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SUMMARY

The recent progress in quantum technologies shines a bright light on the future of quan-
tum computation. However, resource estimation for quantum computations remains a
key challenge. The resource I study in this thesis is known as Magic or Non-stabilizerness
and it represents the key requirement for quantum computational advantage in compu-
tation. Recent studies in quantum information suggested wide classes of quantifiers for
non-stabilizerness.

In this thesis, I develop novel techniques for quantifying non-stabilizerness with the
tools from quantum information theory. I am specifically interested in making quantum
resource estimation computationally as efficient as possible so that quantum resource
estimation can become a routine step in both numerical and experimental exploration
of quantum computing.

I show that by measuring the spreading of the local information in the quantum sys-
tem, we can quantify non-stabilizerness. The measures of such information-spreading
can be classified into two categories, entropic-based measures, such as mutual informa-
tion, and correlator-based measures such as Out-of-Time Ordered Correlators. I investi-
gated both classes of measures and I related them both numerically and analytically to
the estimation of non-stabilizerness.

Finally, I relate non-stabilizerness quantification to classical variational methods.
Classical methods designed to approximate quantum states are by construction not re-
stricted by non-stabilizerness. The question therefore remained how well these tech-
niques can capture quantum resources. I provide a systematic benchmark for both clas-
sical and quantum approximate methods of expressing quantum states and their trade-
off between non-stabilizerness expressivity and ground-state energy accuracy. We ob-
served that having better energy accuracy is necessary but insufficient to have better
accuracy in non-stabilizerness.

This Thesis forms a bridge between quantum information resource theory and con-
densed matter physics and offers a stepping stone towards further exchange between
these two fields.

vii





SAMENVATTING

De recente vooruitgang in kwantumtechnologieën werpt een helder licht op de toekomst
van kwantumcomputing. Het schatten van bronnen voor kwantumcomputing, zoge-
heten ’quantum resources’, blijft echter een belangrijke uitdaging. De bron, ofwel ’re-
source’ die ik in dit proefschrift bestudeer, staat bekend als Magic of Non-stabilizerness
en deze vertegenwoordigt de belangrijkste vereiste voor kwantumcomputationeel voor-
deel in computatie. Recente studies in kwantuminformatie suggereerden brede klassen
van kwantoren voor non-stabilizerness.

In dit proefschrift ontwikkel ik nieuwe technieken voor het kwantificeren van non-
stabilizerness met de tools uit de kwantuminformatietheorie. Ik ben specifiek geïnteres-
seerd in het computationeel gezien zo efficiënt mogelijk maken van de kwantumbron-
nen schatting, zodanig dat deze schatting een routinestap kan worden in zowel nume-
rieke als experimentele verkenning van kwantumcomputing.

Ik laat zien dat we non-stabilizerness kunnen kwantificeren door de verspreiding van
de lokale informatie in het kwantumsysteem te meten. De metingen van dergelijke infor-
matieverspreiding kunnen worden ingedeeld in twee categorieën: entropische metin-
gen, zoals wederzijdse informatie, en correlatorgebaseerde metingen zoals Out-of-Time
Ordered Correlators. Ik heb beide klassen van metingen onderzocht en ze numeriek en
analytisch gerelateerd aan de schatting van non-stabilizerness.

Tot slot relateer ik de non-stabilizerness-kwantificering aan klassieke variationele
methoden. Klassieke methoden die zijn ontworpen om kwantumtoestanden te bena-
deren, worden per definitie niet beperkt door non-stabilizerness. De vraag bleef daarom
hoe goed deze technieken kwantumbronnen kunnen vastleggen. Ik bied een systema-
tische maatstaf voor zowel klassieke als kwantum benaderingsmethoden om kwantum-
toestanden uit te drukken en hun afweging tussen non-stabilizerness-expressiviteit en
nauwkeurigheid van grondtoestand energie. We hebben waargenomen dat een betere
energienauwkeurigheid noodzakelijk is, maar niet voldoende om een betere nauwkeu-
righeid te hebben in non-stabilizerness.

Dit proefschrift vormt een brug tussen de theorie van kwantuminformatiebronnen
en de natuurkunde van gecondenseerde materie en biedt een opstap naar verdere uit-
wisseling tussen deze twee vakgebieden.
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PREFACE

The sky is blue...

Sitting in the garden. Surrounded by flowers and herbs... I think twice: how and what to
write my thesis. To let you know , I am in north Italy ,in a village in the Alps mountains.

Still, my mind is engaged... I have come to a house that has an incredible fountain in a
room down the stairs and an amazing cave upstairs...

I say to myself: what a wonderful life... that’s why I would like to dedicate this thesis to the
first cave dweller who could help to survive human beings.

Little by little, I am convinced to write somehow..... to share my little knowledge with you,
with the world...

Arash Ahmadi
Delft, January 2025
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1
INTRODUCTION

In the introduction chapter, I will briefly describe historical notes on quantum mechanics
and quantum computing. I will also develop a brief introduction to the basics of quan-
tum computing. I will follow these up with discussions of the resource theory of quan-
tum computation and, in the next section, a brief overview of information scrambling.
I conclude with a brief description of the classical variational approximation of quan-
tum states. Throughout this thesis, I will develop a unified framework that connects these
diverse concepts and gives a new perspective on the role of non-stabilizerness in contem-
porary quantum research.

1
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2 1. INTRODUCTION

1.1. QUANTUM MECHANICS
Quantum mechanics was introduced as a new theory for the description of the physical
laws of the universe in the early 20th century. Since then many new concepts devel-
oped that are contrary to our daily experience of the physical world. Examples of these
non-trivial concepts include the probabilistic nature of quantum mechanics, the super-
position of the quantum states, the emergence of entanglement in quantum systems,
and others.

With the help of the laws of quantum physics, we could achieve milestones in tech-
nology. With the introduction of semiconductors, we could change the face of the world
with electronics. We could enhance the healthcare system by studying quantum me-
chanical effects in Chemistry, which led to discoveries of new medications. We also in-
troduced new imaging techniques in healthcare, such as magnetic resonance imaging
(MRI), which works with the laws of quantum physics.

All these technologies that emerged from the introduction of quantum mechanics
belong to an era called the first quantum revolution. However, now we are in an era
called the second revolution. Now we are introducing technologies that directly work
with the laws of quantum physics. Examples of quantum technologies are Quantum
Computation, Quantum Communication, Quantum Sensing and Quantum Simulation.

1.2. QUANTUM COMPUTING
The initial idea of quantum computing came from Richard Feynman [1] when he sug-
gested using a computer that works based on the laws of quantum physics to study
quantum physics. Nowadays, the building blocks of the quantum computers are qubits.
A qubit is a two-level quantum system. Due to the superposition principle of quantum
mechanics, a qubit can be in an arbitrary superposition |ψ〉 of any two states of |0〉 and
|1〉

|ψ〉 =α |0〉+β |1〉 , (1.1)

where |α|2 + ∣∣β∣∣2 = 1, {α,β} ∈ C and |α|2 and
∣∣β∣∣2 are the probability of measuring |0〉

and |1〉 respectively and |ψ〉 ∈ H where H is known as Hilbert space. By increasing the
number of qubits, we get exponentially larger in the number of amplitudes, αs and βs,
such that for N -qubit system, the size of the Hilbert space grows as 2N . So as the system
size grows, it becomes more challenging to interpret it classically.

The time evolution of a quantum system is described by the Schrodinger equation.
As Schrodinger stated in 1926 [2] any non-relativistic quantum time evolution process
evolves by

iħ ∂

∂t
|ψ〉 = H |ψ〉 , (1.2)

where H is the Hamiltonian of the system and |ψ〉 is the state. The Hamiltonian, H needs
to be a Hermitian operator.

For any Hermitian H , we can rewrite Eq. 1.2 as [3]

|ψ(t )〉 =U (t , t0) |ψ(t0)〉 , (1.3)

where U is a unitary operator defined as UU † = I .
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In digital quantum computation, we discretize the unitary operator U in a set of
gates, similar to classical computation. There are many possible quantum gates. Here, I
will introduce the set of gates that are used in this thesis.

Identity. Identity is a single-qubit gate denoted by I , and it leaves the state un-
changed

I =
(
1 0
0 1

)
, I |0〉 = |0〉, I |1〉 = |1〉. (1.4)

Pauli Gates. Pauli gates are set of single-qubit gates denoted by X , Y , and Z and their
matrix form and their action on the basis |0〉 and |1〉 defined as,

X =
(
0 1
1 0

)
, X |0〉 = |1〉, X |1〉 = |0〉, (1.5)

Y =
(
0 −i
i 0

)
, Y |0〉 = i |1〉, Y |1〉 =−i |0〉, (1.6)

Z =
(
1 0
0 −1

)
, Z |0〉 = |0〉, Z |1〉 =−|1〉. (1.7)

The set of Pauli gates and Identity forms the first level,C1, of the Clifford hierarchy [4].
Hadamard. Hadamard gate is also a single-qubit gate, denoted by H , and it is respon-

sible for producing superposition on the quantum state. Its matrix form and its action
on the basis |0〉 and |1〉 defined as,

H = 1p
2

(
1 1
1 −1

)
, H |0〉 = |0〉+ |1〉p

2
, H |1〉 = |0〉− |1〉p

2
. (1.8)

Phase. Phase gate is also a single-qubit gate, shown by S, and it gives the qubit a π/2
phase. Its matrix form and its action on the basis |0〉 and |1〉 defined as,

S =
(
1 0
0 i

)
, S |0〉 = |0〉 , S |1〉 = i |1〉 . (1.9)

Controlled-NOT. Controlled-NOT is a double-qubit gate, shown by CNOT, and it is
responsible for producing entanglement in the state.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CNOT |00〉 = |00〉 , CNOT |01〉 = |01〉 ,

CNOT |10〉 = |11〉 , CNOT |11〉 = |10〉 .

(1.10)

The set of {I , X ,Y , Z ,S, H ,CNOT} forms the second Clifford hierarchy, C2 and the Clif-
ford group. We will explain why these hierarchies are important in the next section. Let
us consider a single qubit. If we only use the single qubit gates above, the states that I
can simulate are going to be on the x, y , and z axis of the Bloch sphere, with nothing
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in between them. The states that are in superposition are going to be in equal superpo-
sition and we can not get any intermediate angles. We can expand this gate set to also
access more intricate superpositions.

T-gate. T-gate is a single-qubit gate, denoted by T , and it gives the qubit a π/4 phase.
Its matrix form and its action on the basis |0〉 and |1〉 defined as,

T =
(
1 0
0 e i π4

)
, T |0〉 = |0〉, T |0〉 = e i π4 |1〉 (1.11)

Rotations. The rotation gates are single-qubit gates, denoted by {Rx (θ),Ry (θ),Rz (θ)},
and they rotate the qubit along the given axis and give angel. Their matrix form and
action on the basis |0〉 and |1〉 defined as,

Rx (θ) =
(

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

)
, Rx (θ)|0〉 = cos

θ

2
|0〉− i sin

θ

2
|1〉

Rx (θ)|1〉 =−i sin
θ

2
|0〉+cos

θ

2
|1〉

(1.12)

Ry (θ) =
(
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

)
, Ry (θ)|0〉 = cos

θ

2
|0〉+ sin

θ

2
|1〉

Ry (θ)|1〉 =−sin
θ

2
|0〉+cos

θ

2
|1〉

(1.13)

Rz (θ) =
(

e−i θ2 0

0 e i θ2

)
, Rz (θ)|0〉 = e−i θ2 |0〉

Rz (θ)|1〉 = e i θ2 |1〉
(1.14)

It is useful to mention that rotation gates for some specific rotation angles can reduce
to some of the gates in the second Clifford Hierarchy.

The set of gates described in this section is universal, i.e. one can reach any point in
the Hilbert space with these gates.

The true potential of quantum computers was unleashed by the introduction of a few
algorithms1 for quantum computers that could, in principle, surpass the classical ones.
Some notable algorithms include the Deutsch-Josza algorithm [5], Shor’s algorithm [6]
and Grover’s algorithm [7]. Since then there has been a great effort worldwide to realize
quantum computers in practice. The current stage of quantum computing is known as
the Noisy Intermediate-Scale Quantum (NISQ) era, where quantum processors contain
up to 1000 qubits and are not yet advanced enough for fault-tolerance. However, they are
useful to study, for example, many-body quantum systems, that would be challenging for
classical computers [8].

1The word algorithm is the Latinazation of the name of the Persian scientist and polymath Al-Khwarizmi’s
name for the honour of his works on Algebra and Arithmetic
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Aside from the algorithms that exist nowadays in the quantum computing commu-
nity, there is a great effort to show that the existing quantum computers are performing
tasks that are infeasible for classical computers. These studies are focused on simulating
random quantum circuits on a scale that is impossible for any classical computer [9–11].

A particularly useful concept for exploring the physics of quantum computers was
that of a random quantum system or random quantum circuit. Since the quantum sys-
tem reaches a steady state rapidly in the framework of random circuits, it allows us to
study some universal features of quantum physics more easily. Examples of such univer-
sal features are entanglement, mutual information, and non-linear correlation functions
of reduced density matrix [12]. We will return to this concept in the following sections.

1.3. NON-STABILIZERNESS OR MAGIC
Since the introduction of quantum mechanics, there have been many non-trivial effects
(some of them are mentioned above). However, entanglement was at the heart of quan-
tum mechanics from early on [13]. Traditionally, detecting entanglement in an experi-
mental set-up is a criterion for us to consider that system a quantum system. However,
for quantum computational purposes, there is an added complexity to the story.

As mentioned in the previous section, the second Clifford hierarchy, C2, has an im-
portant place in quantum computation. It forms a group called Clifford group, such that

C = {U ∈C2|U PU † = e iφP ′}, (1.15)

where P,P ′ ∈PN and PN is the set of all Pauli strings for N -qubits. Pauli strings defined
as, PN = {σ1 ⊗σ2 ⊗ ...⊗σN |σi ∈ {I , X ,Y , Z }}. The Clifford group can produce arbitrarily
high entangled states since CNOT and Hadamard are in the Clifford group. However, the
states resulting from the Clifford gates do not offer any quantum advantage in computa-
tion!

The Gottesman-Knill theorem [14] guarantees that any circuit consisting solely of
Clifford gates can be simulated efficiently in a polynomial time on a classical computer.
Additionally, the Clifford circuits are not universal. We can see that every N -qubit super-
position resulting from this set of gates is always an equal superposition, up to a sign or
phase. The states that one can simulate via Clifford circuits are called Stabilizer States,
where they are only a subset of the whole Hilbert space.

From the perspective of classical simulatability, we need to define new criteria for
having a quantum advantage in computation and have universal unitary circuits. This
criteria is known as Magic or Non-stabilizerness [15]. In order to inject magic into the
state, we need to have gates outside of Clifford group in the circuit. Examples of such
gates are T-gates and rotation gates, which were introduced in the previous section.

Non-stabilizerness or magic plays a crucial role in fault-tolerant regimes of quantum
computation. A big class of error correction code, stabilizer codes, are designed such
that they inherently support a subset of quantum operations, particularly Clifford oper-
ations, in a fault-tolerant manner, often implemented transversely [16, 17]. We call them
"cheap" gates. Since we need non-Clifford gates as well and they are non-transversal, we
call them the "expensive" gates. With all this knowledge about Clifford and non-Clifford
gates, it is safe to say that non-stabilizerness or magic can be considered a resource for
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quantum computation [15].
Recently, there has been a great effort to quantify non-stabilizerness. Similarly to

how entanglement can be quantified by defining a distance from a product state, we can
quantify non-stabilizerness as the distance from the stabilizer group. Notable measures
for non-stabilizerness are Magical Cross-Entropy, Mana [15], Robustness of Magic [18,
19] and Stabilizer Entropies (SE) [20]. There has been other measures introduced re-
cently [21–24]. In this thesis, I mainly focus on the Stabilizer Entropies because of their
favourable scaling in comparison to other quantifiers.

