

Delft University of Technology

Elastic FemtoCaching
Scale, Cache, and Route
Kwak, Jeongho; Paschos, Georgios; Iosifidis, George

DOI
10.1109/TWC.2021.3056503
Publication date
2021
Document Version
Final published version
Published in
IEEE Transactions on Wireless Communications

Citation (APA)
Kwak, J., Paschos, G., & Iosifidis, G. (2021). Elastic FemtoCaching: Scale, Cache, and Route. IEEE
Transactions on Wireless Communications, 20(7), 4174-4189. Article 9351766.
https://doi.org/10.1109/TWC.2021.3056503

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TWC.2021.3056503
https://doi.org/10.1109/TWC.2021.3056503

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

4174 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

Elastic FemtoCaching: Scale, Cache, and Route
Jeongho Kwak , Member, IEEE, Georgios Paschos, Member, IEEE, and George Iosifidis , Member, IEEE

Abstract— The advent of elastic Content Delivery Networks
(CDNs) enable Content Providers (CPs) to lease cache capacity
on demand and at different cloud and edge locations in order
to enhance the quality of their services. This article addresses
key challenges in this context, namely how to invest an avail-
able budget in cache space in order to match spatio-temporal
fluctuations of demand, wireless environment and storage prices.
Specifically, we jointly consider dynamic cache rental, content
placement, and request-cache association in wireless scenarios
in order to provide just-in-time CDN services. The goal is
to maximize the an aggregate utility metric for the CP that
captures both service benefits due to caching and fairness in
servicing different end users. We leverage the Lyapunov drift-
minus-benefit technique and Jensen’s inequality to transform our
infinite horizon problem into hour-by-hour subproblems which
can be solved without knowledge of future file popularity and
transmission rates. For the case of non-overlapping small cells,
we provide an optimal subproblem solution. However, in the
general overlapping case, the subproblem becomes a mixed
integer non-linear program (MINLP). In this case, we employ
a randomized cache lease method to derive a scalable solution.
We show that the proposed algorithm guarantees the theoretical
performance bound by exploiting the submodularity property
of the objective function and pick-and-compare property of the
randomized cache lease method. Finally, via real dataset driven
simulations, we find that the proposed algorithm achieves 154%
utility compared to similar static cache storage-based algorithms
in a representative urban topology.

Index Terms— Elastic CDN, file caching, area-BS association,
cache rental budget, Lyapunov drift-plus-penalty, submodularity,
randomized cache lease method.

I. INTRODUCTION

THE seminal article of femtocaching [2] introduced a
novel wireless edge caching architecture and proposed

an efficient algorithm for proactively caching popular content

Manuscript received November 6, 2019; revised August 29, 2020 and
January 24, 2021; accepted January 28, 2021. Date of publication February 9,
2021; date of current version July 12, 2021. This work was supported by
the National Research Foundation of Korea(NRF) grant funded by the Korea
Government(MSIT) (No. 2019R1F1A1062291). This work was supported
by the DGIST Start-up Fund Program of the Ministry of Science and
ICT(2021010006). G. Iosifidis acknowleges support by Science Foundations
Ireland under Grant 17/CDA/4760 and by the European Commission through
Grant No. 101017109 (DAEMON). This article was presented at the Pro-
ceedings of WiOpt Conference, May 2018. The associate editor coordinating
the review of this article and approving it for publication was G. Xue.
(Corresponding author: Jeongho Kwak.)

Jeongho Kwak is with the Department of Information and Communication
Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST),
Daegu 42988, South Korea (e-mail: jeongho.kwak@dgist.ac.kr).

Georgios Paschos is with Amazon, Inc., 2540 Luxembourg, Luxembourg
(e-mail: gpasxos@gmail.com).

George Iosifidis is with the Department of Electrical Engineering,
Delft University of Technology, 2600 Delft, The Netherlands (e-mail:
g.iosifidis@tudelft.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3056503.

Digital Object Identifier 10.1109/TWC.2021.3056503

files. However, a key limitation of this idea is that it considers
a static deployment of caches and their long-term population
with content. In practice, the dynamic (re-)scaling of the
cache capacity and the frequent refreshing of their contents is
imperative for coping with the time-varying file popularity and
user demand intensity. In this article, we propose the elastic
femtocaching model which introduces a new wireless edge
caching system for deciding how to scale the caches, which
files to cache in each of them, and how to route the content
to users.

The femtocaching architecture includes a set of edge caches
deployed at small base stations (SBSs) that underlay a macro
base station (MBS) in a heterogeneous wireless network.
These caches are filled during off-peak hours, e.g., overnight,
with popular files, which are then delivered to nearby users
when demand increases. This mitigates the network conges-
tion, as it economizes the bottleneck MBS wireless capacity
and reduces the utilization of the expensive SBS backhaul
links. At the same time, femtocaching improves the user
experience by replacing the long-range MBS transmissions
with the energy-prudent and fast SBSs-users wireless links.

The main assumption of femtocaching is that the caches
have a fixed, and cheap, storage capacity and that their
population with files is realized in a coarse time scale, e.g.,
once per day or week. However, in practice file demand
changes quite fast, as users might move from one location
to another, and content popularity at the various online con-
tent platforms peaks only for a few hours [3]. Moreover,
installing and maintaining storage units at the edge induces
operating expenditures that can render this model unsustain-
able. Under these conditions, the static femtocaching model
can be both performance-inefficient and unnecessarily costly.
This becomes particularly important today where we see the
proliferation of small service (or, content) providers that have
volatile demand and hence cannot afford buying or leasing
large storage capacity. For these business entities it is essential
to have access to elastic caching infrastructures, such as
uCDN and ElastiCache, two real market elastic CDN solutions
deployed by Huawei and Amazon Web Services, respectively.
The importance of such flexible storage deployments is best
manifested by the proliferation of solutions such as Huawei
uCDN or AWS ElastiCache that allow dynamic cache scaling.

Motivated by the above, we revisit this fundamental caching
model and propose a novel elastic femtocaching architecture.
In this system, the caches are re-scaled and the stored files are
updated in a finer time-scale in order to adapt to user needs.
Moreover, the association of users to SBSs aims not simply
to maximize the caching benefit, but to balance the caching
benefits for the different users. These decisions are updated
dynamically as new information about the expected demand

1536-1276 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5737-0665
https://orcid.org/0000-0003-1001-2323

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4175

becomes available, and in a way that long-term monetary bud-
get and performance criteria are satisfied. Therefore, our goal
is to develop a rigorous analytical framework for addressing
these decision trade-offs in a systematic and provably-optimal
fashion.

We introduce a general system model that can capture
different application scenarios. We assume that the network1

has a certain average budget to spend, over time, for deploying
the SBSs caches. The deployment cost might capture operating
expenditures (e.g., energy consumed by the servers) or the
leasing price when the network does not own the infrastruc-
ture, e.g., in solutions such as [4]. The system operates in
a time-slotted fashion, where each slot has a duration of a
few hours or less, based on the scenario. At the beginning of
each slot, the network obtains information about the expected
demand, and the servicing delay of the SBSs.2

Using this minimal-assumptions model, we formulate the
elastic femtocaching problem where decisions for (i) cache
scaling; (ii) file caching; and (iii) user-SBS association, are
taken in each time slot. The objective is to satisfy the user
requests with the maximum possible caching benefit, while
respecting certain fairness among different subareas.3 Our
approach ensures that users experiencing unfavorable wireless
conditions with the SBSs will not be exclusively served by the
MBS (over long-distance, high-delay links), hence it achieves
an even distribution of the edge-caching benefits. This idea
is in line with the fairness criteria that have been extensively
applied in wired networks (e.g., in TCP mechanisms [5]), yet
have been hitherto ignored in femtocaching.

The formulated optimization problem is NP-complete, as it
extends the standard femtocaching problem, and hence it is
solved with an approximate solution. In each slot we use a
low-complexity caching and association intra-slot policy that
attains a feasible, but possibly suboptimal, operation point.
Our approach leverages a lightweight greedy algorithm and
exploits the submodular property of the objective function.
Across different time-slots, we employ a Lyapunov-based
control policy that tracks the budget over/under-spending and
the QoS criteria violation as new information about demand
and transmission delays become available. These signals are
then used to modulate the decisions of the intra-slot policy,
so as to achieve, asymptotically, the desired operation point.
Our contributions can be summarized as follows:

1) We propose a wireless caching architecture, elastic
femtocaching in order to account for time-varying file
popularity and user-demand intensity.

2) We formulate the cache-scaling, content-caching, and
user-association mathematical program, with a fair
caching benefit maximizing objective criterion.

3) We propose a set of algorithms for solving this problem,
combining a greedy algorithm, using the submodular-

1We use the term network to refer to any entity in charge for making the
elastic femtocaching decisions; this can be the actual network operator as in
the standard femtocaching model or, for instance, a mobile-CDN, the content
provider, and so on.

2Such information can rely on simple statistics of the previous slot or
become available through sophisticated prediction methods.

3Namely, instead of maximizing the aggregate caching benefits, we aim to
balance the caching benefits across all users.

ity of objective function for the intra-slot decisions,
with a Lyapunov-based control policy [6] and a ran-
domized pick-and-compare [7] for the inter-slot deci-
sions. The resulting algorithms achieve asymptotically a
provably-optimal network operation point.

4) We evaluate our algorithms using real datasets for
demand and various SBSs deployment scenarios. Espe-
cially, we find that our elastic and joint policy attains
154% higher performance than the static femtocaching
model in a typical urban network deployment scenario.

Paper Organization. The remaining of this article is orga-
nized as follows. We discuss the related work in Sec. II
and introduce the system model and the elastic femtocaching
problem in Sec. III. We propose a Lyapunov-based dynamic
policy in Sec. IV, and in Sec. V we discuss two different
algorithms. We evaluate the proposed policies in Sec. VI and
conclude in Sec. VII. All proofs can be found in the Appendix,
unless otherwise stated.

II. RELATED WORK

Wireless edge caching. The idea of wireless edge caching
was introduced in [2] and further extended by several
follow-up works. For example, Abedini et al. [8] focused on
stabilizing queues of pending requests by managing jointly
the link bandwidth and storage of the SBSs. On the other
hand, [9] minimizes dynamically a cost criterion through both
load-balancing and content replication when the SBSs have
hard storage and soft link capacity constraints. The idea of
creating a femtocaching network through leased caches was
proposed in [10], that designed a low-complexity solution
algorithm based on Lagrange relaxation. Wu et al. [11] aimed
at minimizing long-term energy consumption while guarantee-
ing short-term user Quality of Service (QoS). They assumed
coded caching4 whereas we study more challenging problem
with discrete caching variables, and hence have the more
challenging model of discrete caching variables. Moreover,
Ryu et al. [12] designed cooperative caching algorithms where
multiple BSs optimize jointly the content placement without
knowing the file popularity. They used a mixed-time scale
model where in the long scale they retrieve files from the core
network, and in the short time scale share the files among
the BSs. However, they did not consider elastic cache scaling,
which is a core idea in our framework.

