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Abstract
Blockchain networks are increasingly recognized
as a disruptive technology across sectors such as
online services, finance, supply chain etc. They are
underpinned by smart contracts which provide pro-
grammatic instruction for the blockchain to oper-
ate. A major obstacle in the widespread adoption
of blockchain technology is the security of the un-
derlying smart contracts and potentially exploita-
tive flaws in their technical makeup that pose a risk
to data privacy. Modern trusted execution environ-
ments, such as Intel SGX, leverage hardware and
have been proposed to preserve privacy in smart
contracts; however, practical research & develop-
ment in this field has seen slower progress. This pa-
per explores the process of attestation by which In-
tel SGX enhances smart contract security, examines
development & execution of a prototype smart con-
tract that utilizes SGX for secure e-voting and eval-
uates benefits & limitations of the process. Finally,
we also propose improvements to our approach and
present further scope of research on the topic.

1 Introduction
Blockchain technology is a fast-growing market and has
received a lot of attention in recent times due to popu-
lar use-cases such as cryptocurrencies, non-fungible tokens,
cross-border payments and other decentralized applications.
Blockchain technology is underpinned by smart contracts,
which are programs containing a set of actions to be executed
when certain conditions are met and verified [10]. These ac-
tions update the blockchain and are visible only to the parties
involved in the smart contract. This makes smart contracts
useful for a variety of applications such as registration of as-
sets in one’s name, transfer of funds between parties, nota-
rizing of claims for insurance purposes, automation in supply
chain processes, liability management by firms etc. [10]

Given the monetary nature of many of these popular cases,
it is essential that smart contracts are made secure, preserve
privacy and that data contained in these programs are not eas-
ily accessible to external parties. To some extent, smart con-
tracts benefit from the inherent encryption of blockchain net-

works, where data is structured into a ‘chain‘ of blocks; these
blocks are all inter-linked and attackers cannot access any sin-
gle block without changing all the blocks connected to it as
well.

However, smart contracts are not immune to having vulnera-
bilities and security issues which can result in network com-
promise and massive financial losses [17]. A popular example
of this was the DAO hack in 2016, where attackers exploited a
vulnerability in the DAO’s codebase to siphon funds of ether
worth $60 million following a massive token sale [17].

The vulnerabilities smart contracts are subject to mainly re-
volve around the transparency of data in the distributed ledger
across all nodes of the network [7]. While this is a core prop-
erty of the decentralized manner in which blockchains op-
erate, it also introduces a lack of privacy which is increas-
ingly necessary as enterprises look to leverage these systems
to handle user data and accommodate customer requirements
across various sectors [9].

As a potential solution to the issue of data security, hardware-
based trusted execution environments (TEEs) can be used
to run smart contracts in an isolated, secure container such
that the data inside is kept hidden from potential attackers
[5]. This paper focuses on Intel’s Software Guard Extensions
(SGX), which is a prominent TEE solution and offers many
advantages with regards to the privacy, integrity and scalabil-
ity of smart contracts.

Related studies Relevant research in this field has been con-
ducted previously by Brandenburger et. al [7] [14], Bao et.
al [5], Das et. al [9], Liang et. al [12] and others analyzing
the integration of Intel SGX with smart contracts. Branden-
burger et. al provide a well-detailed overview of the attesta-
tion process with SGX and identify pitfalls which can arise.
Das et. al conduct similar research but highlight an extra se-
curity layer atop their design to achieve objectives of secu-
rity, privacy and scalability of data. Abdul-Kader & Kumar
[3] propose a three-layered protection scheme to preserve pri-
vacy in large-scale blockchain platforms by introducing ran-
domized address generation, content erasure and Intel SGX
as trusted hardware.

However, for much of the literature, with the notable excep-
tion of Brandenburger et. al [7], there are few attempts to
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back research with firsthand development of a blockchain
prototype that leverages Intel SGX. Thus, it remains to be
seen to what extent this technology can be applied to smart
contracts in practice and how well they actually solve the is-
sue of privacy.

Contribution The aim of the project is to address this and
provide an accurate account of the development process in-
volved in implementing an SGX-based smart contract. The
paper explores the means by which Intel SGX enhances smart
contract security, accompanied by the implementation of an
e-voting scheme, and examines the benefits of this process as
well as limitations with regards to security risks and potential
vulnerabilities that can be exploited.

