

Delft University of Technology

Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia

Meeter, Lieke H.H.; Steketee, Rebecca M.E.; Salkovic, Dina; Vos, Maartje E.; Grossman, Murray; McMillan,
Corey T.; Niessen, Wiro J.; Papma, Janne M.; De Jong, Frank Jan; More Authors
DOI
10.1136/jnnp-2018-319784
Publication date
2019
Document Version
Final published version
Published in
Journal of Neurology, Neurosurgery and Psychiatry

Citation (APA)
Meeter, L. H. H., Steketee, R. M. E., Salkovic, D., Vos, M. E., Grossman, M., McMillan, C. T., Niessen, W.
J., Papma, J. M., De Jong, F. J., & More Authors (2019). Clinical value of cerebrospinal fluid neurofilament
light chain in semantic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 90(9), 997-1004.
https://doi.org/10.1136/jnnp-2018-319784
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1136/jnnp-2018-319784
https://doi.org/10.1136/jnnp-2018-319784

Java Unit Testing Tool Competition - Sixth Round

Urko Rueda Molina
Research Center on Software

Production Methods

Universitat Politècnica de València

Valencia, Spain

urueda@pros.upv.es

Fitsum Kifetew
Fondazione Bruno Kessler

Trento, Italy

kifetew@fbk.eu

Annibale Panichella
SnT – University of Luxembourg,

Luxembourg

Delft University of Technology, The

Netherlands

annibale.panichella@uni.lu

ABSTRACT

We report on the advances in this sixth edition of the JUnit tool

competitions. This year the contest introduces new benchmarks to

assess the performance of JUnit testing tools on different types of

real-world software projects. Following on the statistical analyses

from the past contest work, we have extended it with the combined

tools performance aiming to beat the human made tests. Overall,

the 6th competition evaluates four automated JUnit testing tools

taking as baseline human written test cases for the selected bench-

mark projects. The paper details the modifications performed to

the methodology and provides full results of the competition.

CCS CONCEPTS

• Software and its engineering → Software defect analysis;

Software testing and debugging; Empirical software valida-

tion; Search-based software engineering;

KEYWORDS

tool competition, benchmark, mutation testing, automation, unit

testing, Java, statistical analysis, combined performance

ACM Reference Format:

Urko Rueda Molina, Fitsum Kifetew, and Annibale Panichella. 2018. Java

Unit Testing Tool Competition - Sixth Round. In SBST’18: SBST’18:IEEE/ACM

11th International Workshop on Search-Based Software Testing , May 28–

29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3194718.3194728

1 INTRODUCTION

Continuing the tradition of the pastfi ve editions [8] of the Java unit

testing tool competition, this year as well we have carried out the

competition on a fresh set of test classes under test (CUT) selected

from various projects. In the current edition, as in the previous [8],

there are a total of four tools considered for the competition, namely:

EvoSuite [1], JTexpert [12, 13], T3 [10, 11], and Randoop [6]. All

the tools were executed against the same set of subjects, set of time

budgets, and execution environment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194728

In this year’s edition, we do not have new tools entering into

the competition, however the developers of EvoSuite and T3 have

actively participated with improved versions of their tools. Fur-

thermore, we have introduced a combined analysis in which we

construct test suites by putting together all the tests generated, for

a particular CUT, by all four tools. Such an analysis could shade

some light on the overall strengths and weaknesses of the tools

with respect to the CUTs under consideration. We also compare

and contrast the results achieved by the various tools, either indi-

vidually or combined together, against the manually-written test

suites included in the original projects from which our test subjects

were extracted.

For comparing the tools, we used well-stablished structural cov-

erage metrics, namely statement and branch coverage, which we

computed by using JaCoCo. Additionally, we apply mutation analy-

sis to assess the fault revealing potentials of the test suites generated

by the tools. To this aim, we use the PITest mutation analysis tool

to compute the mutation scores of the various test suites (either

automatically generated or manually-written).

Following lessons learned from previous editions, we have con-

sidered different time budgets, i.e., 10, 60, 120, and 240 seconds.

Such a range of search budgets allows us to assess the capabilities

of the tools in different usage scenarios. Furthermore, we augment

the comparative analysis by considering the combined test suites

composed of all the tests generated by all tools in the competition.

The report is organized as follows. Section 2 describes the set

of benchmarks used this year, which were not used in previous

competitions, and section 3 describes the objects under study (the

tools) and the baseline (developer tests). Next, section 4 collects the

changes introduced since the last competition [8]. The obtained

results of running the competition are later described in section 5.

Finally, our concluding remarks are available in section 6.

2 THE BENCHMARK SUBJECTS

Building a benchmark for assessing testing tools is always chal-

lenging as it requires considering different factors. For example,

the benchmark should be a representative sample of real-world

software projects [2]; the projects should be open-source and cover

different application domains [2]; the classes should not be too triv-

ial [7] (e.g., classes with only branchless methods) and should have

different types of input parameters. With the aim of taking into

account these factors, for this edition we focused on the top 500

GitHub repositories that satisfy the following criteria: (i) having

more than 4K stars on 01/01/2018, (2) can be built using Maven,

and (3) contain JUnit 4 test suites. From this large pool of possible

22

2018 ACM/IEEE 11th International Workshop on Search-Based Software Testing

SBST’18, May 28–29, 2018, Gothenburg, Sweden U. Rueda et al.

Table 1: Characteristics of the projects in our benchmark

Project #Stars #CUTs 10s 4m # Sampled CUTs

Dubbo 16.3K 235 39m 15.7h 9
FastJason 12.6K 217 36m 14.5h 10
JSoup 5.6K 248 41.3m 16.5h 5
Okio 4.6K 44 7.3m 2.9h 10
Redisson 4.4K 1,392 3.9h 92.8h 10
Webmagic 6.1K 162 27m 10.8h 5
Zxing 17.4K 268 44.7m 17.9h 10

candidates, we randomly sampled (through a script thatfi ltered the

projects based on the criteria) the following seven projects:

• Dubbo1: is a large remote procedure call (RPC) and microser-

vice framework written in Java. For the competition, we

focused on the maven sub-module dubbo-common.

• FastJason2: is a Java library providing utilities to convert

JSON string to an equivalent Java object and vice versa.

• JSoup3: is a Java library containing classes and methods for

extracting andmanipulating data stored inHTML documents

using Document Object Model (DOM) traversal methods and

CSS and jQuery-like selectors.

• Okio4: is a small Java library providing utilities to access,

store and process binary and character data using fast I/O

and resizable buffers.

• Redisson5: implements a Java client for redis and provides

distributed Java objects and services, such as List, Queue,

Cache.

• Webmagic6: is a multi-thread web crawler framework sup-

porting all typical clawer activities, such as url management

and web page content extraction. For the competition, we

focused on two maven sub-modules, namely webmagic-core

and webmagic-extension.

• Zxing7: is an open-source library that supports the decoding

and the generation of barcodes (e.g., QR Code).

Table 1 summaries themain characteristics of the selected projects.

The total number of CUTs in each project ranges between 44 (Okio)

and 1,392 (Redisson) classes. Computing test cases for the full

projects would take between 7 minutes (10 seconds budget per

CUT) and nearly 93 hours (4 minutes budget).

Comparing the tool participants on the entire projects was clearly

unfeasible due to very large amount of time the competition would

require: (i) running each tool on each CUT multiple times, (ii) with

different time budgets, (iii) collecting the corresponding perfor-

mance metrics (among which, mutation score is very resource and

time demanding) from each independent run. For these reasons,

we randomly sampled few CUTs from each project as reported in

Table 1.