Dynamic caching policies. The original femtocaching
model [2] presumes static content popularity and proposes
a one-off proactive caching policy. Some recent studies in
proactive caching, including our work, dropped the assumption
of static popularity. Asheralieva et al. [13] exploited Lyapunov
optimization for proactive content caching and delivery in
cellular and device-to-device networks, aiming to minimize
the time-average network cost. Similarly, Paschos et al. [14]
addressed the issue of non-stationary content popularity using
an online learning approach in the design of the routing and
caching policies. Nevertheless, the above works overlooked the
possibility of cache scaling.

4In coded caching, a file can be split into several parts that can be stored
in different caches.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4176 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

On the other hand, reactive policies, such as LRU (Least
Recently Used) and LFU (Least Frequently Used) [15], make
dynamic caching decisions upon the arrival of each request.
These policies have been originally designed for single (or,
independent) caches, and have been later extended to caching
networks. For instance, Giovanidis et al. [16] proposed a
spatial multi-LRU version where each request is routed via the
closest base station that has the file. This solution improves the
caching hit via cooperative caching whereas wireless latency
was not taken into account. Similarly, Leonardi et al. [17]
proposed a q-LRU algorithm where the caching update
happens depending on the cached status in multiple BSs.
Chen et al. [18] addressed a stochastic cooperative caching
in several BSs under assumption of coded and time-to-live
(TTL) caching aiming at reducing content download time.
Similar to our work, Carra et al. [[19] addressed the dynamic
cache resource scaling aiming to simultaneously minimize
the storage and backhaul cost. However, unlike our work,
they considered a reactive caching policy, namely time-to-live
(TTL) caching, single cache and non-fairness criteria. More-
over, Dehghan et al. [15] considered a utility-based objective
function where the utility captures fairness between different
files. They proposed utility-driven LRU and LFU algorithms
aiming at maximizing the sum of utilities over all files without
consideration of cache scaling. Besides, our utility function is
designed to achieve user - not file - fairness.

Content Caching using machine learning framework.
Past content caching works using machine learning, e.g.,
collaborative filtering, focused on accurate estimation of
future content popularity [20], [21]. Recently, several studies
exploited (deep) reinforcement learning (RL) to optimize the
operation of caching networks. For example, Xiong et al. [22]
addressed content caching in broadcasting systems using deep
reinforcement learning. Moreover, Sadeghi et al. [23] used
RL as a contents caching solution in a unicast system where
their storage price might change with time. In their previous
work, Sadeghi et al. [24] considered a hierarchical cloud-edge
caching model where the cloud stores files according to global
file popularity and the edge stores files according to local
file popularity. They modeled the spatio-temporal popularity
variations using a Markov chain model, and solved them
with RL. Finally, Somuyiwa et al. [25] proposed a mobile
proactive caching scheme, using again RL, where the caches
are deployed at the mobile users’ equipment, not at edge
servers as in our model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an elastic caching network with a macro base
station (MBS), denoted with s, and a set J of small base
stations (SBSs). The set J ∪ {s} of all BSs provide coverage
to a geographic area and serve user requests for a catalog F
of content files, each with size b, see Fig. 1. We partition the
geographical area into I non-overlapping subareas where each
subarea might include one or more users who share the same
network characteristics (propagation delay, shadowing effects,
and so on) and use Ji ⊆ J to denote the subset of SBSs

Fig. 1. Overview of an elastic femtocaching system.

that are reachable by each subarea i ∈ I.5 while the MBS
is reachable from all subareas. Each SBS offers storage for
lease, which can be used to cache files so as to facilitate their
delivery to the users.6

The system operation is time slotted, where each slot
represents, for instance, an hour. For each file f ∈ F in
the catalog, we denote with λi,f (t) the average number of
requests for file f emanating from subarea i during slot t, and
is generated by an i.i.d. stochastic process {λi,f (t)}t. We also
introduce the demand vector λ(t) = (λi,f (t) : i ∈ I, f ∈ F),
which is indicative of the file popularity in time and space,
and therefore crucial for adjusting caching decisions. When
a user requests a file, there is an associated download delay
dij(t), j ∈ Ji ∪ {s}, which depends on the subarea i, where
the user is located, and on whether the file is cached at SBS
j or not.7 When the file is not found in any reachable SBS,
the origin server that stores the entire catalog is contacted
through the MBS to obtain the file (Fig. 1), and although
this ensures delivery of every file, the corresponding download
delay dis(t) is generally large, i.e., we naturally assume that
dis(t) > dij(t) for every slot and i ∈ I, j ∈ J . Hence,
the perceived service quality (QoS) is improved whenever the
file is retrieved from a nearby SBS cache, instead of the MBS.
We denote with d(t) = (dij(t), dis(t), ∀i ∈ I, j ∈ J) the
vector of all delays in slot t.

We assume that there are costs for deploying storage at the
SBSs. Namely, the edge storage is leased at a time-fluctuating
unit price hj(t) that can be potentially different for each SBS
j. We define the respective vector h(t) = (hj(t), j ∈ J)
which is extrinsic to our system. This volatility of storage
leasing prices can arise for various reasons. For instance, it can

5The subarea model is general enough and allows the subareas to be defined
very small so as to have only one user in practice.

6We assume that SBS edge storage and an original file server are connected
with high-capacity links (e.g., optical lines). Then, our system will retrieve the
updated cached files via the fast dedicated link without significant fetching
costs.

7In practice, wireless delay can be calculated by Shannon capacity formula
with wireless parameters, e.g., RSSI, CSI and interference obtained in the
previous time slot [26]. Otherwise, we can use the measurement-based delay
in the previous time slot. Specifically, the simple method to measure average
delay is to collect the measured delay in each subarea from all users received
any files from one of SBSs in the previous time slot, and take average of
it. Although there exist other estimation methods for average delay, they
might have a tradeoff relationship between estimation overhead and estimation
accuracy.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4177

TABLE I

SUMMARY OF THE NOTATIONS

be attributed to electricity price fluctuations [27], or due to
the volatility of a spot storage market that the operator uses
to lease such resources.8 This creates the need for a careful
leasing strategy. To that end, we introduce the investment
variables yj(t) ≥ 0 to denote the amount of jth SBS storage
that is leased for caching in slot t. These decisions are subject
to an economic constraint. Specifically, we have in mind an
average budget Bavg (dollars/hour), which must be satisfied
over a long time horizon:

lim
T→∞

1
T

T−1∑
t=0

∑
j∈J

yj(t)hj(t) ≤ Bavg, (1)

where the term
∑

j∈J yj(t)hj(t) represents the total invest-
ment in slot t.

In any case, measurement errors may as well impact the per-
formance of such system. If they have a stationary zero-mean
distribution, such that their effect does not impact the solution
of the static problem, then they will not affect the performance
of our dynamic algorithm. If, however, they do affect the static
solution, then they will also impact our dynamic algorithm.
Clearly, three types of measurements, i.e., file popularity,
average delay and cache price jointly affect the decisions of
cache scaling, content caching and routing. However, their
solution would depend on the relative measurement between
different files.

In this context, our goal is to address the following content
provider’s (CP’s) question: what is the cache scaling strategy
that optimizes the average caching benefits while respecting
the long-term budget constraint? Answering this question is
very challenging for the following reasons: (i) the CP does not
know the future spatio-temporal profile of the demand, nor the
storage prices that might change substantially in short time
intervals; and (ii) the benefits of caching at an SBS change
over time, and therefore even deciding the distribution of the
hourly budget to leasing different caches is highly non-trivial.

To determine the average delay experienced within each
slot, we must describe carefully how each file is delivered.
We first introduce two more sets of variables: (i) file placement
variable zj,f(t) ∈ {0, 1} which takes value 1 iff file f is
cached at SBS j in slot t, and (ii) the demand association
variable xij,f (t) ∈ [0, 1] which denotes the fraction of requests
for file f from location i that is served by SBS j, during slot
t. Hence, the hourly end-to-end caching benefit from edge

8For example, storage owners sell their unused storage, and hence the price
is affected by temporal ebbs and flows of traffic and storage demand.

caching for each subarea i ∈ I can be expressed as:

Di(t) =
∑
j∈Ji

(dis(t)−dij(t))
∑
f∈F

xij,f (t)λi,f (t)zj,f (t), (2)

where xij,f (t)λi,f (t) is i’s demand fraction routed to SBS j,
and (dis(t)−dij(t))xij,f (t)λi,f (t) is the corresponding caching
benefits (delay reduction) which is realized if the file is cached
at the SBS, i.e., zj,f (t) = 1.

Finally, in each slot the system must satisfy the follow-
ing constraints. First, the entire demand of each subarea
i ∈ I is routed to some of the SBSs,9 hence it holds:∑

j∈Ji
xij,f (t) = 1, ∀i, f, t. Routing to an unreachable SBS is

not allowed: xij,f (t) = 0, ∀f , if j /∈ Ji. Also, the cached files
should not exceed the leased capacity, i.e.,

∑
f∈F zj,f(t) ≤

yj(t)/b, ∀ j, t.10 The notation is summarized in Table I.

B. Problem Formulation

Definition 1 (Femtocaching plan): An elastic cache plan
for time slot t is a selection of variables (yj(t), zj,f (t),
xij,f (t)) such that the instantaneous constraints are satisfied:∑

j∈Ji

xij,f (t) = 1, ∀i, f, t, xij,f (t) = 0, ∀f, t, i if j /∈ Ji,

(3)∑
f∈F

zj,f (t) ≤ yj(t)/b, yj(t) ≥ 0, ∀j, tzj,f (t) ∈ {0, 1},

∀j, f, xij,f (t) ∈ [0, 1], ∀i, j, f. (4)
Definition 2 (Elastic femtocaching policy): A feasible elas-

tic femtocaching policy π at every slot observes the sys-
tem state (λ(t), d(t), h(t)) and chooses a femtocaching plan
such that the time average budget constraint (1) is satisfied.
We denote with Π the set of all feasible elastic CDN strategies.