The class of Stabilizer Entropies is diverse, but a key quantity for this thesis is stabi-
lizer Renyi-n entropy for N qubit pure-state that is defined as,

Mn(|ΨN 〉) = (1−n)−1 log2

∑
P∈PN

〈ΨN |P |ΨN 〉2n

2N
, (1.16)

where PN is the set of all Pauli strings as defined before. It has been shown that n ≥ 2
is a magic monotone and can be extended to the mixed-states as well [25, 26]. Although
I stated that Stabilizer Entropies are scaling favourably, it does not mean that they are
easy to calculate for a given state. The summation in Eq. 1.16 is over all possible Pauli
strings, where the number of Pauli strings scales as 4N for N qubits. The state itself also
scales as 2N so we are still suffering from the exponential scaling here.

One powerful method to scale up the Stabilizer Entropies comes with the help of
Tensor Network models [27]. So far the main focus of the Tensor Network community
in the the Stabilizer Entropies has been on Matrix Product States (MPS) representation
[28–31].

Non-stabilizerness also has close relationships to other physical properties of the
system. Obviously, one of the most important physical properties, whose relationship
to non-stabilizerness is very interesting, is entanglement. For example, a direct connec-
tion between non-stabilizerness and entanglement spectrum flatness has been observed
[32]. Another systematic study on the role of magic in entanglement was conducted, and
the entanglement dominant and magic dominant phases were separated. It is shown
that in the entanglement dominant phase, sample efficient and time efficient algorithms
for entanglement tasks are not computationally intractable in the magic dominant phase
[33].

Another direction for studying the non-stabiliznerness is in the context of quan-
tum many-body systems. The non-stabilizerness has been studied in the generalized
Rokhsar-Kivelson wavefunctions [29], in the critical regime of spin chains [34, 35], in
frustrated and unfrustrated regimes of many-body systems [36].

1.4. INFORMATION SCRAMBLING
Another important concept relevant to the investigation of quantum systems is that of
information scrambling. A generic isolated quantum state, ρ = |ψ〉〈ψ|, typically will
reach the thermal equilibrium after some unitary time evolution. For example in case
we are interested in the subsystem A of the state with the compliment Ā,

ρA = trĀ ρ, (1.17)
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where local measurements on A allow us to extract all necessary information about this
subsystem. However, after the thermalization, only macroscopic information of A can
be extracted and the microscopic information of the initial state is apparently lost and
inaccessible via local measurements [37]. In case our initial state is a product state, after
thermalization, ρA will become a maximally mixed state.

Let us consider this concept in the example of entanglement entropy, which is de-
fined as

S(ρA) =− trρA log2ρA . (1.18)

We can see that entanglement is zero at the beginning of a quantum process for a prod-
uct state as an initial state. The entanglement grows with the thermalization. This effect
is independent of the initial state, where we can choose two orthogonal product states
and see the entanglement growth in a similar way. There are some exceptions to this
logic like Anderson localization in the presence of disorder [38], but they are not central
to this thesis.

In order to quantify the thermalization, entropy-based methods were proposed [39,
40]. Like the previous case, we begin by dividing the system into subsystems, A, and its
complement Ā. If we consider another subsystem, B , and its complement B̄ , we can
define thermalization or scrambling quantifier, called mutual information, as

I (A : B) = S(ρA)+S(ρB )−S(ρAB ), (1.19)

The mutual information quantifies the dependencies or correlations between the two
subsystems A and B .

We can also define other entropy-based quantifiers of information scrambling like
tripartite information [41].

There is a very different way to look at information scrambling. Specifically, we can
assess it through the lens of correlation functions. Considering a local operator, W , we
can write its time evolution in the Heisenberg picture as

W (t ) =U †(t )W U (t ), (1.20)

for a generic unitary U (t ). We can see that the local operator W will become non-local
as we go forward in time. By considering another local operator, V , we can quantify
the thermalization or information scrambling resulting from unitary U (t ), by consider-
ing the overlap of these two operators W (t ) and V . This overlap can be defined as the
squared commutator [37],

C ≡ 〈[W (t ),V ]†[W (t ),V ]〉. (1.21)

Alternatively, we can write

〈[W (t ),V ]†[W (t ),V ]〉 = 2(1−Re〈W †(t )V †W (t )V 〉), (1.22)

The decay of the Re〈W †(t )V †W (t )V 〉 has been used as a reliable quantifier of infor-
mation scrambling. This term is known as Out-of-Time Ordered Correlator (OTOC) and
it is defined as
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OTOC = Re〈W †(t )V †W (t )V 〉. (1.23)

OTOCs have been extensively studied in the context of black hole physics [42], many-
body localization in condensed matter physics [43] and operator spreading in quantum
circuits [44].

Later we will see how information scrambling is related to non-stabilizerness, both
with correlators and entropic-based quantifiers. I covered them in chapters 2 and 3.

1.5. VARIATIONAL QUANTUM STATES
Aside from the fundamental properties of the quantum world, described in the previous
sections, there is a practical problem to study these systems. Due to the exponential
scaling of the Hilbert space, known as the exponential scaling, we can not study them on
large scales. The approximate methods have been proposed to tackle this problem. The
variational quantum states are an example of such approximation [45–47].

The majority of the literature on the variational quantum states is developed to sim-
ulate the quantum systems on classical computers. An important class of examples of
the variational states are known as the Variational Monte Carlo (VMC) states. The VMC
states are a class of probabilistic frameworks used to study the different features of a
quantum system. For example, finding the ground state energy of a k-local many-body
Hamiltonian is a problem that can be approximated via VMC methods.

The modern applications of VMC come with training the neural networks for study-
ing quantum systems. The Neural Network Quantum States (NQS) has been introduced
recently [48] and shown to be a powerful and Hamiltonian agnostic ansatz. One impor-
tant model of classical neural networks is known as the Restricted Boltzmann Machine
(RBM) [48].

The structure of the neural network for RBM is just a simple one hidden layer fully
connected neural network with restrictions on having only intra-layer connections. The
schematic structure of RBM is shown in Fig. 1.1 and the ansatz for the probability am-
plitude is given as

ψθ(s) =∑
h

e
∑

j a jσ j +
∑

i bi hi+
∑

i j Wi j hiσ j , (1.24)

...

...

Figure 1.1: The neural network diagram for Restricted Boltzmann Machine (RBM) with N visible units and M
hidden units connecting via Wi j weights.
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… …

Figure 1.2: One layer of VQE ansatz consists of rotation gates and an entangling gate, CNOT, on every two pairs
of qubits.

where θ = {a,b,W}. We refer to W as weights, b hidden biases and a visible biases. These
are the trainable parameters of the neural networks, and s = (σ1,σ2, ...,σN ) is the sample
of the configuration of the states such thatσi =±1. For the ground state search problem,
we need to find the optimal values for θ such that for a given Hamiltonian, H ,

Eg s ≈ 〈ψθ|H |ψθ〉
|ψθ|2

. (1.25)

However for RBM as we can see from Eq. 1.24, we need to sample the required con-
figurations s. The sampling process relies on the probability P (s),

P (s) = |ψθ(s)|2∑
s′ |ψθ(s′)|2 (1.26)

To briefly explain the simplified sampling process, by proposing a new configuration
each time step, e.g. from s → s′, the acceptance probability of the new configuration is

A(s → s′) = min

(
1,

P (s′)
P (s)

)
, (1.27)

and by repeating this process we can have the desired number of samples to train our
neural networks. This was a primary example of VMC processes, in general, we can use
more complex and case-specific ways of sampling methods depending on the problem
we wish to solve. The last step to find our desired ground state is to find the optimal val-
ues for θ that minimises the right-hand side of Eq. 1.25. There is a big class of optimizers
that can achieve this goal, notable examples are stochastic gradient descent or Adam.

So far I have only described the classical variational quantum states where every part
of the calculation is meant to be performed on a classical computer. However, a class of
variational states has recently been proposed to tackle the same problems, e.g., ground
state search, in hybrid quantum-classical manner. A flagship example of such an algo-
rithm is known as Variational Quantum Eigensolver (VQE) [49].

Similar to the classical variational quantum states, in VQE we also have an ansatz that
comes with a parameterized quantum circuit. In digital quantum computation, we have
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discrete gate sets, one way that we can have continuous parameters is to use the rotation
gates and vary the angle of rotations. By placing rotation gates with rotation parameters
θ, and CNOTs on every pair of neighbouring qubits, we can have a general parameterized
circuit. In Fig. 1.2 we can see one layer of such a parameterized circuit. Similar to RBM,
where we can increase the number of hidden units, here we can increase the depth of
the circuit and increase the number of trainable parameters (rotational angles).

Analogously to the classical variational algorithms, we aim to find the optimal values
for θ such that minimises 〈ψθ|H |ψθ〉. The optimisation part is the duty of classical com-
puters in this hybrid architecture and is performed by classical optimizers analogously
to classical variational methods.

1.6. OUTLINE OF THE CHAPTERS OF THIS THESIS
In Chapter 2 of this thesis, we will explore the relationship between Out-of-Time Ordered
Correlators (OTOCs) and non-stabilizerness. We show a relationship between fluctua-
tions of OTOCs in random t-doped circuits and various measures of non-stabilizerness.
We explore this relationship both analytically and numerically. Specifically, we show that
very few OTOCs are needed to approximate mana (for qutrits) and Stabilizer 2-Renyi en-
tropy for qubits.

In Chapter 3 of this thesis, we generalize the mutual dependence of non-stabilizerness
and fluctuations to another class of information scrambling quantifiers: the entropic-
based measures. We observe that the fluctuations of the mutual information also show
the same behaviour as OTOC in random t-doped circuits. To connect these observations
to entanglement, we also explore the effect of non-stabilizerness in entanglement phase
transition in measurement induced.

In Chapter 4 of this thesis, we analyse the non-stablizerness of the approximated
quantum states via variational methods with the ultimate goal of establishing a com-
mon framework for classical and quantum notions of exact and approximate simulata-
bility. We analyze the trade-off between the ground state energy accuracy and non-
stabilizerness of the same state, for both classical and quantum variational states. We
observe better accuracy in the ground state energy is necessary but not a sufficient con-
dition for good non-stabilizerness accuracy. This result suggests that only optimizing a
state based on one parameter, here ground state energy, does not necessarily yield better
accuracy on other types of parameters, like non-stabilizerness.

In Chapter 5, we provide an overview of and a broader perspective on our results. We
discuss how this thesis fits into the field of resource theory of quantum computation and
variational methods.

1.7. AUTHOR’S CONTRIBUTIONS
In this section, I will clarify my contributions to the chapters of this thesis.

In Chapter 2, the idea of using fluctuations of OTOC for quantifying non-stabilizerness
emerged from my discussion with my supervisor Eliska Greplova. Through her valuable
supervision, I could do all the necessary simulations that yielded the results presented
here. Later, we received valuable insights from anonymous reviewers of our first submis-
sion. Finally, the paper was enriched with the analytical relation for the fluctuations of
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OTOC and stabilizer 2-Renyi entropy, provided by Lorenzo Leone, one of the reviewers of
the manuscripts in SciPost Physics journal. I am grateful for this productive peer-review
experience.

In Chapter 3, with the help of my supervisor Eliska Greplova, I conceived the project
and wrote the code for mutual information simulation and data analysis. Jonas Helsen
derived the analytical relation for mutual information fluctuations and non-stabilizerness
in t-doped random circuits. As a part of the master’s thesis, Cagan Karaca simulated
the measurement-induced circuits and analysed the phase transition point with insights
from Eliska Greplova and me, he found the relationship between fluctuations of mutual
information and non-stabilizerness in measurement-induced circuits and produced the
figures for that section. The project was supervised by Eliska Greplova and the manuscript
was written by Jonas Helsen, Eliska Greplova and me.

In Chapter 4, myself, Eliska Greplova, and Tom Spriggs, designed the project. Myself
and Tom Spriggs wrote the code for the neural network and the exact diagonalization
simulation. I performed the non-stabilizerness calculations. Bokai Chen performed the
VQE simulation as a part of his master’s thesis, and later his results were enhanced and
expanded on by Tom Spriggs. A similar simulation was done for the Fermi-Hubbard
model by Yitao Sun during his internship at QMAI group. While those results are not in-
cluded in this thesis, I learned a lot and benefited from this collaboration. Tom Spriggs
performed the MPS simulations and plotted the paper figures. The manuscript was writ-
ten by Eliska Greplova, Tom Spriggs, and me.





BIBLIOGRAPHY

1. Feynman, R. P. Simulating physics with computers. International Journal of Theo-
retical Physics 21, 467–488 (June 1982).

2. Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules.
Physical Review 28, 1049–1070 (Dec. 1926).

3. Sakurai, J. J. Modern Quantum Mechanics (Revised Edition) ISBN: 0-201-53929-2.
http://www.scribd.com/doc/3035203/J-J-Sakurai-Modern-Quantum-
Mechanics (1994).

4. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations. Nature 402, 390–
393 (1999).

5. Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Pro-
ceedings of the Royal Society of London. Series A: Mathematical and Physical Sci-
ences 439, 553–558 (1992).

6. Shor, P. Algorithms for quantum computation: discrete logarithms and factoring in
Proceedings 35th Annual Symposium on Foundations of Computer Science (1994),
124–134.

7. Grover, L. K. A fast quantum mechanical algorithm for database search in Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (As-
sociation for Computing Machinery, Philadelphia, Pennsylvania, USA, 1996), 212–
219. ISBN: 0897917855. https://doi.org/10.1145/237814.237866.

8. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79. ISSN:
2521-327X. https://doi.org/10.22331/q-2018-08-06-79 (Aug. 2018).

9. Arute, F. et al. Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574, 505–510 (2019).

10. Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U. On the complexity and verifi-
cation of quantum random circuit sampling. Nature Physics 15, 159–163 (2019).

11. Movassagh, R. The hardness of random quantum circuits. Nature Physics 19, 1719–
1724 (2023).

12. Fisher, M. P., Khemani, V., Nahum, A. & Vijay, S. Random Quantum Circuits. An-
nual Review of Condensed Matter Physics 14, 335–379. ISSN: 1947-5462. http://
dx.doi.org/10.1146/annurev-conmatphys-031720-030658 (Mar. 2023).

13. Einstein, A., Podolsky, B. & Rosen, N. Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete? Phys. Rev. 47, 777–780. https://link.
aps.org/doi/10.1103/PhysRev.47.777 (10 May 1935).

13

http://www.scribd.com/doc/3035203/J-J-Sakurai-Modern-Quantum-Mechanics
http://www.scribd.com/doc/3035203/J-J-Sakurai-Modern-Quantum-Mechanics
https://doi.org/10.1145/237814.237866
https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1146/annurev-conmatphys-031720-030658
http://dx.doi.org/10.1146/annurev-conmatphys-031720-030658
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysRev.47.777


1

14 BIBLIOGRAPHY

14. Gottesman, D. The Heisenberg Representation of Quantum Computers. arXiv:quant-
ph/9807006. https://arxiv.org/abs/quant-ph/9807006 (1998).

15. Veitch, V., Hamed Mousavian, S. A., Gottesman, D. & Emerson, J. The resource the-
ory of stabilizer quantum computation. New Journal of Physics 16, 013009. ISSN:
1367-2630. http://dx.doi.org/10.1088/1367-2630/16/1/013009 (Jan.
2014).