The paper focuses on smart contracts developed on the Hy-
perledger Fabric platform, which is a prominent enterprise-
grade framework for deploying blockchains requiring permis-
sioned access [7]. Unlike Bitcoin and Ethereum, these have
owners that control who can see and commit to the network;
this makes them more secure and compatible to enterprise use
[9]. Smart contracts on Hyperledger Fabric can be developed
using general-purpose languages [17], such as Go, Node.js,
Python and Java, and this also reduces the learning curve for
developers.

The main research question the paper is looking to answer is
the following:

How can Intel SGX be used to enhance the security of smart
contracts on Hyperledger Fabric?

The research this paper underlines can be broken up into the
following sub-questions:

Q1: How to apply Intel SGX technology to the execution of a
Fabric smart contract?

Q2: What is the present literature on the security of Fabric
smart contracts?

Q3: How effective is SGX as a trusted execution environment
solution for smart contracts?

Structure. The paper is structured into eight sections. Sec-
tion 2 provides relevant background information on Hyper-
ledger Fabric and Intel SGX technologies used in the proto-
type. Section 3 covers the methodology and approach fol-
lowed for the project. Section 4 introduces the design, im-
plementation and trial of the e-voting prototype. Section 5
provides an evaluation of the prototype, examines the benefits
& limitations of the process and outlines potential improve-
ments for the future. Section 6 examines the ethical implica-
tions of our study and reproducibility of the results. Section
7 incites discussion by means of a literature review of related
works in the field. Section 8 summarizes the research and
concludes the paper.

2 Background Research
This section presents background information required to
grasp the technical aspects discussed later in the paper. Sec-
tion 2.1 provides an overview of the architecture used by Hy-
perledger Fabric while Section 2.2 introduces Intel SGX and

the process of attestation by which it enhances smart contract
security.

2.1 Hyperledger Fabric
In Hyperledger Fabric, multiple parties collectively form a
distributed ledger network, or DLT [7]. The ledger maintains
a record of all interactions between the parties as transac-
tions stored in a chain of ordered blocks. Each block has a
unique hash identifier derived from the hash of its predecessor
[1]; this contributes towards the encryption of blockchains, as
mentioned in the previous section.

Transactions invoke functions of the smart contracts,
or chaincode, underpinning applications running on the
blockchain. Additionally, the state of the blockchain denotes
the latest information stored on the ledger for quick retrieval;
this is often in the form of a key-value store [7] which can be
accessed or written to with getState and putState calls.

A Fabric network consists of three main types of entities:
clients, peers and an ordering service [17]. The client invokes
chaincode operations on behalf of the end-user through trans-
action requests to one or more peers. The peers execute the
chaincode and produce a response back to the client, known
as an endorsement [2].

Figure 1: Sequence diagram representing the transaction flow in our
Fabric test network.

The ordering service then establishes the order of the en-
dorsed transactions it receives from the client, assigns them
into blocks and communicates the blocks to all peers in the
network. Upon receiving a block, the peer then validates the
transactions inside and commits them to their own local copy
of the distributed ledger [7]. Thus, in Fabric, it can be noted
that the transactions are ordered after they have been exe-
cuted & endorsed by peers hence the execute-order-validate
transaction flow of Fabric networks.

Security Hyperledger Fabric provides data confidentiality to
a certain extent, making use of in-built tools such as channels
and private data storage [16].

Channels split the network into smaller networks, each con-
taining a local ledger and 2 or more peers where transactions
are hidden to entities outside the channel [16]. Private data



storage allow peers to store data such that it is only accessible
to specific peers. With these tools, data is kept hashed [16])
to all except the peers authorized.

Threats Given the execute-order-validate flow outlined
above, a peer is also technically able to execute a transaction
multiple times while the ordering service decides the order
of transactions [7]. A malicious peer could take advantage
of this flaw in order to learn sensitive information about the
state. This is known as a rollback attack where the attacker
can break confidentiality despite being not being authorized
to see the data.

Kazuhiro et. al [17] also attribute non-determinism as pos-
ing a large risk to smart contracts on Hyperledger Fabric.
This is namely, when there is inconsistency among the re-
sponses received from the endorsing peers in the network.
Non-determinism can stem from various factors such as ex-
ploitation of global variables, transaction timestamps, third-
party libraries, external services etc. [17]

2.2 Intel SGX
Intel’s Software Guard Extensions (SGX) is a prominent TEE
solution that leverages hardware [5] to provide security. Since
blockchain networks contain a distributed ledger that main-
tains a record of all transactions validated, this data is visible
to all nodes in the network [14]. This highlights a lack of
confidentiality in the blockchain state and does not uphold
privacy for users who may have sensitive personal data on the
blockchain, such as health-related information, voting prefer-
ences, balance details etc.

