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Summary

Due to recent advances inminiaturisation and cost reductions of radar systems, an increasing
amount of vehicles is equipped with automotive radar systems to enable advanced driver
assistance systems (ADAS) which improve driving comfort and road safety. Examples of
these systems include automatic braking as well as adaptive cruise control. To advance the
capabilities of these systems and to take another step towards enabling autonomous driving,
the next generation of radar sensors aims to enhance the situational awareness of the driver
and the vehicle by, amongst others, classifying objects in the surrounding area of the car.
Arguably, the most important objects to correctly classify in this process are vulnerable road
users (VRUs).

With the largely completed transition of automotive radar systems from the previously
used 24 GHz band to the new 77 GHz band, the performance of automotive radar systems
has improved further due to larger available bandwidths and reduced wavelengths. The re-
duced wavelengths allow for an increased angular resolution with the same aperture size
while the increased bandwidth results in enhanced range resolution. However, all currently
commercially available automotive radar systems are single-polarised and therefore do not
consider an important source of information, namely the polarisation state of the backscat-
tered radiation, which can benefit classification of objects greatly.

To gain better insight in the benefits of this factor, this thesis is concerned with inves-
tigating the effectiveness of polarisation information for classification of objects in the au-
tomotive scenario. In particular, two types of objects are considered, namely road surfaces
and their conditions, as well as vulnerable road users.

Chapter 2 considers the scattering of electromagnetic waves from road surfaces. Mea-
surements on multiple different road surface materials are performed and their electrical
properties are determined. These measurement results are subsequently used to simulate
scattering from road surfaces at mm-wave frequencies using numerical methods. Also, a
new method for computing the range-Doppler signature of road surfaces in dynamic sce-
narios is proposed.

In chapter 3, to accompany the numerical results from the previous chapter, a method is
developed to determine statistical polarimetric radar cross section models of road surfaces
at mm-wave frequencies. Measurements are performed and the radar cross section models
of several types of surfaces and road surface conditions are determined. These models are
subsequently used to simulate polarimetric backscattering from road surfaces as well as
to determine the optimal sensing wave polarisation to be used for single-polarised radar
systems.

Chapter 4 considers the classification of road surfaces and road surface conditions using
𝐻 , 𝛼, and 𝐴 features. For the first time, these features are adapted for road surface classi-
fication purposes in the automotive scenario and it is shown that these features can benefit
surface classification.
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xiv Summary

Chapter 5 shifts the attention from classification of road surface conditions to classifi-
cation of vulnerable road users. In order to do this, a novel automotive polarimetric MIMO
radar system with corresponding signal processing algorithms has been developed and is
presented in this chapter. This radar is subsequently used for measurements of moving
VRUs and several features are considered to classify them. It is demonstrated that polari-
metric information is indeed able to increase classification perfomance of VRUs compared
to single polarised radar.

This thesis demonstrates that polarimetric radar is useful in the automotive scenario be-
sides the fields in which it has already been established such as synthetic aperture radar and
meteorological radar applications. The methods proposed within this dissertation can be
used to enhance classification accuracy of road surface condition which may lead to im-
provements in road safety by for example enhancing the performance of anti-lock breaking
systems. Also, the methods proposed in this thesis to use polarimetric information for clas-
sifying vulnerable road users are shown to improve classification performance of this type
of objects which could help enable autonomous driving in the future.



Samenvatting

Door recente ontwikkelingen in de miniaturisering en het goedkoper worden van radarsyste-
men, worden voertuigen in toenemende mate uitgerust met automobiele radarsystemen om
advanced driver assistance systems (ADAS) mogelijk maken en daarmee het comfort en
veiligheid te vergroten. Voorbeelden van dergelijke systemen zijn automatische remsyste-
men en adaptive cruise control. Om de mogelijkheden van deze system verder uit te breiden
en een stap dichter bij autonoom rijden te komen, richt de volgende generatie radarsystemen
zich op het vergroten van de omgevingsbewustheid van de bestuurder en het voertuig zelf
door onder andere objecten in de omgeving van de auto te classificeren. De belangrijkste
objecten om hierbij correct te classificeren zijn wellicht kwetsbare weggebruikers.

De prestaties van automobiele radarsystemen zijn verder verbeterd door de grotendeels
voltooide transitie van automobiele radarsystemen van de in het verleden gebruikte 24 GHz
band naar de nieuwe 77 GHz band vanwege de grotere beschikbare bandbreedte en kortere
golflengtes. Kortere golflengtes leiden namelijk tot een hogere hoekresolutie met dezelfde
apertuurgrote en grotere bandbreedtes zorgen voor een betere afstandsresolutie. Desalniet-
temin, alle huidige commercieel beschikbare automobiele radarsystemen zijn enkelvoudig
gepolariseerd en kunnen daarom niet de informatie gebruiken die in de polarisatiestaat van
de teruggekaatste golf zit. Deze informatie kan de classificatie van objecten verbeteren.

Om beter inzicht te krijgen in de voordelen die deze factor oplevert, wordt in dit proef-
schrift de effectiviteit van polarisatieinformatie voor het classificeren van objecten in de
automobiele omgeving onderzocht. Hierbij worden met name twee type objecten onder-
zocht, namelijk wegoppervlaktes en hun condities, en ook kwetsbare weggebruikers.

Hoofdstuk 2 richt zich op de terugkaatsing van elektromagnetische golven van wegop-
pervlakten. Metingen van verscheidene wegoppervlaktes worden gedaan en de elektrische
eigenschappen van deze oppervlaktes worden bepaald. Deze meetresultaten worden vervol-
gens gebruikt om terugkaatsing van wegoppervlaktes op mm-golflengtes te simuleren met
numerieke methodes. Ook wordt een nieuwe methode voorgesteld om de afstand-Doppler
signatuur van wegoppervlaktes in dynamische scenario’s te berekenen.

In hoofdstuk 3 wordt een methode ontwikkeld om statistische polarimetrische radar-
doorsnedes van wegoppervlaktes te bepalen om de resultaten van het vorige hoofdstuk aan
te vullen. Metingen worden gedaan en de radardoorsnedes van verscheidene wegoppervlak-
tes worden vastgesteld. Deze modellen worden vervolgens gebruikt om polarimetrische te-
rugkaatsing van wegoppervlaktes te simuleren, alsmede om de optimale polarisatie van een
tastgolf voor een enkelvoudig gepolariseerd radarsysteem te bepalen.

Hoofdstuk 4 beschouwt classificatie van wegoppervlaktes en wegcondities door middel
van 𝐻 , 𝛼 en 𝐴 kenmerken. Voor het eerst worden deze kenmerken aangepast voor gebruik
in classificatie van wegoppervlaktes in automobiele toepassingen en wordt aangetoond dat
deze kenmerken de wegoppervlakteclassificatie ten goede komt.

Hoofdstuk 5 verschuift de aandacht van classificatie van wegoppervlaktes naar classifi-
catie van kwetsbare weggebruikers. Om dit te bewerkstelligen werd een nieuw automobiel
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xvi Samenvatting

polarimetrisch MIMO radarsysteem met bijbehorende signaalverwerkingsalgoritmes ont-
wikkeld dat gepresenteerd wordt in dit hoofdstuk. Deze radar wordt vervolgens gebruikt
voor metingen van bewegende kwetsbare weggebruikers en verschillende kenmerken wor-
den onderzocht om hen te classificeren. Er wordt gedemonstreerd dat polarimetrische in-
formatie inderdaad in staat is om de classificatieprestaties van kwetsbare weggebruikers te
verbeteren in vergelijking met enkelvoudig gepolariseerde radar.

Dit proefschrift demonstreert dat polarimetrische radar ook nuttig is in automobiele toe-
passingen naast gevestigde toepassingen zoals synthetic aperture radar en meteorologische
radartoepassingen. Demethodes die in dit proefschrift voorgesteld worden, kunnen gebruikt
worden om de classificatieprestaties van wegoppervlaktes te verbeteren wat tot verbeterin-
gen in veiligheid kan leiden door bijvoorbeeld de prestaties van antiblokkeersystemen te
verbeteren. Ook laat deze thesis zien dat de in dit proefschrift voorgestelde methodes om
gebruik te maken van polarisatieinformatie voor het classificeren van kwetsbare weggebrui-
kers de classificatieprestaties voor dit type object verbetert wat in de toekomst zou kunnen
helpen om autonoom rijden mogelijk te maken.



Preface

While I was writing this preface, sitting at my desk on the 20th floor, I was struck with a
sudden thought. While I was looking out of the window, enjoying the view from one of the
highest vantage points in Delft, I realised that this dissertation is not only the culmination
of the four years of research work corresponding to this PhD project, but that it also is the
end of the 11 years that I have spent studying in Delft.

Looking back on those 11 years, it has been an interesting path, certainly not one that
I had imagined when I first arrived in Delft in 2013. It has taken me to many interesting
places, where I met many new friends and where I did many great things. The path has had
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with a little tear and a big smile, as this sentence marks both the end of a beautiful chapter
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Wietse Bouwmeester
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2 1. Introduction

1.1. Automotive Radar

A rguably, the car is one of mankind’s most important inventions. It has revolutionised
the way we get around and the distances that we can easily and quickly cover. The car

has transformed how economies operate and has had huge impact on the way we construct
our cities and infrastructure.

However, with the advantages that the car brings, such as greatly reduced travel times,
there are also downsides. One of these important downsides is safety. Collisions involving
cars are one of the leading, if not number one, cause of injury related deaths. Even though
throughout the century new safety measures have been introduced such as air bags and seat
belts, which have reduced the amount of serious injury drastically, as of 2023 still 1.19
million people were killed in traffic accidents globally [1]. Especially, with the increasing
amount of sold vehicles due to the rise of China’s and India’s welfare levels, without addi-
tional safety measures one can only expect the amount of accidents to increase. Therefore,
increasing automotive safety is paramount.

With the technological progress that has taken place during the last century, new safety
features were made possible, such as anti-lock breaking systems (ABS) and electronic sta-
bility control (ESC). Currently, we find ourselves in a very interesting point in time where
more and more aspects of driving become automated and fully autonomous vehicles seem
to be on the horizon instead of merely being an idea taken straight out of science fiction.
To enable this increasing degree of automation found in advanced driver assistance systems
(ADAS), and perhaps to enable fully autonomous driving in the near future, advancing the
degree to which a vehicle is able to percept its environment is key. Luckily, due to tech-
nological improvements a new type of sensor has become available which is well suited to
tackle this problem. This sensor is radar. [2]

Due to innovations in electronics, radar sensors can nowadays be miniaturised and pro-
duced cheaply. This development has made radar much more widely applicable, in contrast
to the for example large, powerful, and expensive radar systems found in military appli-
cations. This has lead to the fact that many cars are already equipped with radar systems
nowadays, which enable ADAS features like automatic breaking and adaptive cruise con-
trol.

With the largely completed transition of automotive radar systems from the previously
used 24 GHz band to the new 77 GHz band, performance of radar sensors can be improved
further due to larger available bandwidths and reduced wavelengths. The increase in band-
width results in better range resolution while the reduction of the wavelength allows for
higher angular resolution for a given aperture size than at 24 GHz. These enhancements
make more ADAS functions possible as they enable a better perception of the environment.

1.2. Research Question and Approach

E ven though radar polarimetry has proven to be very effective in the previously men-
tioned applications, it has not found its way to commercial automotive applications yet.

Also, the literature on polarimetric automotive radar is far from extensive, especially at
77 GHz. Therefore, the goal of this thesis is to extend the state-of-the-art of this research
area to further determine how useful the extra information provided by polarimetric radar
in automotive scenarios is. This could assist designers of automotive radar systems to make
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a better trade-off between dedicating radar channels to implement polarimetry or dedicate
them to increase angular resolution in the traditional sense as is done currently.

However, as automotive polarimetric radar can be used for many different applications
and could provide benefits in many different automotive scenarios, about which many dis-
sertations could be written, this thesis specifically considers the use of polarimetry for the
purposes of identifying and classifying road surface conditions and vulnerable road users
(VRUs). Therefore, the central question in this thesis is:

“How effective is mm-wave polarimetric radar in automotive scenarios for
identifying road surface conditions and classifying vulnerable road users?”

To answer this question, a number of key questions need to be considered first. These
questions are:

1. How do road surfaces and VRUs scatter electromagnetic radiation?

2. How can polarimetry be used to identify and classify road surfaces and VRUs based
on their scattering behaviours?

3. How do the classification results from fully and partially polarimetric radar compare
to those of single-polarised radar for VRUs and road surface conditions?

The approach taken in this thesis is to consider these key question in this order since
the answer from the previous question is required to answer the next question. Each key
question itself comprises a number of questions. For example, to answer the first question,
“How can scattering from VRUs and road surface conditions be simulated?”, “How can
scattering from VRUs and road surface conditions be measured?”, and so on and so forth.

1.3. Main Results and Novel Contributions

T he main results achieved in this PhD thesis are listed here.

• For the first time, statistical full-wave numerical results of scattering from road sur-
faces in automotive scenarios in the W-band are presented.

• A novel road surface scatteringmodellingmethod formm-wave automotive radar sys-
tems based on a dense grid of uncorrelated scattering elements has been introduced.

• A new measurement procedure has been proposed for measuring normalised radar
cross sections of rough surfaces, showing that road surfaces have distinct polarimetric
normalised radar cross sections depending on their condition.

• A novel road surface condition classificationmethod based on an adapted polarimetric
𝐻𝛼𝐴-decomposition has been introduced that exploits the differences in the statistical
properties of polarimetric scattering of various road surface conditions.

• For the first time, it has been shown that the dynamic polarimetric signatures of cy-
clists and pedestrians are structured and differ significantly from each other.
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4 1. Introduction

1.4. Thesis Outline

T he remaining part of this thesis is organised as follows. First, the modelling, measuring,
and classifying electromagnetic scattering at mm-wave frequencies from road surface

conditions is considered. Afterwards, the thesis considers measurements of scattering from
vulnerable road users and classification of such targets.

Chapter 2 - Polarimetric Scattering from Road Surfaces
In this chapter, scattering of electromagnetic waves from road surfaces is considered. Mea-
surement procedures and results on the electrical properties of road surface materials is pre-
sented. Furthermore, a numerical method to simulate scattering from road surface materials
at mm-wave frequencies is described. Lastly, a numerical method is introduced for comput-
ing the dynamic radar signatures of road surfaces as observed by an automotive radar system.

Chapter 3 - Polarimetric NRCS Road Surface Models and its Applications in Automotive
Radar
In this chapter, a measurement procedure is presented to measure and formulate normalised
radar cross section models of road surfaces in automotive scenarios. This measurement pro-
cedure is subsequently performed on multiple types of road surfaces under various weather
conditions. Furthermore, two applications of the measured normalised radar cross section
models are presented. Firstly, a procedure to synthesise road surface clutter is described,
that can be used to efficiently simulate clutter caused by road surfaces in automotive radar
simulation software. Secondly, a method is introduced for determining the optimal sensing
wave polarisation to be used in single-polarised automotive radar systems, for either reject-
ing or enhancing (certain types of) road surface returns.

Chapter 4 - Classification of Road Surfaces using Polarimetric H/α/A Features in Automo-
tive Scenarios
This chapter introduces a newmethod to classify road surfaces based on backscattered radia-
tion received by a polarimetric radar system. The classification method is based on entropy
(H), alpha angle (α), and anisotropy (A) features that have also proven to be effective in
other radar applications, which have been adapted to the automotive scenario. The sig-
nal processing pipeline to compute these features in the automotive scenario is described
and subsequently applied to measurements of an asphalt road surface in various conditions.
Lastly, also the convergence of these features is discussed.

Chapter 5 - Vulnerable Road User Recognition using MIMO Polarimetric Radar
A new polarimetric MIMO automotive radar is presented in this chapter. This new radar
is used to measure polarimetric returns from three classes of vulnerable road users, namely
cyclists, pedestrians, and a motorcyclist. Subsequently, the measurement data is processed
and analysed to evaluate the effectiveness of polarimetric radar for classification of VRUs.
In this analysis, the mean polarimetric ratio for each radar frame corresponding to the mea-
sured target is considered for this purpose, as well as the distribution of the polarimetric
ratios of the invidual detections that comprise the total extended target that the vulnerable
road surface user presents.
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Chapter 6 - Conclusions and Recommendations for Future Research
This chapter presents the conclusions and major contributions to the state-of-the-art pro-
vided by this thesis. Also, recommendations for future research projects that continue on
the work presented in this thesis are listed.





2
Polarimetric Scattering from

Road Surfaces

The first step in successfully classifying road surfaces in various conditions
at mm-wave frequencies is to study how these targets scatter the electro-
magnetic fields emitted by the automotive radar. Namely, this information
is essential for designing and determining the effectiveness of classification
algorithms. This data can be obtained in two ways: numerical analysis and
experimental measurements. This chapter is concerned with numerical anal-
ysis, while the following chapters are concerned with gathering surface scat-
tering data through experimental measurements.

Parts of this chapter have been published as:

W. Bouwmeester, F. Fioranelli, and A. Yarovoy, “Dynamic Road Surface Signatures in Automotive Sce-
narios”, in 2021 18th European Radar Conference (EuRAD), London, United Kingdom, 2022.
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2.1. Introduction
Currently, radars are widely used in autonomous vehicles to realise functionalities like adap-
tive cruise control and all-weather assisted driving. Throughout the years, several frequency
bands have been made available for automotive radar purposes, starting with the 24 GHz
band and nowadays themain 77-81 GHz band. At these higher frequencies, more bandwidth
is available, which results in better range resolution [3]. Furthermore, the higher frequency,
and therefore smaller wavelength of the electromagnetic radiation, results in a size reduc-
tion for the antennas, but also changes the scattering behaviour of targets. For instance, a
road surface may act as a flat smooth surface at 24 GHz, while it could appear rough at 79
GHz. Thus, at 24 GHz the road surface would not be detectable by radar as the radiation is
scattered in the forward direction, while at 79 GHz some backscattering may occur.

This presents an unique opportunity to enhance the performance of road safety and driv-
ing comfort systems such as anti-lock breaking and traction control. Namely, if these sys-
tems could be provided with an estimation of the road surface conditions up ahead, they can
already be set to expect a specific surface friction coefficient and therefore findmore quickly
their optimal control inputs. In the case of anti-lock breaking, this could result in a quicker
stop. Furthermore, in the case of autonomous driving, potential hazards such as puddles of
water or patches of ice could even be avoided altogether by exploiting the backscattering
from road surfaces for automatic classification purposes.

In this chapter, a method is presented to compute the signature of road surfaces, which
can be exploited in future research to automatically identify dangerous surfaces (e.g. patches
of water and ice) ahead of the vehicle. This method considers road surface scattering from
the radar’s point of view and takes the dynamics of the automotive scenario into account.
This fills the gap in literature for road surface scattering in dynamic scenarios as previous
research has mainly focused on road surface scattering in the static case [4], [5]. Besides
this, other research in the area of road surface classification has been measurement-focused
([6], [7]), whereas the method developed here may be used for a more analytical approach
to road surface classification, and thereby gain more physical insight in this challenging
scattering problem. The presentedmethod is also able to take undulations in the road surface
in account.

This rest of this chapter is structured as follows: first, the electrical properties of the
various road surface materials are determined in section 2.2. To perform Monte-Carlo sim-
ulations on many digital asphalt surface samples, a method to synthesise random rough
surfaces with certain properties is, together with a numerical method to evaluate surface
scattering, discussed in section 2.3. Section 2.4.3 describes how to use RCS models of
road surfaces to numerically compute their dynamic range-Doppler signatures. Finally, the
chapter closes with conclusions.

2.2. Electrical Parameters of Asphalt
To accurately model road surface materials, its electrical properties need to be known. The
relevant electrical parameters of a material to evaluate its surface scattering properties are
its permittivity and its conductivity. While measurements of dielectric permittivity of road
surfaces have been undertaken before, literature on the subject of the exact permittivity and
conductivity of asphalt at high frequency is relatively limited. In Table 2.1, a few values
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Figure 2.1: Measurement setup for measuring the permittivity of a road surface sample.

Table 2.1: Comparison of measured values of the permittivity of asphalt by various authors.

Author Frequency 𝜖′ 𝜖″

Peake [8] Ka-band 2.5 0.6
Kulemin [9] 136 GHz 2.55 0.18
Sarabandi [4] 94 GHz 3.3 0.1
Schneider [10] 77 GHz 4.4 0.3

found from literature are shown.
As can be seen from this Table 2.1, results vary from publication to publication. An

explanation for the variability of the values of the permittivity and conductivity of asphalt
is that it may also depend heavily on the specific mix used. As rough surface scattering
may distort the permittivity measurement, measurement differences may also arise from the
way authors dealt with the compensating for this effect. As very few measurements of the
permittivity of asphalt and other road surfaces have been performed before at frequencies
in the 77 GHz band, new measurement results are presented in this chapter.

As permittivity determines the attenuation and speed of a wave travelling through a
material, this parameter can bemeasured bymeans of transmissionmeasurements. A picture
of the measurement setup used to conduct these transmission measurements is shown in Fig.
2.1. The measurement setup comprises of a N5242A Vector Network Analyser (VNA) with
two N5260-60003 frequency extenders, equipped with horn antennas, enable measurements
in the frequency band ranging from 75 to 85 GHz. As can be seen from Fig. 2.1, the sample-
under-test is placed on a styrofoam jig to ensure the beam is centred on the sample. Also,
the distance between the horn antennas and sample is selected in such a way there there is
minimal amount of antenna beam spillover while far-field conditions are maintained.

After a short-open-load-through calibration, the first step in the measurement procedure
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Figure 2.2: Asphalt samples of which the permittivity is measured. The samples are labelled 1 to 4.

was to collect reference measurements of free-space propagation by performing a measure-
ment without the to-be-measured sample present in the styrofoam jig. Styrofoam was used
as it has a permittivity that is close to that of air and thus should not influence the measure-
ments significantly. This reference measurement is used to determine the additional attenua-
tion and propagation delay introduced by the sample-under-test, from which its permittivity
and conductivity can be determined. Subsequently, measurements were performed on var-
ious road surface samples. These measurements included 4 types of asphalt and 3 types of
brick. Also, a sample made out PTFE was measured to validate the measurement procedure
as the permittivity of this material is well-known. A picture of the measured asphalt samples
is shown in Fig. 2.2.

The real part of the permittivity, which determines the propagation speed of a EM wave
travelling through a medium, can thus be determined by finding the extra propagation delay
caused by the sample-under-test with respect to the free-space reference measurement. As a
VNA performs measurements in the frequency domain, to find this extra time delay, first the
S-parameter measurements of the VNA are converted to time domain bymeans of an inverse
Fourier transform. The results of this procedure for the free-space reference measurement
is shown in Fig. 2.3.

Subsequently, the delay introduced by a sample-under-test can be found by convolving
its corresponding time domain measurement with the time domain transformed reference
measurement. The result of this procedure for the PTFE sample is shown in Fig. 2.4. From
the time delay, indicated by Δ𝑡, the real part of the relative permittivity, denoted by 𝜖′

𝑟, can
be found using (2.1) as the length of the sample 𝑙𝑠𝑎𝑚𝑝𝑙𝑒 is known. Furthermore, in (2.1), 𝑐
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Figure 2.3: Measurement results of the free-space reference measurement converted to time domain.

indicates the propagation speed of EM-waves in free space.

𝜖′
𝑟 = (𝑐Δ𝑡 + 𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑙𝑠𝑎𝑚𝑝𝑙𝑒
)

2
(2.1)

It should be noted that the time resolution is dependent on the bandwidth setting of
the VNA. For these measurements, the measurements were performed in the W-band, at
frequencies ranging from 75 to 110 GHz. This also implies that effective permittivity over
the entire W-band is measured instead of a frequency dependent measurement.

Using the described measurement procedure, the real part of the relative permittivity
of the PTFE sample was found to be 2.05. This corresponds well to results from literature
and therefore it can be concluded that this measurement method is valid. The measurement
procedure was subsequently repeated for the road surface samples. Themeasurement results
are shown in table 2.2.

In this table, ”Inverted” means that the sample has been rotated by 180∘ so that the wave
propagates from back to front instead of the other way around. The brick samples are either
measured horizontally or vertically. Horizontal indicates that the brick is placed on the jig
in such a way that it is laying on its largest side. Vertical means that the brick is laying on its
second largest side. Furthermore, Translated indicates that the sample has been moved on
the jig so that the antenna beam illuminates another part of the sample. Lastly, wet indicates
if the sample has been wetted to simulate the effects of rain.

A first observation that can be made from table 2.2 is that the measured bricks and
asphalt samples are quite isotropic as the translated and inverted measurements results are
very close to each other. There is however an observable difference between the bricks
when measured horizontally and vertically. This is likely due to the brick not covering the
antenna beam completely while performing the measurement.

A second observation that can be made is that there does not seem to be a significant
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Figure 2.4: Measurement of a PTFE cylinder after matched filtering.

Table 2.2: Measurment results of the real part of the relative permittivity of various road surface materials.

Sample Real part of Relative Permittivity
PTFE Reference 2.1
Asphalt 1 4.8
Asphalt 2 4.1
Asphalt 2 (Inverted) 4.2
Asphalt 3 4.3
Asphalt 3 (Wet) 4.1
Brick 1 (Horizontal) 3.0
Brick 1 (Horizontal, Translated) 3.0
Brick 1 (Vertical) 3.9
Brick 1 (Vertical, Translated) 3.9
Brick 5 (Horizontal) 3.4
Brick 5 (Vertical) 4.6
Brick 5 (Vertical, Wet) 4.4
Brick 6 (Horizontal) 3.6
Brick 6 (Vertical) 4.8
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Figure 2.5: Comparison of matched filtered output for the wet and dry measurement of the asphalt 3 sample.

difference between the wet and dry samples. This could be explained by the fact that most
asphalt road surfaces are designed to be porous so that water quickly drains from it to keep
roads from becoming slippery. This was also observedwhen pouring thewater on the sample
as it would almost instantly drain out. Fig. 2.5 shows a comparison of the matched filtered
output of the wet and dry samples. It can be seen that the wet sample causes a strong
multipath reflection which is likely caused by the high conductivity of the remaining thin
water layer that stuck to the sample when the majority of the water had drained out.

Now that the real part of the permittivity is known, the conductivity which is related to
the complex part of the permittivity, can be computed. To compute the conductivity of the
measured asphalt material, a newmethod of computing conductivity was devised. Since the
measured asphalt sample is a very lossymedium in themeasured frequency range, the power
lost due to the sample-under-test can be modelled by three electromagnetic interactions.

The first interaction occurs when the transmitted power reaches the air-to-asphalt inter-
face. Namely, due to the difference in permittivity between air an asphalt, part of the power
is reflected back to the transmitting antenna. The second interaction is the attenuation of the
wave that penetrated the air-asphalt interface. This attenuation results from the conductivity
of the medium.

Lastly, the wave propagating inside of the sample reaches the asphalt-to-air interface at
the back of the sample and again a portion of the power is reflected towards the transmitting
antenna. This reflected wave is attenuated again during propagation back to the first inter-
face. Due to the asphalt being very lossy, by the time this wave reaches the first interface, it
has become strongly attenuated that its contribution to the received power can be neglected.
In a material that is not very lossy, this approximation would not hold as this second internal
reflection is not negligible and will cause in turn a third reflection. This third reflection will
in turn cause a fourth reflection and so forth. This creates a standing wave inside the ma-
terial that must be taken into account when computing conductivity of materials with low
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losses.
Thus the losses 𝐿𝑡𝑜𝑡𝑎𝑙 caused by the asphalt can be modelled as shown in equation 2.2.

𝐿𝑡𝑜𝑡𝑎𝑙 = 1
1 − Γ𝑎𝑖𝑟→𝑎𝑠𝑝ℎ𝑎𝑙𝑡

𝐿𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛
1

1 − Γ𝑎𝑠𝑝ℎ𝑎𝑙𝑡→𝑎𝑖𝑟
(2.2)

In this equation, Γ𝑎→𝑏 represents the lost power due to reflection for a wave travelling from
medium 𝑎 to medium 𝑏. Furthermore, 𝐿𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 represents the losses caused by the
conductivity of the material.

The reflected power can be computed using equation 2.3.

Γ𝑎→𝑏 = ∣𝜂𝑏 − 𝜂𝑎
𝜂𝑏 + 𝜂𝑎

∣
2

(2.3)

In this equation 𝜂𝑎 represents the characteristic impedance of medium 𝑎 which can be com-
puted using equation 2.4.

𝜂𝑎 = 𝑗𝜇𝜔
𝛾 (2.4)

Here, 𝜇 is the permeability of the material and omega the angular frequency of the prop-
agating wave. The parameter 𝛾 is the propagation constant of the material which can be
calculated using equation 2.5.

𝛾 = 𝑗𝜔√𝜇𝜖√1 − 𝑗𝜎
𝜔𝜖 (2.5)

In this equation, 𝜖 is the real part of the permittivity of the medium and 𝜎 is the conductivity
of the medium.

The propagation losses can be computed as shown in (2.6).

𝐿𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 = 𝑒2𝑅𝑒𝑎𝑙(𝛾)𝑑 (2.6)

In this equation, 𝑑 is the thickness of the sample.
Putting these equations together and solving the equation numerically for a measured

𝐿𝑡𝑜𝑡𝑎𝑙 = 46.8 dB, results in a conductivity of 0.767 S/m for the measured asphalt sample.
This value was subsequently validated by performing a simulation of the measurement

set-up. This resulted in a simulated measured loss of 45.5 dB, which is similar to the actual
measured value of 46.8 dB. Therefore, it can be concluded that a value of 0.767 S/m is an
accurate estimate of the conductivity of the asphalt sample and that the three-interaction
model is a valid approximation.