In order to improve system performance, we are clearly
interested to tune our elastic femtocaching policy towards
obtaining large caching benefits. Using the definition of
the instantaneous caching benefit in (2), we can define the
time-average caching benefit using policy π as:

D
π

i � lim
T→∞

1
T

T−1∑
t=0

Di(xπ(t), zπ(t); λ(t), d(t), h(t)),

9In our model, all requests are routed towards an SBS, even if they are
ultimately served by the MBS; in this case, we still require a dummy selection
of the xij,f (t) variables. Notice that this model is slightly different from
femtocaching model [2] where the association variable includes an MBS.

10We assume that b is the same for all files for simplicity, but we can model
a heterogeneous file size scenario by dividing the different sizes of files into
the same size chunks.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4178 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

where xπ(t), zπ(t) are the caching and association decisions
in slot t, under policy π. A reasonable objective is to maxi-
mize the time-average total caching benefit:

∑
i D

π

i . However,
to achieve a fair caching improvement throughout the entire
geographical area, we employ a general α-fairness utility
function [28]11:

Ui(D̄i) =

{
(1− α)−1D̄i

1−α
, if α ≥ 0, α �= 1,

log(1 + D̄i), if α = 1,
(5)

If α = 0, our system only considers average caching benefit
maximization without accounting for fairness across the dif-
ferent subareas; whereas for higher α values it forces more fair
distribution of the caching benefits among users in different
subareas. A representative function of this α-fairness utility
model is the function

∑
i log(1 + D

π

i). Hereinafter we will
focus on this specific function, though we mention that our
results hold true for any concave function.

In summary, we would like to address the CP’s question
“What is the feasible elastic femtocaching policy that achieves
the highest utility?” This question can be addressed by solving
the following problem:

Val(P) = sup
π∈Π

∑
i∈I

log(1 + D
π

i).

Note that (P) is challenging for the following reasons:
(i) Parameters for the objective such as future traffic demand
λi,f (t), future caching gains dis(t) − dij(t) and cache lease
price hj(t) are unknown at the time the investment decisions
yj(τ) are taken (τ < t). (ii) Due to the time average billing
constraint, a large investment yj(τ) reduces the available bud-
get in future slots t > τ , which can be problematic in combina-
tion with the unknown future costs hj(t), delays dij(t), dis(t)
and traffic demand λi,f (t). (iii) Due to the non-linearity of log
function, it holds log(xt) �= log xt, and hence the objective is
not decomposable to individual time slot contributions.

C. Characterization of Achievable Performance
We characterize the performance region, denoted with G,

which contains all vectors (D
π

i) of time-average caching
benefits achievable by any feasible elastic femtocaching policy
π ∈ Π. Once G is determined, Val(P) is equivalently calculated
by:

Val(P) = max
(D

π
i)∈G

∑
i∈I

log(1 + D
π

i). (6)

Some technical assumptions are needed about the exogenous
random events. We assume that there are finite sets D =
{d1, . . . , d|D|} (for delays), Λ = {λ1, . . . , λ|Λ|} (for traffic
demand intensities), and H = {h1, . . . , h|H|} (for storage
costs) from which a value (λ, d, h) is drawn at each slot
according to an unknown distribution pλ,d,h. The assumption
that these sets are finite facilitates the analysis while taking
large cardinalities suffices to model any practical system.

Condition 1: Let φ(x, y, z|λ, d, h) denote an empirical
probability distribution over femtocaching plans (x, y, z)

11To capture fairness in the problem, we can use an additional constraint
which guarantees the minimum delay, instead of using this α-fairness utility
function.

when traffic demand profile λ, delay profile d, and cost profile
h are observed. Consider the following conditions:∑

(x,y,z)

φ(x, y, z|λ, d, h) = 1,

0 ≤ φ(x, y, z|λ, d, h)≤1, ∀(λ, d, h), (7)∑
(λ,d,h)

pλ,d,h

∑
(x,y,z)

φ(x, y, z|λ, d, h)
∑
j∈J

yjhj ≤ Bavg, (8)

where every tuple (x, y, z) considered above satisfies an
femtocaching plan in Definition 1.

Lemma 1: Condition 1 is necessary for any feasible elastic
femtocaching policy.

We remark that Condition 1 characterizes a convex set of
distributions of femtocaching plans. Since Condition 1 is nec-
essary for any feasible elastic femtocaching policy, it expresses
an outer bound on the performance region of our system.
Therefore, one way to solve our control problem is to solve
an optimization problem over G and select as an elastic
femtocaching policy the randomized actions φ∗ which are
the solution to the optimization. However, this is impossible
without knowledge of the distribution pλ,d,h, and therefore in
the remaining sections, we will provide a dynamic algorithm
that adapts to the observed conditions.

D. Handling Non-Linear Utilities

Since the maximization of a nonlinear function of a time
average cannot be decomposed into slots, we consider an alter-
native decomposable problem. Namely, problem (P), which
maximizes a nonlinear function of a time average, can be
transformed into maximization of the time average of a
nonlinear function using the auxiliary variable technique in
[6, Chapter 5]. To this end, we introduce an auxiliary variable
vector γ(t) = (γ1(t), . . . , γ|I|(t)) for all t and define a
function g(t) as follows: g(t) =

∑
i log(1 + γi(t)), ∀t. Using

Jensen’s inequality, we can upper-bound the mean value of
g(t) as follows: g(t) ≤ ∑

i log(1 + γi(t)), ∀t, where g
and γi denote the time-average of g and γi, respectively.
Now, let us consider the following problem. Every time slot,
the CP observes (λ(t), d(t), h(t)) and chooses a control action
(x(t), y(t), z(t)) and an auxiliary vector γ(t), where 0 ≤
γi(t) ≤ Dmax for all i and t to solve the following (JP)
problem:

max lim inf
T→∞

1
T

T−1∑
t=0

∑
i

log(1 + γi(t)), (9)

s.t. lim inf
T→∞

1
T

∣∣∣ T−1∑
t=0

(
γi(t)−Di(x(t),y(t),z(t))

)∣∣∣≤0, ∀i ∈ I,

(10)

s.t. lim inf
T→∞

1
T

T−1∑
t=0

∑
j∈J

yj(t)hj(t)≤Bavg , (11)

where 0≤γi(t)≤Dmax, ∀i, ∀t.
Lemma 2: Solving problem (JP) yields a femtocaching plan

that is at least as good as the optimal solution of the
problem (P).

Proof: The lemma follows from [6, Chapter 5, 5.0.5]. �

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4179

Exploiting the transformation of (JP), we can decompose
the average objective function into different objectives for
each slot. That is, maximizing

∑
i log(1 + γi(t)) every slot is

equivalent to maximizing the average objective function in (9).
Hence, we can adopt a standard Lyapunov drift-minus-benefit
technique [6].

E. Virtual Queues

To keep track of the feasibility of problem (JP), we intro-
duce virtual queues corresponding to the average budget
constraint (1) and auxiliary constraint (10) whose backlogs
are updated by

QB(t + 1) =
[
QB(t) +

∑
j∈J

yj(t)hj(t)−Bavg

]+

, (12)

Ui(t + 1) =
[
Ui(t) + γi(t)−Di(t)

]+

, ∀i ∈ I. (13)

Prior work [29] shows that if the stability conditions
limT→∞ 1

T

∑T−1
t=0 QB(t) < ∞ and limT→∞ 1

T

∑T−1
t=0

Ui(t) < ∞, ∀i ∈ I are satisfied, then so are constraints (1)
and (10). Intuitively, the backlogs QB(t) and Ui(t) for all i
count the excess budget spent and excess auxiliary variable in
the previous time slots for keeping track of the average budget
expenditures and average caching benefits. Then, we propose
a dynamic algorithm to solve (JP) in the next section.

IV. LYAPUNOV-BASED DYNAMIC SOLUTION

A. Slot-by-Slot Problem

We consider the slot-by-slot problem without knowledge of
the average traffic demands E[λi,f (t)] for all subareas and files
and the average delays E[dij(t)] for all subareas and SBSs.
Then, let us focus on slot t. The decision-maker is aware of
(i) the traffic demand profile for the next hour [λi,f (t)]i,f 12 (ii)
the delay profile realizations for the next hour [dij(t), dis(t)]i,j
available by measurements, and the readily available, (iii)
prices [hj(t)]j ,13 and (iv) virtual queue lengths QB(t) and
Ui(t) for all i ∈ I, while file size b is assumed known.
Therefore, the elastic femtocaching policy is applied on the
state (λ(t), d(t), h(t), QB(t), [Ui(t)]i). To design a policy,
we employ the Lyapunov drift-minus-benefit framework in the
following.

We first define the quadratic Lyapunov function and arising
drift as follows:

L(t) � 1
2

{
QB(t)2 +

∑
i∈I

Ui(t)2
}

,

Δ(L(t)) � E{L(t + 1)− L(t)|Q(t)},
where Q(t) � {QB(t), U1(t), . . . , U|I|}. Since we are also
interested in maximizing the time average of delay utility
log(1 + Di(t)) for all subareas using feasible cache plans,
we next introduce the Lyapunov drift-minus-benefit function
(DMB):

12In practice, it is achieved by calculating the running average of files’
popularity based on the demand during the past few time slots, or by even
using more sophisticated statistical or machine learning methods, cf. [30].

13 This price information can be provided by cloud service providers,e.g.,
AWS [4]. If such information is available with coarser time granularity (i.e.,
less often), then the system can use the prices in the past few time slots.

DMB(x(t), y(t), z(t), γ(t)) = Δ(L(t))

−V
∑
i∈I

E{log(1 + γi(t))|Q(t)}, (14)

where V is a constant parameter to balance the trade-off
between two conflicting objectives: improving the budget and
auxiliary variable satisfaction, or increasing the average delay
utility.

Applying the queue update equations (12), (13) and
Lemma 4.3 from [31], we obtain under any possible decision
(yj(t), xij,f (t), zj,f (t), γi(t)):

DMB(x(t), y(t), z(t), γ(t))

≤ P−V
∑
i∈I

E{log(1+γi(t))|Q(t)}

−E

{(
Bavg−

∑
j∈J

yj(t)hj(t)
)
QB(t)|Q(t)

}
−

∑
i∈I

E

{
(Di(t)−γi(t))Ui(t)|Q(t)

}
, (15)

where P = 1/2(B2
avg + |J |y2

maxh2
max + 2|I|D2

max) is a pos-
itive constant when ymax, hmax Dmax denote the allowable
leased cache space at an SBS during an hour, the maximum
price and the maximum hourly caching benefit for a subarea,
respectively. Neely [6] showed that we can uncover optimal
decisions by minimizing the RHS of (15).