Intel SGX provides a secure and isolated container, known
as an enclave [5], which is guarded by hardware mechanisms
and ensures there is confidentiality of data in the application,
even in the event the entire platform is compromised [7]. In-
tel SGX provides functionality for remote attestation, intra-
attestation as well as enclave state and data sealing [5] pro-
cesses.

Remote attestation. When starting up an enclave, the data
and code loaded into the SGX container is used by the CPU
to generate a cryptographic hash, known as the mrenclave.
Before the client can send transactions to the peer, this hash
value is verified to ensure that the correct chaincode is being
run by the enclave [5].

At runtime, the client issues an attestation challenge to the
peer running the enclave, to generate a quote proving that the
correct chaincode is loaded in the enclave [5]. To do this, the
enclave first conducts intra-attestation with an entity known
as the Quoting Enclave (QE). The QE verifies the quote was
produced by a valid enclave and signs it using a shared iden-
tity key [12]. The quote is then sent to the client who for-
wards it to the Intel Attestation Service (IAS). Once this is
also verified, the client can confirm the chaincode is running
the appropriate chaincode and can communicate [7].

Data sealing. SGX provides support for data sealing of an
enclave, by encrypting the data with a unique key [5] before

it is stored externally in persistent storage. This helps the en-
clave reduce memory consumption [5] and in the event of a
crash, the stored data can be retrieved and decrypted easily
[7]. However, the main limitation of this is that, while storing
and retrieving data may be secure, the data itself can be in-
ferred [7] by malicious nodes looking to break confidentiality
of the system.

3 Methodology
The approach undertaken in this project consists of three
stages: background research & study, prototype development
and evaluation. A technical roadmap outlining the steps taken
over the course of the project has been included and can be
found in Appendix A in section 9.

Figure 2: Diagram depicting the 3-step approach taken towards the
project

3.1 Research Process
To begin, it is necessary to develop a fundamental understand-
ing of how a Fabric network operates, how transactions are
processed by the entities in the network, potential risks of
Fabric smart contracts, SGX process of remote attestation and
the security it can provide to Fabric smart contracts. This was
predominantly done by process of literature study and ana-
lyzing present approaches to evaluate Intel SGX as a trusted
execution environment.

The process of finding literature on this topic involved use
of Google Scholar as it features a wide range of scien-
tific research that can prove to be useful in acquiring back-
ground information. Keywords used include: Smart con-
tracts, blockchain, Hyperledger, Intel SGX, e-voting etc. In
order to ensure sufficient literature was found on this topic, a
time window from 2017 to 2021 was chosen for articles; this
was at the risk of some information being possibly outdated
in the older articles. Thus, those findings were cross-checked
and used for more trivial purposes, such as definitions, back-
ground information etc.

3.2 Development Process
The research is supported by the development of an e-voting
smart contract on Hyperledger Fabric. This was done in a
process similar to software engineering with Scrum, where
the prototype was iteratively implemented in week-on-week
sprints and in close coordination with the responsible profes-
sor.

To start, there was a process of ideation regarding the smart
contract and the chaincode functions to implement. The con-
tract allows an organizer (the client) to open elections with



a total of 3 candidates, for whom votes can be submitted by
peers in the network. Then, a backlog was produced con-
taining issues of all the features the smart contract would
have. The implementation of the election was carried out in
a timeboxed manner similar to weekly sprints, accompanied
by meetings with the project group and responsible professor.
The comments and feedback provided were used to add new
issues to the backlog that would be worked on in the coming
week.

The smart contract is implemented using C++ and Golang,
while the client application used to invoke the contract is
written in Javascript. This choice of programming languages
can be attributed to a combination of prior coding experience,
support provided by Hyperledger and SGX SDKs and exist-
ing resources that can be found on smart contract develop-
ment.

4 Prototype
This section details the e-voting prototype built using Hyper-
ledger Fabric and Intel SGX technologies. Section 4.1 details
the design of the system, while Section 4.2 covers the im-
plementation of the smart contract & integration with SGX.
Section 4.3 trials the prototype and provides the results of ex-
ecution.

4.1 System Design
Our approach makes use of a local Fabric test network con-
sisting of a client node, two peers and an ordering service.
Each node belongs to a Membership Service Provider (MSP)
organization, which exists in Hyperledger Fabric to manage
identities of the members in the network [17]. In our appli-
cation, the peers represent voters that submit votes for the
candidates in our election while the organizer of the election
denotes the invoking client.