2.3. Numerical Simulations on Road Surface Scat-
tering

2.3.1. Generation of Surface Realisations
The first step in setting up the numerical simulation is to define the road surface model.
To simulate real asphalt surfaces as closely as possible, first the statistical properties of the
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Figure 2.6: Digitised asphalt road surface sample.

surface geometry of a real asphalt road surface sample need to be determined. This was
done by digitising the surface profile of an asphalt sample from a CT-scan, provided of
the Pavement Lab of the CITG faculty of TU Delft. From this digitised surface shown in
Fig. 2.6, it is determined that the RMS height of this scanned sample is 2.1 mm and that
its correlation length is 2.2 mm. It should be noted that at a frequency of 79 GHz, these
statistical properties are more than half a wavelength and thus surface roughness should be
taken in account.

Since the asphalt surface geometry differs from patch to patch, the RCS may differ from
patch to patch as well. Therefore, the statistical properties of the NRCS of the road surface
should be determined. In order to do this, a Monte-Carlo approach is taken. In this method,
the RCS of many surface samples is determined to find the statistical properties. However,
the digitisation of asphalt surface profiles using CT-scans is a complex and expensive pro-
cess, infeasible for all possible surfaces, and thus an alternative way to obtain realisations of
asphalt road surface samples needs to be considered. Therefore, a method is developed that
allows for generating synthetic asphalt surface samples based on the statistical properties
found from the digitised surface that was obtained by CT-scan.

Thismethodworks by generating a randomuniformly distributed surfacewhich towhich
which is subsequently filtered in the spatial spectral domain. This shape of the this filter can
be computed by using the Wiener-Khinchin theorem. This theorem states that the Fourier
transform of a signal’s auto-correlation function equals the power spectral density of said
signal. This theorem can also be used for surfaces, where a surface can be considered as a
space-varying signal instead of a time-varying signal. From this, it can therefore be seen
that the Fourier transform of a surface correlation function equals the spatial power spectral
density of the surface, which can be used to base the spectral filter on. Using this method,
not only surfaces with Gaussian correlation functions, but also surfaces with exponential
or other correlation functions can be generated. Finally, probability transforms are applied
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to achieve the correct cumulative distribution function of the surface heights. A stepwise
description of this procedure is shown below. The impact of these transforms on the corre-
lation function of the surface is minimal and thus surfaces with arbitrary height distributions
and correlation functions can be generated.

1. Generate normally distributed random surface with a variance selected such that its
spectrum has a magnitude of 0 dB on average.

2. Compute the spectral filter from the target surface correlation function using a Fourier
transform.

3. Apply filter to the spectrum of the generated normally distributed random surface.

4. Transform the filtered surface back to spatial domain by means of an inverse Fourier
Transform.

5. Use an inverse integral probability transform followed by a regular probability trans-
form to obtain the desired surface height distribution.

To demonstrate effectiveness, Fig. 2.7 shows a comparison of the requested correlation
function and the actual achieved correlation function of a generated surface. As can be seen,
the target correlation function and actual correlation function of the generated surface are
almost exactly the same. Furthermore, also new surface realisations of arbitrary size with the
same statistical properties as the scanned asphalt sample can be generated. Such a generated
asphalt sample is shown in 2.8. It can be seen from this figure that the synthesized surface
looks similar to the scanned surface model shown in 2.6. Fig. 2.9 shows a comparison of
the probability density functions and cumulative distribution functions of the synthesized
and scanned surface model. As can be seen, excellent agreement between the PDF/CDF of
the input and synthesized models is obtained, thus further demonstrating the effectiveness
of the developed surface synthesis method.

2.3.2. Numerical Simulation Procedure
To perform numerical simulations of surface scattering from asphalt road surfaces, the com-
mercially available FEKO software package was used. This software package contains a
full-wave solver based on the Method of Moments (MoM) and Multi-Level Fast Multi-pole
Method (MLFMM) which is suitable to simulate scattering from large model meshes.

To set up the numerical simulations in FEKO, first the synthesised surface model is
imported. As the MoM/MLFMM solver requires closed surface models, the synthesised
surfaces are converted to closed volumes by adding walls and a bottom surface to them. The
thickness of the bricks were selected such that standing wave interactions at the top surface
are negligible as reflections from the bottom air-asphalt interface are attenuated sufficiently
due to the losses caused by the conductivity of the asphalt material. To evaluate the fully
polarimetric NRCS, the source was rotated by 90° to create orthogonally polarised sensing
waves.

Subsequently, the source of the incident radiation is defined. A source comprising an
array of linear dipoles was selected to provide a strongly polarised incident waves. Fur-
thermore, the dipole elements were given binomial weights to eliminate side lobes so that
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Figure 2.7: Comparison of the 𝑥 and 𝑦 cuts of the correlation function of a generated random surface to the 𝑥 and
𝑦 cuts of a target correlation function, which was specified as a gaussian correlation function.

Figure 2.8: Synthetically generated model of an asphalt road surface.
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Figure 2.9: Comparison of the statistical distribution functions of the input and generated model.

the computed bi-static radar cross sections are not contaminated by forward scattering from
these side lobes. The size of the array, in combination with the size of the road surface
model chosen in such a way to reduce incident power on the surface model edges to sup-
press effects of edge diffraction on the NRCS results to simulate infinitely large media while
keeping the computational requirements within realistic limits. The distance of the source to
the model was selected such that far-field conditions were achieved while keeping the beam
footprint small, again to reduce edge diffraction effects while keeping the computational
requirements in check.

As scattering from a particular road surface model is influenced by its shape, multiple
realisations for each parameter set were simulated to obtain statistical data on the NRCS for
the considered parameter set. Fig. 2.10 shows a comparison of the mean far-field computed
from simulations of 1, 10, 20, and 30 surface realisations. It can be seen that the results
converge relatively quickly and that considering at least 10 realisations provide sufficiently
converged results. Therefore, this amount of simulations provides a good trade-off between
simulation results and quality of results.

2.3.3. Simulation Results
With the developed simulation procedure, the NRCS of surfaces with different surface char-
acteristics can be studied. One of these parameters is the RMS height. This parameter de-
termines the amplitude of the roughness variations around the mean surface. The results of
variation in the RCS due to the RMS height of the surface are shown in Figs. 2.11 and 2.12.
In Fig. 2.11, the RCS for horizontally polarised sensing waves is shown while Fig. 2.12
shows the results for vertically polarised sensing waves.

It can be seen that as the RMS height decreases, and thus the surface becomes flatter, the
forward scattering increases while the backscattering decreases. Furthermore, the vertically
polarised sensing wave shows a sharp decrease in forward scattered waves at an angle close
to 60°, especially for the flatter surface. This dip is located at the Brewster’s angle, at which



2.3. Numerical Simulations on Road Surface Scattering

2

19

0
30

60

90

120

150
180

210

240

270

300

330

-80

-60

-40

-20

0

20

1 Realisation
10 Realisations
20 Realisations
30 Realisations

Figure 2.10: Comparison of averaged scattering results in dB using 1, 10, 20, and 30 surface realisations.

all incident power is transmitted into the dielectric medium and none is reflected. This
transmitted radiation is subsequently absorbed by the asphalt, as it is a lossy dielectric.

2.3.4. Verification and Limitations
To verify the correctness of the simulation results, they were compared to results obtained by
the small perturbation method (SPM) [11] for the same surface parameters. A comparison
of RCS results from simulations and SPM for a surface with a RMS height of 0.2 mm and
a correlation length of 0.4 mm is shown in Fig. 2.13. This figure shows that the simulation
results are in good agreement with the results obtained by SPM. Similar comparisons were
made for surfaces with that same correlation length, but RMS heights of 0.25 mm and 0.02
mm. These were also found to be in good agreement with each other.

Subsequently, to find the limits of the numerical approach, comparisons were made with
SPM for surfaces with very large correlation lengths and thus with a small RMS slope of
roughness. In these cases it was found that results of SPM and numerical results started to
diverge as shown in Fig. 2.14. This is due to the fact that for this correlation length, the
RCS becomes very small according to SPM. This leads to the numerical results becoming
dominated by diffraction effects from the model edges, thus leading to inaccurate results.

From this investigation on model verification and its limitations, it could be seen that
in the region of surface parameters where the backscattering is significant, the proposed
numerical method provides accurate results that show good correspondence with results
obtained by SPM. This also leads to a high degree of confidence in scattering results of rough
surface with high RMS slope, such as real world asphalt, for which SPM does not provide
valid results any more. Even though the proposed method shows good results for rough
surfaces, it does diverge from SPM results for very smooth surfaces and should therefore
be used with care when evaluating surfaces with low RMS slope.
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Figure 2.11: Comparison of scattering results as function RMS height of the surface for a horizontally polarised
sensing wave, incident at 60°.
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Figure 2.13: Comparison of normalised radar cross sections obtained with the proposed numerical method and the
SPM for a surface with a RMS height of 0.2 mm and a correlation length of 0.4 mm as function of the angle of
incidence 𝜃.
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Figure 2.14: Comparison of of normalised radar cross sections obtained with the proposed numerical method and
the SPM for a surface with a RMS height of 0.2 mm and a correlation length of 2 mm as function of the angle of
incidence 𝜃.
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2.4. Road Surface Signatures in Automotive Scenar-
ios

By using NRCSmodels of road surface scattering, the range-Doppler signatures as observed
by automotive radar can be considered. In this section, a method to achieve this is presented.

2.4.1. Influence of Geometrical Effects on Road Surface Signa-
tures

In the automotive radar scenario, there are two important factors that influence scattering
from road surfaces that need to be considered. Firstly, the angle of incidence varies from
range cell to range cell as well as with azimuth. Secondly, when the car ismoving, aDoppler-
shift will be induced depending on the radial velocity corresponding to the range-azimuth
cell the radar is observing.

The first mentioned effect influences the amount of scattering that will happen within a
range cell. To illustrate this, when the angle of incidence is close to the horizon, generally
less radiation is scattered back from a rough surface than when the wave is incident from an
angle close to the normal. The second mentioned effect will cause the signature of the road
surface to spread along the Doppler axis of the range-Doppler map, i.e. a cell that is right
in front of the car will have a higher radial velocity and thus a larger Doppler-shift than a
cell orthogonal to the direction of travel.

In FMCW radar systems usingmultiple pulses per frame, the amount of rangemigration,
variation in incident angle and Doppler-shift of a surface patch over the coherent processing
interval must be considered. If this variation is significant, the observed scattering may be
affected and more sophisticated electromagnetic techniques need to be developed to account
for such variations. Equally, the variation of incident angle and Doppler-shift within one
range cell must be considered. Lastly, the signature of the road surface is also influenced
by the radiation pattern of the radar system. If the gain changes significantly from pulse to
pulse within a range bin, this effect needs to be taken into account as well.

Here a method is presented to evaluate the severity of the mentioned effects for a spec-
ified road surface. First the definitions of geometrical parameters will be presented. Af-
terwards, the derivation of incident angle, radial velocity and local radar observation angle
will be shown. The last mentioned quantity is required to calculate the radar antenna gain
for that surface point.

Geometrical Parameter Definitions
The radar location is indicated by the vector ⃗𝑝𝑟 = {0, 0, ℎ𝑟}. Here, ℎ𝑟 indicates the height
of the radar above ground level. The position of a point on the surface is indicated by
the vector ⃗𝑝𝑠 = {𝑥𝑠, 𝑦𝑠, 𝑧𝑠}. Each surface point is also characterised by a normal vector,
which is defined as ̂𝑛𝑠 = {𝑥�̂�, 𝑦�̂�, 𝑧�̂�}. The set of angles of incidence at a surface point
are designated as 𝜃𝑠 and 𝜙𝑠. Here, 𝜃𝑠 is the angle between the surface normal, representing
the surface local 𝑧-axis, and the vector ⃗𝑟𝑠𝑟, which is the vector pointing from the surface
point to the radar. The surface local 𝑥-axis is defined in such a way that it lies on the global
𝑥𝑧-plane. This surface local 𝑥-axis is used to compute the azimuth angle of the incident
wave 𝜙𝑠.

The radar local observation angles are defined by 𝜃𝑟 and 𝜙𝑟. Here, the elevation 𝜃𝑟
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Figure 2.15: Geometrical parameters used for computing surface scattering.

is measured from the radar broadside direction, indicated by the 𝑧-axis in the radar local
system. Likewise, 𝜙𝑟 is the azimuth measured from the 𝑥-axis in the radar local system.
The angle between the radar local 𝑧-axis and the global 𝑥, 𝑦-plane is designated by the
angle 𝛼.

Lastly, the velocity of the car is indicated by the vector ̂𝑣𝑐 = {0, 𝑣𝑐, 0}. Note from
this vector that the car is travelling along the ̂𝑦 direction. A summary of these geometrical
parameters is shown in Fig. 2.15.

Derivation of Parameter Expressions
The angle 𝜃𝑠 can be found in a two-step process. The first step is to find the vector from
the surface point to the radar location which can be calculated using ⃗𝑟𝑠𝑟 = ⃗𝑝𝑟 − ⃗𝑝𝑠. Sub-
sequently, using the relation between the dot product of two vectors and the angle between
them, the surface local 𝜃𝑠 can be found using (2.7).

𝜃𝑠 = cos−1 ( ⃗𝑟𝑠𝑟 ⋅ �̂�𝑠
| ⃗𝑟𝑠𝑟| ) (2.7)

To find the surface local azimuth 𝜙𝑠, first the surface local 𝑥-axis needs to be defined. As
mentioned in section 2.4.1, this axis should lie within the global 𝑥𝑧-plane. This combined
with the fact that the surface local angle should be orthogonal to the surface normal vector,
results in (2.8).

̂𝑥𝑠 = ̂𝑦 × ̂𝑛𝑠
| ̂𝑦 × ̂𝑛𝑠| (2.8)

The last remaining surface local axis, ̂𝑦𝑠 can simply be found by computing ̂𝑛𝑠 × ̂𝑥𝑠.
The surface local azimuth can subsequently be found by transforming ⃗𝑟𝑠𝑟 to the surface

local system and then taking the arctangent of the 𝑥- and 𝑦-components, resulting in (2.9).

𝜙𝑠 = tan−1 ( ̂𝑦𝑠 ⋅ ⃗𝑟𝑠𝑟
̂𝑥𝑠 ⋅ ⃗𝑟𝑠𝑟

) (2.9)
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The radial velocity ⃗𝑣𝑟 can be found by computing the projection of the velocity of the
car in the direction of ⃗𝑟𝑠𝑟 as shown in (2.10).

𝑣𝑟 = ⃗𝑟𝑠𝑟 ⋅ ⃗𝑣𝑐
| ⃗𝑟𝑠𝑟| (2.10)

As ⃗𝑟𝑠𝑟 is the vector from the surface point to the radar, the radial velocity for objects moving
towards the radar is negative, while the radial velocity for objects moving away is positive.

The radar local observation angles 𝜃𝑟 and 𝜙𝑟 can be found by first transforming ⃗𝑟𝑠𝑟
to the radar local coordinate system and subsequently using a transformation to spherical
coordinates. This transformation can be performed using (2.11).

⃗𝑟𝑠𝑟,𝑟 = ⎡⎢
⎣

1 0 0
0 cos (𝜋 − 𝛼) − sin (𝜋 − 𝛼)
0 sin (𝜋 − 𝛼) cos (𝜋 − 𝛼)

⎤⎥
⎦

( ⃗𝑝𝑠 − ⃗𝑝𝑟) (2.11)

Transformation to spherical coordinates subsequently results in 𝜃𝑟 = cos−1 ( ⃗𝑟𝑠𝑟,𝑟
| ⃗𝑟𝑠𝑟,𝑟| )

and 𝜙𝑟 = tan−1 ( ⃗𝑟𝑠𝑟,𝑟⋅ ̂𝑦
⃗𝑟𝑠𝑟,𝑟⋅�̂� ).

2.4.2. Application to Rough Surface without Undulations
Using the equations derived in section 2.4.1, the signature for a rough surface without un-
dulations, i.e. a flat, straight surface, is computed. In this specific case, the surface 𝑧-
coordinate for all surface points is 0 and the normal vector of this surface is equal to ̂𝑧
everywhere. This also implies that the surface local system has the same orientation as
the global system. Furthermore, it is assumed that the scattering from the road surface is
isotropic, meaning that the radar cross-section (RCS) of a surface point is no longer a func-
tion of 𝜙𝑠.

First, the 𝜃𝑓𝑙𝑎𝑡
𝑠 angle for the rough surface without undulations is derived. This is deter-

mined to be

𝜃𝑓𝑙𝑎𝑡
𝑠 (𝑥, 𝑦) = cos−1 ( ℎ𝑟

√𝑥2 + 𝑦2 + ℎ2𝑟
) . (2.12)

The radial velocity 𝑣𝑓𝑙𝑎𝑡
𝑟 for this surface is found to be

𝑣𝑓𝑙𝑎𝑡
𝑟 = 𝑣𝑐𝑦

√𝑥2 + 𝑦2 + ℎ2𝑟
. (2.13)

The expressions for the local radar observation angles are a bit more intricate. The 𝜃𝑓𝑙𝑎𝑡
𝑟

angle can be computed using

𝜃𝑓𝑙𝑎𝑡
𝑟 = cos−1 (𝑦 sin (𝜋 − 𝛼) − ℎ𝑟 cos (𝜋 − 𝛼)

√𝑥2 + 𝑦2 + ℎ2𝑟
) . (2.14)

Similarly, 𝜙𝑓𝑙𝑎𝑡
𝑟 can be calculated using

𝜙𝑓𝑙𝑎𝑡
𝑟 = tan−1 (𝑦 cos (𝜋 − 𝛼) + ℎ𝑟 sin (𝜋 − 𝛼)

𝑥 ) . (2.15)
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Figure 2.16: Angle of incidence 𝜃𝑓𝑙𝑎𝑡
𝑠 in degrees for a surface without undulations for a radar mounting height ℎ𝑟

of 50 cm.

Using the expressions derived above, the variation in radial velocity and incident angles
over a rough surface without undulations can be studied. Fig. 2.16 shows 𝜃𝑓𝑙𝑎𝑡

𝑠 as function
of 𝑥 and 𝑦 for such surface. From this picture, it can be seen that 𝜃𝑓𝑙𝑎𝑡

𝑠 varies strongly close
to the car due to the mounting height of the radar, but this variation reduces quickly. When
this angle is compared at 5 m and 6 m respectively, the difference between these ranges
has dropped to below 1 degree. Depending on the scattering characteristics of the observed
rough surface, the RCS of one range bin can be simulated by plane wave incidence.

Besides this, Fig. 2.16 can also be used to evaluate the change in incident angle over the
coherent processing interval of the radar system. Assuming a coherent processing interval
of 1 ms, an observed surface point will experience a range migration of 42 mmwhen the car
is moving with a velocity of 150 km/h. This shows that the change in angle of incidence,
and by extension the scattering characteristics, will not vary significantly over the coherent
processing interval.

Fig. 2.17 shows the radial velocity of each point on the surface without undulations.
Here it can be seen that the radial velocity over the surface does not vary significantly di-
rectly in front of the vehicle, but shows stronger variation directly to the left and the right
of the car. This causes the road surface to have different radial velocities smearing its sig-
nature in a range bin over the Doppler domain. The severity of this effect depends on the
cross-range resolution of the radar system and on the velocity of the car.

2.4.3. Range-Doppler Signature of a Flat Asphalt Surface
Using the results obtained from sections 2.4.1 and 2.4.2 plus information on the radiation
pattern of the radar and the RCS 𝜎𝑠 of a surface patch, the range-Doppler signature can be
derived. Regarding the radiation pattern of the radar, in this example a simple cos (𝜃𝑓𝑙𝑎𝑡

𝑟 )
pattern is assumed.
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Figure 2.17: Radial velocity 𝑣𝑓𝑙𝑎𝑡
𝑟 for a surface without undulations with a radar mounting height ℎ𝑟 of 50 cm and

a platform velocity 𝑣𝑐 of 100 km/h.

Numerical simulations to determine the statistics on the RCS of asphalt road surfaces
is currently ongoing and expected to provide results in coming weeks. In order to already
obtain a range-Doppler signature, the RCS of an asphalt surface patch in this example is
assumed to be independent of angle of incidence and frequency. Hence, the RCS of each
surface patch in this scenario is the same. To generate the range-Doppler map, the received
power for each surface patch is calculated and then summed to the corresponding range-
Doppler bin. This received power is calculated using the radar equation. This results in the
range-Doppler map shown in Fig. 2.18 (left). This figure clearly shows the spreading of the
road surface signature over the Doppler domain. Furthermore, it can be seen that the radar
radiation pattern reduces the power received from cells that present low Doppler-shifts as
these cells are orthogonal to the direction of travel of the car. Lastly, it can be seen that
most of the backscattered signal is concentrated in close range bins due to the fourth power
range dependence, and that more power is received from patches with high Doppler-shift
compared to those with low Doppler-shift.

Besides this, Fig. 2.18 (right) shows also a range-Doppler map of an automotive radar
measurement performed whilst driving at about 15 km/h on a public road. Here, the road
surface signature can clearly be recognised, matching in shape with the proposed model.
The measured range-Doppler map also contains another extended target at further range
which corresponds to a building on the side of the road. In this measurement, the radar was
mounted on the front bumper of a car at a height of approximately 40 cm and with an angle
𝛼 of 90 degrees. The radiation pattern of the radar in this measurement can be approximated
by a cos 𝜃 shape.
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Figure 2.18: Comparison of predicted (left) and measured (right) normalised range-Doppler signatures in decibels
of an asphalt road surface when the car is moving at a speed 𝑣𝑐 of 15 km/h.

2.5. Conclusions
In this chapter, numerical investigations of road surface radar cross sections and road sur-
face signatures were presented. To perform numerical simulations on radar cross sections
of road surfaces, first the material parameters, i.e., permittivity and conductivity, of as-
phalt and other road surfaces were determined. This was done by means of transmission
measurements through road surface samples using a measurement setup based on a vector
network analyser. Subsequently, a method to determine the real part of the permittivity of
the sample-under-test based on the extra propagation delay induced by the sample was pre-
sented. It was found that this method provides accurate estimates of the permittivity as good
agreement was achieved between the measured permittivity of an PTFE reference sample
and corresponding permittivity values from literature. Thereafter, a procedure to determine
the conductivity of for lossy materials based on the attenuation of the sensing wave was
described. This method uses a three-interaction scattering model which relates the conduc-
tivity of the material-under-test to the attenuation induced by the measured material sample.
By solving this three-interaction model numerically, the conductivity corresponding to the
surface-under-test could be determined successfully. The results were subsequently vali-
dated using full-wave simulations, showing good agreement between measured and simu-
lated values. In the end, it was found that the real part of the relative permittivity of the
considered asphalt samples is about 4 while the conductivity is measured to be 0.767 S/m.

Subsequently, a numerical method based on MoM/MLFMM to evaluate the radar cross
sections of road surface samples was presented. The first step in the simulation procedure is
synthesising accurate models of road surfaces. This is achieved using a surface generation
procedure based on spatial spectral filtering and probability transforms. It was shown that
this surface synthesis procedure is able to synthesise realisations of surfaces with arbitrary
size, surface height cumulative distribution functions, and surface correlation functions.

Subsequently, scattering from the generated surface realisations using theMoM/MLFMM
solver in the commercially available FEKO software package were performed. Using the
developed simulation procedure, radar cross sections as function of surface RMS height
and incident angle of the incoming radiation have been evaluated. The obtained results
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were verified by comparing these with results found using the small perturbation method.
It was found that for surfaces where edge diffraction effects were negligible compared to
surface backscattering, good correspondence between SPM and full-wave numerical results
was obtained. This is true for surfaces with relatively high RMS slopes, such as real world
asphalt road surfaces, thus providing confidence in obtained scattering results for this type
of surface for which the surface parameters are outside the region of validity of the SPM.

Furthermore, this chapter has presented a method to compute the dynamic signature of
road surfaces in automotive scenarios. This has been applied to a flat asphalt rough surface
taken from a realistic road sample. For the first time in literature, road surface scattering has
been analysed as a dynamic process and presented in the form of a range-Doppler plot. This
result has been compared to an automotive radar measurement performed whilst driving on
a public road and good agreement between model and measurement has been demonstrated.

Besides this, it has been concluded that over a coherent processing interval the Doppler-
shift does not change significantly for an observed range cell. Similarly, the change in
incident angle over a range cell has been shown to be small. However, depending on the
scattering characteristics of the surface, this may be significant and needs to be taken into
account for computation of backscattering from the road.



3
Polarimetric NRCS Road
Surface Models and its

Applications in Automotive
Radar

Another way to obtain data on scattering from rough surfaces in automotive
scenarios is by performing experimental measurements, which are comple-
mentary to data obtained by simulations as described in chapter 2. This
chapter presents methods on how to perform these measurements and how
to use the experimental measurements results to extract scattering models of
rough surface materials. Besides this, also some applications of the found
scattering models are presented.

Parts of this chapter have been published as:

W. Bouwmeester, F. Fioranelli, and A. Yarovoy, “Statistical Modeling of Polarimetric RCS of Road Sur-
faces for Scattering Simulation and Optimal Antenna Polarization Determination”, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2024.

W. Bouwmeester, F. Fioranelli, and A. Yarovoy, “Statistical Polarimetric RCS Model of an Asphalt Road
Surface for mm-Wave Automotive Radar”, in 2023 20th European Radar Conference (EuRAD), Berlin, Germany,
2023.
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3. Polarimetric NRCS Road Surface Models and its Applications in

Automotive Radar

3.1. Introduction
The amount of vehicles that are equipped with advanced automotive radar systems operating
in the 77 GHz band to enhance road safety is rising quickly [12], [13]. These radar systems
are mainly used to detect, track, and often to also classify, other road users and obstacles
that may be present around the car. Being more compact than their 24 GHz predecessors,
modern mm-wave radar systems that operate at 77 GHz receive more intense backscattering
from the road surface in front of the vehicle compared to 24 GHz radar systems due to the
increased reflectivity of these surfaces at 77 GHz.

Due to the increased backscattering, scattering from road surfaces influences radar mea-
surements more significantly and therefore it is important to formulate accurate radar cross
section (RCS) models to properly evaluate the impact of road surface scattering in various
automotive radar applications. One of the topics for which polarimetric models of road sur-
faces are of interest, is the recent research in the field of polarimetric automotive radar, a few
examples of which can be found in [14–17]. In [16] and [17], specifically the benefits of po-
larimetric radar for road surface classification are studied. In [16], this is done by computing
two features, namely target entropy and polarimetric pedestal. As these are statistical quan-
tities, accurate statistical polarimetric models of the RCS of road surfaces could be used to
validate this method further. In [17], road surface classification on measurement data from
polarimetric radar is performed using a convolutional neural network. For this application,
a statistical polarimetric model could be used to synthesise lots of surface scattering data on
which these networks could be trained.

Statistical RCS models of surface clutter could also be used to increase the accuracy
of automotive radar simulation at mm-wave frequencies. For example, in [18] and [19],
methods of simulating automotive radar based on ray-tracing are proposed but road surface
clutter is not considered. In [18], clutter caused by a grass surface is taken into account by
placing low polygon count grass chunks randomly on a lawn and applying ray-tracing to
simulate the response. Synthesis of surface clutter based on statistical RCS models could
potentially provide surface clutter returns to simulation results without the need to define
complex geometries for surfaces and without the need for ray-tracing, potentially decreasing
the required computational resources. An approach similar to this is shown to be effective
in [20], where scattering matrices from snow slabs are generated based on statistical data
previously obtained by method of moments and finite element method based electromag-
netic solvers. Polarimetric statistical RCS models of surfaces could also be of use outside
the field of automotive radar and could, for example, be applied to simulate backscattering
in synthetic aperture radar. As an example, in [21] the reflectivity is calculated using the
small perturbation method and geometrical optics, but realisations of reflectivity could also
be generated using statistical RCS models. Also, in ground penetrating radar, normalised
RCSmodels of surface scattering are needed to provide estimations of surface clutter, as de-
scribed in [22]. Another general class of applications where normalised RCS models are of
use, is the determination of optimal polarisation of the electromagnetic sensing wave used
in radar systems, a few examples of this can be found in [23] and [24].

Even though the applications for normalised RCS models of road surfaces are many,
only scarce experimental results on road surface scattering at mm-wave frequencies are pre-
sented [4, 7, 25], and research on statistical models of road surface scattering at mm-wave
frequencies is relatively limited. In [7], vertically polarised measurements were performed
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on road surfaces under various conditions. It was found that for vertically polarised waves,
wet road surface decreases road surface backscattering while slushy conditions increase it,
and that snow results in a bimodal distribution for backscattering. In [4], a polarimetric
road surface scattering model is developed based on vector radiative transfer theory while
statistical properties of road surface scattering, such as correlation of scattering parameters,
are not discussed. Similarly, in [26], a theoretical model for road surface scattering in icy
conditions is presented but statistical properties of such scattering are not considered. More
measurements of radar backscattering at mm-wave frequencies from road surfaces are pre-
sented in [25], where it is also found that surface scattering strongly depends on the type of
surface, while statistical data on road surface scattering are unavailable. Furthermore, some
data on road surface measurements are presented in [27] and [28], which also show depen-
dence on road surface conditions at frequencies above and below 77 GHz respectively, but
no statistical analysis is presented.

To address this gap, a novel method to determine the statistical properties of surface scat-
tering from radar measurement data based on the preliminary results in [29] is proposed in
this chapter. The method determines a statistical model of the normalised RCS of a surface-
under-test, which is corrected for the influences of the radiation pattern of the measurement
antenna and the non-uniform propagation distance from the measurement antenna to differ-
ent points on the surface. This method is then applied to measurements of real road surfaces
under various conditions, and the results of this procedure are presented.

Subsequently, two novel applications of the derived statistical models of normalised
RCS of surfaces are introduced in this work. Firstly, a new method is developed to syn-
thesise/simulate road surface scattering based on the extracted models. The results from
this simulation can then be used to generate range profiles, range-angle profiles, and range-
Doppler spectra for subsequent processing. Excellent agreement between measured range
profiles and simulated range profiles is demonstrated. Secondly, a novel method for deter-
mining the optimal sensing wave polarisation for single-polarised radar systems is proposed,
in order to maximise or minimise backscattering from the road surface. This new method
is based on a factorisation of the polarisation vector and combined with a Monte-Carlo ap-
proach to use the statistical models found for the measured road surfaces. Alternatively, this
approach can also be used to, amongst others, design polarimetric filters to enhance contrast
between various surface types.

