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a b s t r a c t

Recently it was shown that a certain class of phylogenetic networks, called level-2
networks, cannot be reconstructed from their associated distance matrices. In this paper,
we show that they can be reconstructed from their induced shortest and longest distance
matrices. That is, if two level-2 networks induce the same shortest and longest distance
matrices, then they must be isomorphic. We further show that level-2 networks are
reconstructible from their shortest distance matrices if and only if they do not contain
a subgraph from a family of graphs. A generator of a network is the graph obtained
by deleting all pendant subtrees and suppressing degree-2 vertices. We also show that
networks with a leaf on every generator side are reconstructible from their induced
shortest distance matrix.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Finding a weighted undirected graph that realizes a distance matrix has applications in phylogenetics [12,15],
sychology [8,16], electricity networks [10,11], information theory [9], and other areas. In their seminal paper, [11] showed
hat a necessary and sufficient condition for a distance matrix to be realizable on a graph is for it to be a metric space.
hile this gave existence for graph realizations on any metric spaces, such realizations were not necessarily unique. Many
f the existing distance methods, including the one from this paper, take the following approach. Assuming a graph G
ealizes some distance matrix M , we first identify pendant structures of G from the information provided by M . The
lements involved in such structures are clustered into one element in the newly updated distance matrix M ′. This process
s repeated until all structures of G have been identified, at which point we have essentially constructed G (should such
graph exist).
We consider a restriction of the distance matrix realizability problem in the context of phylogenetics, where graphs

uch as phylogenetic networks are used to elucidate the evolutionary histories of taxa. In recent years, phylogenetic
etworks have attracted increasing attention over phylogenetic trees, due to their generalized nature and ability to
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Fig. 1. Two level-2 networks with the same shortest distances between any pair of leaves. The shortest distance can be worked out by taking the
ength of the shortest path between a pair of leaves, where each edge is of length 1.

epresent non-treelike evolutionary histories; this is suitable in visualizing complex reticulate events such as hybridization
vents and introgression, found to be rife within plants and bacteria [1,12]. In the context of phylogenetics, distances are
efined between pairs of taxa to denote the number of character changes (in terms of the nucleotide bases in DNA) or the
volutionary/genetic distance between them. These distances are generally obtained from multiple sequence alignments.
n this paper, we study the reconstructibility of phylogenetic networks from certain distance matrices. We say that a
network is reconstructible from its induced distance matrix if it is the unique network that realizes the distance matrix.

Because networks contain undirected cycles, there can be many paths between two leaves (leaves are labeled by unique
axa, so leaves and taxa will be used interchangeably). This is in contrast to trees which contain only one path between
ach leaf pair. So while a tree induces only one metric, networks may induce many.1 To date, different matrices have

been considered for phylogenetic network reconstruction. These include the shortest distances (the traditional distance
matrix), the sets of distances [5], and the multisets of distances [3,17], where the latter two are not distance matrices in
the traditional sense of the term, however, they contain information on the inter-leaf distances. In particular, an element of
the multisets of distances is a multiset of all distances between a pair of leaves, together with the multiplicities associated
to each length. The set of distances can be obtained from the multisets of distances by ignoring the multiplicities.2

Both the sets and multisets of distances were first introduced to prove reconstructibility results for distance matrices
induced by particular phylogenetic network classes [3,5]; shortest distances have also been used to prove reconstructibility
results [6,18]. Recent results have shown unique realizability from sets and multisets of distances for certain rooted
networks (tree-child and normal networks3) [2,4] and for certain unrooted networks [17]. In particular, the results of [17]
showed that unweighted binary level-2 networks are reconstructible from their multisets of distances. Binary means that
each leaf is of degree-1 and every other vertex is of degree-3; the level of a network refers to the number of edges needed
to be removed from every biconnected component to obtain a tree (described more in detail below). They also showed
that level-1 networks are reconstructible from their shortest distances, but that level-2 networks were not reconstructible
in general from their shortest distances (Fig. 1).

It is interesting to know which level-2 networks are reconstructible from their shortest distances, or what additional
information is needed to be able to do so. Therefore, motivated by the results in [17], we answer three open problems
for binary networks from the paper on unique realizability of certain distance matrices.

1. Networks with a leaf on every generator side are reconstructible from their induced shortest distance matrix
(Theorem 1);

2. Level-2 networks are reconstructible from their induced shortest and longest distance matrix (sl-distance matrix)
(Theorem 3);

3. We characterize subgraphs of level-2 networks that are responsible for the class to not be reconstructible from
their induced shortest distance matrix (Theorem 4).

Structure of the paper. In Section 2, we give formal definitions of phylogenetic terms. In Section 3, we show that networks
with a leaf on every generator side (i.e., every vertex on the network is at most shortest distance-2 away from a leaf) are
reconstructible from their shortest distances (Theorem 1). In Section 4, we show that level-2 networks are reconstructible
from their sl-distance matrices (Theorem 3). This is proven by first showing that the splits of the network (cut-edges
that induce a partition on the labeled leaves) are determined by the shortest distances that they realize (Theorem 2).
In Section 5, we show a construction for obtaining pairs of distinct level-2 networks from a binary tree that realize the

1 A matrix consisting of inter-leaf shortest distances, and a matrix consisting of inter-leaf longest distances are two examples of a metric induced
by a network.
2 The motivation for considering sets and multisets of distances is mostly combinatorial. It is not clear how such distances can be obtained from a

multiple sequence alignment. A possibility is to divide the alignment into blocks depending on the parts of the chromosome responsible for encoding
particular gene, or by optimizing constraints such as the homoplasy score [13]. Treating each of these blocks as an alignment yields a distance
atrix for each block, which can be collated to give multisets of distances between pairs of taxa. The fundamental flaw in this technique would be

hat every multiset of distances between leaf pairs would be of the same size (in particular the number of blocks), which is not always the case in
he results where these multisets are used.
3 Tree-child networks are directed networks with the property that every non-leaf vertex has a child that is a tree vertex or a leaf. Normal
etworks are tree-child networks with the additional constraint that given an edge uv, there cannot be another path from u to v.
139
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same shortest distance matrix. We show that having such a network as a subgraph renders a level-2 network to be non-
reconstructible from their shortest distances, thereby characterizing the family of subgraphs that are responsible for the
non-reconstructibility (Theorem 4). We close with a discussion in Section 6, presenting ideas for possible future directions.

2. Preliminaries

An (unrooted binary phylogenetic) network on X (where |X | ≥ 2) is a simple connected undirected graph with at least
two leaves where the leaves are labeled bijectively by X and are of degree-1. All internal vertices are of degree-3. An
unrooted binary phylogenetic) tree on X is a network with no cycles.

.1. Graph theoretic definitions

Let N be a network. A set of two leaves {x, y} of N forms a cherry if they share a common neighbor. Let a = (a1, . . . , ak)
be an ordered sequence of k leaves, and let pa = (v1, . . . , vk), where vi is the neighbor of ai for each i ∈ [k] = {1, . . . , k}.4
We allow for v1 = v2 and vk−1 = vk. If pa is a path in N then a is called a chain of length k ≥ 0. We call chains of length 0
an empty chain. Assume that all chains are non-empty unless stated otherwise. Letting chains be of empty length is to
generalize some statements later on in the paper. We say that a is a maximal chain if a does not form a subsequence for
ome other chain. We assume all chains to be maximal, unless stated otherwise. If a is a chain, then the vertices of pa are
called the spine vertices, and the path pa is called a spine. The vertices a1, ak are called the end-leaves of the chain a, and
he vertices v1, vk are called the end-spine vertices of the chain. For brevity, given a set S, we shall write S ∪ a to denote
he set S ∪ {a1, a2, . . . , ak}.

A blob of a network is a maximal 2-connected subgraph with at least three vertices. A network is a level-k network,
ith k ≥ 0, if at most k edges must be deleted from every blob to obtain a tree. We denote an edge between u and v

y uv. We call a cut-edge trivial if the edge is incident to a leaf, and non-trivial otherwise. Given a cut-edge uv we say
that a leaf x can be reached from u (via uv) if, upon deleting the edge uv without suppressing degree-2 vertices, x is in
the same component as v in the resulting subgraph. We say that a leaf is contained in a blob if the neighbor of the leaf
is a vertex of the blob. We say that a chain is contained in a blob if any of the leaves of the chain are contained in the
blob (and therefore all leaves of the chain are contained in the blob). An edge is incident to a blob if exactly one of the
endpoints of the edge is a vertex of the blob. A blob is pendant if there is exactly one non-trivial cut-edge that is incident
to the blob. We say that a leaf x can be reached from a blob B via a cut-edge uv if u is a vertex of B and x can be reached
from u via uv. In this case, we also say that uv or u separates x from B.

Letting X be a set of taxa, a split on X is a partition {A, B} of X . We denote a split which induces the partition {A, B} of X
by A|B where the order in which we list A and B does not matter. Observe that some cut-edges of a network on X naturally
induce a split as there are exactly two parts of the network separated by the edge. We call this a cut-edge induced split.
We call a split A|B non-trivial if both A and B contain at least two elements. Otherwise we call a split trivial. Observe that
non-trivial cut-edges induce non-trivial splits, and that trivial cut-edges induce trivial splits.

In this paper, we assume the restriction that every cut-edge must induce a unique split. Firstly, such a restriction
eliminates the possibility for networks to contain redundant blobs, which are pendant blobs that contain no leaves.
Secondly, the restriction removes all blobs that do not contain leaves, that are incident only to two non-trivial cut-edges.
Such blobs can be interpreted as higher-level analogues of parallel edges.

The generator G(N) of a network N is the multi-graph obtained by deleting all pendant subtrees (i.e., deleting all leaves
from N) and suppressing degree-2 vertices. The generator may contain loops and parallel edges. A vertex of N that is not
deleted or suppressed in the process of obtaining G(N) is called a generator vertex. We call the edges of G(N) the sides
of N . Observe that the sides of N correspond to paths of N . Let s be a side of N , and let e0v1v2 · · · vke1 with k ≥ 0 denote
the path in N corresponding to s, where e0 and e1 are vertices of the generator. If k = 0, then the path is simply the
edge e0e1. We call e0 and e1 the boundary vertices of side s. We say that a leaf x is on side s if x is a neighbor of vi for
some i ∈ [k]. We say that a chain is on side s if all leaves of the chain are on the side s. Observe that a leaf of a chain is on
a side if and only if the chain is on the side. Observe also that v1 · · · vk is a spine of some chain on s. We say that a side
is empty if no leaves are on the side. A side of a blob B is an edge of G(N) which corresponds to a path in B. Observe that
level-2 blobs contain exactly two vertices that are not cut-vertices. We call these the poles of the blob. There are exactly
three edge-disjoint paths between the two poles. We call these three paths in N the main paths of B. The vertices in a
main path s of B that are adjacent to the endpoints of s are called the main end-spine vertices.

We adopt the following notation for pendant level-2 blobs from [17]. Let B be a pendant level-2 blob, and let a, b, c, d
denote the four chains contained in B of lengths k, ℓ,m, n ≥ 0, respectively, such that chains c and d are on the same
main path of B as the non-trivial cut-edge. Then we say that B is of the form (a, b, c, d) (see Fig. 2). The order of the first
two elements a, b, and the order of the last two elements c, d do not matter. For ease of notation, a side without leaves
is seen as a length-0 chain. Note that since every cut-edge induces a unique split, it is not possible to obtain the pendant
blob of the form (1, 0, 0, 0).

4 For consistency later on the section, we let [0] = ∅, the empty set.
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Fig. 2. The seven possible pendant blobs in a level-2 network. The leftmost pendant blob is level-1, and the other pendant blobs are all level-2.
Observe that for the pendant level-1 blob and the pendant level-2 blob of the form (a, 0, 0, 0), the length of the chain a must be of length at least 2.
his is due to the fact that networks do not contain parallel edges nor level-2 blobs with only two cut-edges incident to it. The dashed edges in
hese two blobs indicate that the chain can be longer than 2. For the five other pendant blobs, each of the leaves a, b, c, d indicates a chain.

.2. Distances

For a network N on X , we let dNm(x, y) and dNl (x, y) denote the length of a shortest and a longest path between two
vertices x, y in N , respectively. We exclude the superscript N when there is no ambiguity on the network at hand.
Let a = {a1, . . . , ak} be a set of vertices in N , and let u be a vertex in N that is not in a. Then we define the shortest
istance from u to a as the shortest distance from u to any of the vertices in a, that is, dNm(a, u) = min{dm(ai, u) : i ∈ [k] =

1, . . . , k}}. Similarly, define the longest distance from u to a as the longest distance from u to any of the vertices in a,
hat is, dNl (a, u) = max{dl(ai, u) : i ∈ [k]}.

The shortest distance matrix Dm(N) of N is the |X |× |X | matrix, where the rows and columns are indexed by the leaves
f the network, whose (x, y)-th entry is dNm(x, y). A network N realizes the shortest distance matrix Dm if Dm(N) = Dm. We
ay that a network N is reconstructible from its shortest distance matrix if N is the only network, up to isomorphism, that
ealizes Dm(N). Here, we say that two networks N and N ′ on X are isomorphic if there exists a bijection f from the vertices
f N to the vertices of N ′, such that uv is an edge of N if and only if f (u)f (v) is an edge of N ′, and the leaves of N are
apped to leaves of N ′ of the same label. Similarly, we define the sl-distance matrix (shortest longest-distance matrix) D(N)
s the |X | × |X | matrix, where the rows and columns are indexed by the leaves of the network, whose (x, y)-th entry
s dN (x, y) = {dNm(x, y), d

N
l (x, y)} (see Fig. 3). We say that a network N realizes the sl-distance matrix D if D(N) = D. A

etwork N is reconstructible from its sl-distance matrix if N is the only network, up to isomorphism, that realizes D(N).

.3. Reducing cherries

By definition, we may identify cherries from shortest distance matrices.

bservation 1. Let Dm be a shortest distance matrix. A network N on X that realizes Dm contains a cherry {x, y} if and only
f dm(x, y) = 2.