In order to incorporate trusted hardware, each peer in the Fab-
ric network is equipped with a CPU that enables Intel SGX
and can execute chaincode within a secure enclave. As op-
posed to running the entire blockchain node in SGX, only
part of the peer resides in the enclave [7]; this minimizes the
size of the trusted computing base (TCB), the attack surface
and makes the system easier to evaluate as well.

Figure 3: Diagram of the peer representing the components dis-
cussed above.

A peer in our network contains the following components:

• Secure enclave: the enclave hosted by the peer executes
the e-voting chaincode, including key operations such

as submitting encrypted votes, querying the votes, dis-
playing them and evaluating the winner candidate. This
isolates the core business logic from the rest of the peer
and preserves privacy.

• Untrusted component: this is the remaining (untrusted)
section of the peer containing code that runs outside
SGX. This contributes largely in the remote attestation
process and forwards requests from the client to the
chaincode enclave via ECALL messages [9].

• Other parts: the peer also has several other internal com-
ponents such as its own copy of the distributed ledger,
the most-recent blockchain state, a registry with all the
enclave identifiers and a transaction validator to validate
transactions received from the ordering service [7].

Now, we discuss at length the transaction flow of the Fab-
ric network and the role of cryptographic algorithms such as
key generation, encryption and digital signatures to establish
secure data sharing between parties on the smart contract.

To begin, the peer starts up the SGX enclave and generates
a private-public key pair within the container [9]. Then, it
registers the enclave with the client & Intel Attestation Ser-
vice (IAS) through means of remote attestation (as explained
in Section 2.2). To briefly summarize, the chaincode enclave
produces a quote containing the mrenclave and the hashed
public key of the enclave. This is sent by the client to the
IAS for verification; if successfully verified, the client com-
municates this to the peer, which then stores the successful re-
sult along with the public key of its enclave to the distributed
ledger. This is available to all nodes on the network [7].

Following enclave registration, the client can securely com-
municate with the peer and invoke chaincode operations
through transaction requests. Within a request, the client
encrypts the desired operation payload using a randomly-
generated composite key and the public key of the enclave
that it received earlier [9].

Figure 4: Secure communication between the client and peer run-
ning SGX

The peer takes the request into its enclave and decrypts the



composite key using the private key of the enclave [9]. The
chaincode operation is fulfilled inside the enclave and the re-
sult is encrypted using the composite key [9]. The peer for-
wards this as an endorsement to the client. Finally, the client
decrypts the execution result present in the endorsement and
submits the transaction to the ordering service.

Upon receiving a block from the orderer later, the peer val-
idates the transactions within [7] before committing them to
ledger.

4.2 Implementation
This section outlines the implementation of the e-voting smart
contract and details the method used to incorporate Intel SGX
for the prototype. While the full code and setup procedure
can be found on Github [8], this section provides some back-
ground and can prove useful for reproducibility of the results
outlined below.

Smart contract The e-voting scheme has 7 main functions,
which allow the user to create an election, query it, submit
encrypted votes, close the election, make votes visible and
ultimately determine the candidate with most votes.

The functions are all called by instances of the smart con-
tract in classes of the client application. The user is able to
invoke these classes through the CLI approach. The class di-
agram detailing the implementation design can be found in
Appendix B below.

Intel SGX Fabric Private Chaincode, or FPC, is a framework
by Brandenburger et. al [6] that allows for the execution of
chaincode using Intel SGX. This framework was used in or-
der to run the e-voting smart contract within an enclave and
provides support for various components such as the chain-
code enclave, enclave endorsement validation, shim and en-
clave registry [6].

The advantage of using FPC is that it packages all the re-
quired dependencies within a Docker development image,
thereby improving the learning curve and also allowing the
developer to focus principally on building the smart contract.

4.3 Execution
This section trials the smart contract on mock inputs and pro-
vides the results of the execution in listings. The application
does not use personal data and the inputs entered bear no re-
semblance to any real-world entities.

The organizer can start a new election by invoking the Cre-
ateElection function in our smart contract, with the election
name and the three candidates to vote for as function param-
eters. The chaincode then initializes a new election with the
election name, candidates, ID of the organizer and placehold-
ers to store the votes. Once the election is created, it is put
into state using putState and the status of the election is set to
open.

