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Review 

Deep reinforcement learning for process design: Review 
and perspective 
Qinghe Gao and Artur M Schweidtmann   

The transformation toward renewable energy and feedstock 
supply in the chemical industry requires new conceptual 
process design approaches. Recently, deep reinforcement 
learning (RL), a subclass of machine learning, has shown the 
potential to solve complex decision-making problems and aid 
sustainable process design. However, its suitability in static 
process design still needs to be examined. We discuss the 
advantages and disadvantages of RL for process design. Then, 
we survey state-of-the-art research through three major 
elements: (1) information representation, (2) agent architecture, 
and (3) environment and reward. Moreover, we discuss 
perspectives on underlying challenges and promising future 
works to unfold the full potential of RL for process design in 
chemical engineering. 
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Introduction 
The chemical industry is facing a rapid paradigm shift 
toward a circular economy based on renewable energy 
and feedstock supply [1,2]. This poses several challenges 
for conceptual process design due to the increasing 
complexity of the design task, the lack of experienced 
engineers, and the pressure on improving sustainability 
and profitability while shortening development times. 
Thus, there is a need for new methodologies and tools 

that support engineers to design sustainable processes in a 
more efficient way. 

Computer-aid process design is widely used in process 
systems engineering (PSE) for conceptual process design  
[3,4], which can be classified into three methodologies as 
illustrated in Figure 1: (1) heuristic-based methods, (2) 
optimization-based methods, and (3) the emerging field 
of generative artificial intelligence (AI). Heuristic-based 
methods rely on a set of rules derived from experience, 
insights, and engineering knowledge, making them the 
most commonly used approaches due to their ease of 
application. Optimization-based approaches are com-
monly used to identify optimal design and operating 
variables for given process structures. Particularly, deri-
vative-based optimization algorithms are already available 
in commercial process simulation software to determine 
those. To determine optimal process structures, super-
structure-based methods are the de facto state of the art, 
where possible process alternatives are modeled and 
subsequently solved by mixed-integer nonlinear optimi-
zation (MINLP) methods [5,6]. Within this paradigm, two 
solver types are typically utilized: deterministic (e.g. 
branch and bound algorithms such as Branch-And-Re-
duce Optimization Navigator or McCormick-based Algo-
rithm for mixed-integer Nonlinear Global Optimization) 
and stochastic solvers (e.g. genetic algorithms). While 
superstructure methods have been very successful in 
PSE, they also have many shortcomings that limit in-
dustrial applications [7], including (manual) setup of all 
process alternatives, the need to implement process 
models in an optimization environment, and the diffi-
culties of solving resulting MINLPs. Superstructure-free 
methods dispense the need for predefined super-
structures. For example, evolutionary algorithms typically 
adopt a two-level decomposition approach [6]. First, they 
generate alternative flowsheets, which are then evaluated 
through an optimization algorithm. Finally, a few very 
recent works proposed the use of generative AI methods 
for the generation of process structures [8,9]. However, 
those works require large training data and are not the 
focus of this review. 

Recently, deep reinforcement learning (RL) has shown 
its potential to solve complex sequential dynamic deci-
sion-making problems at human-like or even super-
human level [10–12]. RL is a computational approach for 
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goal-directed learning and decision-making through the 
direct interaction of an agent with its environment [13]. 
RL is primarily developed to solve discrete-time dy-
namic optimization problems formulated as Markov de-
cision processes (MDP). Consequently, RL is based on 
the Bellman optimality equation, which is similar to the 
Hamilton–Jacobi–Bellman equation and Pontryagin’s 
maximum principle for continuous state and action 
spaces in the control theory. Also, RL has seen its first 
applications in chemical engineering for process control  
[14,15] and scheduling [16,17]. Notably, Yokogawa is 
even using RL to operate an industrial chemical process 
since 2022. 

This review and perspective paper aims to provide a cri-
tical examination of the application of RL for process de-
sign. In the context of process design, RL can be 
considered a superstructure-free and model-free method, 
which iteratively places unit operations with corresponding 
design and operating variables. It evaluates the resulting 
flowsheets at every iteration and aims to maximize the 
objective functions. In the recent literature, there have 
been a few first steps toward applying RL as a static op-
timization algorithm for stationary process design, in-
cluding absorption-stripping process [18], energy systems 
design [19,20], unit operation design [21•], separation 
process [22••,23–29••], solvent extraction process design  
[30], single mixed-refrigerant process design [31], and 
synthesis reaction process design [32–34]. 