We propose the elastic femtocaching policy (EFP) which at
slot t takes actions (x(t), y(t), z(t), γ(t)) = (x∗, y∗, z∗, γ∗),
where

γ∗ ∈ arg maxγ∗(t) V
∑
i∈I

log(1 + γi(t)) −
∑
i∈I

Ui(t)γi(t),︸ ︷︷ ︸
(JP)-(a)

(x∗, y∗, z∗)∈arg maxx(t),y(t),z(t)∑
i∈I

Ui(t)Di(x(t), y(t), z(t))−QB(t)
∑
j∈J

yj(t)hj(t),

︸ ︷︷ ︸
(JP)-(b)

(16)

with instantaneous constraints (7) and (8).
The first straightforward result is that EFP is a feasible

elastic femtocaching policy. First, the instantaneous constraints
of service (7) and storage space (8) are automatically satisfied
at each slot by the design of the policy. Then, we may observe
that EFP minimizes the RHS of (15), therefore using lemma
4.6 in [6], we can show that EFP also stabilizes QB(t) and
Ui(t) for all subareas, and hence the billing constraint (1)
and constraint with respect to an auxiliary variable (10) are
asymptotically satisfied.

Additionally, by adopting similar proof methodology in
[6, Chapter 5, 5.1], we obtain the following results: (i)
Val(EFP) ≥ Val(UBound) − O(1/V), where Val(Ubound)
denotes the value of the optimization problem with the sta-
tionary policy. (ii) All virtual queues can be stabilized and

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4180 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

General algorithm (GA) to solve problem (JP)

Initialization: At t = 0, QB(t) = 0 and Ui(t) = 0, ∀i ∈ I.
Result: xij,f (t), yj(t), zj,f (t), γi(t), ∀i, j, f, t
While In slot t, read values QB(t), Ui(t), λi,f (t), dij(t),
dis(t), hj(t), ∀i, j, f

Step 1: Decision of auxiliary variables γ∗
i (t) for all subareas.

1: For each subarea i ∈ I,
2: Calculate γi(t) = V

Ui(t)
− 1.

3: If γi(t) ∈ [0, Dmax], then γ∗
i (t) = γi(t).

4: Else, γ∗
i (t) = max

(
0, V log(1 + Dmax) −

Ui(t)Dmax

)
.

5: End For
Step 2: Decision of original control variables

(x∗(t), y∗(t), z∗(t)).
6: Choose x(t), y(t), z(t) which maximize

(x∗(t), y∗(t), z∗(t))∈arg maxx(t),y(t),z(t)(JP)-(b),
(17)

with x(t), y(t), z(t) satisfying (3), (4).
Step 3: Update of parameters.
7: Update all virtual queues based on(

x∗(t), y∗(t), z∗(t), γ∗(t)
)

using (12) and (13).
8: Update t← t + 1.

End While

average queue length (sum of total average virtual queues)

satisfies: E[||Q(t)||]
t ≤

√
2P+2V (Dmax−θ∗)

t .
Now, we provide a general algorithm (GA) to solve problem

(JP). In this GA, γ∗(t) in Step 1 can be obtained by a
straightforward manner since objective (16) is a concave
function with respect to the auxiliary variable for each subarea.
However, x∗(t), y∗(t), z∗(t) in Step 2 cannot be obtained
easily due to the product of variables xij,f (t) and zj,f (t)
in Di(t). In order to implement the above GA in practice,
we consider two different cases, (i) non-overlapping, and (ii)
overlapping SBS coverages in the following section.

V. INTRA-SLOT PROBLEM AND ALGORITHMS

In this section, we turn our attention into solving
problem (17) in Step 2 to find solutions (x∗(t), y∗(t), z∗(t))
given cache lease budget Bavg and the maximum caching
benefit Dmax.

A. Non-Overlapping SBS Coverage

When SBS coverage is non-overlapping, each subarea can
reach a single SBS cache, which immediately simplifies rout-
ing splits xij,f (t), such that xij,f (t) = 1, ∀t if subarea i can
reach SBS j and 0 otherwise, for all i, j, f . In essence, each
request can be served only by the reachable cache (or the MBS
when the file is not cached there). We will see that this makes
our problem relatively easy to solve.

First, we note that caching file f at SBS j in slot t yields
the following variable:

Kj,f (t) �
∑

i

Ui(t)kij,f (t), (18)

where kij,f (t) = (dis(t)−dij(t))xij,f (t)λi,f (t). It is com-
putable using known parameters d, x, λ (x is a parameter here
because it is fully determined by the reachability of the cache)
and independent of the decisions y(t), z(t). Consequently,
the EFP optimization problem becomes:

max
yj(t)≥0

zj,f (t)∈{0,1}

∑
j,f

Kj,f (t)zj,f (t)−QB(t)
∑
j∈J

yj(t)hj(t),

s.t.
∑
f∈F

zj,f (t) ≤ yj(t)/b, ∀j, f. (19)

Due to its simple form, (19) can be solved by inspection.
At each pair SBS-slot (j, t), we order files in decreasing values
of Kj,f(t). For an investment yj(t), the highest caching benefit
is collected by caching the yj(t)/b files that rank higher in this
list. This provides directly the solutions z(t) as a function of
y(t), it remains now to determine the latter. With a slight
abuse of notation, let us call σ the permutation of file induces
that implies Kj,σ(1)(t) ≥ · · · ≥ Kj,σ(|F|)(t) (the abuse is
because we do not explicitly denote the dependence of σ on
j, t to reduce clutter), then we can decompose the investment
decisions per SBS, and find y∗

j (t) by maximizing:

y∗
j (t) ∈ argmaxyj(t)≥0

�yj(t)/b�∑
f=1

Kj,σ(f)(t)−QB(t)hj(t)yj(t).

Above, y∗
j (t) can be efficiently computed by listing partial

sums
∑�yj(t)/b�

f=1 Kj,σ(f)(t) for yj(t)/b = 1, 2, . . . until the
difference of one partial sum from the previous one becomes
smaller than QB(t)hj(t). Below, we provide the algorithmic
steps to find y(t) and z(t) in detail.

Joint Cache Rental and File Caching Algorithm (JCC)
(Step 2)

Result: yj(t), zj,f (t), ∀j, f, t
Read values QB(t), Ui(t), xij,f (t), λi,f (t), dij(t),
dis(t), hj(t), ∀i, j, f

1: For all SBSs j ∈ J ,
2: For all files f ∈ F ,
3: Calculate Kj,f(t) using (18).
4: End For
5: Sort Kj,f (t) with permutation σ, such that

Kj,σ(1)(t) ≥ · · · ≥ Kj,σ(|F|)(t).
6: Set partial sums S(e) =

∑e
f=1 Kj,σ(f)(t), for e =

1, 2, . . . and S(0) = 0.
7: Find e∗ which maximizes S(e)−QB(t)hj(t)be.
8: Choose cache lease: yj(t) = e∗b
9: Choose file placement:

zj,σ(f)(t) =

{
1 if f ≤ �yj(t)/b�,
0 otherwise.

15: End For
16: End For

Then, the JCC algorithm in the non-overlapping SBS case
has the following features: (i) Given virtual queues, association

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4181

variables, demand traffic and delay profiles and storage price,
the algorithm finds the amount of storage that optimizes a
weighted sum of caching benefit constrained by the virtual
queue stability. (ii) For the found storage amount that is leased,
files are cached at each SBS according to which yields the
highest caching benefit multiplied by virtual queue Ui(t) for
all subareas, until the available leased storage is filled up. (iii)
If the average caching benefit for subarea i until time slot
t becomes smaller, the virtual queue Ui(t) for subarea i gets
higher, which makes the probability to cache files requested by
subarea i higher by Eq. (18); hence the average caching benefit
for subarea i increases. Therefore, this mechanism intuitively
captures fairness among all subareas.

B. General Case With Overlapping SBS Coverage

Next, we consider the general case where the coverage
areas of the different SBSs can overlap. Then, the association
variables xij,f (t) must be jointly decided with cache rental and
file placement. Recall that Eq. (17) in Step 2 of GA determines
the decisions solving:

max
yj(t)≥0,∀j

xij,f (t)∈[0,1]∀i,j,f
zj,f (t)∈{0,1},∀j,f

(JP)-(b)

s.t.
∑
f∈F

zj,f(t) ≤ yj(t)
b

, ∀j,
∑
j∈Ji

xij,f (t)=1, ∀i, f. (20)

We note that (20) is a mixed-integer non-linear pro-
gram (MINLP) due to the product of variables xij,f (t) and
zj,f (t) that appear in the objective. To solve this problem,
we can consider two approaches:

• As explained in [2], it is possible to use MDS codes
to achieve an effective “fractional file placement”.
In essence, each cache stores a number of linear com-
binations of file chunks that correspond to fractions of a
file, and then each user can combine different such coded
chunks to produce the original file.

• A second approach to obtain an efficient approximate
solution is to apply the idea of “Low complexity schedul-
ing” from [7]. This method assigns to the leased cache
capacity by randomly selecting it for each SBS. Then,
it resolves our EFP optimization to get a new average
delay utility, and if these new values outperform previous
delay utilities, the random solution is applied.

In this article, we take the second method since (i) it
has low computation complexity and (ii) it does not need to
invoke additional coded caching techniques. In this context,
we provide a stability guarantee for the budget queue length
QB(t) and the virtual queue lengths Ui(t) for all subareas,
which implies that the produced policy is asymptotically
feasible. The proposed joint cache rental, greedy file caching
and routing algorithm, namely JGCA is described as follows.

The greedy file caching and association (GFCA) policy
included in the JGCA can be explained as follows. First, if the
total leased cache capacity

∑
j yj(t) is less than or equal to

the three folds of a file size (i.e., 3b), compare (JP)-(b) for all
possible sets of (x(t), z(t)), and pick the biggest value. Let
(x
(t), z
(t)) be the corresponding set of association variables

Joint Cache Rental, File Caching and Routing
Algorithm (JGCA) (Step 2)

Result: yj(t), zj,f (t), xij,f (t) ∀i, j, f, t
In slot t, read values QB(t), λi,f (t), dij(t), dis(t), hj(t),
∀i, j, f

1: At t = 1, y∗
j (1) is chosen as Bavg/(|J |havg) for all

j ∈ J .
2: Based on the decided y∗

j (1) for all j ∈ J ,
(x∗(1), z∗(1)) are obtained using a greedy file caching
and association (GFCA) policy.