The rest of the chapter is structured as follows: Section 3.2 presents the RCS model
and the procedure to determine the statistical properties of the normalised RCS of a surface-
under-test based on measurement data. Section 3.3 describes how to utilise the statistical
RCS models to simulate surface scattering and section 3.4 details a way to find the opti-
mal polarisation for minimising and maximising returns from surface scattering for single-
polarised radar. Section 3.5 explains the used measurement setup and procedure to measure
road surface conditions while in section 3.6, the methods described in the previous sections
are applied to the measurement data from real road surfaces. Finally, this chapter concludes
with section 3.7.

3.2. Normalised Radar Cross Section Modelling
The first step in modelling the normalised scattering parameters of a surface-under-test
(SUT) is to develop a model to compute the range profile as measured by radar systems.
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To this end, a surface is modelled as a grid of uncorrelated discrete scatterers. The dis-
tance, observation angles, and incidence angles relative to each scattering elements can be
computed using the equations outlined in [30]. Using the radar equation in (3.1), the ratio of
returned power (𝑃 𝑟𝑥

𝑥 ) and transmitted power (𝑃 𝑡𝑥
𝑦 ) can be found for an individual scattering

element. In (3.1), 𝐺𝑟𝑥
𝑥 and 𝐺𝑡𝑥

𝑦 are the antenna gains of the transmitting and receiving an-
tennas, respectively, 𝜆 is the wavelength, 𝐴 is the surface area of the scattering element and
𝜎0

𝑥𝑦 is its normalised RCS. Lastly, 𝑟 represents the distance from the antenna to the surface
scattering element. The 𝑥 and 𝑦 subscripts indicate the polarisation basis. For example, in
this chapter a horizontal/vertical polarisation basis is used, thus 𝑥 and 𝑦 can be either 𝐻 or
𝑉 . Furthermore, it should be noted that the gains, surface area, normalised RCS and range
are dependent on the location of the scattering element.

𝑃 𝑟𝑥
𝑥

𝑃 𝑡𝑥𝑦
= 𝐺𝑟𝑥

𝑥 𝐺𝑡𝑥
𝑦 𝜆2𝐴𝜎0

𝑥𝑦

(4𝜋)3 𝑟4
= 𝑅𝑥𝑦𝜎0

𝑥𝑦 (3.1)

Since the normalised scattering parameters are related to normalised RCS as

𝜎0
𝑥𝑦 = ∣𝑆0

𝑥𝑦∣2 , (3.2)

it can be seen that in conjunction with (3.1), the normalised scattering parameters can be
determined from the measured complex-valued S-parameters 𝑆𝑥𝑦 as shown in (3.3).

𝑆𝑥𝑦 = 𝐸𝑟𝑥
𝑥

𝐸𝑟𝑥𝑦
= √𝑅𝑥𝑦𝑆0

𝑥𝑦 (3.3)

This is possible as the returned power is related to half of the square of the magnitude of the
returned electric field strength.

To compute the measured total scattering parameters as function of range, i.e. a range
profile, the scattering parameters of the 𝑁 scattering elements within a range bin 𝜌 are
summed together, with each element indexed by 𝑖 as shown in (3.4):

𝑆𝑡𝑜𝑡
𝑥𝑦 (𝜌) =

𝑁
∑
𝑖=1

√𝑅𝑥𝑦,𝑖𝑆0
𝑥𝑦,𝑖. (3.4)

Note that when the scattering from all elements is uncorrelated, i.e. 𝑆0
𝑥𝑦 has a random phase,

∣𝑆𝑡𝑜𝑡
𝑥𝑦 ∣2 and 𝑃 𝑟𝑥

𝑥 /𝑃 𝑡𝑥
𝑦 converge towards the same value and thus power is conserved.

Using the model of measured range profiles, the statistical properties of the random
variable 𝑆0

𝑥𝑦 can be extracted. To do this, a few assumptions are made, namely:

• The normalised scattering parameters of the surface-under-test are isotropic, i.e. do
not depend on azimuth of incident and reflected radiation.

• All scattering elements of the surface-under-test within a range bin experience the
same angle of incidence.

These assumptions ensure that within a range bin the equality 𝑆0
𝑥𝑦,𝑖 = 𝑆0

𝑥𝑦 holds.
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As the first step, the extraction of ⟨𝑆0
𝑥𝑦⟩ from ⟨𝑆𝑡𝑜𝑡

𝑥𝑦 ⟩ is considered, where the angular
brackets indicate the mean value of the statistical ensemble of scatterers. As

⟨𝑆𝑡𝑜𝑡
𝑥𝑦 (𝜌)⟩ = ⟨

𝑁
∑
𝑖=1

√𝑅𝑥𝑦,𝑖𝑆0
𝑥𝑦⟩

= (
𝑁

∑
𝑖=1

√𝑅𝑥𝑦,𝑖) ⟨𝑆0
𝑥𝑦⟩,

(3.5)

the mean value of 𝑆0
𝑥𝑦 can be found using (3.6):

⟨𝑆0
𝑥𝑦 (𝜌)⟩ = 1

∑𝑁
𝑖=1 √𝑅𝑥𝑦,𝑖

⟨𝑆𝑡𝑜𝑡
𝑥𝑦 (𝜌)⟩. (3.6)

As each surface scattering element has a co- and cross-polar normalised scattering pa-
rameters for each of the two polarimetric channels which are not necessarily uncorrelated,
the covariance of the normalised scattering parameters must also be found from the four
measured range profiles. The covariance of 𝑆0

𝑥𝑦 and 𝑆0
𝑢𝑣 is related to the covariance of 𝑆𝑥𝑦

and 𝑆𝑢𝑣 via (3.7). Here, 𝑢 & 𝑣 are also indicators of the same polarisation basis as 𝑥 &
𝑦 but can differ from each other, to express all possible covariance permutations. In the
equations, 𝐶𝑜𝑣 (𝐴, 𝐵) is abbreviated to 𝐶 (𝐴, 𝐵).

𝐶 (𝑆𝑡𝑜𝑡
𝑥𝑦 , 𝑆𝑡𝑜𝑡

𝑢𝑣 ) = 𝐶 (
𝑁

∑
𝑖=1

√𝑅𝑥𝑦,𝑖𝑆0
𝑥𝑦,

𝑁
∑
𝑗=1

√𝑅𝑢𝑣,𝑗𝑆0
𝑢𝑣)

= (∑
𝑖,𝑗

√𝑅𝑢𝑣,𝑖√𝑅𝑥𝑦,𝑗) 𝐶 (𝑆0
𝑥𝑦, 𝑆0

𝑢𝑣)
(3.7)

In (3.7), the sum over 𝑖 and 𝑗 represents all combinations of 𝑖 and 𝑗. However, since the
covariance of the normalised scattering parameters of scattering elements 𝑖 and 𝑗 is 0 since
the scattering elements are uncorrelated, the covariance is found as:

𝐶 (𝑆𝑡𝑜𝑡
𝑥𝑦 , 𝑆𝑡𝑜𝑡

𝑢𝑣 ) = (
𝑁

∑
𝑖=1

√𝑅𝑢𝑣,𝑖√𝑅𝑥𝑦,𝑖) 𝐶 (𝑆0
𝑥𝑦, 𝑆0

𝑢𝑣) . (3.8)

Therefore, the covariance of 𝑆0
𝑥𝑦 and 𝑆0

𝑢𝑣 can be found as:

𝐶 (𝑆0
𝑥𝑦, 𝑆0

𝑢𝑣) = 𝐶 (𝑆𝑡𝑜𝑡
𝑥𝑦 , 𝑆𝑡𝑜𝑡

𝑢𝑣 )
∑𝑁

𝑖=1 √𝑅𝑢𝑣,𝑖√𝑅𝑥𝑦,𝑖
. (3.9)

3.3. Surface Clutter Synthesis
Once models of the normalised scattering parameters of surfaces are known, they can be
used to synthesize/simulate range profiles, range-angle profiles, and range-Doppler spectra
of surface clutter. Similar to the previous section, the proposed synthesis method models
the surface as many individual scattering elements and computes the contribution of each
individual scattering element towards the signal as measured by a radar. The synthesis
method comprises the following steps:
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1. Model the surface as a collection of discrete surface scattering elements by generating
a grid of these elements.

2. Find the incident angles, range, and observation angles for each surface scattering
element.

3. For each scattering element, take a sample from a multivariate distribution with mean
and covariance corresponding to the angle of incidence for said surface scattering
element.

4. Calculate the received electric field strength from each scattering element.

5. Sum the received electric field strength from each scattering element to its corre-
sponding bin.

In step 2, the range to each surface scattering element can be computed by taking the
norm of the vector pointing from the antenna to said scattering element. The incident and
observation angles can in turn be computed using the equations presented in [30]. Subse-
quently, the contribution of each scattering element can be found using:

𝐸𝑟𝑥
𝑥 = √𝑅𝑥𝑦𝑆0

𝑥𝑦𝐸𝑡𝑥
𝑦 , (3.10)

where 𝑅𝑥𝑦 is a function of the previously computed range to and observation angles of
the surface scattering element. An example of the output of this synthesis process for the
co-polarised channels is displayed in a later section in Fig. 3.8.

Subsequently, this output can be further processed to compute range profiles, range-
angle plots and range-Doppler spectra. This can be done by specifying the limits and reso-
lution of the to be simulated profiles and summing the contribution of each scattering ele-
ment to its corresponding range, angle, and/or Doppler bin. To compute the azimuth angle
of a scattering element in the case of 3D radar (i.e., a radar that provides range, azimuth,
and Doppler information), or both azimuth and elevation angles in the case of 4D radar
(i.e., a radar that also provides elevation information), the theory in [30] can be used. To
compute the Doppler or velocity bin, the radial velocity 𝑣𝑟 of each scattering element with
coordinates 𝑥 and 𝑦 can be found as:

𝑣𝑟 = 𝑣
√𝑥2 + 𝑦2 + ℎ2𝑟

, (3.11)

where ℎ𝑟 is the antenna mounting height and 𝑣 is the platform velocity which is assumed to
be along the 𝑦-axis.

Finally, to create range and range-angle profiles and range-Doppler spectra, the contri-
butions of the scattering elements to the electric field can be summed in the correct bins
via:

𝐹 =
𝑀

∑
𝑘=1

𝐸𝑟𝑥
𝑥𝑦,𝑘. (3.12)

Here, 𝐹 is the desired output representation (e.g., range-Doppler spectrum) and 𝑘 repre-
sents the index of a scattering element for the 𝑀 surface scattering elements that lie within
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a certain range, angle, and/or Doppler bin. Thus, 𝐹 can be a function of range, angle,
and Doppler, or all of them or even other bin quantities by which the 𝐹 could be binned.
In 𝐸𝑟𝑥

𝑥𝑦,𝑘, the subscript 𝑥 and 𝑦 indicate the receive and transmit polarisation respectively.
Note that when 𝐸𝑟𝑥

𝑥𝑦,𝑘 are zero mean random variables, performing this summing operation
will not cause the received field from a range-bin to converge to zero when the number of
scattering elements within such a range-bin increases. This is because the area term in𝑅𝑥𝑦,𝑖
is inversely proportional to the number of scattering elements within one range-bin, which
results in 𝐸𝑟𝑥

𝑥𝑦,𝑘 decreasing with the square root of the number of scattering elements, as
can be seen from (3.12). This in turn leads to the variance of the electric field received in a
range-bin remaining the same as the variance of a sum of identical independent distributed
random variables is proportional to the number of variables in that sumwhile the variance of
a random variable pre-multiplied by a constant is the same as the variance of the same ran-
dom variable post-multiplied by that constant squared. An example output of range profile
and range-Doppler spectra can in a later section be seen in Figs. 3.9 and 3.10 respectively.

3.4. Optimal Sensing Wave Polarisation for Single-
Polarised Automotive Radar

Besides surface clutter synthesis, the polarimetric normalised RCS models can also be used
to find the optimal polarisation to maximise or minimise the power that is received from a
target corresponding to that model by a radar system that uses a single polarisation. Fur-
thermore, this analysis could also be used to for example design a filter that maximises the
contrast between multiple classes of targets, e.g. a puddle of water on asphalt versus dry
asphalt.

Using the polarisation vector of an antenna, indicated by ⃗𝑝, which in a single-polarised
radar system is the same for the transmit and receive antennas, the received power 𝑃 𝑟𝑥

from a target with scattering matrix 𝑆 can be computed using (3.13), in which 𝐻 indicates
the conjugate transpose operator. The polarisation vector is the vector that describes the
polarisation state of a transmitted electromagnetic wave by an antenna and the gain of that
same antenna for incoming electromagnetic waves of a certain polarisation [31]. Using
the polarisation vector and the scattering matrix, the received power from a target can be
calculated as [32]:

𝑃 𝑟𝑥 = ∣ ⃗𝑝𝐻𝑆 ⃗𝑝∣ . (3.13)
As can be seen from this equation, the received power can be either minimised or maximised
by selecting a certain ⃗𝑝.

The polarisation vector ⃗𝑝 is defined as follows:

⃗𝑝 = [𝑐𝑥𝑒𝑗𝛿𝑥

𝑐𝑦𝑒𝑗𝛿𝑦 ] (3.14)

Here, 𝑐𝑥 and 𝑐𝑦 describe the gain for the 𝑥 and 𝑦 polarised components while 𝛿𝑥 and 𝛿𝑦
describe the phases of those components. As in this problem the goal is to find the optimum
polarisation for a single-polarised radar system instead of just maximising the antenna gain
or simply setting it to zero to achieve zero received power, the polarisation vector is con-
strained to have a norm of 1, i.e. ⃗𝑝𝐻 ⃗𝑝 = 1. Polarisation vectors that have this property are
denoted by ̂𝑝.
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Subsequently, since ̂𝑝𝐻 ̂𝑝 = 1, ̂𝑝 can be factorised as follows:

̂𝑝 = [ 𝐴𝑒𝑗𝛿𝑥√
1 − 𝐴2 𝑒𝑗𝛿𝑦

] = 𝑒𝑗𝛿𝑥 [ 𝐴√
1 − 𝐴2 𝑒𝑗(𝛿𝑦−𝛿𝑥)]

= 𝑒𝑗𝛿𝑥 [ 𝐴√
1 − 𝐴2 𝑒𝑗𝛿]

. (3.15)

The absolute phase component in the polarisation vector, 𝑒𝑗𝛿𝑥 , can be neglected as it does not
influence the received power as it results in an extra ∣𝑒𝑗𝛿𝑥 ∣ term in (3.13) which is always
equal to 1. Thus, it can be seen from (3.15) that ̂𝑝 can be factorised by two parameters,
namely 𝐴 and 𝛿. Furthermore, 𝐴 is bounded between 0 and 1 since ̂𝑝𝐻 ̂𝑝 = 1 and 𝛿 is
bounded between -180° and +180° due to the cyclic nature of the phase. Therefore, the
minima and maxima of 𝑃 𝑟𝑥 for a discrete target with a well known scattering matrix can be
determined by numerically computing (3.13) for an array of values of 𝐴 and 𝛿 bounded by
0 and 1 and -180° and +180° respectively.

Furthermore, in the case of a statistical description of 𝑆, the minima and maxima of 𝑃 𝑟𝑥

can be found by means of a Monte-Carlo procedure. Namely, a large amount of scattering
matrices can be generated using the procedure outlined in section 3.3. Thereafter, for each
scattering matrix, 𝑃 𝑟𝑥 can be calculated as a function of 𝐴 and 𝛿. Finally, the mean of 𝑃 𝑟𝑥

over the different realisations of 𝑆 can be taken, from which the maxima and minima can
be determined. An example of such a computation is shown in a later section in Fig. 3.16.

3.5. Measurements
The measurement setup comprised a Vector Network Analyser (VNA) connected to a dual
polarised horn antenna to perform polarimetric measurements. The antenna assembly was
subsequently placed on a supporting structure that allowed for controlling the angle in the
vertical plane of the antenna relative to the surface. This antenna orientation angle is de-
fined as the angle between surface normal and the antenna broadside. The VNA was set to
sweep a frequency range from 75 to 85 GHz in 1001 frequency steps. More details on the
measurement setup and its settings can be found in [2].

Measurements were performed to obtain data for three different road surface conditions,
as well as two different types of asphalt. The two considered types of asphalt were relatively
new asphalt, and old asphalt which was scheduled to be replaced shortly after the measure-
ments. As there exist many different types of asphalt, to keep the study presented in this
work as comprehensive as practically possible, these two opposing ends of the range of
possible asphalt types were selected to investigate the variation of backscattering from as-
phalt. The considered road surface conditions were the new asphalt type when dry, wet,
and covered with basalt gravel as may be encountered during road surface construction or
maintenance. In this case, the gravel comprised of basalt rocks ranging in size between 2
and 8 mm. Pictures of the road surface classes are shown in Fig. 3.1. These four road
surface conditions were each measured with antenna orientation angles of 60°, to achieve
maximum SNR at short range, and at 90°, to simulate forward looking radar.

To find a statistical normalised RCS model of the surfaces-under-test, it is important to
obtainmeasurements of surface areas that are uncorrelated with each other. This can be done
by ensuring that the antenna beam footprint illuminates a part of the asphalt surface that is at
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(a) (b)

(c) (d)

Figure 3.1: Photographs of the three road surface conditions that were measured: (a) Dry asphalt; (b) Wet asphalt;
(c) Asphalt covered with basalt gravel with pebble sizes between 2 and 8 mm. Additionally, a different patch of
old asphalt was also measured (d).

least a few correlation lengths away. Previous investigation has shown that the correlation
length of asphalt road surface is around 2mm [30]. Therefore, this condition can be achieved
by moving the measurement setup a few centimetres between measurements.

To gather sufficient data to compute proper statistics, after calibrating the measurement
setup, 50 independent measurements of each surface class were obtained. Subsequently, the
measurements were post-processed to find the total scattering parameters. More details on
the calibration of the measurement setup, measurement procedure, and post-processing can
be found in [29] and [2].

3.6. Experimental Results and Discussion
In this section, normalised radar cross section models of the four different road surface
classes are determined by applying the procedure described in section 3.2 on the data set
of VNA measurements collected as shown in section 3.5. The models of the several sur-
faces are presented in 3.6.1 and 3.6.2 while the application of these models to simulation of
road surface scattering and determination of optimal polarisation for single-polarised radar
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Figure 3.2: Normalised radar cross sections of multiple different road surfaces and conditions. (a) Dry asphalt. (b)
Wet asphalt. (c) Asphalt covered by basalt split ranging in size from 2 to 8 mm. (d) Old asphalt.

systems are presented in sections 3.6.3 and 3.6.4.

3.6.1. Normalised RCS of Various Isotropic Road Surface Con-
ditions

The extracted normalised RCS models of the four measured road surface conditions are
shown in Figs. 3.2a-3.2d. These respectively show the extracted normalised RCSmodels of
dry asphalt, asphalt covered with water, asphalt covered with basalt split with sizes ranging
from 2 to 8 mm, and old asphalt.

Fig. 3.2a shows that for dry asphalt, the two co-polar normalised RCSs start to differ
more andmore as the angle of incidence increases. At an incident angle of 40°, the horizontal
and vertical normalised RCS are close to -16 dB for both co-polar channels, whereas at 75°
the 𝑉 𝑉 -polarised normalised RCS has decreased to -22 dB and the 𝐻𝐻-polarised RCS to
-26 dB. This scattering behaviour agrees well with known results of backscattering from
natural surfaces [9]. Furthermore, it can be seen that both cross-polar normalised RCSs
are of the same level due to the monostatic measurement configuration. Also, the cross-
polar RCSs are significantly smaller than the co-polar ones, which indicates that a limited
amount of multiple scattering events are occurring at the asphalt surface and within the
asphalt medium, or that internalmultiple scattering is attenuated strongly by the conductivity
of the material.
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The wet asphalt shows a smaller RCS for both co- and cross-polarised channels com-
pared to dry asphalt (Fig. 3.2b). This is likely due to water - which permittivity is close to
that of asphalt at 77 GHz - filling the cracks and holes in asphalt, increasing the effective
flatness of the surface. This is further magnified by the relatively large imaginary part of
the complex dielectric constant due to the relatively high conductivity of water. This results
in higher reflection coefficients for both polarisations compared to dry asphalt, thus reduc-
ing the amount of power scattered back to the radar. It can also be seen that for the wet
asphalt, the difference between the 𝐻𝐻- and 𝑉 𝑉 -polarised channels is larger than for dry
and basalt-covered asphalt. This can also likely be contributed to the water layer increasing
the effective surface flatness, whereas the rougher surfaces of the dry and basalt-covered
asphalt depolarise the backscattered waves more significantly. Also, it can be seen that
the cross-polar normalised RCSs are similar to each other, as expected for reciprocal me-
dia when measured in a mono-static configuration. Furthermore, it can also be observed
that the co-polar normalised RCSs are significantly smaller than the co-polar RCSs, again
indicating that the contribution from multiple scattering events is limited.

Note that for the measurements of wet asphalt, the normalised RCSs of the cross-polar
channels and the 𝐻𝐻-polarised channel start to increase from about 65° and 70° respec-
tively. This is likely the result of the noise floor of the VNA, which is located around -110
dB when transformed to the time/range-domain. From the 65°/70° point onward, the return
from the wet asphalt surface in these three channels is lower than the noise floor, and thus
the measured S-parameters are dominated by noise power from the range corresponding to
these incident angles onward. As the noise floor is constant, the measured S-parameters for
all of the surface beyond these ranges is around -110 dB, independent of the actual range to
the surface at those distances. Since the measured S-parameters are divided by the antenna
footprint to compensate for differences in antenna gain and propagation losses as shown in
(3.9), the normalised RCS shows an increasing trend for the surface area that is dominated
by the constant noise floor. Thus, it can also be concluded that the lower limit of the mea-
surable normalised RCS of a surface with this measurement setup as function of range can
be found by compensating the noise floor value of the VNA for the antenna footprint us-
ing (3.9). As the normalised RCS of the wet surface for the cross-polar and 𝐻𝐻-polarised
channels is below this lower limit, an apparent increasing normalised RCS with incident
angle results, due to the dominant contribution of noise at these ranges.

Furthermore, it can be seen in Fig. 3.2c that the normalised co-polarised RCSs of the
basalt-covered asphalt are independent of polarisation. In this figure, the co-polarised RCSs
follow the shape of a cosine closely, which is indicative of scattering by an electromagneti-
cally rough surface with Lambertian behaviour. Also here, the cross-polar normalised RCSs
are about 10 dB below the co-polar normalised RCSs, again indicating limited contribution
from multiple scattering, and these are of about equal magnitude.

Lastly, it can be seen that the old asphalt surface type exhibits a scattering behaviour in
between that of dry new asphalt and new asphalt covered by basalt gravel. It can be seen
in Fig. 3.2d that the co-polar normalised RCSs are of similar magnitude compared to each
other, thus indicating relatively strong depolarisation as also occurs for basalt-covered as-
phalt. However, it can also be seen that the magnitudes of the co-polar normalised RCSs of
the old asphalt type are lower compared to those of basalt-covered asphalt. This is consistent
with the geometrical roughness of the road surfaces, as the measured old asphalt is rougher
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than the new asphalt type while being smoother than the basalt-covered asphalt. This leads
to the observation that the normalised RCSs of road surfaces are more strongly dependent
on surface roughness characteristics rather than on their dielectric properties. Also, as with
the other road surface classes, it can be seen that the cross-polar normalised RCSs are sig-
nificantly lower, also indicating that multiple scattering contributions play a limited role for
old asphalt.

3.6.2. Normalised RCS of Various Anisotropic Road Surface
Conditions

As mentioned in section 3.2, two assumptions are made to extract radar cross sections. One
of these assumptions requires the surface-under-test to be isotropic, so that the distribution
of its normalised scattering parameters does not depend on the azimuth angle of the incident
and scattered waves.

However, not all paving materials have isotropic geomet-rical properties, most notably
pavements made out of bricks or stone blocks. This type of road surface is com-monly found
in historic city centres and is becoming in-creasingly popular for low speed roads as it is
an effective traffic calming method, thus reducing driving speed and therefore increasing
safety [33].

To be able to find the normalised radar cross sections of anisotropic surfaces, the second
assumption is relaxed so that also the statistical properties underlying the normalised scatter-
ing parameters of anisotropic road surfaces can be found. This can be done by substituting
the first assumption in section 3.2 with the new assumption below:

• All scattering elements within a measured range bin experience the same azimuth
angle of the incident and scattered waves.

This new assumption is valid in a number of situations. For example, if measurements
are performed with a radar with high angular resolution, then the variation of azimuthal an-
gle within a range-angle bin is limited, thus the second assumption holds, as long as this
angle is smaller than the azimuthal variation of the scattering parameters. Alternatively,
if measurements are done with an antenna with a narrow beam in the azimuthal direction,
then the majority of backscattered power from a surface-under-test will be from surface
area within that beam. As the beamwidth is small in this case, this means that the major-
ity of backscattered power results from a narrow surface area which approximately shares
the same azimuthal angle. Therefore, backscattering contributions from surface areas out-
side of the beam can be neglected, and thus the properties of the scattering process can be
successfully computed.

To study the effects of anisotropy of road surfaces on their radar cross sections, measure-
ments were performed on two types of common anisotropic road surfaces. These surfaces
comprise two types of brick-paved road surfaces shown in Figs. 3.3a and 3.3b.

The first type of road was made out of a red brick laid in a 45° herringbone bond pattern,
while the second type was a grey brick road laid in a running bond pattern. Both types
of road surface were measured in the driving direction (indicated by the ∥ symbol) and
perpendicular to the driving direction (indicated by the ⟂ symbol), as may be encountered
at an intersection. Each surface was measured 50 times with an antenna orientation angle
of 60°, as per the procedure described in detail in [29].
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(a) (b)

Figure 3.3: The measured anisotropic road surfaces. The red arrow indicates the driving direction (∥), while the
blue arrow indicates the perpendicular direction (⟂). (a) Red brick pavement. (b) Grey brick pavement.

(a) (b)

Figure 3.4: Footprint of the antenna beam in dB of the measurement setup in: (a) VV-polarised mode. (b) HH-
polarised mode.

As mentioned in third paragraph of this section, radar cross sections can successfully
be determined from radar measurements if the radar system has a sufficiently narrow beam.
The measurement setup used in this experimental campaign comprises of a vector network
analyser (VNA) with both of its channels connected to a 15 dB dual polarised horn antenna.
Figs. 3.4a and 3.4b shows the simulated -3 dB footprint of this measurement setup for the
vertically and horizontally co-polarised channels respectively. From these figures, it can
be seen that for the VV-polarised mode, the -3 dB footprint fits in a cone of approximately
±30°, while in HH-polarised mode, the widest beamwidth is approximately ±25°. This
essentially means that the widest range bin covers this angle, while other range bins cover
a smaller angular range of the surface. For the considered type of surfaces, it was found
that these maximum beamwidths were sufficient for this experiment as the two considered
measurement azimuth angles are 90° apart.

Fig. 3.5a and Fig. 3.5b show the NRCS results for the red brick and grey brick surfaces
respectively, obtained by the post-processing procedure described in [29]. It can be seen in
Fig. 3.5a that for the red brick surface, there is a slight decrease in the co-polar normalised
radar cross sections, with the largest decrease occurring in the horizontal polarised channel.
This can likely be explained by the length and orientation of the slits between the bricks with
respect to the azimuth of the incident wave. In the driving direction, all slits are oriented
at 45° with respect to the incident wave. When measuring in the parallel direction, the slits
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Figure 3.5: Normalised radar cross sections of anisotropic pavements, measured in the driving (∥) and perpendic-
ular directions (⟂). (a) Red brick pavement. (b) Grey brick pavement.

are still oriented at 45°, thus leading to similar NRCSs.
For the grey brick pavement, a significant difference between the HH- and VV-polarised

NRCS can be seen from Fig. 3.5b when measured in the driving direction. This likely
indicates that the slits in between the bricks play a significant role in its scattering behaviour,
as slits on the long side of the bricks are mainly oriented along the horizontal direction
and perpendicular to the radar, thus leading to more backscattered power for horizontally
polarised waves compared to vertical polarisation.

Furthermore, the grey brick pavement, when measured in the perpendicular direction,
shows a significant decrease of the co-polarised NRCSs compared to the measurements in
the driving direction. This can be explained by the slits on the long side of the bricks now
being oriented in the same direction as the incident sensing wave, leaving only the slits on
the short side of the bricks oriented perpendicular to the incident wave. This effectively
reduces the total length and number of slits perpendicular to the radar, thus reducing their
contribution to the total backscattered power. Therefore, the total backscattered power is re-
duced and the difference between the VV- and HH-polarised NRCS decreases as the relative
contribution of rough surface scattering increases.

It is also interesting to note that for the red brick pavement, the cross-polarised radar
cross section decreases for measurements in the perpendicular direction compared to the
driving direction, whereas it remains approximately similar for the grey pavement. It can
also be seen that from an incident angle of about 70°, the cross-polarised RCS starts to
increase. This is likely due to the sensitivity of the measurement setup, where the measure-
ments from this angle onwards start to be dominated by noise. A more detailed discussion
on this phenomenon can be found in [29].

Both pavements were also measured under wet conditions along the driving direction,
similar to the approach described in [34]. The results of these measurements for the red
brick pavement can be found in Fig. 3.6a, while the results for the grey brick pavement can
be found in 3.6b. It can be seen that in the case of the red brick pavement, the presence
of water does not change the NRCS significantly for all channels. This is likely due to the
good drainage the slits in this type of brick provide, and thus puddles of standing water do
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Figure 3.6: Normalised radar cross sections of anisotropic pavements in dry and wet conditions, measured in the
driving (∥) direction. (a) Red brick pavement. (b) Grey brick pavement.

not form.
The NRCSs of the grey brick pavement is more influenced by the water layer compared

to the red pavement. It can be seen that the HH-polarised normalised RCS reduces slightly
while the VV-polarised normalised RCS remains similar to that of the pavement measured
in dry conditions. Thus, in this case of the wet grey brick pavement, this can likely be
explained by the water layer smoothing out the slits between the bricks, which leads to a
visible reduction in the HH-polarised NRCS.