The use of RL for stationary process design is con-
troversial in scientific discussions. Most notably, RL is 
better suited for dynamic, sequential-decision problems 

rather than static ones. Also, clear comparisons and 
benchmarks between RL and other design methods are 
lacking in previous literature. Therefore, at the moment, 
the suitability of RL for process design is questionable 
and remains an open question. Here, we present the 
main differences between RL and existing super-
structure-free methods in the context of process design: 

• Computational efficiency (static vs dynamic optimi-
zation) — RL is better suited for dynamic, sequential- 
decision problems rather than static ones. However, 
prior studies have applied RL to stationary process 
design, constituting static optimization problems. 
This may drastically increase complexity and de-
crease computational efficiency (called ‘sample effi-
ciency’ in RL). As a side note, the capability of RL in 
dynamic optimization paves the way for solving in-
tegrated design and operation problems (see section 
Integrated process control operation and design).  

• Iterative build-up vs full flowsheet generation — RL 
sequentially generates flowsheets (unit by unit), dif-
fering from evolutionary superstructure-free methods 
that construct flowsheets as a whole. While this se-
quential build-up increases computational com-
plexity, there are also potential advantages. 
Generating feasible flowsheets and simulating them is 
challenging, often causing convergence problems in 
evolutionary superstructure-free methods. In contrast, 
the iterative strategy of RL promotes convergence, 
and intermediate simulations of incomplete flow-
sheets may provide valuable information for learning. 
However, this additional information comes at the 
cost of additional simulation time. 

Figure 1  
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• Inference (online) vs optimization (offline) — A sig-
nificant distinction between RL and other optimiza-
tion methods lies in the solution time for similar, 
recurring problems. RL involves training a policy 
once, which is then utilized during inference to ra-
pidly predict near-optimal solutions, offering a sig-
nificant advantage in time-sensitive control 
applications. In contrast, classical optimization algo-
rithms solve problems individually, typically re-
quiring long runtimes for each problem instance. In 
process design, long optimization times are usually 
not an issue (unless it becomes intractable in the case 
of large nonconvex MINLPs). Thus, classical opti-
mization methods are usually well suited. However, 
the rapid inference capability of RL may also provide 
new opportunities for process design. For example, 
RL agents might be integrated into flowsheet simu-
lation software to automatically and immediately 
suggest near-optimal design options to users. Also, 
fast solutions of design problems can be advantageous 
when a large number of design problems need to be 
solved (e.g. as subproblems in larger optimization 
studies).  

• Learning capacity — RL possesses a substantially 
greater learning capacity compared to standard evo-
lutionary methods (e.g. more trainable parameters). 
For instance, state-of-the-art deep RL algorithms can 
incorporate extensive networks of learnable para-
meters, potentially exceeding billions of parameters. 
This enhanced learning potential facilitates inference 
and allows for retaining information, unlike genetic 

algorithms, which typically lose details about previous 
populations. This substantial learning capacity of RL 
holds the potential for learning more complex de-
pendencies between design actions and results. 
However, the high learning capacity also presents 
severe drawbacks, such as a vast amount of training 
data and extensive training duration (measured in 
epochs within RL). 

When comparing RL with standard optimization 
methods, its most notable advantages include larger 
learning capacity and inference ability. However, at the 
same time, RL typically demands significantly more 
training simulations than static optimization solvers, 
which leaves doubt on whether its potential advantages 
outweigh the disadvantages in the context of process 
design. Current literature applying RL to process design 
neglects its inference capabilities, learning capacity, and 
dynamic optimization capabilities, predominantly uti-
lizing the training phase of RL as an evolutionary opti-
mization strategy for static problems. Thereby, they 
essentially merge the drawbacks of both worlds. 
Additionally, there is a lack of computational comparison 
between RL and traditional process design methods. In 
the following, we critically examine the existing litera-
ture on RL in process design (section State of the art) and 
highlight future perspectives (section Perspectives). 

