Haagerup property. Recall that the projection p
was defined in (7.6.1). By [41, Lemma 4.1] the triple (pM p,C,ϕ|pM p ) also has the
relative Haagerup property and by Theorem 7.4.5 we find a net (Φi )i∈I of unital
normal completely positive ϕ-preserving maps witnessing it. By Lemma 7.6.2,
Lemma 7.6.3 and Lemma 7.6.5 we find that Φ̃i is a contractive normal completely
positive N -N -bimodule map withϕ◦Φ̃≤ϕ and (Φ̃)(2) ∈K (M ,N ,ϕ) for every i ∈ I .
It follows directly from the prescription (7.6.2) that Φ̃i (x) → x strongly for every
x ∈ M . It follows that the net (Φ̃i )i∈I witnesses the relative Haagerup property of
the triple (M ,N ,ϕ).

7.7. THE RELATIVE HAAGERUP PROPERTY FOR FREE PRO-
DUCTS WITH AMALGAMATION

The class of discrete groups enjoying the Haagerup property has good permanence
properties, one of which is that it is closed under taking free products amalga-
mated over finite subgroups (see [7, Section 6]). The following theorem demon-
strates that in the setting of Section 7.4 the relative Haagerup property is preserved
under taking amalgamated free products (see Subsection 3.6.1). For finite inclu-
sions of von Neumann algebras this has been proved in [23, Proposition 3.9].

Theorem 7.7.1. Let N ⊆ M1 and N ⊆ M2 be unital embeddings of von Neumann al-
gebras which admit faithful normal conditional expectations E1 : M1 → N , E2 : M2 → N

and for which N is finite. Denote by M := (M1,E1)?N (M2,E2) the amalgamated free
product von Neumann algebra of M1 and M2 with respect to the expectations E1, E2 and
let EN be the corresponding conditional expectation of M onto N . Then (M1,N ,E1) and
(M2,N ,E2) have the relative Haagerup property if and only if the triple (M ,N ,EN ) has
the relative Haagerup property.

Proof. “⇒”: Assume that both (M1,N ,E1) and (M2,N ,E2) have the relative Haa-
gerup property, let τ ∈ N∗ be a faithful normal tracial state and set ϕ1 := τ ◦ E1,
ϕ2 := τ◦E2. Then the triples (M1,N ,ϕ1) and (M2,N ,ϕ2) have the relative Haagerup
property. Without loss of generality we can assume that the corresponding nets
(Φi ,1)i∈I and (Φi ,2)i∈I witnessing the relative Haagerup property are indexed by
the same set I . By Theorem 7.4.5 we can also assume that the maps are unital with
ϕ1◦Φi ,1 =ϕ1, ϕ2◦Φi ,2 =ϕ2 for all i ∈ I , which then implies thatΦi ,1|N =Φi ,2|N = idN

and that E1 ◦Φi ,1 = E1, E2 ◦Φi ,2 = E2. Choose a net (εi )i∈I (we can use the same inde-
xing set, modifying it if necessary) with εi → 0 and define unital normal completely
positive N -N -bimodular maps Φ′

i ,1 := 1
1+εi

(Φi ,1 +εiE1), Φ′
i ,2 := 1

1+εi
(Φi ,2 +εiE2).

In the following we will need to work with certain sets of multi-indices: for
each n ∈ N set Jn = {j = ( j1, . . . , jn) : jk ∈ {1,2} and jk 6= jk+1 for k = 1, . . . ,n − 1}; put
also J =⋃

n∈NJn .
Set ϕ := τ ◦ EN , let Ψi := Φi ,1 ?Φi ,2: M → M be the unital normal completely

positive map with Ψi |N = idN and Ψi (x1...xn) = Φ′
i , j1

(x1)...Φ′
i , jn

(xn) for j ∈ Jn and
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xk ∈M jk ∩ker(E jk ) for k = 1, . . . ,n (see [21, Theorem 3.8]) and define Ψ′
i :=Φ′

i ,1?Φ
′
i ,2

analogously. We claim that the net (Ψ′
i )i∈I witnesses the relative Haagerup pro-

perty of the triple (M ,N ,ϕ). Indeed, it is clear that the maps satisfy the conditions
(1), (2) and (4) of Definition 7.2.2. It remains to show that Ψ′

i (x) → x strongly for
every x ∈M and that the L2-implementations (Ψ′

i )(2) are contained in K (M ,N ,ϕ).

Define for n ∈N and j ∈Jn the Hilbert subspace

H j := Span
{

x1...xnΩϕ | x1 ∈ ker(E j1 ), ..., xn ∈ ker(E jn )
}⊆ L2(M ,ϕ)

and let Pj ∈ B(L2(M ,ϕ)) be the orthogonal projection onto H j. Note that these
Hilbert subspaces are pairwise orthogonal for different multi-indices j1, j2 ∈J , or-
thogonal to N Ωϕ ⊆ L2(M ,ϕ), one has inclusions Ψ(2)

i H j ⊆ H j, (Ψ′
i )(2)H j ⊆ H j and

the span of the union of all H j, j ∈J with NΩϕ is dense in L2(M ,ϕ).

For the strong convergence it suffices to show that ‖Ψ(2)
i ξ−ξ‖2 → 0 for all ξ ∈H j,

j ∈J . So let n ∈N, j ∈Jn , x1 ∈ ker(E j1 ), ..., xn ∈ ker(E jn ). Then,

‖(Ψ′
i )(2)(x1...xnΩϕ)−x1...xnΩϕ‖2 = ‖Φ′

i , j1
(x1)...Φ′

i , jn
(xn)Ωϕ−x1...xnΩϕ‖2

≤ ‖(Φ′
i , j1

(x1)−x1)Φ′
i , j2

(x2)...Φ′
i , jn

(xn)Ωϕ‖2 +‖x1‖‖Φ′
i , j2

(x2)...Φ′
i , jn

(xn)Ωϕ−x2...xnΩϕ‖2

≤ ...

≤ ‖(Φ′
i , j1

(x1)−x1)Φ′
i , j2

(x2)...Φ′
i , jn

(xn)Ωϕ‖2

+‖x1‖‖(Φ′
i , j2

(x2)−x2)Φ′
i , j3

(x3)...Φ′
i , jn

(xn)Ωϕ‖2

+...+‖x1‖...‖xn−1‖‖Φ′
i , jn

(xn)Ωϕ−xnΩϕ‖2 → 0.

This implies that indeed Ψi (x) → x strongly for every x ∈M .

To treat the relative compactness, express the operators (Φ′
i ,1)(2) ∈K (M1,N ,ϕ1),

(Φ′
i ,2)(2) ∈K (M2,N ,ϕ2) as norm-limits

(Φ′
i ,1)(2) = lim

l→∞

N (i ,1)
l∑

k=1
a(i ,1)

k,l eϕ1
N

b(i ,1)
k,l and (Φ′

i ,2)(2) = lim
l→∞

N (i ,2)
l∑

k=1
a(i ,2)

k,l eϕ2
N

b(i ,2)
k,l

for suitable N (i ,1)
l , N (i ,2)

l ∈N, a(i ,1)
k,l ,b(i ,1)

k,l ∈M1 and a(i ,2)
k,l ,b(i ,2)

k,l ∈M2 .

Claim. For n ∈N, j ∈Jn , we have

∥∥(Ψ′
i )(2)Pj

∥∥≤
(

1

1+εi

)n

(7.7.1)

and

(Ψ′
i )(2)Pj = lim

l1,...,ln→∞
∑

k1,...,kn

a(i , j1)
k1,l1

...a(i , jn )
kn ,ln

eN b(i , jn )
kn ,ln

...b(i , j1)
k1,l1

, (7.7.2)
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where the convergence is in norm.
Proof of the claim. For x1 ∈ ker(E j1 ), ..., xn ∈ ker(E jn ) one calculates

(Ψ′
i )(2)Pj(x1...xnΩϕ) = Φ′

i , j1
(x1)...Φ′

i , jn
(xn)Ωϕ

=
(

1

1+εi

)n

Φi , j1 (x1)...Φi , jn (xn)Ωϕ

=
(

1

1+εi

)n

Ψ(2)
i (x1...xnΩϕ)

and hence (Ψ′
i )(2)Pj = (1+εi )−nΨ(2)

i Pj. By the unitality of Φi ,1 and Φi ,2 the inequality
(7.7.1) then follows from

∥∥(Ψ′
i )(2)Pj

∥∥=
(

1

1+εi

)n ∥∥∥Ψ(2)
i Pj

∥∥∥≤
(

1

1+εi

)n ∥∥∥Ψ(2)
i

∥∥∥≤
(

1

1+εi

)n

‖Ψi‖ =
(

1

1+εi

)n

.