Reducing a cherry {x, y} to a leaf z from N is the action of deleting both leaves x, y and labeling the remaining unlabeled
egree-1 vertex as z, assuming that z /∈ X (this vertex was the neighbor of x and y in N). As a result of reducing the
herry {x, y}, observe that the shortest distance between two leaves that are both not z are unchanged; the shortest
istance between z and another leaf l ∈ X − {x, y} is exactly one less than that of x and l in N .

bservation 2. Let N be a network on X containing a cherry {x, y}. Upon reducing the cherry to a leaf z, we obtain a
etwork N ′ on X ′

= X ∪ {z} − {x, y} such that the shortest distance matrix for N ′ contains the elements

dN
′

m (a, b) =

{
dNm(a, b) if a, b ∈ X − {x, y}
dNm(a, x) − 1 if a ∈ X − {x, y} and b = z.

In the setting of Observation 2, one may obtain a network that is isomorphic to N from N ′ by adding two labeled
ertices x and y, adding the edges zx and zy, and unlabelling the vertex z. We call this replacing z by a cherry {x, y}.
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Fig. 3. A level-2 network N on the taxa set {a, b, c1, c2, d1, d2, f , g}, its generator G(N), and its sl-distance matrix. N contains a cherry {f , g} and four
chains (a), (b), (c1, c2) and (d1, d2). N contains two pendant blobs: the leftmost is a level-2 blob of the form ((a), (b), (c1, c2), ∅), and the rightmost
is a level-1 blob containing the leaves d1 and d2 . The poles of the pendant level-2 blob are labeled by p1 and p2 . The dotted cut-edge e induces
the non-trivial split {a, b, c1, c2, d1, d2}|{f , g}. The blob side indicated by the dashed path contains the chain (c1, c2). The chains (a) and (c1, c2) are
adjacent once. The chains (a) and (b) are adjacent twice. The sl-matrix has ij-th elements of the form (x, y), where x and y denote the shortest and
longest distances between i and j in N . The diagonal elements, which are all (0, 0), and the lower triangular elements are omitted as the matrix is
symmetric.

Observation 3. Let N be a network on X, and let z be a leaf in N. Let x, y /∈ X be leaf labels that do not appear in N. Then
upon replacing z by a cherry {x, y}, we obtain a network M on Y = X ∪ {x, y} − {z} that realizes the shortest distance matrix
with entries

dMm (a, b) =

⎧⎨⎩
dNm(a, b) if a, b ∈ Y − {x, y}
dNm(a, z) + 1 if a ∈ Y − {x, y} and b ∈ {x, y}
2 if a = x and b = y.

It is easy to see that replacing a leaf by a cherry and reducing a cherry are inverse operations of one another.

Lemma 1. Let N be a network with a cherry {x, y}, and let N ′ denote the network obtained by reducing the cherry from N to
a leaf z. Then N is reconstructible from its shortest distance matrix if and only if N ′ is reconstructible from its shortest distance
matrix.

Proof. Suppose first that the network N is reconstructible from its shortest distance matrix. Suppose for a contradiction
that the shortest distance matrix Dm(N ′) of N ′ is also realized by a network N ′′ that is not isomorphic to N ′. Consider
the networks M ′ and M ′′ obtained from N ′ and N ′′, respectively, by replacing z by a cherry {x, y}. By Observation 3, the
two distinct networks M ′ and M ′′ realize the same shortest distance matrix. However, this shortest distance matrix is
precisely Dm(N), since M ′ is isomorphic to N . This contradicts the fact that N is reconstructible from its shortest distance
matrix. Therefore N ′ must be reconstructible from its shortest distance matrix.

Now suppose that the network N ′ is reconstructible from its shortest distance matrix. If there were two distinct
networks N and M realizing Dm(N), then these networks must both contain the cherry {x, y}. Reducing this cherry to
a leaf z, we see by Observation 2 that both reduced networks, which are distinct, realize the same shortest distance
matrix, which is exactly Dm(N ′). However, this is not possible, as N ′ is reconstructible from its shortest distance matrix.
Therefore N is also reconstructible from its shortest distance matrix. □

Let N be a network. Subtree reduction refers to the action of reducing cherries of N until it is no longer possible to do
so. We refer to the resulting network as the subtree reduced version of N . Note that the subtree reduced version of N is
142
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unique, and the order in which the cherries are reduced does not matter. The following corollary follows immediately by
applying Lemma 1 to every cherry that is reduced in the subtree reduction.

Corollary 1. A network N is reconstructible from its shortest distance matrix if and only if the subtree reduced version of N
s reconstructible from its shortest distance matrix.

Note that Observations 2 and 3, Lemma 1, and Corollary 1 can naturally be extended to the sl-distances, with a single
weak for Observations 2 and 3, where the longest distances are adjusted exactly the same as done for the shortest
istances (replace dm by dl wherever possible). This means we may assume for the rest of the paper, that all networks

have undergone subtree reduction, and therefore that all networks contain no cherries.

2.4. Chains

Upon reducing all cherries from our networks, we may identify unique chains from shortest distance matrices. Recall
that chains are written as sequences a = (a1, . . . , ak) for some k ≥ 1. We shall sometimes write these as (a, k). In what
ollows, we will often require a way of referring to leaves of the network that are not in a particular chain. So while a is
sequence of leaves, we shall sometimes treat a as a set of leaves, e.g., X − a = {l ∈ X : l ̸= ai for i ∈ [k]}.

Observation 4. Let Dm be a shortest distance matrix. A network N on X that realizes Dm contains a chain a = (a1, . . . , ak)
where k ≥ 1 if and only if dm(ai, ai+1) = 3 for all i ∈ [k − 1] and there exists no leaf l ∈ X − a such that dm(a, l) = 3.

Observation 4 implies that the leaves in a network without cherries can be partitioned into chains. Indeed, no leaf can
be contained in two distinct chains, as otherwise the chains would be non-maximal. Let (a, k) and (b, ℓ) be two distinct
chains. We say that (a, k) and (b, ℓ) are adjacent if dm(ai, bj) = 4 for some combination of i ∈ {1, k} and j ∈ {1, ℓ}. Observe
that adjacent chains of a network N can be identified from shortest distance matrices, by first partitioning the leaf set
of N into chains and then checking for chain end-leaves that are distance-4 apart. We say that two chains (a, k) and (b, ℓ)
are adjacent once if exactly one distinct pair of (a, k) and (b, ℓ) is distance-4 apart. We say that the chains (a, k) and (b, ℓ)
are adjacent twice if two distinct pairs of (a, k) and (b, ℓ) end-leaves are distance-4 apart. Since we assume networks to
be binary, two chains may be adjacent at most twice. In the special case where k = ℓ = 1, we can only tell whether the
chains are adjacent from the shortest distances. We cannot tell whether they are adjacent twice. This can however be
inferred from the sl-distance matrix.

2.5. Known results

The following results appeared in [17].

Lemma 2 (Theorem 4.2; Lemma 4.4; Lemma 5.3 of [17]). Let N be a level-2 network on |X |. Then N is reconstructible from its
shortest distance matrix if N is also level-1, if |X | < 4, or if N contains only one blob.

Therefore we may assume that the networks we consider are always at least level-2 on at least four leaves, and that
the network contains at least two blobs. Furthermore, from Section 2.3, we may assume that the networks contain no
cherries.

3. Leaf on each generator side

In this section, we consider networks with at least one leaf on each generator side, and show that such networks
are reconstructible from their shortest distance matrices, regardless of level. Let N be one such network. Since we may
assume that N has no cherries, each side of N can be determined by the chain contained therein. Furthermore, two sides
are adjacent (i.e., the sides share a common endpoint in G(N)) if and only if the chains on the sides are adjacent. Since
chains partition the leaf set of N , this implies that the structure of the generator G(N), and therefore the structure of the
network N is determined by the chains of N and their adjacency in N .

Every vertex in N is either a leaf, a spine vertex of some chain, or a generator vertex. Since networks considered here
are binary, exactly two or three generator sides may be incident to the same vertex in G(N) (as per conventional graph
theory, we say that an edge is incident to its endpoints). If a vertex is incident to exactly two sides in G(N), then one of
these sides must be a loop. Loops in G(N) correspond to pendant level-1 blobs in N . Suppose that (a, k) is a chain (recall
that this is a chain of length k) and is adjacent to exactly one chain (b, ℓ) twice, and that (a, k) is not adjacent to any other
chains. Then (a, k) is contained in a pendant level-1 blob, since we may assume that N is a level-2 network with at least
two blobs. Note that k ≥ 2 as N contains no parallel edges. In such a case, we call the pair (a, b) the bulb of a and b. We
say that a is contained in the bulb as the petal. We say that N contains the petal (a, b).

If a generator vertex is incident to three sides, then the three distinct chains in the network, corresponding to these
three sides must be pairwise adjacent. Now consider three pairwise adjacent distinct chains (a, k), (b, ℓ), (c,m) in N .
Since we may assume N is not a level-2 network with a single blob (as we know such networks are reconstructible
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Fig. 4. A level-3 network with leaves on every generator side. Each letter represents a chain on a side of the network. The network contains the
airwise adjacent triples (a, b, f ), (a, c, d), (b, c, e), (d, e, g), (f , g, h) and the bulb (i, h) with i as the petal. The dashed edges indicate how each of

the nine chains is of length at least 1.

from their shortest distances by Lemma 2), any three chains may be pairwise adjacent at most once. In particular, the
end-leaves of a, b, c that are adjacent are unique. In this case, we say that (a, b, c) forms a pairwise adjacent triple (see
Fig. 4 for examples of pairwise adjacent triples and petals). Therefore, if (a, b, c) is a pairwise adjacent triple, then there
is a generator vertex that is incident to three sides such that one side contains chain a, one chain b and one chain c . We
say that N contains the pairwise adjacent triple (a, b, c).

Note that bulbs and pairwise adjacent triples both consist of three leaves. In what follows, the notion of a median
vertex will be important. Given three vertices a, b, c of a network, a median of a, b, c is a vertex that belongs to a shortest
path between each pair of a, b, c. A median may not always exist for any three vertices (consider, for example, a cycle on
three vertices). However, for our purposes, we shall consider medians of three leaves, which will always exist. Moreover,
a median of three vertices is not necessarily unique, as there may be more than one shortest path between a pair of
vertices in a network.

Lemma 3. Let Dm be a shortest distance matrix. Then Dm can only be realized by a network N with leaves on each side of
the generator, where N is not a single level-2 blob if and only if each chain of Dm is contained in either

(i) two distinct pairwise adjacent triples; or
(ii) one pairwise adjacent triple and one bulb as a non-petal; or
(iii) one bulb as the petal; or
(iv) two bulbs as non-petals.

Proof. Let N be a network with leaves on each generator side and suppose that N realizes Dm. Then each generator
vertex of N is the median of three end-leaves of (not necessarily distinct) chains, such that these end-leaves are pairwise
shortest distance-4 apart. Any three chains may be pairwise adjacent at most once (unless N is a network with a single
level-2 blob, but we have specifically excluded this case in the statement of the lemma), and a chain contained in a
pendant level-1 blob is adjacent twice to exactly one other chain. As N is binary, these median vertices encode either
pairwise adjacent triples or bulbs. By encode, we mean that for every three end-leaves that are pairwise distance-4 apart,
the median vertex corresponding to it is unique. Each chain is contained in exactly two of such constructs, where being
contained in a bulb as the petal counts as two, since each side has two boundary vertices (except for the loop). The result
follows immediately.

To show the other direction of the lemma, we prove the contrapositive. Let N be a network that has at least one empty
generator side, and suppose that N realizes Dm. We want to show that at least one chain of N does not satisfy any of
the four properties (i) − (iv) as stated in the statement of the lemma. Find adjacent sides s1 and s2 of N , such that s1
contains a chain c while s2 is empty. Clearly, c cannot be contained in a bulb as its petal, since s2 contains no chains to
which c can be adjacent twice (cannot satisfy (iii)). So we may assume that c is not contained in a pendant level-1 blob,
and therefore that the boundary vertices e0, e1 of s1 are distinct. We may assume without loss of generality that e0 is the
boundary vertex of s2. Since s2 is empty, e0 cannot be a median of three distinct end-leaves of chains. This implies that c
can only be contained in exactly one pairwise adjacent triple, or in exactly one bulb as a non-petal (which is encoded
by e1) (cannot satisfy (i), (ii), nor (iv)). □

Lemma 4. Let N and N ′ be networks with a leaf on each generator side, such that neither N nor N ′ are level-2 and contain
precisely one level-2 blob. Then N and N ′ are isomorphic if and only if they contain the same chains, the same pairwise adjacent
triples, and the same bulbs, where it is known which end-leaves of the chains are adjacent.
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Proof. Suppose first that N and N ′ contain the same chains, the same pairwise adjacent triples, and the same bulbs.
Then the networks must contain the same leaves and the same spine vertices (and also the edges therein). The remaining
vertices in N and N ′ are their generator vertices, and the remaining edges are those incident on generator vertices and
the end-spine vertices.

We show first that G(N) = G(N ′). Every edge in the generator is a side that contains a chain. Since N and N ′ have
he same chains, the number of edges in G(N) is the same as that in G(N ′). Every vertex in the generator is a median of
end-leaf vertices of three (not-necessarily distinct) chains. These generator vertices uniquely encode a pairwise adjacent
triple or a bulb, since N and N ′ are not level-2 networks that contain precisely one level-2 blob. Since N and N ′ have
the same pairwise adjacent triples and the same bulbs, G(N) and G(N ′) must have the same number of vertices. To see
that G(N) = G(N ′), observe that each generator vertex that encodes the pairwise adjacent triple (a, b, c) or a bulb (a, b)
links the generator edges that contain the chains a, b, c or a, b, respectively. This means that two generator edges share
a common endpoint if and only if the chains that they contain are in the same pairwise adjacent triple or bulb.

To see that N is isomorphic to N ′, simply attach all chains to their corresponding generator sides, noting that the
placement of the end-leaves are determined by the composition of the pairwise adjacent triples. Because we know which
end-leaves of the chains are adjacent, the orientation of the chains are also determined. Since N and N ′ contain the same
pairwise adjacent triples and bulbs, they must be isomorphic.