16. Gottesman, D. Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052.
https://arxiv.org/abs/quant-ph/9705052 (1997).

17. Gottesman, D. Theory of fault-tolerant quantum computation. Physical Review A
57, 127–137. ISSN: 1094-1622. http://dx.doi.org/10.1103/PhysRevA.57.
127 (Jan. 1998).

18. Howard, M. & Campbell, E. Application of a Resource Theory for Magic States
to Fault-Tolerant Quantum Computing. Phys. Rev. Lett. 118, 090501. https://
link.aps.org/doi/10.1103/PhysRevLett.118.090501 (9 Mar. 2017).

19. Hamaguchi, H., Hamada, K. & Yoshioka, N. Handbook for Efficiently Quantifying
Robustness of Magic. arXiv:2311.01362. https://arxiv.org/abs/2311.01362
(2024).

20. Leone, L., Oliviero, S. F. E. & Hamma, A. Stabilizer Rényi Entropy. Physical Review
Letters 128. ISSN: 1079-7114. http://dx.doi.org/10.1103/PhysRevLett.
128.050402 (Feb. 2022).

21. Haug, T. & Kim, M. Scalable Measures of Magic Resource for Quantum Computers.
PRX Quantum 4. ISSN: 2691-3399. http://dx.doi.org/10.1103/PRXQuantum.
4.010301 (Jan. 2023).

22. Liu, Z.-W. & Winter, A. Many-Body Quantum Magic. PRX Quantum 3. ISSN: 2691-
3399. http://dx.doi.org/10.1103/PRXQuantum.3.020333 (May 2022).

23. Garcia, R. J., Bu, K. & Jaffe, A. Resource theory of quantum scrambling. Proceedings
of the National Academy of Sciences 120. ISSN: 1091-6490. http://dx.doi.org/
10.1073/pnas.2217031120 (Apr. 2023).

24. Garcia, R. J. et al. On the Hardness of Measuring Magic 2024. https://arxiv.
org/abs/2408.01663.

25. Leone, L. & Bittel, L. Stabilizer entropies are monotones for magic-state resource
theory 2024. arXiv: 2404.11652 [quant-ph]. https://arxiv.org/abs/2404.
11652.

26. Haug, T. & Piroli, L. Stabilizer entropies and nonstabilizerness monotones. Quan-
tum 7, 1092. ISSN: 2521-327X. http://dx.doi.org/10.22331/q-2023-08-28-
1092 (Aug. 2023).

27. Orús, R. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics 349, 117–158. ISSN: 0003-4916.
https://www.sciencedirect.com/science/article/pii/S0003491614001596
(2014).

https://arxiv.org/abs/quant-ph/9807006
http://dx.doi.org/10.1088/1367-2630/16/1/013009
https://arxiv.org/abs/quant-ph/9705052
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1103/PhysRevA.57.127
https://link.aps.org/doi/10.1103/PhysRevLett.118.090501
https://link.aps.org/doi/10.1103/PhysRevLett.118.090501
https://arxiv.org/abs/2311.01362
http://dx.doi.org/10.1103/PhysRevLett.128.050402
http://dx.doi.org/10.1103/PhysRevLett.128.050402
http://dx.doi.org/10.1103/PRXQuantum.4.010301
http://dx.doi.org/10.1103/PRXQuantum.4.010301
http://dx.doi.org/10.1103/PRXQuantum.3.020333
http://dx.doi.org/10.1073/pnas.2217031120
http://dx.doi.org/10.1073/pnas.2217031120
https://arxiv.org/abs/2408.01663
https://arxiv.org/abs/2408.01663
https://arxiv.org/abs/2404.11652
https://arxiv.org/abs/2404.11652
https://arxiv.org/abs/2404.11652
http://dx.doi.org/10.22331/q-2023-08-28-1092
http://dx.doi.org/10.22331/q-2023-08-28-1092
https://www.sciencedirect.com/science/article/pii/S0003491614001596


BIBLIOGRAPHY

1

15

28. Haug, T. & Piroli, L. Quantifying nonstabilizerness of matrix product states. Phys-
ical Review B 107. ISSN: 2469-9969. http://dx.doi.org/10.1103/PhysRevB.
107.035148 (Jan. 2023).

29. Tarabunga, P. S., Tirrito, E., Bañuls, M. C. & Dalmonte, M. Nonstabilizerness via
Matrix Product States in the Pauli Basis. Physical Review Letters 133. ISSN: 1079-
7114. http://dx.doi.org/10.1103/PhysRevLett.133.010601 (July 2024).

30. Lami, G. & Collura, M. Nonstabilizerness via Perfect Pauli Sampling of Matrix Prod-
uct States. Phys. Rev. Lett. 131, 180401. https://link.aps.org/doi/10.1103/
PhysRevLett.131.180401 (18 Oct. 2023).

31. Lami, G. & Collura, M. Unveiling the Stabilizer Group of a Matrix Product State.
Phys. Rev. Lett. 133, 010602. https://link.aps.org/doi/10.1103/PhysRevLett.
133.010602 (1 July 2024).

32. Tirrito, E. et al. Quantifying nonstabilizerness through entanglement spectrum
flatness. Phys. Rev. A 109, L040401. https://link.aps.org/doi/10.1103/
PhysRevA.109.L040401 (4 Apr. 2024).

33. Gu, A., Oliviero, S. F. E. & Leone, L. Magic-induced computational separation in
entanglement theory. arXiv:2403.19610. https://arxiv.org/abs/2403.19610
(2024).

34. Tarabunga, P. S. Critical behaviors of non-stabilizerness in quantum spin chains.
Quantum 8, 1413. ISSN: 2521-327X. http://dx.doi.org/10.22331/q-2024-
07-17-1413 (July 2024).

35. White, C. D., Cao, C. & Swingle, B. Conformal field theories are magical. Physical
Review B 103. ISSN: 2469-9969. http://dx.doi.org/10.1103/PhysRevB.103.
075145 (Feb. 2021).
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2
QUANTIFYING

NON-STABILIZERNESS VIA

INFORMATION SCRAMBLING

The advent of quantum technologies brought forward much attention to the theoreti-
cal characterization of the computational resources they provide. A method to quantify
quantum resources is to use a class of functions called magic monotones and stabilizer
entropies, which are, however, notoriously hard and impractical to evaluate for large sys-
tem sizes. In recent studies, a fundamental connection between information scrambling,
the magic monotone mana and 2-Renyi stabilizer entropy was established. This connec-
tion simplified magic monotone calculation, but this class of methods still suffers from
exponential scaling with respect to the number of qubits. In this work, we establish a
way to sample an out-of-time-order correlator that approximates magic monotones and
2-Renyi stabilizer entropy. We numerically show the relation of these sampled correlators
to different non-stabilizerness measures for both qubit and qutrit systems and provide an
analytical relation to 2-Renyi stabilizer entropy. Furthermore, we put forward and sim-
ulate a protocol to measure the monotonic behaviour of magic for the time evolution of
local Hamiltonians.

0The work in this chapter has been published as: A. Ahmadi, E. Greplova, Quantifying non-stabilizerness via
information scrambling, SciPost Physics 16 (2), 043 (2024)
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2.1. INTRODUCTION
The field of quantum computing introduced the concept that quantum systems can de-
liver a significant computational speed-up in a variety of settings [1–6]. Yet, although
increasingly large quantum processors are available, the question remains of how to rig-
orously quantify the computational resources of a quantum computer. One successful
approach towards determining quantum resources of a quantum state is to calculate
how “far away” the state is from being possible to simulate efficiently with a classical
computer [7].

A specific example of quantum states that are tractable to represent and simulate on
a classical computer are the so-called stabilizer states [8]. These states result from quan-
tum circuits produced by Clifford gates which are elements of the Clifford group gener-
ated by the Hadamard gate, the phase gate and the entangling control-NOT gate [9]. In
order to get any quantum advantage over classical computers, we need to add additional
gates outside of the Clifford group. By injecting more non-Clifford gates into a quantum
circuit, we obtain a quantum state with further distance from a stabilizer state. This dis-
tance is in literature referred to as magic or non-stabilizerness[10]. The states that are
not stabilizer states are called magic states. Interestingly, the Clifford operations could
be easier both at the experimental level and for quantum error correction [11–13], while
universal gate-sets are achieved by the distillation of a large number of noisy magic states
into a less-noisy magic state which subsequently provides the computational resources
for the fault-tolerant quantum computation [7, 14–17]

Examples of magic monotones include magical cross-entropy, mana [10], and ro-
bustness of magic [15]. These measures are, however, computationally expensive to eval-
uate and their calculation requires exact knowledge of the wave-function combined with
complex optimization [10], which excludes the study of large quantum circuits. More
recently introduced magic monotonotes such as the Gottesman-Kitaev-Preskill magic
measure and the stablizer Renyi entropy, [18, 19], offer simplified scaling which enables
exact calculation of magic for a few qubits using conventional computers.

Different approaches to describe how far a quantum state is from the stabilizer states,
can also be related to the amount of quantum correlations in the system. The out-of-
time ordered correlators (OTOCs) quantify quantum information scrambling [20–25].
Quantum information scrambling describes the spread of the local information in a
quantum system [24]. Through the time evolution of a closed quantum system, the in-

…… …

…

… …

Figure 2.1: The schematic structure of a t-doped quantum circuit. We are using a block of the random Clifford
gates, UC followed by a T-gate on a random qudit. We repeat this process NT times.
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formation about initial state of the system can become very hard to access due to quan-
tum correlations in the system [26]. Even though the information is still encoded in the
system it is not directly accessible without measuring all its degrees of freedom. Infor-
mation scrambling has recently attracted an increasing amount of attention due to the
relation with the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [27].
The AdS/CFT correspondence draws a duality that relates the noise in quantum error
correction codes to information scrambling in black holes [20, 22, 23]. Another applica-
tion of this concept emerged in condensed matter physics such as many-body localiza-
tion [28] and non-Fermi liquid behaviours [29].

Moreover, it was recently experimentally demonstrated that OTOCs can be used as
an indicator of the degree of non-stabilizerness of scrambled quantum circuits [30]. In
parallel, recent work has shown an analytical relation between the non-stabilizerness
and OTOC [19, 31].

In this work, we show the relation between a randomised sampling of OTOC fluc-
tuations and mana for qutrit systems and stabilizer Renyi entropy for qubit systems.
We show numerical evidence that this method requires dramatically lesser number of
OTOC measurements in comparison to the exact methods of calculating magic mono-
tones. Capitalizing on this relation, we put forward an experimentally feasible way to
approximate magic using the evaluation of OTOCs. Our work might lay the foundation
to approximate magic in a scalable way in larger systems, as our protocol is designed
to be adaptable for both numerical techniques such as tensor networks [32] and neural
networks [33] as well as experimental measurements [30].

2.2. METHODS

2.2.1. MAGIC

The concept of magic in quantum information science arises from the field of resource
theory [34]. The Gottesman-Knill theorem [8] guarantees that the subset of the physical
states known as stabilizer states are efficiently simulatable on a classical computer. More
precisely, the stabilizer states are the second level of the Clifford hierarchy [9].

Since the first level (the Pauli gates) and the second level, (the Clifford gates) of the
Clifford hierarchy are insufficient for universal quantum computing, we need to use
the third-level gates. This level of Clifford’s hierarchy includes, for example, a T-gate.
Another set of important non-Clifford gates are the rotation gates {Rx (θ),Ry (θ),Rz (θ)},
where θ is the angle of rotation. These gates are particularly important in problems that
require a continuous set of parameters to tune, i.e. quantum machine learning algo-
rithms [5, 6].

The amount of non-stabilizerness, or magic, of any state is measured using magic
monotones. Magic monotones such as the robustness of magic [10] are based on an
optimization over all stabilizer states, which make them practically hard to compute.
However, one example of a magic monotone that does not require any optimization is
known as mana, M [10]. This magic monotone has another limitation, namely that it
is only definable for odd-prime dimensional Hilbert spaces. Additionally, mana is prac-
tically very hard to calculate since it is based on calculating discrete Wigner functions
which in practice limits current calculations to at most 6 qudits. More details regarding
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the definition and evaluation of mana are available in Appendix 2.6.
Another method introduced to measure magic for qubits is the Stabilizer Renyi En-

tropy[19]. For a system of N qubits, the Stabilizer Renyi Entropy of order n is defined
as

Mn(|ΨN 〉) = (1−n)−1 log
∑

P∈PN

〈ΨN |P |ΨN 〉2n

2N
, (2.1)

where PN is the set of all N -qubit Pauli strings and the number of the Pauli strings in
PN we are summing over scales as 4N .

2.2.2. INFORMATION SCRAMBLING

A well-known measure of information scrambling is the out-of-time-order correlators
(OTOCs) which are commonly used in high-energy physics and condensed matter physics
[20–25, 28, 29]. OTOC is evaluated for any two operators A and B , where [A,B ] = 0, as

OTOC(t ) = Re(〈A†(t )B † A(t )B〉), (2.2)

where

A(t ) =U †(t )A(0)U (t ), (2.3)

or equivalently

OTOC(U ) = 1

d
tr (U †(t )A†(0)U (t )B †U †(t )A(0)U (t )B) (2.4)

and U (t ) is the time evolution operator, which could either result from the time evolution
of a Hamiltonian or from a quantum circuit. Here we will consider a N qudit system,
A(0) = XN−1 and B = Z1 where Xi and Zi are the conventional Pauli operators and the
subscript indicates the i -th qudit. As long as the commutation relation above holds,
these Pauli operators can be placed on arbitrary qubit pairs. In this case, A(0) plays the
role of the butterfly operator related to chaotic quantum systems. The reason for using
the butterfly operator is that by including a small perturbation (in this case a bit flip)
we are disturbing the reversibility of the system, which is a signature of chaos [35]. The
information scrambling measured through OTOC describes how information spreads in
the system and becomes inaccessible in later times [20–25]. Information scrambling also
describes how local Heisenberg operators grow in time [30, 36, 37]. A way to assess how
the OTOC value fluctuates over a set of random circuits is the OTOC fluctuation, δOT OC ,
defined as the standard deviation of OTOC over all measured instances of OTOC. Let
U =C1V C2, where V is a generic unitary operator. Defining the average over C1,C2 as

EC OTOC(V ) :=
∫

dC1dC2OTOC(V ) (2.5)

and define the fluctuations around the average

δOTOC(V ) := EC OTOC2(V )− [EC OTOC(V )]2. (2.6)



2.2. METHODS

2

21

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mean Mana, 

0.4

0.6

0.8

1.0

OT
OC

 F
lu

ct
ua

tio
ns

, 1
O

TO
C

Linear fit
50 Samples

Figure 2.2: The fluctuation of OTOC, 1−δOT OC as a function of the mean value of mana, M . We see a linear
behaviour between these two magic monotones for 6 qutrit t-doped circuits. Here we show results for 50 (green
dots) random samples of OTOC on the y-axis. On the x-axis, we calculated mana for 10 of the samples and we
fit a linear dependence (dashed line). The vertical error bar is the statistical error calculated by repeating the
process above 10 more times to get the error by the standard deviation of the sampled δOT OC instances and
the horizontal error bar corresponds to the standard deviation of mana.
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Figure 2.3: The log of fluctuation of OTOC, −Log2δOT OC over 50 (blue dots) samples as a function of the mean
value of stabilizer Renyi entropy (dashed line), M2 over 10 samples. The vertical error bar is the statistical
error calculated by repeating the process above 10 more times to get the error by the standard deviation of the
sampled δOT OC instances, and the horizontal error bar corresponds to the standard deviation of the stabilizer
Renyi entropy M2.
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2.3. RESULTS
We will now numerically investigate the relation between the fluctuations of OTOC, which
was experimentally observed in Ref. [30] to decrease with the growing non-stabilizerness
of the quantum circuit, and the measure for magic, mana, M for q = 3 and the stabilizer
Renyi entropy, M2 for q = 2 where q is the dimension of the local Hilbert space. To this
end, we design random quantum circuits with Clifford and non-Clifford gates, known as
t-doped quantum circuits.