For sampling the CUTs, we used the same procedure used in the

previous edition of the contest [8] and leveraging the McCabe’s cy-

clomatic complexity. First, we computed the cyclomatic complexity

1https://github.com/alibaba/dubbo
2https://github.com/alibaba/fastjson
3https://github.com/jhy/jsoup
4https://github.com/square/okio
5https://github.com/redisson/redisson
6https://github.com/code4craft/webmagic
7https://github.com/zxing/zxing

for all methods and classes in each project using the extended CKJM

library8. Then, wefi ltered the benchmark projects by removing

classes that contain only methods with a McCabe’s cyclomatic com-

plexity lower than three. The McCabe’s cyclomatic complexity of a

methodm corresponds to the number of branches inm plus one

(or equivalently, the total number of independent paths in the con-

trolfl ow graph ofm). Therefore, ourfi ltered benchmark contains

only classes with at least one method with at least two condition

points (i.e., with a complexity ≥ 3). Thisfi lter reduces the chances

of sampling very trivial classes with either no branches or that can

be fully covered with few randomly generated tests [7].

From thefi ltered benchmark, we randomly sampled few classes

from each project as follows:fi ve classes from JSoup andWebmagic,

nine classes from Dubbo, plus 10 classes from each of the remaining

four projects. This resulted9 in 59 Java classes, whose number of

branches ranges between 4 and 2197, while number of lines ranges

between 26 and 3091, and number of mutants produced by PIT

ranges between 16 and 1023.

3 THE BENCHMARK OBJECTS

In this edition of the competition, a total of four tools are consid-

ered. The tools are the same as in the previous edition, with the

exception that EvoSuite has been updated to a new version. T3 has

introduced some changes by way of bugfi xes and improved com-

petition interface implementation for better integration with the

evaluation framework. The other tools, i.e., Randoop and JTexpert,

remain the same as in the previous edition.

3.1 Baseline human made JUnit tests

As baseline, we use test suites generated by Randoop, as well as the

manually written test suites of the CUTs available from their re-

spective projects. Even though we use human test suites as baseline

with the aim of giving an idea of how the automatically generated

test suites fair with respect to human written tests, it is difficult to

draw direct parallels between the two. Human written test suites

are typically evolved and improved overtime, and it is usually hard

to determine exactly how much (human) effort has been spent in

producing each test suite.

Additionally, we use the JTexpert tool as baseline, because it

is not updated since the last competition and the authors are not

actively participating in the current competition.

3.2 Competition Tools

This year, the active competitors are EvoSuite and T3. As shown in

Table 2, EvoSuite uses an evolutionary algorithm for evolving test

suites, while T3 employs a random testing strategy. The table also

summarizes the main characteristics of the four tools considered

in this edition. Moreover, similar to what was done in previous

editions, participants were able to test their implementation using

a set of sample CUTs. Concretely, the full set of CUTs from the

previous competition [8]. Note that the CUTs used in this edition

are all newly selected and were not revealed to the authors before

running the competition.

8http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
9https://github.com/PROSRESEARCHCENTER/junitcontest/tree/master/bin/
benchmarks_6th

23

Java Unit Testing Tool Competition - Sixth Round SBST’18, May 28–29, 2018, Gothenburg, Sweden

Table 2: Summary of tools

Tool Technique Static analysis

EvoSuite [1] Evolutionary algorithm yes
JTexpert [12, 13] Guided random testing yes
T3 [10, 11] Random testing no
Randoop [6] Random testing no

4 CONTEST METHODOLOGY

This 6th contest shares most of the methodology from the previous

edition [8]. We will focus on describing the modifications made to

run this year competition.

→ Public contest repository10. The full contest infrastructure

was published to GitHub four months before the competition. The

initial objective was to attract new participants raising the aware-

ness, with no success. However, the long run aim was to share the

competition experiences to allow future competitors to collaborate,

better prepare their tools for automation, report bugs, request new

features or improvements, etc. Therefore, the global goal was to

advance the maturity of the infrastructure built for the competition,

and so the efficiency and effectiveness of the tools by offering a

public benchmark to compare with.

→ JUnit tools set up. Participants were able to test their correct

operation for the contest using the latest version of the infrastruc-

ture. We provided them the full set of benchmarks from past 5th

contest [8], which did not contain any of the benchmarks from this

edition.

→ CUTs. We selected 59 new benchmark classes as described

in Section 2 and that constitute the subjects of the competition.

→ Execution frame. This year a total of 5664 executions have

been scheduled (5796 executions in the previous edition): 59 CUTs x

4 tools x 4 time budgets x 6 repetitions for statistical analyses. In an

attempt to foster the replicability of the contest executions we have

transferred the know-how of the past 5 years to a new environment

operated by new people. We have switched the infrastructure from

an HP Z820 workstation with two virtual machines, each with

8 CPU cores and 128GB RAM, to a cluster environment running

Sun Grid Engine (SGE). We have used three physical nodes each

with 24 CPU cores and 256GB RAM. On each node, we executed

two repetitions of the tools on all four budgets, for a total of six

repetitions in total. Similar to the previous edition, all tools were

executed in parallel. For each tool, and each search budget, the

contest infrastructurefi rst invokes the tool on each CUT to generate

the test cases. Once test generation is completed, the infrastructure

continues to the second phase, which is the computation of the

metrics, i.e., coverage and mutation scores.

→ Test generation. The execution frame used this year granted

enough power to repeat the generation of tests by tools a total of

6 times, to account for the inherent randomness of the generation

processes. The tools had to compete for the available resources

as they were run in parallel. The benchmark subjects used this

year made the contest execution to sporadically hang during tests

generation. In that case, we had to force kill some of the executions

as neither the tools nor the contest infrastructure did succeed to stop

the related processes. The impact for these executions is a 0 score

10https://github.com/PROSRESEARCHCENTER/junitcontest

as the provided budget is exceeded. Additionally, and continuing

the automation procedure of past competitions, the CUTs were

specified with the paths for: i) source javafi les, ii) compiled class

files, and iii) the classpath with the required dependencies. However,

this specification missed some critical dependencies on some CUTS

(e.g. DUBBO-2, WEBMAGIC-4) and tools could have generated

crashing test cases.

→Metrics computation. We kept the strict mutation analysis

time window of 5 minutes per CUT, and a timeout of 1 minute for

each mutant. Moreover, mutants sampling11 is applied on the set of

mutants generated by PITest. The rationale behind it is to reduce

the computation time and provide results in a feasible amount of

time. Moreover, recent studies [4] showed that random sampling is

particularly effective despite its very low computational complexity

compared to othermutant reduction strategies. Note that we applied

the same set of sampledmutants to evaluate the test suites generated

by different tools on the same CUT.

→Combined analyses. To explorewhether the combined tools’

tests would outperform the developer designed tests, we have in-

troduced the combined analyses to evaluate the cooperative test

performance. The process consists of building new test suites that

contain all test cases generated by all tools on a given CUT and

with a given time budget. Then, the metrics computation is per-

formed on the combined test suite in the exact same way as for

the individual tools. Yet, the computation costs increase to the sum

of the costs required to evaluate the test suites generated by each

individual tool. We approached it in a separate analysis to mea-

sure the achieved instruction and branch coverages, and the test

effectiveness. Furthermore, due the high computation costs for the

full combined analyses we were only able to obtain data on the

budget of 10 seconds as we run out of time to compute the rest of

the budgets.

→ Time budgets. In the former edition of the competition [8],

we did not observe any significant improvement (i.e., coverage and

mutation score) after four minutes of search budget. Therefore, for

this edition of the competition we have decided to consider only

four search budgets, i.e., 10, 60, 120 and 240 seconds. This allowed us

to use the saved computation resources for the combined analyses

introduced in this edition.

→ Statistical Analysis. Similar to the previous edition of the

competition [8], we used some statistical tests to support the results

collected in this edition of the competition. First, we use the Fried-

man test to compare the scores achieved by the different tools over

the different CUTs and different time budgets. In total, each tool

produced (59 CUTs × 4 budgets) = 236 data points, corresponding to

the average scores achieved across six independent repetitions. Sec-

ond, we applied the post-hoc Conover’s test for pairwise multiple

comparisons. While the former test allows us to assess whether the

scores achieved by alternative tools differ statistically significantly

from each other, the latter test is used to determine for which pair

of tools the significance actually holds.