We proceed by induction over n. For n = 1 the equality (7.7.2) is clear. Assume
that the equality (7.7.2) holds for j ∈Jn−1 and let jn ∈ {1,2} with jn 6= jn−1, j′ := (j, jn).
One easily checks that the left- and right-hand side of (7.7.2) both vanish on the
orthogonal complement of H j′ . Further, for x1 ∈ ker(E j1 ), ..., xn ∈ ker(E jn ), we get by
the assumption

(Ψ′
i )(2)(x1...xnΩϕ) =Ψ′

i (x1...xn−1)Φ′
i , jn

(xn)Ωϕ =Ψ′
i (x1...xn−1)(Φ′

i , jn
)(2)(xnΩϕ)

= lim
l1,...,ln→∞

∑
k1,...,kn−1

a(i , j1)
k1,l1

...a(i , jn−1)
kn−1,ln−1

EN

(
b(i , jn−1)

kn−1,ln−1
...b(i , j1)

k1,l1
x1...xn−1

)(∑
kn

a(i , jn )
kn ,ln

eN b(i , jn )
kn ,ln

)
xnΩϕ.

Since the Φ′
i ,1 and Φ′

i ,2 are N -N -bimodular, we have (Φ′
i , jn

)(2) ∈ N ′∩〈N ,M 〉 and
hence

(Ψ′
i )(2)(x1...xnΩϕ) = lim

l1,...,ln→∞
∑

k1,...,kn

a(i , j1)
k1,l1

...a(i , jn )
kn ,ln

EN

(
b(i , jn )

kn ,ln
...b(i , j1)

k1,l1
x1...xn

)
Ωϕ,

i.e. ∑
k1,...,kn

a(i , j1)
k1,l1

...a(i , jn )
kn ,ln

eN b(i , jn )
kn ,ln

...b(i , j1)
k1,l1

→ (Ψ′
i )(2)

strongly in l1, ..., ln . The second part of the claim, i.e. (7.7.2), then follows from
noticing that ( ∑

k1,...,kn

a(i , j1)
k1,l1

...a(i , jn )
kn ,ln

eN b(i , jn )
kn ,ln

...b(i , j1)
k1,l1

)
l1,...,ln

is a Cauchy sequence (compare with [23, Section 3]).

The (in)equalities (7.7.1) and (7.7.2) in particular imply that (Ψ′
i )(2) can be ex-

pressed as a norm limit

(Ψ′
i )(2) = eN + lim

n→∞
∑

j∈Jn

Ψ(2)
i Pj
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and hence (Ψ′
i )(2) ∈K (M ,N ,ϕ) for all i ∈ I . This finishes the direction “⇒”.

“⇐”: It suffices to prove the result for M1. Note first that [21, Lemma 3.5] shows
that we have a normal conditional expectation F1 : M →M1 such that E1 ◦F1 = EN .
Hence Lemma 7.4.8 ends the proof.

In combination with Theorem 7.6.6, Theorem 7.7.1 leads to the following corol-
lary. This generalizes a result by Freslon [83, Theorem 2.3.19] who showed this
corollary in the realm of von Neumann algebras of discrete quantum groups, and
the analogous property for classical groups was first shown in [115] (see also [7,
Section 6]). To the author’s best knowledge even for inclusions of finite von Neu-
mann algebras the statement is new.

Corollary 7.7.2. Let N ⊆M1 and N ⊆M2 be unital embeddings of von Neumann alge-
bras which admit faithful normal conditional expectations E1 : M1 →N , E2 : M2 →N and
assume that N is finite-dimensional. Assume moreover that M1 and M2 have the Haa-
gerup property. Then the amalgamated free product von Neumann algebra (M1,E1)∗N

(M2,E2) has the Haagerup property as well.

7.8. INCLUSION OF FINITE INDEX

In this section we will discuss finite index inclusions, defined in [11], for not ne-
cessarily tracial von Neumann algebras. We will pick one of the (possibly non-
equivalent) definitions, which is most suitable in our context, and then we will
illustrate this notion using certain compact quantum groups, namely free orthog-
onal quantum groups.

Definition 7.8.1. Let N ⊆ M be an inclusion of von Neumann algebras with a
faithful normal conditional expectation EN : M → N . We say that a family of ele-
ments (mi )i∈I is an orthonormal basis of the right N -module L2(M )N if:

(1) For each i , j ∈ I we have EN (m∗
i m j ) = δi j p j , where p j is a projection in N ;

(2)
∑

i∈I mi N = L2(M ).

We say that the inclusion N ⊆ M is strongly of finite index if it admits a finite or-
thonormal basis.

Lemma 7.8.2. If an inclusion N ⊆M is strongly of finite index then it has the Haagerup
property.

Proof. Let m1, . . . ,mn be a finite orthonormal basis for our inclusion. It suffices
to show that x = ∑n

i=1 miEN (m∗
i x) for each x ∈ M . Indeed, this would show that

the identity map on L2(M ) is relatively compact with respect to N , so clearly
the triple (M ,N ,EN ) satisfies the relative Haagerup property. The equality x =∑n

i=1 miEN (m∗
i x) has been already observed by Popa (see [154, Section 1]) in a more

general context.
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7.8.1. FREE ORTHOGONAL QUANTUM GROUPS

We will now present a certain inclusion arising in the theory of compact quantum
groups that has the relative Haagerup property. For information about compact
quantum groups we refer the reader to the excellent book [139].

Definition 7.8.3 ([178]). Let n ≥ 2 be an integer and let F ∈ Mn(C) be a matrix such
that F F = c1 for some c ∈ R \ {0}. Let Pol(O+

F ) be the universal ∗-algebra genera-
ted by the entries of a unitary matrix U ∈ Mn(Pol(O+

F )), denoted ui j , subject to the
condition U = FU F−1, where (U )i j := (ui j )∗ for all i , j = 1, . . . ,n. Then the unique
∗-homomorphic extension of the map ∆(ui j ) := ∑n

k=1 ui k ⊗uk j makes Pol(O+
F ) into

a Hopf ∗-algebra, whose universal C∗-algebra completion yields a compact quan-
tum group.

Remark 7.8.4. As every compact quantum group admits a Haar state, we can use
the GNS-construction to construct a von Neumann algebra L∞(O+

F ).

In [12] Banica classified irreducible representations of the compact quantum
group O+

F . He showed that they are indexed by natural numbers, U k , where U 0 is
the trivial representation and U 1 =U is the fundamental representation U . More-
over, the fusion rules satisfied by these representations are the following:

U k ⊗U l ∼=U k+l ⊕U k+l−2 ⊕·· ·⊕U |k−l |, k, l ∈N,

just like for the classical compact group SU (2). From the fusion rules one can infer
that the coefficients of representations indexed by even numbers form a subalge-
bra. Further, one can use the defining relation U = FU F−1 to show that they form
a ∗-subalgebra.

Definition 7.8.5. Let M := L∞(O+
F ). We define the even subalgebra N to be the von

Neumann subalgebra of M generated by the elements (ui j ukl )1Éi , j ,k,lÉn . It is equal
to the von Neumann algebra generated by the coefficients of the even representa-
tions; in fact it is related to the projective version of O+

F , usually denoted PO+
F .

Remark 7.8.6. It has been shown by Brannan in [28] that N ⊆ M is a subfactor of
index 2 in case that F = 1 (it is then an inclusion of finite von Neumann algebras).