3: For time slots t > 1, y

j(t) is uniformly and randomly

chosen among U = {0, b, 2b, . . . ymax} for all j ∈ J .
4: Based on the decided y

j(t) for all j ∈ J , (x
(t), z
(t))
are obtained using the GFCA policy.

5: Compare∑
i∈I

Ui(t)Di(x
(t), z
(t))−QB(t)
∑
j∈J

y

j(t)hj(t)

(21)

and∑
i∈I

Ui(t)Di(x∗(t− 1), z∗(t− 1))−QB(t)

∑
j∈J

y∗
j (t− 1)hj(t). (22)

6: If Eq. (21) > Eq. (22), then (x∗(t) = x
(t),
y∗(t) = y
(t), z∗(t) = z
(t)),

7: Else, (x∗(t) = x∗(t − 1), y∗(t) = y∗(t − 1),
z∗(t)=z∗(t− 1)).

and cached files, i.e., making the biggest (JP)-(b). For a given
file caching variable, the optimal subarea association can be
decided by

x

ij,f (t) = argmaxxij,f (t)

∑
i∈I

Ui(t)

×
∑
f∈F

∑
j∈J

(dis(t)− dij(t))z
j,f (t)λi,f (t), ∀i, f.

Since the maximum number of cached files for all SBSs
is three, the complexity of the exhaustive search of optimal
(x(t), z(t)) in this case can be manageable.

Second, if the total leased cache capacity
∑

j yj(t) is greater
than 3b, the GFCA policy iteratively caches files one-by-one
where an added file in each iteration is selected so as to
maximize (JP)-(b) with the corresponding optimal subarea
association x(t) until leased cache capacity yj(t) is completely
filled up for all SBSs. For instance, at the first iteration,
caching file #5 at SBS #1 and the second iteration, caching
file #7 at SBS #5, and so on.

C. Performance Bounds

Now, we show the theoretical performance bounds of the
proposed algorithms in a general scenario. First, we show the
performance bound of slot-by-slot objective, i.e., (JP)-(b) for a
given cache lease capacity y(t) using submodularity [32], [33]

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4182 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

of (JP)-(b) in Lemma 3; and using the lemma and randomized
scheduling policy [34], we show the performance bound of
(JP)-(b) in each time slot. Finally, we prove that the proposed
algorithms in the general case can achieve constant perfor-
mance bounds of the utility and virtual queues in Theorem 1.

Definition 3: A real-valued set function A, defined on the
subsets of finite sets Ω is named a submodular set function
if it satisfies the following condition for all Ω ⊆ Ω
, for all
f(j) ∈ F\Ω
j , and for all j ∈ J :

A(Ω ∪ {f(j)})−A(Ω) ≥ A(Ω
 ∪ {f(j)})−A(Ω
). (23)
Lemma 3: The objective function (JP)-(b) for a given

leased cache capacity y is a non-decreasing and submodular
set function with respect to file caching assuming that the
optimal subarea association can be obtained for a fixed file
caching state.14

Proof: The submodularity of this function can be proved
by searching all possible cases when a new file is cached at
a particular SBS or not. �

Then, let the submodular objective function for a given
leased cache capacity in Lemma 3 be

F (x
(t), z
(t)|y(t)) =
∑
i∈I

Ui(t)Di(x
(t),

y(t), z
(t)) −QB(t)
∑
j∈J

yj(t)hj(t),

where y(t) denotes the given leased cache capacity, x
(t) and
z
(t) denote the subarea association and file caching solutions
from the GFCA policy, respectively. In addition, let x∗(t)
and z∗(t) be the optimal solutions of F (x(t), z(t)|y(t)),
respectively. The objective function F (x(t), z(t)|y(t)) is con-
vex in x(t) given z(t), but becomes a nonconvex and also
discontinuous function when z(t) is considered as a variable.
Thus, this problem is a challenging combinatorial problem
with O(2|F|) possible cases. However, prior works, e.g., [32],
[33] showed that if we can find an optimal solution of x(t)
(or similar coupled variables) within a polynomial time given
z(t), it is enough to prove 1 − 1/e performance bound of
a greedy file caching algorithm using a submodularity of
F (x(t), z(t)|y(t)).

Therefore, the GFCA policy given y(t) can guarantee:

F (x
(t), z
(t)|y(t)) ≥ (1− 1/e)F (x∗(t), z∗(t)|y(t)). (24)

According to JGCA in GA, the following lemma holds.
Lemma 4: With uniformly and randomly picked yj(t) for

all SBSs j ∈ J , there exists a positive constant 0 < ρ < 1
such that Pr{yj(t) = y∗

j (t), ∀j ∈ J } ≥ ρ. Proof: The
set of possible yj(t) values is finite, i.e., |S| <∞ where S =
{0, b, 2b, . . . , ymax}. Hence, if the random selection of yj(t)
distributes uniformly, there exist y∗

j (t) for all SBSs j ∈ J
which maximize F (x∗(t), z∗(t)|y∗(t)) with probability ρ ≥

1
|S||J| > 0. �

Then, we quantify the performance of the proposed
GA+JGCA in the following Lemma 5 and Theorem 1.

14Recall that the op timal subarea association can be easily obtained by a
typical optimization technique [35] since (JP)-(b) becomes a convex function
for a fixed file caching state [33].

Fig. 2. Real BS topology (denoted by triangles) of a mobile operator on the
west side of the US for rural, suburban and urban areas. We assume that the
macro BS is located at the center of each area.

Lemma 5: Let y
(t) and y∗(t) be the solution of JGCA and
one of the optimal solutions of the problem (JP)-(b) satisfying
the femtocaching plan and the feasible elastic femtocaching
policy, respectively. Then, the JGCA in GA guarantees the
following performance in every time slot.

E
{
F (x
(t), z
(t)|y
(t))|Q(t)

}
≥ (1 − 1/e)E

{
F (x∗(t), z∗(t)|y∗(t))|Q(t)

} −R, (25)

where R = 1
min{pλ,d,h}ρ(2|I|D2

max + |J |2 y2
max h2

max +
Bavg|J |ymaxhmax).

Theorem 1: Assume that a tuple (d, λ, h) is i.i.d. In addi-
tion, let γ

i(t) and γ∗
i (t) for all subareas i ∈ I be the solution

of GA and the optimal value of (JP), respectively, and let y

j(t)

and y∗
j (t) for all SBSs j ∈ J be the solution of JGCA in

GA and the optimal value of (JP), respectively, and let D

i(t)

and D∗
i (t) for all subareas i ∈ I be the caching benefits

from JGCA in GA and the optimal value of (JP), respectively.
Assume
i = (1 − 1/e)E{γ∗

i (t)} − E{γ

i(t)} > 0, ∀i ∈ I.

Then, the proposed GA and JGCA guarantee:
1) The virtual queues QB(t) and Ui(t) for all i ∈ I are stable.

2)
E[||Q(t)||]

t
≤√

2(P + R) + 2V (Dmax − θ∗)
t

− 1
t2

T |I|
minUmin.

(26)

3) lim
T→∞

1
T

T−1∑
t=0

∑
i∈I

log(1 + γ

i(t)) ≥ θ∗ − P + R

V
. (27)

This solution is robust due to the comparison mechanism
between the solution of the current time slot and that of
the previous slot. Namely, if the budget queue increases due
to the excessive investment for cache lease, it reduces the
objective value, hence it forces the decision-maker to choose
the solution of the previous slot. On the other hand, if the
budget queue decreases due to the smaller investment for
cache leasing, it increases the objective value, hence it forces
the decision-maker to choose the solution of the current time
slot. This mechanism stabilizes the budget queue. For the
stabilization of the virtual queues for auxiliary variables, if the

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4183

Fig. 3. Spatio-temporal variation of input parameters for seven days: In (a), it shows the total number of YouTube file requests in a certain university campus
over time from a dataset in [36]. In (b), the real content popularity distribution for different regions and different time zones are fitted by Zipf distribution [37].
In (c), cache lease price traces per hour and GByte is depicted from a real electricity price dataset [38] and cache lease price [39].

average caching benefit of subarea i until time t becomes
smaller, the virtual queue Ui(t) gets higher; thus γi(t) becomes
smaller by Eq. (16). It makes negative feedback for the virtual
queue Ui(t). Therefore, Ui(t) can be stabilized.

VI. PERFORMANCE EVALUATION

In this section, we execute simulations to demonstrate the
performance of the proposed elastic femtocaching algorithms.

A. Analysis of Demand and Price Dataset

We analyze the real datasets of traffic demand and cache
lease price generated from the variation of electricity price.

Traffic demand: To generate traffic demand, we use the
YouTube file request dataset in [36]. We divide the dataset
into each file for each day and each region.15 Fig. 3(a)
and 3(b) depicts the result. The number of file requests
in Fig. 3(a) have daily and weekday/weekend traffic patterns.
However, the traffic pattern is not similar even between two
consecutive days, which makes the prediction of demand
difficult. In addition, the real distribution for different regions
and different time zones are fitted by Zipf distribution [37]
with different parameters to show the spatio-temporal diversity
of content popularity. The Zipf distribution is a well-known
content popularity distribution where a higher Zipf parameter
is interpreted as a higher difference of popularity among files.
As shown in Fig. 3(b), the distributions of content popularity
in different time zones and different regions have different
Zipf parameters.

Cache prices: Currently, Amazon AWS provides constant
per-hour pricing service, i.e., ElastiCache for leasing a unit
cache resource, e.g., $0.0309/hour/GB for cache.t2.micro CPU
and US Ohio region [39]. However, since various factors
such as electricity price can change this price over time,
we use open traces of electricity price in the Canada Ontario
region [38] to generate time-varying cache lease price with
the mean value of $0.0309/hour/GB. Fig 3(c) depicts cache
lease price traces per hour and GBytes, which is not static,

15The reference [36] provided an open YouTube video request dataset
collected every 5 minutes for 7 days in a certain university campus. The data
includes individual IDs of each requested video, requested time and destina-
tion/source IP addresses, video size, and transmission data rate. We distinguish
different regions with different IP addresses.

but highly dynamic. The analyses of Fig. 3 imply that the
cache lease capacity, file caching and subarea-SBS association
algorithms must be designed in an online fashion, and adapted
to the varying content popularity and cache lease price to
optimize the delay performance.

B. Simulation Setup

We consider two different cases in the simulations: i) linear
BS topology with manual parameters and ii) real BS topology
in Fig. 2 (where a macro BS is located on the center of each
plane) and real parameters.