Conversely, if two networks are isomorphic, then they must have the same chains, the same pairwise adjacent triples,
and the same bulbs. □

Theorem 1. Networks with a leaf on each generator side are reconstructible from its shortest distances.

Proof. If N is a level-2 network with a single blob, then N is reconstructible from its shortest distances by Lemma 2.
Therefore we may assume N is not a level-2 network on a single blob, and therefore we may call Lemmas 3 and 4.

Let N be a network with a leaf on each generator side. This means that every chain in N satisfies one of properties (i)−
(iv) of Lemma 3. As before, let Dm(N) be the shortest distance matrix of N . Suppose that N ′ is another network that
realizes Dm(N). Because each chain of Dm(N) satisfies one of the four properties (i) − (iv) of Lemma 3, N ′ must be a
network with a leaf on each generator side. Furthermore, any network realizing Dm(N) must contain the same chains
as N , by Observation 4. Therefore N and N ′ have the same chains. To see that N and N ′ also have the same generator
vertices, observe that N and N ′ contain the same pairwise adjacent triples and the same bulbs; these can indeed be inferred
from chain adjacencies, which can be inferred from Dm(N) by definition of adjacent chains. It follows by Lemma 4 that N
and N ′ must be isomorphic. □

4. Level-2 reconstructibility from sl-distance matrix

As was pointed out in [17], level-2 networks are in general not reconstructible from their induced shortest distance
matrix. Fig. 1 illustrates two distinct level-2 networks on four leaves with the same shortest distance matrices (Figure 2
of [17]). In this section, we show that level-2 networks are reconstructible from their sl-distance matrix.

4.1. Cut-edges

First, we show that for a level-2 network, we may obtain all the cut-edge induced splits from its shortest distance
matrix. Though the section is concerned with sl-distance reconstructibility, we show that the shortest distance matrix
suffices in obtaining the cut-edge induced splits.

Theorem 2. All cut-edge induced splits of a level-2 network N may be obtained from its shortest distance matrix Dm(N). A
split A|B is induced by a cut-edge of N if and only if for all a, a′

∈ A and b, b′
∈ B,

(i) dm(a, b) + dm(a′, b′) = dm(a, b′) + dm(a′, b); and
(ii) dm(a, a′) + dm(b, b′) ≤ dm(a, b) + dm(a′, b′) − 2.

Proof. The first statement of the theorem follows from the second statement of the theorem. Here, we prove the second
statement.

Let N be a level-2 network on X . Suppose first that A|B is a split induced by some cut-edge uv in N . Let a, a′
∈ A

and b, b′
∈ B be arbitrarily chosen. Since every shortest path from a leaf of A to a leaf of B contains the edge uv, we must

have that

dm(a, b) + dm(a′, b′) = dm(a, u) + dm(u, b) + dm(a′, u) + dm(u, b′)
= d (a, b′) + d (a′, b).
m m
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Fig. 5. All cases examined in the proof of Theorem 2. The dotted edges represent a path between the two vertices.

o property (i) holds. Since the length of the edge uv is 1, property (ii) also holds because

dm(a, b) + dm(a′, b′) = dm(a, u) + 1 + dm(v, b) + dm(a′, u) + 1 + dm(v, b′)
≥ dm(a, a′) + dm(b, b′) + 2,

here in particular, we obtain equality if there exist a shortest path between a and a′ and a shortest path between b
nd b′ containing the vertices u and v, respectively.
Now suppose that A|B is a partition of the leaf-set of N , such that properties (i) and (ii) hold. Let a ∈ A, and let e = uv

e a cut-edge in N that is farthest from a, such that e induces a split which separates a from B. If e induces the split A|B,
hen we are done. So suppose that there exists an a′

∈ A such that e induces a split that separates a from B ∪ {a′
} (in

articular, we may assume that |A| ≥ 2 as every trivial split is clearly induced by a cut-edge). Without loss of generality,
uppose that u is closer to a than to v. We consider several cases (see Fig. 5 for an illustration of the cases).

1. v is not in a blob: Let w, x denote the two neighbors of v that are not u. By our choice of e, there must be a
leaf b ∈ B that can be reached from the edge vw, and a leaf b′

∈ B that can be reached from the edge vx. Without
loss of generality, assume that a′ can be reached from the edge vx. But this means that

dm(a, b) + dm(a′, b′) ≤ dm(a, v) + dm(v, b) + dm(a′, x) + dm(x, b′)
= [d (a, v) + d (v, x) + d (a′, x)] − d (v, x)
m m m m
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+ [dm(b, v) + dm(v, x) + dm(x, b′)] − dm(v, x)
= dm(a, a′) − dm(v, x) + dm(b, b′) − dm(v, x)
= dm(a, a′) + dm(b, b′) − 2
< dm(a, a′) + dm(b, b′),

where the first inequality may be strict since the shortest path between a′ and b′ may not pass through x. This
contradicts the second condition of the claim.

2. v is a vertex of a blob C : The blob C must be incident to at least two cut-edges e1, e2 other than uv, for which
there must be elements b and b′ in B that are reachable from e1 and e2 respectively. Otherwise, as before, this would
contradict our choice of a farthest uv. We claim that if a′ can be reached from either e1 or e2, then we would reach
a contradiction. Without loss of generality, suppose that a′ can be reached from e2. Letting e1 = u1v1 and e2 = u2v2
where v1 and v2 are vertices on C , we have that

dm(a, b) + dm(a′, b′) < dm(a, v) + dm(v, v1) + dm(v1, b) + dm(a′, v2) + dm(v2, b′)
= dm(a, a′) − dm(v, v2) + dm(b, b′) − dm(v1, v2) + dm(v, v1)
≤ dm(a, a′) + dm(b, b′),

where the first inequality follows as the shortest path between a′ and b′ does not contain v2, and the final inequality
follows from the triangle inequality. This contradicts the second condition of the claim. Therefore, we may assume
from now that there are at least four cut-edges incident to the blob C and that no leaves from A and B can be reached
from the same cut-edge incident to C . That is, every cut-edge incident to C induces a split that has either a subset
of A or a subset of B as one of its parts. We refer to these as type-A cut-edges and type-B cut-edges, respectively.
We have another case that is common both for the instances when C is either a level-1 or a level-2 blob.
Suppose first that there exist two pairs of cut-edges e1, e2, and e3, e4 incident to C , whose endpoints are adjacent,
respectively, such that all four edges are distinct and a, b, a′, b′ are reachable from e1, e2, e3, e4 respectively. We
let vi denote the vertices of C that are endpoints of ei for i = 1, 2, 3, 4, respectively. Then we have

dm(a, b) + dm(a′, b′) = dm(a, v1) + dm(v1, v2) + dm(v2, b) + dm(a′, v3)
+ dm(v3, v4) + dm(v4, b′)

= dm(a, a′) + dm(b, b′) − dm(v1, v3) − dm(v2, v4) + 2
≤ dm(a, a′) + dm(b, b′),

where the second equality follows as dm(v1, v2) = dm(v3, v4) = 1. This contradicts the second inequality of the
claim.
If C is a level-1 blob, then the above case always applies. Indeed, there must be at least four cut-edges incident
to C , of which at least two are type-A and the remaining edges are type-B. If there was only one type-B edge, then
such a cut-edge induces the split A|B, and we are done. So this implies that there are always two distinct pairs of
type-A and type-B edges, whose endpoints on C are adjacent. Thus we may assume that C is a level-2 blob.
We may assume that each main path of C contains only type-A cut-edges or only type-B cut-edges, or a combination
of the two, for which such a main path contains one type of cut-edges, a single cut-edge of the other type, and
possibly cut-edges of the first type. For example, a path corresponding to a main path of B may be e0v1 · · · vke1
where k ≥ 2 and e0, e1 are boundary vertices. For some integer j ≤ k, we have v1, v2, . . . , vj−1, vj+1, . . . , vk are
incident to type-A cut-edges, and vj is incident to a type-B cut-edge. We call such a main path a combination side.
Observe that a combination side contains either one type-A or one type-B cut-edge. Also note that the blob C
contains at most one combination side as otherwise there would be two distinct pairs of type-A and type-B edges,
whose endpoints on C are adjacent.

(a) C contains one combination side s: Suppose without loss of generality that s is a combination side containing
exactly one type-A cut-edge. Let v1 denote the endpoint of this cut-edge on C , and let v2 be an adjacent vertex
on C that is incident to a type-B cut-edge. Since C is incident to at least two type-A cut-edges, there must
be another main path s′ of C that is incident to only type-A cut-edges. Similarly, since C is incident to at
least two type-B cut-edges, there must be another type-B cut-edge e4 that is incident to C . We may assume
in particular that an endpoint v4 of e4 is a main end-spine vertex incident either to s or to the third main
path of C . Either way, there must exist an end-spine vertex v3 on s′ such that dm(v3, v4) = 2. Observing
that v3 is an endpoint of a type-A cut-edge, we may assume that the leaves a, b, a′, b′ are separated from C
by v1, v2, v3, v4, respectively. Then,

dm(a, b) + dm(a′, b′) − 2 = dm(a, v1) + dm(v1, v2) + dm(v2, b) + dm(a′, v3)
+ dm(v3, v4) + dm(v4, b′) − 2

= dm(a, a′) + dm(b, b′) + dm(v1, v2) + dm(v3, v4)
− d (v , v ) − d (v , v ) − 2
m 1 3 m 2 4
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Fig. 6. A level-3 network on leaf-set {a, a′, b, b′
}. Observe that the conditions for Theorem 2 are satisfied for A = {a, a′

} and B = {b, b′
}, but there

is no cut-edge that induces the split A|B.

≤ dm(a, a′) + dm(b, b′) + 1 + 2 − 2 − dm(v1, v3)
− dm(v2, v4)

< dm(a, a′) + dm(b, b′),

since dm(v1, v3) ≥ 1 and dm(v2, v4) ≥ 1. This leads to a contradiction of the second condition.
(b) Each main path of C contain cut-edges of the same type: Observe that at least one main path must contain

at least two cut-edges, since there are at least four cut-edges incident to C and C has three main paths.
Without loss of generality, suppose that there is a main path s with at least 2 type-B edges.

i There is another main path s′ with at least two type-A edges: Then choose v1, v3 and v2, v4 to be
the main end-spine vertices of s′ and s, respectively, such that dm(v1, v2) = 2 and dm(v3, v4) = 2.
Supposing that the leaves a, b, a′, b′ are separated from C by v1, v2, v3, v4, respectively, we have that

dm(a, b) + dm(a′, b′) = dm(a′, b) + dm(a, b′) − dm(v1, v4) − dm(v2, v3)
+ dm(v1, v2) + dm(v3, v4)

≤ dm(a′, b) + dm(a, b′) − 3 − 3 + 2 + 2
< dm(a′, b) + dm(a, b′),

since dm(v1, v4) ≥ 3 and dm(v2, v3) ≥ 3, where this inequality is strict when the third main path
contains no cut-edges. This clearly contradicts the first condition of the claim.

ii The other two main paths contain exactly one type-A edge each: Choose v1, v3 to be the two possible
vertices incident to the type-A cut-edges, and v2, v4 to be the main end-spine vertices of s. Supposing
that the leaves a, b, a′, b′ are separated from C by v1, v2, v3, v4, respectively, we have that

dm(a, b) + dm(a′, b′) = dm(a, a′) + dm(b, b′) + dm(v1, v2) + dm(v3, v4) − dm(v1, v3) − dm(v2, v4)
= dm(a, a′) + dm(b, b′) + 4 − 2 − dm(v2, v4)
< dm(a, a′) + dm(b, b′) + 2,

which contradicts the second condition of the claim.

his covers all possible cases, for which we have obtained a contradiction in each case. Therefore A|B must be a cut-edge
nduced split of the network. □

Note that Theorem 2 does not hold for networks of level at least 3 (see Fig. 6). Let us call a split A|B minimal if there
xists no non-trivial split A′

|B′ of the same network such that one of A′ and B′ is a proper subset of A or B. We say that A
nd B are minimal parts of A|B, respectively. Note that minimal parts of a split may not be unique as two pendant blobs
ay be connected by a non-trivial cut-edge e, for which both parts of the split are minimal parts.

emma 5. Let N be a level-2 network on X with at least two pendant blobs. Then N contains a pendant blob containing the
et of leaves A if and only if A|B is a minimal cut-edge induced non-trivial split where A is a minimal part.

roof. Suppose first that N contains a pendant blob C containing the set of leaves A. Then there exists exactly one
on-trivial cut-edge e incident to C , which induces the non-trivial split A|B (where B = X − A). To see that A is a minimal

part, observe that for every cut-edge induced split A′
|B′ where A′

⊆ A, we have |A′
| = 1, since every cut-edge incident

to C other than e is trivial. Therefore, A|B is a minimal split, where A is a minimal part.
Suppose now that A|B is a minimal non-trivial split induced by e, where A is a minimal part. Suppose for a contradiction

that N did not contain a pendant blob with the set of leaves A. Because we may assume N contains no cherries, the part
of N corresponding to the split part A (i.e., the graph obtained by deleting e and taking the component with the leaves
from A) must contain a pendant blob C . Such a pendant blob contains the set of leaves A′, where A′

⊆ A. The non-trivial
cut-edge incident to C induces the split A′

|B′, where B′
= X − A′. By definition, A′

|B′ must be a non-trivial split. But this
contradicts the fact that A|B was minimal. Therefore, N must contain a pendant blob with the set of leaves A. □
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4.2. sl-distance reconstructibility

We show now that we can identify pendant blobs of level-2 networks from their sl-distance matrices.

emma 6. Let N be a level-2 network on X with at least two blobs. Let A|B be a non-trivial split of N where A is the minimal
art. Then N contains a pendant blob containing the set of leaves A, and if A contains

• 1 chain (a, k), then N contains

– a pendant level-1 blob containing (a, k) if and only if

∗ 2 ≤ k ≤ 3, dm(a1, ak) = k + 1, and dl(a1, ak) = 4.
∗ k ≥ 4 and dm(a1, ak) = 4.