In this edition, we augmented the statistical analysis by using

the permutation test [3] to assess whether there exists a significant

interaction among the scores produced by the tools, the cyclomatic

11We applied a random sampling of 33% for CUTs with more than 200 mutants, and a
sampling of 50% for CUTs with more than 400 mutants

24

SBST’18, May 28–29, 2018, Gothenburg, Sweden U. Rueda et al.

complexity of the CUTs and the allocated search budgets. The

permutation test is a non-parametric equivalent of the ANOVA

(Analysis of VAriance) test and it is performed by randomly per-

muting data points across different groups in a given distribution.

For this test, we set the number of iterations to a very large number

(i.e., 108) to obtain robust results [7].

Note that for all aforementioned statistical tests, we used the

confidence level α=0.05; p-values obtained with the Conover’s test

were further adjusted with the Holm-Bonferroni procedure, which

is required in case of multiple comparisons.

4.1 Threats to Validity

Conclusion validity. As in previous editions, we perform statis-

tical analyses for significance. In addition, we applied the permu-

tation test to analyze possible co-factors that could potentially

influence the performance of the tools.

Internal validity. We have a trajectory of six competitions

where the contest infrastructure has been constantly stressed and

improved. Furthermore, this year the infrastructure was made pub-

lic four months before the competition, which allowed for the iden-

tification of potential threats of implementation. Only the bench-

marks to be used in the competition were hidden to the participants,

while they were able to test the environment with the full bench-

marks from past competition.

Construct validity. The scoring formula used to rank the tools

—which is identical to the past edition— assigns a higher weight to

the mutation coverage. Also, we apply a time window of 1 minute

per mutant and a global timeout of 5 minutes per CUT, as well as

a random sampling of the mutants to reduce the costs of metrics

computation. Note that the set of sampled mutants for each CUT is

kept the same for all tools and search budgets.

Additionally, killing hang processes during test generation did

not directly impact on the metrics in the sense that they exceeded

the budget and got 0 scores and 0 coverages for the related combina-

tions of CUTs, budgets and runs. However, it might have indirectly

affected the results as the competing factor for the available re-

sources (all tools were run in parallel) would be influenced by the

human factor (the time a hang execution is detected and termi-

nated). Nonetheless, this threat is mitigated by the effect of the six

repetitions for statistical significance.

External validity. To mitigate the effects on the low sampling

of subjects (the benchmarks) and objects (the competition tools) we

continuously introduce new software projects (which compose the

benchmarks’ CUTs) of varied complexity to account for their repre-

sentativeness on the real world, and include developers’ tests and a

random test generator Randoop as baseline to compare the perfor-

mance of the competing tools. Nonetheless, the representativeness

of the testingfi eld is weak as most of the tools have a random na-

ture and only Evosuite implements Search-Based Software Testing

techniques. We expect so that the public contest repository could

help to attract more tools from thefield.

5 CONTEST RESULTS

Following the detailed results [9] for the last contest, we provide the

average results for each tool across six independent runs for budgets

of 10 seconds (Table 8), 60 seconds (available online [5]), 120 seconds

Table 3: Average (mean) coverage metrics and overall (sum)

scores obtained across all CUTs.

Tool
Budget covi covb covm Score Std.dev
(in sec.) Min Mean Max Min Mean Max Min Mean Max

evosuite

10

0.00 0.47 0.97 0.00 0.40 0.96 0.00 0.29 0.94 89.20 17.84

t3 0.00 0.41 1.00 0.00 0.35 0.97 0.00 0.27 0.99 124.51 16.40

jtexpert 0.00 0.36 0.99 0.00 0.30 0.98 0.00 0.34 1.00 93.19 16.82

randoop 0.00 0.37 0.98 0.00 0.28 0.94 0.00 0.26 0.97 99.20 3.33

evosuite

60

0.00 0.54 0.99 0.00 0.48 0.97 0.00 0.42 0.96 185.18 24.71

t3 0.00 0.47 1.00 0.00 0.42 1.00 0.00 0.31 0.99 146.43 16.13

jtexpert 0.00 0.39 1.00 0.00 0.34 0.98 0.00 0.36 1.00 136.79 15.36

randoop 0.00 0.38 1.00 0.00 0.31 0.97 0.00 0.27 1.00 118.49 3.04

evosuite

120

0.00 0.56 1.00 0.00 0.50 0.99 0.00 0.44 0.97 194.96 18.54

t3 0.00 0.49 1.00 0.00 0.44 1.00 0.00 0.33 0.99 153.96 16.05

jtexpert 0.00 0.39 1.00 0.00 0.34 0.98 0.00 0.35 1.00 135.16 17.70

randoop 0.00 0.39 1.00 0.00 0.31 0.96 0.00 0.27 1.00 119.05 3.47

evosuite

240

0.00 0.57 1.00 0.00 0.52 0.99 0.00 0.45 0.99 201.64 18.26

t3 0.00 0.49 1.00 0.00 0.44 1.00 0.00 0.32 0.99 154.55 13.88

jtexpert 0.00 0.41 1.00 0.00 0.36 0.98 0.00 0.37 1.00 144.14 15.00

randoop 0.00 0.39 1.00 0.00 0.32 0.98 0.00 0.26 1.00 120.47 1.75

(available online [5]) and 4 minutes (Table 9). Table 3 summarizes

the average (mean) instruction coverage (covi), branch coverage

(covb), and strong mutation coverage (covm) achieved across all

CUTs over different search budgets. This table also shows the overall

scores, which are computed as the sum of the average scores reached

across all CUTs and for each search budget, separately. As expected,

the coverage metrics and the scores increases when larger time is

given for test generation. This is true for all tools except: i) Randoop,

for which the coverage metrics remains mostly unchanged and

ii) T3 for budget 10s, which better manages the provided search

budget (Table 8) while other tools exceed the budget at some extent,

suffering from the scoring formula penalty (half coverage12 score

in the worst case according to [8]).

Comparisonwithmanual and combined suites. Table 7 com-

pares the performance of manual tests written by the original de-

velopers and the performance of combined test suites —i.e., the test

suites obtained as the union of the test generated by all tools on the

same CUTs— using a 10s of search budget. For this analysis, we con-

sider only the 49 CUTs for which we couldfi nd manually-written

tests (i.e., excluding the project redisson that misses workingmanual

tests for the selected CUTs). It is worth remarking that DUBBO-2 is

a special case since its configuration missed critical dependencies

(e.g., javassist). and all tools failed to generate compilable tests.

To better understand our results, Figure 113 and Table 6 show

the performance on 49 CUTs14 of (1) each individual tool , (2) the

performance of the combined suites with 10 seconds budget, and (3)

manually-developed test cases from the projects’ developers. The

performance of the combined suites has been computed by building

one test suite per CUT and run consisting of all the test cases

generated by the four tools in each corresponding CUT and run

(only tests generated with a budget of 10 seconds). The performance

is analyzed by: (1) the achieved instruction coverage (covi), (2) the

branch coverage (covb) and (3) the mutation coverage (covm).

The mainfi nding of this analysis is that combining the test cases

generated by individual tools can outperform the human developed

tests, for nearly all software projects selected as benchmarks in this

competition. This is particularly interesting if we consider that the

combined suites are built by combining the tests generated in only

12instruction, branch and mutation coverages
13H.axis = budgets, V.axis = coverage percents, 5th_manual = 5th contest dev. tests
14REDISSON had no working manual tests available from the project

25

Java Unit Testing Tool Competition - Sixth Round SBST’18, May 28–29, 2018, Gothenburg, Sweden

Table 4: Overall scores and rankings obtainedwith the Fried-

man test. For this analysis, we consider all 59 CUTs.