Linear BS topology case: A macro BS is located at the
center of a linear line and two SBSs are located at the same
distance from the macro BS. Moreover, 8 mobile users16 are
uniformly distributed. The files are requested by Zipf distri-
bution with randomized Zipf parameters and the mean cache
lease price per bit is 0.025 with randomized varying para-
meters where the variance of the randomness (with Gaussian
distribution taking positive values) can be different.17 Here,
the order of popularity of each file in each subarea is randomly
chosen. The distance between a BS and a mobile user is used
to calculate the path-loss parameter. The transmission power
of an SBS is 1 whereas that of an MBS is 20. The path loss
is set to be 128.1 + 37.6 log10(d) in a typical LTE system
evaluation [40] where d is the distance of the BS from the
center of each area, and the system bandwidth is set to be
10MHz. Moreover, fast fading is captured by randomness with
different variation rates. We generate wireless transmission
delay by dividing a constant file size, i.e., 1 into transmission
data rate calculated by Shannon capacity formula with these
path-loss parameters. In addition, delay for wired backhaul
transmission is randomly chosen. Here, delay dij(t) from SBS
j to subarea (or mobile user) is just wireless transmission delay
whereas delay dis(t) via MBS s to subarea (or mobile user) i
is the sum of wireless transmission delay plus wired backhaul
transmission since there are no files to be cached in MBS s.
The average cache rental budget Bavg is set to be 20.

Real BS topology case: We exploit an open dataset (rural,
suburban and urban areas as shown in Fig. 2), namely cellmap-
per [41]. We divide this topology into 9 subareas and calculate

16Here, each user represents each area.
17Note that we ignore units in this first case for simplicity.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4184 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

Fig. 4. Sum utilities in linear BS topology case and non-overlapping SBSs scenario.

the wireless delay profile based on the center location of
each subarea. A way to calculate wireless delay profile is the
same with the linear BS topology case except for 100MBytes
of file size. Moreover, the backhaul transmission delay is
randomly picked from a dataset in [36]. Traffic demand and
cache lease prices follow the real traces from [36] and [39].
The average cache rental budget is set to be enough to
cache 20% of the entire file catalog, which depends on the
different BS topology (rural, suburban and urban areas) and
average cache lease price. For all cases, the entire catalog has
200 files, 10 simulation runs are executed and the average
values are taken where the number of running time slots of
each simulation is set to be 2000, and V = 10.

We consider the following metrics to analyze the perfor-
mance of the proposed GA with JCC and JGCA: sum delay
utilities of all subareas, i.e., objective value (6) in our problem
formulation. In other words, maximizing this metric is exactly
the same as maximizing the objective function. Additionally,
we compare the proposed GA+JCC and GA+JGCA and four
comparing algorithms, i.e., FCB (Fixed Cache Lease Budget),
FFC (Fixed File Caching), LRU (Least Recently Used) and
LFU (Least Frequently Used). The FCB algorithm uses the
fixed cache lease budget for all SBSs and all-time slots,
i.e., each SBS has a constant cache lease budget Bavg/|J |.
Here, the subarea-SBS association is given by the nearest
SBS association policy and file caching is based on the
highest file popularity every time slot. In addition, the FFC
algorithm uses the nearest SBS association policy and caches
files with the order of the global content popularity for all
time slots, i.e., this algorithm does not take into account the
spatio-temporal variation of the content popularity. Note that
the FCB and FFC algorithms capture characteristics of other
existing proactive caching policies which, however, do not
consider cache scaling [13], [14]. Similarly, the LRU, LFU,
multi-LRU and q-LRU are representative reactive caching
policies which also do not consider cache scaling [15]–[18].
Specifically, the multi-LRU policy [16] caches files at each
SBS based on the LRU rule, while the routing takes place
via the closest BS that caches the requested file. Besides,
the q-LRU policy [17] with the “lazy” rule for q = 1 operates
as the multi-LRU policy but updates the cache only if the
file is not in any neighboring BSs. Note that the operation of
multi-LRU and q-LRU are essentially similar to the standard

LRU policy when the BSs have non-overlapping coverage
areas. We choose the aforementioned algorithms (i.e., FCB,
FFC, LFU, LRU, multi-LRU, q-LRU) as benchmarks because
they are quite representative of the entire spectrum of previous
works.

C. Simulation Results

Linear BS topology case. We first show the simulation
results in the linear BS topology case to see the impact of
different parameters (variance of delay, mean traffic arrival,
and variance of price) on the system performance. We also
consider two different scenarios under non-overlapping SBSs
and overlapping SBSs. We present our results by summarizing
the key observations in the following.

1) Non-overlapping SBSs scenario. In this scenario,
GA with JCC is an optimal algorithm since the subarea-SBS
association and content caching is uncoupled. Fig. 4 depicts
the sum delay utilities for different parameters. We confirm
that all budget queues and virtual queues for auxiliary variables
in both GA+JCC and GA+JGCA are stable, which implies
that the proposed algorithms guarantee the average budget
constraint and constraint (10) (average difference between
auxiliary variable and caching benefit converges to zero) are
satisfied. The result shows that as the variation of input
parameters becomes higher and mean traffic arrival increases,
the performance gap between the proposed elastic cache leas-
ing algorithms (i.e., GA+JCC and GA+JGCA) and the static
cache leasing algorithms (FCB, FFC, LRU, LFU) increases
(e.g., the sum of delay utilities is 0.01475 when delay vari-
ance is 0.01 and that is 0.06694 when delay variance is
0.05 in Fig. 4(a)). This implies that the proposed elastic cache
leasing algorithms can attain greater performance compared
to existing static cache leasing algorithms in the case that
the network environments and pricing drastically change.
Here, it is notable that the proposed GA+JGCA algorithm
achieves a similar performance with the optimal GA+JCC
algorithm.

2) Overlapping SBSs scenario. In this scenario, GA+JCC is
not an optimal algorithm anymore since the subarea-SBS asso-
ciation and content caching are tightly coupled with each other.
Fig. 5 depicts the sum delay utilities for different parameters,
i.e., delay variance, mean traffic arrival and price variance.
Similar to the non-overlapping SBSs scenario, the proposed

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4185

Fig. 5. Sum utilities in linear BS topology case and overlapping SBSs scenario.

Fig. 6. Performance gain of the proposed algorithms under three real BS
topologies and overlapping SBSs scenario.

elastic cache leasing policies (GA+JCC and GA+JGCA) are
much better than the existing static cache leasing policies
(FCB, FFC, LFU, LRU, multi-LRU, q-LRU) and the gain
of elastic cache leasing becomes higher as the variation of
input parameters increases except for the price variation case.
Here, multi-LRU [16] and q-LRU [17] with the “lazy” rule for
q = 1 outperform the original LRU and LFU due to intelligent
association rules. However, the proposed JCC and JGCA
outperform these recent policies thanks to the dynamic and
optimal usage of cache scaling. Moreover, the performance of
the proposed joint cache lease, file caching and subarea-SBS
association, i.e., GA+JGCA is higher (e.g., 30.3% to 48.8%
higher in different price variation) than independent control
of file caching and subarea-SBS association, i.e., GA+JCC in
this overlapping SBSs scenario.

Real BS topology case. Real BSs (SBSs and MBS) are
more irregularly deployed than that in the linear BS topology
case; hence delay profile of each user from each BS can be
significantly heterogeneous. Fig. 6 depicts the performance
gain (i.e., the gain of sum delay utilities) of the proposed
GA+JGCA algorithm over static FCB algorithm and the
proposed GA+JCC algorithm which uncouples routing and
caching decisions. First, since the real BS topology is more
heterogeneous than the linear BS topology, the impact of the
elastic cache leasing policy (i.e., GA+JGCA) on the system
performance is higher than that in the linear BS topology
case, especially in urban BS topology case. Second, as BS
topology becomes denser (from rural to urban), the impact
of the elastic cache leasing policy (i.e., GA+JGCA) on the
system performance increases. This is because the caching
benefits from backhaul transmission via the MBS to wireless

transmission via the SBSs are higher in urban areas than
that in rural areas. Third, joint control of cache leasing, file
caching and routing becomes more important as BS topology
becomes more dense. This interpretation can be driven from
the fact that as BS topology gets denser (i.e., from rural area to
urban area), the gain from the routing-caching the uncoupled
solution, i.e., GA+JCC to the joint solution, i.e., GA+JGCA
becomes higher.

VII. CONCLUDING REMARK

Motivated by recent market developments and the potential
of elastic CDNs, we proposed the new problem of dynamic
cache rental, file caching and user association for wireless edge
caching networks. We formulated an optimization problem for
deriving these decisions in a fashion that maximizes aggre-
gated delay savings and/or ensures servicing fairness across
users, while respecting average budget constraints. A tailored
dynamic algorithm was proposed to solve the problem by
capturing both caching benefit and fairness among different
users while ensuring long-term cache rental budget under
uncertainty of file popularity and wireless channel states over
time and space. Simulation results revealed that the proposed
elastic cache leasing algorithm would be more important when
the network environments and cache leasing price are highly
volatile, which is one of the common scenarios in wireless
and heterogeneous network architecture. Although we spurred
a joint optimization of cache scaling, file caching and routing
research, this work can be improved by addressing a few more
practical aspects. First, reconfiguration cost when new files
are retrieved from the original file server to the SBSs can be
incorporated into our framework. A few works on Lyapunov
optimization addressed the reconfiguration issue [42]. The
practical approach is that the decision maker updates the
corresponding file when the expected benefit (say, the objective
function for newly cached file minus reconfiguration cost,
e.g., bandwidth cost) is greater than the objective function
for the previously cached file [14]. Second, incorporation of
resource allocation decisions, e.g., transmission power control
and beam/user scheduling, into this cache scaling framework
would further improve the system performance. Clearly, one
can achieve higher caching benefits when coordinating addi-
tional network operation parameters with the elastic caching
decisions.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4186 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

APPENDIX A
PROOF OF LEMMA 1

We pick an arbitrary feasible elastic CDN policy π, and
prove that Condition 1 is satisfied. Note that constraints
(7)-(8) are satisfied by the fact that π chooses elastic cache
plans every slot (see definition of the feasible elastic CDN
policy).