Furthermore, it can be seen that for the grey brick surface the cross-polar NRCS reduces.
This can potentially also be explained by the increase in effective flatness, which results in a
change in scattering behaviour towards scattering from a flat dielectric interface. This same
phenomenon is also observed in scattering from wet asphalt road surfaces [34].

Understanding scattering from anisotropic road surfaces is important as brick pavements
are a common class of road surfaces that are usually encountered in areas where also vul-
nerable road users are present, or where the road is even shared with them. Therefore, it is
important to have a good understanding of the behaviour of the radar cross sections of these
surfaces, as increased amounts of clutter may influence radar measurement data that is to
be used in safety-critical advanced driver assistance systems such as automatic braking.

Furthermore, anisotropic road surfaces also pose an interesting challenge for driver as-
sistance systems that are concerned with the properties of the road surface. Examples of
these systems are the anti-lock braking system and electronic stability control. For exam-
ple, when a radar system is used for classification of road surface mate-rials, e.g., to estimate
its friction coefficient, a change of pavement direction could lead to misclassification of the
surface thus potentially impacting safety system performance. This may for example occur
at an intersection where different brick bond patterns have to be merged and the radar sys-
tem might misclassify the road surface at the intersection as covered by a puddle of water.
This can cause dangerous situation where a driver suddenly has to brake, without optimal
brake performance, to avoid collision with traffic that enters the intersection unexpectedly.
Finally, anisotropy of road surfaces, when understood properly, can also be used to aid in
classification of road surface materials. When a radar system with good angular resolution
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or a system with multiple radar channels at different azimuth angles is used for road surface
classification purposes, the variation of the measured backscattering along azimuth can also
be used to increase the classification accuracy.

3.6.3. Range Profile and Range Doppler Synthesis
As described in section 3.3, the extracted normalised RCS models can be used to synthe-
sise surface scattering in automotive radar scenarios and simulate range profiles and range-
Doppler spectra. The first step in such syntheses is to determine a suitable probability dis-
tribution that fits the measurement data well. Histograms of the measured magnitude and
phase in the 59°-61° incident angle interval of 𝑆𝐻𝐻 for dry asphalt are shown and compared
to a Rayleigh distribution in Figs. 3.7a and 3.7b. It can be seen that a Rayleigh distribution
provides a reasonable fit for the magnitude and that the phase seems to approach a uniform
distribution. This observation also holds for the other scattering parameters and also applies
to those of wet and basalt-covered asphalt. Therefore, in this case the real and imaginary
parts of the synthesised scattering parameters can be modelled as normally distributed ran-
dom variables with covariance and mean values as determined during the normalised RCS
model derivation procedure. Furthermore, it is important to note this synthesis method is
not limited to normally distributed random variables and thus any multivariate distribution
can be used to potentially achieve a better fit to the measurement data.

(a) (b)

Figure 3.7: Histograms of𝑆𝐻𝐻 of dry asphalt in the incident angle interval of 59∘-61∘, normalised to represent the
probability density functions. (a) Magnitude, with a comparison to a Rayleigh distribution (in red) with identical
variance as the measurement data. (b) Phase.

Subsequently, to represent scattering from the road surface, a grid of scattering elements
over the road surface is generated. For each scattering element, a full scattering matrix is
generated using a multivariate normal distribution with the extracted statistical properties
corresponding to the surface type. Next, the contribution of each element to the total re-
ceived power, including the effects of antenna gain, propagation losses, and surface area of
the grid element, is computed following the procedure described in section 3.3. Fig. 3.8a
shows the contributions to the 𝑉 𝑉 -polarised channel from surface elements simulating a
dry asphalt surface as seen by a dual-polarised horn antenna, placed at a height of 38 cm
with an orientation angle of 60°. In this plot, the effect of the side lobe of the horn antenna
manifests itself as a maximum around the origin. Even though the side lobe level of the dual
polarised horn is about -14 dB, the lower gain for the scattering elements near the origin is
compensated by the shorter range and corresponding lower propagation losses compared
to the scattering elements that lie in the main lobe. As the antenna is placed at a height of
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(a) (b)

Figure 3.8: Normalised received power from surface scattering elements simulating dry asphalt, including effects
of propagation losses, scattering element surface area, and the gain of a dual-polarised antenna at a height of 38 cm
with an orientation angle of 60°: (a) 𝑉 𝑉 -polarised channel; and (b) 𝐻𝐻-polarised channel.

38 cm with an orientation angle of 60°, the point of maximum gain is located at a ground
range of about 66 cm directly in front of the antenna. However, the surface scattering ele-
ments that provide the strongest contributions to the total backscattered response are centred
around 56 cm. This is also caused by the longer range to the scattering element that sees the
maximum antenna gain and thus higher propagation losses occur which reduces the total
contribution of the elements located around 66 cm compared to those centred around 56 cm
directly in front of the antenna.

As described in 3.3, a range profile can be found by summing the contributions of each
scattering element to their corresponding range bin. The results of this procedure are shown
in Fig. 3.9. In this plot, also a comparison with measurement data from a dry asphalt
surface is shown. Excellent agreement can be seen between the simulated and measured
range profiles up to a range of 1.5 m. From this range onward, the measurement data of
the magnitude of 𝑆𝑉 𝑉 is limited by noise, whereas the simulated range profile shows the
expected decrease with range due to increased propagation losses and decreased antenna
gain.

From Fig. 3.8, also the range-Doppler spectra can be synthesised using the procedure
described in 3.3. Assuming a platform speed of 15 km/h and adding the surface scattering
contributions to their corresponding range-Doppler bins results in the range-Doppler spectra
shown in Fig. 3.10. It can be seen that the range-Doppler signature of the asphalt surface
spreads over the Doppler domain due to scattering from surface area that is not directly in
front of the moving platform.

Furthermore, it can be seen that most power is contained in the sector of the range-
Doppler plot delimited by the speeds smaller than -2 m/s and ranges closer than 1.5 m to the
platform due to the 60° orientation angle of the horn antenna. Also, in the 𝑉 𝑉 -polarised
channel, a relatively large return in the range-Doppler bins at a range of 0.45 m and at
velocities between -1.5 and 0 m/s can be seen. This is due to the side lobe of the dual-
polarised horn antenna, which increases the return from the surface area underneath the
antenna.

In the𝐻𝐻-polarised channel, the part of the range-Doppler spectrum bounded by veloc-
ities of -3 and -3.5 m/s and a range larger than 1 m shows relatively less backscattered power
compared to the 𝑉 𝑉 -polarised channel while at ranges up to 1 m and velocities higher than
-3 m/s, more scattered power is observed. This is also caused by side lobes of the dual-
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Figure 3.9: Synthesized range profile of the 𝑉 𝑉 -polarised channel from a uniform dry asphalt road surface com-
pared to measurement data performed on a dry asphalt road surface with a dual-polarised horn antenna with an
antenna orientation angle of 60°.

polarised horn antenna. Namely, in the 𝐻-polarised mode of the antenna, the side lobes are
now in the horizontal plane in contrast to vertical plane as is the case for the 𝑉 -polarised
mode. This results in an effectively wider beam at close range in the𝐻𝐻-polarised channel
(Fig. 3.8b), resulting in a broader spread over velocity of the backscattered power at these
ranges. The nulls between the side lobes and the main lobe together with the slightly nar-
rower main lobe compared to the 𝑉 -polarised mode, result in the lower amount of backscat-
tered power in the -3.5 to -3 m/s area of the spectrum.

Instead of a dual-polarised horn antenna with an orientation angle of 60°, also anten-
nas with other radiation patterns can be considered. Fig. 3.11 shows the contributions of
the surface scattering elements to the backscattered power using a forward looking (90°
orientation angle) antenna with a cosine-squared pattern in both elevation and azimuthal
planes. Compared to the syntheses with the dual-polarised horn antenna, no side-lobes are
present. This leads to a more uniform illumination of the surface, resulting in a more uni-
form range-Doppler signature as shown in Fig. 3.12. As the radiation patterns for both
polarised channels are the same in these plots, the effects of the difference between polari-
sations of the normalised RCS models can be observed as well. Namely, the range-Doppler
spectrum of the 𝑉 𝑉 -polarised channel (Fig. 3.12a) shows a stronger return that is more ex-
tended in range than is visible in the 𝐻𝐻-polarised range-Doppler spectrum (Fig. 3.12b).
This is consistent with the normalised RCS model of dry asphalt (Fig. 3.2a) that shows
that the 𝐻𝐻-polarised normalised RCS decreases more with range than the 𝑉 𝑉 -polarised
normalised RCS.

Besides surfaces comprising completely of dry asphalt, also surfaces comprising of mul-
tiple different surface conditions can be simulated. This is done by assigning parts of the
surface scattering elements different normalised RCSmodels. An example of such a surface
is shown in Fig. 3.13, which represents a puddle of water in front and gravel to the right hand



3.6. Experimental Results and Discussion

3

47

(a) (b)

Figure 3.10: Synthesized range-Doppler spectrum of a uniform dry asphalt road surface of a dual-polarised horn
antenna with an antenna orientation angle of 60°, moving at a speed of 15 km/h as observed in the: (a) 𝑉 𝑉 -
polarised channel; and (b) 𝐻𝐻-polarised channel.

Figure 3.11: Normalised received power from surface scattering elements in the 𝑉 𝑉 -polarised channel simulating
dry asphalt, including effects of propagation losses, scattering element surface area, and the gain of a forward
looking cosine-squared antenna at a height of 38 cm.
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(a) (b)

Figure 3.12: Synthesized range-Doppler spectrum of a uniform dry asphalt road surface illuminated by a forward
looking antenna with cosine-squared pattern, moving at a speed of 15 km/h as observed in the: (a) 𝑉 𝑉 -polarised
channel; and (b) 𝐻𝐻-polarised channel.
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Figure 3.13: Road surface conditions definition for a synthesis comprising of multiple different surface types.
Orange corresponds to dry asphalt, while blue and red correspond to wet and basalt-covered asphalt respectively.

side of the vehicle. In this scenario, also a forward looking antenna with a cosine-squared
pattern is used for both polarisations.

The synthesised surface scattering contributions for the𝐻𝐻-polarised channel are shown
in Fig. 3.14. Here, the distinction between the wet and dry asphalt is clearly visible. This
is clear from the normalised RCS models, as the normalised RCS of wet asphalt (Fig. 3.2b)
is much lower than that of dry asphalt (Fig. 3.2a). The difference between the dry and
basalt-covered areas is also visible in Fig. 3.14. However, the distinction is less clear as
the difference between the normalised RCS of basalt-covered asphalt (Fig. 3.2c) and dry
asphalt is smaller than the difference with wet asphalt.

Also, range-Doppler spectra can be generated fromFig. 3.14 and its𝑉 𝑉 -polarised coun-
terpart. This is shown in Fig. 3.15. Compared to the range-Doppler spectra of a uniform
dry asphalt surface (Fig. 3.12), it can be seen that the power in the -4 to -3 m/s sector is
reduced due to the decreased backscattering caused by the puddle of water. Also, in the
𝐻𝐻-polarised channel, a diagonal line starting at a velocity of -1 m/s and a range of 1.4 m
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Figure 3.14: Normalised received power from surface scattering elements in the𝐻𝐻-polarised channel simulating
the scenario from Fig. 3.13, including effects of propagation losses, scattering element surface area, and the gain
of a forward looking cosine-squared antenna at a height of 38 cm.

(a) (b)

Figure 3.15: Synthesized range-Doppler spectrum of the road surface conditions as defined in Fig. 3.13 using
a forward looking antenna with a cosine-squared pattern, moving at a speed of 15 km/h as observed in the: (a)
𝑉 𝑉 -polarised channel; and (b) 𝐻𝐻-polarised channel.

is visible. This line corresponds to the gravel on the side of the road which is about this
distance away from the radar antenna. Note that it is easier to observe this line in the 𝐻𝐻-
polarised channel as the contrast between the gravel and dry asphalt is larger due to the
larger difference in normalised RCS in this channel as can be seen from Figs. 3.2a and 3.2c.

Finally, it should be noted that in this section, the presented synthesis results were com-
puted up to a distance of 3 metres as the normalised radar cross section is largest and shows
the most variation in this area. This distance is likely still enough for e.g., automatic anti-
lock braking system adjustments given the processing capabilities of modern automotive
on-board computers even when the vehicle’s velocity is significant. However, the proposed
synthesis method can be made arbitrarily large, and is limited only by the accuracy of the
statistical normalised RCS models at shallow angles of incidence that correspond to these
larger ranges.
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3.6.4. Optimal Polarisation Selection
The models of the normalised RCS of the road surface types can also be used to determine
the optimal sensing wave polarisation for single-polarised radar and other polarimetric ap-
plications such as filters to increase or suppress scattering from road surfaces. By factorising
the antenna polarisation vector in two quantities, the optimal polarisation for minimising or
maximising the received power from a target of interest can be determined numerically as
described in section 3.4.

As an example, this procedure is performed on the four different measured road surface
types. The results for the normalised RCS models at a distance of 68 cm, the distance at
which the surface scattering contributions are highest, are shown in Fig. 3.16. These figures
show the normalised received power as function of sensing wave polarisation. It can be
seen that in the case of dry, wet, and old asphalt, maximum received power is achieved
for a value of 𝐴 of 1, which corresponds to vertical polarisation. In the case of basalt-
covered asphalt, horizontal polarisation (𝐴 = 0) would result in maximum received power.
However, as can be seen from Fig. 3.16c, using vertical polarisation results for basalt-
covered asphalt in a loss of less than 1 dB compared to a horizontally polarised sensing
wave. This observation is backed up by the normalised RCS models as shown in Fig. 3.2c,
as the normalised 𝑉 𝑉 -polarised RCS is within 1 dB of the normalised 𝐻𝐻-polarised RCS.
Therefore, it can be concluded that for a single-polarised radar system, a vertically polarised
sensing wave is optimal when the goal is to maximise the backscattered return from the
measured road surface types.

However, the situation for suppressing returns from the road surface is less obvious as all
four measured road surface classes have their minima located at different polarisations. In
the case of wet asphalt, minimal return is achieved at linear polarisation that is slightly offset
from horizontal polarisation (𝐴 ≈ 0.2, 𝛿 ≈ ±180∘) while for the other three classes elliptical
polarisations should be used. In the case of dry asphalt, a polarisation with 𝐴 ≈ 0.55 and
𝛿 ≈ ±100∘ would yield best results, whereas for basalt-covered asphalt a polarisation with
𝐴 ≈ 0.75 and 𝛿 ≈ ±100∘ would. In the case of old asphalt, a polarisation with 𝐴 ≈ 0.7
and 𝛿 ≈ 70∘ would result in minimal returned power.

Since there is no polarisation that achieves minimal received power for all road surface
condition classes, a designer of a single-polarised radar system must perform a trade-off
to achieve optimal performance regarding antenna polarisation. For example, the designer
must consider the relative frequency with which the road surface conditions occur. Namely,
if the wet and basalt-covered road surface conditions are expected to show up very rarely,
it would be beneficial to select the polarisation that achieves minimal received power for
dry asphalt. Another considerations that may play a role is the absolute amount of power
received from a road surface type, e.g. power backscattered from wet asphalt could already
be negligible compared to that from the targets-of-interest and thus the wet asphalt could be
left out of the analysis.

Thus, to reach optimal performance regarding the signal to clutter ratio, in practice a
designer has to formulate a score function that should for example contain weighting factors
based on relative frequency of appearance of the to be suppressed clutter type, as well as the
magnitude of the RCS of said clutter. Also, the score function should contain weights for
the RCS models of targets-of-interest based on the same factors as previously mentioned
for clutter to increase the received power from the desired targets as much as possible to
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(a) (b)

(c) (d)

Figure 3.16: Normalised returned power in decibels for a single-polarised radar system for the four measured road
surface classes at a distance of 68 cm from the antenna located 38 cm above the surface. (a) Dry asphalt. (b) Wet
asphalt. (c) Asphalt covered by basalt split ranging in size from 2 to 8 mm. (d) Old asphalt.

eventually maximise the signal to clutter ratio.

3.7. Conclusions
A novel method of deriving the statistical properties of surface backscattering from range
profile measurements is proposed. The method is based on modelling the surface as a col-
lection of uncorrelated scattering elements, with all elements having a normalised scattering
matrix that is characterised by a multivariate distribution. Assuming the surface-under-test
is isotropic and that all surface scattering elements within one range bin experience the same
angle of incidence, it is shown that the mean value and covariance can be computed from
measured range profile data.

This method is then applied to measurement data collected with a VNA equipped with a
dual-polarised horn antenna in the frequency band ranging from 75 to 85 GHz. It is shown
that the statistical properties of two different types of asphalt as well as three different road
surface conditions could be determined successfully, thus demonstrating the general appli-
cability of the method. Specifically, relatively new unused and heavily used old asphalt
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were considered where the new asphalt type was measured in three different conditions
which were dry, wet, and covered with basalt gravel. It is shown that gravel-covered as-
phalt and old asphalt behave as an electromagnetically rough surface as both magnitudes
of co-polarised radar cross sections are on the same level, and show a decay as function of
incident angle corresponding to a cosine, leading to the conclusion that these surface classes
resemble Lambertian scattering behaviour. For the dry and wet asphalt surface types, the
co-polarised radar cross sections show an increasing difference between the vertically and
horizontally polarised RCS with an increase of the incident angle. In the case of dry as-
phalt, this difference increases from less than 1 dB to over 4 dB in favour of the vertically
polarised RCS. In the case of wet asphalt, the radar cross section was found to be over 10
dB lower than that of dry asphalt. As with the RCS of dry asphalt, the 𝐻𝐻-polarised RCS
decreases with incident angle quicker than the 𝑉 𝑉 -polarised RCS. Furthermore, it can be
seen that the contribution of multiple scattering events to the total received backscattered
power is relatively marginal for all four road surface classes as the cross-polarised radar
cross sections are significantly lower than the co-polarised ones.

Also, measurements of two types of brick pavements were performed. The first surface
class comprised a type of red brick laid in a 45° herringbone bond pattern, while the second
type consists of a type of grey brick, laid in a running bond pattern. Both surfaces were
measured in driving direction and perpendicular to this direction.

It is shown that for the red brick pavement, the variation in NRCS is relatively limited
between driving and perpendicular directions, while for the grey brick surface, the NRCS
showed significant differences. From the computed NRCSs, it was found that this behaviour
can likely be explained by the orientation of slits between the bricks, which increase the HH-
polarised RCS significantly when perpendicular to the radar.

Both surface types were also measured in wet conditions in the driving direction to study
the impact of the water layer in terms of reduction of the scattering contributions of the slits
between bricks. Here, it was found that the water layer significantly influences the NRCS of
the grey brick type, while the variation of the NRCS of the red brick pavement is relatively
little.

Furthermore, two applications of the derived statistical normalised radar cross section
models are proposed. Firstly, a novel procedure to synthesize surface clutter in range pro-
files, range-angle plots and range-Doppler spectra is proposed. This procedure is subse-
quently applied to simulate range profiles and range-Doppler spectra of a dry asphalt sur-
face and excellent agreement with measured range profiles is shown. The procedure is also
demonstrated to be able to simulate surface scattering from a surface consisting of multiple
different road surface conditions. It is shown that for example a puddle of water in front
of the radar platform and gravel to the side of the platform respectively de-emphasize and
emphasize corresponding areas in the range-Doppler spectrum.

Secondly, a novel method for determining the optimal sensing wave polarisation for a
single-polarised radar system based on (statistical) RCS models is presented. This proce-
dure utilises a factorisation of the antenna polarisation vector in two different parameters,
namely 𝐴 and 𝛿. Since these parameters are respectively bounded by 0 and 1 and -180° and
+180°, the maxima and minima of the received power can be found numerically. It is shown
that the optimal sensing wave polarisation depends on the intended application of the radar
system and that the proposed method can be used to find this optimum. Using the proposed
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procedure and the normalised RCS models of the four measured road surface types, it is
determined that a 𝑉 -polarised sensing wave is optimal to maximise the return from the road
surface, which is beneficial when the automotive radar system is intended for e.g., road sur-
face conditions classification. For different applications, it is demonstrated that to find the
optimal polarisation for a single-polarised radar system to achieve optimal signal-to-clutter
ratio, a score function that includes amongst others weighting factors for each considered
target class based on the relative frequency of appearance and the magnitude of the RCS of
such a target has to be defined. By subsequently using this score function in conjunction
with the proposed method, the optimal polarisation for the radar application corresponding
to that score function can be determined.
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Classification of Road

Surfaces using Polarimetric
H/α/A Features in

Automotive Scenarios

Using the results obtained from chapters 2 and 3, a classification method
for identifying road surfaces in various conditions is developed. The signal
processing pipeline for this purpose that is introduced in this chapter is based
on the polarimetric 𝐻𝛼𝐴 decomposition, a concept whichwas previously used
in, amongst others, synthetic aperture radar applications from space.

Parts of this chapter have been published as:

W. Bouwmeester, F. Fioranelli, and A. Yarovoy, “Convergence of Scattering Parameters and HαA-Features of
Road Surfaces”, in 20th European Radar Conference (EuRAD), Berlin, Germany, 2023.
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4.1. Introduction
In an effort to increase on-road safety, more and more vehicles are being equipped with
advanced radar systems. These radar systems are usually employed to detect, and in many
cases also classify, other road users and obstacles. Automotive radar systems for the 24
GHz band are being phased out and a transition to the new 77 GHz band has largely been
completed [12, 13]. This has presented a new opportunity to use these radar systems to
observe road surface conditions in front of the vehicle. Namely, the rough structure of road
surfaces results in more power that is scattered back to the radar sensor in the 77 GHz band
compared to the 24 GHz band due to the shorter wavelength.

On the one hand, this causes the radar to detect more clutter. However, instead of con-
sidering these returns as clutter, they can also be used in an effective way to estimate the
road surface conditions in front of the vehicle, e.g. whether the road surface is dry, wet or
icy, or covered with potentially slippery material. Information on the road surface condi-
tion up ahead is crucial for improving driving safety systems such as the anti-lock breaking
system and electronic stability control. If these systems can be provided with an estimation
of the road surface conditions up ahead, they could already be tuned closer to the right op-
erating point to minimise braking distance and maximise vehicle stability [35]. In the case
of fully-autonomous driving, dangerous road surface conditions such as a patch of ice could
be automatically steered around altogether.

Road surface classification has been investigated using conventional (single polarised)
radar; a few notable examples of this can be found in [7, 17, 36, 37]. In [17, 36], convolu-
tional neural networks are used on vertically polarised radar imagery of sandpaper and rough
surface types, while in [7] the statistical distribution of vertically polarised backscattering
from a number of road surface conditions was studied. Also in [37], surface classification
was performed by fitting a Weibull distribution to the backscattered power and studying the
resulting variation of the distribution parameters.

Polarimetric radar has the distinct advantage that the full polarimetric characteristics of
the targets of interest are measured. As different targets have different polarimetric charac-
teristics, the extra information provided by this ability can be used for classification. This is
for example routinely used in the context of remote sensing, target classification andweather
radar [38–40]. Surfaces have distinctive polarimetric scattering behaviours depending on
surface roughness (i.e., parameters such as the root mean square height and correlation func-
tion) and material properties [41]. This makes polarimetric radar a great candidate to exploit
different scattering behaviours for road surface classification purposes in the automotive
context.

Previous publications have considered using polarimetric features for road surface iden-
tification [6, 28, 42]. In that research, simple polarimetric features such as the co-polar
and cross-polar backscattering ratios have been utilised. More specifically, [42] and [28]
consider the use of polarisation ratios. These include co-polarised horizontal and vertical
backscattering ratios, as well as cross-polar backscattering ratios. In [6], the mean powers in
the co- and cross-polarised channels were investigated, as well as their standard deviations.

While effective, these features are relatively simple and do not necessarily exploit the
whole amount of rich information that can be inferred from more complex polarimetric
decompositions. In this work, the polarimetric approach is taken to the next level by intro-
ducing a novel processing pipeline specifically designed for automotive radar based on the
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𝐻𝛼𝐴 decomposition for road surface identification purposes.
The 𝐻𝛼𝐴 decomposition is known from the field of remote sensing and Earth observa-

tion and has been successfully applied to data from, amongst others, synthetic aperture radar
[38]. This decomposition operates on the statistical properties of the polarimetric signatures
of an object to extract the𝐻 , 𝛼 and 𝐴 features. Their importance relates to the fact that they
can model and capture the physical scattering processes occurring within said object. For
example, in the case of Earth observation with synthetic aperture radar, scattering that is
characterised by an entropy value, denoted 𝐻 , between 0.5 and 0.9 and an 𝛼 value between
40° and 50° corresponds to scattering from anisotropic particles, while scattering with an
entropy value between 0 and 0.5 and an 𝛼 value between 0° and 42.5° corresponds to Bragg
surface scattering [32].

However, the 𝐻𝛼𝐴 decomposition as applied in the aforementioned applications, can-
not be used directly in automotive radar. This is due to differences in observation geometry
and platform movement. Therefore, to investigate the effectiveness of the proposed ap-
proach based on 𝐻𝛼𝐴 features for road surface identification purposes, a novel processing
pipeline is proposed to compute these features in the automotive scenario. The proposed
pipeline compensates for the strongly varying distance between observed road surface re-
turns that occurs due to the observation geometry of the automotive scenario, and proposes
a new way of averaging of the scattering parameters for computing the coherency matrix.

Subsequently, measurement data of rough surface scattering in both lab conditions as
well as outdoors on actual road surfaces has been collected using a vector network analyser.
This data is then used to evaluate the proposed pipeline. Furthermore, using the measure-
ment data, a polarimetric analysis is performed to investigate the performance impact on
road surface identification when the cross-polar components are omitted. Notably in this
case, if the cross-polar channels do not have to be measured, the ADCs (analogue to digital
converters) of 𝐻 and 𝑉 channels do not have to be synchronised to each other thus making
the hardware implementation easier. This means that such a radar could be constructed out
of two separate single polarised radar systems. Also, since the backscattered power in the
cross-polarised channels is usually much lower, requirements on the sensitivity of the radar
system can be relaxed by leaving the cross-polar channels out. The results of the polarimet-
ric analysis can then be used by radar designers to make a trade-off between performance
and radar complexity leading to cost savings by leaving out cross-polar measurement capa-
bilities.

In terms of contributions of this work, the obtained results show that the proposed
pipeline is effective for road surface classification purposes and provides a robust alter-
native to a state-of-the-art classification technique based on polarimetric ratios. It has also
been shown that the cross-polar components can be neglected, at the cost of reduced sepa-
ration between clusters formed by the 𝐻 , 𝛼 and 𝐴 features of the considered classes of road
surfaces.

The rest of this chapter is laid out as follows: in section 4.2, an introduction to the
𝐻𝛼𝐴 decomposition is provided. Section 4.3 describes the measurement setup and the
measurement procedure whilst section 4.4 describes the proposed pipeline for road surface
identification. In section 4.5 the experimental results are presented and the convergence of
the𝐻 , 𝛼, and𝐴 features is discussed in section 4.6. The chapter concludes with section 4.7.
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4.2. Theoretical Background
The 𝐻𝛼𝐴 decomposition, introduced by Cloude and Pottier and originally developed for
synthetic aperture radar, does not depend on knowledge of statistical distributions of targets,
but assumes instead that there is a dominant average scattering mechanism and tries to find
the characteristics of this scattering process [38]. The approach is based on Eigendecompo-
sition of the so called coherency matrix 𝑇 .

The computation of the 𝐻 , 𝛼 and 𝐴 features works as follows. The first step is to com-
pute the target vector �⃗� as shown in (4.1), where 𝑆𝑋𝑋 refers to the co-polar scattering matrix
element for 𝑋 polarisation, measured in a 𝑋𝑌 polarisation basis [32]. In this equation, 𝑇

indicates the transpose operator.

�⃗� = 1√
2

[𝑆𝑋𝑋 + 𝑆𝑌 𝑌 𝑆𝑋𝑋 − 𝑆𝑌 𝑌 2𝑆𝑋𝑌 ]𝑇
(4.1)

In this chapter, a vertical/horizontal polarisation basis is used which leads to 𝑋 corre-
sponding to 𝑉 polarisation and 𝑌 to 𝐻 polarisation. Subsequently, using this target vector,
the coherency matrix can be computed as shown in (4.2), where † indicates the conjugate
transpose operator and the angle brackets indicate averaging.

𝑇 = ⟨�⃗��⃗�†⟩ (4.2)

In synthetic aperture radar applications, this averaging is usually done over multiple
cells in space where these cells contain the same (type of) object. However, for the proposed
road surface classification approach in automotive scenarios, this averaging step can also
be performed in a different manner as described in section 4.4.5.

Next, an Eigendecomposition is performed on the coherencymatrix, resulting in 3 eigen-
values, denoted by 𝜆𝑖, in order from larger to smaller, with 𝜆1 being the largest and 𝜆3 the
smallest. The eigenvector corresponding to each eigenvalue 𝜆𝑖 is denoted by ⃗𝑢𝑖.

For each of the three eigenvalues, a pseudo-probability 𝑃𝑖 can be computed as shown
in (4.3) [32].

𝑃𝑖 = 𝜆𝑖
3

∑
𝑘=1

𝜆𝑘

(4.3)

Using the pseudo-probabilities corresponding to each eigenvalue, the entropy feature,
denoted by 𝐻 , can be computed as shown in (4.4) [38].

𝐻 = −
3

∑
𝑖=1

𝑃𝑖 log3 𝑃𝑖 (4.4)

The entropy feature is a measure of how random the backscattering from a target is and
whether or not there is one dominant scatteringmechanism occurring, or if there are multiple
dominant scattering mechanisms at play. When there is only one dominant scattering mech-
anism, the entropy is low and indicates deterministic scattering. When there are multiple
dominant scattering mechanisms present, the observed scattering mechanism varies from
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observation to observation thus indicating a random scattering character which corresponds
to a high entropy value.