Tool Budget Score Std.dev Ranking

EvoSuite * 687 50.33 2.02
t3 * 580 22.52 2.38

jtexpert * 513 10.10 2.57
randoop * 457 13.90 3.03

Table 5: Results of the pairwise comparison according to the

post-hoc Conover’s test and considering all 59 CUTs

EvoSuite jtexpert randoop t3

EvoSuite - - - -

jtexpert 5.9×10−5 - - -

randoop 5.2×10−5 0.947 - -
t3 0.097 0.051 0.051 -

10 seconds of search budget. Therefore, larger budgets would likely

result in better performance for the combined test suites over the

individual tool results and the human-developed tests.

Final scores and statistical results. Table 4 shows the overall

scores achieved by the four tools at different search budgets together

with the ranking produced by the Friedman test. According to this

test, the four tools statistically differ in terms of scores across all

59 CUTs (p-value < 10−12). To better understand which pairs of

tools statistically differ, Table 5 reports the p-values produced by

the post-hoc Conover’s procedure. Note the p-values are adjusted

with the Holm-Bonferroni correction procedure as required in case

of multiple pairwise comparison. We note that evosuite achieves

significantly higher scores than jtexpert and randoopwhile there

is no (or only marginal significance) with t3. On the other hand,

t3 has marginally significantly higher scores than jtexpert and

randoop. Finally, the remaining two tools (i.e., jtexpert and randoop)

turn out to be statistically equivalent.

The permutation test reveals that there is a significant inter-

action between the achieved scores and the tools being used to

generate the tests (p-value< 10−16), further confirming the results

of the Friedman test. There is a significant interaction between

the performance scores, the McCabe’s cyclomatic complexity of

the target CUTs and the testing tools (p-value< 10−16). In other

words, the scores of the alternative testing tools significantly dif-

fer for very complex CUTs (i.e., with large cyclomatic complexity).

Moreover, the interaction between the testing tools and the adopted

search budgets statistically interact with the achieved performance

score (p-value< 10−16). This means that the scores of the tools

significantly increase when using larger search budgets.

6 CONCLUDING REMARKS

The combined tools performance analysis introduced in this edition

reveals the power of a "super-tool" built over individual testing tools,

which can potentially outperform developer tests, even with a small

search budget like 10 seconds. This scenario brings an interesting

field to explore in future competitions. Instead of running the tools

isolated from each other, they could cooperate by trying to generate

better test cases (more effective) in less time (more efficient).

Table 6: Comparison with manually-written tests and com-

bined suites for 49 CUTs (without REDISSON)

Tool Budget(s) covi covb covm

combined 10 70.94 62.91 53.54
manual - 54.16 46.37 34.87

evosuite 240 66.90 60.77 53.00
t3 240 53.18 48.29 38.78

jtexpert 240 48.35 42.88 43.41
randoop 240 41.28 34.56 26.41

* (4 tools) 10 43.92 36.81 32.39

Table 7: Results for manual and averaged combined results

manual (49 CUTs) combined 10 seconds (49 CUTs)

CUT covi covb covm covi covb covm
DUBBO-10 72.9 63.2 66.3 29.9 31.4 40.0

DUBBO-2 37.9 32.2 41.5 0 0 0

DUBBO-3 41.6 34.1 33.7 95.4 95.6 74.5

DUBBO-4 60.0 37.5 48.1 92.2 94.4 94.4

DUBBO-5 51.5 55.5 70.0 96.9 94.4 96.6

DUBBO-6 80.4 75.4 91.8 50.0 56.2 61.4

DUBBO-7 75.3 58.3 98.0 100.0 97.9 100.0

DUBBO-8 0 0 0 80.6 64.4 84.2

DUBBO-9 59.2 42.3 74.6 85.8 76.1 22.0

FASTJSON-10 24.4 25.0 17.2 60.0 50.0 58.6

FASTJSON-1 7.8 5.5 5.3 21.9 20.1 8.2

FASTJSON-2 55.3 46.6 62.3 56.0 48.9 52.8

FASTJSON-3 56.2 49.4 22.3 22.7 15.5 4.5

FASTJSON-4 85.9 86.6 71.8 80.8 56.1 31.2

FASTJSON-5 30.0 22.5 41.2 49.4 42.3 59.4

FASTJSON-6 1.4 0 0 66.4 55.6 59.6

FASTJSON-7 35.5 26.3 7.5 84.0 77.2 74.6

FASTJSON-8 57.3 45.8 37.7 82.5 72.2 32.6

FASTJSON-9 54.6 57.8 51.3 44.6 54.6 56.1

JSOUP-1 70.9 59.2 1.5 98.1 89.9 6.0

JSOUP-2 34.7 26.0 16.6 66.7 64.9 0

JSOUP-3 75.9 51.1 80.0 80.1 49.8 55.6

JSOUP-4 87.8 90.0 86.6 95.9 91.6 83.3

JSOUP-5 89.5 85.5 25.2 65.5 37.5 14.4

OKIO-10 83.6 66.6 42.1 79.5 86.6 80.7

OKIO-1 83.1 76.0 3.1 77.2 64.4 1.4

OKIO-2 89.0 85.2 51.7 89.6 95.4 98.2

OKIO-3 90.9 90.0 29.4 75.0 63.6 75.2

OKIO-4 89.5 72.8 27.3 22.8 19.2 17.6

OKIO-5 83.6 62.1 6.8 91.0 63.3 60.7

OKIO-6 62.8 32.1 70.0 78.5 76.1 81.6

OKIO-7 100.0 75.0 92.6 80.9 85.4 79.2

OKIO-8 97.0 88.6 74.5 73.7 62.8 47.3

OKIO-9 93.3 100.0 46.1 60.0 42.3 38.4

WEBMAGIC-1 0 0 0 32.0 19.0 41.6

WEBMAGIC-2 0 0 0 44.5 22.8 43.4

WEBMAGIC-3 24.7 0 4.2 100.0 79.6 100.0

WEBMAGIC-4 0 0 0 74.6 16.6 65.5

WEBMAGIC-5 0 0 0 95.1 95.0 93.7

ZXING-10 91.3 83.8 20.6 91.0 81.8 10.0

ZXING-1 0 0 0 44.6 34.7 45.2

ZXING-2 0 0 0 23.8 22.3 11.6

ZXING-3 88.6 66.1 40.5 98.8 91.3 99.0

ZXING-4 84.1 74.3 27.0 96.7 96.9 2.8

ZXING-5 93.5 90.0 25.8 99.8 98.7 17.2

ZXING-6 0 0 0 81.7 71.8 74.0

ZXING-7 72.4 60.5 1.0 100.0 100.0 100.0

ZXING-8 0 0 0 62.3 60.5 69.2

ZXING-9 80.9 73.4 95.7 97.8 96.2 100.0

ACKNOWLEDGMENTS

Special thanks to Wishnu Prasetya whose interest on the combined

tools performance pushed us to make it a reality. This work has

been partially supported by the Spanish Ministry of Economy and

Competitiveness (MINECO) under the project DataME (TIN2016-

80811-P); and by the H2020 EU project SUPERSEDE under agree-

ment number 644018.