// 1. Create a new election titled 'Prime'
$ node buildElection.js organizer org1 electionPrime ben
simon jim

--> Invoke e-voting chaincode: Create a new election
--> Result: OK

Listing 1: Creating a new election titled Prime

Once created, the election can be queried by invoking the
QueryElection function in the smart contract, with the elec-
tion name as parameter. The chaincode verifies the election
exists and retrieves it from the blockchain state.

While the election is open, peers can submit votes to the elec-
tion by invoking SubmitVote transaction. The code snippet for
this function, as implemented for SGX, can be found in Ap-
pendix C below. The chaincode generates a composite key to
encrypt the vote (as explained in Section 4.1) and stores the
data in the peer’s private storage until the election is closed.

// 2. Voter submits a vote for candidate Ben
$ node addVote.js voter1 org1 electionPrime ben
--> Invoke e-voting chaincode: Add a new vote
--> Voter ID: CN=voter1
--> Result: Vote: 738dcfb07a4f2308677dca8c1d4ce6cb29197...
--> Result: OK

Listing 2: Submitting a vote for candidate Ben

Upon submitting the vote to the election, a transaction ID is
returned to the user by the smart contract and can be used by
the voter to query their vote. This is because the transaction
ID is used to re-construct the composite key that encrypted
the vote. Additionally, querying the election confirms the
hash of the vote in private storage is visible in the election.
The votes remain hashed until the election is ended.

// 3. Query the vote submitted using the transaction ID
$ node queryVote.js voter1 org1 electionPrime 738dcfb07...
--> Invoke e-voting chaincode: Query vote
--> Result: Vote: {"voteFrom": "CN=voter1", "voteTo": "ben"}

// 4. Query the election to confirm vote was added
$ node queryElection.js organizer org1 electionPrime
--> Invoke e-voting chaincode: Get Election
--> Result: Election: {

"name": "electionPrime",
...,
"privateVotes": {

"\u0vote\u0electionPrime\u0738dcfb07a4f...": {
"hash": "9073790a8a849ffb6a5f0475a53532e53f6..."

}
},
"publicVotes": {},
...

}

Listing 3: Querying the vote and election made

The organizer can close the election by invoking the Close-
Election function in the smart contract, taking election name
as parameter. This prevents votes submitted thereafter from
being counted and acts as an indicator for when displaying
the votes to the public.

In order to display the votes, the smart contract will first check
if the election is closed before confirming the hash generated
by the composite key matches the hash of the private vote that
is now present in the election. It will also confirm that the
peer invoking this function was the one to submit the vote.



Thereafter, the vote is made public and visible for anyone
querying the election.

// 5. Close the election 'Prime'
$ node closeElection.js organizer org1 electionPrime
--> Invoke e-voting chaincode: Close election
--> Result: OK

// 6. Let 'voter1' display his vote from earlier
$ node displayVote.js voter1 org1 electionPrime 738dcf07a...
--> Invoke e-voting chaincode: Make vote public
--> Result: Vote: {"voteFrom": "CN=voter1", "voteTo": "ben"}
--> Result: OK

// 7. Query the election 'Prime' to see the vote public
$ node queryElection.js organizer org1 electionPrime
--> Invoke e-voting chaincode: Get Election
--> Result: Election: {

"name": "electionPrime",
...,
"privateVotes": {

"\u0vote\u0electionPrime\u0738dcfb07a4f...": {
"hash": "9073790a8a849ffb6a5f0475a53532e53f6..."

}
},
"publicVotes": {

"\u0vote\u0electionPrime\u0738dcfb07a4f...": {
"voteFrom": "x509::CN=voter1...",
"voteTo": "ben"

}
},
...

}

Listing 4: Process of closing the election and making votes public

Once the election is closed and the votes have been displayed,
the organizer can determine the candidate with the most num-
ber of votes and declare them the winner. This can be done
by invoking EvaluateElection. The code snippets for this can
be found in the Appendices D and E of the report; the core
logic involves counting up the tallies for each candidate and
finding the largest total with greater-lesser checks.

// 8. Determine the candidate with highest number of votes
$ node evaluateElection.js organizer org1 electionPrime
--> Invoke e-voting chaincode: Evaluate election
--> Result: The candidate with most votes is ben
--> Result: OK

$ node queryElection.js organizer org1 electionPrime
--> Invoke e-voting chaincode: Get Election
--> Result: Election: {

"name": "electionPrime",
...,
"publicVotes": {

"\u0vote\u0electionPrime\u0738dcfb07a4f...": {
"voteFrom": "x509::CN=voter1...",
"voteTo": "ben"

}
},
"winner": "ben",
"numVotes": 1,
"status": "completed"

}

Listing 5: Evaluating the winner of the election

5 Evaluation
This section evaluates the effectiveness of our prototype and
use of SGX with regards to smart contract security. Then,

we also discuss the limitations of our model and potential im-
provements which can be made to the model & methodology
to navigate pitfalls.