State of the art 
The general framework of RL in process design is shown 
in Figure 2. The agent learns to design processes by 

Figure 2  
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iteratively placing unit operations with design and op-
erating variables and simulating the resulting processes 
in the environment, ultimately obtaining the optimal 
policy π*, which designs optimal processes. Mathema-
tically, this problem can be formulated as MDP: 
M = {S, A, T, R} with states s ∈ S, actions a ∈ A, the 
transition function T: S × A × S → [0,1], and the reward 
function R S A S: × × . In the context of process 
design, the states s represent the flowsheet topology as 
well as all relevant design specifications, operating vari-
ables, thermodynamic stream data, flowrates, and com-
positions. The agent takes the current states s as input to 
take actions a. These actions can include design and 
operating variables. In chemical processes, design vari-
ables are usually determined during the initial design 
phase and typically remain fixed throughout the opera-
tion, such as equipment size. Operating variables can be 
adjusted during operation (e.g. flow rates and pressures). 
Furthermore, the actions contain discrete choices (e.g. 
the selection of open streams, unit operation types or 
number of stages) as well as continuous choices (e.g. the 
length of a reactor or operating flowrates), namely, hy-
brid action space. Usually, decisions in process design 
are also hierarchical. For example, the agent first de-
termines an open stream to add a unit operation, then 
the type of unit operation, then design variables, and, 
finally, operating variables. After a new unit operation is 
added, the new flowsheet is simulated in an environ-
ment (e.g. a process simulation software). After finishing 
a flowsheet, a numerical reward is returned to the 
agent. This corresponds to the objective for optimiza-
tion. By repeating the design of multiple flowsheets and 
receiving corresponding rewards, the agent learns to 
design processes that maximize the reward. 

In this section, we survey the RL state-of-the-art lit-
erature (summarized in Table 1) based on (1) informa-
tion representation, (2) agent architecture, and (3) 
environment and reward. 

Information representation 
Chemical processes comprise various information, such 
as process topology, thermodynamic states, flowrates, 
concentrations, design variables, operating variables, 
components, and underlying mechanistic knowledge. 
The meaningful representation of the chemical process 
information is critical for the learning and generalization 
of RL agents. For RL in process design, there are cur-
rently two methods for information representations: 
Matrix [18–32] and graph [33••,34]. 

In matrix-based representation, flowsheets are represented 
by fixed-size matrices. Within the flowsheet matrix, the 
connectivity, stream compositions, thermodynamic stream 
data, and design variables are usually concatenated. For 
example, Göttl et al. [24–26] represented flowsheets as 
16 × 28 matrices, where each row represents a stream and 
encompasses four parts: {v, u, d, t}. vi has five entries, which 
describe the molar fractions and total molar flowrate of 
stream i. ui stores the type of the unit operation that is 
downstream of stream i as one-hot encoding. Furthermore, 
di stores the connectivity of unit operations and has 16 
entries (i.e. this corresponds to the adjacency matrix). Fi-
nally, ti has two entries: the first entry indicates whether 
the task is terminated (0 if not terminated), and the second 
entry indicates whether stream i is still unused (0 if un-
used). Most of the previous publications use matrix re-
presentations of flowsheet states (c.f. Table 1). 

Table 1 

An overview of the reviewed literature and different choices of elements in RL for process design. We use Repr. to indicate information 
representation. Furthermore, we utilize Dis., Cont., and Hier. to denote discrete, continuous, and hierarchical, respectively, action space 
of RL. Within the decisions of RL, we use Topo., Des., and Oper. to represent actions involved in changing flowsheet topologies, selecting 
design variables, and operating variables, respectively.            

Ref. Repr. Agent architecture Environment Action space Decisions     

Dis. Cont. Hier. Topo. Des. Oper.  