26

27

Java Unit Testing Tool Competition - Sixth Round SBST’18, May 28–29, 2018, Gothenburg, Sweden

T
a
b
le

8
:
A
v
e
ra
g
e
d
re
su

lt
s
fo
r
6
ru

n
s
o
n
1
0
se
co

n
d
s
ti
m
e
b
u
d
g
e
t

R
a
n
d
o
o
p

T
3

E
v
o
su

it
e

jT
e
x
P
e
rt

C
U
T

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

D
U
B
B
O
-
1
0

1.
3

0
0

0
0

0
4.
5

12
.8

18
.1

17
.9

0
0

16
.0

25
.9

24
.1

11
.5

0
0

13
.1

3.
4

0
0

0
.9

D
U
B
B
O
-
2

1.
3

0
0

0
0

0
2.
8

0
0

0
0

0
4.
1

0
0

0
0

0
16
.0

0
0

0
1.
0

0

D
U
B
B
O
-
3

12
.2

65
.1

60
.9

66
.4

0
0

4.
5

95
.3

94
.3

91
.1

0
0

15
.7

88
.6

87
.0

93
.9

0
0

2.
9

0
0

0
0

0

D
U
B
B
O
-
4

11
.8

68
.3

50
.0

33
.3

0
0

4.
4

68
.3

66
.6

55
.5

0
.1

14
.8

91
.3

92
.3

66
.6

0
0

12
.3

71
.9

62
.5

62
.9

0
.2

D
U
B
B
O
-
5

11
.6

96
.9

94
.4

86
.6

0
0

4.
5

96
.9

94
.4

87
.7

0
0

14
.9

96
.9

94
.4

68
.3

0
0

12
.4

95
.4

77
.7

96
.6

0
.1

D
U
B
B
O
-
6

11
.4

2.
1

2.
8

2.
3

0
0

4.
4

4.
3

2.
8

2.
3

0
0

15
.2

4.
3

4.
7

3.
1

0
0

13
.2

48
.1

54
.7

61
.4

0
.1

D
U
B
B
O
-
7

11
.7

97
.9

86
.8

97
.4

0
0

4.
4

10
0.
0

96
.8

98
.7

0
0

15
.0

94
.1

80
.2

77
.8

0
0

11
.3

77
.4

66
.3

80
.1

0
.1

D
U
B
B
O
-
8

11
.3

4.
5

2.
0

1.
9

0
0

4.
7

80
.0

62
.5

72
.1

0
0

15
.4

78
.9

61
.1

49
.5

0
0

13
.9

76
.3

48
.4

80
.1

0
.1

D
U
B
B
O
-
9

12
.2

76
.9

64
.3

66
.0

0
0

4.
6

79
.3

70
.1

72
.4

0
0

16
.9

80
.2

67
.8

38
.0

0
0

15
.2

78
.0

67
.6

68
.9

0
.2

F
A
S
T
J
S
O
N
-
1
0

12
.4

6.
6

0
3.
4

0
0

4.
4

55
.9

45
.8

37
.9

0
0

15
.5

42
.2

40
.0

21
.8

0
0

12
.8

60
.0

50
.0

58
.6

0
.1

F
A
S
T
J
S
O
N
-
1

1.
4

0
0

0
0

0
12
.1

3.
2

2.
7

1.
0

0
0

0
0

0
0

0
0

9.
2

12
.4

11
.3

5.
2

0
.3

F
A
S
T
J
S
O
N
-
2

11
.7

38
.0

28
.8

31
.8

0
0

4.
9

38
.3

30
.8

26
.1

0
0

15
.9

7.
0

5.
6

7.
1

.3
0

0
0

0
0

0
0

F
A
S
T
J
S
O
N
-
3

11
.7

17
.4

10
.8

1.
5

0
0

14
.6

0
0

0
0

0
6.
9

3.
3

1.
7

.9
0

0
9.
7

7.
8

5.
1

8.
5

0
.4

F
A
S
T
J
S
O
N
-
4

11
.7

73
.8

52
.7

42
.8

0
0

11
.3

6.
7

3.
8

6.
5

0
.2

18
.3

40
.0

20
.0

34
.2

0
0

16
.4

49
.7

28
.8

33
.1

0
.6

F
A
S
T
J
S
O
N
-
5

11
.3

1.
1

.4
1.
2

0
0

6.
5

1.
9

1.
1

2.
8

0
0

19
.2

0
0

0
.5

0
14
.4

49
.4

42
.2

59
.4

0
.2

F
A
S
T
J
S
O
N
-
6

11
.9

11
.1

13
.5

9.
0

0
0

4.
4

10
.3

9.
4

6.
5

0
0

15
.6

15
.0

18
.4

8.
7

0
0

13
.8

68
.6

57
.2

64
.8

0
.2

F
A
S
T
J
S
O
N
-
7

11
.8

76
.8

69
.7

74
.6

0
0

6.
1

64
.5

52
.6

50
.2

0
.4

13
.9

53
.7

43
.6

15
.7

0
0

13
.9

72
.4

62
.4

62
.0

0
.3

F
A
S
T
J
S
O
N
-
8

11
.6

57
.9

44
.6

20
.3

0
0

14
.4

0
0

0
0

0
16
.8

80
.7

69
.6

74
.6

0
0

14
.9

67
.7

48
.2

69
.5

0
.3

F
A
S
T
J
S
O
N
-
9

11
.3

13
.5

12
.5

14
.4

0
0

4.
4

17
.0

18
.7

19
.7

0
0

15
.3

33
.3

38
.5

27
.6

0
0

12
.1

43
.5

53
.9

53
.9

0
0

J
S
O
U
P
-
1

11
.9

95
.0

75
.8

6.
0

0
0

14
.5

28
.0

21
.2

13
.5

0
0

15
.8

96
.8

85
.7

59
.2

0
0

14
.5

95
.0

82
.4

24
.9

0
.2

J
S
O
U
P
-
2

11
.3

21
.0

23
.2

0
0

0
4.
6

59
.0

59
.0

5.
4

0
0

15
.6

54
.7

49
.7

36
.3

0
0

12
.0

25
.2

26
.1

17
.3

0
.3

J
S
O
U
P
-
3

11
.3

21
.3

8.
8

26
.2

0
0

4.
3

70
.8

41
.1

67
.9

0
0

16
.2

65
.8

39
.6

28
.3

0
0

13
.4

62
.1

36
.8

75
.8

0
.2

J
S
O
U
P
-
4

11
.5

95
.1

90
.0

80
.0

0
0

11
.3

24
.7

20
.0

16
.1

0
0

16
.6

72
.3

48
.3

31
.6

0
0

6.
2

16
.6

16
.6

16
.6

.6
0

J
S
O
U
P
-
5

11
.7

48
.0

18
.3

24
.1

0
0

4.
5

59
.3

32
.5

34
.7

0
0

16
.8

63
.1

35
.5

23
.4

0
0

12
.6

0
0

0
1.
0

0

O
K
I
O
-
1
0

11
.6

67
.3

60
.0

47
.3

0
0

4.
2

73
.4

80
.0

57
.8

0
0

15
.2

79
.5

83
.3

76
.7

0
0

12
.0

0
0

0
1.
0

0

O
K
I
O
-
1

11
.6

75
.5

61
.8

.6
0

0
14
.5

11
.5

7.
7

5.
1

0
0

3.
3

10
.0

7.
4

1.
6

0
0

9.
0

0
0

0
1.
0

0

O
K
I
O
-
2

11
.8

71
.4

63
.0

63
.8

0
0

4.
4

79
.3

78
.4

70
.3

0
0

9.
2

41
.2

40
.8

20
.4

0
0

14
.9

83
.3

82
.3

93
.2

0
.1

O
K
I
O
-
3

11
.9

0
0

0
0

0
4.
3

25
.7

23
.0

13
.9

0
0

16
.7

73
.0

56
.1

27