Then, let Φt(x, y, z|λ, d, h) denote the number of slots up
to t that the state was (λ, d, h) and policy π chose the elastic
cache plan (x, y, z), and further, let Jt(λ, d, h) be the total
number of slots up to t that the state was (λ, d, h). Then the
empirical frequency of choosing this plan while in this state
is simply Φt(x, y, z|λ, d, h)/Jt(λ, d, h). Here we adopt the
standard assumption that the limits of empirical frequencies
exist:18

φ(x, y, z|λ, d, h) � lim
t→∞Φt(x, y, z|λ, d, h)/Jt(λ, d, h).

Immediately, we may observe that φ(·) is a (conditional)
probability distribution over elastic cache plans, and therefore
it satisfies all constraints (7). Finally, it remains to count the
cost paid by π. This is simply

Total_Cost_Upto_t
t

=
∑

λ,d,h

Jt(λ, d, h)
t︸ ︷︷ ︸

fraction of time the
state was (λ, d, h)

∑
(x,y,z)

Φt(x, y, z|λ, d, h)
Jt(λ, d, h)︸ ︷︷ ︸

frequency of plan (x, y, z)
when state is (λ, d, h)

∑
j∈J

yjhj ,

(28)

and taking limits we arrive at the conclusion:

lim
t→∞

Total_Cost_Upto_t

t

=
∑

(λ,d,h)

pλ,d,h

∑
(x,y,z)

φ(x, y, z|λ, d, h)
∑
j∈J

yjhj . (29)

Since policy π is feasible, it satisfies the constraint (1) and
therefore limt→∞ Total_Cost_Upto_t

t ≤ Bavg . It follows that
condition (8) must also be satisfied.

APPENDIX B
PROOF OF LEMMA 5

Recall the virtual queue dynamics in (12) and (13) for all
subareas i ∈ I, then we have: Ui(t) ≤ Ui(t − 1) + γmax,
∀i ∈ I and QB(t) ≥ QB(t−1)−Bavg where γmax = Dmax.
Let us define τκ,t < τκ−1,t < . . . < τ1,t where d(τi,t) = d(t),
λ(τi,t) = λ(t) and h(τi,t) = h(t), ∀i ≤ κ, i ∈ N

+.
From Lemma 4, there must exist κ ∈ N

+ such that
y

j(τκ,t) = y∗
j (τκ,t) for all SBSs j ∈ J . Therefore,

18The generality of the proof requires to lift this ergodicity assumption,
which can be done using the analysis of [29]. We avoid this technicality for
ease of exposition.

we have:∑
i∈I

Ui(t)Di(x
(t), z
(t)|y∗(t))−QB(t)
∑
j∈J

y∗
j (t)hj(t)

≤
∑
i∈I

(Ui(τκ,t) + (t− τκ,t)Dmax)Di(x
(t), z
(t)|y∗(t))

−(QB(τκ,t)− (t− τκ,t)Bavg)
∑
j∈J

y∗
j (t)hj(t)

≤
∑
i∈I

Ui(τκ,t)Di(x
(τκ,t), z
(τκ,t)|y∗(τκ,t))

−QB(τκ,t)
∑
j∈J

y∗
j (τκ,t)hj(τκ,t)

+(t− τκ,t)
[|I|D2

max + Bavg|J |ymaxhmax

]
. (30)

Moreover, from the virtual queue dynamics in (12) and (13),
we have: Ui(t) ≥ Ui(t − 1) − Dmax for all subareas i ∈ I
and QB(t) ≤ QB(t−1)+ |J |ymaxhmax. Then, the following
inequality holds:

∑
i∈I

Ui(t)Di(x
(t), z
(t)|y
(t))−QB(t)
∑
j∈J

y

j(t)hj(t)

≥
∑
i∈I

Ui(t)Di(x
(τκ,t), z
(τκ,t)|y
(τκ,t))−QB(t)

×
∑
j∈J

y

j(τκ,t)hj(t) ≥

∑
i∈I

(Ui(τκ,t)− (t− τκ,t)Dmax)

×Di(x
(t), z
(t)|y
(τκ,t))− (QB(τκ,t)

+|J |ymaxhmax(t− τκ,t))
∑
j∈J

y

j(τκ,t)hj(τκ,t)

≥
∑
i∈I

Ui(τκ,t)Di(x
(τκ,t), z
(τκ,t)|y∗(τκ,t))

−(t− τκ,t)|I|D2
max −QB(τκ,t)

∑
j∈J

y∗
j (τκ,t)hj(τκ,t)

−(t− τκ,t)|J |2y2
maxh2

max. (31)

where the first inequality in (31) comes from the comparison
procedure between the previous solutions and the current
solutions in JGCA. From (30) and (31), we have:

E

{ ∑
i∈I

Ui(t)Di(x
(t), z
(t)|y∗(t))

−QB(t)
∑
j∈J

y∗
j (t)hj(t)|Q(t)

}

≥ E

{ ∑
i∈I

Ui(t)Di(x
(t), z
(t)|y
(t))

−QB(t)
∑
j∈J

y

j(t)hj(t)|Q(t)

}
+ E

{
(t− τκ,t)|Q(t)

}
× (|I|D2

max+|J |2 y2
max h2

max

+|I|D2
max+|I|Bavgymaxhmax

)
. (32)

Recall that we assume that there is unknown distribu-
tion pλ,d,h drawn from the finite states of a tuple (λ, d, h).

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4187

From the fact that E{(t − τκ,t)|Q(t)} ≤ 1
min{pλ,d,h}ρ ,19 we

have (33), shown at the bottom of the page.
By plugging (24) in (33), this completes the proof.

APPENDIX C
PROOF OF THEOREM 1

We begin this proof from the DMB bound in Eq. (15)
without the objective function when we use the JGCA and
GA algorithms as follows.

Δ(L(t)) ≤ P − E
{
(Bavg −

∑
j∈J

y

j(t)hj(t))QB(t)|Q(t)

}
−

∑
i∈I

E
{
(D

i(t)− γ

i(t))Ui(t)|Q(t)

}
≤ P +R + (1− 1/e)E

{ ∑
j∈J

y∗
j (t)QB(t)

−
∑
i∈I

D∗
i (t)Ui(t)|Q(t)

}− E
{
BavgQB(t)

+
∑
i∈I

γ

i(t)Ui(t)|Q(t)

}
= P +R−

∑
i∈I

E
{
Ui(t)((1 − 1/e)D∗

i (t)− γ

i(t))|Q(t)

}
+E

{
QB(t)((1 − 1/e)

∑
j∈J

y∗
j (t)hj(t)−Bavg|Q(t)

}
. (34)

The second inequality comes from the result of Lemma 5.
Moreover, by summing (34) over t = {0, 1, . . . T − 1}, taking
expectations in both sides, and dividing both sides with T ,
we have:

E{L(T)} − E{L(0)}
T

≤ P + R− 1
T

T−1∑
t=0

∑
i∈I

iUi(t)

≤ P +R− 1
T

T−1∑
t=0

∑
i∈I

minUi(t), (35)

where
min denotes the minimum value among
i for all
subareas i ∈ I. Using L(0) <∞, we have:

∑
i∈I E{Ui(t)} ≤

P+R
�max

since Ui(t) ≥ 0 for all time slots,
max ≥ 0 and
whenever
i > 0, Ui(t), ∀i ∈ I are stable.

Second, to prove the virtual queue bounds, we consider
DMB bound in Eq. (15) when we use the JGCA and GA

19since within time 1
min{pλ,d,h}ρ

, at least one optimal solution y∗(t) for

a tuple (d(t), λ(t), h(t)) exists.

algorithms as follows.

Δ(L(t))−V
∑
i∈I

E
{

log(1 + γ∗
i (t))|Q(t)

}
≤ P−V

∑
i∈I

E
{

log(1 + γ∗
i (t))|Q(t)

}
−E

{
(Bavg −

∑
j∈J

y

j(t)hj(t))QB(t)|Q(t)

}
−

∑
i∈I

E
{
(D

i(t)− γ

i(t))Ui(t)|Q(t)

}
≤ P +R−V

∑
i∈I

E
{

log(1 + γ∗
i (t))|Q(t)

}
+(1− 1/e)E

{ ∑
j∈J

y∗
j (t)QB(t)−

∑
i∈I

D∗
i (t)Ui(t)|Q(t)

}
−E

{
BavgQB(t) +

∑
i∈I

γ

i(t)Ui(t)|Q(t)

}
= P +R−V

∑
i∈I

E
{

log(1 + γ∗
i (t))|Q(t)

}
+

∑
i∈I

E
{
Ui(t)(γ

i(t)− (1− 1/e)D∗
i (t))|Q(t)

}
+E

{
QB(t)((1 − 1/e)

∑
j∈J

y∗
j (t)hj(t)−Bavg)|Q(t)

}
.

(36)

The second inequality comes from the result of Lemma 5.
Then, by summing (34) over t ∈ {0, 1, . . . , T − 1} and taking
expectations in both sides, we have:

E[||Q(t)||2] ≤ 2(P + R)T + 2TV (Dmax − θ∗)

−
T−1∑
t=0

∑
i∈I

minUi(t). (37)

Since Ui(t), ∀i ∈ I are stable, Ui(t) < ∞, ∀i ∈ I.
In addition, using the fact that E[||Q(T)||]2 ≤ E[||Q(t)||2],
and by dividing (37) with T 2 and taking a square root, this
completes the proof of queue bound. Hence, the virtual queue
is also stable.

Finally, to prove the sum utility performance of JGCA and
GA algorithms, we rearrange (36), divide both sides by TV ,
and use the fact that L(T) ≥ 0 to have:

1
T

T−1∑
t=0

∑
i∈I

log(1 + γ

i(t)) ≥ θ∗ − P + R

V

+
1

TV

T−1∑
t=0

∑
i∈I

iE{Ui(t)}. (38)

Whenever
i > 0, ∀i ∈ I, by taking T →∞, this completes
the proof of utility bound.

E
{∑

i∈I
Ui(t)Di(x
(t), z
(t)|y∗(t))−QB(t)

∑
j∈J

y∗
j (t)hj(t)|Q(t)

}
−E

{∑
i∈I

Ui(t)Di(x
(t), z
(t)|y
(t))−QB(t)
∑
j∈J

y

j(t)hj(t)|Q(t)

}
≤ 1

min{pλ,d,h}ρ
(
2|I|D2

max+|J |2 y2
max h2

max+Bavg|J |ymaxhmax

)
︸ ︷︷ ︸

R

. (33)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

4188 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

ACKNOWLEDGMENT

The ideas and opinions expressed in this article are of
the authors, and do not represent the official position of
Amazon, Inc.