[22••] Matrix AC (SAC) COCO ✓ ✓  ✓ ✓ ✓ 
[23•] Matrix AC (SAC) Aspen Plus ✓ ✓   ✓ ✓ 
[18] Matrix AC (–) Aspen Plus  ✓    ✓ 
[30] Matrix AC (PPO) Short-cut  ✓   ✓  
[24,25••,26] Matrix AC (two players) Short-cut ✓  ✓ ✓   
[28,29••] Matrix AC (PPO) Short-cut ✓ ✓ ✓ ✓ ✓ ✓ 
[20] Matrix AC (ACER) Short-cut ✓    ✓  
[19] Matrix Policy based (policy search) Short-cut  ✓    ✓ 
[21•] Matrix Policy-based (PG) Short-cut  ✓   ✓ ✓ 
[32] Matrix Value-based (Deep Q-Network) IDAES ✓   ✓   
[31] Matrix Value-based (Deep Q-Network) UniSim  ✓   ✓ ✓ 
[27] Matrix Value-based (Q-learning) Short-cut ✓ ✓  ✓ ✓  
[33••] Graph AC (PPO) Short-cut ✓ ✓ ✓ ✓ ✓ ✓ 
[34] Graph AC (PPO) DWSIM ✓ ✓ ✓ ✓ ✓ ✓ 
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In graph-based representation, flowsheets are re-
presented by directed homogeneous or heterogeneous 
graphs. Flowsheet graphs consist of nodes and edges. 
Unit operations are represented by nodes, also referred 
to as vertices v ∈ V, and streams are represented by 
edges evw ∈ E connecting two nodes v and w. 
Importantly, node feature vector fv ∈ FV and edge fea-
ture vector Fff e Evw are associated with each node and 
edge, respectively. Within the node feature vectors, 
types of unit operation, design specifications, and oper-
ating points are encoded. The edge feature vectors 
contain thermodynamic states, concentrations, and 
flowrates. In the past, only our previous works used 
graph representations of flowsheets for RL [33••,34]. 

The comparison between flowsheet matrices and flow-
sheet graphs is still an open research question in the 
context of RL in process design. Flowsheet matrices are 
easier to implement than flowsheet graphs and are used 
by the majority of the literature as presented in Table 1. 
Flowsheet matrices are processed by RL agents using 
multilayer perceptrons (MLPs) or convolutional neural 
networks (CNNs). However, every flowsheet graph has 
N! different adjacency matrices. CNNs and MLPs are 
not permutation equivariance 

f fPP xxPP PP xx PP( ) ( )T T

where P is a permutation matrix, x is the input matrix, 
and f is an MLP or CNN [35]. This means that such 
models depend on the arbitrary order of rows/columns in 
the flowsheet matrix and thus cannot generalize over 
flowsheet topologies. Also, the neighborhood of an entry 
in the matrix does not correspond to physical con-
nectivity, which makes learning using MLPs/CNNs 
more difficult as it requires learning long-range interac-
tions. In contrast, (message passing) graph convolutional 
networks (GCNs) are permutation equivariance, and 
they learn from the actual connectivity of flowsheet 
graphs. Furthermore, MLPs and CNNs require fixed- 
size inputs, for example, a predefined maximum number 
of unit operations and streams, while GCNs are size 
independent [36]. 

Agent architecture 
RL agents consist of two components: a policy and a 
learning algorithm. The policy describes the behavior of 
the agent, mapping the current state s into an action 
a: π(s) = a. It is parameterized by function approximators, 
such as MLPs. The learning algorithm is used to con-
tinuously update the policy based on the actions, states, 
and rewards. Depending on the learning algorithms, the 
agent can be characterized into three types: value based, 
policy based, and actor-critic (AC) based. 

Value-based agents learn a functional approximator of 
the value function (Vπ(s)) to take actions. The value 
function outputs the expected returns after the current 

process step t given a state s and a policy 
V Gss ss: ( ) [ ]t= , where returns Gt: 

G R R R Rt t t
k

t k
k

k
t k1 2 1

0
1= + + + =+ + + +

=
+ +

(1) 

where γk are the discount rates to determine the present 
value of future rewards, and k is the process step from t to 
the end of the episode. Similarly, we can also derive the 
state-action value function, namely, the quality function 
Qπ, which calculates the expected returns given a state s 
and action a, following policy Q Gss aa ss aa: ( , ) [ , ]t= . 
Depending on the calculated V-/Q-value, different search 
algorithms such as best-first search or nearest neighbors 
are used to choose the final action. In the context of RL in 
process design, three works [27,31,32] deployed Q-lear-
ning–based agent to perform process synthesis tasks. 
However, traditional value-based agents can only take 
discrete actions, which hinders further development be-
cause continuous decision-making of design or operating 
variables is vital in process design tasks. 

Policy-based agents directly learn a functional approx-
imator of the policy function. Specifically, the policy 
approximator πθ maps the current states s to the actions 
a: πθ(s) = a. And the optimal policy π* is obtained by 
maximizing the expected return G[ ]t through policy 
gradient or policy search methods. In the context of RL 
in process design, Sachio et al. [21•] and Perera et al.  
[19] utilized policy gradient (PG) methods and policy 
search methods to perform process design tasks, re-
spectively. Compared with the value-based approach, 
the policy-based agent can handle both discrete and 
continuous actions. However, policy-based methods are 
known for high variance and suboptimal local solu-
tions [37]. 