.9

0
0

13
.6

22
.5

16
.1

25
.7

0
.5

O
K
I
O
-
4

11
.4

1.
4

.6
.9

0
0

14
.3

0
0

0
0

0
15
.7

12
.6

10
.5

10
.2

0
0

13
.5

14
.8

12
.7

17
.2

.1
.2

O
K
I
O
-
5

11
.4

2.
8

1.
5

1.
3

0
0

11
.5

56
.5

32
.8

33
.1

0
0

18
.6

89
.4

61
.3

45
.6

0
0

14
.2

0
0

0
.9

0

O
K
I
O
-
6

11
.5

34
.2

32
.1

36
.6

0
0

14
.5

25
.7

22
.6

20
.5

0
0

16
.6

77
.6

73
.2

80
.5

0
0

2.
8

0
0

0
0

0

O
K
I
O
-
7

11
.6

60
.0

50
.0

44
.7

0
0

14
.2

0
0

0
0

0
15
.2

79
.3

85
.4

54
.4

0
0

11
.9

41
.8

22
.2

36
.5

0
.3

O
K
I
O
-
8

11
.6

66
.1

40
.9

30
.7

0
0

14
.2

72
.5

62
.1

48
.0

0
.2

6.
2

22
.5

13
.6

6.
8

0
0

12
.3

0
0

0
1.
0

0

O
K
I
O
-
9

11
.3

53
.3

38
.4

35
.8

0
0

4.
2

60
.0

42
.3

28
.2

0
0

15
.1

60
.0

42
.3

25
.6

0
0

11
.9

53
.3

42
.3

38
.4

0
.3

R
E
D
I
S
S
O
N
-
1
0

11
.6

88
.9

91
.6

88
.5

0
0

8.
4

77
.6

59
.0

0
0

0
9.
0

29
.3

31
.8

8.
5

0
0

10
.5

19
.3

15
.5

21
.5

0
.3

R
E
D
I
S
S
O
N
-
1

12
.7

10
.4

0
3.
4

0
0

12
.8

6.
1

11
.1

0
0

0
15
.3

10
.9

11
.1

.9
0

0
12
.3

0
0

0
0

2.
0

R
E
D
I
S
S
O
N
-
2

12
.6

7.
6

0
0

0
0

5.
2

7.
6

0
0

0
0

17
.3

29
.4

39
.5

0
0

0
11
.8

0
0

0
0

2.
0

R
E
D
I
S
S
O
N
-
3

12
.1

0
0

0
0

0
10
.1

0
0

0
0

0
0

0
0

0
0

0
10
.3

0
0

0
0

.7

R
E
D
I
S
S
O
N
-
4

12
.5

9.
3

0
15
.7

0
0

6.
1

7.
7

0
0

0
0

16
.4

13
.3

0
0

0
0

10
.9

0
0

0
0

1.
3

R
E
D
I
S
S
O
N
-
5

12
.8

0
0

0
0

0
5.
4

0
0

0
0

0
14
.7

0
0

0
0

0
12
.7

0
0

0
0

2.
0

R
E
D
I
S
S
O
N
-
6

11
.3

0
0

0
0

0
5.
3

0
0

0
0

0
14
.1

0
0

0
0

0
8.
0

0
0

0
0

1.
0

R
E
D
I
S
S
O
N
-
7

1.
2

0
0

0
0

0
3.
1

0
0

0
0

0
0

0
0

0
0

0
8.
5

1.
7

2.
0

3.
5

0
1.
5

R
E
D
I
S
S
O
N
-
8

11
.5

73
.0

58
.3

80
.6

0
0

5.
0

71
.5

54
.1

0
0

.2
17
.0

73
.0

58
.3

80
.6

0
0

13
.1

67
.3

45
.8

73
.6

0
.2

R
E
D
I
S
S
O
N
-
9

11
.7

79
.4

40
.9

55
.5

0
0

4.
1

71
.3

56
.0

4.
6

0
0

16
.1

90
.6

68
.1

30
.0

0
0

10
.7

47
.7

42
.4

46
.7

0
.1

W
E
B
M
A
G
I
C
-
1

1.
3

0
0

0
0

0
2.
7

0
0

0
0

0
15
.8

21
.3

10
.2

24
.6

0
0

12
.8

0
0

0
0

1.
0

W
E
B
M
A
G
I
C
-
2

1.
3

0
0

0
0

0
2.
6

0
0

0
0

0
6.
0

17
.2

8.
6

17
.3

0
0

3.
0

0
0

0
0

0

W
E
B
M
A
G
I
C
-
3

11
.7

85
.3

41
.9

58
.2

0
0

4.
4

84
.2

24
.4

49
.1

0
0

15
.3

95
.3

55
.2

33
.8

0
0

16
.0

83
.3

63
.8

83
.3

0
.3

W
E
B
M
A
G
I
C
-
4

11
.6

74
.6

16
.6

65
.5

0
0

14
.3

0
0

0
0

0
3.
5

0
0

0
0

0
2.
8

0
0

0
0

0

W
E
B
M
A
G
I
C
-
5

11
.6

80
.6

75
.0

75
.0

0
0

5.
2

76
.8

78
.3

76
.0

0
0

3.
3

11
.8

8.
3

11
.4

0
0

12
.5

86
.0

68
.3

81
.2

0
.2

Z
X
I
N
G
-
1
0

11
.9

38
.0

31
.6

25
.0

0
0

4.
9

60
.9

59
.1

47
.4

0
0

16
.5

86
.5

68
.3

54
.0

0
0

14
.2

81
.4

70
.7

84
.7

0
.2

Z
X
I
N
G
-
1

11
.9

8.
7

3.
3

2.
2

0
0

4.
4

20
.8

14
.6

5.
0

0
0

17
.8

40
.8

29
.7

4.
3

0
0

13
.0

8.
0

3.
7

4.
8

0
.7

Z
X
I
N
G
-
2

11
.4

.3
0

0
0

0
13
.2

12
.1

10
.1

7.
7

0
0

9.
1

11
.7

12
.1

3.
4

0
0

2.
6

0
0

0
0

0

Z
X
I
N
G
-
3

11
.5

62
.5

47
.4

23
.4

0
0

6.
0

97
.3

84
.8

67
.7

0
0

15
.3

97
.3

87
.5

3.
9

0
0

13
.0

90
.3

73
.4

94
.4

0
.1

Z
X
I
N
G
-
4

1.
3

0
0

0
0

0
4.
4

92
.5

93
.0

19
.8

0
0

15
.5

89
.0

86
.1

82
.0

0
0

13
.5

43
.1

21
.9

31
.6

0
.1

Z
X
I
N
G
-
5

13
.0

10
.9

7.
5

1.
1

0
0

4.
4

65
.4

82
.0

42
.4

0
0

14
.4

48
.0

38
.3

44
.5

0
.1

13
.3

93
.0

89
.1

65
.7

0
.2

Z
X
I
N
G
-
6

11
.3

0
0

0
0

0
4.
4

76
.1

64
.0

39
.2

0
0

16
.2

43
.0

36
.2

45
.2

0
.1

13
.3

.9
.4

1.
0

0
1.
0

Z
X
I
N
G
-
7

11
.9

50
.0

40
.7

35
.5

0
0

4.
3

55
.9

53
.9

47
.1

0
0

16
.0

97
.2

96
.0

72
.7

0
0

13
.2

99
.3

98
.0

10
0.
0

0
0

Z
X
I
N
G
-
8

11
.5

5.
1

3.
3

1.
9

0
0

4.
4

36
.5

46
.1

29
.1

0
0

15
.2

58
.1

54
.4

31
.0

0
0

11
.8

27
.7

23
.3

23
.0

0
.3

Z
X
I
N
G
-
9

12
.1

77
.7

63
.2

46
.8

0
0

6.
1

88
.3

84
.3

82
.2

0
0

15
.0

88
.8

89
.7

52
.4

0
0

12
.2

97
.8

91
.1

10
0.
0

0
.2

28

SBST’18, May 28–29, 2018, Gothenburg, Sweden U. Rueda et al.