Strengths With the chaincode running in the SGX enclave,
the operations of the smart contract cannot be tampered with
by untrusted entities [5]. An unauthorized peer also cannot
access data residing in the enclave; this can be seen above
when only the voter that submitted his/her vote could query it
using the transaction ID. The votes are encrypted for all other
entities as they do not have access.

As touched upon in Section 2.1, rollback attacks pose a threat
to privacy in smart contracts. This can occur when a mali-
cious node manipulates the order in which transactions are
run and breaking confidentiality by learning sensitive data
[7]. In our example, this could be learning about the election
winner, resetting the enclave and submitting further votes to
see if there is a change in the winning candidate.

As a solution to this, the prototype makes use of a ’barrier’ [7]
in the form of closing the election and displaying the votes
before the winner can be calculated. When the election is
closed, a malicious peer would be unable to submit a new
vote to the election and the tallies of the candidates only take
into account the votes received when status is ’open’.

Limitations The use of Intel SGX can also have several dis-
advantages.

One of the shortcomings of our system is that peers are re-
quired to keep constant communication with the channel dur-
ing the e-voting process and manually enter the transactionID
to query their votes, display them etc. This can potentially be
improved by storing the transactionID in the transient map
of the chaincode; this way it can be retrieved and used for
invocation without having to be saved in peer’s private data
collection.

Our implementation also lacks in-depth testing of different
input cases which can cause non-determinism [17]. This can
include global variables, timestamps, read-your-write cases
etc. Testing for such vulnerabilities can make the prototype
implementation more secure and would produce accurate re-
sults that support our conclusion.

SGX also has some inherent weaknesses which affect any ap-
plications making use of this technology. To start, SGX sup-
ports secure memory of up to 128 MB for its enclave [5] and
there can be loss of performance if this is exceeded, which
can have implications for scalability.

Moreover, since Fabric is used to deploy permissioned
blockchains, the network using SGX is owner-controlled;
thus, the platform owner is able to partially access the data
in the enclave despite it being encrypted [5]. This can affect
the security of the system, such as replay attacks [5] where the
owner uses previously-run inputs in the enclave to achieve a
favorable result.

Another limitation of SGX-based applications is the risk of
receiving side-channel attacks. This arises when SGX shares
resources with other programs and a malicious node uses



those shared resources to infer private data in the enclave [5].
In our example, this can be seen by a rollback attack where a
malicious node may aim to acquire control flow of the candi-
date tally by executing chaincode [5].

Future improvements To start, static analysis tools such as
Oyente and Zeus can be applied to verify smart contract code
and pinpoint potential vulnerabilities [17]. This is done with-
out actually running the program and instead by examining
symbolic properties such as the control flow, dependency
graph, compliance & violation patterns, code behaviors etc.
The results of testing the smart contract using these tools and
comparing them to that in an unprotected environment can
provide further evidence on the viability of Intel SGX for
smart contract security.

The methodology undertaken during the implementation pro-
cess can incorporate this with test-driven development. This
approach would involve writing smart contract tests & con-
ducting analyses throughout development and can also serve
to provide relevant code coverage numbers along with, pri-
marily, the potential vulnerability risks in the code.

6 Responsible Research

This section outlines the ethical implications of the research
and the reproducibility of our findings.

The aim of the research is to investigate how Intel SGX can
be used to enhance the security of smart contracts on Hyper-
ledger Fabric. Going back to the methodology undertaken
in the study, the literature used consists of scientific papers
and articles which are in the public domain and available to
anyone looking to conduct a similar research. The security
threats and issues outlined in the paper are also publicly avail-
able and hence, poses little to no risk for those invested in the
technology.

The prototype used in this study is also developed using a
public framework and deployed on a local test network. The
information depicted in the election scheme bears no signif-
icance to any real entities and no personal or user data was
used during the development & trial of the application. The
smart contract works anonymously and does not, at any point
in its runtime, make attempts to collect data other than what
the user choose to input. Hence, the study takes into consid-
eration data privacy and is also in accordance with GDPR.