– a pendant level-2 blob of the form (a, 0, 0, 0) if and only if

∗ 2 ≤ k ≤ 3, dm(a1, ak) = k + 1, and dl(a1, ak) = 6.
∗ k ≥ 4 and dm(a1, ak) = 5.

• 2 chains (a, k) and (b, ℓ), then N contains

– a pendant level-2 blob of the form (a, b, 0, 0) if and only if for all x ∈ X − (a ∪ b), we have dm(a, x) = dm(b, x).
– a pendant level-2 blob of the form (a, 0, b, 0) if and only if for all x ∈ X − (a∪ b), we have dm(a, x) = dm(b, x)+ 1.

• 3 chains (a, k), (b, ℓ), and (c,m), then N contains

– a pendant level-2 blob of the form (a, b, c, 0) if and only if for all x ∈ X − (a∪b∪ c), we have dm(a, x) = dm(b, x) =

dm(c, x) + 1.
– a pendant level-2 blob of the form (a, 0, b, c) if and only if for all x ∈ X − (a ∪ b ∪ c), we have dm(a, x) =

dm(b, x) + min{ℓ,m} + 1 = dm(c, x) + min{ℓ,m} + 1.

• 4 chains (a, k), (b, ℓ), (c,m), and (d, n) then N contains a pendant level-2 blob of the form (a, b, c, d) if and only if (a, b, c)
and (a, b, d) are both pairwise adjacent triples.

Proof. The fact that N contains a pendant blob containing the set of leaves A follows from Lemma 5.
Suppose first that N contains either a pendant level-1 blob or a pendant level-2 blob of the form (a, b, c, d), where

a, b, c, d could be empty chains. Then it is easy to see by inspection that these distances hold and also that the pairwise
adjacent triple statement holds in the case of 4 chains (see Fig. 2).

To show the other direction, note that within a level-2 network, there is one level-1 pendant blob, and there are six
possible level-2 pendant blobs. We know that N contains a pendant blob with the leaves of A; it remains to show that if
the conditions on the distances are satisfied, then N must contain the corresponding pendant blob. From the sl-distance
matrix, we can infer the number of distinct chains contained in A, as well as their adjacencies. Then, we can infer the type
of this pendant blob by looking at the distance from the leaves of A to some leaf that is not in A. We give one example
here for the case when A consists of exactly three chains. The proof for the other cases follows in an analogous fashion.

We give a proof for the case when A contains 3 chains (a, k), (b, ℓ), and (c,m). Pendant level-1 blobs contain exactly 1
chain; thus the pendant blob must be level-2. Level-2 pendant blobs have three main paths, one of which contains the
endpoint of the incident non-trivial cut-edge. This main path, say s, contains at least 1 chain and at most 2 chains, whilst
the other two main paths contain at most 1 chain. Let x ∈ X −a∪b∪ c be an arbitrary leaf. Two of the chains, say a and b,
have the same minimal distance to x, and the other chain c has different minimal distance. If the distance between c
and x is shorter than that between a and x, then we know that c must be contained in the main path s of B, and we
have a pendant level-2 blob of the form (a, b, c, 0). On the other hand, if the distance between c and x is longer than that
between a and x, then we know that a and b must be contained in the main path s of B, and we have a pendant level-2
blob of the form (c, 0, a, b). □

Observe that in the proof of Lemma 6, the longest distance information was used only to distinguish the pendant
level-1 blob with a chain (a, k) and the pendant level-2 blob of the form (a, 0, 0, 0) for k ∈ {2, 3}. In other words, using
only the shortest distances, the pendant level-1 blob containing 2 leaves cannot be distinguished from the pendant level-2
blob also containing 2 leaves on the same side; the pendant level-1 blob containing 3 leaves cannot be distinguished from
the pendant level-2 blob of containing the same leaves on the same side. We shall denote these four subgraph structures
as bad blobs. That is, we say that a level-1 blob is bad if it is incident to exactly three or four cut-edges. We say that a
level-2 blob B is bad if, of the three main paths s1, s2, s3 of B, the main side s1 is incident to a single cut-edge, s2 is incident
to no cut-edges, and s3 is incident to exactly two or three cut-edges.

The reason why we cannot discern these bad blobs is because the shortest distance between the end-leaves of the
chain uses the path containing the spine of the chain, which is the same length for both pendant level-1 and pendant
level-2 blobs. Whenever these chains contain at least 4 leaves, a shortest path no longer contains the spine; since such
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paths differ in distance for pendant level-1 and pendant level-2 blobs with a single chain, we are able to identify such
pendant blobs. We later show that level-2 networks that do not contain bad blobs are reconstructible from their shortest
distances (Corollary 2).

The following lemma states that if we can identify certain structures within level-2 networks, then we may replace
hem by a leaf, and we may obtain the distance matrix of the reduced network.

emma 7. Let N be a level-2 network on X with a pendant blob B, and replace B by a leaf z /∈ X to obtain the network N ′.
etting Y denote the set of leaves contained in B, we have that the sl-distance matrix of N ′ contains the elements

dN
′

(p, q) = dN (p, q)

or all pair of leaves p, q ∈ X − Y . Now, for all p ∈ X − Y , we have the following.

• B is a pendant level-1 blob with the chain (a, k):

dN
′

(p, z) = {dNm(p, a) − 2, dNl (p, a) − (k + 1)}

• B is a pendant level-2 blob of the form F :

dN
′

(p, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{dNm(p, a) − 3, dNl (p, a) − (k + 3)} if F = (a, 0, 0, 0)
{dNm(p, a) − 3, dNl (p, a) − (k + ℓ + 3)} if F = (a, b, 0, 0)
{dNm(p, c) − 2, dNl (p, c) − (k + m + 3)} if F = (a, 0, c, 0)
{dNm(p, c) − 2, dNl (p, c) − (max{k, ℓ} + m + 3)} if F = (a, b, c, 0)
{dNm(p, c) − 2, dNl (p, c) − (k + m + n + 3)} if F = (a, 0, c, d)
{dNm(p, c) − 2, dNl (p, c) − (max{k, ℓ} + m + n + 3)} if F = (a, b, c, d)

Proof. To obtain the inter-taxa distances for N ′, it suffices to simply subtract the shortest/longest distances from the
vertex of the pendant blob incident to the non-trivial cut-edge to an end-spine leaf of a chain. These distances are easy
to obtain as we know exactly what the pendant blobs are in all cases, due to Lemma 6. □

The above two lemmas will now be combined to prove the following result.

Theorem 3. Level-2 networks are reconstructible from their sl-distance matrix.

Proof. We prove by induction on the size of the network. For the base case, a network on a single edge has two leaves,
which is trivially reconstructible from its shortest distances. In fact, we know by Lemma 2 that a network on a single blob
is reconstructible from its shortest distances. So suppose that we are given a level-2 network N with |E(N)| edges, and
that the result holds for all level-2 networks with at most |E(N)| − 1 edges.

We may assume that N contains at least two pendant blobs. By the results in Section 2.4, we can partition the leaves
into chains, and adjacency between chains can be obtained from sl-distance matrices. By Theorem 2, we can obtain all
cut-edge induced splits of N from its shortest distance matrix; by Lemma 6, we can identify all pendant blobs from these
splits, by using the sl distance matrix. We can also replace one of these pendant blobs by a leaf z to obtain a smaller
level-2 network N ′, for which its shortest and longest inter-taxa distances can be obtained by Lemma 7. By induction
hypothesis, N ′ is reconstructible. Then, we can obtain a network isomorphic to N by replacing the leaf z with the pendant
blob that was originally present.

To see that this network is unique, consider another network M that is not isomorphic to N such that M induces the
same sl-distance matrix as N . Note that M must also contain a pendant blob P , and upon replacing P in M by a leaf z, we
get by the induction hypothesis that the resulting network M ′ must be isomorphic to N ′. We obtain a network isomorphic
to M by replacing the leaf z by P in M ′: but this operation yields a network that is also isomorphic to N . It follows that N
and M must be isomorphic.

Therefore, level-2 networks are reconstructible from their sl-distance matrices. □

As stated before, it is possible to distinguish all pendant blobs from the shortest distances matrices if the networks do
not contain the bad blobs. It follows then that the proof of Theorem 3 can be adapted to prove the following corollary,
when we look at restricted level-2 networks.

Corollary 2. Let N be a level-2 network containing no bad blobs. Then N is reconstructible from its shortest distance matrix.

A direct consequence of Theorem 3 and Corollary 2, for restricted level-2 networks, is that by iteratively reducing
pendant subtrees and pendant blobs from a network, it is possible to reconstruct the network from its sl-distance matrix
and shortest distance matrix, respectively. Note that subtree reduction may be necessary after a few iterations of reducing
pendant blobs from a network, as it is possible to obtain cherries from such reductions. Therefore the above results
implicitly give an algorithm for reconstructing level-2 networks from their sl-distance matrices.
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Completely excluding all bad blobs is quite restrictive. There can indeed exist networks that contain bad blobs that are
till reconstructible from their shortest distances. For example, take a network in which there is exactly one bad blob. By
educing all cherries and all other pendant blobs before we reduce the bad blob, we are able to obtain a network on a single
lob (which is necessarily the bad blob). Since networks on single blobs are reconstructible by Lemma 2, it follows then
hat the original network is also reconstructible. Therefore, in an effort to weaken the restriction of completely disallowing
ad blobs, we next aim to characterize level-2 networks that are not reconstructible from their shortest distances.

. Characterization of level-2 networks that cannot be reconstructed from their shortest distances

In this section we show that level-2 networks that cannot be reconstructed from their shortest distances can be
ategorized by a type of subgraph that they must contain. We only consider shortest distances in this section; we use
N (x, y) to denote the shortest distance between two vertices x and y in a network N .

.1. Alt-path structures

Let T be any binary tree with labeled leaves. Two-color the vertices of T with colors black and red. Let G denote a
raph obtained by

• replacing each black internal vertex by a certain level-2 blob. That is, for each internal vertex v with neighbors ui
for i ∈ [3], delete v, add vertices vi, nv, sv and edges uivi, nvvi, svvi for i ∈ [3];

• replacing each black leaf by a pendant level-2 blob of the form (2, 0, 0, 0) or (3, 0, 0, 0); and
• replacing each red leaf by a pendant level-1 blob with two or three leaves.

he leaves of G are unlabeled. We call G an alt-path structure of T . We may obtain another alt-path structure H of T by
swapping the roles of the red and black vertices in the blob replacement step. We say that H is similar to G if every
pendant blob of H that replaces a leaf l of T contains the same number s of leaves as that of G that replaces l. See Fig. 7
or an example of obtaining two similar alt-path structures from the same binary tree. Note that every binary tree T on
t least two leaves gives rise to exactly two alt-path structures, and these are similar to each other.
We say that a network contains an alt-path structure of some tree if the alt-path structure is a subgraph of the network

p to deleting leaf labels. Suppose that N contains an alt-path structure G of some tree T . Let H be the similar alt-path
tructure of G. The operation of replacing G by its similar alt-path structure is the action of replacing the subgraph G by H
n N .

emma 8. Similar alt-path structures of a given binary tree realize the same shortest distance matrix.

roof. Let N be a level-2 network that is an alt-path structure G of some binary tree T . Let N ′ be a network obtained
rom N by replacing G by its similar alt-path structure.

Let x and y denote two leaves in N . The two networks N and N ′ both contain the same chains by construction.
Furthermore, each chain is of length at most 3. Thus we have that dN (x, y) = dN

′

(x, y) if x and y are contained in the
same chains. So we may assume that x and y are contained in different chains. We wish to show that dN (x, y) = dN

′

(x, y).
Consider the leaves lx and ly of T that were replaced by the pendant blobs containing x and y, respectively. If dT (lx, ly) is
odd, then there is an even number of internal vertices in the path between lx and ly in T . This means that N and N ′ contain
the same number of non-pendant level-2 blobs and the same number of non-leaf vertices not contained in blobs in the
shortest path between x and y. Moreover, due to parity, exactly one of the two leaves will be contained in a pendant
level-1 blob in N and the other leaf in a pendant level-2 blob. The reverse is true for N ′. Thus it follows that if dT (lx, ly)
is odd, then dN (x, y) = dN

′

(x, y). Now if dT (lx, ly) is even, the number of non-pendant level-2 blobs in the shortest path
between x and y will be greater by one in either N or in N ′. Without loss of generality, suppose that N has this property.
But this difference is offset by the fact that the pendant blobs in this path are both level-1 in N , whereas they are both
level-2 in N ′. Therefore dN (x, y) = dN

′

(x, y). □

Corollary 3. Let N be a level-2 network containing an alt-path structure G of some binary tree T as a subgraph. Then N is
not reconstructible from its shortest distance matrix.

Proof. Let N ′ denote the network obtained from N by replacing G by its similar alt-path structure. We claim that the
distinct networks N and N ′ must realize the same shortest distance matrix, thereby proving that N is not reconstructible
from its shortest distance matrix. Consider any two leaves x and y of N , and let P denote a shortest path between x and y
in N . If P does not contain any edges of G, then a path between x and y on the same length must exist in N ′, since only
the subgraph G of N was changed to obtain N ′. On the other hand, if P contains an edge of G, then P must contain exactly
one path of G that starts and ends at two leaves l1, l2 of G. Since only the subgraph G of N was changed to obtain N ′, we
have that dN (x, l1) = dN

′

(x, l1), and that dN (l2, y) = dN
′

(l2, y). By Lemma 8, we have that dN (l1, l2) = dN
′

(l1, l2). So a path
between x and y on the same length must also exist in N ′. It follows that dN

′

(x, y) ≤ dN (x, y).
Now consider a shortest path Q between x and y in N ′. By applying the same arguments to Q , but with the alt-path

structure that is similar to G, we conclude that dN (x, y) ≤ dN
′

(x, y). This proves that dN (x, y) = dN
′

(x, y). □
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Fig. 7. An example of obtaining two alt-path structures from a binary tree T . The network N1 is obtained by replacing all filled internal vertices by
level-2 blob with each cut-edge subdividing the three different sides, filled leaf vertices by a pendant level-2 blob of the form (k, 0, 0, 0) for k = 2

note that this can also be k = 3), and unfilled leaf vertices by a pendant level-1 blob of 2 or 3 leaves. The similar alt-path structure N2 is obtained
y the same construction, with the roles of filled and unfilled vertices reversed. Observe that N1 and N2 have the same shortest distance matrix, as
tated in Lemma 8.