We now roughly outline Brannan’s argument and then mention why it cannot
immediately be translated into our setting. There is an automorphism Φ of M

such that Φ(ui j ) =−ui j ; Φ can be first defined on Pol(O+
F ) by the universal property

but it also preserves the Haar state, so can be extended to an automorphism of
L∞(O+

F ). The fixed point subalgebra of Φ is equal to the even subalgebra N and
therefore EN := 1

2 (id+Φ) is a conditional expectation onto N that preserves the
Haar state. As a consequence EN − 1

2 id is a completely positive map, so one can
use the Pimsner-Popa inequality, which works for II1-factors, to conclude that the
index of N ⊆ M is at most 2. On the other hand, any proper inclusion has index
of at least 2, so the result follows. Unfortunately in the non-tracial case it is not
clear if the condition that EN − 1

2 id is completely positive implies that the inclusion
N ⊆ M is strongly of finite index; so far it is only known that it implies being of
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finite index in a weaker sense (see [11, Théorème 3.5]). Fortunately, in our case it
is possible to explicitly define a finite orthonormal basis.

Proposition 7.8.7. Let n Ê 2 be an integer and let F ∈ Mn(C) be a matrix such that
F F = c1 for some c ∈ R \ {0}. Let M := L∞(O+

F ) and let N be the even von Neumann
subalgebra of M . Then the inclusion N ⊆ M is strongly of finite index. Moreover, one
can find an orthonormal basis consisting of at most n2 +1 elements.

Proof. One can verify by an explicit computation that N is left globally invariant
by the modular automorphism group of the Haar state h of L∞(O+

F ), so we do have
a faithful normal h-preserving conditional expectation EN : M →N . We start with
n2 + 1 elements of M , namely 1 and all the ui j ’s. Since our set contains all the
coefficients of the fundamental representation, it follows from the fusion rules of
O+

F that N ⊕∑n
i , j=1 ui j N is a dense submodule of L2(M )N .

Note that all the elements ui j are odd, i.e. Φ(ui j ) = −ui j for i , j = 1, . . . ,n. Sup-
pose that we have a family x1, . . . , xk of odd elements. Then we can perform a
Gram-Schmidt process to make this set orthonormal. To do it, first notice that
x∗

i xi is an even element, hence so is |xi | – we conclude that the partial isometry
in the polar decomposition xi = vi |xi | is odd as well. Our process works as fol-
lows: we first replace x1 by the corresponding partial isometry v1. Then we define
x̃2 := x2−v1v∗

1 x2. Because v1 is a partial isometry, we get v∗
1 x̃2 = v∗

1 x2−v∗
1 v1v∗

1 x2 = 0.
We then define v2 to be the partial isometry appearing in the polar decomposition
of x̃2; it still holds that v2 is odd and v∗

1 v2 = 0. We can continue this process just
like the usual Gram-Schmidt process and obtain an orthonormal set of odd partial
isometries vi such that

∑k
i=1 xi N ⊆∑k

i=1 vi N ; note that the projections v∗
i vi belong

to N . If we apply this procedure to the family (ui j )1Éi , jÉn , we obtain a finite or-
thonormal basis for the inclusion N ⊆M .

Corollary 7.8.8. The inclusion N ⊆M := L∞(O+
F ) has the relative Haagerup property.





8
APPROXIMATION PROPERTIES

OF HECKE OPERATOR
ALGEBRAS

Approximation properties of C∗-algebras and von Neumann algebras play an im-
portant role in the theory of operator algebras. The idea of approximating compli-
cated structures by simpler building blocks appears in lots of mathematical fields.
The aim of this short chapter is to study such approximation properties of Hecke
C∗-algebras. More precisely, by using the results from Section 3.3, Subsection 5.2.3
and Section 7.7, we will prove that Hecke C∗-algebras are exact, we characterize
their nuclearity and we consider classes of Hecke-von Neumann algebras which
satisfy the Haagerup property.

The content is based on the articles

• M. Caspers, M. Klisse, N.S. Larsen, Graph product Khintchine inequalities and
Hecke C∗-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exact-
ness, J. Funct. Anal. 280 (2021), no. 1, Paper No. 108795, 41 pp.

• M. Caspers, M. Klisse, A. Skalski, G. Vos, M. Wasilewski, Relative Haagerup
property for arbitrary von Neumann algebras, arXiv preprint arXiv:2110.15078
(2021).
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8.1. APPROXIMATION PROPERTIES OF HECKE OPERATOR

ALGEBRAS

Recall that a C∗-algebra is called exact if spatial tensoring with it preserves exact
sequences. By a theorem of Kirchberg this is equivalent to the embeddability of the
C∗-algebra into a nuclear C∗-algebra (which in the separable case can be chosen to
be the Cuntz algebra O2). We make use of this characterization in the proof of the
following theorem.

Theorem 8.1.1. Let (W,S) be a Coxeter system and let q = (qs )s∈S ∈R(W,S)
>0 . Then C∗

r,q (W )
is an exact C∗-algebra.

Proof. First assume that (W,S) has finite rank. Recall that A(W,S) is the smallest C∗-
subalgebra of B(`2(W )) that contains all Hecke C∗-algebras of the system (W,S)
(see Section 5.3), so in particular C∗

r,q (W ) ⊆ A(W,S). By Corollary 5.3.1 A(W,S) is
nuclear which implies the exactness of C∗

r,q (W ). If (W,S) has infinite rank, the ex-
actness follows from the above by an inductive limit argument (see Proposition
3.5.3 and [20, IV.3.4.5]).

The following theorem generalizes [46, Theorem 3.6], where the injectivity of
right-angled Hecke-von Neumann algebras was characterized. By comparing it
with Theorem 2.3.8 one confirms that no unexpected behaviour occurs. Recall that
a von Neumann algebra M ⊆ B(H ) is called injective if there exists a conditional
expectation EM : B(H ) →M of B(H ) onto M .

Theorem 8.1.2. Let (W,S) be an irreducible Coxeter system. Then the following state-
ments are equivalent:

(1) (W,S) is of spherical or affine type;

(2) C∗
r,q (W ) is nuclear for all q ∈R(W,S)

>0 ;

(3) C∗
r,q (W ) is nuclear for some q ∈R(W,S)

>0 ;

(4) Nq (W ) is injective for all q ∈R(W,S)
>0 ;

(5) Nq (W ) is injective for some q ∈R(W,S)
>0 .

Proof. “(1) ⇒ (2)”: If (W,S) is of spherical type and if q ∈ R(W,S)
>0 , then C∗

r,q (W ) is
finite-dimensional or an inductive limit over finite-dimensional C∗-algebras (see
Proposition 3.5.3), and in either case nuclear (see e.g. [20, II.9.4.5]). So let us assume
that (W,S) is of affine type, let W0 be its corresponding Weyl group (see Subsection
2.7.3) and let π : C∗

r,q (W ) → B(H ) be an irreducible representation of C∗
r,q (W ), that

is (π(C∗
r,q (W )))′ =C1. Bernstein’s decomposition (see Theorem 3.3.1) states that the

Iwahori-Hecke algebra Cq [W ] is finitely generated over its center. The representa-
tion π maps the center to C1 and therefore π(C∗

r,q (W )) ⊆B(H ) is finite-dimensional
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where the dimension is bounded by #W0. It follows that H must also be of fi-
nite dimension with dim(H ) ≤ #W0, thus C∗

r,q (W ) is subhomogeneous. From [33,
Proposition 2.7.7] one then deduces that C∗

r,q (W ) is nuclear.
“(2) ⇒ (3)”: Clear.
“(3) ⇒ (5)”: If C∗

r,q (W ) is nuclear for fixed q ∈ R(W,S)
>0 , then the bicommutant

Nq (W ) = (C∗
r,q (W ))′′ must be injective by [33, Exercise 3.6.4, Corollary 3.8.6 and

Theorem 9.3.3].
“(5) ⇒ (1)”: Assume that (W,S) is of non-affine type. By Proposition 2.7.20, W

contains the free group on two generators. Denote the corresponding generators
by a1, a2 and let M be the von Neumann subalgebra of Nq (W ) generated by T (q)

a1

and T (q)
a2

. Let further M1 be the von Neumann algebra generated by T (q)
a1

and M2

the one generated by T (q)
a2

. One checks that M is isomorphic to the free product
(M1,τq,1)? (M2,τq,2) over the canonical traces. The dimensions of M1, M2 are in-
finite, so M is non-injective by [177, Theorem 4.1 and Remark 4.2 (5)]. But there
exists a trace-preserving normal conditional expectation EM : Nq (W ) →M (see for
example [33, Lemma 1.5.11] or [46, Corollary 3.3]), so Nq (W ) must be non-injective
as well.