AC agents combine the advantages of value-based and 
policy-based methods. AC consists of an actor, working 
as a functional approximator of the policy function, and a 
critic, serving as a functional approximator of the value 
function. Therefore, AC agents explicitly optimize both 
value and policy functions and are able to process both 
discrete and continuous action spaces. In the context of 
RL in process design, different types of AC agents have 
been used, such as Proximal Policy Optimization (PPO)  
[29••,30,33••,34], Soft Actor-Critic (SAC) [22••,23•], 
two-player game [24–26], and Sample Efficient Actor 
Critic with Prioritized Experience Replay (ACER) [20]. 

The choice of agent architecture for RL in process de-
sign is an open question. AC RL is deemed to be a vi-
able option because it combines the advantages of value 
based and policy based and can handle both discrete and 
continuous decisions. Specifically, PPO is the most 
popular algorithm in process design tasks, with the ad-
vantage of less complicated implementation and a stable 

Deep reinforcement learning for process design Gao and Schweidtmann 5 

www.sciencedirect.com Current Opinion in Chemical Engineering 2024, 44:101012 



learning process. However, PPO is an on-policy algo-
rithm, which means the optimized policy is the same as 
the policy for action selection. Therefore, PPO is less 
data efficient than off-policy algorithms, such as SAC 
and ACER, which may take less time and fewer training 
episodes. Moreover, AC RL comes with challenges, in-
cluding complex implementation, computational de-
mands when optimizing both actor and critic networks 
concurrently, and potential convergence issues [13,37]. 

Environment and reward 
The environment simulates the processes and computes 
a reward as feedback to the agent. Selecting an appro-
priate accuracy level for the environment is a vital task 
for RL in process design and depends on the task-spe-
cific requirements and modeling intent. There are two 
main levels of accuracy: Shortcut and rigorous simula-
tors. Shortcut simulators utilize approximated process 
models to ensure tractability but can be inaccurate. 
Rigorous simulators involve more accurate process 
models that require longer computation times, as pre-
vious studies indicated [23•,34]. In the past, RL for 
process design has used multiple process simulation 
software, including open-source (DWSIM, IDAES), 
noncommercial (COCO), and commercial (UniSim, 
Aspen Plus) alternatives. Additionally, Seidenberg et al.  
[29••] leveraged knowledge graphs to retrieve informa-
tion about the design task, process knowledge, and the 
current state of the process. Notably, this knowledge 
graph was part of a manually implemented environment 
and not directly accessible to the RL agent. Thus, the 
agent also relied on a flowsheet matrix representation as 
states. 

Previous research optimized toward a single economic 
objective [18,20–27••,29••,33••,34]. Also, some works 
integrate purity, recovery, power consumption, and 
product flow rate into scalar reward functions [30–32]. 

Perspectives 
Despite the first demonstrations of RL for process de-
sign, it is still unclear if RL outperforms existing design 
methods. In our view, the big research challenge is the 
generalization of RL models and the use of its inference 
capabilities. The training phase of current RL frame-
works is essentially used like a derivative-free optimi-
zation approach (e.g. a genetic algorithm) to optimize the 
process topology for one particular case study. Thus, a 
retraining is needed for a new case study, and the agent 
fails to transfer its learning to new situations. In general, 
deep RL has an inference and a high learning capacity. 
The derivative-free optimization approach with RL does 
not use the full potential of RL. However, useful ap-
plication of inference requires generalization across 
multiple case studies. This generalization requires an 
extension of the information representation and agent 

architecture to account for process-relevant knowledge. 
This includes domain expertise, prior process data, and 
physical constraints, which are typically employed by 
engineers when designing chemical processes. 
Integrating this information would allow the RL agent to 
see what ‘drives the process’ and ultimately unlock the 
full potential of RL by learning from multiple processes. 
We envision that RL will generalize (to some extent) 
and ultimately design processes at inference time. In 
this section, we provide our perspectives on underlying 
challenges and a number of other promising future 
works. 