2.3.1. MANA AND OTOC
First, we consider N qudits in q-dimensional Hilbert space where q = 3. The circuits
consist of M cycles of Clifford gates. In each cycle, we first apply one single Clifford gate,
randomly chosen from the set S = {H ,S, X ,Y , Z , I } on each qudit. Then we add two
CSUM gates on two randomly chosen qudits, where the CSUM gate is the counterpart
of CNOT in Hilbert spaces with q > 2. Here we have a fixed number of M = 10 random
cycles for each block of random Cliffords. Finally, we add a single non-Clifford gate, T , on
a randomly chosen qudit. We increase the magic in the circuit by increasing the number
of layers of the random Cliffords followed by a T-gate.

We begin by analyzing the relationship of mana and OTOC in the Hilbert space of
dimension q = 3 for circuits containing four qutrits such that mana is well-defined and
computationally tractable. We use the qutrit Clifford gates introduced in [38]. We pro-
vide detailed definitions of all gates in Appendix 2.7.

We observe an increasing monotonous relation between the mean value of mana,
M and the OTOC fluctuations, 1−δOTOC, see Fig. 2.2. In Fig. 2.2, we observe a linear
dependence between 1−δOT OC and M . This relationship corresponds to the linear fit
1−δOT OC ≈ 0.22M +0.26. We simulated the OTOC instances of 50 circuit runs and the
number of T-gates in the circuit is NT ∈ [0,20]. For the simulation of the quantum cir-
cuits, we have used the Cirq package [39].

2.3.2. THE STABILIZER RENYI ENTROPY AND OTOC
Mana, discussed in the previous section, is not only challenging from the scaling point
of view but also only defined for odd-dimensional local Hilbert space; because it is re-
lated to the negativity of discrete Wigner functions, and thus not possible to evaluate for
qubits [40, 41]. In this section, we investigate the relation of 4-OTOC fluctuations, δOT OC ,
with the stabilizer Renyi entropy, M2, which is well-defined for even-dimensional Hilbert
spaces. To evaluate the stabilizer Renyi entropy we use Eq. (4.8) for q = 2 and n = 2.
The authors of Ref. [19] have shown the relation of the stabilizer Renyi entropy with 8-
OTOC. The main difference between our approach with the existing analytical formula
in Ref. [19] is the random sampling of a constant number of OTOCs as opposed to the
exponential scaling of the number of 8-OTOC terms in the Renyi entropy formula [19].

We use the same random circuits as described in the previous subsection (see Fig. 2.1),
this time for qubits. This way we obtain a comparison between δOT OC and the exact sta-
bilizer Renyi entropy. In Fig. 2.3, we show OTOC fluctuations as a function of mean Renyi
entropy, M2 and find a dependence corresponding to the fit M2 ≈−1.38log2δOT OC+0.51.
We repeat the process 10 times to average over different δOT OC to obtain statistical error
bars. The circuit used for Fig. 2.3 is a 12 qubit t-doped Clifford and we calculate M2 from
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10 random instances. Each point in Fig. 2.3 belongs to a certain number of T-gates in
the circuit,NT ∈ [0,26]. We note that the range of NT was motivated by the fact that it has
been shown that we need more than or equal to 2N T-gates to saturate the magic [42].
We see that regardless of the number of T-gates (and hence the amount of magic in the
circuit), our ability to approximate the stabilizer Renyi entropy using OTOC fluctuations
remains similar.

For the explanation of the relation observed in Fig. 2.3, we formulate the following
lemma:

Lemma 1. Let M2(|V 〉) be the stabilizer entropy of the Choi state [43] |V 〉 associated
to the unitary V and d = 2N , then

ECδOTOC(V ) =
(

d 2

d 2 −1

)2

2−M2(|V 〉) − 2d 2

(d 2 −1)2 . (2.7)

Proof. See Appendix 2.8.
From the Lemma 1 and the numerical results in Fig 3, we can conclude that sampling

OTOC fluctuations could lead to more efficiency in measuring M2(|V 〉).
For the case of random t-doped Clifford circuits, it generally holds that

ECt 2−M2(|Ct 〉) = ECt 2−M2(Ct |0〉) +O(d−1). (2.8)

Therefore, in the case of a t-doped Clifford circuit, there is no distinction between the
stabilizer entropy of V |0〉 and |V 〉 for sufficiently large d .

It is worth noting that the relation of 4-OTOC fluctuations with the averaged 8-OTOC
has been studied in Ref. [44]. In contrast, here we describe the relationship to 2-Renyi
entropy.

2.3.3. THE MAGIC GENERATED BY TIME EVOLUTION OF A HAMILTONIAN
In this section, we propose a protocol to measure the magic generated by time evolu-
tion under the general Hamiltonian. The time evolution unitary operator of a general
time-independent Hamiltonian is a fixed operator. Since, in our method, scrambling is
an essential feature, in order to have such a low number of samples we need to create di-
versity in measured instances of OTOC by introducing additional randomisation in the
circuit. We achieve this goal by including two extra blocks of random Clifford circuits,
one before the time evolution and one after, see Fig. 2.4a. Since Clifford gates do not
produce any magic by definition, we do not lose any generality for the circuit’s magic
calculation, but importantly we enhance the scrambling. It is important to keep in mind
that the depth of the random Clifford circuit needs to be sufficient to fully scramble the
state.

Here, as an example, we consider the Hamiltonian of the transverse-field Ising Hamil-
tonian,

H =−J
∑

i
Zi Zi+1 −h

∑
i

Xi . (2.9)

The system is in the open boundary condition and Zi and Xi are the Pauli matrices on
the i -it qubit. For this simulation, we fix J = 1 and h = 0.5. The schematic structure of
the circuit we consider for its time evolution is shown in Fig. 2.4(a).



2

24 2. QUANTIFYING NON-STABILIZERNESS VIA INFORMATION SCRAMBLING

(a)

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time, t

0

1

2

3

4

5

M
a
g
ic

M2 

4.14Log2 OTOC + 0.24

Figure 2.4: (a) The schematic structure of measuring magic of a time evolution of the Hamiltonian, UH . The
protocol consists of two random Clifford blocks, before and after the desired time evolution block. (b) The
comparison of OTOC fluctuations (blue dots) with the exact stabilizer Renyi entropy density (dashed line).
The simulation is done for 10 qubits for the Choi state of a chain of length 5.
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We are considering a chain of N = 5 for the Hamiltonian of Eq.2.9 and the Choi iso-

morphism, |V 〉 ≡ I⊗V |I 〉 where V = UC UH UC and |I 〉 ≡ 2−N /2 ∑2N

i=1 |i 〉 ⊗ |i 〉. From
Fig.2.4(b) we can see that M2 for the local Hamiltonian of the Eq.2.9 and OTOC fluc-
tuations show similar behaviour, although the prediction accuracy is lower than for the
random t-doped circuits. In this simulation, we used 5 qubits with 50 instances of sam-
pled OTOCs. The time evolves for a total time of 3/J . We see the same trend of increase
in magic in the early time and oscillatory behaviour and stabilization in both stabilizer
Renyi entropy and approximated OTOC fluctuations. We used the Qiskit package [45] for
this simulation.

2.4. CONCLUSION AND DISCUSSION

We have shown aspects of the relation between mana and random sampling of OTOC
fluctuations for t-doped circuits which were previously unexplored. In addition to that,
we provided numerical evidence that OTOC fluctuation sampling in the scrambled cir-
cuits is useful for measuring magic. We were able to mirror behavior for stabilizer Renyi
entropy and for mana with significantly lower number measurements. Since the struc-
ture of the random circuits is challenging to scale for N qubits, the scalability of this
method remains inconclusive, but for up-to 12 qubits we obtained remarkably precise
magic estimate with constant number of samples. We also observed that the relation
of δOT OC and magic is not universal, it showed log2 behaviour for 2-Renyi entropy and
linear behaviour for mana.

Ref. [31] puts forward a statement that the fluctuations of OTOC are always smaller
or equal to a specific type of magic monotone. In this work, we complement this state-
ment by numerically showing the relation of OTOC fluctuations to the stabilizer Renyi
entropy. We analyzed the accuracy of stabilizer Renyi entropy approximation as a func-
tion of the number of samples drawn from scrambled random circuits. While the major-
ity of our simulated data points fulfil the inequality derived in Ref. [31], it is not always
the case. This observation is an interesting starting point for further investigation. Also,
the analytical relations here could be the starting point for the investigation of the re-
lation between the stabilizer Renyi entropy and the introduced magic measure in Ref.
[31].

Additionally, we also extended the method of sampling scrambling random circuits
to approximate magic to Hamiltonian evolution and numerically calculated magic for
the time evolution governed by an Ising Hamiltonian in a transverse field with very good
results in comparison with stabilizer Renyi entropy of the Choi state of the time evolved
state of the Hamiltonian. Interestingly the reached agreement is lesser than that of t-
doped circuits, but our method still captures general trends of magic behavior during
Hamiltonian evolution.

Interesting research direction going forward is to combine our sampling approach
with experiment [30] or approximate numerical methods such as tensor networks [32,
46] and neural networks [33]. Our method can be used alongside or as a complement
to other existing approximation methods [47–52]. Specifically, the algorithm introduced
in [48] is an efficient method for measuring Tsallis stabilizer entropy which has a direct
relation to stabilizer Renyi entropy. In Ref. [53] lower number of samples comes with
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doubling the dimension of the Hilbert space. The fact the analytical relationship in Eq.
(2.7) between δOTOC and Stabilizer Renyi entropy involves Choi state of a unitary opera-
tor might hint at a possible link between these approaches.

All code required to reproduce results presented in this manuscript is available at
[54].
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2.6. APPENDIX-1: MANA
One of the magic monotones is known as mana. The restriction of mana is that it is only
well-defined for odd prime-dimensional Hilbert spaces. Here, we introduce it for q-dim
Hilbert spaces [10] with q an odd prime number. To show how to calculate mana, we first
need to define the clock and shift operators corresponding to the q-dimensional Pauli Z
gate and Pauli X gate [38],

Z =
q−1∑
n=0

ωn |n〉〈n| , X =
q−1∑
n=0

|n +1mod q〉〈n| , (2.10)

with ω = e2πi /q . The other necessary definition is the Heisenberg-Weyl operators in
prime dimensions,

Taa′ =ω−2−1aa′
Z a X a′

, (2.11)

where 2−1 = q+1
2 (the multiplicative inverse of 2 mod q) and (a, a′) ∈Zq×××Zq . By following

this definition, we can define Pauli strings as

Ta = Ta1a′
1
⊗Ta2a′

2
...⊗TaN a′

N
. (2.12)

Now, we can define a new basis set for the Hilbert space, known as phase space point
operators,

Ab = q−N Tb [
∑
a

Ta ]T †
b , (2.13)

and these phase space point operators form a complete basis set for CqN⊗qN
. Thus, we

can expand any density matrix ρ in this basis,

ρ =∑
u

Wρ(u)Au , (2.14)

The coefficients Wρ(u) are called discrete Wigner functions and we can define mana as

M (ρ) = log
∑
u

∣∣Wρ(u)
∣∣. (2.15)

As we already stated in the main text, we are dealing with Clifford and non-Clifford
operations. The Clifford gates map Pauli strings to other Pauli strings, up to an arbitrary
phase [55],

C = {U : U TaU † = e iφTb }, (2.16)

Since the Clifford gates map each of these Pauli strings to each other, each Clifford uni-
taries also map the computational basis to one of the eigenstates of Pauli strings. These
eigenstates are called stabilizer states. Since stabilizer states are prepared with only Clif-
ford gates, their mana is zero.

2.7. APPENDIX-2: CLIFFORD AND NON-CLIFFORD GATES DEF-
INITIONS

In this appendix, we are introducing the gates that we have used in this study. We intro-
duce both 2-dimensional Hilbert spaces and higher-dimensional Hilbert spaces.
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2.7.1. CLIFFORD GATES
The set of Clifford gates is the second level of Clifford hierarchy [9] that are the following
gates in 2-dimensional Hilbert spaces,

H2 = 1p
2

[
1 1
1 −1

]
, P2 =

[
1 0
0 i

]
,

CNOT = |0〉〈0|⊗ I +|1〉〈1|⊗X .

(2.17)

The generalization of these gates is straightforward [56]. The d-dimensional Hadamard
gate, Hd , is

Hd | j 〉 = 1p
d

d−1∑
i=0

ωi j |i 〉 j ∈ {0,1,2, ...,d −1}, (2.18)

where ω := e2πi /d . The next gate is the d-dimensional Phase gate, Pd ,

Pd | j 〉 =ω j ( j−1)/2 | j 〉 , (2.19)

and, finally, the generalized CNOT gate that is known as C SU Md gate and defined as

C SU Md |i , j 〉 = |i , i + j (modd)〉 i , j ∈ {0,1,2, ...,d −1}, (2.20)

2.7.2. NON-CLIFFORD GATES
Clifford gates are not sufficient for universal quantum computation and we at least need
one non-Clifford gate to have this universality [57, 58]. One of these gates is the T-
gate that emerges from the third level Clifford hierarchy. The definition of T-gate for
2-dimensional Hilbert space is

T2 =
[

1 0
0 e iπ/4

]
. (2.21)

The generalization of T-gate to higher dimensional Hilbert spaces is not so straight-
forward [38]. Here, we only write down the matrices of the T-gate for 3-dimensional
Hilbert spaces which are useful for us. The 3-dimensional Hilbert space T-gate is

T3 =
1 0 0

0 e2πi /9 0
0 0 e−2πi /9

 . (2.22)

2.8. APPENDIX-3: PROOF OF LEMMA 1
In order to show lemma 1, we need to have a close look at the first term in δOTOC,

EC OTOC2(V ) =
∫

dC1dC2
1

d 2 tr
(
T(12)(34)V

†⊗4C †⊗4
1 A⊗4C⊗4

1 V ⊗4C⊗4
2 B⊗4C †⊗4

2

)
(2.23)

By averaging over C1 we will have [42, 59]∫
dC1C †⊗4

1 A⊗4C⊗4
1 = 1

d 2 −1

∑
P∈Pn \{I}

P⊗4, (2.24)
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By averaging over Clifford circuits we will get a flat distribution over the Pauli group Pn

but the identity. By defining Q := d−2 ∑
P∈Pn P⊗4, the Eq. 2.24 becomes∫

dC1C †⊗4
1 A⊗4C⊗4

1 = d 2

d 2 −1
Q − 1

d 2 −1
I⊗4, (2.25)

we get similar results for averaging over C2 on the non-identity Pauli operator B . So Eq.
2.23 would become

EC OTOC2(V ) = 1

d 2

(
d 2

d 2 −1

)2

tr (QV ⊗4QV †⊗4 − 2d 2 −1

(d 2 −1)2 , (2.26)

where we used the fact that tr
(
OQT(12)(34)

) = tr(OQ) for every O [42]. From Ref. [25]
we know that the average EC OTOC(U ) =−(d 2 −1)−1. So the final equation would be