It is now easy to explain why the two networks in Fig. 1 realize the same shortest distance matrix; they contain similar
lt-path structures of a binary tree on two leaves. We show in the next subsection that the converse of Corollary 3, that
level-2 network containing no alt-path structure is reconstructible, is also true.

.2. Level-2 networks without alt-path structures are reconstructible

We introduce some more terminology. Let N be a level-2 network. A blob tree of N is the graph obtained by contracting
ll edges of blobs, deleting all labeled leaves, and suppressing all degree-2 vertices. A vertex of a blob-tree is called a blob-
ertex. We define the connection of a pendant blob as the endpoint of the non-trivial cut-edge incident to the blob that
s not on the blob. We say that a blob B contains a pendant blob C if the connection of C is a vertex of B. For any blob B
n N , we let l(B) denote the level of B.

Let P1 be a bad pendant blob on two leaves l1, l2, and let u be a vertex of N that is not a neighbor of l1 nor l2. We
et dN (P1, u) = dN (l1, u) denote the shortest distance between P1 and u. This is well-defined for all bad pendant blobs
ontaining exactly two leaves, since the shortest distance from either of the two leaves to any other vertex in the network
s the same. Let P2 be another bad pendant blob on two leaves l′1, l

′

2. Then we may similarly define the shortest distance
etween P1 and P2 by dN (P1, P2) = dN (l1, l′1). This again is well-defined as the two bad pendant blobs both contain two

leaves.
Let P1 and P2 be two pendant blobs that are contained in the same blob B. Let p1 and p2 be the connections of P1

and P2, respectively. We say that P1 and P2 are adjacent if p1 and p2 are adjacent. Let l be a leaf that is not contained in P1.
We say that l and P1 are adjacent if the neighbor of l is adjacent to p1. We say that P1 is adjacent to a chain of leaves (a, k)
if P1 is adjacent to an end-leaf of (a, k).

Lemma 9. Let N be a level-2 network on X containing a bad pendant blob with 3 leaves (a1, a2, a3), and let N ′ denote the
network obtained by deleting a2 from N. Then the shortest distance matrix realized by N ′ is given by

dN
′

(x, y) =

{
dN (x, y) if x, y ∈ X − {a2} and {x, y} ̸= {a1, a3};
3 if {x, y} = {a1, a3}.
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Proof. The only shortest paths containing the edges incident to the neighbor of a2 in N were those involving a2, or a
path between a1 and a3. Since a2 is no longer a leaf in N ′, the only path that is affected in the leaf deletion is the shortest
path between a1 and a3, which is now of length 3 in N ′. □

We are now ready to prove the main theorem of the section. Because the proof exhaustively checks for contradictions
within each case, it is rather long, and so we split the three main cases of the proof into subsubsections. In each
subsubsection, a short summary will be given to clarify the proof steps.

Theorem 4. A level-2 network containing no alt-path structure is reconstructible from its shortest distances.

Proof. Suppose for a contradiction that there exist distinct networks N and N ′ with no alt-path structures that realize
the same shortest distance matrix. In particular, choose N and N ′ to be minimal counter-examples with respect to the
size of the networks. This means that every pendant blob of N and N ′ must be a bad blob; indeed, all other pendant blobs
are identifiable from the shortest distance matrix by Lemma 7, and thus can be reduced otherwise, allowing for smaller
counter-examples to exist. We may further assume that all pendant bad blobs contain exactly two leaves, as otherwise
we can find a smaller counter-example by calling Lemma 9. Finally, observe that if N contains a pendant level-1 blob with
some leaves l1, l2, then N ′ must contain a pendant level-2 blob of the form (2, 0, 0, 0) containing the leaves l1, l2, as again
we would be able to obtain a smaller counter-example otherwise. Similarly, if N contains a pendant level-2 blob of the
form (2, 0, 0, 0) with leaves l1, l2 then N ′ must contain a pendant level-1 blob with leaves l1, l2. If N contains a pendant
blob Pi, we say that N ′ contains the corresponding pendant blob P ′

i on the same leaves such that l(Pi) ̸= l(P ′

i ). For each
pendant blob Pi, P ′

i in N,N ′, we let pi, p′

i denote their connections, respectively.
Since N and N ′ realize the same shortest distance matrix, the two networks have the same cut-edge induced splits by

Theorem 2. Since each cut-edge in our networks induces a unique split, this implies that their blob-trees must be identical.
This follows as every edge of the blob tree is a cut-edge of the network, and because trees are uniquely determined by
their induced splits [7]. Note that the blob-vertices of the blob-trees correspond to either a degree-3 vertex, a level-1 blob,
or a level-2 blob of the network. Observe that the blob-tree of N must contain at least 3 blob-vertices, as otherwise N
would be a level-2 network with a single blob – which is reconstructible from their shortest distances by Lemma 2 – or
a level-2 network with two pendant blobs, which implies that N must contain an alt-path structure as N contains only
bad pendant blobs, or N and N ′ cannot realize the same shortest distance matrix.

Consider the blob-vertex u whose neighbors are all leaves, except possibly for one neighbor; let uv denote the edge
in the blob-tree to this one neighbor. Since every edge of the blob-tree corresponds to a non-trivial cut-edge in the
network, the edge uv must be incident to a degree-3 vertex/blob which correspond to u in N and N ′. Let B, B′ denote
the corresponding structures in N,N ′, respectively. Then B contains at least one pendant blob, possibly some chain of
leaves, and the cut-edge uv incident to it, with u as a vertex of B. The same can be said for B′, but we use u′ instead
of u to be the vertex of B′ incident to the cut-edge for clarity. Note that it is possible for u and u′ to be a connection of
some pendant blob. Let B̄ be the graph obtained from N by deleting the edge uv and taking the component containing u.
Similarly define B̄′ as the graph obtained from N ′ by deleting the edge u′v and taking the component containing u′. Since
we have deleted the edges corresponding to the same edge in the blob-tree, B̄ and B̄′ contain the same chains, and B̄
contains a pendant blob if and only if B̄′ contains the corresponding pendant blob. Observe that B̄ and B̄′ are not networks
because they contain a degree-2 vertex u and u′, respectively. However, to avoid having to introduce new notation, we
shall still use terms defined for networks, such as blobs containing pendant blobs, pendant blobs being adjacent to one
another in B̄ and B̄′.

The rest of the proof will be as follows. We consider the cases where B is a degree-3 vertex, a level-1 blob, or a level-2
blob. Based on the graph B̄ in comparison with the graph B̄′, we seek a contradiction with regard to the networks realizing
the shortest distance matrix and the choice of the minimum counter-example. Because the results are symmetric, it is
worth mentioning that once we have proven the case for when B is a degree-3 vertex, then we may assume that B′ is
also not a degree-3 vertex. After we prove the case for when B is a level-1 blob, then we may assume that B′ is also not
a level-1 blob.

The following claim will be used extensively throughout the proof.

Claim 1. Let x, y be leaves in B̄. Then

dN (x, u) − dN
′

(x, u′) = dN (y, u) − dN
′

(y, u′).

Proof. Let z be a leaf of N that is not in B̄. Such a leaf must exist by our choice of B, and in particular, z must be reachable
rom B via uv. Then we have

dN (z, x) = dN (z, u) + dN (u, x)

dN (z, y) = dN (z, u) + dN (u, y),

which gives

dN (z, x) − dN (z, y) = dN (x, u) − dN (y, u).
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Similarly we have

dN
′

(z, x) − dN
′

(z, y) = dN
′

(x, u′) − dN
′

(y, u′).

Since the shortest distance matrices of N and N ′ are the same, we have

dN (x, u) − dN
′

(x, u′) = dN (y, u) − dN
′

(y, u′). □

5.2.1. B is a degree-3 vertex in N

Suppose first that a leaf l is a neighbor of u in B̄, and let P1 be a pendant blob in B̄ whose connection is u. Since N ′

has the same cut-edge induced splits, B̄′ must either be a degree-3 vertex or a blob that contains l and the corresponding
pendant blob P ′

1. But then

dN (P1, l) = 4,

whereas

dN
′

(P ′

1, l) ≥ 5,

which contradicts the fact that N and N ′ must realize the same shortest distance matrix.
So now suppose that u is the connection of two pendant blobs P1 and P2 in B̄. We check the three possible scenarios

with regard to the levels of P1 and P2.

1. l(P1) = 1 and l(P2) = 1: Then we have dN (P1, P2) = 6. But since l(P ′

1) = l(P ′

2) = 2, we must have that dN
′

(P ′

1, P
′

2) ≥

8. This contradicts the fact that N and N ′ realize the same shortest distance matrix.
2. l(P1) = 1 and l(P2) = 2: Then we have dN (P1, P2) = 7. Since l(P ′

1) = 2 and l(P ′

2) = 1, we have that dN
′

(P ′

1, P
′

2) ≥ 7,
where equality is achieved whenever u′ is a degree-3 vertex. But this would mean that

dN (P1, u) − dN
′

(P ′

1, u
′) = −1,

whereas

dN (P2, u) − dN
′

(P ′

2, u
′) = 1,

which contradicts Claim 1.
3. l(P1) = 2 and l(P2) = 2 (see Fig. 8 for an illustration of the cases): Then dN (P1, P2) = 8. Since l(P ′

1) = l(P ′

2) = 1,
and because N ′ contains a split with one of the sets containing exactly the leaves of P ′

1 and P ′

2, B
′ must be a level-2

blob.
In particular, P ′

1 and P ′

2 cannot be adjacent. There are two possibilities for this — u′ is a neighbor of one of p′

1 or p′

2
but not the other, or all three vertices u′, p′

1, p
′

2 are pairwise non-adjacent (i.e., they all lie on different main paths
of B̄′). In the former case, we have that, assuming without loss of generality that u′ is adjacent to p′

1,

dN (P1, u) − dN
′

(P ′

1, u
′) = 4 − 4 = 0,

whereas

dN (P2, u) − dN
′

(P ′

2, u
′) = 4 − 5 = −1,

which contradicts Claim 1. For the latter case, we claim that there is a smaller counter-example. We replace B̄
in N by a pendant level-1 blob P3 containing two leaves l1, l2. We replace B̄′ in N ′ by a pendant level-2 blob P ′

3 of
the form (2, 0, 0, 0) with the same leaves l1, l2. Then, we may adjust the shortest distance matrix by first deleting
elements containing the leaves of P1 and P2. And for all other leaves z in the network, we add the elements

dN (li, z) = dN (P1, z) − 2,

and

dN
′

(li, z) = dN (P ′

1, z) − 2

for i = 1, 2. All other matrix elements remain the same. Note that before the replacement of the blobs,

dN (P1, u) = dN (P2, u) = 4,

and

dN
′

(P ′

1, u
′) = dN

′

(P ′

2, u
′) = 5.

The replacement of B̄ and B̄′ by pendant level-1 and level-2 blobs, respectively ensures that the distance differences
are preserved. Therefore the modified networks both must satisfy this new reduced shortest distance matrix. These
modified networks N and N ′ still contain no alt-path structures, as otherwise the original networks also must have
contained alt-path structures; all other parts of the networks remain unchanged, and the two leaves l1 and l2 are
contained in pendant blobs of different level in N and N ′. Therefore, this gives a counter-example on fewer leaves
than that of N and N ′, contradicting our original choice of N and N ′.
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Fig. 8. Section 5.2.1 case 3 in the proof of Theorem 4. The left figure is the part of the network N containing the internal vertex B and its neighboring
endant blobs. The middle and the right figures are the two subcases for what N ′ could look like. In the middle network, two cut-edges are incident
o the same side; in the right network, the three cut-edges are incident to distinct sides of B′ .

.2.2. B is a level-1 blob in N :
We may now also assume that B′ is either a level-1 or a level-2 blob. Note that either B̄ or B̄′ must contain a pendant

evel-1 blob, and that we shall obtain a contradiction in each of those cases. Before we do so, we prove a claim that will
e used in many of the arguments to come. In the following claim, we assume that B is either a level-1 or a level-2 blob.

laim 2. Suppose l(B), l(B′) ∈ {1, 2}, and suppose that B̄ contains a pendant level-1 blob P1. Then,

(i) P1 cannot be adjacent to a chain of leaves (a, k) in B̄;
(ii) P1 cannot be adjacent to another pendant level-1 blob in B̄;
(iii) P1 is adjacent to a pendant level-2 blob P2 in B̄ if and only if P ′

1 and P ′

2 are adjacent in B̄′;
(iv) P1 is adjacent to at most one pendant level-2 blob in B̄. In particular, this means that every pendant level-2 blob in B̄ is

adjacent to at most one pendant level-1 blob.
(v) P1 can be shortest distance 6 away from at most two end-leaves of distinct chains in B̄.

roof.

(i) If P1 is adjacent to a chain of leaves (a, k), then one of the end-leaves of (a, k) must be shortest distance 5
away from P1. Without loss of generality, suppose that dN (P1, a1) = 5. In B′, since l(P ′) = 2, we must have
that dN

′

(P ′

1, a1) ≥ 6, which contradicts the fact that N and N ′ must realize the same shortest distance matrix.
(ii) If P1 is adjacent to another pendant level-1 blob P2, then dN (P1, P2) = 7. In B̄′, both corresponding pendant blobs are

of level-2. This means that dN
′

(P ′

1, P
′

2) ≥ 8, which contradicts the fact that N and N ′ must satisfy the same shortest
distance matrix.