Each eigenvector ⃗𝑢𝑖 can be represented in the form as shown in (4.5) [32].

⃗𝑢𝑖 = ⎡⎢
⎣

cos𝛼𝑖𝑒𝑗𝜙𝑖

sin𝛼𝑖 cos𝛽𝑖𝑒𝑗(𝛿𝑖+𝜙𝑖)

sin𝛼𝑖 sin𝛽𝑖𝑒𝑗(𝛾𝑖+𝜙𝑖)
⎤⎥
⎦

(4.5)

By using the identity shown in (4.5), the values of 𝛼𝑖, 𝛽𝑖, 𝜙𝑖, 𝛿𝑖 and 𝛾𝑖 can be computed
for each eigenvector. Subsequently, the feature 𝛼 can be found by computing a weighted
average based on the pseudo-probabilities, as shown in (4.6) [32].

The angle 𝛼 indicates the nature of the average scattering mechanism. For example, an
𝛼 value of 0° relates to scattering from a spherical target whereas values of 45° and 90°
correspond to scattering from anisotropic particles and dihedrals, respectively [32].

𝛼 =
3

∑
𝑖=1

𝑃𝑖𝛼𝑖 (4.6)

Finally, the anisotropy feature 𝐴 can be computed as in (4.7).

𝐴 = 𝜆2 − 𝜆3
𝜆2 + 𝜆3

(4.7)

The anisotropy feature 𝐴 indicates how much of a role the eigenvector with the smallest
eigenvalue has in the scattering process compared to the second-largest. This indicates the
relative importance of the second scattering mechanism compared to the third scattering
mechanism in the averaged response.

These three features can subsequently be used to make a classification of targets. In
the case of synthetic aperture radar for Earth observation, the 𝐻 and 𝛼 features are often
plotted against each other, creating a 𝐻𝛼-plane. This plane is subdivided in a number of
sectors, where for example the sector that is delimited by 𝐻 < 0.5 and 𝛼 > 47.5∘ corre-
sponds to scattering from a dihedral reflector and the sector delimited by 0.5 < 𝐻 < 0.9
and 𝛼 < 40∘ corresponds to scattering from a random surface [32]. This direct relation
to the underlying physical scattering mechanisms give the 𝐻𝛼𝐴 decomposition a distinct
advantage over simpler features such as the co-polar/cross-polar ratios, or mean values and
standard deviations of polarimetric channels.

The background theory presented in this section relates to the application of the 𝐻𝛼𝐴
decomposition for Earth observation. Section 4.4 discusses the proposed extra steps to apply
this decomposition to the automotive scenario.

4.3. Experimental Measurements
In this section the experimental setup is described, together with the measurement procedure
in the laboratory, as well as the procedure for outdoor measurements.

4.3.1. Measurement Setup
Measurements were performed with a N5242A Vector Network Analyser (VNA) with two
N5260-60003 frequency extenders to be able to operate in the band ranging from 75 to 85
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Figure 4.1: Photograph of the measurement setup as used for outdoor measurements. The setup consists of a VNA
with mm-wave extenders connected to a dual-polarised horn antenna with a controllable antenna orientation angle
to measure the surface-under-test under various angles of incidence.

GHz. The frequency extenders have WR-10 waveguide output sections, to which a 15 dBi
gain dual-polarised horn antenna of type SAR-1532-122-S2-DP [43] was connected using
the required waveguide sections. The vertically polarised port of the antenna was connected
to the first port of the VNA, while the horizontal port was connected to the second.

A supporting structure was purposely built to which the frequency extenders and dual
polarised horn were attached. This structure allows for controlling the orientation angle of
the antenna in the vertical plane relative to the surface under test. The antenna orientation
angle is defined as the angle the surface normal forms with the antenna broadside. In this
way, the samples can be measured under various angles of incidence (Fig. 4.1).

4.3.2. Measurement Procedure
Measurements were performed both under lab conditions indoor, and outdoors on real road
surfaces.

During the lab measurements, 3 types of sandpapers of different coarseness were used
as surface samples, to be more specific P24, P60 and P100. Here, P24 is the coarsest type of
measured sandpaper while P100 is the finest. Sandpaper was selected as a suitable sample as
it provides a surface of controlled roughness which is uniform over the whole sheet. The P24
type was selected as it was the coarsest sandpaper available on the market that is supplied
as large sheets. The P100 type was chosen as a relatively smooth sample while the P60 type
was used as an intermediate step. According to standards of the Federation of European
Producers of Abrasives, P24 grit sandpaper has an average particle size of 764 µm, while
P60 and P100 types have average particle sizes of 269 µm and 162 µm respectively [44].
The root mean square (RMS) height is approximately linearly dependent on average particle
size as seen from [45], leading to an estimated RMS height of 220 µm for the P24 type, while
the reported RMS height for the P60 and P100 types is 84 µm and 41 µm respectively. All
sandpaper sheets measured at least 1.5 metres by 2 metres so that the -10 dB footprint of the
antenna beam, for an antenna orientation angle of 60°, is well contained within the sample.
The -10 dB antenna beam footprint was computed by using the procedure outlined in [30],
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(a) (b)

(c)

Figure 4.2: Pictures of the measured road surface conditions. (a) Dry asphalt. (b) Wet asphalt. (c) Asphalt covered
with gravel, consisting of basalt split with sizes ranging from 2 to 8 mm.

and was found to be an oval of dimensions 95 cm by 44 cm.
In order to collect statistically independent samples, which are needed to compute the

coherency matrix as described in section 4.2, the sandpaper sheets were moved a few cen-
timetres in between measurements to ensure that the surface within the antenna beam foot-
print would be uncorrelated with the previously measured area of the sheet. This is ana-
logues to a car driving along a surface while performing measurements over time, resulting
in measurements of uncorrelated surfaces for each time point. For each sandpaper sample,
this procedure was repeated 50 times. To ensure stability of the measurements, every tenth
measurement an additional measurement without sample was performed and compared to
the background measurement done ten measurements before. These background measure-
ments were also used for the background subtraction procedure as described in section 4.4.1.

For the measurements that took place outdoors, the measurement setup was placed on
a trolley so that it could be moved easily as seen in Fig. 4.1. Several different road surface
conditions were measured, namely asphalt under dry conditions, asphalt under wet condi-
tions, and asphalt covered with gravel as one may encounter during roadworks (Fig. 4.2).
All road surface conditions were measured for two antenna orientation angles. These were
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Figure 4.3: Block diagram of the proposed signal processing pipeline for road surface identification for automotive
applications using the 𝐻, 𝛼 and 𝐴 features.

60°, to replicate lab conditions and 90°, to replicate forward looking radar systems.
The measurement procedure for the outdoors measurements on asphalt was mostly the

same as the lab measurements, except for moving the surface under test: in this case the
measurement setup was moved instead. First, measurements were performed on asphalt
under dry conditions. Subsequently, to emulate asphalt under wet conditions, buckets of
water were poured over the previously measured area of asphalt. Every 10 measurements,
more water was poured on the asphalt to keep the water layer consistent. Lastly, gravel,
in the form of basalt split ranging from 2 to 8 mm in size was spread out over a dry part
of asphalt and measured. As with the lab measurements, for each road surface condition
and each antenna orientation angle, the backscattering from the asphalt road surface was
measured in 50 uncorrelated spots to obtain representative statistical data.

4.4. Proposed Signal Processing Pipeline
The proposed processing pipeline comprises six parts. These are background subtraction,
phase correction, time-domain transformation, footprint compensation, averaging and fi-
nally the𝐻𝛼𝐴 decomposition. The block diagram in Fig. 4.3 shows this processing pipeline
schematically. The following sections describe each block in more detail.

4.4.1. Background Subtraction
A vector network analyser (VNA) measures S-parameters, which in the case of propagation
measurements can be considered to be a ratio of a received electrical field over a transmitted
electrical field. The received field can be decomposed due to the superposition principle in
a contribution to the received electrical field by the sample and a contribution from the
background. Therefore, the measured S-parameters can be written as shown in (4.8).

𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐸𝑠𝑎𝑚𝑝𝑙𝑒 + 𝐸𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

(4.8)

By performing a measurement without any samples in the scene, the measured field
is effectively purely the result of the background, which includes the response of the an-
tenna and other static objects that may be present in the scene. In this way, only the ratio
of 𝐸𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 and 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 is measured, which can be subtracted from measurements
performed with samples present. This results in a removal of background effects and thus
a clean S-parameter measurement of purely the surface-under-test. In Fig. 4.4, the result of
this compensation procedure is shown. This figure shows the vertically polarised co-polar
measurement results of a metal sphere placed at about 51 cm from the radar. The mea-
surement results have been transformed from frequency domain, in which the S-parameters
are naturally measured, to time domain so that a radar range profile is found. For more
information on the time domain transformation, see section 4.4.3.
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Figure 4.4: Comparison of time domain transformed measurement data before and after background subtraction.
The target is in this case a metal sphere with a diameter of 3 cm and is located at a range of 0.51 m from the antenna.

During the lab measurements, the sample could be easily removed and thus the back-
ground could be measured very accurately. However, for outdoor measurements, the road
surface is the actual sample which obviously could not be removed. Therefore, to still be
able to compensate for the antenna influences in the measurement results, the antenna was
pointed towards the sky and a background measurement was performed. By subtracting this
background from the measurement result, the scattering effects induced from the antenna
response are suppressed.

4.4.2. Phase Correction
For measurements to which the 𝐻𝛼𝐴 decomposition is to be applied on, special attention
must be paid to the phase measured in each polarimetric channel. Namely, if the horizontally
and vertically polarised channels are not balanced in length, a range-dependent phase error
occurs. This may lead to a target appearing to be at a different range in one polarimetric
channel than in another. Also, an absolute offset in phase between the channels can be
present due to e.g., the way an antenna is fed, which likewise can distort the measurement
results and the resulting feature values.

Although the measurements in this chapter were performed using a symmetrical dual-
polarised square horn antenna, the feeding network from the frequency extenders to the horn
antenna is not exactly symmetrical and thus the phase of the measured scattering parameters
needed to be corrected. Hence, a method to correct this phase difference was developed,
based on measurements of a metal sphere.

A metal sphere approximates a point target and has the same radar cross section (RCS)
for both horizontal and vertical co-polarised measurements due to its symmetry, while its
cross-polar radar cross sections are 0 when the sphere is large compared to the wavelength.
Therefore, a sphere with a diameter of 3 cm was chosen. Since the co-polar components of
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the sphere’s RCS are equal, measurements of this reference target can be used to determine
the phase offset of both horizontal and vertical channels, and can subsequently be used to
compensate all four elements of the scattering matrix. These calibration measurements were
performed before the start of each measurement session.

The first step in determining the phase offset is by applying time-domain gating to mea-
surement data of the sphere [46]. This procedure filters out the contribution of scatterers
other than the sphere that may be present in the scene, so that the sphere itself becomes
the dominant target. As the sphere resembles a discrete target, the phase of the scattering
parameters follows a linear decrease with frequency.

Subsequently, for each co-polarised channel, the phase is unwrapped and a function of
form 𝜙𝑝𝑝 = 𝑎𝑝𝑝𝑓 + 𝑏𝑝𝑝 is fitted to the unwrapped phase where 𝜙 represents phase, 𝑓 fre-
quency and subscript 𝑝 indicates the polarisation channel which can be 𝐻 or 𝑉 . Therefore,
the parameter 𝑎 corresponds to the phase gradient, which is dependent on the range to the
target, while 𝑏 corresponds to an absolute phase offset within the channel.

In order for each channel to detect the sphere at the same range, the phase gradients
of both co-polar channels need to be equal. Therefore, the vertically polarised channel is
chosen as the reference channel and the phase gradient of the horizontally polarised channel
is corrected so that equality of phase gradients is achieved by considering the difference
between the gradients. Subsequently, the 𝑏𝑝𝑝-component of the phase compensation is se-
lected such that for each channel, the phase is 0 degrees at 75 GHz after compensation.
This compensation is shown in mathematical form in (4.9) for the horizontal co-polarised
channel.

𝑆𝐻𝐻,𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 = 𝑆𝐻𝐻,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑒𝑗(𝑎𝑉 𝑉 −𝑎𝐻𝐻)𝑓+𝑏𝐻𝐻 (4.9)

Due to the nature of the antenna setup used for these measurements, the cross-polar
channels can be compensated as well. Namely, the electromagnetic radiation travels once
through the 𝑉 -polarised channel and once through the 𝐻-polarised channel. Therefore, the
length of the cross-polar channels can be compensated using half of the compensation differ-
ence, as shown in (4.10). The 𝑉 𝐻 channel can be compensated similarly by interchanging
𝐻𝑉 and 𝑉 𝐻 .

𝑆𝐻𝑉 ,𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 = 𝑆𝐻𝑉 ,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑒𝑗 (𝑎𝑉 𝑉 −𝑎𝐻𝐻)
2 𝑓 (4.10)

Fig. 4.5 shows the effect of the proposed phase correction procedure. It can be seen that
the phase correction procedure shifts the peak resulting from the calibration target, so that
in the 𝐻𝐻-measurement this peak coincides with the peak in the 𝑉 𝑉 -measurement.

4.4.3. Time-Domain Transformation
Since measurements are performed using a VNA, all S-parameter measurements are a func-
tion of frequency. To extract the range profile, they must be transformed to time domain.
This can be done by means of Fourier transformation. If necessary, a window function can
be used such as a Kaiser window. Furthermore, in this step the range profile can also be
interpolated using zero-padding in frequency domain. In order to keep the distortion of the
measured S-parameters minimal, no window function was used and no zero-padding was
employed in the 𝐻𝛼𝐴 decomposition procedure.
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Figure 4.5: Comparison of time domain transformed measurement data before and after the proposed phase cor-
rection procedure on the 𝐻𝐻 channel. The observed target is a metal sphere with a diameter of 3 cm located at
0.51 m. Note that the double peak in the 𝐻𝐻 polarised channel is caused by a multipath reflection via the floor.

4.4.4. Footprint Compensation
The S-parameters from the time-domain transformed measurements cannot directly be used
to compute the coherency matrix. Namely, unlike in airborne or spaceborne synthetic aper-
ture radar applications, the observed cells are not located at a comparable distance from
the radar. Due to the geometry of the automotive scenario, large differences in propaga-
tion distance exist between backscattered contributions originating from road surface areas
close to the radar versus those from road surface further away. Therefore, the free space
attenuation will cause great differences in the magnitude of the backscattered contributions,
which needs to be compensated for. Moreover, in the automotive scenario, the observed
cells also experience different observation angles as seen from the antenna, which leads to
large differences in antenna gain for each observed range cell. This must be compensated
as well. These two effects are apparent from the radar equation which is shown in (4.11):

𝑃𝑟𝑥 (𝑥, 𝑦) = 𝐺𝑡𝑥 (𝑥, 𝑦) 𝐺𝑟𝑥 (𝑥, 𝑦) 𝜆2𝐴𝜎0 (𝑥, 𝑦)
(4𝜋)3 𝑅4 (𝑥, 𝑦)

𝑃𝑡𝑥. (4.11)

Here, 𝑃𝑟𝑥 is the received power from a surface cell and𝑃𝑡𝑥 is the transmitted power. 𝐺𝑡𝑥
and𝐺𝑟𝑥 are the gains of the transmitting and receiving antenna, respectively. 𝑅 indicates the
range to an observed surface patch, while𝐴 is the surface area of the observed surface patch
with a normalised radar cross section 𝜎0. Lastly, (𝑥, 𝑦) indicates the surface cell location
dependency of the variables in the equation, and 𝜆 is the wavelength the radar operates at.

To accomplish correction of the two effects, the total power returned by each surface cell
for a surface is computed using a numerical procedure described in [30]. This procedure
works by discretising a flat surface in many small cells, each having a corresponding area
𝐴. Subsequently, the observation angles, ranges, and incidence angles for the centre points
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of these surface cells are calculated using the equations in [30]. By setting the normalised
radar cross section 𝜎0 and the transmitted power 𝑃𝑡𝑥 to 1, the power returned from each cell
can be found, thus revealing the footprint of the antenna. This leads to equation (4.12):

𝑃0 (𝑥, 𝑦) = 𝐺𝑡𝑥 (𝑥, 𝑦) 𝐺𝑟𝑥 (𝑥, 𝑦) 𝜆2𝐴
(4𝜋)3 𝑅4 (𝑥, 𝑦)

. (4.12)

Therefore, the normalised radar cross section of a surface with unknown 𝜎0 can be found
as shown in (4.13):

𝑃𝑟𝑥 (𝑥, 𝑦)
𝑃0 (𝑥, 𝑦) 𝑃𝑡𝑥

= 𝜎0 (𝑥, 𝑦) . (4.13)

As the range profile is defined as the total power received from all targets within a spe-
cific range interval, also known as range bin, the range profile can be computed by summing
the returned powers of each surface cell in the corresponding range bin. This procedure is
mathematically shown in (4.14) where𝑁 is the number of range cells within a range interval
𝑙, with 𝑃𝑟𝑥 (𝑖) indicating the power returned by the 𝑖-th cell in the range interval.

𝑃𝑟𝑎𝑛𝑔𝑒 (𝑙) =
𝑁

∑
𝑖=1

𝑃0 (𝑖) (4.14)

Since (4.14) is a linear operation, through its combination with (4.13), 𝜎0 can be found
using (4.15) where 𝑃𝑟𝑎𝑛𝑔𝑒 is the measured range profile by the radar, and 𝑃𝑟𝑎𝑛𝑔𝑒,0 is the
”normalised” range profile found by computing the range profile of (4.12).

𝜎0 (𝑙) = 𝑃𝑟𝑎𝑛𝑔𝑒 (𝑙)
𝑃𝑟𝑎𝑛𝑔𝑒,0 (𝑙) 𝑃𝑡𝑥

(4.15)

Since S-parameters describe field strengths instead of power as the RCS does, the mea-
sured S-parameters can be compensated for the antenna footprint by dividing them by the
square root of the ”normalised” range profile as shown in (4.16), where 𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 are the
measured S-parameters which can be found by dividing the received field by the square root
of the transmitted power. Subsequently, the S-parameters can now be used to compute the
coherency matrix and the 𝐻𝛼𝐴 decomposition as described in section 4.2.

𝑆𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 (𝑙) = 𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑙)
√𝑃𝑟𝑎𝑛𝑔𝑒,0 (𝑙)

(4.16)

4.4.5. Averaging
In synthetic aperture radar, the averaging for obtaining the coherency matrix is usually per-
formed in the spatial domain, meaning that surrounding pixels in the obtained imagery are
grouped together to compute statistics. This can be expressed as shown in (4.17):

⟨𝑥 (𝑘, 𝑙)⟩ =
𝑘+𝑁
∑

𝑖=𝑘−𝑁

𝑙+𝑀
∑

𝑗=𝑙−𝑀

𝑥 (𝑖, 𝑗)
(2𝑁 + 1) (2𝑀 + 1) . (4.17)
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In this equation, ⟨𝑥 (𝑘, 𝑙)⟩ is the average of a quantity 𝑥 of the cell at location (𝑘, 𝑙). The
parameters 𝑁 and 𝑀 define the window size along the two dimensions of the image while
𝑥 (𝑖, 𝑗) is the value of quantity 𝑥 in the cell with index (𝑖, 𝑗). In this equation, 𝑥 could for
example be the backscattered power from a cell, or, in the case of computing the coherency
matrix, an element from the target vector multiplied by its conjugate self.

In the automotive scenario, this type of averaging is less suitable. Namely, this would
mean that a range-interval of the range profile is used for the averaging, which is not nec-
essarily valid as this will contain backscattering from road surfaces observed at different
angles of incidence. This is especially true for surface backscattering located at relatively
short range from the radar. As the incidence angle plays an important role in the scattering
behaviour of the rough surface, the range-interval will not contain samples from the same
statistical process, thus leading to invalid estimated statistical properties in the coherency
matrix.

However, the automotive scenario provides an opportunity to perform the averaging
differently. Instead of averaging over space, the averaging can be performed over time.
Namely, modern automotive radars transmit many chirps per second, so that averaging can
take place over each obtained range profile. In this way, every range bin corresponds to
backscattering from road surface under the same angle of incidence. Also, since the vehicle
is moving, a different part of the road surface is encompassed by the antenna beam footprint,
thus leading to samples independent from each other taken from the same statistical process.
Mathematically, this can be formulated as:

⟨𝑥 (𝑙)⟩ =
𝑁

∑
𝑖=1

𝑥𝑖 (𝑙)
𝑁 . (4.18)

In (4.18), ⟨𝑥 (𝑙)⟩ indicates the average of a quantity 𝑥 in range bin 𝑙 and 𝑥𝑖 (𝑙) indicates the
value of the quantity 𝑥 in range bin 𝑙 at measurement time index 𝑖. 𝑁 is the number of
measurements used to perform the averaging.

4.4.6. HαA Decomposition
The last step is computing the features from the coherency matrix as shown in (4.2) in
combination with the averaging explained in section 4.4.5. This can be done using (4.3) to
(4.7). Subsequently, the features can be plotted in various formats and be fed to a classifier
for automatic classification.

4.5. Experimental Results
This section presents the results of applying the proposed pipeline to measurements in the
laboratory, as well as those from measurements that took place outdoors.

4.5.1. Lab Measurement Results
In Fig. 4.6 the mean value of the backscattered power from three different sandpaper sam-
ples in lab conditions is shown. It can be seen from this plot that there is clear distinction
between the rough P24 type sandpaper and the smooth P60 and P100 sandpapers, while
there does not seem to be a significant difference between the P60 and the P100 sandpaper.
This is likely due to P60 type sandpaper already being too smooth to provide a significant
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Figure 4.6: Mean of measured S-parameters for the different types of sandpaper (P24, P60, and P100 in order of
decreasing roughness) measured in lab conditions.

backscattered contribution as the grain size in the sandpaper is relatively small compared to
the wavelength. This is also the case for the P100 type sandpaper, leading to the observa-
tion that the backscattered radiation is caused by the sandpaper itself and/or the cavity that
is formed between the backside of the sandpaper sample and the floor it was placed on.

Fig. 4.7 shows the results from the 𝐻𝛼𝐴 decomposition, in particular the 𝐻 and 𝛼 fea-
tures, graphed in the𝐻𝛼-plane. In this plot, each symbol represents a range bin in the range
of 0.5 to 1.5 metres. It can be seen that there is a clear difference between the P24 and the
P100 type sandpapers. The P24 type shows a high entropy value whereas the P60 and P100
types show a broad spread but with centroids at lower values of entropy. The high entropy
values indicate highly random scattering which is expected from a surface that differs elec-
tromagnetically from observation to observation. The lower entropy values of the smooth
sandpaper types indicate less randomness in the scattering process. This can be explained by
the grains of the sandpaper being too small compared to the wavelength. Therefore, from an
electromagnetic point of few, a sheet of smooth sandpaper substrate material is measured,
which is more or less the same from measurement to measurement. Fig. 4.6 reinforces this
observation as it shows that the P60 and P100 types are indistinguishable from each other,
thus also indicating that the grains on both sandpapers have become too small compared to
the wavelength to contribute significantly to the backscattered power.

The unique geometry of the automotive scenario also allows for considering the 𝐻 and
𝛼 features as function of range. The difference in range is related to the effective angle of
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Figure 4.7: The𝐻 and𝛼 features of the sandpapermeasurements performed in the lab in the range interval from 0.5
to 1.5 metres. The solid coloured symbols indicate the clusters’ centroids formed by the corresponding sandpaper
types.

incidence at the surface, where surface area close to the radar experiences a low angle of
incidence (steep), whereas surface areas farther away experience a high angle of incidence
(shallow). A plot of the variation of angle of incidence as function of range is shown in Fig
4.8.

As the angle of incidence can influence scattering properties, this can further help with
distinguishing different classes of surface. Fig. 4.9 shows the entropy as function of range.
It can be seen that for the P24 type sandpaper, the entropy stays relatively constant as func-
tion of range, indicating that the same scattering mechanism is at play, independent of an-
gle of incidence. However, for the P60 and P100 type, the entropy tends to increase as
range increases, moving more towards entropy values as those seen for the P24 measure-
ments. This can be explained by more specular reflection starting to occur, leading to less
backscattered power, in combination with the limited sensitivity of the VNA. Due to mea-
sured S-parameters being close to the noise floor as seen from Fig. 4.6, thermal noise takes
over which results in high entropy values due to its random nature.

Finally, the anisotropy feature can be considered. The entropy versus anisotropy plot is
shown in Fig. 4.10 for all ranges in the 0.5 to 1 meter interval. Here, a very clear distinction
between the P24 and the other types of sandpaper can be seen, leading to the conclusion that
the anisotropy is also useful for classification purposes in this case.

4.5.2. Outdoors Measurements Results
As seen from the labmeasurements, rough surfaces can indeed be distinguished from smooth
surfaces using the proposed pipeline. To evaluate if this method is also effective for actual
road surfaces under various weather conditions, measurements on real road surfaces were
performed. Fig. 4.11 shows the returned power after the averaging step, thus representing
the normalised radar cross section of the surface. This measurement shows that for wet
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Figure 4.8: The local angle of incidence at a point on the surface at a range indicated by the x-axis for an antenna
height of 26.5 cm.

Figure 4.9: The entropy feature of the different sandpaper types versus range, extracted from the experimental
measurements. The solid symbols indicate the centroids of the clusters formed by each type of sandpaper.
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Figure 4.10: The 𝐻 and 𝐴 features of the different sand paper types measured in a range interval from 0.5 to 1
metre. The solid symbols indicate the centroids of the clusters formed by each type of sandpaper.

surfaces, the 𝜎𝑉 𝑉 is generally larger than 𝜎𝐻𝐻 . However, as the roughness increases, 𝜎𝐻𝐻
and 𝜎𝑉 𝑉 tend to become more equal, thus indicating depolarisation by a more diffusive
scattering process due to the increased surface roughness as expected from theory.

Furthermore, the 𝐻𝛼-plane for all three road surface conditions (i.e., dry asphalt, wet
asphalt, and asphalt covered in gravel) for a 60° orientation angle is shown in Fig. 4.12a.
It can be seen that there is a clear difference in the 𝐻 and 𝛼 features when comparing wet
and dry road surface conditions. There also exists a small difference between road surface
covered with basalt versus the regular road surface, however it is not as pronounced as with
the road surface under wet conditions.

However, when taking the anisotropy in account as shown in Fig. 4.12b, it can be seen
that the separation between the basalt and the dry asphalt becomes larger, making it easier
to separate these road surface conditions from each other.

Finally, the entropy, anisotropy and 𝛼, can be considered as function of range. Fig. 4.13
shows the entropy as function of range. This figure shows that there is not much variation
present in the entropy of regular asphalt and asphalt covered with basalt gravel, but that
a range dependency is present for wet asphalt. This could be exploited by for example
considering the𝐻-values from 1.2 metres onward, resulting in more pronounced separation
of the clusters of wet and dry conditions in the 𝐻𝛼-plane.

To quantify the loss in separation between the clusters, the euclidean distances between
the centroids of the clusters is considered. The 𝛼 feature was divided by 90° to ensure all
features are within the same limits of 0 and 1. Furthermore, the standard deviations of all
three features were computed as an indication of the spread of the clusters in the𝐻𝛼𝐴 space.
Table 4.1 lists the results of this with on the left hand side the distances between the clusters’
centroids and on the right hand side the standard deviations of the three features.

Subsequently, the measurement results for an orientation angle of 90° can be considered.
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Figure 4.11: Normalised radar cross sections in linear terms of the considered road surface conditions measured
with a 60° orientation angle, in the range interval from 0.5 to 1.1 m.

(a) (b)

Figure 4.12: The 𝛼 (a) and 𝐴 (b) features of the measurements performed outdoors plotted versus the 𝐻 feature
in the range interval from 0.5 to 1.5 metres with an orientation angle of 60°. Here, the considered three surfaces
are ordinary dry asphalt, wet asphalt, and asphalt covered by basalt stone gravel. The solidly coloured symbols
indicate the centroids of the clusters formed by the measurements of the corresponding road surface conditions.

Table 4.1: Euclidean distance between the centroids and standard deviations of the clusters formed by the 𝐻, 𝛼
and 𝐴 features of dry asphalt, wet asphalt and asphalt covered with gravel, measured in a range interval of 0.5 to
1.5 metres with an antenna orientation angle of 60°.

Dry Wet Gravel 𝜎 𝐻 𝜎 𝛼 𝜎 𝐴
0 0.39 0.15 Dry 0.054 0.053 0.179

0 0.53 Wet 0.123 0.102 0.145
0 Gravel 0.058 0.030 0.089
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Figure 4.13: The entropy versus range for the considered road surface conditions (i.e., asphalt which is dry, wet,
and covered with basalt gravel), for an orientation angle of 60°. The solidly coloured symbols indicate the centroids
of the clusters formed by the measurements of the corresponding road surface conditions.

In Fig. 4.14a it can be seen that the entropy varies with range for all three different road
surface conditions. When considering all range bins from 0.5 to 1.5 metres in the𝐻𝛼-plane,
this would result in potential overlap of the clusters of the different classes. However, when
considering only measurements from 0.9 metres onward, the separation of the clusters is
better. The results of this can be seen in Fig. 4.15 where only a selected spatial subset of the
samples is used to form the plot with 𝐻 and 𝛼 features. A good separation of the clusters
for the different surface conditions can be seen.

Finally, it is instructive to consider the anisotropy features obtained from the measure-
ments as function of range. It can be seen in Fig. 4.14b that the anisotropy does vary with
range, but that it is more or less similar for each class. Therefore, for the set of measure-
ments performed with an antenna orientation angle of 90°, the anisotropy is a less valuable
feature compared with the results obtained at 60°.