The paper also makes use of code samples and diagrams in or-
der to show how Intel SGX has been integrated for our Fabric
smart contract and the execution of such a contract. This is
primarily intended as evidence for our findings but also serves
to make the research more reproducible for future study. The
samples have been kept concise, thus making them easy to
follow and implement for developers. The full code for the
application is available on Github [8] such that the project
can be easily forked by developers who may find it useful.
As the smart contract does not collect any user data, the code
poses no risk of data misuse by anybody who may take up the
repository.

7 Discussion & Related Works
This section looks at related works in the field by means of
literature study and is meant to provide inspiration to conduct
further research & development in the field.

With TEEs positioned to play an important role in context of
smart contract security, several solutions have been derived
from research in this field in the past few years.

To begin, Hawk [11] is a framework which enables devel-
opers to build privacy-preserving smart contracts. A Hawk
program consists of a private and public portion, where the
former is responsible for taking input data. A manager is es-
tablished who can see the users’ input and run the contract;
Hawk guarantees transactions are confidential to any parties
not in the contract [11]. In order to ensure the manager does
not reveal any data, it can be be run inside an SGX container
and instantiated such that the computation is secure. That
said, there is also greater ovehead associated with Hawk pro-
tocols which can reduce efficiency [5].

Teechain [13] is a payment solution that performs transac-
tions on top of Bitcoin and Ethereum. These transactions are
off-chain [13] in the sense they only write to blockchain when
settling the final payment. To ensure there are reliable pay-
ment channels among the various network parties, Teechain
makes use of SGX to maintain nodes in the enclave that can
exchange transactions and manage funds [5]. These channels
allow transactions to be exchanged efficiently and results in
impressive throughput for a payment system [13].

BITE [15] is a blockchain privacy-preserving approach that
aims to protect smaller clients that outsource their compu-
tational load onto bigger blockchain nodes. Matetic et. al
propose leveraging Intel SGX on these nodes and processing
requests from small clients from within the enclave. Similar
to the solution provided in this paper, BITE involves a client
performing remote attestation prior to sending transactions
over to the enclave running on the big node [5]. However,
the way in which the node responds is quite different; BITE
proposes two solutions for how the node can respond.

First, the node can respond with the Merkle paths of the
block the transaction belongs to, in turn allowing the client
to confirm that all its transactions have been committed to
blockchain [15]. Alternatively, the enclave on the node keeps
a record of unspent transaction outputs (UTXO) [5] and
checks this upon receiving a client request to respond appro-
priately [15].

Trusted hardware for smart contracts is also beginning to find
its role in cloud computing, where decentralized networks
represent a potential shift from single cloud service providers.
Airtnt [4] is a distributed cloud computing scheme that en-
ables untrusted users to rent computations on secure enclaves.
This is done by establishing a payment channel - not unlike
Teechain - between the service provider and requester [5].
Intel SGX is applied to tackle the integrity issue and enable
secure execution of the smart contract.

Similar to our approach, the requester can send transaction
requests to the provider, which runs the chaincode in the en-



clave and returns the result encrypted by a composite key.
After verifying with the IAS, the requester can send the pay-
ment details to the provider which writes to the state and up-
dates the balance [5]. Subsequently, the requester can use the
key to query the chaincode result obtained earlier and con-
firm the transaction. This method is conventional but Airtnt
also experiences side-channel and single-point vulnerabili-
ties, whereby a malicious node can get paid without fulfilling
the client payload [4].

8 Conclusion
The paper explores the process of using Intel SGX to per-
form attestation and enhance the security of smart contracts
on Hyperledger Fabric. This involved investigating the secu-
rity issues these smart contracts are susceptible to (such as
rollback attacks [14] and non-determinism [17]), conceptu-
alizing the process by which the SGX enclave operates and
implementing firsthand an e-voting smart contract that lever-
ages the enclave. In doing so, we also provide an account
of the process of development undertaken for the prototype
and the method by which SGX was integrated into the smart
contract.

The results obtained from running the application confirm
isolation of chaincode logic and SGX-leveraged security
where only authorized peers have access to confidential data
in the network. Several improvements were suggested to the
approach, including testing to find cases that could be ex-
ploited and the use of static analysis tools to pinpoint sym-
bolic flaws in the implementation.

As a preferred framework for deploying enterprise-grade
blockchain applications, Hyperledger Fabric stands to gain
immensely from use of trusted hardware, or TEEs, to rein-
force security in its smart contracts. This will encourage fur-
ther adoption by various sectors and enable blockchain solu-
tions that can securely address their customers’ needs.
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9 Appendix A

This diagram visualizes the technical roadmap followed dur-
ing the course of the project.