REFERENCES

[1] J. Kwak, G. Paschos, and G. Iosifidis, “Dynamic cache rental and content
caching in elastic wireless CDNs,” in Prof. WiOpt, May 2018, pp. 1–8.

[2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distrib-
uted caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[3] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The
role of caching in future communication systems and networks,” IEEE
J. Sel. Areas Commun., vol. 36, no. 6, pp. 1111–1125, Jun. 2018.

[4] Amazon AWS. [Online]. Available: https://aws.amazon.com
[5] S. G. Shakkottai and R. Srikant, Network Optimization and Control.

Norwell, MA, USA: Now Publishers, 2008.
[6] M. Neely, “Stochastic network optimization with application to commu-

nication and queueing systems,” in Synthesis Lectures on Communica-
tion Networks. Morgan & Claypool, 2010, pp. 1–211.

[7] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” in Proc. IEEE INFOCOM,
Apr. 1998, pp. 533–539.

[8] N. Abedini and S. Shakkottai, “Content caching and scheduling in
wireless networks with elastic and inelastic traffic,” IEEE/ACM Trans.
Netw., vol. 22, no. 3, pp. 864–874, Jun. 2014.

[9] K. Naveen, L. Massoulie, E. Baccelli, A. Viana, and D. Towsley, “On the
interaction between content caching and request assignment in cellular
cache networks,” in Proc. 5th Workshop All Things Cellular (ATC),
2015, pp. 37–42.

[10] K. Poularakis, G. Iosifidis, I. Pefkianakis, L. Tassiulas, and M. May,
“Mobile data offloading through caching in residential 802.11 wire-
less networks,” IEEE Trans. Netw. Service Manage., vol. 13, no. 1,
pp. 71–84, Mar. 2016.

[11] X. Wu, Q. Li, X. Li, V. C. M. Leung, and P. C. Ching, “Joint long-term
cache updating and short-term content delivery in cloud-based small
cell networks,” IEEE Trans. Commun., vol. 68, no. 5, pp. 3173–3186,
May 2020.

[12] X. Lyu, C. Ren, W. Ni, H. Tian, R. Liu, and X. Tao, “Distributed online
learning of cooperative caching in edge cloud,” IEEE Trans. Mobile
Comput., early access, Mar. 30, 2020, doi: 10.1109/TMC.2020.2983924.

[13] A. Asheralieva and D. Niyato, “Combining contact theory and Lyapunov
optimization for content sharing with edge caching and device-to-
device communications,” IEEE/ACM Trans. Netw., vol. 28, no. 3,
pp. 1213–1226, Jun. 2020.

[14] G. S. Paschos, A. Destounis, and G. Iosifidis, “Online convex optimiza-
tion for caching networks,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 625–638, Apr. 2020.

[15] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1013–1027, Jun. 2019.

[16] A. Giovanidis and A. Avranas, “Spatial multi-LRU: Distributed caching
for wireless networks with coverage overlaps,” 2016, arXiv:1612.04363.
[Online]. Available: http://arxiv.org/abs/1612.04363

[17] E. Leonardi and G. Neglia, “Implicit coordination of caches in small
cell networks under unknown popularity profiles,” IEEE J. Sel. Areas
Commun., vol. 36, no. 6, pp. 1276–1285, Jun. 2018.

[18] L. Chen, L. Song, J. Chakareski, and J. Xu, “Collaborative content place-
ment among wireless edge caching stations with time-to-live cache,”
IEEE Trans. Multimedia, vol. 22, no. 2, pp. 432–444, Feb. 2020.

[19] D. Carra, G. Neglia, and P. Michiardi, “Elastic provisioning of cloud
caches: A cost-aware TTL approach,” IEEE/ACM Trans. Netw., vol. 28,
no. 3, pp. 1283–1296, Jun. 2020.

[20] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” IEEE Trans.
Commun., vol. 64, no. 4, pp. 1674–1686, Apr. 2016.

[21] J. Xu, M. van der Schaar, J. Liu, and H. Li, “Forecasting popularity of
videos using social media,” IEEE J. Sel. Topics Signal Process., vol. 9,
no. 2, pp. 330–343, Mar. 2015.

[22] J. Xiong, Y. Fang, P. Cheng, Z. Shi, and W. Zhang, “Distrib-
uted caching in converged networks: A deep reinforcement learning
approach,” IEEE Trans. Broadcast., early access, Jun. 3, 2020, doi:
10.1109/TBC.2020.2996087.

[23] A. Sadeghi, F. Sheikholeslami, A. G. Marques, and G. B. Giannakis,
“Reinforcement learning for adaptive caching with dynamic storage
pricing,” IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2267–2281,
Oct. 2019.

[24] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5G using reinforcement learning of space-time
popularities,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1,
pp. 180–190, Feb. 2018.

[25] S. O. Somuyiwa, A. Gyorgy, and D. Gunduz, “A reinforcement-learning
approach to proactive caching in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 36, no. 6, pp. 1331–1344, Jun. 2018.

[26] K. Son, H. Kim, Y. Yi, and B. Krishnamachari, “Base station oper-
ation and user association mechanisms for energy-delay tradeoffs in
green cellular networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 8,
pp. 1525–1536, Sep. 2011.

[27] CAISO: California Independent System Operator. [Online]. Available:
http://www.caiso.com/

[28] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[29] M. J. Neely, “Energy optimal control for time-varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934,
Jul. 2006.

[30] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[31] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–149, 2006.

[32] M. Dehghan et al., “On the complexity of optimal routing and con-
tent caching in heterogeneous networks,” in Proc. IEEE INFOCOM,
Apr. 2015, pp. 936–944.

[33] J. Kwak, L. B. Le, H. Kim, and X. Wang, “Two time-scale edge
caching and BS association for power-delay tradeoff in multi-cell
networks,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5506–5519,
Aug. 2019.

[34] H. Ju, B. Liang, J. Li, Y. Long, and X. Yang, “Adaptive cross-network
cross-layer design in heterogeneous wireless networks,” IEEE Trans.
Wireless Commun., vol. 14, no. 2, pp. 655–669, Feb. 2015.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[36] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube
network traffic at a campus network—Measurements, models, and
implications,” Elsevier Comput. Netw., vol. 53, no. 4, pp. 501–514,
Mar. 2009.

[37] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching in 5G
wireless networks: Cloud versus edge caching,” IEEE Trans. Wireless
Commun., vol. 17, no. 5, pp. 3030–3045, May 2018.

[38] IESO: Independent Electricity System Operator in Canada. [Online].
Available: http://www.ieso.ca/en

[39] Amazon Elastic CDN Service—ElastiCache. [Online]. Available:
https://aws.amazon.com/elasticache/pricing

[40] Evolved Universal Terrestrial Radio Access (E-UTRA); Further
Advancements for E-UTRA Physical Layer Aspects (Release 9),
document 3GPP TR 36.814, V9.0.0, 2010.

[41] Crowd-Sourced Cellular Tower and Coverage Mapping Service.
[Online]. Available: https://www.cellmapper.net

[42] C.-H. Wang, J. Llorca, A. M. Tulino, and T. Javidi, “Dynamic cloud
network control under reconfiguration delay and cost,” IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 491–504, Apr. 2019.

Jeongho Kwak (Member, IEEE) received the B.S.
degree (summa cum laude) in electrical and com-
puter engineering from Ajou University, Suwon,
South Korea, in 2008, and the M.S. and Ph.D.
degrees in electrical engineering from KAIST, Dae-
jeon, South Korea, in 2011 and 2015, respec-
tively. He was with INRS-EMT, Montreal, Canada,
and also with Trinity College Dublin, Dublin,
Ireland, as a Post-Doctoral Researcher and a Marie
Sklodowska-Curie Fellow, respectively. He is cur-
rently an Assistant Professor with the Department of

Information and Communication Engineering, Daegu Gyeongbuk Institute of
Science and Technology (DGIST), Daegu, South Korea. His current research
interests include learning model and resource allocation in hybrid cloud/edge
network architecture, energy optimization in heterogeneous networks, and
radio resource management for 5G wireless cellular networks.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.2983924
http://dx.doi.org/10.1109/TBC.2020.2996087

KWAK et al.: ELASTIC FEMTOCACHING: SCALE, CACHE, AND ROUTE 4189

Georgios Paschos (Member, IEEE) received the
Diploma degree in electrical and computer engi-
neering from the Aristotle University of Thessa-
loniki in 2002 and the Ph.D. degree in wireless
networks from the ECE Department University of
Patras, Greece, in 2006. He has held positions
at a Researcher with CERTH-ITI, Greece, from
2008 to 2012, an Adjunct Lecturer with the Univer-
sity of Thessaly, from 2009 to 2011, and an ERCIM
Post-Doctoral Fellow VTT, Finland, from 2007 to
2008. From 2012 to 2014, he was with LIDS, MIT.

From 2014 to 2019, he was 5 years a Principal Scientist with Huawei
Technologies, Paris, leading the Network Control and Resource Allocation
Team. He is currently a Senior Manager and a Research Science with Amazon,
Inc., leading the EU Operation Research Team of Amazon Transportation
Services. Two of his articles received Best Paper Awards in GLOBECOM
2007 and IFIP Wireless Days 2009. He was a TPC member of INFOCOM,
WiOPT, and Netsoft. He has organized several international workshops on
the topics of caching, network slicing, and machine learning techniques
for communication systems. He was the Co-Organizer and an Editor of
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC)
Special Issue on Caching for Comm. Systems and Networks. He has served
as an Associate Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING

from 2015 to 2019 and the IEEE NETWORKING LETTERS from 2018 to 2019.

George Iosifidis (Member, IEEE) received the
Diploma degree in electronics and telecommuni-
cations engineering from the Greek Air Force
Academy, Athens, in 2000, and the Ph.D. degree
from the ECE Department, University of Thessaly,
in 2012. From 2012 to 2014, he was a Post-Doctoral
Researcher with CERTH and also with Yale Uni-
versity from 2014 to 2017; and also an Assistant
Professor with Trinity College Dublin from 2016 to
2020. He is currently an Assistant Professor with
the Delft University of Technology. His research

interests include network optimization and economics. His work has appeared
in Nature Communications, Nature Human Behavior, and Proceedings of
the National Academy of Sciences of the United States of America (PNAS).
He was a co-recipient of the Best Paper Awards in IEEE WiOPT 2013 and
IEEE INFOCOM 2017. He has served as a Guest Editor for the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. He is currently
an Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS and the
IEEE/ACM TRANSACTIONS ON NETWORKING.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2021 at 06:29:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