Table 4.2 shows the distances between the centroids of the clusters, and the standard
deviations of the road surface 𝐻 , 𝛼 and 𝐴 features performed with a measurement angle of
90°. It can be seen that compared to the results measured with an orientation angle of 60°
in table 4.1, the distance between centroids has decreased, except for the distance between
gravel and dry asphalt. Also, for the gravel, the spread of the cluster increased. However,
for the other classes the spread remains similar except for the entropy spread of dry asphalt.

To evaluate the results from the proposed pipeline, they are compared to results obtained
using co- and cross-polarisation ratios as proposed in [28]. The used features are in this case
𝜎𝑉 𝑉 /𝜎𝐻𝐻 , 𝜎𝑉 𝐻/𝜎𝐻𝐻 and 𝜎𝐻𝑉 /𝜎𝐻𝐻 . To compare the clusters formed by these features
to those of the proposed pipeline, the polarisation ratios were normalised with the maximum
value from all classes, so that all values are limited between 0 and 1 as would be done in a
machine learning classifier. As these features are ratios of polarisation measurements, they
are sensitive to noise. Namely, when 𝜎𝐻𝐻 is small, noise may impact the ratios substantially
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(a) (b)

Figure 4.14: Entropy (a) and anisotropy (b) versus range of the outdoor measurements performed with an orienta-
tion angle of 90°. The solidly coloured symbols indicate the centroids of the clusters formed by the measurements
of the corresponding road surface conditions.

Figure 4.15: The 𝐻 and 𝛼 features of the outdoor measurements in the range interval from 0.9 to 1.5 metres with
an antenna orientation angle of 90°. The solidly coloured symbols indicate the centroids of the clusters formed by
the measurements of the corresponding road surface conditions.

Table 4.2: Euclidean distance between the centroids and standard deviations of the clusters formed by the 𝐻, 𝛼
and 𝐴 features of dry asphalt, wet asphalt and asphalt covered with gravel, measured in a range interval of 0.9 to
1.5 metres with an antenna orientation angle of 90°.

Dry Wet Gravel 𝜎 𝐻 𝜎 𝛼 𝜎 𝐴
0 0.28 0.23 Dry 0.126 0.031 0.095

0 0.49 Wet 0.095 0.049 0.114
0 Gravel 0.067 0.032 0.114
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Table 4.3: Euclidean distance between the centroids and standard deviations of the clusters formed by the co- and
cross-polar ratios of dry asphalt, wet asphalt and asphalt covered with gravel, measured in a range interval of 0.9
to 1.5 metres with an antenna orientation angle of 90°.

Dry Wet Gravel 𝜎 𝜎𝑉 𝑉
𝜎𝐻𝐻

𝜎 𝜎𝐻𝑉
𝜎𝐻𝐻

𝜎 𝜎𝑉 𝐻
𝜎𝐻𝐻

0 0.25 0.07 Dry 0.036 0.048 0.037
0 0.32 Wet 0.197 0.187 0.200

0 Gravel 0.008 0.027 0.021

and cause them to explode in value. To avoid this from occurring, only the range interval
from 0.9 to 1.5 metres, which lies within the -10 dB antenna footprint, is considered. Subse-
quently, the same metrics are computed as for the𝐻 , 𝛼 and𝐴 features and are listed in table
4.3. Comparing these tables with each other, it can be seen that the distances between cen-
troids is larger in all cases when using the proposed pipeline. Furthermore, the observation
can be made that the clusters are smaller when using the ratio features for the dry and gravel
classes, but the opposite is true for the wet asphalt class. Even though the dry and gravel
classes have smaller standard deviations, this benefit is neglected as the centroids of these
clusters are very close together. This suggests that the proposed pipeline is a robust alterna-
tive to classification based on simpler polarimetric ratios, as polarimetric ratios suffer from
noise sensitivity and the normalisation usually performed for machine learning classifiers,
which causes the clusters to be compressed close to the origin in presence of outliers.

4.5.3. Polarisation Analysis
For the measurements previously presented, all four polarimetric channels were used. How-
ever, to reduce complexity and costs of an automotive radar system to be mass-produced,
it may be advantageous to only partially measure the polarimetric response. To this extent,
the results from the 𝐻𝛼𝐴 decomposition are re-evaluated with the difference that the cross-
polar channels are zeroed out. These channels can potentially be omitted as they contain
less power than the co-polar channels as can be seen in Fig. 4.6.

The first observation that can be made on the effects of omitting the cross-polar channels
is that this reduces the rank of the coherency matrix to two, as can be seen from (4.1) and
(4.2). This in turn results in the coherency matrix only having two non-zero eigenvalues at
maximum. Therefore, the anisotropy will be 1 as can be seen from (4.7), and thus will not
contribute to separating road surface conditions.

Fig. 4.16 shows the effect of zeroing out the cross-polar channel on the positioning of
surface reflections in the𝐻𝛼-plane. When comparing this plot to that of Fig. 4.12a, it can be
seen that the wet road surface is still separated from the dry classes, but that this separation
has decreased. Similarly, with measurements performed with an antenna orientation angle
of 90°, the separation between different road surface conditions also decreases. This can be
seen by comparing Figs. 4.14a and 4.17.

To quantify the loss in separation between the clusters for the measurements performed
with an orientation angle of 60°, again the euclidean distances between the centroids and the
standard deviation of the clusters are considered. Comparing table 4.1 and table 4.4 shows
that the distances have decreased significantly, ranging from 59% to 78%. A similar com-
parison is shown for the measurements performed with an orientation angle of 90° in tables
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Figure 4.16: The 𝐻 and 𝛼 features of the measurements performed outdoors in the range interval from 0.5 to 1.5
metres with an orientation angle of 60° with cross polar components zeroed out.

Figure 4.17: The entropy versus range of the measurements performed outdoors with an orientation angle of 90°
with cross polar components zeroed out.
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Table 4.4: Euclidean distance between the centroids and standard deviations of the clusters formed by the 𝐻, 𝛼
and 𝐴 features, computed with cross-polar components zeroed out, of dry asphalt, wet asphalt and asphalt covered
with gravel, measured in a range interval of 0.5 to 1.5 metres with an antenna orientation angle of 60°.

Dry Wet Gravel 𝜎 𝐻 𝜎 𝛼 𝜎 𝐴
0 0.08 0.06 Dry 0.052 0.045 0

0 0.15 Wet 0.092 0.093 0
0 Gravel 0.049 0.032 0

Table 4.5: Euclidean distance between the centroids and standard deviations of the clusters formed by the 𝐻, 𝛼
and 𝐴 features, computed with cross-polar components zeroed out, of dry asphalt, wet asphalt and asphalt covered
with gravel, measured in a range interval of 0.9 to 1.5 metres with an antenna orientation angle of 90°.

Dry Wet Gravel 𝜎 𝐻 𝜎 𝛼 𝜎 𝐴
0 0.19 0.15 Dry 0.076 0.033 0

0 0.34 Wet 0.056 0.053 0
0 Gravel 0.047 0.037 0

4.2 and 4.5. Here, reductions of 30% to 34% can be seen. Thus, from these observations,
it becomes clear that a radar system could be designed in such a way that the cross-polar
channels are not measured at a cost of less separation between the clusters of several classes
of road surface conditions. As the separation decreases, classification accuracy may see
a reduction as well which leads to a trade-off between radar system complexity/costs and
performance.

4.6. Convergence of H/α/A-features
In this section, the convergence of the measured scattering parameters is considered. To do
this, the difference between a statistical quantity 𝑄, denoted by Δ𝑄, calculated based on
𝑁 measurements, indicated by 𝑄 (𝑁), and the same statistical quantity 𝑄 based on 𝑁 −
1 measurements, denoted by 𝑄 (𝑁 − 1), is computed as shown in (4.19). The statistical
quantity𝑄 can for example be themean value of themagnitude of𝑆𝑉 𝑉 , denoted by ⟨|𝑆𝑉 𝑉 |⟩,
or the covariance of |𝑆𝑉 𝑉 | and |𝑆𝐻𝐻 |.

Δ𝑄 (𝑁) = 𝑄 (𝑁) − 𝑄 (𝑁 − 1) (4.19)

Furthermore, Δ𝑄 can be normalised to make the comparison of multiple statistical quanti-
ties possible, e.g. ⟨|𝑆11|⟩ & ⟨|𝑆22|⟩.

Fig. 4.18 shows the trend of the convergence of the mean value of the measured scat-
tering parameters of dry asphalt measured with an antenna orientation angle of 60∘. The
difference is normalised by the largest computed difference within the corresponding range
bin. As expected, it can be seen that the computed mean value converges with the nor-
malised difference going to zero as the measurements are uncorrelated. It can also be seen
that including more and more measurements leads to diminishing returns due to incoherent
summing and division by the number of measurements. Another important observation is
that the difference does not reduce gradually, but sometimes experiences a peak within a
range bin. This can be explained by a measurement that has a particularly high or low value
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Figure 4.18: Convergence of the mean value of the measured scattering parameters of dry asphalt, measured with
an antenna orientation angle of 60∘ as function of range and number of included surface measurements.
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Figure 4.19: Mean convergence rate of the mean values of the measured scattering parameters of dry asphalt,
measured with an antenna orientation angle of 60∘.

compared to previous measurements. The mean convergence rate, 𝐶, is then computed,
which is the mean value taken over the range bins for a number of included measurements
𝑁 as shown in (4.20).

𝐶 (𝑁) =
𝑀

∑
𝑖=1

Δ𝑄𝑖 (𝑁)
𝑀 (4.20)

Here,𝑀 indicates the number of range bins over which the mean is computed andΔ𝑄𝑖 (𝑁)
is the normalised difference of the statistical quantityΔ𝑄 in the range bin 𝑖, computed from
𝑁 measurements.

Fig. 4.19 shows the mean convergence rate for the mean values of the measured scat-
tering parameters of dry asphalt, measured with an antenna orientation angle of 60∘. All
scattering parameters converge on average at the same rate. Furthermore, this figure can be
used to determine the number of measurements that must be taken to achieve a difference
in the computed ⟨|𝑆|⟩ that is on average less than a specified threshold. For example, to
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Figure 4.20: Mean convergence rate of the covariances of the measured scattering parameters of dry asphalt,
measured with an orientation angle of 60∘.

achieve a mean difference of less than 10% compared to the previous 𝑁 measurements, at
least 19 measurements need to be performed.

A similar analysis can be performed for the covariance of the 4 scattering parameters in
Fig. 4.20. Compared to the mean values, these values converge faster. To achieve a mean
difference of less than 10%, 15 measurements are required.

Next, the convergence of the 𝐻 , 𝛼 and 𝐴 features is considered, introduced for road
surface classification in [2]. Figs. 4.21 to 4.23 show the mean convergence rates of these
features for dry asphalt, wet asphalt and asphalt covered with gravel, all measured with
an antenna orientation angle of 60∘. From these figures, it can be seen that overall, the
anisotropy feature is the slowest to converge. This can be caused by the coherency matrix
having a low eigenvaluewhich is sensitive to noise and thusmoremeasurements are required
to average out its effect. Also, for wet asphalt, the mean convergence rate shows sharper
deviations from the general decreasing behaviour. This can be explained by the measured
scattering parameters of this class being closer to the noise floor of the VNA, and thus being
more influenced by noise.

It can be seen that about 36 measurements are required to achieve mean convergence
rates below 0.1 for the wet asphalt condition. When an occasional mean convergence rate
slightly above 0.1 is acceptable, 25 measurements may suffice.

Similarly, for the case of the measurements that were performed with a 90∘ orientation
angle, the mean convergence rate of the 𝐻 , 𝛼 and 𝐴 features can be considered. Figs. 4.21
to 4.23 show that these converge at a similar rate as the feature values measured with an
orientation angle of 60∘. Thus, in general, a similar number of measurements as with the
60∘ orientation angle is required to achieve a specified mean convergence rate.

4.6.1. Discussion on the relevance of convergence
The analysis of the convergence is important as it is related to the number of measurements
of road surface scattering needed for an accurate classification. This has two implications.
First, the measurement time with the resulting distance that is covered by a vehicle. If e.g.,
the measurement time of the radar system is 50 µs and 50 measurements are required to
achieve the required level of convergence, then the total time to classify a surface condition
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Figure 4.21: Mean convergence rate of the entropy 𝐻 feature of dry asphalt, measured with antenna orientation
angles of 60∘ and 90∘.

0 10 20 30 40 50
N

measurements

0

0.2

0.4

0.6

0.8

M
ea

n 
C

on
ve

rg
en

ce
 R

at
e 

Dry 60°

Wet 60°

Gravel 60°

Dry 90°

Wet 90°

Gravel 90°

Figure 4.22: Mean convergence rate of the 𝛼 feature of dry asphalt, measured with antenna orientation angles of
60∘ and 90∘.
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Figure 4.23: Mean convergence rate of the anisotropy 𝐴 feature of dry asphalt, measured with antenna orientation
angles of 60∘ and 90∘.
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is 2.5 ms. If a car is moving at 100 km/h (27.8 m/s), the distance travelled during the
measurement time is about 6.9 cm. Depending on the measurement time and the amount
of required measurements, the distance travelled by the car during the measurement period
may become significant enough to reduce the effectiveness of the road condition estimation.

The second implication is related to the requirement that each road surface measurement
should be uncorrelated with the previous one. This means that each surface measurement
should be spaced one or more correlation lengths from the previous sample. For example,
when the longest correlation length of a road surface condition is 5 mm, then the total dis-
tance that needs to be covered is 25 cm in the case of 50 required measurements. This means
that a puddle of water or a patch of ice or other road surface condition needs to be at least
25 cm in length.

These two cases show that it is important to analyse the convergence of the 𝐻 , 𝛼 and
𝐴 features, as it determines the distance a car travels during a road surface classification
measurement and the length of surface that needs to be covered to achieve accurate results.
Namely, by reducing the number of required measurements as much as possible, the refresh
rate of the surface classification system can be increased, while the distance travelled by the
vehicle and the required road surface condition size can be minimised.

4.7. Conclusion
In this chapter, a novel processing pipeline incorporating the 𝐻𝛼𝐴 decomposition for road
surface condition identification in automotive scenarios has been proposed. An introduc-
tion to the 𝐻𝛼𝐴 decomposition was presented to define the three features. Afterwards, the
proposed pipeline was introduced, outlining a number of necessary steps to apply the de-
composition in the context of automotive radar, such as the antenna footprint correction and
the temporal averaging for the computation of the 𝐻𝛼𝐴 polarimetric features.

Experimental measurements have been performed both in lab conditions on three differ-
ent types of sandpaper (P24, P60 and P100) as well as outdoors on real road surfaces under
various conditions. From the lab measurement results it could be seen that it is possible to
distinguish rough and smooth sandpaper using the 𝐻 , 𝛼 and 𝐴 features. The rough sandpa-
per resulted in a dense cluster in the 𝐻𝛼-plane with a high entropy value while the smooth
sandpapers showed on average a lower entropy value. Also, the smooth and rough sand-
paper measurements were found to differ significantly in anisotropy: the rough sandpaper
presented a low anisotropy while the smooth sandpapers showed a medium-high anisotropy.

The outdoor measurements were performed on three different road surface conditions,
namely regular dry asphalt, wet asphalt and asphalt covered by basalt gravel. All three road
surface conditions were measured using antenna orientation angles of 60° and 90°. For
both orientation angles, a clear difference exists between the wet and dry asphalt classes
when considering the 𝐻 and 𝛼 features. To further differentiate the dry asphalt from the
asphalt covered with gravel in the 60° case, the anisotropy feature can be used. For the 90°
orientation angle, the three road surface conditions can be distinguished in the 𝐻𝛼-plane.
However, the anisotropy shows the same behaviour for all three classes.

The results of the proposed signal processing pipeline have been compared to classifi-
cation based on features proposed in the literature, such as simple polarimetric ratios. This
comparison shows that a larger separation of the clusters of samples from different road
conditions could be achieved using the proposed pipeline.
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Also, a polarimetric analysis was performed in which the importance of taking the cross-
polar channels into considerationwas evaluated by assessing the results when the cross-polar
channel is zeroed out. Firstly, it was shown that the anisotropy feature can no longer be used
in this case. Secondly, even if some separation between clusters was still observable, the
cost of neglecting the cross-polar channels was found to be less separation of the different
classes in the 𝐻 , 𝛼 and 𝐴 features. Namely, a reduction in cluster centroid separation of
up to 78% for the measurements performed with an antenna orientation angle of 60° was
observed, while a reduction of up to 34% was found for the 90° measurements. This likely
leads to a decrease in classification accuracy. However, by not considering the cross-polar
components, the radar systems can be reduced in complexity and costs.

Furthermore, the convergence of the polarimetric decomposition for radar-based road
surface measurements was investigated. It is crucial to investigate the convergence of the
measured statistical quantities as it places bounds on the accuracy of the computed statis-
tics as the required level of convergence determines also the number of measurements that
need to be practically acquired. This in turn influences the refresh rate of a road surface
classification system and determines the amount of surface area that must be covered by the
platform in the process.

To provide insights in the convergence of S-parameters and polarimetric 𝐻 , 𝛼 and 𝐴
features, mean convergence rates of the mean and covariance of the S-parameters were
computed, as well as the mean convergence rates of the 𝐻 , 𝛼 and 𝐴 features. It was found
that the covariances of the S-parameters converge faster than their mean values, and out of
the three considered features, the entropy feature is the fastest to converge.

Finally, it was shown that the features of the three road surface classes converge at the
same rate, independent of the antenna orientation angle they were measured with, or the
road surface condition they were calculated for.



5
Vulnerable Road User

Recognition using MIMO
Polarimetric Radar

Besides estimating road surface conditions, polarimetric automotive radar
can be used to enhance classification accuracy of other targets as well. A
particular important group of targets are the so-called Vulnerable Road Users
(VRUs). This group represents road users such as pedestrians and cyclists.
In this chapter, polarimetric properties of VRUs are investigated using a custom-
made innovative polarimetric MIMO automotive radar system developed in
collaboration with Huber+Suhner, with a corresponding newly developed sig-
nal processing pipeline to accomplish this task. The processed data are sub-
sequently used to analyse the polarimetric properties of the measured tar-
gets and two classification methods for VRUs are proposed. From the results
achieved by these classifiers, it is shown that polarimetric radar is able to
increase classification performance.

Parts of this chapter have been published as:

W. Bouwmeester, F. Fioranelli, and A. Yarovoy, “Classification of Dynamic Vulnerable Road Users Using
a Polarimetric mm-Wave MIMO Radar”, under review for IEEE Transactions on Radar Systems, 2024.
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5.1. Introduction
In recent years, increasingly more vehicles are equipped with 77 GHz automotive radar
to enable advanced driving assistance systems such as adaptive cruise control, but also to
enhance road safety. The increased integration of these radar systems in vehicles has the
potential to also benefit other road users besides the driver of the vehicle itself. Specifi-
cally, this is true for vulnerable road users (VRUs), which typically include pedestrians and
cyclists. They are particularly vulnerable when involved in accidents as they do not have
any protective structures or devices that help dissipating the force of impact, which cars, in
contrast, are equipped with. Because of their vulnerability in combination with, amongst
others, the ever increasing safety requirements on cars, in the Netherlands most fatal traffic
victims are currently cyclists, having overtaken car occupants in recent years [47].

Because of this vulnerability of cyclists, pedestrians, and other VRUs, many research
efforts concerned with using automotive radar to detect and classify vulnerable road users
have been undertaken in recent years. For example, in [48–50] deep learning methods are
employed. In [48] and [49] time-frequency, i.e., micro-Doppler signatures, are used for this,
while [50] uses a single range-Doppler frame. Using a convolutional network, a classifica-
tion accuracy of 84.2% was achieved on unseen data in [50], while the convolutional neural
network presented in [49] achieved classification accuracy values greater than 92.4%. In
[51], classification of vulnerable road users is performed using autocorrelation features in
the time-frequency domain. It is found that the features of correlation length & time show
high potential for classification of pedestrians and cyclists. In [52], pedestrian classification
is performed using image features which are extracted from range-Doppler maps. Combin-
ing this with tracking algorithms, resulted in a success rate of 88%, using a sensing signal
bandwidth of 1.6 GHz.

Similar to the automotive radar systems that are currently available, the radar used in
the aforementioned research employed single-polarised sensing waves. These systems are
unable to measure the polarisation state of the waves backscattered from the environment
and targets, which may contain useful information for classification purposes. For example,
the spokes of a bicycle wheel could be sensitive to one type of polarisation, while relatively
insensitive to another due to their inherent vertical structure. Thus, to exploit the informa-
tion available in the polarisation state, polarimetric radar systems are required. However,
currently, there are no commercially available automotive radar systems on the market, and
only recently fully polarimetric automotive radar prototypes and proof-of-concepts have
been developed for research purposes [53–58]. In [53] and [54] two antenna concepts for
polarimetric automotive radar are presented, while [55–57] propose three fully integrated
radar systems. In [58], an instrumentation radar is presented to study scattering behaviour
from VRUs at frequencies within the automotive radar band.

Even though the use of polarimetry in automotive radar is quite novel and literature on
the topic is relatively limited, a few studies have already been undertaken to study the polari-
metric response of VRUs at 77 GHz. In [59] and [60], several polarimetric representations
of targets have been investigated for the purpose of VRU classification using a modified ver-
sion of the approach presented in [61]. Using different polarimetric features in point cloud
format, it is found that a significant improvement in VRU classification can be achieved
over exclusively using non-polarimetric features. This is extended further in [62], where
detection of road users is performed on pre-detector data, showing further improvements
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in classification performance. In both works, classification is performed predominantly in
the angular domain and only the strongest Doppler measurements corresponding to targets
are kept. The radar system used in these works was also employed to investigate the ben-
efits of polarimetric information for localisation purposes [63]. In [64], static polarimetric
measurements of four different types of bicycles were carried out at various azimuth angles.
Here, it is also concluded from the results that polarimetric information could potentially
help improve vehicle classification. In [65], static measurements of a number of vehicles
as well as a motorcycle, bicycle, and pedestrian were performed and it is found that signif-
icant differences in polarimetric returns can occur depending on target orientation. In [66],
a classifier based on a Convolutional Neural Network is used to classify static canonical
targets (dihedrals and boxes) in various orientations, and classification accuracy over 90%
is obtained. In [58], partially polarimetric measurements of moving VRUs such as pedes-
trians, a bicycle, and a dog are presented. It was found that the range-Doppler signatures
presented a number of unique velocity-dependent features that potentially could be used for
classification.

However, to the best of the authors’ knowledge, in none of the aforementioned research
the impact of the dynamic behaviour of VRUs (e.g., moving arms/legs with related Doppler
signature) on their polarimetric response and its use for classification purposes is exten-
sively considered. In this chapter, this gap is addressed by further studying the polarisation
of the returns from cyclists, pedestrians, motorcyclists, and a vehicle while they are mov-
ing. To achieve this, a custom-designed novel polarimetric MIMO automotive radar system
was developed in collaboration with Huber+Suhner AG (H+S) to collect measurement data
from these classes of targets while they were moving in various direction with respect to
the radar. The collected measurement data is subsequently processed and analysed using a
new polarimetric automotive radar signal processing pipeline. From these data, it is found
that polarimetric signatures of VRUs differ significantly from each other and that the polari-
metric composition of their returns changes over time. Moreover, the polarimetric ratios of
the considered classes of targets form clusters, indicating that the polarisation state of their
returns may contain useful information for classification. It is also shown that the range-
velocity signatures of pedestrians & cyclists contain some polarimetric structure, which
could potentially be exploited by machine learning algorithms to improve classification.

The rest of this chapter is organised as follows: section 5.2 introduces the signal pro-
cessing required to process data from time divisionmultiplexing (TDM)MIMOpolarimetric
radar systems. Section 5.3 introduces the polarimetric radar system including a new cali-
bration method based on a radar target simulator, as well as the measurement procedure.
Section 5.4 describes the post-processing procedures applied to the experimental measure-
ment data while section 5.5 details the obtained results. The chapter closes with conclusions
presented in section 5.6.

5.2. Polarimetric MIMO Radar Signal Processing
In this section, the processing of the received waveforms of a polarimetric MIMO frequency
modulated continuous wave (FMCW) radar with TDM is considered. Firstly, the processing
of the individual polarimetric channels is discussed, and subsequently coherent processing
of all virtual channels is considered to enhance the angular resolution.
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5.2.1. Single Polarimetric Channel Processing
In contrast to single-polarised radar, polarimetric radar systems also aim to estimate the
scattering parameters of a target. The scattering matrix describes the relation between the
polarisation and amplitude of the electric fields, indicated by𝐸, of an incident sensing wave
impinging on a target and the wave scattered back by that target, as shown in equation (5.1):

[𝐸𝑠
𝑥

𝐸𝑠
𝑦
] = [𝑆𝑥𝑥 𝑆𝑥𝑦

𝑆𝑦𝑥 𝑆𝑦𝑦
] [𝐸𝑖𝑛𝑐

𝑥
𝐸𝑖𝑛𝑐

𝑦
] . (5.1)

Here, the superscript 𝑠 indicates the scattered components of the wave while the superscript
𝑖𝑛𝑐 indicates the incident wave. The subscripts 𝑥 & 𝑦 indicate the polarisation basis, for
example a horizontal/vertical or left/right-hand circular basis.

Subsequently, the relationship between the incident sensing wave and the scattered wave
can be used to formulate the signal model of the data collected by a polarimetric FMCW
radar system. The waveform transmitted corresponding to the 𝑖-th virtual channel as a func-
tion of time 𝑡 by a FMCW radar is shown in (5.2), as:

𝑠𝑡𝑥
𝑖 (𝑡) = 𝑒𝑗2𝜋 ∫(𝑓𝑠𝑡𝑎𝑟𝑡+𝑓𝑠𝑙𝑜𝑝𝑒𝑡) 𝑑𝑡

= 𝑒2𝜋𝑗(𝑓𝑠𝑡𝑎𝑟𝑡+ 1
2 𝑓𝑠𝑙𝑜𝑝𝑒𝑡)𝑡 . (5.2)

where 𝑓𝑠𝑡𝑎𝑟𝑡 is the frequency at which the chirp signal starts and 𝑓𝑠𝑙𝑜𝑝𝑒 the frequency slope
of the chirp ramp.

This transmitted waveform reaches the target after some propagation delay and incur-
ring free space losses, and is then scattered back towards the radar, eventually reaching the
receiving antennas with an additional propagation delay and more free space losses. Thus
the received waveform 𝑠𝑟𝑥

𝑖 at the 𝑖-th virtual 𝑥𝑦-polarised channel, i.e. a virtual channel with
an 𝑥-polarised receiving channel and a 𝑦-polarised transmitting antenna, can be modelled
as shown in (5.3), as:

𝑠𝑟𝑥
𝑖 (𝑡, Δ𝑡𝑖) = 𝐿𝑆𝑥𝑦𝑒2𝜋𝑗(𝑓𝑠𝑡𝑎𝑟𝑡+ 1

2 𝑓𝑠𝑙𝑜𝑝𝑒(𝑡−Δ𝑡𝑖))(𝑡−Δ𝑡𝑖). (5.3)

Here, 𝐿 denotes the total propagation losses andΔ𝑡𝑖 indicates the total propagation delay to
and back from a target. The total propagation delay for a measured channel is a function of
the start range 𝑟0 of a target from the origin of the virtual array formed by the radar system,
its radial velocity with respect to the radar 𝑣𝑡, elevation 𝜃𝑡, and azimuth 𝜙𝑡, as shown in
(5.4), as:

Δ𝑡𝑖 (𝑟0, 𝑣𝑡, 𝜃𝑡, 𝜙𝑡) = 2𝑟0 + 𝑣𝑡𝑇𝑖 (𝑛)
𝑐 + ̂𝑟 (𝜃𝑡, 𝜙𝑡) ⃗𝑝𝑖

𝑐 . (5.4)

As can be seen in (5.4), Δ𝑡𝑖 is also dependent on the location of the 𝑖-th virtual channel ⃗𝑝𝑖
in the virtual array which is the sum of ⃗𝑝𝑡𝑥 and ⃗𝑝𝑟𝑥, which respectively are the positions
of the transmitting antenna ⃗𝑝𝑡𝑥 and the receiving antenna ⃗𝑝𝑟𝑥 corresponding to that virtual
channel. Furthermore, 𝑐 indicates the propagation velocity of electromagnetic waves and
𝑇𝑖 (𝑛) represents the time elapsed since the first chirp of the sequence, in order to account
for the range migration of a target due to its radial velocity with respect to the radar. Note
that 𝑇𝑖 itself depends on the chirp number 𝑛, the inter-chirp duration 𝑇𝑐ℎ𝑖𝑟𝑝 as well as a time
offset Δ𝑇𝑖 as shown in (5.5):

𝑇𝑖 (𝑛) = 𝑛𝑇𝑐ℎ𝑖𝑟𝑝 + Δ𝑇𝑖. (5.5)
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This time offset results from the TDM operation of the radar. Namely, when the transmitters
of the radar operate in an interleaved fashion, the chirps corresponding to the virtual channels
using the second transmitter lag behind one inter-chirp duration. This results in turn the
virtual channels corresponding to the third transmitter to have an offset of two inter-chirp
durations, and so forth for all the other available transmitters.