“(2) ⇔ (4)”: Clear from the arguments above.

By exploiting the graph product structure of right-angled Hecke-von Neumann
algebras (see Subsection 4.3.1), in [46] Caspers proved the Haagerup property for
single-parameter right-angled Hecke-von Neumann algebras. The proof translates
verbatim to the multi-parameter setting.

Theorem 8.1.3 ([46, Theorem 3.9]). Let (W,S) be a right-angled Coxeter system and let
q ∈ R(W,S)

>0 be a multi-parameter. Then the Hecke-von Neumann algebra Nq (W ) has the
Haagerup property.

By applying the results of Section 7.7 we can complement Caspers’ results with
Hecke-von Neumann algebras induced by virtually free Coxeter groups.

Corollary 8.1.4. Let (W,S) be a Coxeter system, let q ∈ R(W,S)
>0 be a multi-parameter and

assume that W is virtually free. Then the corresponding Hecke-von Neumann algebra
Nq (W ) has the Haagerup property.

Proof. Recall that by the discussion in Subsection 2.7.5 the smallest class G of Co-
xeter groups which contains all finite rank spherical type Coxeter groups and
which is closed under taking amalgamated free products over spherical special
subgroups, coincides with the class of all virtually free Coxeter groups. Since in-
jectivity implies the Haagerup property, from Theorem 8.1.2 in combination with
Proposition 3.6.5 and Corollary 7.7.2 it therefore follows that Nq (W ) has the Haa-
gerup property.





9
FUNDAMENTAL PROPERTIES OF

HECKE OPERATOR ALGEBRAS

The notion of smallness at infinity (see Subsection 2.3.2) that we studied in Sub-
section 5.2.4 in the context of compactifications of Coxeter groups has a number of
interesting operator algebraic implications. In this chapter we will apply a method
used by Higson and Guentner (see [105]) in the context of word hyperbolic groups,
to deduce rigidity properties for Hecke-von Neumann algebras of Coxeter systems
which are small at infinity.

The content of this chapter is based on Section 4 of

• M. Klisse, Topological boundaries of connected graphs and Coxeter groups, to ap-
pear in the Journal of Operator Theory.

9.1. THE AKEMANN-OSTRAND PROPERTY FOR HECKE-
VON NEUMANN ALGEBRAS

In [105] Higson and Guentner used suitable compactifications (namely hyperbolic
compactifications, see Subsection 2.5.2) of groups that are small at infinity in the
sense of Definition 2.3.9 to prove that for a word hyperbolic discrete group G the
map C∗

r (G)¯ JC∗
r (G)J →B(`2(G))/K (`2(G)), x ⊗ y 7→ x y +K (`2(G)) where J denotes

the modular conjugation operator is continuous with respect to the minimal tensor
norm. The same statement has earlier been shown by Akemann and Ostrand in [1]
for free groups by using a different method. The notion of the property Akemann-
Ostrand (property (AO )) was introduced in [148] and was famously applied by

199
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Ozawa to rigidity questions of von Neumann algebras. Variations of property
(AO ) have later been introduced in [111] and [108]. Ozawa proved in [148] that
finite von Neumann algebras that satisfy property (AO ) are solid in the sense that
the relative commutant of any diffuse von Neumann subalgebra is injective. Using
the stronger notion of strong solidity, Ozawa and Popa (see [150]) were able to find
classes of von Neumann algebras that have no (von Neumann algebraic) Cartan
subalgebras. Their approach has been advanced by Popa and Vaes in [156] (see
also Chifan-Sinclair [52]). Isono [111] later proved that finite factors with the weak-
∗ completely bounded approximation property that satisfy condition (AO )+ are
strongly solid.

Using a method similar to that of Higson and Guentner (see also [46, Section
5]), we prove that Hecke-von Neumann algebras of Coxeter systems that are small
at infinity (in the sense of Definition 5.2.10) satisfy Isono’s strong condition (AO )
(see [108]). The same statement was claimed in [46] in the case of right-angled hy-
perbolic Coxeter groups. However, the proof presented there contains a gap since
for general word hyperbolic Coxeter systems (W,S) the boundary ∂(W,S) does not
identify with the hyperbolic boundary ∂hW . We correct it in the case of Coxeter
groups which are small at infinity. Further results which go in a similar direction
appear in [24].

Definition 9.1.1 ([108, Definition 103]). Let M be a von Neumann algebra and
(M ,H , J ,P) a standard form for M . We say that M satisfies the strong Akemann-
Ostrand condition (strong condition (A O)) if there exist unital C∗-subalgebras A ⊆M ,
C ⊆B(H ) such that:

(1) A is exact and σ-weakly dense in M ;

(2) C is nuclear and contains A;

(3) The set of commutators [C , J AJ ] := {[c, Ja J ] | c ∈C , a ∈ A} is contained in the
compact operators K .

Theorem 9.1.2. Let (W,S) be a finite rank Coxeter system that is small at infinity and
let q ∈ R(W,S)

>0 be a multi-parameter. Then the Hecke-von Neumann algebra Nq (W ) ⊆
B(`2(W )) satisfies the strong condition (AO ).

Proof. Set A := C∗
r,q (W ) and C :=A(W,S) where A(W,S) is defined as in Section 5.3

as the smallest C∗-subalgebra of B(`2(W )) that contains all Hecke C∗-algebras of
the system (W,S). The first property of Definition 9.1.1 follows from Theorem 8.1.2.
Further, the nuclearity of C is clear by Corollary 5.3.1 (or follows from Corollary
5.2.3 and Theorem 5.2.15). It remains to show that [C , J AJ ] ⊆K (`2(W )) where J AJ =
C∗,r

r,q (W ). Note that A(W,S) is the unital C∗-subalgebra of B(`2(W )) generated by
all operators T (1)

s , s ∈ S and Pw, w ∈W . One can further write T (q),r
s = T (1),r

s +ps (q)P r
s

for all s ∈ S where P r
s ∈B(`2(W )) is the orthogonal projection onto the subspace

Span{δw | w ∈W with s ≤ w−1}
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of `2(W ). We assumed W to be small at infinity, so by the discussion in Subsection
2.3.2, [

T (1)
s ,P r

w

] ∈K (`2(W )) and
[
Pw,T (1),r

s

] ∈K (`2(W ))

for s ∈ S, w ∈W and further [
T (1)

s ,T (1),r
t

]
= [

Pv,P r
w

]= 0

for all s, t ∈ S and v,w ∈W . Therefore, [C , J AJ ] ⊆K (`2(W )) which finishes the proof.

Remark 9.1.3. Theorem 9.1.2 implies in combination with [108, Remark 2.7] that
Hecke-von Neumann algebras of Coxeter systems that are small at infinity sat-
isfy Ozawa’s property (AO ) (see [148]) and Isono’s property (AO )+ (see [111]).
Hence, we get from [148, Theorem 6] that these von Neumann algebras are solid,
meaning that the relative commutant of any diffuse von Neumann subalgebra is
injective. Further, if the Hecke-von Neumann algebra is a II1-factor satisfying the
weak-∗ completely bounded approximation property, then [111, Theorem A] im-
plies that it is strongly solid. The results in [111] rely on [156] and [150]. For
right-angled Hecke-von Neumann algebras the weak-∗ completely bounded ap-
proximation property has been studied in [46].

As discussed in Remark 3.5.7, Dykema’s interpolated free group factors L (Ft ),
t ∈ R>1 (cf. [73], [159]) can be realized as Hecke-von Neumann algebras of free
products of finite right-angled Coxeter groups. Ozawa and Popa showed in [150]
that the interpolated free group factors are strongly solid which strengthens earlier
indecomposability results by Voiculescu [181] and Ozawa [148].

The following corollary is an immediate consequence of Proposition 5.2.16,
Theorem 9.1.2 and the discussion above. The statement is known to experts.

Corollary 9.1.4. For every t ∈ R>1 the interpolated free group factor L (Ft ) satisfies the
strong condition (AO ).