ECδOTOC(V ) =
(

d 2

d 2 −1

)2

2−M2(|V 〉) − 2d 2

(d 2 −1)2 , (2.27)

we know that from Ref. [59] the second stabilizer Renyi entropy of the Choi state of the
unitary V is

M2(|V 〉) =− log
1

d 2 tr
(
QV ⊗4QV †⊗4

)
, (2.28)

We see that from Eq. 2.7 the second stabilizer Renyi entropy is related to the Choi
state |V 〉 associated with the unitary V and not the second stabilizer Renyi entropy of
the state V |0〉. Fortunately, in the case of V being a random t-doped circuit, Ct , from
Ref. [59] we have

ECtδOTOC (Ct ) = d 4

(d 2 −1)2

[
4(6−9d 2 +d 4)

d 4(d 2 −9)
+ d 2 −1

d 2

(
(d +2)(d +4) f t+

6d(d +3)

+ (d −2)(d −4) f t−
6d(d −3)

+2
(d 2 −4)( f++ f−

2 )t

3d 2

)]
−2

d 2

(d 2 −1)2 ,

(2.29)

where

f± = 3d 2 ∓3d −4

5(d 2 −1)
, (2.30)

for d being large we have

ECtδOTOC(Ct ) =
(

3

4

)t

+O(d−2). (2.31)

In Ref. [19], the average value of 2-stabilizer entropy over a t-doped Clifford circuit is
given as

− log

(
4+ (d −1) f t+

3+d

)
≤ ECt M2(Ct |0〉) ≤

{
t , t < N −1

N −1
. (2.32)
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From Eq. 2.29 and Eq. 2.32, it is straightforward to show that for a random t-doped
Clifford circuit,

ECt 2−M2(|Ct 〉) = ECt 2−M2(Ct |0〉) +O(d−1). (2.33)

2.9. APPENDIX-4: PROPAGATION OF ERROR
Let us analyze how errors propagate in Eq.2.7. We can write the error in M2 in terms of
δOT OC as

∆M2 = ∂M2

∂δOT OC
∆(δOT OC ). (2.34)

At the same time, we can rewrite Eq.2.7 as

M2 =− log2
EδOT OC +β

α
. (2.35)

This formula allows us to evaluate the derivative on the right-hand side of (2.34) as

∂M2

∂δOT OC
=− 1

(EδOT OC +β) ln2
. (2.36)

Combining (2.34) and (2.36) we obtain

∆M2 =− 1

(EδOT OC +β) ln2
∆(δOT OC ). (2.37)

Error in M2 is thus proportional to the error in δOT OC with an inverse factor of the ex-
pectation value of δOT OC .
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3
MUTUAL INFORMATION

FLUCTUATIONS AND

NON-STABILIZERNESS IN RANDOM

CIRCUITS

The emergence of quantum technologies has brought much attention to the characteri-
zation of quantum resources as well as the classical simulatability of quantum processes.
Quantum resources, as quantified by non-stabilizeress, have in one theoretical approach
been linked to a family of entropic, monotonic functions. In this work, we demonstrate
both analytically and numerically a simple relationship between non-stabilizerness and
information scrambling using the fluctuations of an entropy-based quantifier. Specifi-
cally, we find that the non-stabilizerness generated by a random quantum circuit is pro-
portional to fluctuations of mutual information. Furthermore, we explore the role of non-
stabilizerness in measurement-induced entanglement phase transitions. We find that the
fluctuations of mutual information decrease with increasing non-stabilizerness yielding
potentially easier identification of the transition point. Our work establishes a key con-
nection between quantum resource theory, information scrambling and measurement-
induced entanglement phase transitions.

0The work in this chapter is currently under peer review and is available at: A. Ahmadi, J. Helsen, C. Karaca, E.
Greplova, Mutual information fluctuations and non-stabilizerness in random circuits, arXiv:2408.03831
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3. MUTUAL INFORMATION FLUCTUATIONS AND NON-STABILIZERNESS IN RANDOM

CIRCUITS

3.1. INTRODUCTION

Since the formulation of quantum theory, entanglement has been known to be one of the
unique signatures of quantum theory [1]. While entanglement is one of the key features
of distinguishing the quantum world from the classical, it is known that entanglement
alone is insufficient for having an advantage from the computational point of view. In
particular, the stabilizer states are a set of states that can be highly entangled and at the
same time can be simulated efficiently on classical computers [2–7].

The missing feature for quantum computation to have an advantage over classical
computation is a concept known as non-stabilizerness or magic [8]. In quantum circuit
language, in the fault-tolerant regime, the gates that are known to be "cheap" gates [8]
are Clifford gates, and magic is injected into the state by adding non-Clifford gates to the
circuit. It is also known that the Clifford operations could have easier implementation
both at the experimental level and for quantum error correction [2, 4, 9, 10]. This feature
makes magic the resource for quantum computation.

Various measures for non-stabilizerness, or magic, have been proposed. Some of the
notable ones are magical cross-entropy, mana [8], robustness of magic [11, 12], stabilizer
entropies (SE) [13] and others [14–18]. Due to the favourable scaling of the stabilizer en-
tropies these measures received much attention from the community to study the prop-
erties of non-stabilizerness of quantum systems [19–25]. Additionally, there has been a
significant effort to scale up the computability of stabilizer entropies [26–30].

Diverse studies confirmed there exists a relationship between non-stabilizerness and
information scrambling [13, 16, 31]. Information scrambling describes the spread of lo-
cal information in a generic quantum system [32]. Information scrambling has been
shown to be one of the most powerful measures for various quantum properties of quan-
tum systems, from black holes [33–36] to many-body quantum systems [37] to quan-
tum circuits [31, 38]. There are a number of known methods for measuring information
scrambling. One of the well-known approaches is based on the measurement of correla-
tor functions, namely Out-of-Time Ordered Correlators (OTOCs) [33, 36, 38–41]. Another
approach for studying information scrambling are entropy-based measures [32, 42–48].

In this paper, we describe numerically and analytically a general relationship be-
tween non-stabilizerness and fluctuations of entropy-based measures of information
scrambling. A specific instance of this relation has been observed earlier by connect-
ing fluctuations of OTOCs to non-stabilizerness [13, 31]. In the present work, we gener-
alize this behaviour to fluctuations of generic mutual information measures of disjoint
regions of the quantum circuit on t-doped circuits. The observed link between non-
stabilizerness and mutual information creates a bridge to the theory of phase transitions
in measurement-induced random quantum circuits, where mutual information plays a
crucial role [49–81]. Here we show that non-stabilizerness is an ingredient in reducing
the spread of entanglement phase transition in random quantum circuits and also re-
duces the fluctuations of the measured mutual information.
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Figure 3.1: (a) The schematic structure of the t-doped Clifford circuits and the disjoint area of measuring
scrambling. (b) The log of fluctuations of the mutual information, − lnδI (2) as a function of the number of
T-gates, NT , on the circuit for the number of qubits, N = 8,12,16 and the number of samples is 500.

3.2. RANDOM CIRCUITS AND MUTUAL INFORMATION

3.2.1. DEFINITIONS AND NOTATION

The structure of the T-doped circuits that we use in this study consists of blocks of ran-
dom Clifford operations followed by single T-gates on random qubits in the circuit. The
blocks of random Clifford consist of single Clifford gates drawn randomly from the set
{I , X ,Y , Z , H ,S} followed by three CNOT gates on two random qubits. We apply both
single and double Clifford gates until the state gets fully scrambled (in our case after 2N
operations, where N is the number of qubits in the system). Each Clifford block (of depth
2N ) is followed by a T-gate performed on a randomly selected qubit. This Clifford block
plus T-gate sequence is then repeated NT times. The structure of the circuit is shown in
Fig. 3.1 (a).

A popular entropy-based measure for quantifying scrambling is mutual information
[42] of disjoint areas A and B which is defined as

I (2) := S(2)
A +S(2)

B −S(2)
AB , (3.1)

where S(2)
X is the Renyi-2 entropy defined as S(2)

X ≡ − log2 Trρ2
X for the subsystem X and

ρX is the reduced density matrix of subsystem X. We chose the subsystems A and B such
that they have NA = NB = N /4 of the first and last qubits as shown in Fig. 3.1 (a).
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Figure 3.2: The comparison of the − ln f luctuati ons of all terms in the mutual information definition, S(2)
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AB , and the mutual information as a function of the number of T-gates, NT for a 16-qubit system.

3.2.2. RELATION OF MUTUAL INFORMATION FLUCTUATIONS AND MAGIC

By measuring a sample of different instances of I (2) for a fixed number of T-gates, we
observed a trend in the fluctuations, i.e. the standard deviation, of these instances

δI (2) = (E[(I (2))2]−E[I (2)]2)1/2,

as a function of the number of T-gates, NT , in the random circuit. We observe a linear
relationship between the number of T-gates in the circuit and − lnδI (2) as shown in Fig.
3.1 (b). We have a circuit of N = 8,12,16 qubits and the number of T-gates in each cir-
cuit is NT ∈ {0, ...,2N } which is where magic increases linearly with the number of qubits
[31, 82]. We fit this linear behavior and obtain − lnδI (2 ≈ 0.13NT +0.32 dependency. In-
terestingly, this behaviour is similar to that previously observed for the fluctuations of
out-of-time-order correlations [31].

In order to interpret the results in Fig. 3.1 (b), we analyze Eq. 3.1 term by term and
asses the contribution of these terms to the observed fluctuation behaviour. Eq. 3.1 have
three terms of entanglement Renyi-2 entropy, where subsystems A and B have the size
of N /4 and subsystem AB has the size of N /2. By evaluating the fluctuations of S(2)

A , S(2)
B

and S(2)
AB alongside the total fluctuations of the mutual information, we find that the fluc-

tuations of S(2)
AB are the leading term in behaviour of fluctuations of mutual information,

δI (2) . This result is shown in Fig. 3.2.
Specifically, in Fig. 3.2, we show all contributions to the fluctuations of the mutual

information for a 16-qubit system and observe the fluctuation of the mutual information
overlaps with the fluctuations of the entanglement Renyi-2 entropy of the subsystem AB .

We also explored the effect of measuring the total spin of the subsystems A and B
and their statistical relation to non-stabilizerness in Appendix 3.8.

3.2.3. ANALYTICAL RELATION OF NT AND ln
(
δI (2)

)
Due to the non-linear nature of the entropy, it is difficult to analytically recover the be-
haviour seen in Fig. 3.1. However if one instead averages inside the logarithm exact cal-
culation becomes tractable (this can be thought of as the first step towards a replica-trick
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calculation, which we will not attempt here) and we can explain the key features of the
relation between magic and entropic fluctuations. Accordingly, we define the quantities

S̃(2)
AB :=− log2

(
E
[

Tr
(
ρ2

AB

)])
,

δ̃ := (− log2

(
E
[

Tr
(
ρ2

AB

)2])− (S̃(2)
AB )2),

where the average is taken over the circuit set described in Fig. 3.1. A simple calcula-
tion shows that S̃(2)

AB is independent of NT . On the other hand δ̃ shows a clear linear
dependence. Suppressing various subleading contributions, we can prove the following
relation:

− ln
(
δ̃
)≈ NT ln(1/λ) (3.2)

for λ = 3/4 and thus ln(1/λ) ≈ 0.28. This captures the linear behaviour seen in Fig. 3.1
but does not give the correct rate. We expect that the correct rate can only be obtained
through a full replica calculation, similar to the behaviour of the velocity of entangle-
ment observed in [83]. The proof of Eq. (3.2) requires calculating the fourth moments of
the Clifford group and is rather involved. We defer it to Appendix 3.9. It must be noted
that although establishing this result requires calculating a fourth moment of the Clif-
ford group, it does not hold for any quartic invariant of the Clifford group. In Appendix
3.9, both analytics and numerics of quartic and octic invariants support our statement.

3.3. EFFECT OF MAGIC ON MEASUREMENT-INDUCED PHASE TRAN-
SITION

In recent years, there have been diverse and rich studies on the entanglement phase
transition in random quantum circuits [49–81]. Interestingly, the detection of these phase
transitions typically relies on the study of the behaviour of the mutual information in
the random quantum circuit [81, 84]. These studies mainly focused on two types of cir-
cuits. One type is the Clifford circuits, because of their scalability which is guaranteed
by Gottesman-Knill theorem [5, 7] so they are widely used to study the phase transition
more accurately [49, 50, 54, 65, 68, 70, 71, 74]. The second case is the Haar random
circuits that are being used because of their universality in randomness. The possible
drawback of using the Haar structures is that they are difficult to scale up and usually
have been studied for small-scale systems of qubits [51, 52, 66, 67, 84]. In this section,
we study specifically the effect of magic in entanglement phase transition. Specifically,
the two research directions mentioned above either avoid non-stabilizer resources alto-
gether or use Haar randomness. Here, we analyze magic injected into the entanglement
phase transition circuits in a controlled way and study its effect through the lens of fluc-
tuations analysis developed in Sec. 3.2.2.

It is important to mention that, in parallel, there are ongoing studies in phase transi-
tions in magic as well [85–90]. However the purpose of this section is to show the effect of
magic solely on the entanglement phase transition identified by the mutual information.

The circuit structure for measurement-induced phase transition we use here inspired
by Ref. [49, 50, 54, 65, 68, 70, 74] consists of two-qubit blocks of random Clifford gates
on the neighbouring qubits. The block of random Clifford gates is generated using the
canonical form for uniformly randomly distributed 2-Clifford gate described in [91]. Here,
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…
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…
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(a)

Figure 3.3: (a) The schematic structure of measurement-induced phase transition. The blue block shows
the random two-qubit Clifford gate and the red single-qubit gates are random rotation gates followed by
a projective measurement with probability pm . The whole circuit consists of repeating each cycle Nc ycle
times. (b) The mutual information of two disjoint partitions of the system, namely the first and third quar-
ters (NB = NB = N /4), averaged over 800 instances and Nc ycle = 125 for different system sizes and the rotation
angle, θ = 0. (c) The finite size scaling of the mutual information for the critical parameters pm,c = 0.19 and
ν= 1.25.
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Figure 3.4: The upper panels correspond to averaged mutual information for different numbers of qubits as a
function of measurement rate, pm for different levels of non-stabilizerness in the circuit, and the lower panels
correspond to the fluctuations of the mutual information for the same system. The number of instances for
averaging and fluctuations is 800 shots. (a) The mutual information of measurement-induced circuit where the
angle of rotation, θ, in the rotation gates, is zero and the circuit is Clifford as a function of measurement rate,
pm . (b) The mutual information of the measurement-induced circuit where the angle of rotation, θ, is π/20
and magic is at an intermediate level, as a function of measurement rate, pm . (c) The mutual information of
the measurement-induced circuit where the angle of rotation, θ, is π/4 and magic is maximum per rotation
gate, as a function of measurement rate, pm . (d) The fluctuations of the mutual information for Clifford gates,
as a function of measurement rate, pm . (e) The fluctuations of mutual information where the angle of rotation,
θ is π/20 as a function of measurement rate, pm . (f) The fluctuations of mutual information where the angle
of rotation, θ is π/4 as a function of measurement rate, pm .
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in order to inject magic in a controlled way, we follow the two-qubit random Clifford
gates by a randomly chosen rotation gate from the set of {Rx (θ),Ry (θ),Rz (θ)}. Afterwards,
we induce the projective measurement on each qubit with probability pm in the z-basis.
This process is followed by another set of random Cliffords this time on the odd pairs of
qubits. Here, we introduce a periodic boundary condition by connecting the first and the
last qubit. After performing Cliffords on odd pairs of qubit, we again follow by projective
measurement (again with probability pm). This process forms one cycle of the circuit, as
the schematic structure of the circuit is shown in Fig. 3.3 (a) and is repeated Ncycles times.