Furthermore, ̂𝑟 is the unit vector that indicates the angle of arrival of the wave and is
dependent on the elevation and azimuth of a target as shown in (5.6):

̂𝑟 (𝜃𝑡, 𝜙𝑡) = ⎡⎢
⎣

cos 𝜃𝑡 sin𝜙𝑡
cos 𝜃𝑡 cos𝜙𝑡

sin 𝜃𝑡

⎤⎥
⎦

. (5.6)

In an FMCW radar system, the received signal is subsequently de-chirped by means of
complex mixing it with the transmitted signal. This results in the final signal model of the
𝑖-th virtual channel 𝑠𝑖 as sampled by the ADCs corresponding to that channel. This can be
mathematically written as shown in (5.7) as follows:

𝑠𝑖 (𝑡, Δ𝑡𝑖) = 𝑠𝑟𝑥
𝑖 (𝑡, Δ𝑡𝑖)

∗ 𝑠𝑡𝑥
𝑖 (𝑡)

= 𝐿𝑆𝑥𝑦𝑒2𝜋𝑗(𝑓𝑠𝑡𝑎𝑟𝑡Δ𝑡𝑖− 1
2 𝑓𝑠𝑙𝑜𝑝𝑒Δ𝑡2

𝑖 )𝑒2𝜋𝑗𝑓𝑠𝑙𝑜𝑝𝑒𝑡Δ𝑡𝑖
. (5.7)

In (5.7), superscript ∗ indicates the complex conjugate operator.
Using this signal model, the signal processing pipeline to estimate the range, radial ve-

locity, elevation, azimuth, and scattering parameters of a target for a single polarimetric
channel can be developed. First, the signal model can be simplified by using the assumption
that 𝑓𝑠𝑡𝑎𝑟𝑡Δ𝑡𝑖 ≫ 1

2 𝑓𝑠𝑙𝑜𝑝𝑒Δ𝑡2
𝑖 . This assumption is typically valid for mm-wave automotive

radar, as the sampled bandwidth of the chirp is much smaller than the start frequency; for
example, the maximum available bandwidth in this band is 4 GHz, while the minimum
start frequency is 76 GHz. Furthermore, the full 4 GHz bandwidth is not usually sampled
in its entirety, as this would require high performance ADCs, whereas lower performing
but cheaper ADCs can generally provide the required sample rates necessary to achieve,
amongst others, adequate unambiguous range. Applying the aforementioned assumption
results in (5.8):

𝑠𝑖 (𝑡, Δ𝑡𝑖) = 𝐿𝑆𝑥𝑦𝑒2𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡Δ𝑡𝑖𝑒2𝜋𝑗𝑓𝑠𝑙𝑜𝑝𝑒𝑡Δ𝑡𝑖 . (5.8)

Combining (5.4) and (5.8) and performing a Fourier transform over 𝑡, the 𝑟0 of the target
can be recovered given that 2 𝑟0

𝑐 ≫ 2 𝑣𝑡𝑇𝑖
𝑐 + ̂𝑟 ⃗𝑝𝑖

𝑐 , which is valid as 𝑟0 is the dominant term
of the propagation delay. This results in (5.9), as follows:

𝑠𝑟
𝑖 = 𝐿𝑆𝑥𝑦𝑒2𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡(2 𝑟0+𝑣𝑡𝑇𝑖

𝑐 )+𝑗�⃗� ⃗𝑝𝑖𝛿 (𝑟 − 𝑟0) . (5.9)

Here, �⃗� represents the wave vector and is defined as 2𝜋
𝜆 ̂𝑟, where 𝜆 is the wavelength at the

start frequency of the chirp.
Subsequently, the target’s radial velocity can be determined by performing a Fourier

transform over 𝑛, which corresponds to a transform over the sequence of chirps belonging
to the considered virtual channel. This results in (5.10), as:

𝑠𝑖 = 𝐿𝑆𝑥𝑦𝑒2𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡(2 𝑟0+𝑣𝑡Δ𝑇𝑖
𝑐 )+𝑗�⃗� ⃗𝑝𝑖𝛿 (𝑣 − 𝑣𝑡) 𝛿 (𝑟 − 𝑟0) . (5.10)
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Note that the channel time offset term in (5.10) introduces an additional velocity de-
pendent phase shift between channels. This phase shift appears due to range migration of
a moving target in between the starts of multiple different chirp sequences belonging to
virtual channels because of the TDM used by the radar system to preserve waveform or-
thogonality. If left uncompensated, this additional phase shift leads to an additional error
in the estimation of the phase of the scattering parameter measured by the corresponding
virtual channel.

As the aforementioned phase shift is solely dependent on the target’s radial velocity and
the channel time offset, which are known quantities after the estimation step in (5.10), it
can be compensated by multiplying each range/velocity bin by a factor of 𝑒−4𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡

𝑣
𝑐 Δ𝑇𝑖 ,

similar to the approach presented in [67]. This leads to (5.11):

𝑠𝑖 = 𝐿𝑆𝑥𝑦𝑒4𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡
𝑟0
𝑐 +𝑗�⃗� ⃗𝑝𝑖𝛿 (𝑣 − 𝑣𝑡) 𝛿 (𝑟 − 𝑟0) . (5.11)

Subsequently, the azimuth and elevation of the target can be estimated. This can be done
bymeans of Fourier transformation over virtual channels belonging to the same polarimetric
channel when they are uniformly spaced, so that the backscattered wave front of a target is
uniformly sampled in space. This is similar to estimation of target range and velocity where
the aforementioned wave front is sampled uniformly in time rather than in space. When the
virtual channels are not spaced uniformly, the target azimuth and elevation can be estimated
using digital beam forming instead. This procedure is mathematically shown in (5.12), as
follows:

𝑠 = 𝐿𝑆𝑥𝑦𝛿 (𝑣 − 𝑣𝑡) 𝛿 (𝑟 − 𝑟0)
𝑁

𝑁
∑
𝑖=1

𝑒4𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡
𝑟0
𝑐 +𝑗�⃗� ⃗𝑝𝑖𝑒𝑗 ⃗𝛽𝑖 . (5.12)

In this equation,𝑁 is the total number of virtual channels belonging to a specific polarimetric
channel and ⃗𝛽𝑖 represents the steering vector which is defined as shown in (5.13):

⃗𝛽 (𝜃, 𝜙) = −2𝜋
𝜆

⎡⎢
⎣

cos 𝜃 sin𝜙
cos 𝜃 cos𝜙

sin 𝜃
⎤⎥
⎦

⃗𝑝𝑖. (5.13)

When the steering vector aligns with the wave vector, the magnitude of the summation in
(5.12) will be maximum, and thus the azimuth and elevation of a target are found.

Now that the target’s range, velocity, elevation, and azimuth have been estimated, the
amplitude and phase of 𝑠 are the product of the propagation losses 𝐿, the scattering param-
eters 𝑆𝑥𝑦, and a residual phase term 𝑒4𝜋𝑗𝑓𝑠𝑡𝑎𝑟𝑡

𝑟0
𝑐 . As for determining the scattering matrix,

only the relative phase of the scattering parameters is of importance, the residual phase
term can be eliminated by subtracting the phase of the first scattering parameter from all
four elements of the scattering matrix, since 𝑟0 is independent of the polarimetric channel.
Furthermore, the propagation losses are dominated by 𝑟0 and thus are also independent of
polarisation. Therefore, this term can be compensated for by using the radar equation [2].

Thus, after the compensation of the residual phase term and the propagation losses, the
amplitude and phase values for each range-angle-velocity bin remain, and they represent the
scattering parameter corresponding to the polarimetric channel. The final scattering matrix
for each range-angle-velocity bin is then subsequently found by combining the scattering
parameters of all polarimetric channels.
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Figure 5.1: Block diagram of the proposed combined polarimetric channel processing method to achieve compa-
rable resolution as a single-polarised radar with the same array configuration.

5.2.2. Combined Polarimetric Channel Processing
As the total aperture of a polarimetric MIMO radar system is subdivided into multiple po-
larimetric channels, the angular resolution of each polarimetric channel is limited by the
aperture corresponding to that specific polarimetric channel. The coupling between the
scattering parameters and angle that is present when processing all channels together, as if
it were a single polarimetric radar system, leads to errors in the estimation of target azimuth
and elevation. This usually results in coarser angular resolution for a polarimetric radar
when compared to a single-polarised radar system with the same amount of total virtual
channels.

However, the signals received by the individual polarimetric channels can be combined
to increase the resulting angular resolution compared to the resolution in a single polarimet-
ric channel. A method to accomplish this, based on the assumption that only one dominant
target is present per range-velocity bin, is shown schematically in Fig. 5.1.

As shown in Fig. 5.1, first the single polarimetric channel processing described in sec-
tion 5.2.1 is performed to find the scattering parameters corresponding to the four polari-
metric channels. Subsequently, a new maximum radar cube 𝑠𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is constructed from
the maximum of the amplitudes of the radar cubes corresponding to all four polarimetric
channels, denoted from 𝑠𝑥𝑥 to 𝑠𝑦𝑦, as shown in (5.14):

𝑠𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = max (|𝑠𝑥𝑥| , ∣𝑠𝑥𝑦∣ , ∣𝑠𝑦𝑥∣ , ∣𝑠𝑦𝑦∣) . (5.14)

This combined radar cube is then subsequently used to find the azimuth and elevation at
which the return with the highest intensity is obtained for each range-velocity bin by taking
the maximum over the elevation and azimuth. By combining all polarimetric channels, the
correct angles corresponding to a target can still be found if no return is present in one
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Figure 5.2: Simulated azimuth cut of two targets located at -10° and +10°, as measured by a single polarimetric
channel (red), all polarimetric channels combined using the proposed method (blue), and a single-polarised array
of the same dimensions (yellow).

of the channels. Subsequently, for each polarimetric channel, the phase of the scattering
parameters is found for each range-velocity bin using the azimuth and elevation of the target
found in the last step. The range-velocity spectra of each virtual channel are then corrected
for polarimetric effects on the measured phase by subtracting the previously found phase
from each corresponding range-velocity bin as shown in (5.15):

𝑠𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑠𝑖𝑒−𝑗∠𝑆𝑥𝑦,𝑚𝑎𝑥 . (5.15)

Here, 𝑠𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 indicates the corrected virtual channel radar cube and 𝑆𝑥𝑦,𝑚𝑎𝑥 repre-
sents the scattering parameter corresponding to the 𝑖-th virtual channel, found in the range-
velocity bin at the azimuth/elevation angle at whichmaximum returnwas found in 𝑠𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑.

Thereafter, digital beam forming can be applied using all corrected virtual channels to
obtain a combined channel radar cube without polarimetric information, but with higher
angular resolution compared to single polarimetric channel processing.

The limitation of the proposed combined channel processing method lies in the assump-
tion that only one dominant target is present per range-velocity bin. When this is not satis-
fied, only the polarimetric phase-shift of the strongest target within the range-velocity bin
is compensated properly, introducing errors in the estimation of the other targets that are
present in that same bin, but at different azimuth and elevation angles.

Fig. 5.2 shows the azimuth cut of a simulated scene with two targets at a range of 15 m.
The first and second targets are located at -10° and +10° azimuth, respectively, with veloc-
ities of -3 m/s and +3 m/s. For simulation purposes, the scattering parameters used for the
first and second target were a value of 1 and

√
10𝑒𝑗 𝜋

6 for 𝑆𝑥𝑥 respectively, 4 and 10𝑒𝑗 𝜋
3

for 𝑆𝑥𝑦,
√

10𝑒𝑗 𝜋
3 and 4𝑒𝑗 𝜋

5 for 𝑆𝑦𝑥, and 10𝑒𝑗 𝜋
4 and 𝑒𝑗 𝜋

2 for 𝑆𝑦𝑦. The antenna array used in
this simulation is a uniform linear array with 12 virtual channels with half-𝜆 spacing, sub-
divided equally between the four polarimetric channels. The return as function of azimuth
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obtained with this array is compared in Fig. 5.2 with the same array but with all virtual
channels belonging to the same polarimetric channel in order to simulate a conventional
single-polarised MIMO radar system. This figure also shows the estimated azimuth using a
single polarimetric channel. It can be seen that the proposed combined channel processing
method provides a similar level of azimuthal resolution compared to single-polarised radar,
while also being able to provide coarser-resolution polarimetric information that can be used
for classification purposes as demonstrated in Section 5.5. Furthermore, the received power
in all polarimetric channels is summed coherently, thus providing better signal to noise ra-
tios with respect to a comparable single-polarised antenna measuring a polarimetric channel
that only provides weak returns.

5.3. Experimental Measurements
This section describes the experimental measurements. In 5.3.1, the polarimetric radar sys-
tem is introduced while 5.3.2 describes the calibration procedure. The data collection pro-
cedure is detailed in 5.3.3.

5.3.1. Polarimetric MIMO Radar System
To perform polarimetric automotive radar measurements, a novel polarimetric MIMO radar
system was developed in collaboration with Huber+Suhner (H+S). This radar system is
based on Texas Instruments’ AWR2243BOOST radar evaluationmodule, which is equipped
with a AWR2243 automotive FMCW radar chip. To enable MIMO radar functionality, the
AWR2243 has 3 transmit channels and 4 receive channels. Furthermore, theAWR2243BOOST
evaluation module is stacked on a Texas Instruments DCA1000 processing board to effi-
ciently transfer the raw data gathered by the AWR2243’s ADCs to a computer for further
processing. The radar assembly is subsequently mounted on a tripod, resulting in it being
placed at a height of about 65 cm above ground level.

The radar system was programmed to use a high-resolution short range waveform so
that the polarimetric structure of the target-under-test could be investigated. To this end,
the AWR2243 chip was set to use a bandwidth of 3.58 GHz, resulting in a range resolution
of 4.2 cm. To achieve a maximum unambiguous velocity of 7 m/s in combination with a
maximum unambiguous range of 31 m, the AWR2243’s maximum sample rate of 22 Msps,
collecting 750 samples per chirp, in combination with a frequency slope of 101 MHz/µs
were utilised. Furthermore, each transmitter was set to transmit 64 chirps in an interleaved
fashion to obtain a velocity resolution of 0.22 m/s while keeping the phase change between
channels for moving targets caused by TDM (as mentioned in section 5.2) and target geom-
etry changes as small as possible. A full list of waveform parameters can be found in Table
5.1.

Unlike the regular AWR2243BOOST evaluation module, the polarimetric MIMO radar
used for this work features a custom antenna array manufactured using 3D printing technol-
ogy by Hubert+Suhner AG [68–70] instead of series-fed patch arrays with which the stan-
dard evaluation module is equipped. The custom antenna array designed by H+S comprises
of seven sub-arrays consisting of 8 open-ended waveguide radiators positioned vertically
with respect to each other to achieve a narrow beam in the elevation direction. Three of the
sub-arrays function as transmitters, while the other four function as receivers.
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Figure 5.3: Picture of the custom polarimetric antenna mounted on a modified AWR2243BOOST evaluation mod-
ule.

Table 5.1: Waveform settings for the radar module used in this work.

Start Frequency 77 GHz
Frequency Slope 101.388 MHz/µs
ADC Sample Start Time 5.12 µs
ADC Idle Time 7 µs
ADC Sample Rate 22000 ksps
ADC Samples 750
Chirps per Frame 64
Frame Repetition Time 10 ms

To implement polarimetric capabilities, instead of using horizontally oriented open-
ended waveguide radiators within a sub-array, the radiators are either rotated 45° counter-
clockwise with respect to the vertical plane of the transmitters, indicated as positive diagonal
(PD), or 45° in the opposite direction, indicated as negative diagonal (ND). In this way an or-
thogonal polarisation basis is created. An advantage provided by this diagonal polarisation
basis is that the radiation patterns of the ND and PD polarised sub-arrays are theoretically
equal to each other, which can be exploited for calibration purposes. Also, as the ND- and
PD-polarised sub-arrays are mirrored versions of each other, the implementation of both
sub-arrays is simplified. In this chapter, the measured return obtained by transmitting with
a YD-polarised sub-array and receiving with an XD-polarised polarised sub-array is indi-
cated as an XY polarised channel. Here, X and Y can be either N for negative diagonal or
P for positive diagonal.

A picture of the fully assembled radar system including the custom-designed 3D printed
antenna can be found in Fig. 5.3. The three sub-arrays in the lower left corner of the antenna
are connected to the transmitting channels of the AWR2243 chip, while the four in the
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Figure 5.4: The virtual array formed by the custom polarimetric antenna as seen in the direction of transmission.
The numbers indicate the corresponding virtual channel numbers.

upper right corner correspond to the receiving channels. It can be seen that two of the
transmitting channels are PD-polarised, while the remaining one is ND-polarised, and that
the four receiving channels are equally split between PD- and ND-polarisation. All four
differently polarised channels are offset slightly in height to enable estimation of elevation
when all polarimetric channels are processed together.

The virtual array formed by the antenna is shown in Fig. 5.4. It can be seen that the
number of virtual channels dedicated to each of the four polarimetric channels is unbalanced
due to the uneven number of transmitting channels on the AWR2243 chip. Furthermore, all
virtual channels corresponding to a polarimetric channel form dense linear arrays, thus en-
suring that each polarimetric channel can be processed individually without creating grating
lobes in the visible region.

5.3.2. Calibration
To eliminate the effects on phase and amplitude variations due to the different feed-line
lengths in the antenna sub-arrays, the radar systemmust be calibrated. Unfortunately, simple
measurements of a corner reflector do not suffice for this purpose, as this target does not
change the polarisation of the backscattered sensing wave, thus allowing only for calibration
of the two co-polarised channels. To solve this issue, multiple different calibration targets
with different polarimetric properties need to be used [71, 72].

Alternatively, instead of using passive calibration targets, the radar system can be cali-
brated with a radar target simulator equipped with a vertically polarised horn antenna. This
approach has a few advantages, the first of which is that for a diagonal polarisation basis,
all polarimetric channels should measure the same scattering parameters, thus removing the
need for using multiple different calibration targets. In this way, the potential errors intro-
duced by misalignments between calibration targets are avoided. Furthermore, the defini-
tion of an arbitrary phase relation between co- and cross-polarised channels is no longer
required. Secondly, the radar target simulator allows for simulating a target with a given
velocity, which increases the measured signal-to-noise ratio of the simulated target, as this
is better separated from the static clutter present in the scene.

Because of these advantages, calibration of the radar system was performed in this work
using a AREG800A radar target simulator equipped with a AREG8-81S horn antenna front-
end manufactured by Rohde&Schwarz. The radar target simulator was configured to simu-
late two targets at a distance of 24 and 28m, with velocities of 3 m/s and -3 m/s, respectively.
The first target serves as a calibration target, while the latter target could be used as a veri-
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fication target. Subsequently, 1000 frames of the simulated targets were captured using the
polarimetric radar system described in the previous section and processed. For each of the
12 virtual channels, the mean measured phase and amplitude over the 1000 captured frames
were computed. The reciprocal of the mean phase and amplitude could subsequently be
used as calibration coefficients for the virtual channels. Afterwards, the found calibration
coefficients were applied to each of the virtual channels and another set of 1000 calibration
frames was processed. It was found that for the calibration target, the standard deviation
for the worst performing channel was 0.78 dB in amplitude while the standard deviation
of the phase was 5.5°. The mean values for the amplitude and phase were found to be be-
low 0.03 dB and 0.38° respectively. For the verification target, the worst-case standard
deviations of the amplitude and phase were 0.79 dB and 5.3°, respectively, while the mean
values were below 1.26 dB in amplitude and 1.9° in phase. From these results it can be con-
cluded that the calibration procedure was successful, and that systematic errors introduced
by differences between channels such as differing feed-line lengths were appropriately com-
pensated.

5.3.3. Data collection
To evaluate the effectiveness of polarimetry for classification of vulnerable road users, mul-
tiple classes of VRUs and a car were measured. The measurements were performed in two
different campaigns. The first was focused on pedestrians and bicyclists, while the second
measurement campaign also included measurements of another class of VRU (motorcyclist)
as well as a non-VRU (car). Furthermore, the first measurement campaign took place on a
grass field in winter time, while the second measurement campaign took place on an asphalt
parking lot during spring time.

In the first measurement campaign, 5 different bicyclists and pedestrians weremeasured.
In the second measurement campaign, 3 different bicyclists and pedestrians were measured,
where 2 of the 3 pedestrians and bicyclists also took part in the first data collection in order
to compare measurement results between both campaigns. Besides this, during the second
measurement campaign, also a motorcyclist was measured as an additional class of VRU
(see Fig. 5.5), as well as a car representing an example of a non-VRU target.

In both measurement campaigns, each target was measured while moving along four
different directions with respect to the radar, namely: towards the radar, away from the
radar, diagonally towards the radar, and diagonally away from the radar. The diagonal di-
rections are also denoted by the addition of 45° in the naming convention of the directions.
A schematic drawing of the measurement geometry is shown in Fig. 5.6. Furthermore,
each test object was measured three times moving along each direction to obtain statistical
information. The measurement procedure can be summarised as follows:

1. Connect the radar system to a power supply and laptop, configure the radar system
with the correct waveform parameters mentioned in Table 5.1, and mark the measure-
ment course.

2. Let the test object approach the start marker for one of the four measurement direc-
tions, so that the target is at constant speed during the radar measurements.

3. Start the radar measurements when the test object reaches the start marker.
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Figure 5.5: Motorcyclist riding along the measurement area away from the radar.

Figure 5.6: Schematic representation of the geometry used for polarimetric radar measurements of moving VRUs.
The direction identifiers are indicated in red.

4. Stop the radar measurements when the test object reaches the end marker.

5. Repeat measurements for the measured target moving along the same direction, for 3
times from step 3.

6. Repeat measurements for the measured target moving along the remaining three di-
rections from step 3.

7. Repeat measurements for different targets from step 3.

All measurement data were stored locally on a laptop, which could later be transferred to
a workstation computer for further processing after the measurements had been completed.
Furthermore, the data collected for this work have been made publicly available and can be
found in[73].
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Figure 5.7: Block diagram of the post-processing steps to estimate polarimetric features from the radar measure-
ment data.

5.4. Measurement Data Post-Processing
To use the data collected during the measurement campaigns for classification purposes,
post-processing must be applied first. A block diagram of this procedure is shown in Fig.
5.7.

The measurement data is processed similarly to the single polarimetric channel process-
ing procedure in section 5.2.1. The first step in this procedure is to apply range-velocity
processing to the raw ADC data. As shown in section 5.2.1, this can be done by means
of Fast Fourier Transform (FFT) over fast time and slow time dimensions for each virtual
channel; for both FFTs, here a Kaiser window with a beta value of 6 is used. After trans-
forming the ADC-data to the range-velocity domain, a velocity-dependent phase correction
is applied to compensate for the phase shift that occurs for moving targets due to TDM, as
mentioned in section 5.2.1.

Unlike for the single channel polarimetric radar data processing procedure in section
5.2.1, a detector is applied here to the data before performing elevation-azimuth processing.
By performing detection on the range-velocity spectra of the individual virtual channels be-
fore elevation-azimuth processing, this step needs to be applied only to the range-velocity
bins that contain a detection. This greatly reduces requirements on memory and compu-
tational resources. The detector used for this purpose first estimates the noise probability
density function using samples from an area in the range-velocity plane in which no targets
were present during the measurements. The bins in the range-velocity spectrum used for
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this are those corresponding to velocities in the -7 m/s to -1 m/s and 1 m/s to 7 m/s intervals,
and have a range between 15 m and 20 m. Subsequently, from this estimate, the detec-
tion threshold is determined such that the probability of false alarm is 10−15, resulting in
a detector with the constant-false alarm rate property. This probability of false alarm was
empirically found to provide a good balance between missed detections and false alarms.
Furthermore, the bins with velocities between -0.3 m/s and 0.3 m/s are not considered to pre-
vent detections of static clutter. Also, it should be noted that a detection is declared when
a value above the aforementioned threshold is found in at least one of the twelve virtual
channels, as due to the polarimetric properties of a target, a target may provide a stronger
return in some virtual channels, while a weaker return is measured by the virtual channels
that correspond to a different polarimetric channel.

After the detection procedure, elevation-azimuth processing is applied on the bins at
which a detection was declared. As the apertures of each sub-array corresponding to the
polarimetric channels are uniform linear arrays, no elevation information can be obtained
from single polarimetric channel processing. Therefore, the angular processing is done us-
ing steering vectors generated with azimuth values ranging from -90° to 90° in 1° incre-
ments, in combination with an elevation angle of 0°. After angular processing, the angle
for which the sum of the squared absolute values of the scattering matrix is maximum is
computed. The scattering matrix corresponding to this range-velocity-azimuth bin is then
subsequently used to compute several polarimetric features, namely the polarimetric power
distribution and corresponding polarimetric power ratios. Furthermore, also the 𝑎, 𝑏, 𝑐, and
𝑑 values resulting from the Pauli decomposition and the 𝐻 , 𝛼, and 𝐴 features from the
𝐻𝛼𝐴-decomposition are considered [32].

The target polarimetric power distribution 𝑃𝑥𝑦 for the 𝑥𝑦-polarised channel is defined
as the total backscattered power measured by each polarimetric channel, computed over all
𝑁 detections corresponding to a target within a single frame. This can be mathematically
formulated as:

𝑃𝑥𝑦 =
𝑁

∑
𝑖=1

∣𝑆𝑖
𝑥𝑦∣2 . (5.16)

𝑁 represents the total number of detections corresponding to the observed target within a
frame, while 𝑆𝑖

𝑥𝑦 indicates the scattering parameter corresponding to the 𝑖-th detection.
From the target polarimetric power distribution, the target polarimetric power ratio 𝑄𝑥𝑦

can be found. This is defined as the target polarimetric power distribution normalised by the
total power scattered back by the target over the 𝑁 detections. This can be mathematically
expressed as shown in (5.17), as:

𝑄𝑥𝑦 = 𝑃𝑥𝑦

∑𝑁
𝑖=1 (|𝑆𝑖𝑥𝑥|2 + ∣𝑆𝑖𝑥𝑦∣2 + ∣𝑆𝑖𝑦𝑥∣2 + ∣𝑆𝑖𝑦𝑦∣2)

. (5.17)

This feature is independent of the total amount of returned power and thus represents the
polarimetric composition of a target. This allows to compare the polarimetric composition
of weak targets such as pedestrians, with those of stronger targets like vehicles.

Furthermore, the scattering matrices belonging to the individual detections within a
frame can be decomposed to analyse the underlying scattering mechanisms correspond-
ing to a detected target. One of these decompositions is the Pauli-decomposition, which
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decomposes the scattering matrix in four individual scattering mechanisms [32]. As the
polarimetric radar system used in this work measures the scattering parameters in a diago-
nal polarisation basis, the first of the Pauli-features, 𝑎, represents the contribution of odd-
bounce scattering such as that occurring with scattering from a sphere or plane. The second
feature, 𝑏, represents scattering from a dihedral with an orientation of 45° with respect to
the horizon, while 𝑐 represents scattering from a dihedral with an orientation of 0° or 90°.
Lastly, 𝑑 corresponds to the asymmetric components of the scattering matrix. The 𝑎, 𝑏, 𝑐,
and 𝑑 features can be computed as shown in (5.18), as follows:

𝑎 = 𝑆𝑃𝑃 + 𝑆𝑁𝑁√
2

𝑏 = 𝑆𝑃𝑃 − 𝑆𝑁𝑁√
2

𝑐 = 𝑆𝑃𝑁 + 𝑆𝑁𝑃√
2

𝑑 = 𝑗𝑆𝑃𝑁 − 𝑆𝑁𝑃√
2

. (5.18)

Another polarimetric decomposition that can be applied to data from the measurements
is the so called 𝐻𝛼𝐴-decomposition. This decomposition operates on the coherency matrix
found from a set of scattering matrices and computes the scattering entropy 𝐻 , scattering
angle 𝛼, and scattering anisotropy𝐴. These features are found by performing an eigenvalue
decomposition on the coherency matrix from which three eigenvalues 𝜆1, 𝜆2, 𝜆3 and their
corresponding eigenvectors are obtained. Here, subscript 1 corresponds to the largest eigen-
value, while 3 corresponds to the smallest eigenvalue. These eigenvalues are then used to
compute three pseudo-probabilities, which are defined as the eigenvalue divided by the sum
of the three eigenvalues. More information on the computation of the coherency matrix and
pseudo-probabilities can be found in [2] and [32]. The entropy can then subsequently be
found as shown in (5.19), as:

𝐻 = −
3

∑
𝑘=1

𝑃𝑘 log3 (𝑃𝑘) . (5.19)

The entropy represents the randomness of the polarimetric response from a target. If all
scatterers corresponding to a target are equal, then the coherency matrix will have only
one strong eigenvalue leading to an entropy of 0. Conversely, a target comprising of many
different polarimetric scatterers will have a high polarimetric entropy.

To compute 𝛼, first for each eigenvector a scattering angle 𝛼𝑘 is found. This is done by
taking the arccosine of the modulus of the first value of the eigenvector. Using the pseudo-
probabilities in combination with these three scattering angles, 𝛼 can be found using (5.20)
as:

𝛼 =
3

∑
𝑘=1

𝑃𝑘𝛼𝑘. (5.20)

When considering a coherency matrix obtained from scatterers corresponding to the same
statistically underlying scattering mechanism, the angle 𝛼 can be used to identify the nature
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of this scattering mechanism. In the case of performing the 𝐻𝛼𝐴-decomposition on all
detections within a frame, this is no longer necessarily true, as some parts of the measured
target may act like a dipole while others act as a flat plate. However, in this scenario 𝛼 may
still contain useful information on the average scattering mechanism of the observed target.

Lastly, the polarimetric anisotropy indicates the relative importance of the second and
third largest eigenvalue and can be computed via (5.21), as:

𝐴 = 𝜆2 − 𝜆3
𝜆2 + 𝜆3

. (5.21)

The polarimetric anisotropy can help to distinguish targets when for example the first eigen-
value is relatively large, thus leading to low entropy, while the second and third eigenvalues
are the same or differ significantly from each other.

5.5. Results
In this section the measurement results are analysed. First, an analysis of the polarimetric
features is presented in 5.5.1. To quantify the information content provided by the polari-
metric channels, two classification methods are applied and presented in 5.5.2 and 5.5.3.
Specifically, in 5.5.2, classification is performed on the polarimetric power feature, while
5.5.3 considers classification based on the range-velocity signature using a Convolutional
Neural Network (CNN).

5.5.1. Polarimetric Features Analysis
Firstly, the evolution of the target polarimetric ratios, as defined in (5.17), is considered as
a function of time as this is an indicator of the stability of the measurement results and the
influence of noise. Namely, the target pose/shape with respect to the radar is assumed to
remain relatively similar from frame to frame, as the frame repetition time used in these
measurements is 10 ms as shown in Table 5.1. Fig. 5.8 shows the change of the target
polarimetric ratios of a bicyclist cycling towards the radar during the last 50 framesmeasured
by the radar. From this figure, it can be seen that the target polarimetric ratios in most
cases remain relatively stable from frame to frame, whereas over a longer time span more
significant differences are observed. The latter is likely the result of changes in the target
pose as the movement progresses during the data recording.