In the context of group algebras, property (AO ) has a number of interesting
applications (see for instance [4]). In particular, it relates to Connes’s notion of
fullness, introduced in [59]. Recall that a factor M is said to be full if for every
bounded net (xi )i∈I ⊆ M with limi

∥∥ϕ(xi ·)−ϕ(·xi )
∥∥ = 0 for all ϕ ∈ M∗ there exists a

bounded net (zi )i∈I ⊆C with xi −zi → 0 in the strong operator topology. In the case
of type II1-factors this definition is equivalent to M not having Murray and von
Neumann’s property Gamma (see [138]). In [60] Connes proved that a II1-factor M is
full if and only if C∗(M ,M ′)∩K (L2(M )) 6= 0 where L2(M ) denotes the GNS-space
corresponding to the tracial state of M .

Compare the following proposition with the results in [166] and [4]. The proof
is close to [4, Proposition 6.19].

Proposition 9.1.5. Let (W,S) be a finite rank non-amenable Coxeter system which is small
at infinity and let q ∈R(W,S)

>0 . Then,

C∗
(
C∗

r,q (W ),C∗,r
r,q (W )

)
∩K (`2(W )) 6= 0.
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If the corresponding Hecke-von Neumann algebra is a II1-factor, then Nq (W ) is full and

C∗
r,q (W )⊗C∗,r

r,q (W ) ∼=π
(
C∗

(
C∗

r,q (W ),C∗,r
r,q (W )

))
.

Proof. Set A := C∗(C∗
r,q (W ),C∗,r

r,q (W )) ⊆ B(`2(W )). By (the proof of) Theorem 9.1.2
the map C∗

r,q (W )¯C∗,r
r,q (W ) → B(`2(W ))/K (`2(W )) given by x ⊗ y 7→ x y +K (`2(W ))

is continuous with respect to the minimal tensor norm. Denote the correspon-
ding extension by ρ. Let µ : C∗

r,q (W )⊗max C∗,r
r,q (W ) →B(`2(W )) and Q : C∗

r,q (W )⊗max

C∗,r
r,q (W ) →C∗

r,q (W )⊗C∗,r
r,q (W ) be the canonical maps. Then, π◦µ= ρ◦Q. Since by our

assumption W is non-affine one can find an element x ∈C∗
r,q (W )⊗max C∗,r

r,q (W ) with
µ(x) 6= 0 and Q(x) = 0. Indeed, if no such element exists then ker(Q) ⊆ ker(µ) and
therefore the map C∗

r,q (W )¯C∗,r
r,q (W ) → B(`2(W )) given by T (q)

v ⊗T (q),r
w 7→ T (q)

v T (q),r
w

is continuous with respect to the minimal tensor norm. With [33, Theorem 6.2.7]
and Theorem 8.1.2 this leads to a contradiction. So let x be an element with µ(x) 6= 0,
Q(x) = 0. Then, 0 6=µ(x) ∈A ∩K (`2(W )) because π◦µ(x) = ρ ◦Q(x) = 0.

In the case of a II1-factor the fullness of Nq (W ) follows from the discussion
above. For the deduction of the existence of the isomorphism it suffices to show
that ρ is isometric. It is well-known (see for instance [70, Cor. 4.1.10]) that a C∗-
algebra acting irreducibly on a Hilbert space H that intersects non-trivially with
the compact operators on H contains all compact operators. Since by the factori-
ality of Nq (W ) the commutant of A is trivial, one hence gets that K (`2(W )) ⊆ A .
We claim that

||| · ||| : Nq (W )¯Nq (W ) →R+,
∑

i
xi ⊗ yi 7→

∥∥∑
xi (J yi J )+K (`2(W ))

∥∥
defines a C∗-norm on Nq (W )¯Nq (W ) where J is the modular conjugation operator.
Indeed, the only property that is not obvious is the definiteness of ||| · |||. It follows
from the fact that the norm closure of{

x ∈Nq (W )¯Nq (W ) | |||x||| = 0
}⊆Nq (W )¯Nq (W )

is an ideal in Nq (W )⊗Nq (W ), that Nq (W ) is a II1-factor (i.e. simple as a C∗-algebra)
and that the spatial tensor product of two simple C∗-algebras is simple. Hence,
||| · ||| defines a C∗-norm. In particular, it majorizes the minimal tensor norm on
Nq (W )¯Nq (W ) so ρ is indeed isometric.

We have already seen that a complete classification of Coxeter systems (and
ranges of multi-parameters q) that give rise to Hecke-von Neumann algebras which
are II1-factors is still an open problem where partial results have been obtained in
[86] and [160]. Considering Proposition 9.1.5, a factoriality result would be parti-
cularly interesting in the case of systems which are small at infinity. We close this
chapter with the following proposition which treats a similar question.

Proposition 9.1.6. Let (W,S) be a finite rank Coxeter system that is small at infinity.
Then C∗

r,q (W )∩C∗,r
r,q (W ) =C1 for every q ∈ R(W,S)

>0 \R′(W,S) where R′(W,S) is defined as
in Subsection 2.7.7.
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Proof. Let q ∈ R(W,S)
>0 \ R′(W,S) and x ∈C∗

r,q (W )∩C∗,r
r,q (W ). By the same argument as

in the proof of Theorem 9.1.2 we have that for every y ∈ A(W,S) the commutator[
x, y

]
is a compact operator in B(`2(W )). This implies that π(x) is in the center of

π(A(W )). But by Corollary 5.3.2 the C∗-algebra π(A(W,S)) is simple, so in particu-
lar its center must be trivial. We deduce that π(x) ∈ C1. Since by Corollary 5.3.7
the quotient map π : B(`2(W )) →B(`2(W ))/K (`2(W )) restricts to an embedding of
C∗

r,q (W ) into π(A(W )), we get that x ∈C1.





10
OPEN PROBLEMS AND

QUESTIONS

In this final part of the dissertation we collect some open problems and questions
which arise from our studies in the previous chapters. These are meant to guide
potential future research on Hecke operator algebras.

HAAGERUP TYPE INEQUALITIES

In Section 4.3 we proved that every right-angled Hecke C∗-algebra admits a Haa-
gerup type inequality which estimates the norm of an operator of length n by its
2-norm up to a polynomial (even linear) bound depending on n. A similar ine-
quality appears in [80, Theorem 1] in the context of group C∗-algebras of Coxeter
groups. It is natural to ask whether such Haagerup type inequalities can be found
for general (not necessarily right-angled) Hecke C∗-algebras.

Question. Does an analogue of the Haagerup inequality in Theorem 4.3.6 hold for
arbitrary finite rank Coxeter systems?

BOUNDARY ACTIONS

In Subsection 5.2.5 we studied Furstenberg’s notion of boundary actions in the con-
text of boundaries of Coxeter groups and characterized the minimality, the strong
proximality and the topological freeness of the canonical action in the case of right-
angled Coxeter groups and in the case of Coxeter groups which are small at infinity
(in the sense of Definition 5.2.10). Similar arguments were used in Section 6.2 to
characterize the simplicity of right-angled Hecke C∗-algebras. As discussed be-
fore, the reduced group C∗-algebra of a Coxeter group is simple (and has a unique

205
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tracial state) if and only if the corresponding Coxeter group only has non-affine
factors. In combination with [120, Theorem 6.2] (and the results in Section 6.2) this
suggests that in the irreducible case the canonical action of a Coxeter group on its
boundary is a topologically free boundary action if and only if the Coxeter group is
of non-affine type. Proposition 5.2.30 further suggests that the action of a Coxeter
group on its boundary is always minimal.

Question. Let (W,S) be a Coxeter system. Can we characterize the minimality of
the canonical action W æ ∂W ?

Question. Let (W,S) be a Coxeter system. Can we characterize the strong proxi-
mality of the canonical action W æ ∂W ?

Question. Let (W,S) be a Coxeter system. Can we characterize the topological
freeness of the canonical action W æ ∂W ?

INJECTIVE ENVELOPES

In Section 5.3 we briefly discussed injective envelopes of Hecke C∗-algebras and
proved that for Coxeter systems (W,S) whose boundary ∂(W,S) defines a W -bounda-
ry in the sense of Furstenberg the injective envelopes of the corresponding Hecke
C∗-algebras embed into the injective envelope of C∗

r (W ). As discussed in Re-
mark 5.3.9, considering Ozawa’s conjecture and its implications (see Section 5.3),
it would be interesting to know if I (C∗

r,q (W )), q ∈ R′(W,S) does not depend on the
choice of q .