In this random circuit set-up, we know that in the absence of measurements, pm =
0, the entanglement obeys volume-law scaling S(2) ∝ Ns , and persists up to a critical
measurement rate pm,c . It is known that above the criticality measurement rate, the
entanglement entropy follows a scaling known as area law scaling S(2) ∝ lnξ, where
ξ ∼ |pm − pm,c |−ν shows a divergence in the correlation length at criticality [50]. As il-
lustrated in previous studies, the entanglement data for different system sizes collapse
on a single curve with the scaling form of |S(2)(pm)− S(2)(pm,c )| = FS [(pm − pm,c )N 1/ν]
[50]. It is also shown that for the same critical measurement rate, pm,c and critical ex-
ponent ν, similar finite-size scaling relation can be seen from mutual information I AB =
FI [(pm − pm,c )N 1/ν] near criticality [84]. Assuming the collapse of mutual information
data for different system sizes on a single curve with the standard scaling form I AB =
FI [(pm −pm,c )N 1/ν] for granted, allows us to extract the critical measurement, pm,c , rate
and critical exponent, ν.

We use the mutual information as defined in Eq. 3.1 to identify the entanglement
phase transition from area law entanglement to volume law entanglement [84]. The
partitions that we consider for mutual information are the first and third quarters of
the whole system. First, we confirm that there is an entanglement phase transition
present at all by checking the Clifford case with zero injected magic, i.e. θ = 0, for sys-
tem sizes N = {8,12,16,20}. We average the measured mutual information over 800 in-
stances and use the circuit depth of Ncycles = 125. Due to the small system size, we
need to employ finite-size scaling to estimate the critical exponent, ν, and the criti-
cal measurement rate, pm,c . For this range of system sizes after finite-size scaling, we
find that the critical measurement rate, pm,c = 0.19 and the critical exponent, ν = 1.25
(see also Fig. 3.3 (b) and (c)). For extracting these values, we expanded the function
FI (pm , N ) ≈ ax2 +bx + c where x = (pm −pm,c)N 1/ν. We can extract pm,c and ν using
the least-square optimization method on the data of the mutual information. In other
words pm,c ,ν= ar g mi n(a,b,c)

∑
I AB (ax2 +bx + c − I AB )2.

The next step is to inject magic into the system. By increasing the rotation angle to
θ = π/4, we inject magic into the system. We set the number of cycles and non-Clifford
gates to Nc ycle = 125 to ensure we gradually saturate the non-stabilizerness in the ran-
dom circuit. Given the number of effective T-gates in the circuit, namely 125∗ N , we
expect that this random structure shows similar behaviour to the Haar random circuit.
In order to study non-stabilizerness behaviour of an intermediate case, where magic is
non-zero but also not maximal, we repeat the same numerical experiment, but with ro-
tation angle θ =π/20.

We show the result of these simulations in the upper panels of Fig. 3.4, where we
plot mutual information, I AB , as a function of measurement probability. pm for rota-



3.4. DISCUSSION AND CONCLUSIONS

3

45

tion angles θ ∈ {0,π/20,π/4}. First, we notice that there is no difference in the critical
measurement rate, pm,c nor in the critical exponent, ν. However, when we analyze fluc-
tuations of I AB , FAB = (E[(I (2))2]− E[I (2)]2)1/2,, we immediately observe a reduction in
fluctuations with increasing non-stabilizerness as we expect from the previous section
on t-doped circuits. The consequence of this fluctuation reduction is better separation
of data from different system sizes, which in turn allows for the phase transition point
to be more easily identified from mutual information data from the statistical point of
view. However, we need to point out the fact that it is obvious that by increasing the
non-stabilizerness, simulating large circuits becomes harder, and also, implementation
of such circuits could become harder on a fault-tolerant quantum computer.

3.4. DISCUSSION AND CONCLUSIONS
We have shown, both analytically and numerically, that for t-doped Clifford circuits, the
fluctuations of the mutual information are proportional to the non-stabilizerness of the
system. This observation creates a direct relation between fluctuations of entropic quan-
tity and magic. In Appendix 3.9 we show that this behaviour is fundamentally different
than that of Renyi-4 entropy (meaning that our observations are not merely a conse-
quence of the fluctuation being a “fourth-moment quantity”). The relation of magic
to the fluctuation of quantum information quantity (OTOC) was previously observed
in [31], which is also related to quantum information scrambling. Additionally, simi-
lar fluctuations behaviour has already been observed for entanglement entropy [92–94],
which could be related to a special case of mutual information. Specifically, when we
have a pure state and the bi-partition spans the whole system, mutual information re-
duces to a scaled entanglement entropy.

We also observed that the injection of magic into the measurement-induced phase
transition in random circuits decreases the fluctuations of mutual information around
the entanglement phase transition, potentially simplifying the identification of this tran-
sition from data. It then of course depends on the experimental platform, whether ad-
ditional rotation gates are feasible to implement. Since we observed that adding any
amount of magic is beneficial, presumably the phase of these gates would not need to
be implemented with high precision, as long as the gate is outside of the Clifford group.

The main open question going forward is that of large-scale simulation of the ran-
dom circuits with injection of the entanglement. These types of circuits present a partic-
ular challenge for approximate methods: they require relatively long time evolution as
well as rapid entanglement growth. One candidate that could possibly go beyond these
limitations is the Neural Network Quantum States (NQS) [95, 96] which could be an in-
teresting future research direction.
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3.8. APPENDIX-1:FOURTH MOMENT OF SPIN MEASUREMENTS
Inspired by the relation between measuring spin fluctuations of a subsystem and en-
tanglement entropy [101] and mutual information [84, 102], we observed that the fourth
moment (Kurtosis) of spin measurement of the subsystem also relates to non-stabilizerness
on t-doped circuits.

We considered the circuit of the same structure as in Fig. 3.1. Instead of measuring
entanglement entropy, S(2), of subsystems A and B , we measured the total spin of those
subsystems, Sz =∑

n∈Nl
sn,z where l ∈ {A,B}. We define Kurt(Sz )A,B as

Kurt(Sz )A,B := Kurt(〈Sz〉A)+Kurt(〈Sz〉B )−Kurt(〈Sz〉AB ). (3.3)

The Kurtosis of a random variable X is the standardized fourth moment, defined as,
E[(X−µ)4]

σ4 where µ is the mean and σ is the standard deviation.

The results of the simulation in Fig. 3.5 show that there is a linear trend in− lnKurt(Sz )A,B

as a function of the number of T-gates in the circuit. In this case, the number of T gates,
NT , and the number of samples are both 500. This linear trend depending on the num-
ber of qubits, can be observed for an effective number of T-gates. As it is shown in Fig.
3.5, for an 8 qubit circuit, this effect can be observed from NT = 0 while for a 12 qubit
circuit, the effective number of T-gates is NT = 5 and for 16 qubit circuit, it is NT = 12.

One possible explanation for the behaviour of small NT in Fig. 3.5 for not following
the linear trend, could be that for measuring spins in each subsystem for Clifford circuits,
we have

〈Sz, j 〉 = Tr
(
σz, jρ

)=∑
i

ci Tr
(
σz, j Pi

)
, (3.4)

given the fact that Tr
(
Pi P j

)= δi j [103], so that we obtain

〈Sz, j 〉 = c j . (3.5)

Suppose the Clifford circuit is in the scrambling regime c j ≈O(4−N ) for N ≫ 1, c j ≪
1. Given all instances of spin measurements being a small value, their kurtosis also be-
comes small and − lnKurt(Sz ) > 1. So we expect the linear behaviour of − lnKurt(Sz )A,B

as a function of NT to fail for the small NT with respect to the system size.

3.9. APPENDIX-2:ANALYTICAL TREATMENT OF ENTROPY FLUC-
TUATIONS

In this Supplementary we state a refined version of Eq. (2) in the main text, and prove it.
We will make use of the "super-ket" notation: denoting density matrices ρ as |ρ〉〉 and ob-
servables E as 〈〈E |, with the trace inner product 〈〈E |ρ〉〉 = Tr

(
E †ρ

)
. Quantum channels Λ

act linearly: Λ|ρ〉〉 = |Λ(ρ)〉〉. For unitary channels we emphasise the difference between
channel and unitary with caligraphic letters, i.e. |UρU †〉〉 = U |ρ〉〉. Before we move on
to the proof we briefly review relevant representation theory for the unitary and Clifford
groups.
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Figure 3.5: The log of kurtosis of the spin measurements, − lnKurt(Sz )A,B as a function of the number of T-
gates, NT , on the circuit for the number of qubits, N = 8,12,16 and the number of samples is 500.

3.9.1. MOMENTS OF THE UNITARY AND CLIFFORD GROUPS
We review the theory of polynomial invariants of the unitary group and the Clifford
group. We will focus on quoting results required for the proof. For more detailed ex-
planations see [104](unitary group) and [105–108](Clifford group). We begin by dis-
cussing the unitary group, and then make adaptations where needed for the Clifford
group (focusing in particular on the case of quartic polynomials). The polynomial in-
variants of degree t of the unitary group are captured collectively by the t-th moment
(super)operator, which is defined by

MU (2N ),(t ) =
∫

U (2n )
dU U ⊗t . (3.6)

This operator (via Schur-Weyl duality) can be expressed in terms of permutation opera-
tors: for π ∈ St we define

Rπ = r⊗N
π where rπ =

∑
x∈{0,1}t

|xπ(1), . . . , xπ(t )〉〈x1, . . . xt | .

The moment operator is a projector onto the space spanned by these permutation oper-
ators, and we can write

Mt =
∑

π′,π∈St

W U (2N ),(t )
π′,π |Rπ′〉〉〈〈Rπ|, (3.7)

where W U (2N ),(t )
π′,π is the so-called Weingarten matrix, the (pseudo) inverse of the Gram

matrix GU (2N ),(t )
π,π′ := 〈〈Rπ|Rπ′〉〉 of the permutation operators. A key fact about the Wein-

garten matrix is that it is diagonally dominant for fixed t and large n, we have:

W U (2N ),(t ) = 2−t N (
I +2−N F

)
, (3.8)



3.9. APPENDIX-2:ANALYTICAL TREATMENT OF ENTROPY FLUCTUATIONS

3

49

where F is a matrix with bounded (as a function of n) entries. In particular for t = 4 we
have ∥F∥ ≤ 16.

Next we consider the Clifford group. The moment operator has an analogous but
more complicated expression, which we will only discuss in detail for t = 4. We have:

MCN ,(4) = 1

|CN |
∑

C∈CN

C ⊗4. (3.9)

This operator differs from that of the Haar measure, as the Clifford group is not a 4-
design. For n ≥ 3, the dimension of its image is 30, and a basis is given by the 24 permu-
tation operators Rπ, parameterized by π ∈ S4, and six more operators RT . The latter can
be written in the form Rπ̂Π4, where π̂ ranges over the subgroup S3 ⊆ S4 of permutations
acting on the final three subspaces. and

Π4 := 2−n(I⊗4 +X ⊗4 +Y ⊗4 +Z⊗4)⊗n =:π⊗n
4 . (3.10)

We will denote this set of six operators as Ŝ3 = {π4,π4 · (23),π4 · (34),π4 · (24),π4 · (234),π4 ·
(324)} where we use the dot to emphasise multiplication. Following convention we will
denote the total set of 30 operators as Σ4,4 = S4 ∪ Ŝ3 In terms of these operators the mo-
ment operator (3.9) is given by

MCN ,(4) = ∑
T ′,T∈Σ4,4

W CN ,(4)
T ′,T |RT ′〉〉〈〈RT |. (3.11)

where W CN ,(4) is the Clifford-Weingarten matrix. We note that W CN ,(4) is also diagonally
dominant for large N . In particular for t = 4 we have

W CN ,(4) = 2−4N (
I +2−N F

)
, (3.12)

where ∥F∥ ≤ 16.
Finally we will need a lemma from [109] that characterises the action of the T -gate

on the commutant of the Clifford group:

Lemma 1. Let T denote the quantum channel acting by the T-gate T =
(

1 0
0 eiπ/4

)
on the

first qubit of an N -qubit state. Then we have, for every π,π′ ∈ Ŝ3, that

〈〈RπΠ4|T ⊗4|Rπ′Π4〉〉
{
= (24 −4)24(N−1) = 3

4 24N if π=π′,
≤ (23 −4)23(N−1) = 1

2 23N if π ̸=π′.

3.9.2. MAIN THEOREM
With the necessary representation theory reviewed we can prove the relation in Eq. 2 in
the main text. For precision’s sake we restate the result as a theorem.

Theorem 2. Let ψNT be the N -qubit state generated by the application of NT T gates (on
a fixed qubit) interspersed with random N -qubit Clifford gates, and let ρAB be its reduced
state on N /2 qubits. Averaged over the random Clifford gates we have

S̃(2)
AB :=− log

(
ETr

(
ρ2

AB

))= 1+N /2+O(2−N ) (3.13)

δ̃ := (− log
(
ETr

(
ρ2

AB

)2)− (S̃(2)
AB )2)= (3

4

)NT +O(2−N ). (3.14)
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Proof. We begin by calculating S̃(2)
AB . We have

ETr
(
ρ2

AB

))= 1

|CN |
∑

C0,...,CNT

〈〈FAB ⊗ IAB |C ⊗2
NT

T ⊗2 · · ·T ⊗2C ⊗2
0 |0⊗2〉〉, (3.15)

where F is the permutation operator exchanging two copies of the AB subsystem. Here
we used the trace identities tr(A)2 = tr

(
A⊗2

)
and tr

(
A2

) = tr
(
FA⊗2

)
. We can simplify this

equation by noting that the Clifford group is a 2 design, and hence

1

|CN |
∑

C∈CN

C ⊗2 =MU (2N ),(2), (3.16)

where MU (2N ),(2) is the quadratic moment operator of the unitary group. By Haar invari-

ance, the action of T ⊗2 is easily seen to be absorbed, and since MU (2N ),(2) is a projector,
we have

ETr
(
ρ2

AB

)= 〈〈FAB|MU (2N ),(2)|0⊗2〉〉. (3.17)

This already shows that S̃(2)
AB is independent of NT . We can calculate the associated value

exactly by using the well known formula (see e.g. [107])

MU (2N ),(2)|0⊗2〉〉 = 1

2N (2N +1)

∑
π∈S2

|Rπ〉〉. (3.18)

Using the fact that FAB = r⊗NAB
(12) and Rπ = r⊗N

π separate across qubits we can now calcu-
late

ETr
(
ρ2

AB

)= 1

2N (2N +1)

∑
π∈S2

tr(Frπ)NAB tr(rπ)N−NAB . (3.19)

By direct calculation we have tr
(
r(12)

)= 2 and tr(re ) = 4. With a little calculus we thus get

ETr
(
ρ2

AB

)= 2NAB 4N−NAB +2N−NAB 4NAB

2N (2N +1)
. (3.20)

Using NAB = N /2 we can can see that

ETr
(
ρ2

AB

)= 22−N /2 +O(2−N ). (3.21)

Calculating the variance term ETr
(
ρ2

AB

))2 is similar but messier. Again through trace
identities we obtain

ETr
(
ρ2

AB

))2 = 1

|CN |NT +1

∑
C0,...,CNT

〈〈(FAB ⊗ IAB )⊗2|C ⊗4
NT

T ⊗4 · · ·T ⊗4C ⊗4
0 |0⊗4〉〉. (3.22)

Since the Clifford group is not a 4-design we can no longer simplify this expression. In-
stead we directly insert

1

|CN |
∑

C∈CN

C ⊗4 =MCN ,(4) = ∑
T ′,T∈Σ4,4

W Cn ,(4)
T ′,T |RT ′〉〉〈〈RT |. (3.23)
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Defining the matrix
QT,T ′ = 〈〈RT |T |RT ′〉〉, (3.24)

and the vectors

vT = 〈〈(FAB ⊗ IAB )⊗2|RT 〉〉 (3.25)

uT = 〈〈RT |0⊗4〉〉, (3.26)

we can write the above expression as a matrix vector inner product

ETr
(
ρ2

AB

))2 = v†W QW . . .QW u = v†(W Q)NT W u. (3.27)

At this point it is worth noting that u is the all ones vector, and that the vector v has the
property

vT

{
= 23N if T ∈ {e, (12)(34), (12), (34),π4 · (34)},

≤ 25N /2 otherwise,
(3.28)

where we used explicitly that NAB = N /2 and that F⊗2
AB = r⊗NAB

(12)(34). Next we make some
approximations valid in the large N regime. We will use big O notation to suppress con-
stants that can in principle be calculated. We have that

W = 2−4n I +O(2−5N ) (3.29)

and (via lemma 1) that

Q = 24N
(

I24 0
0 3

4 I6

)
+O(23N ). (3.30)

Consequently we have

v†(W Q)NT W u = 2−4N v†
(

I24 0
0 3

4 I6

)
u +O(2−2N ) (3.31)

= 2−4N
(
423N +

(3

4

)NT
23N

)
+O(2−2N ) (3.32)

=
(
4+

(3

4

)NT )
2−N +O(2−2N ), (3.33)

which finishes this part of the calculation. With this in hand we can compute δ̃:

δ̃= (− log
(
ETr

(
ρ2

A

)2)− (S̃(2)
A )2)≈ log

(
1+

(3

4

)NT
O(2−N )

)
≈

(3

4

)NT +O(2−N ), (3.34)

where the last approximation is the first order of the Taylor expansion of log(1+x).