Subsequently, the distribution of the polarimetric ratios in the range-velocity spectrum
can also be considered. This can be done by analysing the polarimetric ratios of the individ-
ual detections. They are computed as the ratio of the squared magnitude of the considered
scattering parameter divided by the squared magnitude of all four scattering parameters for
just a single detection, in contrast to the target polarimetric ratio which is computed using
all detections corresponding to a target within a frame. Fig. 5.9 shows the distribution of the
polarimetric ratios of each detection in the range-velocity plane. Specifically, in this RGB-
image, the red channel corresponds to the PP-polarised ratio, the green channel corresponds
to the sum of the polarised ratios of the cross-polarised channels, and the blue channel rep-
resents the NN-polarised ratio. The picture on the left hand side represents a cyclist cycling
on a regular bicycle, while the picture on the right hand side shows a person cycling on a
folding bicycle. Even though the bicycles differ from each other, it can be seen that they
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Figure 5.8: Target polarimetric ratios as a function of time for a bicyclist cycling towards the radar; the recorded
time corresponds to 50 frames.

share a similar polarimetric structure. It can be seen for instance that the rear part of the
front wheel of the bicycle provides relatively strong cross-polarised backscattering, while
the front part tends to provide a stronger return in the co-polarised channels. Furthermore,
it can also be observed that the frame of the bicycle and the cyclist itself also lean toward
higher co-polarised backscattering.

A similar comparison between two pedestrians is shown in Fig. 5.10. Here it can be
seen that the forward swinging limbs exhibit relatively high co-polarised ratios as well as
the body itself. The detections corresponding to the backward swinging limbs (i.e., the
area with low velocity as well as furthest range) exhibit slightly increased cross-polarised
polarimetric ratios with respect to the main body.

Another way of analysing the involved scatteringmechanisms is by considering the Pauli
features. The normalised Pauli-features for a cyclist riding towards the radar are shown in
Fig. 5.11. From this figure, it can be seen that the 𝑎 and 𝑏 features are strongest for the
cyclist and bicycle frame, while 𝑐 is highest for the rear part of the bicycle front wheel.
This indicates that the bicycle frame and the cyclist mostly provide odd-bounce scattering
in combination with scattering mechanisms corresponding to 45°-oriented dihedrals. For
the bicycle wheel and spokes, the main scattering mechanism corresponds with scattering
from 0°/90°-oriented dihedrals.

Furthermore, it should be noted that the Pauli features are relatively sensitive to noise in
the phase measurements of the scattering parameters. The Pauli feature 𝑑 shows specifically
the impact of this characteristic, as for monostatic radar this feature should show no returns.
Due to the phase sensitivity of this feature, a phase error of 30° between the measured cross-
polar scattering parameters, corresponding to a distance of about 0.3 mm in free space at
77 GHz, already limits the lower bound of the 𝑑-feature at about 11 dB below the 𝑐-feature.
At mm-wave frequencies, this type of measurement error could for example be caused even
by thermal expansion effects of the radar board, or small changes between the tightness of
the mechanical fasteners after adjustments to account for vibrations when transporting the
radar to the measurement campaign location.

Subsequently, the clusters formed by the target polarimeric ratios, computed using all



5.5. Results

5

101

-6 -4 -2 0
Velocity [m/s]

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

R
an

ge
 [

m
]

-6 -4 -2 0
Velocity [m/s]

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

R
an

ge
 [

m
]

Figure 5.9: Distribution of polarimetric ratios of individual detections in the range-velocity plane for cyclists
cycling towards the radar on a regular bicycle (left) and a folding bicycle (right). The red, green, and blue channel
represent respectively the PP-polarised ratio, the sum of PN- and NP-polarised ratios, and the NN-polarised ratio.
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Figure 5.10: Distribution of polarimetric ratios of individual detections in the range-velocity plane for two different
pedestrians walking towards the radar. The red, green, and blue channel represent respectively the PP-polarised
ratio, sum of PN- and NP-polarised ratios, and the NN-polarised ratio.
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Figure 5.11: Normalised Pauli features for a cyclist riding towards the radar in dB scale, normalised with respect
to the largest value of the four Pauli features.

(a) (b)

Figure 5.12: Clusters formed corresponding cyclists and pedestrians moving towards and away from the radar
during the first measurement campaign by the polarimetric ratios for the: (a) PP- and NN-polarised channels; and
(b) PP- and PN-polarised channels.

detections within a frame as defined in (5.17), are considered. Figs. 5.12a and 5.12b show
the clusters formed by the polarimetric ratios of cyclists and pedestrians as obtained during
the first measurement campaign. From these two figures, it can be seen that a cyclist results
generally in more cross-polarised backscattering compared to the pedestrian. This can be
potentially explained by the vertical and horizontal metal structures of the bicycle frame and
wheels, which convert part of the diagonal polarised waves of the radar used in this work to
horizontally and vertically polarised waves.

As different classes of targets, besides having different polarimetric ratios, can also re-
turn different amounts of power, it is useful to consider this aspect in deriving polarimetric
features and then cluster the results. This can be done by looking at clusters formed by the
total backscattered power of each channel as defined in equation (5.16). Figs. 5.13a and
5.13b show this for all target classes moving towards and away from the radar as measured
during the second measurement campaign. It can be seen that when also considering the
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(a) (b)

Figure 5.13: Clusters formed by the polarimetric power received of a car, a motorcycle, cyclists, and pedestrians
moving towards and away from the radar during the secondmeasurement campaign by: (a) the PP andNN channels;
(b) the PP and PN channels.

magnitude of the backscattered power, the cluster formed by the car is relatively well sepa-
rated from the VRU classes. These figures also show that the measured backscattering from
the motorcycle behaves similar to that of bicycles, but usually with a stronger return and less
variation in cross-polarised scattering.

Comparing Figs. 5.13a and 5.13b, it can be observed that when also considering the
cross-polarised component of the scattering matrix, the separation of the clusters increases
and thus that the cross-polarised channels are potentially able to provide useful information
for classification purposes. For example, when considering Fig. 5.13a, it is difficult to
distinguish the motorcycle and bicycle from each other, but when taking the cross polarised
channel also into consideration it can be seen that the motorcycle becomes more easily
separable.

For a comparison, the clusters formed by the𝐻 , 𝛼, and𝐴 features, shown in Figs. 5.14a
and 5.14b, show less separation between clusters compared to the polarimetric power. Al-
though each cluster class occupies a specific section in the feature space formed by 𝐻 , 𝛼,
and𝐴-features, classification based exclusively on these features may be difficult due to the
significant overlap between clusters. It can be seen that pedestrians generally have lower
entropy than the other classes, as well as a high anisotropy. This indicates that the detec-
tions corresponding to the pedestrian within a frame generally have the same polarimetric
properties. In contrast, the motorcyclist and cyclist classes have the highest entropy val-
ues, indicating that these classes comprise of mixtures of different scattering mechanisms.
When considering the anisotropy of the bicycle and motorcycle class, it can be seen that
the anisotropy values generally range from 0.1 to 0.8, which indicates that scattering ma-
trices corresponding to detections within a frame of these classes show relatively random
scattering characteristics.

5.5.2. Classification using Polarimetric Power
To investigate the effectiveness of polarimetry for classification purposes, first a Bayesian
classifier based on the polarimetric power feature in dB as shown in Figs. 5.13a and 5.13b
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(a) (b)

Figure 5.14: Clusters formed by the 𝐻 and 𝛼 features (a), and 𝐻 and 𝐴 features (b), of a car, a motorcycle,
cyclists, and pedestrians moving towards and away from the radar during the second measurement campaign.

is employed. This classifier uses Bayes’ theorem to compute the probability an observation
belongs to a certain class as shown in (5.22).

𝑃 (𝐶𝑘| ⃗𝑥) = 𝑃 (𝐶𝑘) 𝑃 ( ⃗𝑥|𝐶𝑘)
𝑃 ( ⃗𝑥) (5.22)

In this equation, ⃗𝑥 represents the observed data while 𝐶𝑘 indicates the 𝑘-th class. Further-
more, 𝑃 (𝐶𝑘) is the prior belief of the probability of to which class the observed data belong
to, 𝑃 ( ⃗𝑥|𝐶𝑘) the likelihood of the observed data belonging to class𝐶𝑘, and 𝑃 ( ⃗𝑥) the proba-
bility of observing the observed data. This is then used to compute the posterior belief of the
probability to which class the observed data belongs, indicated by 𝑃 (𝐶𝑘| ⃗𝑥). The posteriors
for each class are calculated and the predicted class is then chosen to be the class for which
the posterior is the highest. This classifier can be used iteratively over multiple frames, by
updating the priors with the posteriors found for the previous frame. To compute the likeli-
hood 𝑃 ( ⃗𝑥|𝐶𝑘), first the mean vector and covariance values for each cluster formed by the
polarimetric power feature in dB are computed. These are then used to assign a multivari-
ate normal distribution to each class. The likelihood can then be determined by evaluating
the PDF for the observed data. The probability of observing ⃗𝑥 can then subsequently be
determined by multiplying the likelihoods for all classes with their respective priors and
summing over them.

In this instance, the priors were selected to be equal for each class. Furthermore, a single
frame was used to determine single-frame classification performance. Fig. 5.15a shows the
confusion matrix for this classification approach. From this figure, it can be seen that 1264
frames corresponding to cars out of the 1345 total frames containing a car are correctly
identified as such, with a corresponding F1-score of 94.7%. Similarly, for pedestrians, the
F1-score is 87.3%. For cyclists and motorcyclists, this percentage is significantly lower
at 64.2% and 63.2% respectively. This is likely due to the fact that the cluster formed by
the data points corresponding to the cyclists class is spread over a wider area, leading to
lower values for the probability density function, which then results in lower probability of
classification compared to the motorcyclist class.
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Figure 5.15: Confusion matrix for classification based on the normalised polarimetric power in dB using: (a) All
polarimetric channels; (b) Only the PP-polarised channel, i.e., single polarised approach.

To compare classification performance of a polarimetric radar system to a single-polarised
counterpart, the same classification procedure was applied to the polarimetric power feature
using only the PP-polarised channel. The resulting confusion matrix is shown in Fig. 5.15b.
It can be seen that a similar F1-score of 92.6% for cars is achieved compared to the fully
polarimetric case, but that F1-scores of the VRU classes have dropped significantly. These
values are 73.0%, 34.2%, and 6.7% for the pedestrian, motorcyclist, and cyclist respectively,
resulting in a decrease of respectively 14.3, 29.0, and 57.5 percentage points. Thus, espe-
cially the cyclist class suffers significantly from not considering the polarimetric features.

From these results, it can be concluded that polarimetric features are able to aid in the
classification process of VRUs. It should be noted that the classification performed in this
section is based solely on polarimetric features. Using these features in combination with
other (non)-polarimetric features and more sophisticated classification procedures could in-
crease classification performance even further.

5.5.3. Classification using Range-Velocity Signatures
Instead of computing a single feature from all detections within a frame as done in the
previous sub-section, classification can also be performed directly on the range-velocity
signatures within a frame itself. This approach allows to exploit the (polarimetric) structure
of the range-velocity signature, which also can contain useful information for classification.

To investigate the information content provided by the polarimetric structure/patterns
formed by the range-velocity signatures, a classifier based on a simple CNN is used. The
CNN can be modelled by 5 layers, namely in order: input layer, convolutional layer, full-
connected layer, soft-max layer, and classification output layer. The input to the network is
a three-dimensional tensor, where the first and second dimensions correspond to range and
velocity, while the third represents each polarimetric channel. Also, an equivalent CNN for
single-polarised radar data was set-up which uses only one of the four polarimetric channel.

The input data to the networks was normalised in two ways, in decibel scale and po-
larimetric ratios. For the decibel normalisation, the frames are first transformed to decibel,
and subsequently scaled so that the strongest detection in the strongest polarimetric chan-
nel within the frame corresponds to a value of 1, while the weakest return in the weakest
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Figure 5.16: F1-score of the test set after the indicated number of completed training iterations for both fully- and
single-polarised classifiers for: (a) decibel-scale input normalisation; (b) polarimetric ratio input normalisation.

polarimetric channel of that same frame corresponds to 0. For the single-polarimetric ref-
erence, the PP-polarised layer of the normalised data was used. The second normalisation
method uses the polarimetric ratios of each detection. As the polarimetric ratios for each
detection sum to 1, no further normalisation is required. For the single-polarised variant
of the network, all detections were given a value of 1. This means that in this case both
single-polarised and fully-polarised classification networks have the same shape informa-
tion, obtained using all polarimetric channels, whereas the fully-polarised network also has
access to the polarimetric ratios of the detections. For both normalisation methods, the data
was split in 5 different test and training sets on which both the fully- and single-polarised
classifiers were trained, resulting in 10 trained networks. Each of the splits was chosen
such that for each class, 90% of the frames corresponding to that class were used for train-
ing, while the remaining 10% was used for testing. This allows for evaluating the spread
in classification performance due to the difference in training and test datasets, where one
training dataset may result in a slightly better test accuracy than another. Furthermore, each
network was trained for 30 epochs at which no large improvements in test accuracy were
observed anymore, and hence the training process was stopped.

Fig. 5.16a shows the F1-scores for the test sets as a function of the number of train-
ing iterations performed for decibel-scale normalisation. It can be seen that both single-
and fully-polarised classifiers achieve a similar mean F1-score, of respectively 97.2% and
98.2%. Thus, the fully-polarised classifier achieves a slightly better result. It can also be
noticed that the fully-polarised network is able to achieve higher F1-score earlier than the
single-polarised one, thus indicating that useful information is present in the polarimetric
channels for classification purposes.

Fig. 5.16b shows that for the polarimetric ratios, also similar performance between
the fully- and single-polarised classifiers is achieved of respectively 98.6% and 99.7%. In
contrast to decibel-normalised data, the single-polarised network performs better for the
ratio-normalised data compared to the fully-polarimetric network. Also, the single-polarised
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Figure 5.17: Confusion matrix for classification using the decibel normalised input data format with: (a) All
polarimetric channels; (b) Only a single polarimetric channel.

network achieves higher test set F1-score with fewer iterations than the fully-polarimetric
classifier.

From this, it can be concluded that the shape of the range-velocity signature ismost likely
the most significant factor in achieving good classification performance, and that in this case
the ratio-information ’distracted’ the fully-polarimetric network. This is further supported
by the results obtained from the decibel-scaled data, since other polarimetric channels may
contain strong returns that are weak in the channel used by the single-polarised classifier,
thus enhancing the contrast of the range-velocity signature. Thus, this shows that polarimet-
ric radar does result in better classification performance using a simple CNN-based classifier
as the diversity in polarimetric channels results in more detections, and therefore a higher-
contrast range-velocity signature, which may be missed when using only a single-polarised
radar system. The lagging classification performance of the fully-polarimetric network for
the ratio normalised data shows that in order to properly exploit the polarimetric informa-
tion, more complex polarimetric features and/or networks are likely needed.

Figs. 5.17a and 5.17b show the confusion matrices for the decibel normalised input
networks generated by summing the classification results of all 5 classifiers of their corre-
sponding test sets. Fig. 5.17a shows the results for the fully-polarised classifier, while Fig.
5.17b shows the results for the single-polarised classifier. It can be seen that for both clas-
sifiers most misclassifications occur between cyclists and motorcyclists. This is expected
as the shapes of the range-velocity signatures of cyclists and motorcyclists are similar to
each other. Similar behaviour is observed for the ratio based fully- and single-polarised
classifiers shown in Figs. 5.18a and 5.18b, respectively.

To summarize, Table 5.2 shows the F1-scores achieved by the networks. It can be seen
that the F1-scores of all classes are relatively similar, with the F1-scores for the motorcy-
clist being the lowest. This can be explained by this class having the least available frames
for training and testing out of all classes, while having a similar signature as the cyclist.
Furthermore, it can be seen that the F1-scores are highest for the single-polarised ratio nor-
malised input classifier, thus further reaffirming the explanation provided in the previous
paragraphs.

Finally, the importance of the cross-polar polarimetric channels for classification is con-
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Figure 5.18: Confusion matrix for classification using the ratio normalised input data format with: (a) All polari-
metric channels; (b) Only a single polarimetric channel.

Table 5.2: F1-scores achieved by fully- and single-polarised classifiers using decibel and ratio normalised input
data.

dB Scaled Ratio Scaled
Full Single Full Single

Car 0.999 0.999 0.999 0.999
Cyclist 0.982 0.971 0.986 0.997
Motorcyclist 0.949 0.917 0.960 0.990
Pedestrian 1.000 1.000 1.000 1.000

sidered. To this end, instead of training the single-polarised decibel-normalised network
with only the PP-polarised polarimetric channel, this network was modified by adding and
extra input layer for the NN-polarised channel. This resulted in F1-scores of 99.9%, 97.7%,
93.7%, and 100% for the car, cyclist, motorcyclist, and pedestrian class, respectively. From
this, it can be concluded that there is indeed to a certain extent information present in the
depolarisation caused by a target, as the F1-scores are slightly lower than those obtained
with its fully polarised counterpart and slightly higher than its single-polarised version.

5.6. Conclusions
In this chapter, a novel method for classifying vulnerable road users using polarimetric
MIMO radar is proposed. To this end, a signal processing pipeline was proposed using
virtual channels that correspond to the same polarimetric channel. The method comprises
of range-velocity processing using fast Fourier transforms and angular processing using
digital beam forming, including a velocity dependent phase correction to account for phase
changes of moving targets that occur due to time division multiplexing used in automotive
radar. To reduce loss of angular resolution that occurs when using a polarimetric radar, a
combined polarimetric channel processing method is also introduced. This method allows
to successfully enhance the angular resolution compared to single polarimetric channel pro-
cessing. It is also shown that when a radar system provides good polarimetric diversity, it
is possible to outperform single-polarised radar systems for targets that have low returns in
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the polarimetric channel of the single-polarised system while providing a strong return in
others.

This processing pipeline has been applied to the data coming from a polarimetric MIMO
automotive radar, which was developed in collaboration with Huber+Suhner AG based on
the AWR2243BOOST module by Texas Instruments. The developed radar uses a diago-
nal polarisation basis and is calibrated using a new active calibration method, allowing to
calibrate all virtual channels at once, independent of polarisation. Using this radar system,
multiple different moving target classes were measured, namely: pedestrian, cyclist, mo-
torcyclist, and car. From their measurements, multiple different polarimetric features were
extracted and analysed. It is found that the polarisation ratios of pedestrians are relatively
high, while other classes comparatively provide more cross-polar backscattering.

Using exclusively the proposed feature of target polarimetric power, it is shown that a
Bayesian classifier was able to achieve an F1-score of 94.7%, 87.3%, 63.2%, and 64.2%
for cars, pedestrians, motorcyclists, and cyclists, respectively. It is found that by not in-
cluding the polarimetric properties, the F1-scores of the VRU classes dropped significantly,
especially in the case of cyclists, which decreased from 64.2% to 6.7%. The F1-scores for
pedestrians and motorcyclists dropped from 87.3% to 73.0% and from 63.2% to 34.2% re-
spectively. From this, it can be concluded that polarimetric information provides beneficial
information for VRU classification and that it can be used to boost classification perfor-
mance compared to single-polarised radar systems. Additionally, a CNN-based classifier
was also used to classify the measured targets, exploiting the ’spatial’ distribution of polari-
metric features in their range-velocity spectra. Here, it was found that polarimetric radar
is beneficial as it is able to provide clearer range-velocity signatures due to polarisation
diversity. To fully exploit polarimetric information available in range-velocity signatures,
more complex polarimetric features and/or a more complex network architecture are likely
required.
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6.1. Major Results and Novel Contributions

T he major results and contributions of this PhD research are discussed in the paragraphs
below.

• For the first time, statistical full-wave numerical results of scattering from road
surfaces in automotive scenarios in the W-band are presented. (Chapter 2)
Based on computer tomography scans, the surface properties of an asphalt road sur-
face sample were determined. From these scans, a root-mean-square height of ap-
proximately 2 mm and a correlation length of about 2 mm were found, thus leading
to a root-mean-square slope of approximately 1. This high value of the RMS slope
makes it impossible to analyse scattering from asphalt using well-known approxima-
tions (SPM, KA, etc.) and only full-wave simulations could be used. Furthermore, it
was found that the surface height profile can follow non-Gaussian distributions and
that asphalt material is a lossy dielectric, possessing a relative permittivity ranging
from 3 to 5 with a conductivity of approximately 0.5 to 0.7 S/m in the 77 GHz auto-
motive radar band.
These geometrical properties present significant surface roughness at frequencies of
77 GHz used in automotive radar applications, rendering well-known approximate
analytical methods such as the small perturbation method and born approximation
invalid, which are widely used to evaluate the backscattering behaviour of electro-
magnetic rough surfaces.
Thus, to overcome this problem and to provide data on backscattering from road sur-
faces, which is essential for the development of, amongst others, road surface clutter
analysis in automotive radar, a Monte-Carlo based full-wave simulation procedure
using a novel algorithm for generating rough surface realisations was introduced. Us-
ing this procedure, for the first time statistical data on bi-static surface scattering from
road surfaces were obtained and presented.

• Anovel road surface scatteringmodellingmethod formm-wave automotive radar
systems based on a dense grid of uncorrelated scattering elements has been in-
troduced. (Chapter 2)
As simulation of radar returns in automotive scenarios becomes increasingly impor-
tant for increasingly complex applications, so does the need for fast and accurate mod-
els of road surface scattering. Nowadays, most automotive radar simulators neglect
road surface scattering or evaluate its effect using computationally-intensive methods
such as ray-tracing. To address this issue, a novel method for simulating road surface
scattering based on uncorrelated scattering elements is proposed. This method is able
to generate radar data from road surface scattering in different formats which are cru-
cial for subsequent processing such as range-Doppler spectra and range-angle plots.
It is found that the proposed method shows excellent agreement with measurement
results from real-world automotive radar recordings, thus demonstrating the effec-
tiveness of the proposed method.

• A new measurement procedure has been proposed for measuring normalised
radar cross sections of rough surfaces, showing that road surfaces have dis-
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tinct polarimetric normalised radar cross sections depending on their condition.
(Chapters 3 and 4)
Currently, no statistical models of polarimetric normalised radar cross sections of road
surfaces based on measurement data in the 77 GHz automotive radar are presented in
the literature.
To address this gap, a novel measurement procedure is proposed that is able to de-
termine the polarimetric normalised radar cross sections of rough surfaces including
its statistical properties. The measurement procedure involves measurements with a
vector network analyser connected to a dual-polarised horn antenna and subsequently
compensates the raw measurement data for the effects of the antenna radiation pat-
terns and the strongly increasing propagation distance over the surface-under-test.
The proposedmeasurement procedure is applied to road surfaces in various conditions
and it is shown that their normalised radar cross sections show a strong dependency
on said road surface conditions. It is found that, depending on the road surface condi-
tion, surface backscattering behaviour can vary from Lamberian scattering behaviour,
corresponding to very rough surfaces, to significant differences of 10 dB between hor-
izontally and vertically polarised co-polar normalised radar cross sections, as found
in the case of wet asphalt. Furthermore, it is shown that the cross-polar normalised
radar cross sections are significantly lower than the co-polar normalised radar cross
sections, ranging from 5 dB to over 10 dB depending on polarisation and incident an-
gle, indicating that multiple scattering events play a limited role in the total backscat-
tering response. Also, based on the found statistical models of normalised radar cross
sections of surfaces, a method to maximise or suppress surface scattering by varying
the sensing wave polarisation in a single-polarised radar system is proposed.

• Anovel road surface condition classificationmethod based on an adapted polari-
metric 𝐻𝛼𝐴-decomposition has been introduced that exploits the differences in
the statistical properties of polarimetric scattering of various road surface con-
ditions. (Chapter 4)
Due to the short wavelength and resulting significant electromagnetic roughness of
road surfaces, surface backscattering can be detected by 77 GHz radar systems. As
the backscattered signal from the surface to the radar depends on the road surface con-
dition, this information can be used to classify the road surface condition ahead of the
vehicle which subsequently can be used to enhance road user safety. As the backscat-
tering response from road surfaces has distinct polarimetric properties depending on
the road surface condition, the extra information provided by a polarimetric radar
system can be used to increase accuracy and reliability of classifications. The polari-
metric features proposed so far in literature only utilise the available full breath of
polarimetric information to a limited extent.
Thus, to better exploit the rich statistical polarimetric information present in backscat-
tering from road surfaces, a newmethod to extract three polarimetric features, namely
entropy 𝐻 , angle 𝛼, and anisotropy 𝐴, in automotive scenarios and corresponding
shallow incident angles is proposed. It is shown that the proposed features result in
potentially more reliable and robust classifications as the difference between cluster
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centroids in the𝐻𝛼𝐴 space is increased by at least 16% for measurements performed
at 90° compared to clusters formed by polarimetric ratios, while not sacrificing cluster
standard deviations significantly.

• For the first time, it has been shown that the dynamic polarimetric signatures of
cyclists and pedestrians are structured and differ significantly from each other
(Chapters 5)
Using a novel automotive polarimetric MIMO radar developed in collaboration with
Huber+Suhner AG, measurements of multiple pedestrians and cyclists, moving in
various directions, have been performed. These measurements showed that the mean
polarimetric ratio, which is computed based on all polarimetric ratios of the individual
detections within a frame that correspond to the VRU-under-test, significantly differs
between pedestrians and cyclists. It was also shown that the polarimetric ratios of the
individual detections belonging to a measured target within a range-Doppler frame
are structured to a certain degree, thus indicating that several parts of the observed
target have different polarimetric responses.
This implies that polarimetric radar can enhance classification performance of vul-
nerable road users by considering the polarimetric features of the observed targets in
addition to using the features available to single-polarised radar. This is demonstrated
by improvements in class F1-scores from 73.0% to 87.3%, 34.2% to 63.2%, and from
6.7% to 64.2% for respectively pedestrians, motorcyclists, and cyclists, achieved by
using polarimetric features based on all four polarimetric channels compared to us-
ing the same feature, but computed from only a single polarimetric channel using a
Bayesian classifier.
Furthermore, a convolutional neural network classifier was used to evaluate the effec-
tiveness of the structure of the dynamic polarimetric signatures belonging to VRUs for
classification purposes. Here, it was also found that polarimetric radar is beneficial
as improvements in F1-scores from 97.1% to 98.2% and 91.7% to 94.9% for respec-
tively cyclists and motorcyclists were achieved with respect to the single-polarised
version of the convolutional neural network. These improvements are likely caused
by not only the information provided by the polarisation of the backscattered waves
from a target but also the polarimetric diversity provided by a fully polarimetric radar.
Namely, polarimetric radar is able to detect reflections in other polarimetric channels
which may be too weak to be detected in the single polarimetric channel that a single-
polarised radar uses. This leads to higher quality range-velocity signatures, which
in turn enhance the classification performance. The information provided by polar-
isation can likely further be exploited by using more complex polarimetric features
and/or more complex network architectures.

6.2. Recommendations for Future Research

S everal research topics of interest in continuation of the research presented in this disser-
tation are listed below.

• Study on statistical road surface scattering from road surfaces covered by an-
other dielectric medium using full-wave methods.
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The rough surface types evaluated in this dissertation with the proposed full-wave
simulation procedure comprise of PEC or dielectric rough surfaces, representing road
surfaces under normal conditions. It is of interest to also investigate the polarimetric
radar cross sections of surfaces in non-dry conditions, such as wet or icy, by plac-
ing a second dielectric on top of the original investigated surfaces. The results from
this study could be further used for investigations on the benefits of polarimetry in
automotive radar.

• Collection of a polarimetric automotive radar dataset of city/highway driving.
To take the proposedmethods of surface conditions feature extraction and road surface
characterisation to the next technology readiness level, it is imperative that they are
tested in real world scenarios. This could be done by mounting the H+S radar on a
car with corresponding reference sensors and capture data while driving through the
city or on a highway. At the moment, to the author’s best knowledge, there are no
publicly available automotive polarimetric radar datasets available and when such a
dataset would be collected it could, besides road surface classification, also be used
to investigate the classification of vulnerable road users.

• More detailed study on performance of 𝐻 , 𝛼, and 𝐴 features for scattering from
vulnerable road users.
In this dissertation, mainly polarimetric scattering from road surfaces has been con-
sidered. However, vulnerable road users pose interesting targets as well and can also
have distinctive polarimetric properties that can be used for classification as shown
in chapter 5. In this chapter, 𝐻 , 𝛼, and 𝐴 features are computed using all detections
within a frame which correspond to different scattering processes. A more intricate
signal processing pipeline to perform the 𝐻𝛼𝐴-decomposition over multiple frames
but same areas of the observed target, with the same scattering properties, may result
in an improved quality of the𝐻 , 𝛼, and𝐴 features which could increase classification
performance of VRUs further.

• Evaluation of performance of various machine learning algorithms for road sur-
face classification using polarimetric features.
In this dissertation, the 𝐻 , 𝛼, and 𝐴 and polarimetric ratio features were studied on
cluster levels to keep the results of the analysis as general applicable as possible. The
next step in this investigation would be to use these polarimetric features, possibly in
combination with others such as the Krogager decomposition, normalised amplitude
𝐴, and phase difference 𝛿, in various machine learning algorithms, which may be able
to pick up on more intricate relations beyond distances between cluster centroids and
cluster standard deviations, to evaluate and enhance classification accuracy.

• Implementation of an automotive polarimetric radar systemwith increased aper-
ture size and an increased amount of polarimetric channels.
Implementation of a high angular-resolution automotive polarimetric radar system
would be interesting as it potentially can allow to separate scattering points of a target-
of-interest more compared to a low-resolution radar sensor. This would also allow
classification based on the geometric relationships between certain types of scattering
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points. For example, the arms and the torso of a pedestrian could have distinct po-
larimetric scattering behaviour, and the geometrical relationship between these body
parts could be exploited to increase accuracy of a classifying algorithm.
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