Question. Let (W,S) be a Coxeter system. Does for q ∈R′(W,S) the injective enve-
lope I (C∗

r,q (W )) of the Hecke C∗-algebra C∗
r,q (W ) depend on q?

CENTRAL PROJECTIONS AND IDEAL STRUCTURE

It is not difficult to show that central projections of group von Neumann alge-
bras of discrete groups are already contained in the corresponding reduced group
C∗-algebra. By Proposition 6.1.2 a similar phenomenon occurs in the case of right-
angled Hecke-von Neumann algebras. Especially with respect to the open ques-
tion for a characterization of the factoriality of general Hecke-von Neumann alge-
bras and concerning Proposition 9.1.6 answering the following question would be
relevant.

Question. Let (W,S) be a Coxeter system, let q ∈ R(W,S)
>0 and let P ∈Z (Nq (W )) be a

central projection. Is P then already contained in the Hecke C∗-algebra C∗
r,q (W )?

In the case of a right-angled, finite rank Coxeter system (W,S) with #S ≥ 3 the
answer to the question above leads to a decomposition of the Hecke C∗-algebra
C∗

r,q (W ), q ∈R(W,S)
>0 of the form C∗

r,q (W ) ∼=π(C∗
r,q (W ))⊕⊕

ε∈{−1,1}(W,S): |qε|∈R′(W,S)Cwhich
is analogous to the one in the von Neumann algebraic setting, see Corollary 6.1.4.
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It has a flavour similar to Dykema’s decomposition of certain free product C∗-
algebras in Proposition 6.1.8. It would be interesting to characterize the simplicity
of π(C∗

r,q (W )), as this would lead to a complete description of the ideal structure of
C∗

r,q (W ) in the right-angled case.

Question. Let (W,S) be an irreducible, right-angled, finite rank Coxeter system
with #S ≥ 3 and let q ∈ R(W,S)

>0 . Denote by π : B(`2(W )) → B(`2(W ))/K (`2(W )) the
quotient map. Is it then true that π(C∗

r,q (W )) is simple for all q ∈R(W,S)
>0 \R′(W,S)?

SIMPLICITY

With respect to the general setting it is of course of interest to characterize the
simplicity and the unique trace property of arbitrary Coxeter systems.

Question. Let (W,S) be an irreducible, finite rank Coxeter system and q ∈ R(W,S)
>0 .

Is it then true that the corresponding Hecke C∗-algebra C∗
r,q (W ) is simple and has

unique tracial state if and only if q ∈R(W,S)
>0 \R′(W,S)? Can the trace-uniqueness be

obtained from similar methods as in Section 6.2?

HAAGERUP PROPERTY

In Chapter 7 we proved that in the case where the smaller von Neumann algebra
is finite, the (generalized) relative Haagerup property (see Definition 7.2.2) does
not depend on the choice of the conditional expectation, i.e. the relative Haagerup
property is an invariant of the corresponding inclusion. The finiteness assumption
is crucial in our proof since it allows to apply modular theory to the problem and
to pass over into a finite setting. A natural question is whether or not the finiteness
assumption can be dropped.

Question. Let N ⊆ M be a unital inclusion of von Neumann algebras and let
EN ,FN : M → N be two faithful normal conditional expectations. Is it true that
the triple (M ,N ,EN ) has Haagerup property if and only if the triple (M ,N ,FN )
does?

From the results in Chapter 7 we deduced in Chapter 8 that Hecke-von Neu-
mann algebras associated with Coxeter groups which are virtually free have the
Haagerup property. This complements results by Caspers who proved in [46] that
right-angled Hecke-von Neumann algebras also share this property. It is further
known that group von Neumann algebras of arbitrary Coxeter groups have the
Haagerup property.

Question. Let (W,S) be a Coxeter system let q ∈ R(W,S)
>0 . Does C∗

r,q (W ) have the
Haagerup property?
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PROPERTY (AO )

In Chapter 8 we saw that the notion of smallness at infinity of a Coxeter system can
be used to deduce the Akemann-Ostrand property of the corresponding Hecke-
von Neumann algebras. The argument breaks down as soon as the system is not
small at infinity anymore. However, the Definition 9.1.1 is flexible in the sense that
the unital C∗-algebras A and C can be chosen very freely. It is therefore natural to
ask if the Hecke-von Neumann algebras of the system might still satisfy the strong
condition (AO ).

Question. Let (W,S) be a Coxeter system and let q ∈ R(W,S)
>0 . Can we character-

ize when the Hecke-von Neumann algebra Nq (W ) satisfies the (strong) condition
(AO )?

DISTINGUISHING HECKE OPERATOR ALGEBRAS

We finish this collection of problems by getting back to the free factor problem.
Recall that for every Coxeter group W =Z∗l

2 , l ≥ 3 and q ∈ [(l −1)−1,1] the II1-factor
Nq (W ) is isomorphic to L (F2l q(1+q)−2 ) where L (Ft ), t ∈ R>1 denotes Dykema’s in-
terpolated free group factors. Further recall that the interpolated free group fac-
tors are either all isomorphic or they are all non-isomorphic and that the problem
which of the two in this dichotomy is true is the free factor problem. The dis-
tinction of different Hecke-von Neumann algebras is hence closely related to this
major open problem in the field of operator algebras. But also on the C∗-algebraic
level a distinction is of huge interest, see Lemma 3.5.1. In this setting partial results
have been obtained by Raum and Skalski in [161].

Question. Can one distinguish different Hecke operator algebras from each other?



A
APPENDIX

CLASSIFICATION OF SPHERICAL COXETER GROUPS

Spherical type Coxeter systems are entirely classified by their Coxeter diagrams.
In the following we list all Coxeter diagrams of irreducible spherical type Coxeter
systems.

An Bn
4 Dn

E6 E7 E8

F4
4 G2

n H3
5

H4
5 In

n

CLASSIFICATION OF AFFINE COXETER GROUPS

Similar to spherical type Coxeter systems, also affine type Coxeter systems are
entirely classified by their Coxeter diagrams. In the following we list all Coxeter
diagrams of irreducible affine type Coxeter systems.
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Ĩ1
∞



REFERENCES

REFERENCES

[1] C. A. Akemann, P. A. Ostrand, On a tensor product C∗-algebra associated with
the free group on two generators, J. Math. Soc. Japan 27 (1975), no. 4, 589–599.

[2] D. Allcock, Reflection centralizers in Coxeter groups, Transform. Groups 18
(2013), no.3, 599–613.

[3] C. Anantharaman-Delaroche, Amenability and exactness for groups, group ac-
tions and operator algebras, École thématique, Erwin Schrödinger Institute,
Mars 2007 (2007).

[4] C. Anantharaman-Delaroche, On tensor products of group C∗-algebras and re-
lated topics, Limits of graphs in group theory and computer science, 1–35,
EPFL Press, Lausanne, 2009.

[5] C. Anantharaman-Delaroche, S. Popa, Introduction to II1 factors, book,
preprint available at https://www.idpoisson.fr/anantharaman/
publications/IIun.pdf (2010).

[6] C. Anantharaman-Delaroche, The Haagerup property for discrete measured
groupoids, Operator algebra and dynamics, 1–30, Springer Proc. Math. Stat.,
58, Springer, Heidelberg, 2013.

[7] Y. Antolín, D. Dreesen, The Haagerup property is stable under graph products,
arXiv preprint arXiv:1305.6748 (2013).

[8] Y. Antolín, A. Minasyan, Tits alternatives for graph products, J. Reine Angew.
Math. 704 (2015), 55–83.

[9] R. J. Archbold, J. S. Spielberg, Topologically free actions and ideals in discrete C∗-
dynamical systems, Proc. Edingburgh Math. Soc. (2) 37 (1994), no. 1, 119–124.

[10] D. Avitzour, Free products of C∗-algebras, Trans. Amer. Math. Soc. 271 (1982),
no. 2, 423–435.

[11] M. Baillet, Y. Denizeau, J.-F. Havet, Indice d’une espérance conditionnelle, Com-
positio Math. 66 (1988), no. 2, 199–236.

[12] T. Banica, Théorie des représentations du groupe quantique compact libre O(n), C.
R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 3, 241–244.