The key detail of this calculation is the extra term appearing at order 23N in the ex-
pression of the vector v . This term is due to the generator π4 ·(34) which is present in the
commutant of the Clifford group and not that of the unitary group. We also see that due
to lemma 1 it vanishes quickly with increasing NT , as we also observe numerically. It is
important to note that this is not merely a consequence of the fluctuation of the Renyi-2
entropy being a quartic invariant. In other quartic invariants such as the Renyi-4 entropy,
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Figure 3.6: (a) The log of fluctuations of Renyi-4 entropy, − lnδS(4) as a function of the number of T-gates,

NT ,on the circuit. (b)The log of the average of Renyi-4 entropy, − logS(4) as a function of the number of T-
gates, NT on the circuit. The number of qubits, N = 8,12,16 and the number of samples is 500.

a similar calculation can be made but there the contributions from the non-permutation
generators are all suppressed by a factor of 2−N making them invisible even at moderate
qubit numbers. We confirm this observation numerically and show the results in Fig.
3.6 (b): The averaged instances of Renyi-4 entropy do not show the linear behaviour,
however, the fluctuations of Renyi-4 entropy do in Fig. 3.6 (a) showing the behavior is
encoded in the fluctuations, not in the order of Renyi entropy. Similarly, it is vital that
|AB | = N /2. If |AB | is substantially smaller or larger than this (e.g. |AB | = N /8), then the
contribution of the generator π4 · (34) becomes subleading even in the fluctuation of the
Renyi-2 entropy. A numerical illustration of how different subsystem sizes influence the
result is shown in Fig. 3.7 for the subsystem size of |AB | = N /4, where we see that a gap
opened for 8-qubit and 16-qubit system sizes, thus making the proportionality between
mutual information fluctuations and the number of T-gates system size dependent.
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Figure 3.7: The log of fluctuations of mutual information − lnδI (2) and Renyi-4 entropy, − lnδS(2) as a function
of the number of T-gates, NT ,on the circuit for the subsystem size NA = NB = N /8. The number of qubits,
N = 8,16 and the number of samples is 500.
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4
QUANTUM RESOURCES OF

QUANTUM AND CLASSICAL

VARIATIONAL METHODS

Variational techniques have long been at the heart of atomic, solid-state, and many-body
physics. They have recently extended to quantum and classical machine learning, provid-
ing a basis for representing quantum states via neural networks. These methods generally
aim to minimize the energy of a given ansatz, though open questions remain about the
expressivity of quantum and classical variational ansätze. The connection between vari-
ational techniques and quantum computing, through variational quantum algorithms,
offers opportunities to explore the quantum complexity of classical methods. We demon-
strate how the concept of non-stabilizerness, or magic, can create a bridge between quan-
tum information and variational techniques and we show that energy accuracy is a nec-
essary but not always sufficient condition for accuracy in non-stabilizerness. Through
systematic benchmarking of neural network quantum states, matrix product states, and
variational quantum methods, we show that while classical techniques are more accurate
in non-stabilizerness, not accounting for the symmetries of the system can have a severe
impact on this accuracy. Our findings form a basis for a universal expressivity characteri-
zation of both quantum and classical variational methods.

0The work in this chapter has been published as: T. Spriggs* A. Ahmadi*, B. Chen and E. Greplova, Quantum
resources of quantum and classical variational methods, Accepted at Machine Learning: Science and Tech-
nology , (2025) DOI: 10.1088/2632-2153/adaca2
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66 4. QUANTUM RESOURCES OF QUANTUM AND CLASSICAL VARIATIONAL METHODS

4.1. INTRODUCTION
Due to the prohibitive scaling of large scale quantum wavefunctions, approximate meth-
ods are typically employed to numerically find ground states and time evolve quantum
systems. Classical variational methods have rich track record and span physics intuition
driven parametrization of the trial wavefunction [1–5], ansätze capturing specific entan-
glement properties [6, 7], and, more recently, physics-agnostic wavefunctions based on
neural networks [8–13].

In parallel to this progress, quantum variational methods were formulated with the
same goal: to capture potentially complicated wavefunctions using a small number of
degrees of freedom [14–17]. In this instance, the variational ansatz is formulated as a
quantum circuit. Quantum operations in such circuits are then parametrized and the
parameters of the quantum gates are updated, using classical optimization techniques,
until the energy of the output of the circuit well approximates the energy of the sought-
after quantum state.

In search for ground states of specific Hamiltonians, both classical and quantum
variational techniques rely on the energy variational principle: the expectation value
of the Hamiltonian is evaluated with respect to the trial state and then minimized. The
lowest achievable value is then considered a good approximation for the true ground
state energy of the system.

Once we optimize the energy of our ansatz, the question arises regarding how well
is the quantum state itself represented by our approximate representation. While vari-
ational minimization brings the system to the point in Hilbert space with the required
energy, it is far from certain that the optimized state will structurally reflect the global
properties of the system. In particular, especially long range correlations are known to
pose a challenge.

In this work, we assess the expressivity of both quantum and classical variational
methods from a quantum computational complexity point of view: we analyze the amount
of quantum resources that the variational ansatz expresses when optimized in accor-
dance with the classical energy variational principle.

In quantum computing, one way of assessing quantum resources is to measure how
far a given state is from being efficiently and exactly simulated on a classical computer
[18]. The quantum operations that allow for efficient, exact classical simulation are ele-
ments of the Clifford group. All the other operations are referred to as non-Clifford. To
quantify how ‘far’ a given operation is from the Clifford group, a measure called magic,
or non-stabilizerness, was introduced [19].

Non-stabilizerness has recently been at the forefront of quantum information liter-
ature as more scalable techniques have emerged to quantitatively evaluate it [20–24].
This progress allowed for the first exploration of non-stabilizerness evaluation for tensor
networks [22, 25, 26].

At first sight, the notions of non-stabilizerness and classical variational principle are
unrelated. One is designed to determine areas of potential quantum-computational ad-
vantage, the other to asses performance of classical, few-parameter ansätze. However, a
key property we want from a variational ansatz is to faithfully approximate the sought-
after state, beyond just its energy. An interesting interplay with quantum information
arises: classical variational ansätze are unrestricted by, for example, the Gottesmann-
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Knill theorem [18], and are allowed to converge to any point in the Hilbert space that
minimize the energy regardless of where the exact solution lies with respect to the Clif-
ford group.

In this work, we perform a systematic benchmark for non-stabilizerness expressiv-
ity of classical and quantum variational ansätze using the transverse-field Ising model
(TFIM), a common testbed model for variational methods. Specifically, we compare
non-stabilizerness expressivity of neural quantum states, matrix product states, and a
variational quantum eigensolver. We find that high energy precision is a necessary, but
not always sufficient, condition for the few-parameter variational ansätze to express the
non-stabilizerness of the model correctly. We observe that quantum variational methods
generally show worse performance compared to the state-of-the-art classical methods.
In the context of this work it means that even though the ansatz itself is quantum, it is
worse at predicting the energy and non-stabilizerness of the exact wavefunction. More-
over, the variations in energy and non-stabilizerness accuracy across multiple repeats
are generally much larger for the quantum variational method compared to the results
from neural quantum states.

The outline of this paper is as follows. Section 4.2 provides an overview of methods
and techniques used in this work: Section 4.2.1 briefly elucidates the specific Hamilto-
nian with which this work explores, Section 4.2.2 details the three algorithms used for
finding the ground state of the given Hamiltonian, and Section 4.2.3 presents the mea-
sure of quantum resources that we use to assess the non-stabilizerness of the ground
state wavefunctions obtained. Section 4.3 presents the comparison of the ground state
energy and non-stabilizerness found using density matrix renormalization group (DMRG),
neural quantum states (NQS), and a variational quantum eigensolver (VQE); this com-
parison focuses on the respective accuracies of different methods compared to exact di-
agonalization, the interplay between the energy and non-stabilizerness accuracies, and
the fluctuations of their solutions with repeated runs. In Section 4.4 we discuss our find-
ings and possible next steps in aligning classical and quantum variational methods.

4.2. METHODS

4.2.1. TRANSVERSE-FIELD ISING MODEL
This paper is focused on parameterized ansätze that approximate the ground state of the
transverse-field Ising model (TFIM). The Hamiltonian of this model is defined as

H = J
∑
σz

i σ
z
i+1 −h

∑
σx

i . (4.1)

In this definition, σz and σx are the Pauli matrices, J is a constant that dictates the cou-
pling between neighboring spins (we will consider J < 0 and thus neighboring spins be-
ing aligned is energetically favorable), and h is the transverse magnetic field strength; we
are considering the case of periodic boundaries. The basis that will be used to represent
the wavefunction will be the spin projections along the z-axis, comprised of either spin
up or down relative to this axis. This is also known as the computational basis.

The TFIM begets a phase transition with a critical point in the vicinity of |h/J | =
1 [27]. To explore this phase diagram we will find solutions of the ground state with
fixed J =−1 and varying h over the range of [0−3].
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4.2.2. PARAMETERIZED QUANTUM STATES
The energy spectrum, dynamics, and a plethora of other observables related to a quan-
tum system are obtainable through the wavefunction,ψ. However, Nature does not grant
one access to the wavefunction, nor would it be computationally feasible to store these
data for a system larger than a few tens of qubits. The latter complication is due to the
exponential increase in the number eigenstates with system size. In this work we employ
three different parameterized quantum states that all circumvent these limitations.

Parameterized quantum states can offer two key features. Firstly, by representing the
wavefunction as a parameterized function, ψθ, we can learn a representation of the true
wavefunction by learning the parameters θ. Secondly, by restricting the representation
such that the number of parameters grows polynomially (rather than exponentially) with
the system size, we achieve an efficient representation that makes simulations feasible
for larger systems.

NEURAL QUANTUM STATES

Beginning with the work of Carleo and Troyer, neural-network-based methods were in-
troduced to act as physics-agnostic, parameterized quantum states known as neural
quantum states (NQS) [8]. NQS have shown to be useful in a variety of problems, such
as finding the ground state in different quantum systems [13, 28, 29], evolving quantum
states through time [8, 30], and simulating quantum circuits [31]. There exist different
architectures for the NQS [8–13], for the purpose of this paper, however, we restrict our-
selves to a simple case of NQS, namely the restricted Boltzmann machine (RBM) de-
picted in Figure 4.1.

The RBM has the simple structure of two neural network layers with no intra-layer
connections but full inter-layer connectivity: one visible layer consisting of N units and
one hidden layer of M units. N must be equal to the number of qubits/particles in the
system, whereas there is no formal restriction on M ; the ratio M/N , referred to as α,
is often used to convey the size of an RBM. The number of parameters in the RBM is
given by N +αN +αN 2, and thus for fixed α this scales polynomially with the system
size; however, this does not guarantee that the desired state can be represented by this
network, in which case the true ground state may still require a number of parameters
larger than this. The wavefunction amplitude given by the RBM ansatz is

ψθ(s) =∑
h

e
∑

j a jσ j +
∑

i bi hi+
∑

i j Wi j hiσ j , (4.2)

σz
1 σz

2 σz
3 σz

N

h1 h2 h3 hM

W11

...

...

Figure 4.1: A pictorial representation of the restricted Boltzmann machine (RBM) with M hidden neurons and
N visible neurons encoding the projection in the σz basis.
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where s = (σ1,σ2, ...,σN ) such that σi = ±1 is the spin configuration in z basis; h =
(h1,h2, ...,hM ), with hi = ±1, denotes the M hidden spin variables; and the parameters
to be optimized are θ = {a,b,W }. The full wavefunction can be constructed from

|ψθ〉 =
∑

s
ψθ(s) |s〉 . (4.3)

With the specific form of the parameterized quantum state in-hand, what remains is
to train this model such that the wavefunction that is represented captures the behavior
of the ground state of the Hamiltonian being considered. To do this we will consider the
expectation value of the Hamiltonian with respect to the NQS wavefunction, 〈H〉ψθ

:=
〈ψθ|H |ψθ〉. In line with the variational principle [32], this quantity is bounded from
below by the ground state energy and will equal that bound when the NQS represents
the ground state wavefunction.

One of the benefits of a parameterized quantum state is that, for a fixed α, the num-
ber of free parameters that characterize the wavefunction in Equation (4.1) is polynomial
with the number of qubits. This work would be undone if we required the full wavefunc-
tion or access to the entire Hilbert space to compute expectation values.

To maintain the efficient, computationally feasible computations of expectation val-
ues we use Monte Carlo (MC) sampling alongside so-called local estimators. The com-
bination of MC sampling and a variational ansatz is known as variational Monte Carlo
(VMC). An excellent outline of the computational efficiencies included in VMC is out-
lined in [33]. Following the conventions of that work, we can reduce the calculation of
the expectation value from a sum over an exponentially large Hilbert space to a statistical
expectation of local estimators. Thus reducing

〈Ô〉 = 〈ψθ|Ô |ψθ〉
〈ψθ〉

, (4.4)

to the more tractable sum of 〈Ô〉 = 〈Oloc〉P . The local estimator and probability distribu-
tion are defined as

Oloc(s) =∑
s′
〈s|Ô |s′〉 〈s′| |ψθ〉

〈s| |ψθ〉
, (4.5)

and

P (s) = |〈ψθ| |s〉 |2∑
s′ | 〈ψθ| |s′〉 |2

, (4.6)

respectively. The VMC procedure generates an ensemble of configurations distributed
under P (s).