T
a
b
le

9
:
A
v
e
ra
g
e
d
re
su

lt
s
fo
r
6
ru

n
s
o
n
2
4
0
se
co

n
d
s
ti
m
e
b
u
d
g
e
t

R
a
n
d
o
o
p

T
3

E
v
o
su

it
e

jT
e
x
P
e
rt

C
U
T

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

д
e
n
t

c
o
v
i

c
o
v
b

c
o
v
m

U
B

D
U
B
B
O
-
1
0

1.
3

0
0

0
0

0
36
.6

15
.6

22
.4

23
.3

0
0

14
9.
5

28
.9

28
.2

20
.8

0
0

19
7.
2

3.
4

0
0

0
.9

D
U
B
B
O
-
2

1.
7

0
0

0
0

0
3.
7

0
0

0
0

0
4.
4

0
0

0
0

0
19
9.
0

0
0

0
1.
0

0

D
U
B
B
O
-
3

25
4.
4

70
.7

68
.2

27
.8

0
0

19
.0

96
.0

95
.1

90
.4

0
0

18
7.
0

96
.5

97
.0

85
.7

0
0

3.
0

0
0

0
0

0

D
U
B
B
O
-
4

24
2.
4

68
.3

50
.0

33
.3

0
0

10
.6

68
.3

66
.6

55
.5

0
.1

15
1.
4

93
.0

95
.1

92
.5

0
0

19
6.
9

77
.4

79
.8

71
.6

0
.3

D
U
B
B
O
-
5

24
2.
3

96
.9

94
.4

93
.3

0
0

27
.8

96
.9

94
.4

87
.7

0
0

15
0.
5

97
.4

94
.4

78
.8

0
0

19
6.
6

96
.9

73
.1

10
0.
0

0
.1

D
U
B
B
O
-
6

24
2.
3

2.
1

2.
8

2.
3

0
0

8.
1

4.
3

2.
8

2.
3

0
0

14
7.
2

4.
3

4.
7

2.
3

0
0

19
6.
6

51
.4

59
.7

63
.9

0
.1

D
U
B
B
O
-
7

24
4.
4

10
0.
0

95
.8

10
0.
0

0
0

18
.7

10
0.
0

97
.9

99
.0

0
0

15
2.
7

10
0.
0

97
.9

99
.0

0
0

19
7.
2

92
.0

78
.8

97
.4

0
.1

D
U
B
B
O
-
8

24
1.
4

4.
5

2.
0

1.
9

0
0

23
4.
9

89
.6

81
.9

75
.3

0
0

16
1.
6

84
.6

77
.6

78
.3

0
0

19
8.
1

80
.3

60
.7

83
.9

0
.2

D
U
B
B
O
-
9

24
2.
0

78
.6

67
.6

69
.3

0
0

82
.7

80
.7

72
.0

72
.8

0
0

17
5.
3

85
.3

77
.0

70
.3

0
0

19
8.
8

82
.5

74
.7

72
.7

0
.1

F
A
S
T
J
S
O
N
-
1
0

24
6.
0

6.
6

0
3.
4

0
0

13
.4

60
.0

50
.0

44
.8

0
0

15
9.
1

60
.7

50
.0

45
.4

0
0

19
7.
1

60
.0

50
.0

58
.6

0
.1

F
A
S
T
J
S
O
N
-
1

1.
5

0
0

0
0

0
18
2.
5

9.
6

8.
3

3.
1

0
0

23
4.
8

23
.7

20
.3

10
.2

0
0

27
9.
3

28
.4

28
.7

4.
7

0
.2

F
A
S
T
J
S
O
N
-
2

24
5.
3

40
.5

31
.4

29
.5

0
0

23
7.
7

46
.1

39
.7

39
.2

0
0

22
7.
4

48
.0

40
.4

43
.5

0
0

22
7.
1

57
.0

50
.4

65
.8

0
.2

F
A
S
T
J
S
O
N
-
3

24
4.
3

19
.3

13
.5

1.
5

0
0

24
4.
7

28
.1

22
.2

14
.0

0
0

22
2.
0

25
.5

18
.5

16
.9

0
0

22
3.
6

43
.6

36
.6

45
.3

0
.4

F
A
S
T
J
S
O
N
-
4

24
3.
7

93
.7

72
.2

55
.9

0
0

24
4.
6

15
.4

10
.5

4.
6

0
.2

22
7.
6

55
.1

30
.5

53
.9

0
.1

16
8.
5

76
.2

75
.0

48
.0

0
.5

F
A
S
T
J
S
O
N
-
5

24
1.
4

1.
1

.4
1.
2

0
0

24
4.
5

3.
4

1.
9

4.
7

0
0

16
5.
4

28
.8

21
.0

17
.5

0
0

19
8.
1

49
.8

42
.5

60
.0

0
.2

F
A
S
T
J
S
O
N
-
6

24
6.
9

11
.1

13
.5

9.
0

0
0

9.
8

11
.4

10
.8

7.
4

0
0

15
7.
6

35
.5

34
.4

19
.0

0
0

19
8.
0

76
.2

64
.4

73
.6

0
.2

F
A
S
T
J
S
O
N
-
7

25
4.
6

79
.1

70
.6

48
.9

0
0

23
7.
1

81
.4

71
.3

75
.5

0
.4

16
6.
9

81
.0

71
.6

49
.7

0
0

20
0.
3

83
.0

75
.9

78
.6

0
.3

F
A
S
T
J
S
O
N
-
8

25
0.
5

78
.5

70
.6

11
.1

0
0

24
3.
2

80
.8

66
.8

40
.9

0
.1

19
8.
1

87
.6

77
.2

73
.0

0
0

20
0.
4

81
.2

71
.0

90
.9

0
.1

F
A
S
T
J
S
O
N
-
9

24
1.
5

13
.5

12
.5

14
.4

0
0

18
.0

19
.7

18
.7

22
.3

0
0

14
8.
3

33
.3

39
.0

39
.4

0
0

19
6.
4

43
.7

53
.6

53
.9

0
0

J
S
O
U
P
-
1

24
2.
3

95
.0

76
.1

6.
0

0
0

24
4.
5

77
.8

55
.0

36
.9

0
0

18
0.
7

98
.2

94
.8

87
.4

0
0

22
3.
4

97
.1

89
.2

20
.3

0
.2

J
S
O
U
P
-
2

24
1.
4

21
.0

23
.2

0
0

0
21
6.
2

69
.7

70
.7

2.
0

0
0

15
2.
2

60
.3

55
.7

40
.8

0
0

19
6.
2

27
.1

27
.8

17
.3

0
.2

J
S
O
U
P
-
3

24
1.
4

21
.3

8.
8

26
.2

0
0

34
.7

76
.6

46
.4

71
.2

0
0

20
2.
8

75
.7

52
.0

49
.7

0
0

19
8.
0

74
.5

44
.4

84
.5

0
.1

J
S
O
U
P
-
4

24
2.
2

95
.1

90
.0

80
.0

0
0

20
7.
1

95
.5

91
.6

81
.1

0
0

14
7.
6

82
.9

81
.6

72
.7

0
0

8.
6

16
.6

16
.6

16
.6

.6
0

J
S
O
U
P
-
5

24
5.
4

49
.0

18
.8

27
.4

0
0

23
4.
8

69
.3

44
.6

20
.5

0
0

16
9.
6

81
.3

56
.4

50
.0

0
0

19
7.
1

0
0

0
1.
0

0

O
K
I
O
-
1
0

24
2.
0

67
.3

60
.0

47
.3

0
0

31
.1

73
.4

80
.0

57
.8

0
0

14
9.
9

78
.2

83
.3

80
.7

0
0

19
6.
1

0
0

0
1.
0

0

O
K
I
O
-
1

24
2.
5

82
.6

77
.8

.9
0

0
24
4.
5

0
0

0
0

0
23
4.
3

65
.7

56
.1

23
.9

0
0

22
7.
7

0
0

0
.9

0

O
K
I
O
-
2

24
2.
5

81
.2

85
.0

92
.1

0
0

11
9.
4

89
.0

95
.4

78
.9

0
0

20
5.
3

91
.8

94
.9

78
.6

0
0

20
0.
5

86
.4