211

https://www.idpoisson.fr/anantharaman/publications/IIun.pdf
https://www.idpoisson.fr/anantharaman/publications/IIun.pdf


[13] J. Bannon, J. Fang, Some remarks on Haagerup’s approximation property, J. Ope-
rator Theory 65 (2011), no. 2, 403–417.

[14] J. Bannon, A. Marrakchi, N. Ozawa, Full factors and co-amenable inclusions,
Comm. Math. Phys. 378 (2020), no. 2, 1107–1121.

[15] P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K -
theory of group C∗-algebras, C∗-algebras: 1943-1993 (San Antonio, TX, 1993),
240–291, Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994.

[16] A. Bearden, M. Kalantar, Topological boundaries of unitary representations, Int.
Math. Res. Not. IMRN 2021, no. 12, 9425–9457.

[17] M. B. Becca, P. de la Harpe, Groups with simple reduced C∗-algebras, Expo.
Math. 18 (2000), no. 3, 215–230.

[18] J. Bernstein, Le “centre” de Bernstein, Edited by P. Deligne, Travaux en Cours,
Representations of reductive groups over a local field, 1–32, Hermann, Paris,
1984.

[19] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Math-
ematics, 231. Springer, New York, 2005. xiv+363 pp.

[20] B. Blackadar, Operator algebras. Theory of C∗-algebras and von Neumann alge-
bras, Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and
Non-commutative Geometry, III. Springer-Verlag, Berlin, 2006. xx+517 pp.

[21] E. F. Blanchard, K. J. Dykema, Embeddings of reduced free products of operator
algebras, Pacific J. Math. 199 (2001), no. 1, 1–19.

[22] D. P. Blecher, V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99
(1991), no. 2, 262–292.

[23] F. Boca, On the method of constructing irreducible finite index subfactors of Popa.
Pacific J. Math. 161 (1993), no. 2, 201–231.

[24] M. Borst, M. Caspers, M. Wasilewski, Bimodule coefficients, Riesz transforms on
Coxeter groups and strong solidity, arXiv preprint arXiv:2109.00588 (2021).

[25] M. Borst, M. Caspers, M. Klisse, M. Wasilewski, On the isomorphism class of
q-Gaussian C∗-algebras for infinite variables, to appear in Proc. Amer. Math.
Soc.

[26] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Translated from the
1968 French original by Andrew Pressley, Elements of Mathematics (Berlin),
Springer-Verlag, Berlin, 2002. xii+300 pp.
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SUMMARY

This dissertation is concerned with the study of the structure of certain deforma-
tions of operator algebras associated with Coxeter groups. These operator alge-
bras, called Hecke C∗-algebras and Hecke-von Neumann algebras, are operator
algebraic completions of Iwahori-Hecke algebras. They occur as natural abstrac-
tions of certain endomorphism rings occurring in the representation theory of Lie
groups and play a role in knot theory, combinatorics, the theory of buildings, quan-
tum group theory, non-commutative geometry, and the local Langlands program.
In this thesis we mainly focus on the ideal structure of Hecke C∗-algebras, on ap-
proximation properties, and the rigidity of Hecke-von Neumann algebras. On our
way we encounter and study several other concepts such as (Khintchine inequali-
ties of) graph products of operator algebras, topological dynamics associated with
boundaries and compactifications of graphs and (Coxeter) groups, C∗-simplicity
methods, the relative Haagerup property of σ-finite unital inclusions of von Neu-
mann algebras, approximation properties of operator algebras, and the rigidity
theory of von Neumann algebras.

The thesis consists of ten chapters. In the first one, we present the background
material on C∗-algebras and von Neumann algebras, dynamical systems and crossed
product operator algebras, partially ordered sets, graphs, trees, Gromov’s notion
of hyperbolicity, and Coxeter groups, which is necessary for the later chapters.

In Chapter 3 we begin with a detailed exposition to Iwahori-Hecke algebras
and their operator algebraic analogs. Many of the results in this chapter are not
new but we include them for the convenience of the reader. This in particular
concerns Section 3.2 and Section 3.3 where we discuss isomorphism classes of
Iwahori-Hecke algebras associated with finite Coxeter groups and the Bernstein
decomposition of Iwahori-Hecke algebras of affine type. In Section 3.5 we prove
isomorphism results for certain Iwahori-Hecke algebras, discuss their relevance
for the free factor problem and deduce amalgamated free product decompositions
in Section 3.6.

In Chapter 4 we study Caspers and Fima their operator algebraic analog to
Green’s graph products of groups by deducing a Khintchine type inequality for
graph product C∗-algebras. This inequality estimates the operator norm of an
operator of a given length with the norm of certain Haagerup tensor products
of column and row Hilbert spaces and generalizes a result by Ricard and Xu in
the context of free products of C∗-algebras. By decomposing Hecke C∗-algebras
of right-angled Coxeter groups as graph products of two-dimensional Hecke C∗-
algebras, we obtain a Haagerup type inequality which estimates the norm of an
operator of length n by its 2-norm up to a polynomial bound depending on n.
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In Chapter 5 we prepare a new dynamical approach to the study of Hecke
C∗-algebras by defining and exploring natural boundaries and compactifications
associated with connected rooted graphs. Our construction, which reflects com-
binatorial and order theoretic properties of the underlying graph, covers several
interesting examples and (for hyperbolic graphs) nicely relates to Gromov’s con-
struction of hyperbolic compactifications and boundaries. Of particular interest
is the case of Cayley graphs of Coxeter systems for which the natural action of
the Coxeter group on its Cayley graph extends to a continuous action on the com-
pactification and the boundary. We prove that these actions are amenable, we
characterize when the action on the compactification is small at infinity, and we
find classes of Coxeter groups for which the action on the boundary is a boun-
dary action in the sense of Furstenberg. We further identify our construction with
Caprace-Lécureux’s combinatorial compactification as well as Gromov’s horofunc-
tion compactification. In Section 5.3 we then build a bridge to the Hecke operator
algebra setting by embedding (suitable) Hecke C∗-algebras into the C∗-algebraic
crossed products associated with the Coxeter group its boundary and compactifi-
cation. This will allow us to apply geometrical ideas to the study of these operator
algebras.

By employing the dynamical approach from Chapter 5, in Chapter 6 we initiate
the study of the ideal structure and the trace-uniqueness of Hecke C∗-algebras. We
begin by studying central projections in Hecke-von Neumann algebras and show,
by using the Haagerup type inequality obtained in Chapter 4, that in the right-
angled case these are already contained in the corresponding Hecke C∗-algebras.
If present these projections induce characters on the corresponding Hecke C∗-
algebra from which we deduce non-simplicity results. By studying the crossed
product embeddings from Chapter 5 we obtain a complete characterization of the
simplicity of right-angled Hecke C∗-algebras. Further, again with the help of the
Haagerup inequality from Chapter 4 as well as results by Dykema, we obtain par-
tial answers regarding the trace-uniqueness of right-angled Hecke C∗-algebras.

In Chapter 7 we step back from the study of Hecke operator algebras to in-
troduce a notion of the relative Haagerup property for general expected unital
inclusions of σ-finite von Neumann algebras. We prove that our definition, which
involves the choice of a state, rather depends on the conditional expectation of the
inclusion than the state in question. In the case where the smaller von Neumann al-
gebra is finite, we even prove that the relative Haagerup property does not depend
on the choice of the conditional expectation. Further, several variations of the defi-
nition are shown to be equivalent in this case, and in particular, the approximating
maps may be chosen to be unital and preserving the reference state. The concept is
then applied to amalgamated free products of von Neumann algebras and used to
deduce that the standard Haagerup property for a von Neumann algebra is stable
under taking free products with amalgamation over finite-dimensional subalge-
bras. The general results are illustrated by examples coming from von Neumann
algebras of free orthogonal quantum groups.

In Chapter 8 and Chapter 9 we pick up the results of the earlier chapters by de-
ducing approximation properties for Hecke operator algebras (such as exactness,



nuclearity and the Haagerup property) as well as rigidity properties for Hecke-von
Neumann algebras. Our findings in Chapter 9 in particular concern Dykema’s in-
terpolated free group factors which are shown to satisfy the Akemann-Ostrand
property.

The last chapter is devoted to the formulation of questions that naturally arise
in the context of this thesis. It is meant to guide potential future research on Hecke
operator algebras.