Information representation 
Information representation is critical for RL since it 
encapsulates the current state of the environment, which 
directly affects decision-making for agents. However, 
current information representations still lack mechanistic 
knowledge and relevant process information. 
Furthermore, it neglects the appropriate representation 
of molecules. Integrating the above information will 
significantly benefit the RL agent in generalization. 
Numerous representation methods could be potentially 
incorporated into RL in process design for process and 
molecular information representation. For example, 
Simplified Flowsheet Input-Line Entry-System 
(SFILES) [38], SFILES 2.0 [39], eSFILES [40], and 
knowledge graphs [29••] could be used to enhance 
process representations. Similarly, molecular descriptors  
[41], molecular graphs [42], SMILES [43], knowledge 
graphs [44], and hypergraphs [45] could be used to en-
code molecular information. 

Agent architecture 
In this section, we identify the limitations and potential 
improvements of the current agent architecture. 

Integration of mechanistic knowledge 
Current RL algorithms are not sufficient to transfer 
knowledge into the new processes because RL agents 
have a limited understanding of mechanistic knowledge 
and physical properties. Future work could consider 
implementing a physics-informed RL agent by encoding 
information-rich representations, such as knowledge 
graphs or hypergraphs, to inform the agent. 
Furthermore, fundamental concepts, such as thermo-
dynamic driving forces (Gibb’s free energy), could be 
included in the RL agents. This allows the agent to learn 
general concepts that can be translated into other pro-
blems because they are based on physics. 

Integration of prior data 
RL for process design is currently initialized randomly, 
which can lead to suboptimal solutions, excessive 
training times, and frequent convergence issues. 
Meanwhile, there is a large number of existing digitized 
chemical process data from simulation files and images  

6 Model-based process design  
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[46], which can potentially accelerate the learning pro-
cess of the agent. Transfer learning improves learning 
performance by transferring knowledge from different 
but relevant domains [47]. In RL for process design, 
three works [21•,32,34] already leveraged transfer 
learning to accelerate the learning process, for example, 
from short-cut simulators to rigorous simulators [34] and 
from one case study to another case study [32]. However, 
in the current transfer learning setting, the agent is still 
not learning from existing chemical process information. 
Future work can consider leveraging encoder–decoder 
models such as variational autoencoders or transformers 
to learn from existing flowsheets and then applying 
transfer learning to the agent. 

Stochastic decision-making 
Considering the uncertainty of energy/feedstock prices 
and demand is a major challenge for renewable processes  
[7]. However, current RL agents ignore fluctuations in 
energy/feedstock prices and demand. Future research 
could separate design and operating variables in the RL 
agent. This allows the inclusion of multiple scenarios for 
flexible operation. Besides, additional encoders or actors 
can be included to process stochastic energy prices, de-
mands, and raw material compositions as additional in-
puts at an operational level. Therefore, the agent can 
automatically select the operating variables based on 
stochastic energy prices and demand in two-stage sto-
chastic programming settings. 

Constrainted decision-making 
Constrained decision-making is crucial for RL in process 
design to ensure optimal and safe performance. 
However, standard RL agent frameworks cannot enforce 
constraints but include constraints as ‘soft’ penalties in 
the reward functions [23•,33••,34]. Future work should 
focus on integrating constraints directly in the agent 
structure. As a first step, an additional critic network 
could be built to account for safety constraints, guiding 
RL agents to explore appropriate regions in policy op-
timization [48]. 

Environment and reward 
In this section, we offer our perspectives on the limita-
tions of the environment and reward setup and provide 
several suggestions for future work. 

Standardized simulation interfaces 
RL agents frequently interact with process simulators 
during the training process, and the interaction relies on 
individual interfaces as Table 1 presents. However, 
current interfaces are usually simulator specific, which 
means that a new interface needs to be implemented 
from scratch whenever a new process simulator is in-
cluded. This process is highly repetitive and inefficient, 
especially for incorporating multifidelity process models. 
Future work could implement a standardized simulation 

interface that enables the agent to exchange data effi-
ciently and uniformly between different process simu-
lators. This interface could potentially make use of 
existing standards such as CAPE-OPEN [49] and 
DEXPI+ [50]. 

Multifidelity process models 
Current research only leverages a single-fidelity model 
for RL in process design tasks. However, RL agents 
greatly benefit from pretraining on low-fidelity process 
simulators and subsequent fine-tuning on high-fidelity 
process simulators [34]. Therefore, future research can 
focus on developing an agent that can dynamically select 
between multiple-fidelity models during training. Spe-
cifically, a probabilistic model can be developed to guide 
the RL actor based on multifidelity critics to reduce 
training times and resolve convergence issues. 