90
.1

95
.6

0
.1

O
K
I
O
-
3

24
4.
0

0
0

0
0

0
10
5.
8

27
.2

25
.0

17
.1

0
0

16
6.
1

97
.5

87
.7

69
.1

0
0

19
8.
5

25
.6

21
.9

28
.7

0
.4

O
K
I
O
-
4

24
1.
5

1.
4

.6
.9

0
0

24
4.
4

0
0

0
0

0
23
8.
4

65
.0

49
.8

51
.1

0
0

19
8.
5

0
0

0
1.
0

0

O
K
I
O
-
5

24
1.
3

2.
8

1.
5

1.
3

0
0

24
5.
2

37
.9

22
.4

20
.3

0
0

21
1.
4

98
.0

93
.4

88
.3

0
0

22
1.
3

0
0

0
1.
0

0

O
K
I
O
-
6

24
2.
2

34
.2

32
.1

36
.6

0
0

24
5.
1

53
.8

42
.2

46
.6

0
0

15
6.
5

82
.8

85
.7

86
.6

0
0

2.
9

0
0

0
0

0

O
K
I
O
-
7

24
3.
5

81
.8

79
.1

67
.0

0
0

22
5.
4

84
.2

88
.8

69
.9

0
0

14
9.
5

97
.2

97
.2

79
.2

0
0

19
6.
2

41
.8

22
.9

36
.5

0
.3

O
K
I
O
-
8

24
2.
4

69
.1

65
.9

23
.5

0
0

24
4.
3

79
.4

65
.1

64
.3

0
.2

23
7.
1

79
.9

59
.4

60
.4

0
0

21
4.
8

0
0

0
1.
0

0

O
K
I
O
-
9

24
1.
3

53
.3

38
.4

35
.8

0
0

4.
4

60
.0

42
.3

28
.2

0
0

14
6.
5

60
.0

42
.3

35
.8

0
0

19
6.
2

53
.3

42
.3

38
.4

0
.3

R
E
D
I
S
S
O
N
-
1
0

24
2.
6

90
.0

97
.8

90
.4

0
0

24
3.
6

84
.3

77
.8

0
0

0
0

0
0

0
0

0
9.
5

0
0

0
0

0

R
E
D
I
S
S
O
N
-
1

26
2.
7

10
.4

0
3.
4

0
0

16
3.
7

6.
0

11
.1

0
0

0
0

0
0

0
0

0
19
6.
5

0
0

0
0

2.
0

R
E
D
I
S
S
O
N
-
2

25
2.
8

7.
6

0
0

0
0

13
.3

7.
6

0
0

0
0

0
0

0
0

0
0

19
6.
0

0
0

0
0

2.
0

R
E
D
I
S
S
O
N
-
3

24
5.
0

0
0

0
0

0
24
7.
9

0
0

0
0

0
37
.8

0
0

0
0

0
32
.5

0
0

0
0

0

R
E
D
I
S
S
O
N
-
4

25
4.
5

9.
3

0
15
.7

0
0

16
3.
7

6.
2

0
0

0
0

0
0

0
0

0
0

21
.4

0
0

0
0

0

R
E
D
I
S
S
O
N
-
5

25
2.
9

0
0

0
0

0
15
2.
5

0
0

0
0

0
0

0
0

0
0

0
40
.5

0
0

0
0

0

R
E
D
I
S
S
O
N
-
6

24
1.
8

0
0

0
0

0
16
3.
6

0
0

0
0

0
0

0
0

0
0

0
16
.9

0
0

0
0

0

R
E
D
I
S
S
O
N
-
7

1.
3

0
0

0
0

0
3.
3

0
0

0
0

0
0

0
0

0
0

0
29
.0

0
0

0
0

0

R
E
D
I
S
S
O
N
-
8

24
2.
2

73
.0

58
.3

80
.6

0
0

35
.9

71
.7

54
.1

0
0

.2
0

0
0

0
0

0
18
.8

0
0

0
0

0

R
E
D
I
S
S
O
N
-
9

24
2.
5

80
.8

45
.4

58
.3

0
0

42
.4

89
.7

68
.1

4.
6

0
0

17
0.
9

99
.5

99
.2

74
.5

0
0

21
.9

50
.0

50
.0

31
.9

0
.1

W
E
B
M
A
G
I
C
-
1

1.
3

0
0

0
0

0
2.
7

0
0

0
0

0
15
4.
2

33
.1

22
.4

42
.0

0
0

19
7.
1

0
0

0
0

.9

W
E
B
M
A
G
I
C
-
2

1.
3

0
0

0
0

0
2.
7

0
0

0
0

0
23
9.
6

59
.1

41
.5

53
.6

0
0

2.
9

0
0

0
0

0

W
E
B
M
A
G
I
C
-
3

24
2.
0

87
.6

59
.3

66
.3

0
0

56
.3

84
.2

28
.1

51
.7

0
0

20
0.
8

99
.8

84
.1

83
.1

0
0

20
4.
3

10
0.
0

76
.5

10
0.
0

0
.4

W
E
B
M
A
G
I
C
-
4

24
3.
0

74
.6

16
.6

65
.5

0
.1

24
4.
3

0
0

0
0

0
3.
6

0
0

0
0

0
3.
0

0
0

0
0

0

W
E
B
M
A
G
I
C
-
5

24
2.
7

83
.8

90
.0

82
.2

0
0

8.
5

87
.0

10
0.
0

87
.5

0
0

67
.0

0
0

0
0

0
19
7.
1

95
.1

96
.6

92
.7

0
.2

Z
X
I
N
G
-
1
0

24
8.
5

38
.0

31
.6

16
.0

0
0

23
8.
0

72
.1

70
.0

54
.9

0
0

17
2.
9

91
.4

81
.7

73
.1

0
0

21
2.
5

85
.1

75
.3

25
.1

0
.1

Z
X
I
N
G
-
1

25
4.
2

8.
7

3.
3

2.
9

0
0

25
0.
1

31
.2

22
.5

11
.5

0
0

21
6.
8

47
.7

39
.3

16
.6

0
0

20
3.
1

42
.2

34
.5

42
.4

0
.8

Z
X
I
N
G
-
2

24
1.
4

.3
0

0
0

0
24
4.
6

4.
4

4.
4

2.
2

0
0

23
2.
6

31
.5

30
.3

32
.9

0
.1

2.
6

0
0

0
0

0

Z
X
I
N
G
-
3

24
1.
8

62
.5

47
.4

24
.3

0
0

13
.9

97
.7

85
.8

67
.8

0
0

16
3.
7

97
.9

91
.6

68
.6

0
0

20
7.
2

97
.5

82
.4

98
.9

0
.1

Z
X
I
N
G
-
4

1.
3

0
0

0
0

0
23
.0

92
.8

94
.9

18
.6

0
0

17
1.
3

95
.9

95
.3

84
.3

0
0

20
9.
8

65
.4

47
.1

37
.0

0
0

Z
X
I
N
G
-
5

24
6.
2

10
.9

7.
5

1.
1

0
0

97
.8

68
.4

89
.3

37
.6

0
0

20
7.
4

91
.5

88
.9

52
.5

0
0

20
6.
7

96
.7

95
.0

50
.1

0
.1

Z
X
I
N
G
-
6

24
1.
3

0
0

0
0

0
23
6.
1

77
.5

66
.7

44
.5

0
0

17
8.
0

70
.0

61
.4

37
.7

0
0

20
1.
3

48
.8

42
.9

51
.2

0
.7

Z
X
I
N
G
-
7

25
1.
6

54
.1

48
.6

39
.3

0
0

19
6.
1

55
.9

53
.9

47
.1

0
0

19
9.
7

98
.1

97
.3

92
.4

0
0

19
7.
3

99
.0

98
.0

10
0.
0

0
0

Z
X
I
N
G
-
8

24
2.
7

5.
1

3.
3

1.
9

0
0

13
.8

39
.7

54
.4

33
.9

0
0

15
1.
4

80
.1

82
.2

46
.7

0
0

19
6.
3

34
.4

29
.4

23
.0

0
.3

Z
X
I
N
G
-
9

24
4.
6

77
.7

63
.2

46
.8

0
0

17
.9

94
.1

93
.8

85
.4

0
0

14
7.
9

98
.4

96
.9

63
.4

0
0

19
7.
2

10
0.
0

93
.5

10
0.
0

0
.2

29