(iii) If P1 is adjacent to P2, then we have dN (P1, P2) = 8. Since N and N ′ satisfy the same shortest distance matrix,
one must also have dN

′

(P ′

1, P
′

2) = 8. The shortest distance from P ′

1 to its connection p′

1, and that from P ′

2 to its
connection p′

2 is 3 and 4, respectively. Since l(B′) ∈ {1, 2}, the vertices p′

1 and p′

2 cannot be the same. Therefore to
satisfy P ′

1 and P ′

2 being shortest distance 8 from one another in B̄′, one must have that p′

1 and p′

2 are adjacent, which
means that P ′

1 and P ′

2 must be adjacent. The converse follows by symmetry.
(iv) Suppose for a contradiction that P1 is adjacent to two pendant level-2 blobs P2 and P3 in B̄. Then dN (P2, P3) = 10.

By 3., we know that P ′

1 must be adjacent to both P ′

2 and P ′

3 in B̄′. We also know that l(P ′

2) = l(P ′

3) = 1. It follows
that dN

′

(P ′

2, P
′

3) = 8. But this contradicts the fact that N and N ′ must realize the same shortest distance matrix. If
a pendant level-2 blob is adjacent to two pendant level-1 blobs, then the corresponding pendant level-1 blob in B̄′

is adjacent to two pendant level-2 blobs, which we have just shown cannot be true.
(v) Suppose l is an end-leaf of a chain such that dN (P1, l) = 6. Since l(P ′

1) = 2, and since N and N ′ realize the same
shortest distance matrix, the leaf l must be adjacent to P ′

1 in B̄′. So every leaf that is shortest distance 6 away
from P1 in B̄ must be adjacent to P ′

1 in B̄′. Note that P ′

1 can be adjacent to at most two chains. These chains must
be distinct in B̄′, since u′ is contained in B̄′. This implies that in B̄, P1 can be shortest distance 6 away from at most
two end-leaves of distinct chains. □

It follows that each main path of B̄ (and B̄′) may contain at most two pendant level-1 blobs. Either B̄ or B̄′ must contain
a pendant level-1 blob.

1. B̄ has a pendant level-1 blob P1: Since N contains no parallel edges, and since leaves cannot be adjacent to pendant
level-1 blobs, P1 must be adjacent to a pendant level-2 blob P2 in B̄. By Claim 2 (iv), P1 can be adjacent to at most
one pendant level-2 blob in B̄. This implies that p1 must be adjacent to u. In N ′, the corresponding pendant blobs P ′

1
and P ′

2 are adjacent by Claim 2 (iii). Then we have that

dN (P , u) − dN (P , u) ≤ 4 − 5 = −1.
1 2
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Observe that dN
′

(P ′

1, p
′

1) = 4 and dN
′

(P ′

2, p
′

1) = 4 since l(P ′

1) = 2 and l(P ′

2) = 1. This implies that

dN
′

(P ′

1, u
′) − dN

′

(P ′

2, u
′) ≥ dN

′

(P ′

1, p
′

1) + dN
′

(p′

1, u
′) − dN

′

(P ′

2, p
′

1) − dN
′

(p′

1, u
′)

= 4 − 4
= 0,

which is a contradiction to Claim 1.
2. B̄′ has a pendant level-1 blob P ′

1: If l(B
′) = 1, then we are done by symmetry via case 1. So suppose that l(B′) = 2,

and suppose in addition that B̄ contains no pendant level-1 blobs. This implies that B̄′ contains no pendant level-2
blobs. We claim that B̄′ also contains no pendant level-1 blobs other than P ′

1. Suppose for a contradiction that it did,
so that B̄′ contains another pendant level-1 blob P ′

2. Because B̄′ contains no pendant level-2 blobs, and since leaves
cannot be adjacent to pendant level-1 blobs by Claim 2, we must have that p′

1 and p′

2 are adjacent to the same pole,
or that they must both be adjacent to u′. In any case, we must have dN

′

(P ′

1, P
′

2) = 8. But l(P1) = l(P2) = 2, and
therefore dN (P1, P2) ≥ 9, which is a contradiction. So P ′

1 is the only pendant blob in B̄′.
We now consider two possible cases: either p′

1 is or is not adjacent to u′. Either way, at least one main path of B′

that does not contain p′

1 must contain a chain of leaves, as otherwise B′ contains parallel edges, or B′ is a level-2
blob with only two cut-edges incident to it.

(a) p′

1 is adjacent to u′: One of the main paths of B̄′ must contain a chain, since N ′ does not contain parallel
edges. So there must exist a leaf l that is shortest distance 6 away from P ′

1. Then

dN
′

(P ′

1, u
′) − dN

′

(l, u′) ≤ 4 − 3 = 1.

On the other hand, in B̄, the leaf l is adjacent to P1; then dN (P1, p1) = 4 and dN (l, p1) = 2. It follows that

dN (P1, u) − dN (l, u) ≥ dN (P1, p1) + dN (p1, u) − dN (l, p1) − dN (p1, u)
= 2,

which contradicts Claim 1.
(b) p′

1 is not adjacent to u′: Observe that B̄′ has five sides: two sides s′1, s
′

2 which have p′

1 as one of their boundary
vertices; two sides s′3, s

′

4 which have u′ as one of their boundary vertices; and one side s′5 that has neither p′

1
nor u′ as a boundary vertex. By Claim 2 (i) and (v), the sides s′1 and s′2 are empty, and at most two of the
three remaining sides of B̄′ may contain chains. In particular, at least one of these remaining three sides must
contain a chain. We first show that s′5 must be empty. Suppose not, and let (a, k) denote the chain contained
in s′5. Note that both end-leaves of (a, k) are shortest distance 6 away from P ′

1, and so by Claim 2 (v), this
chain must be of length k = 1. Since either s′3 or s′4 must be empty,

dN
′

(a1, u′) − dN
′

(P ′

1, u
′) = 3 − 5 = −2.

In B̄, the blob P1 and the leaf a1 must be adjacent. The vertex u must be adjacent to the neighbor of a1, since B̄
contains no other pendant blobs. So we have

dN (a1, u) − dN (P1, u) ≤ 2 − 5 = −3,

which contradicts Claim 1. So s′5 is empty.
Now suppose that s′3 and s′4 contain the chains (b, ℓ) and (c,m), respectively, where at least one of ℓ ≥ 1
or m ≥ 1 holds. If ℓ = 1 and m = 0, then B̄′, together with the edge incident to u′ is an alt-path structure
of a binary tree on two leaves. This contradicts our choice of N ′. By symmetry, the case m = 1 and ℓ = 0 is
also not possible. So we may assume that ℓ ≥ 1 and m ≥ 1. Suppose the chains are arranged such that

dN
′

(b1, u′) = dN
′

(c1, u′) = 2.

If ℓ > 1 or m > 1, then dN
′

(bℓ, cm) = 5, whereas dN (bℓ, cm) = 4. This contradicts the fact that N and N ′

realize the same shortest distance matrix. So we must have ℓ = m = 1. But then B̄′, together with the edge
incident to u′ is an alt-path structure of a binary tree on two leaves. This contradicts our choice of N ′.

5.2.3. B is a level-2 blob in N :
Our only remaining case is if B and B′ are both level-2 blobs. The proofs of Claims 3–5 are given in the appendix.

Claim 3. Two pendant level-2 blobs cannot be adjacent to one another in B̄ and in B̄′.

An immediate consequence of Claim 3 is that distinct pendant level-1 blobs in B̄ or B̄′ must be distance at least 10
apart. In particular, they cannot be adjacent by Claim 2 and they cannot be shortest distance-8 apart, since two pendant
level-2 blobs are shortest distance at least 9 apart. The following claim dictates the placement of pendant blobs and leaves
in B̄.
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Claim 4. A pendant level-2 blob may not be adjacent to both a pendant level-1 blob and a leaf simultaneously in B̄ and in B̄′.

Pendant level-1 blobs may be adjacent to at most one pendant level-2 blob by Claim 2. Pendant level-2 blobs cannot
e adjacent to other pendant level-2 blobs by Claim 3. Pendant level-1 blobs cannot be adjacent to a leaf by Claim 4. So
he main path of B̄ (and B̄′) that contains u (u′) contains at most two pendant level-1 blobs; the other two main paths
of B̄ (and B̄′) contain at most one pendant level-1 blob.

laim 5. B̄ and B̄′ contain at most one pendant level-1 blob.

We have now arrived at the two final cases for this proof. In summary, the current setting is as follows. Both B̄ and B̄′

re level-2 blobs, and they both contain at most one pendant level-1 blob. In fact, this implies that B̄ and B̄′ also contain
t most one pendant level-2 blob. We split into the cases for when B̄ does not, or does contain a pendant level-2 blob.

1. B̄ contains no pendant level-2 blob: By assumption, B̄ must contain a pendant level-1 blob P1. Let s denote the
main path of B containing P1. Note that s may contain at most one chain. Indeed, P1 cannot be adjacent to a chain
of leaves by Claim 2 (i), so p1 must be adjacent to a pole of B̄; if p1 is adjacent to u, then s can contain a chain of
leaves (a, k) such that an end-spine vertex of (a, k) is adjacent to u. The other two main paths of B̄ may contain at
most one chain of leaves each. So in total, B̄ may contain at most three chains.
For each chain contained in B̄, we have that one end-leaf of a chain is shortest distance-6 from P1. This means that
each chain contained in B̄ must be adjacent to P ′

1 in B̄′. But P ′

1 may be adjacent to at most two chains. So B̄ may
contain up to two chains. This also implies that B̄′ only contains leaves on the main path that contains p′

1. Since B̄′

contains no parallel edges, we must then have that u′ lies on a main path that does not contain p′

1.
Note that B̄ must contain at least one chain, as otherwise B would be a level-2 blob incident only to two cut-edges.
We now split into subcases depending on the location of u.

(a) u is adjacent to p1: Then dN (P1, u) = 4. Since u′ is not on the same main path as that containing P ′

1, we
have dN

′

(P ′

1, u
′) ≥ 6. Now there exists a leaf l such that dN

′

(l, u′) = 3. Noting that dN (l, u) ≥ 2, we have

dN (P1, u) − dN (l, u) ≤ 2

and

dN
′

(P ′

1, u
′) − dN

′

(l, u′) ≥ 3,

which contradicts Claim 1.
(b) u is not adjacent to p1: We let s, s1, s2 denote the three main paths of B̄ such that s contains p1, s1 contains u,

and s2 contains neither p1 nor u. We claim first that s2 contains no chains. Suppose for a contradiction that
it did contain some chain (a, k). Note first that a1 and ak are both shortest distance 6 from P1; this implies
that P ′

1 is adjacent to both a1 and ak in B̄′, implying that a1 and ak are in different chains in B̄′. But this is not
possible, so we require k = 1. Note also that since B̄ contains at most two chains, u must be adjacent to a pole;
this implies that dN (P1, u) = 5 and dN (a1, u) = 3. However in B′, we have dN

′

(P ′

1, u
′) ≥ 6 and dN ′ (a1, u′) = 3,

which contradicts Claim 1 as

dN (P1, u) − dN (a1, u) = 5 − 3 = 2

whereas

dN
′

(P ′

1, u
′) − dN

′

(a1, u′) ≥ 6 − 3 = 3.

So the main path s2 contains no chains; this leaves only s1 to contain chains.
The main path s1 may contain two chains, (b, ℓ) and (c,m), such that ℓ,m ≥ 0 and dN (b1, u) = dN (c1, u) = 2,
whenever ℓ > 0 and m > 0, respectively. We require ℓ + m ≥ 3, as otherwise B̄ with the edge incident
to u is an alt-path structure that can be obtained from a binary tree on two leaves. We fall into two subcases
depending on the value of ℓ.

i. ℓ = 0: Then m ≥ 3, and so

dN (P1, c1) = 7,

whereas

dN
′

(P ′

1, c1) = 8,

which contradicts the fact that N and N ′ realize the same shortest distance matrix.
ii. ℓ ̸= 0: By symmetry, we may assume m ̸= 0. Now,

dN (b , c ) = 4,
1 1
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whereas

dN
′

(b1, c1) = 5,

since ℓ + m ≥ 3. This contradicts the fact that N and N ′ realize the same shortest distance matrix.

2. B̄ contains one level-2 blob: If B̄ did not contain a pendant level-1 blob, then we are done by applying the
arguments from the previous case to B̄′. So suppose that B̄ contains a pendant level-1 blob P1 and a pendant level-2
blob P2. We first show that P1 and P2 cannot be adjacent in B̄. Suppose that they were adjacent. Then the vertex
on B̄ that is shortest distance-2 from p1 must be a pole of B̄ or u. Indeed, it cannot be a neighbor of some leaf l;
this would mean that dN (P1, l) = 6, implying that P ′

1 must be adjacent to l. But this is not possible by Claim 4. In
particular, it cannot be a connection since B̄ contains only the pendant blobs P1 and P2.
Now, if u was adjacent to p2, then this would mean that the two main paths of B̄ would be empty, resulting in
parallel edges in B̄. So u must either be adjacent to p1 or u must be contained in one of the two other main sides
of B̄. Either way, we have

dN (P1, u) − dN (P2, u) ≤ −1.

In B̄′, we have dN
′

(P ′

1, p
′

1) = dN
′

(P ′

2, p
′

1) = 4. So

dN
′

(P ′

1, u
′) − dN

′

(P ′

2, u
′) ≥ 0,

which contradicts Claim 1. So we may assume that P1 and P2 are not adjacent in B̄. We split into cases depending
on the position of u in B̄.

(a) u is on the same main path as p1: Then u must be adjacent to p1, since P1 cannot be adjacent to a
chain by Claim 2, and since P1 is not adjacent to the only pendant level-2 blob in B̄. Then dN (P1, u) = 4
and dN (P2, u) ≥ 5. We split into subcases depending on the position of u′ in B̄′.

i. u′ is on the same main path as p′

2: Then u′ must be adjacent to p′

2. So we have dN
′

(P ′

2, u
′) = 4

and dN
′

(P ′

1, u
′) ≥ 5, which contradicts Claim 1.

ii. u′ is not on the same main path as p′

2: If u
′ is adjacent to an end-spine vertex of some chain, then

there exists a leaf l such that dN
′

(l, u′) = 2. We also have dN
′

(P ′

1, u
′) ≥ 5. But in B̄, we have dN (l, u) ≥ 2.