SAMENVATTING

Dit proefschrift gaat over deformaties van operatoralgebra’s die op een natuur-
lijke manier geconstrueerd worden uit een Coxetergroep. Deze operatoralgebra’s,
genaamd Hecke-C∗-algebra’s en Hecke-von Neumann-algebra’s, zijn operatoral-
gebraïsche afsluitingen van Iwahori-Hecke-algebra’s. Ze komen voor als abstracte
endomorfismeringen in de representatietheorie van Lie groepen. Deze algebra’s
spelen een belangrijke rol in knopentheorie, combinatoriek, de theorie van ge-
bouwen (Engels: “buildings”), kwantumgroepen, niet-commutatieve meetkunde
en het lokale Langlands programma. In dit proefschrift ligt de voornaamste focus
op de structuur van de idealen van Hecke-C∗-algebra’s, approximatie-eigenschap-
pen en rigiditeit van Hecke-von Neumann-algebra’s. Tegelijkertijd onderzoeken
we andere concepten zoals Khintchine-ongelijkheden van graafproducten, topol-
ogische dynamica van randen en compactificaties van grafen en Coxetergroepen,
methoden om C∗-simpliciteit te bewijzen, de relatieve Haagerupeigenschap van
σ-eindige von Neumann-algebra’s, approximatie-eigenschappen van operatoral-
gebra’s en rigiditeitstheorie van von Neumann-algebra’s.

Dit proefschrift bestaat buiten de introductie uit negen hoofdstukken. Hoofd-
stuk 2 bevat achtergrondmateriaal over C∗-algebra’s, von Neumann-algebra’s, dy-
namische systemen, gekruisde producten, partieel geordende verzamelingen, gra-
fen, bomen, Gromov’s notie van hyperboliciteit en Coxetergroepen.

In Hoofdstuk 3 geven we een meer gedetailleerde beschrijving van Iwahori-
Hecke-algebra’s en de geassocieerde operatoralgebra’s. De meeste resultaten in
dit hoofdstuk komen uit de literatuur en zijn toegevoegd om de thesis toegankelijk
voor de lezer te maken. Dit betreft voornamelijk Hoofdstukken 3.2 en 3.3 die gaan
over isomorfismen van Iwahori-Hecke-algebra’s van eindige Coxetergroepen en
de Bernsteindecompositie van Iwahori-Hecke-algebra’s van affien type. In Hoofd-
stuk 3.5 bewijzen we isomorfisme-resultaten voor bepaalde Iwahori-Hecke-alge-
bra’s. We beschouwen hun relatie en relevantie voor het vrije factoren probleem
(in het Engels bekend als het “free factor problem”). We bewijzen ook een decom-
positiestelling in termen van geamalgameerde vrije producten in Hoofdstuk 3.6.

In Hoofdstuk 4 bestuderen we de constructie van Caspers en Fima van op-
eratoralgebraïsche graafproducten; parallel aan de constructie van Green voor
groepen. We bewijzen een Khintchine-ongelijkheid voor C∗-algebra’s van graaf-
producten. Deze ongelijkheid schat de operatornorm van een operator van zekere
lengte af met de norm van zekere Haageruptensorproducten van kolom- en rij-
Hilbertruimten. Dit generaliseert een resultaat van Ricard en Xu voor vrije pro-
ducten van C∗-algebra’s. Door Hecke-C∗-algebra’s van rechthoekige (Engels: “right-
angled”) Coxetergroepen te ontbinden als graafproducten van tweedimensionale
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Hecke-C∗-algebra’s vinden we een Haagerupongelijkheid die de norm van een
operator van lengte n afschat met zijn 2-norm tot op een polynomiale grens die
afhangt van n.

In Hoofdstuk 5 intoduceren we een nieuwe dynamische aanpak voor de studie
van Hecke-C∗-algebra’s. We definiëren en bestuderen daarbij natuurlijke randen
en compactificaties geassocieerd met samenhangende gewortelde grafen. Onze
constructie reflecteert combinatorische en ordeningseigenschappen van de onder-
liggende graaf en is toepasbaar op verschillende belangrijke voorbeelden. Het
relateert (voor hyperbolische) grafen aan Gromov’s constructie van hyperbolis-
che compactificaties en randen. Van bijzonder belang is het geval van Cayley-
grafen van Coxetersystemen waarvoor de natuurlijke actie van de Coxetergroep
op de Cayleygraaf uitbreidt naar een continue actie op de compactificatie en de
rand. We bewijzen dat deze acties amenabel zijn, we karakteriseren wanneer de
actie op de compactificatie klein is op oneindig en we vinden klassen van Coxeter-
groepen waarvoor de actie op de rand een echte randactie is in de zin van Fursten-
berg. We identificeren in speciale gevallen onze constructie met andere compacti-
ficaties gegeven door Caprace-Lécureux en Gromov. Hierdoor kunnen we opera-
toralgebra’s met meetkundige technieken bestuderen. In Sectie 5.3 maken we een
bruggetje naar Hecke-operatoralgebra’s door (geschikte) Hecke-C∗-algebraísche
gekruisde product geassocieerd met de rand en compactificatie van de Coxeter-
group.

Met behulp van de dynamische concepten van Hoofdstuk 5, bestuderen we in
Hoodstuk 6 de ideaalstructuur en uniciteit van het spoor van Hecke-C∗-algebra’s.
We beginnen met het bestuderen van centrale projecties in Hecke-von Neumann-
algebra’s en laten zien, door gebruik te maken van de Haagerupongelijkheden van
Hoofdstuk 4, dat in het rechthoekige geval deze bevat zijn in de corresponderende
Hecke-C∗-algebra’s. Als deze projecties bestaan dan leggen ze karakters op de
corresponderende Hecke-C∗-algebra’s vast. Dit impliceert vervolgens dat de C∗-
algebra’s niet simpel zijn. Door het bestuderen van de inbeddingen van gekruisde
producten van Hoofdstuk 5 verkrijgen we een complete karakterisatie van sim-
pele rechthoekige Hecke-C∗-algebra’s. Verder gebruiken we de Haagerupongeli-
jkheden samen met resultaten van Dykema om deelresultaten te verkrijgen over
de uniciteit van het spoor op rechthoekige Hecke-C∗-algebra’s.

In Hoofdstuk 7 bestuderen we de relatieve Haagerupeigenschap. We doen
dit in de context van algemene σ-eindige von Neumann-algebra’s met een uni-
tale deelalgebra die een conditionele verwachting toelaten. De relatieve Haage-
rupeigenschap is gedefinieerd in termen van een toestand. We laten echter zien
dat de definitie niet zozeer van de toestand afhangt, maar alleen van de condi-
tionele verwachtingswaarde. Als de deel-von Neumann-algebra eindig is, dan
bewijzen we zelfs dat de relatieve Haagerupeigenschap niet van de conditionele
verwachtingswaarde afhangt. We beschouwen ook enkele alternatieve definities
en laten zien dat deze equivalent zijn. In het bijzonder volgt dat in de defini-
tie de afbeeldingen die de identiteitsafbeelding benaderen zo gekozen kunnen
worden dat ze unitaal zijn en toestandsbewarend. We passen dit toe op geamal-
gameerde vrije producten van von Neumann-algebra’s. Er volgt dat de standaard



Haagerupeigenschap stabiel is onder het nemen van geamalgameerde vrije pro-
ducten over eindig-dimensionale deelalgebra’s. Deze algemene resultaten wor-
den toegepast op voorbeelden van von Neumann-algebra’s van vrije orthogonale
kwantumgroepen.

In Hoofdstuk 8 en Hoofdstuk 9 bewijzen we approximatie-eigenschappen voor
Hecke-operatoralgebra’s zoals exactheid, nucleariteit en de Haagerupeigenschap.
We verkrijgen ook rigiditeitseigenschappen. Onze resultaten hebben toepassing
op Dykema’s geinterpoleerde vrije groepsfactoren waarvan we bewijzen dat ze de
Akemann-Ostrandeigenschap hebben.

In het laatste hoofdstuk sommen we enkele vragen op die op een natuurlijke
manier naar voren komen in de context van deze thesis. Deze zijn bedoeld als
startpunt voor toekomstig onderzoek.

The translation was kindly provided by Martijn Caspers and Gerrit Vos.
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