Multiobjective rewards 
Current RL frameworks for process design are not sui-
table for sustainable process design because they are 
limited to a single objective function. In the future, the 
current agent structures could be extended to include 
multiple objectives. For example, the critic network 
could predict multiple rewards, which will be processed 
by multiobjective optimization to generate corre-
sponding weights for each objective (e.g. economic, 
environmental, safety) [51]. 

Integrated molecular and process design 
Current RL frameworks lack the co-design of molecules. 
However, the design or selection of molecules is a cri-
tical task in many process design tasks, for example, co- 
design of working fluids, solvents, or products [52]. 

Also, RL has already been used for molecular design  
[53]. Therefore, future work should consider integrating 
these concepts using RL. For instance, future work 
could first use an RL agent for molecular design (e.g. 
based on Ref. [53]) to design a solvent. Then, a me-
chanistic or data-driven model [42] can be used to esti-
mate the relevant properties of the generated molecules. 
Subsequently, the properties are utilized to simulate the 
process within the RL for the process design framework. 
This essentially adds a new hierarchy level to the ex-
isting RL for the process design framework. 

Integrated process operation and design 
Integrating process design and process control becomes 
increasingly relevant as renewable energy and feedstock 
demand fluctuates. For example, the design of a process 
could be optimized while simultaneously optimizing its 
operation under changing feedstock compositions or 
energy prices. Another example is the optimal design of 
batch processes while considering optimal operation 
strategies. These problems are usually formulated as 
mixed-integer dynamic optimization problems, which 
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are difficult to solve. RL is a tool to solve discrete-time 
dynamic optimization problems, which makes it suitable 
for integrating process operation and design. However, 
current RL works only consider process design and op-
eration separately or focus on a specific unit operation 
design and operation [21•]. Future research could in-
tegrate process design with process operation through 
the RL. For instance, future work could extend the 
hierarchical RL agent into separate design and operation 
agents. Then, the design agent defines the design vari-
ables, and the operation agent subsequently optimizes 
operating variables given the current design. Notably, 
this would require the use of a dynamic simulation en-
vironment and will lead to high computational demands. 
Thus, future research is needed to solve the resulting 
multiscale problem efficiently. 

Benchmarking with established methods 
Numerous established methods are available to solve 
design optimization problems, including deterministic 
(e.g. Branch-And-Reduce Optimization Navigator or 
McCormick-based Algorithm for mixed-integer 
Nonlinear Global Optimization) and stochastic solvers 
(e.g. genetic algorithms, Bayesian optimization) [54]. It 
is still questionable how RL compares against these 
traditional approaches for steady-state process design. 
Dynamic solution approaches such as RL can in prin-
ciple be used to solve static optimization problems but 
are likely significantly less efficient. However, many 
process design problems in chemical engineering are 
actually (mixed integer) dynamic optimization problems 
(c.f. section Integrated process operation and design). In 
such instances, RL may be an efficient solution ap-
proach. 

Future work should carefully assess the advantages and 
disadvantages of using RL for steady-state process de-
sign and static optimization in general. We recommend 
conducting comparisons to benchmark different 
methods. Moreover, we envision the development of 
new ML-based algorithms that integrate some of the 
advantages of RL (e.g. large learning capacity and in-
ference capabilities) in the context of process design. 
For example, encoder–decoder models could be com-
bined with active learning to predict process flowsheet 
graphs directly [8]. 

Conclusions 
We reviewed the state-of-the-art RL in process design in 
terms of information representation, agent architecture, 
environment, and reward. RL has shown initial pro-
mising results for process design, but its suitability in 
static process design still needs to be examined. 
Additionally, a detailed comparison with existing process 
design methods is missing, and current RL frameworks 
show limited generalization capabilities. Therefore, we 

advocate that future research should benchmark RL 
with other process design methods. Additionally, to 
unlock the full potential of RL, new concepts for 
meaningful information representation are required. 
Furthermore, the integration of mechanistic knowledge, 
existing process data, uncertainties, and constraints 
would be highly beneficial for optimal decision-making. 
Finally, future RL frameworks could also integrate mo-
lecular design and process operation into the conceptual 
process design. 
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