This contradicts Claim 1, as

dN (P1, u) − dN (l, u) ≤ 4 − 2 = 2,

whereas

dN
′

(P ′

1, u
′) − dN

′

(l, u′) ≥ 5 − 2 = 3.

So u′ cannot be adjacent to an end-spine vertex of some chain, which means that dN
′

(P ′

2, u
′) = 5.

But dN (P2, u) ≥ 5, and so

dN (P1, u) − dN (P2, u) ≤ 4 − 5 = −1,

whereas

dN
′

(P ′

1, u
′) − dN

′

(P ′

2, u
′) ≥ 0,

which contradicts Claim 1.

(b) u is not on the same main path as p1: We may assume that u′ is not on the same main path as p′

2 by
symmetry (apply the previous case to B̄′).

i. u and p2 are not on the same main side: We let su, s1, s2 denote the three main paths of B̄ such that su
contains u and si contains pi for i = 1, 2.
Note that su may contain up to two chains: denote these chains as (a, k) and (b, ℓ) where dN (a1, u) =

dN (b1, u) = 2, if k > 0 and ℓ > 0, respectively. If k > 0 and ℓ > 0, then dN (P2, a) ≥ 7 and dN (P2, b) ≥ 7.
Since dN (P1, ak) = dN (P1, bℓ) = 6, the pendant blob P ′

1 must be adjacent to the two chains a and b
in B̄′. Depending on the placement of u′, at least one, and at most two of the chain endpoints a1, b1
are shortest distance 6 away from P ′

2. But this contradicts that N and N ′ realize the same shortest
distance matrix. Therefore, su contains at most one chain; this means that dN (P1, u) = 5. We also
have dN (P2, u) ≥ 6.
The same argument can be used in the case when u′ and p′

1 are not on the same main path of B̄′. In
that case, the main path of B̄′ containing u′ contains at most one chain. We now split into subcases

′
depending on the position of u .
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A. u′ and p′

1 are not on the same main path of B̄′: Then, the main path of B̄′ that contains u′

contains at most one chain. In particular, this means that u′ must be adjacent to a pole in B̄′.
So dN

′

(P ′

2, u
′) = 5. Furthermore, dN

′

(P ′

1, u
′) ≥ 6. But this contradicts Claim 1.

B. u′ and p′

1 are on the same main path of B̄′: Consider the generator side s′ of B′ that contains
u′ and a pole of B̄′ as its boundary vertices. We claim that s′ is empty. If not, then s′ contains a
chain (a, k) such that dN

′

(a1, u′) = 2. But then dN
′

(P ′

2, ak) = 6, meaning that ak must be adjacent
to P2 in B. This further implies that dN (P1, a1) = 6, which leads to a contradiction as a1 is clearly
not adjacent to P ′

1 in B′ (we have dN
′

(P ′

1, a1) ≥ 7). Thus s′ must be empty. But then

dN (P1, u) − dN (P2, u) ≤ 5 − 6 = −1,

whereas

dN
′

(P ′

1, u
′) − dN

′

(P ′

2, u
′) ≥ 5 − 5 = 0,

which contradicts Claim 1.

ii. u and p2 are on the same main path of B̄: We may assume also that u′ and p′

1 are on the same main
path of B̄′. Consider the main path s of B̄ that does not contain p1 nor p2. We claim that s is empty.
Suppose not, and suppose that s contains a chain (a, k). In B̄′, we require P ′

1 to be adjacent to both a1
and to ak. For this to be possible, since (a, k) must also be a chain in B̄′, we require k = 1. Note that
in B̄′, the leaf a1 is contained in the side with boundary vertices p′

1 and u′. If it had been contained
in the other side of B̄′ with p′

1 as its boundary vertex, then P2 must be adjacent to a1 in B, which is
clearly not the case. Observe that a shortest path from P1 to u contains the same pole contained in
a shortest path from a1 to u. Noting that the shortest distance from P1 to this pole, and the shortest
distance from a1 to this pole are 4 and 2, respectively, it follows that

dN (P1, u) − dN (a1, u) = 4 − 2 = 2,

whereas

dN
′

(P ′

1, u
′) − dN

′

(a1, u′) = 6 − 2 = 4,

which contradicts Claim 1. So s is empty, and we may assume that the main path of B̄′ that does not
have p′

1 nor p′

2 is empty.
If all three other sides of B are empty, then B contains an alt-path structure formed by a binary tree on
two leaves, and we get a contradiction on the choice of N . In particular, the three sides must contain at
least two leaves. Let s1, s2, s3 denote the sides of B that has p2 but not u, p2 and u, and u but not p2 as
its boundary vertices, respectively. Similarly let s′1, s

′

2, s
′

3 denote the sides of B′ that has p′

1 but not u′, p′

1
and u′, and u but not p′

1 as its boundary vertices, respectively. It is easy to see that a chain contained
in s1 must be contained in s′1; a chain contained in s2 must be contained in s′3; a chain contained in s3
must be contained in s′2.

A. the side s1 is non-empty: Let (a, k) denote the chain contained in s1, such that dN (a1, P2) =

dN (ak, P1) = 6. We claim that s2 and s3 must both be empty. If s2 is non-empty, then it contains
a chain (b, ℓ), such that dN (b1, P2) = 6. So the chains (a, k) and (b, ℓ) are adjacent. In B̄′, the
chain (b, ℓ) is contained in the side s′3. But then (a, k) and (b, ℓ) cannot be adjacent in N ′, which
contradicts the fact that N and N ′ satisfy the same shortest distance matrix. So s2 must be empty.
By applying the same argument to B′, we see that s′2 must also be empty; therefore, the side s3
must be empty. So s2 and s3 must both be empty.
We require k ≥ 2, as otherwise B contains an alt-path structure obtained from a tree on two
leaves. But then

dN (a1, u) − dN (ak, u) = 3 − 4 = −1,

whereas

dN
′

(a1, u′) − dN
′

(ak, u′) = 4 − 3 = 1,

since a1 is adjacent to P2 in B̄ and ak is adjacent to P ′

1 in B̄′. This contradicts Claim 1.
B. the side s1 is empty: Let (b, ℓ) and (c,m) denote the chains contained in s2 and s3, respectively,

such that dN (P2, b1) = 6 and dN (bℓ, cm) = 4, whenever ℓ > 0 and m > 0, respectively. Note
that ℓ + m ≥ 2, as otherwise B̄ together with the edge incident to u is an alt-path structure
formed by a binary tree on two leaves. In particular, at least one of ℓ or m must be non-zero.
By symmetry, we may assume without loss of generality that m > 0. Then in B̄′, the blob P ′

1 is
adjacent to c1. This means that

dN
′

(P ′ , c ) = 7.
2 1
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In B̄, there are three paths from c1 to P2. One uses the empty main path and is of length 8. The
second uses the main path with p1 and is of length 9. These two paths cannot be altered by
deleting leaves. The third path contains the spine of the chain (b, ℓ), and is of length ℓ + m + 6.
Since m ≥ 1, we only obtain dN (P2, c1) = 7 if and only if m = 1 and ℓ = 0. But this is not
possible, since we require ℓ+m ≥ 2. So the networks N and N ′ cannot satisfy the same shortest
distance matrix, which is a contradiction.

Therefore we reach a contradiction for the case when B and B′ are both level-2 blobs.
□

The following corollary follows immediately from Corollary 3 and Theorem 4.

Corollary 4. A level-2 network is reconstructible if and only if it does not contain an alt-path structure.

6. Discussion

The results of this paper build on, and answer three open problems presented in the paper by van Iersel et al. [17].
We have shown that networks with a leaf on each generator side are reconstructible from their shortest distance matrix
(Theorem 1). We have shown that level-2 networks are reconstructible from their sl-distance matrix (Theorem 3). We
have characterized the family of subgraphs that prevent level-2 networks from being reconstructible from their shortest
distances (Theorem 4).

Previously, it was only known that level-2 networks were reconstructible from their multisets of distances, the full
collection of lengths of all inter-taxa distances together with their multiplicities. An algorithm based on this result was
recently presented and implemented in the Bachelor Thesis of Riche Mol [14], where a major bottleneck originated from
having to adjust the large multisets of distances upon identifying and reducing a particular pendant structure. As a
result, the theoretical running time of the algorithm is exponential in the number of leaves in the network (though it
is polynomial in the size of the input, the multisets of distances). The results presented in this paper point to a possibility
of an alternative algorithm for constructing level-2 networks from their sl-distance matrix; since updating the sl-distance
matrix can be done much quicker than for multisets of distances, we wonder if this could culminate in a polynomial time
algorithm with respect to the number of leaves in the network. It would be of great interest to see the speed-up both
theoretically and in practice.

In this paper, we have excluded all blobs incident to exactly two cut-edges. One of the consequences of excluding such
blobs is that we never obtain pendant level-2 blobs of the form (1, 0, 0, 0) in our networks. Conditions for identifying and
educing such pendant blobs from level-2 networks are outlined in Lemmas 5.9 and 5.10 of [17]. In fact, such pendant
lobs can be inferred from only the shortest distance matrix. This means that Theorem 3, which says that level-2 networks
re reconstructible from their sl-distance matrix, holds in general when this restriction is not imposed. On the other hand,
llowing for such blobs introduces a new level of complexity within alt-path structures. Call a level-2 blob with two cut-
dges a macaron, and consider an alt-path structure G obtained from some tree T , and replace every cut-edge in G by a

path of arbitrary many macarons. Call this graph G′. Let H denote a similar alt-path structure to G, and let us replace the
same cut-edges by paths consisting of the same number of macarons (where by the same cut-edge, we mean the cut-edge
that induces the same split). Call this resulting graph H ′. It is easy to see that G′ and H ′ realize the same shortest distance
matrix. The converse is not immediately obvious. In other words, it is not clear whether excluding these ‘macaron-added’
alt-path structures from level-2 networks guarantee reconstructibility from their shortest distances. Nevertheless, we
make the following conjecture.

Conjecture 1. A level-2 network is reconstructible from its shortest distance matrix if and only if after suppressing macarons
and degree-2 vertices, it does not contain an alt-path structure.

A potential shortcoming of our findings lies in the fact that the networks we consider are unweighted. In phylogenetic
analysis, weighted edges are often used to indicate the extent on how two species may differ from one another — to depict
the passage of time, or to indicate the amount of genetic divergence between two species. The major issue that arises from
weighted edges is that the foundational structures such as cherries and chains can no longer be characterized by their
distances. In the rooted weighted variant of the problem, this is overcome by simulating a ‘relative root’ by imposing
ultrametric conditions and through the use of outgroups [4]. This makes it possible to locate cherries and the rooted
analogue of chains (reticulated cherries), even when the network is weighted. While these techniques do not translate over
to the unrooted setting, some additional conditions will almost certainly be required to obtain results for the weighted
variant of the problem.

Appendix. Proof of claims from section 5.2.3

To prove these claims, we will use the following observation.
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Observation 5. Let P1 be a pendant level-1 blob contained in B̄. Suppose that p′

2p
′

1p
′

3p
′

4 is a path in B̄′, such that each p′

i is
a connection for a pendant blob P ′

i for i ∈ [4]. Suppose also that l(P ′

1) = l(P ′

3) = 1 and l(P ′

2) = l(P ′

4) = 2. A vertex p on the
blob B̄ such that dN (p1, p) = 2 must either be u or a pole of B̄.

Proof. Suppose for a contradiction that p is either a neighbor of a leaf or a connection of some pendant blob. Suppose
first that p is a neighbor of a leaf l. Then dN (P1, l) = 6. Since N and N ′ have the same shortest distance matrix, this means
that P ′

1 must be adjacent to l in B̄′. But this is not possible as P ′

1 is already adjacent to P ′

2 and P ′

3. So suppose that p is a
connection of a pendant blob P5. Suppose first that l(P5) = 1. Then dN (P1, P5) = 8. Since l(P ′

1) = l(P ′

5) = 2, such a distance
can be realized in N ′ if and only if p′

1 = p′

5. But this is impossible as B′ is a level-2 blob. Finally suppose that l(P5) = 2.
Then since dN (P1, P5) = 9, the corresponding blob P ′

5 must be adjacent to P ′

2 or to P ′

4, which is not possible as pendant
level-1 blobs cannot be adjacent to one another by Claim 2. □

Claim 3. Two pendant level-2 blobs cannot be adjacent to one another in B̄ (and in B̄′).

Proof. Suppose for a contradiction that B̄ contains two adjacent pendant level-2 blobs P1 and P2 on the main path s.
Then B′ contains two corresponding pendant level-1 blobs P ′

1 and P ′

2 on the same leaves. We split into cases depending
on the locations of p′

1 and p′

2 in B′ (see Fig. 9).