Figure 5: Technical roadmap followed for the project

10 Appendix B

The class diagram representing the dependencies between the
client application in our prototype and the Fabric smart con-
tact for e-voting.

Figure 6: Class diagram for e-voting prototype developed

11 Appendix C

std::string submitVote(
std::string election_name , std::string voter_name ,
std::string vote_to, shim_ctx_ptr_t ctx

)
{

// check if election already exists
uint32_t election_bytes_len = 0;
uint8_t election_bytes[MAX_VALUE_SIZE];
get_state(

election_name.c_str(),
election_bytes ,
sizeof(election_bytes),
&election_bytes_len ,
ctx

);

if (election_bytes_len == 0)
{

LOG_DEBUG("Election␣needs␣to␣already␣exist!");
return ELECTION_DOES_NOT_EXIST;

}

// check if election is closed
election_t election;
unmarshal_election(&election , (const char*)election_bytes ,
election_bytes_len);

if (!election.status) {
LOG_DEBUG("Election␣must␣be␣open␣to␣submit␣new␣votes.");
return ELECTION_ALREADY_CLOSED;

}

// Create composite key to encrypt vote
// If vote already exists, we just overwrite it
std::string new_key("\u00" + election_name
+ "\u0" + voter_name + "\u0");

vote_t new_vote;
new_vote.vote_from = voter_name;
new_vote.vote_to = vote_to;

// convert to json and store
std::string json = marshal_vote(&new_vote);
put_state(new_key.c_str(), (uint8_t*)json.c_str(),
json.size(), ctx);

return OK;
}

Listing 6: Code sample for SubmitVote function



12 Appendix D

std::string evaluateElection(
std::string election_name , shim_ctx_ptr_t ctx

)
{

...

// the winner of the election
std::string election_result;

// get all votes
std::string composite_key = "\u00" + election_name
+ "\u0";
int c_one_count = 0;
int c_two_count = 0;
int c_three_count = 0;
std::map<std::string, std::string> votes;
get_state_by_partial_composite_key(

composite_key.c_str(), votes, ctx
);

if (votes.empty())
{

LOG_DEBUG("There␣are␣no␣votes␣submitted.");
election_result = ELECTION_NO_VOTES;

}
else
{

// Find candidate w/ most votes
LOG_DEBUG("All␣considered␣votes:");
for (auto v : votes)
{

vote_t vote;
unmarshal_vote(

&vote, v.second.c_str(), v.second.size()
);

LOG_DEBUG(
"Election:␣Voter␣\t%s␣picked␣candidate:␣%d",
vote.vote_from.c_str(),
vote.vote_to.c_str()

);

if (
vote.vote_to == election.candidate_one

) {
c_one_count += 1;

} else if (
vote.vote_to == election.candidate_two

) {
c_two_count += 1;

} else {
c_three_count += 1;

}
}

...
}

...
}

Listing 7: Code sample showing tallying up in evaluateElection

13 Appendix E

std::string evaluateElection(
std::string election_name , shim_ctx_ptr_t ctx

) {
...

if (votes.empty())
{

LOG_DEBUG("There␣are␣no␣votes␣submitted.");
election_result = ELECTION_NO_VOTES;

}
else {

...

// Finding candidate with most votes
candidate_t winner;
winner.name = "";
winner.num_votes = -1;
int draw = 0;

if (c_one_count > winner.num_votes)
{

draw = 0;
winner.name = election.candidate_one;
winner.num_votes = c_one_count;

}

if (c_two_count > winner.num_votes)
{

draw = 0;
winner.name = election.candidate_two;
winner.num_votes = c_two_count;

} else if (c_two_count == winner.num_votes)
{

draw = 1;
}

if (c_three_count > winner.num_votes)
{

draw = 0;
winner.name = election.candidate_three;
winner.num_votes = c_three_count;

} else if (c_three_count == winner.num_votes)
{

draw = 1;
}

if (draw != 1)
{

LOG_DEBUG("Winner␣is:␣%s␣with␣%d␣votes",
winner.name.c_str(), winner.num_votes);
election.winner = winner.name.c_str();
election_result = marshal_candidate(&winner);

}
else
{

LOG_DEBUG("DRAW");
election_result = ELECTION_DRAW;

}
}

...
}

Listing 8: Code sample for determining winner in evaluateElection
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