1. p′

1 and p′

2 are on the same main path s′ of B′: Since the shortest distance between p′

1 and p′

2 must be exactly 3,
there must be at least two vertices on the same main path in the path Q ′ between p′

1 and p′

2. This path Q ′ may
contain u′ as a vertex; we split into cases again.

(a) u′ is a vertex of Q ′: Observe first that if both P ′

1 and P ′

2 are adjacent to level-2 blobs P ′

3 and P ′

4 respectively,
then dN

′

(P ′

3, P
′

4) ≥ 10. However, the counterparts of these blobs in B̄ must be adjacent to P1 and P2. Since P1
and P2 are adjacent, this implies that dN (P3, P4) = 9, which contradicts the fact that N and N ′ satisfy the
same shortest distance matrix. Therefore only one of P ′

1 or P ′

2 can be adjacent to a pendant level-2 blob. Note
that at least one of P ′

1 or P ′

2 must be adjacent to a pendant level-2 blob, such that its connection is on the
path Q ′. So without loss of generality, suppose that P ′

1 is adjacent to a pendant level-2 blob P ′

3, such that p′

3
is a vertex in Q ′. At this point, we have that P3, P1 and P1, P2 are adjacent in B̄.
We claim that P ′

3 cannot be adjacent to a leaf or to pendant blobs other than P ′

1 in B̄′. Firstly, if P ′

3 was adjacent
to a leaf l, then dN

′

(P ′

1, l) ∈ {5, 6}. The distance dN
′

(P ′

1, l) = 5 is impossible as l(B) = 2; if dN
′

(P ′

1, l) = 6,
then P1 must be adjacent to l in B̄. But this is impossible as P1 is already adjacent to P2 and P3. This is a
contradiction. The blob P ′

3 cannot be adjacent to a pendant level-1 blob other than P ′

1, as this would contradict
Claim 2. Finally, we claim that P ′

3 cannot be adjacent to a pendant level-2 blob P ′

4. Since this would mean
that dN

′

(P ′

1, P
′

4) = 9, we must in B̄ that either P2 or P3 is adjacent to P4. The former is not possible as P ′

2 is not
adjacent to P ′

4 in B′; the latter is not possible as two pendant level-1 blobs cannot be adjacent by Claim 2.
So P ′

3 cannot be adjacent to a leaf or to pendant blobs in B̄′.
By Claim 2, the connection p′

1 must be adjacent to a pole of B′. Since P ′

2 cannot be adjacent to a leaf or to a
pendant level-1 blob by Claim 2, and it also cannot be adjacent to any pendant level-2 blobs by assumption, p′

2
must also be adjacent to the other pole of B′ and to u′. Since p′

3 must be adjacent to u′, it follows that the
main path s′ is the path p′

1p
′

3u
′p′

2.
Now B′ must contain another leaf on one of the other two main sides since they cannot contain parallel edges.
We claim that such a leaf cannot exist, thereby reaching a contradiction. Let l denote such a leaf that is on
one of these two main sides, whose neighbor (if l is not in a pendant blob) / connection (if l is in a pendant
blob) is shortest distance-2 to p′

1. Suppose first that l is not in a pendant blob. Then

dN
′

(P ′

1, l) = 6,

and so P1 must be adjacent to l in B̄, which is not possible as P1 is already adjacent to P2 and to P3. So now
suppose that l is contained in a pendant level-1 blob. Then

dN
′

(P ′

1, l) = 8.

But the level of the corresponding pendant blob in B̄ is 2, and since l(P1) = 2, we must have that dN (P ′

1, l) ≥ 9,
which contradicts the fact that N and N ′ have the same shortest distance matrix. Finally, if l is contained in
a pendant level-2 blob P ′

4, then

dN
′

(P ′

1, l) = 9.

This means that in B̄, the corresponding blob P4 must be adjacent either to P2 or P3. The former is not possible
as P ′

2 is not adjacent to P ′

4 in B̄′; the latter is not possible as two pendant level-1 blobs cannot be adjacent by
Claim 2.
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(b) u′ is not a vertex of Q ′: Let p′

3 and p′

4 denote the neighbors of p′

1 and p′

2 in this path Q ′, respectively.
Since l(P ′

1) = l(P ′

2) = 1, the vertices p′

3 and p′

4 must be connections of pendant level-2 blobs P ′

3 and P ′

4,
respectively. At this point, we have that P3, P1; P1, P2; P2, P4 are adjacent in B. Now suppose that there is
another vertex p′

5 that is a neighbor of p′

3 that is not p′

4 in B′. By Observation 5, the vertex p′

5 cannot be a
neighbor of a leaf nor a connection of some pendant blob. By nature of B′, p′

5 must be the vertex u′, but this
would contradict our assumption that the path Q ′ does not include u′. Therefore p′

3 must be adjacent to p′

4.
Thus, P ′

1, P
′

3; P
′

3, P
′

4; and P ′

4, P
′

2 are adjacent in B′.
By Claim 2, since pendant level-1 blobs may not be adjacent to leaves and they may be adjacent to at most
one pendant level-2 blob, either p′

1 or p′

2 must be adjacent to a pole of B′. Suppose without loss of generality
that p′

1 is adjacent to a pole of B′. Consider the two main paths of B′ that are not s′. Since N contains no
parallel edges, one of the two main paths must contain a vertex. In particular, there must exist a vertex that
is distance-2 away from p′

1. By Observation 5, such a vertex cannot be a neighbor of a leaf nor a connection
of a pendant blob in B̄′. Then such a vertex must be u′. By invoking Observation 5 again, for both p′

1 and p′

2,
it is easy to see that these two main paths cannot contain any leaves in B̄′. So B̄ and B̄′ must contain only the
eight leaves of these four pendant blobs on the same main paths, with the vertices u and u′ on a different
main path, respectively. But we find that

dN (P1, u) − dN
′

(P ′

1, u
′) = 7 − 5 = 2,

whereas

dN (P3, u) − dN
′

(P ′

3, u
′) = 5 − 7 = −2,

which contradicts Claim 1.

2. p′

1 and p′

2 are incident to different main paths of B′: Let s′1, s
′

2 denote the main sides of B̄′ that contains p′

1, p
′

2,
respectively. Let s′3 denote the third main path of B̄′. The vertex u′ is contained either in s′1, s

′

2, or in s′3. The first
two cases are equivalent by symmetry, so we split into two cases.

(a) u′ is in s′

1: If P
′

1 and P ′

2 are both not adjacent to a pendant level-2 blob, then dN
′

(P ′

1, P
′

2) = 8 and we reach a
contradiction as we have dN (P1, P2) = 9. Therefore P ′

1 or P ′

2 must be adjacent to a pendant level-2 blob on this
distance-8 path. If P ′

1 and P ′

2 are both adjacent to level-2 blob P ′

3 and P ′

4, respectively, then dN
′

(P ′

3, P
′

4) ≥ 10.
But since P3, P1; P1, P2; and P2, P4 would be adjacent in B̄, we must have dN (P3, P4) = 9, which contradicts
the fact that N and N ′ satisfy the same shortest distance matrix. Therefore, exactly one of P ′

1 or P ′

2 must be
adjacent to a pendant level-2 blob.

i. P ′

1 is adjacent to a pendant level-2 blob P ′

3: Note that p′

1 is adjacent to u′ and to p′

3. In particular, P ′

1
must be adjacent to u′ to make sure that the shortest path between P ′

1 and P ′

2 is of length 9. Then we
have

dN
′

(P ′

1, u
′) − dN

′

(P ′

3, u
′) = 4 − 6 = −2.

But in B̄, we have that dN (P1, p1) = dN (P3, p1) = 4. This implies that

dN (P1, u) − dN (P3, u) ≥ dN (P1, p1) + dN (p1, u) − dN (P3, p1) − dN (p1, u)
= 0,

which contradicts Claim 1.
ii. P ′

2 is adjacent to a pendant level-2 blob P ′

4: Observe that p′

4 must be placed on s′2 such that dN
′

(p′

1, p
′

4) = 2. Then we have that

dN
′

(P ′

4, u
′) − d(P ′

1, u
′) = 7 − 4 = 3.

In B̄, P2 must be adjacent to both P1 and P4 Then dN (P1, p1) = 4, whereas dN (P4, p1) = 5. We have that

dN (P4, u) − dN (P1, u) ≤ 1,

which contradicts Claim 1.

(b) u′ is in s′

3: Then to ensure that the leaves of P ′

1 and the leaves of P ′

2 are shortest distance-9 apart, we require P ′

1
and P ′

2 to be adjacent to level-2 blobs P ′

3 and P ′

4, respectively. But then

dN
′

(P ′

3, P
′

4) ≥ 10.

In B̄, the pendant blobs P3, P1; P1, P2; and P2, P4 are adjacent. So we have

dN (P3, P4) = 9,

which contradicts Claim 1.
162



K.T. Huber, L.v. Iersel, R. Janssen et al. Discrete Applied Mathematics 306 (2022) 138–165

T

Fig. 9. The different cases from the proof of Claim 3. Pendant blobs are indicated by filled and unfilled leaves with the label Pi for some i. The filled
vertices indicate a pendant level-2 blob of the form (2, 0, 0, 0), whereas unfilled vertices indicate a pendant level-1 blob on two leaves.

This covers all cases for whenever two level-2 blobs are adjacent. In all cases, we were able to find a contradiction with
regard to the inter-taxa distances or to Claim 1. □

Claim 4. A pendant level-2 blob may not be adjacent to both a pendant level-1 blob and a leaf simultaneously in B̄ (and in B̄′).

Proof. Suppose that a pendant level-1 blob P1 is adjacent to a pendant level-2 blob P2, and some leaf l is adjacent to P2 in B̄.
o realize these distances in B̄′, we must have that P ′

1 and P ′

2, the pendant level-2 and the level-1 blobs that correspond
to P1 and P2 must be adjacent, and that l must be adjacent to P ′

1. Since level-1 blobs may be adjacent to at most one
level-2 blob, in both B and B′, P1 and P ′

2 must be adjacent to a pole or u or u′. We now split into cases depending on the
position of u in B̄.

1. u is adjacent to p1: We have

dN (P1, u) − dN (P2, u) = 4 − 6 = −2.

In B̄′, we have dN
′

(P ′

1, p
′

1) = dN
′

(P ′

2, p
′

1) = 4. It follows that

dN
′

(P ′

1, u
′) − dN

′

(P ′

2, u
′) ≥ 0,

which contradicts Claim 1.
2. u is not adjacent to p1: Let v be a vertex in B̄ such that dN (p1, v) = 2 and v is not the neighbor of l. We claim

that v is either a pole or equal to u.
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s

Note that p1 must be adjacent to a pole since P1 can be adjacent to at most one pendant level-2 blob, and P1 cannot
be adjacent to leaves or other pendant level-1 blobs by Claim 2. The shortest path from p1 to v must contain this
pole. Suppose for a contradiction that v is either a neighbor of a leaf or that v is a connection of some pendant
blob. If v is a neighbor of a leaf l′, then

dN (P1, l) = 6,

meaning that P ′

1 must be adjacent to l′ in B̄′. But this is impossible since P ′

1 is adjacent to P ′

2 and l. Secondly, if v is
a connection of a pendant level-1 blob P3, then

dN (P1, P3) = 8,

but this is impossible since two pendant level-1 blobs must have shortest distance at least 10 by Claim 3. Finally,
if v is a connection of a pendant level-2 blob P4, then

dN (P1, P4) = 9,

which means that the corresponding pendant level-1 blob must be adjacent either to P ′

2 or l in B̄′. But both of these
are forbidden by Claim 2. Therefore v must be a pole or u.
But this means that if u was not placed in the main path of B̄ that did not contain p1, then B̄ would have parallel
edges. So u must be contained in one of these two main sides. This means that

dN (P1, u) − dN (P2, u) = 5 − 7 = −2.

In B′, as in the previous case, we have that

dN
′

(P ′

1, u
′) − dN

′

(P ′

2, u
′) ≥ 0,

which clearly contradicts Claim 1

These cover all possibilities for a pendant level-2 blob to be adjacent to a pendant level-1 blob and to a leaf. In all cases,
we reach a contradiction. □

Claim 5. B̄ (and B̄′) contain at most one pendant level-1 blob.

Proof. Suppose for a contradiction that B̄ contained two pendant level-1 blobs P1 and P2. We know that they must be
hortest distance at least 10 apart. Since dN (P1, p1) = dN (P2, p2) = 3, we require that dN (p1, p2) ≥ 4.

1. p1 and p2 are contained in the same main path s of B̄: Consider the path from p1 to p2 that contains only the
vertices of the main path s. Since we require dN (p1, p2) ≥ 4, we need at least three vertices in this path excluding p1
and p2. By Claims 2 and 4, these three vertices must be two connections p3, p4 of pendant level-2 blobs and the
vertex u. In particular, p1 and p2 must be adjacent to p3 and p4, and p3 and p4 must be adjacent to u. It follows
from Claim 2 that s contains only these five vertices.
Now consider the two main paths s1 and s2 of B that is not s. If these main paths are both empty, then dN (P1, P2) = 9,
which contradicts the fact that dN (P1, P2) ≥ 10. So they must both contain vertices. Let vi denote the vertex in si
such that dN (vi, p1) = 2, for i = 1, 2. Firstly, if v1 is a neighbor of some leaf l, then dN (P1, l) = 6, meaning that l
must be adjacent to P ′

1 in N ′. But this would imply that P ′

1 is adjacent to a leaf l and a pendant level-2 blob P ′

3 in B̄′,
which contradicts Claim 4. Secondly, if v1 is a connection of a pendant level-1 blob P5, then dN (P1, P5) = 8. But two
pendant level-1 blobs must be shortest distance at least 10 apart. So v1 must be a connection of a pendant level-2
blob. Similarly, v2 must be a connection of a pendant level-2 blob. But this implies that B̄′ contains four pendant
level-1 blobs.
The main path of B̄′ with u′ contains exactly two pendant level-1 blobs; the other two main paths of B̄′ contain
exactly one pendant level-1 blob each. Consider these two latter main paths. By Claims 2, 3, and 4 these two main
paths may contain an additional pendant level-2 blob each, but no other leaves. This means that the pendant level-1
blobs in these two main paths are shortest distance at most 9 to one another, which is a contradiction. Therefore,
the vertices vi for i = 1, 2 cannot be neighbors of leaves/connections of pendant blobs, meaning that B̄ contains
parallel edges, which is a contradiction.

2. p1 and p2 are not contained in the same main path of B̄: Let s1 and s2 denote the main paths of B̄ that contain p1
and p2, respectively. If s1 and s2 do not contain the vertex u, then dN (P1, P2) ≤ 9 and we are done.
So suppose without loss of generality that s1 contains the vertex u. Since we require dN (p1, p2) ≥ 4, considering the
path between P1 and P2 that uses only the edges from s1 and s2, without using the vertex u, we see that P1 and P2
must be adjacent to pendant level-2 blobs P3, P4, respectively. In particular, this path contains the subpath p1p3vp4p2
for some pole v of B̄. Therefore p1 must be adjacent to u in B̄. Then,

dN (P , u) − dN (P , u) = 4 − 6 = −2.
1 3
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In B̄′, we have dN
′

(P ′

1, p
′

1) = dN
′

(P ′

3, p
′

1) = 4. It follows that

dN
′

(P ′

1, u
′) − dN

′

(P ′

3, u
′) ≥ 0,

which is a contradiction.

This covers all cases for when B̄ contains more than one pendant level-1 blob, which all result in a contradiction. Therefore
the claim follows. □
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