The computation of Equation (4.5) is only efficient if each local estimator contains,
at most, a polynomial number (relative to the total number of qubits in the system) of
connected states, s′: equivalent to only having a polynomial number of distinct matrix
elements, 〈s|Ô |s′〉. As can be seen from Equation (4.1), the Hamiltonian of the TFIM
contains only terms that involve one or two qubits, and thus there are only two or four
connected states for each term in the Hamiltonian, regardless of the system size. There-
fore, the condition of only a polynomial number of neighboring states is met.

Using this efficient computation for expectation values, we can compute the energy
of the NQS for a given set of parameters, 〈H〉ψθ

. As the NQS is a differentiable function,
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we can also compute the gradient of this energy with respect to each of the network’s
parameters. As is the common paradigm for training neural networks, the cost function
(in this case the energy) and its derivatives are used to tune the parameters until the
cost function is minimized. And, as previously mentioned, this will occur when the NQS
represents the ground state wavefunction. For this work we used the Python package
NetKet [34, 35] which implements the efficient computations laid out here.

For small systems, the entire Hilbert space is not prohibitively large. Therefore, for
comparison, we can compute the exact expectation value, 〈H〉ψθ

, rather than having to
rely on MC sampling. The effects of exact against MC sampling is mentioned in Appendix
4.8 alongside further details of the RBM architecture. Unless stated otherwise, all RBM
data shown in this paper was generated from a network with α= 5.

DENSITY MATRIX RENORMALIZATION GROUP (DMRG)
A well established, classical approach to finding the smallest eigenvalue of a given Hamil-
tonian was introduced by White in [36], and is known as DMRG. DMRG is an iterative
process of solving smaller matrix inversion problems to eventually invert a larger ma-
trix. If the inversion problem can be written in terms of matrix product states (MPS) and
matrix product operators (MPO) then there is an efficient implementation of DMRG [6].

A generic tensor can be represented as an MPS or MPO. However, tensors represent-
ing low-entanglement wavefunctions, or local Hamiltonians, can be represented as low-
rank MPSs and MPOs respectively. The rank of the MPS is called the bond dimension,
D , and can be adjusted during the DMRG procedure to balance between computational
efficiency (small D) and allowing for high entanglement (large D). It is common practice
to limit the bond dimension to achieve a more efficient representation of the wavefunc-
tion [37]. For this work, however, we allowed the DMRG algorithm to grow the bond
dimension to as large a value as 100 if there was a significant decrease in energy.

The parameters that get updated in the DMRG algorithm are the elements of the MPS
at each node. The way that these parameters are optimized is as follows:

1. An initial, random, set of values is chosen for every element in the MPS |ψ〉.
2. The MPO representing the Hamiltonian is contracted from both sides by the MPS.

This is equivalent to the equation 〈ψ|H |ψ〉 = E0.

3. A pair of neighboring nodes are chosen and are contracted into a larger tensor; the
result is no longer an MPS (this is shown in Figure 4.2(b)). An iterative method is
then performed in this subspace (subspace because it is still not the entire Hilbert
space) to compute a new tensor that replaces the selected pair but lowering the
eigenvalue of the MPS.

4. The altered tensor is then broken back into two tensors using singular value de-
composition (SVD) to return |ψ〉 to an MPS whilst maintaining the lower eigen-
value achieved in step 3.

5. The next neighboring pair of links are chosen and steps 3 and 4 are repeated, sys-
tematically moving along the chain of the MPS, until a predefined convergence
criterion is met.
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= E0

(a)

(b)

- λ = 0

Figure 4.2: Tensor network representation of the eigenvalue equation H |ψ〉 = E0 |ψ〉 shown in (a). The gray
nodes represent the MPS version of the ground state wavefunction, and the blue nodes are the Hamiltonian
converted into an MPO. Panel (b) shows an intermediate stage of the DMRG algorithm which poses a smaller
inversion problem whereby a pair of nodes are discarded and only the dark gray node is optimized to minimize
λ; the dark node is created by contracting the two neighbouring nodes at the sites straddled by this dark gray
node. The location of the node that is updated sweeps left and right along the chain until some convergence
criterion is met.

Upon the termination of the DMRG algorithm, one is left with an MPS that represents
the ground state wavefunction, and the ground state energy. For this work we used the
implementation provided by ITensor [38, 39].

VARIATIONAL QUANTUM EIGENSOLVER

An alternate approach to classically approximating the wavefunction is to use a param-
eterized quantum circuit to prepare a trial wavefunction and then use classical opti-
mization to vary the parameters until a desired wavefunction is reproduced. When this
process is applied to finding the ground state wavefunction it is known as a variational
quantum eigensolver (VQE) [40].

The formulation of VQE spearheaded the development of a rich field of variational
quantum algorithms (VQAs) [14–17]. We will first outline the VQE algorithm and then
explore some of the challenges related to its implementation.

One begins the VQE procedure with an easily prepared initial state wavefunction,
|ψi n〉, to which one applies a sequence of unitary operators, or gates, that comprise the
parameterized quantum circuit. The output of the circuit will be a parameterized wave-
function |ψθ〉. Thus, with the quantum circuit denoted by the unitary matrix U (θ), the
parameterized wavefunction generated by the quantum circuit reads

|ψθ〉 =U (θ) |ψi n〉 . (4.7)

An example of a parameterized quantum circuit is depicted in Figure 4.3; the circuit used
for this work is four contiguous layers of the circuit shown, repeated in series. The values
of the parameterized gates are varied to find the minimum of the expectation value of
the Hamiltonian, Equation (4.1), with respect to |ψθ〉, denoted 〈H〉ψθ

as in Section 4.2.2.
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For this work, given the system sizes simulated, a classical simulation of the quantum
circuit was performed using Pennylane [41]. There are, however, implementations on
quantum hardware [42–47].

Given that this work presents classical simulations of quantum circuits, access is
granted to the full wavefunction rather than just projective measurements. This limits
the size of the system that can be simulated but the effects of using the full wavefunction
rather than projective measurements to estimate 〈H〉ψθ

is presented in Appendix 4.9.

Considering, still, the case of a classical simulation, free from hardware-related noise
and imperfections, there exist fundamental limitations in the VQE algorithm. Firstly,
common to all variational algorithms that require a predetermined ansatz, including
those in this Section, is that there is no guarantee that the ansatz in question (the quan-
tum circuit) is expressive enough to represent the function it hopes to capture (the wave-
function) using a polynomial number of parameters. This is especially true for strongly
correlated quantum systems [48]. Broadly speaking there are two approaches to circuit
design for VQEs: problem-specific ansätze and hardware-efficient ansätze (HEA). In the
former regime, one constructs the ansatz from elements that ones hopes captures known
behaviors of the solution. The latter attempts to create a more general, easier to imple-
ment on quantum hardware, ansatz built from simple gates; this is where the ansatz
for this work resides. Neither approach, however, is guaranteed to produce and ansatz
that can represent the desired function, and thus the algorithm can converge on a sub-
optimal solution. Secondly, VQAs have been shown to be especially prone to so-called
barren plateaus [49–52]. The phenomenon of a barren plateau is when the gradient of
the loss function with respect to the variational parameters vanishes exponentially with
the number of qubits in the system. This means that training the variational parame-
ters becomes exceptionally difficult for even modest sized systems - even with gradient-
free optimizers [53] - as the true minimum becomes exponentially hard to find. Thirdly,
and even affecting small systems, the loss landscape for VQEs often contains many local
minima, and therefore even without vanishing gradients there can be inherent difficul-
ties training these quantum circuits. The alleviation of these difficulties is ongoing, with
a good survey available [54], the references therein, as well as [55–58].

|ψi n〉

Rx (θ1) Ry (θ4) Rz (θ7)

|ψθ〉,Rx (θ2) Ry (θ5) Rz (θ8)

Rx (θ3) Ry (θ6) Rz (θ9)

Figure 4.3: A single layer of the VQE ansatz that evolves an initial state, |ψi n〉 to a parameterized state
|ψθ〉 = U (θ) |ψi n〉. The output state is then used as a trial for the ground state and the expectation value of
the Hamiltonian is computed. The parameters, θ, which are angles of the rotation gates, are varied to mini-
mize this expectation value. Diagram created using [59].
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4.2.3. NON-STABILIZERNESS
The non-stabilizerness, also commonly called magic, is known to be the resource for
quantum computation [60]. It is known, from the Gottesman-Knill theorem [18], that
Clifford circuits (that is, circuits comprised entirely of gates in the Clifford group) can
be efficiently simulated on classical hardware. Therefore, in order to achieve a quantum
advantage we need to go beyond the Clifford group, which means adding non-Clifford
operations. Adding non-Clifford operations means increasing non-stabilizerness. The
non-stabilizerness is measured by different methods, such as the robustness of magic
[61–63], the min-relative entropy [64] and stabilizer entropies [20, 65].

For the purpose of this work, we use the 2-Renyi stabilizer entropy, M2, since it is
easily calculable for small systems and it has been shown to be a magic monotone [66,
67]. The 2-Renyi stabilizer entropy for pure states is defined as

M2(|ψ〉) =− log
∑

P∈PN

〈ψ|P |ψ〉4

2N
, (4.8)

where PN is the set of all N -qubit Pauli strings and |ψ〉 can either be a parameterized
representation of the quantum state, or the exact result found through exact diagonal-
ization (ED).

Recent studies have also explored the non-stablizerness in random circuits [24, 68],
and many-body quantum systems such as the transverse-field Ising model [21, 69–71],
the Potts model [26, 72], chaotic models [73], and the class of models known as gener-
alized Rokhsar-Kivelson systems [72]. It has also been shown that in special cases there
can be a significant reduction of Equation (4.8) into a form that scales only polynomially
in the system size [74].

We are motivated by the observation that classical simulatability from the Clifford
group point of view does not enter generic formulation of quantum or classical varia-
tional problems. We use Equation (4.8) to evaluate the non-stabilizerness of exact transverse-
field Ising (TFI) ground states as well as its approximations determined using the meth-
ods described above, and compare the performance of these methods from the non-
stabilizerness perspective across the phase diagram.

4.3. RESULTS

4.3.1. QUANTUM AND CLASSICAL MODEL ACCURACY
The simplest comparison between the three aforementioned methods is to compare
them each to the results obtained from exact diagonalisation (ED).

Figure 4.4 shows the energy and magic obtained from ED and all three variational
approaches applied to an 8 qubit TFI system. Both the values themselves (top) and the
accuracies with respect to the ED result (bottom) are shown. From the left-hand panels
of this figure it is clear that there is a hierarchy in terms of energy accuracy: DMRG is
more accurate than the RBM, which is in-turn more accurate than the VQE. From the
right-hand panels, however, the magic accuracy does not quite follow this hierarchy;
beyond h = 1 the accuracies follow that of the energy, but approaching criticality from
below there are signs that although the DMRG and RBM converged on states with more
accurate energy than the VQE, the magic accuracies of all three are similar. It should be
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noted that in this region of the phase diagram the ground state of the TFIM is known
to be degenerate (or near-degenerate, depending on finite system size effects and the
specific value of h). The magic of the states within the degenerate eigenspace can differ
greatly and thus the accuracy in energy does not constrain the state to have a similar
magic to the ED result. One possible way to circumvent this would be to use ansätze
that are aware of the symmetry that leads to this degeneracy. We will return to this in
Section 4.3.2 as this highlights an important case of when energy accuracy alone is not
sufficient for assessing the quality of the approximate ground state.

Figure 4.5 shows the energy and magic accuracy of the same methods for a 12 qubit
system. Due to the increased computational cost of simulating a larger system, the h
spacing is increased. Once again the accuracy in energy follows the ordering noted in
Figure 4.4. Also in a similar fashion to the 8 qubit simulation, the accuracy of the magic
does not follow this trend over the entire phase diagram.

From Figures 4.4 and 4.5 we can conclude that energy accuracy and magic accuracy
appear strongly correlated for most of the phase diagram, we can also say that, for these
implementations, DMRG outperforms RBM which outperforms VQE when it comes to
energy accuracy. In Appendix 4.9 we present the energy and magic accuracy computed
for a 4 qubit system. In this smaller setting the VQE and RBM perform similarly. Despite
the smaller system size, the same pattern in energy and magic accuracies can be seen:
they appear correlated except for the low h region.

For clarity of the figures in this Section, the statistical fluctuations of the data were
not shown. In Section 4.3.3 will explore the statistical uncertainties to measure the ro-
bustness of these methods and further probe the correlations between the energy and
magic of the ground state solutions found.

4.3.2. NON-STABILIZERNESS AND SYMMETRY

By and large, in the figures from Section 4.3.1, where we selected best performing hy-
perparameter configuration for MPS, VQE and RBM, the accuracy of the energy appears
to be directly linked to the accuracy of the magic. One may expect that by minimizing
the energy towards the ground state then one ends up nearby in the Hilbert space and
thus the magic of the solution is likely similar. However, the exception of the degenerate
ground states at low h was noted. This section will explore the interplay between the
accuracy of energy and magic further, paying careful attention to the degeneracy of the
solutions in the small h region.

The Hamiltonian of the TFIM exhibits a globalZ2 symmetry, meaning that the energy
of two configurations that differ by flipping every single spin is the same. The ground
states of this Hamiltonian do not have to respect this symmetry to still achieve the small-
est possible energy. This leads to a range of different, but energetically equivalent, varia-
tional ground states. Importantly, the magic of these degenerate states can differ greatly.
To give an indication of this, consider the h = 0 case and any superposition of the all up
and all down states (all of which have the same energy): an equal superposition has zero
magic as it can be prepared using only Clifford operations acting on the all up state, how-
ever, for other unequal superpositions it is not guaranteed that one could prepare this
state using only Clifford operations and thus it can have non-zero magic. To circumvent
this, one can explicitly encode the global Z2 symmetry into the ansatz. We will explore
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Figure 4.4: (top) The energy (left) and magic (right) of the ground state wavefunction for the 8 qubit transverse
field Ising model at a range of transverse-field strengths, h. (bottom) The accuracy of the estimates of energy
(left) and magic (right) from the three methods presented in Section 4.2.2 relative to the result from exact
diagonalization (ED). Each datum for the RBM and VQE is the mean of 10 repeats and the statistical errors are
omitted for clarity; see Figure 4.7 for error estimates.

Figure 4.5: The accuracy of the estimates of energy (left) and magic (right) from the three methods presented
in Section 4.2.2 relative to the result from exact diagonalization (ED). These results are for a 12 qubit system,
shown at a range of transverse-field strengths, h. Each datum for the RBM and VQE is the mean of 10 repeats
and the statistical errors are omitted for clarity; see Figure 4.7 for error estimates.
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this in the context of the RBM.
For such a small, discrete symmetry group, one can make a symmetric (orZ2-invariant)

RBM simply by feeding both the configuration s and −s through the RBM defined in
Equation (4.2) and taking the mean of each amplitude as the amplitude of the configu-
ration s (and thus also of −s). All other details of the training and RBM architecture are
unchanged.

To explore the intuition that energy accuracy alone is a good probe of whether or
not the approximate ground state is similar to the true ground state, we compare it with
two other figures of merit. Firstly, as in the other sections of this work, we compare
with the magic accuracy, but then we also show the infidelity of the approximate ground
state with the ground state found through ED. We define the infidelity of the normalized
approximate state |ψθ〉 with the normalized ED result |ψED〉 as

I = 1−|〈ψθ|ψED〉|2. (4.9)

Figure 4.6 shows the energy accuracy, magic accuracy, and infidelity of the RBM and
symmetric RBM ground states with respect to the ED results. The data are shown for
three sizes of RBM, denoted by α= 1,3, and 5, to explore if the increase in the number of
parameters allows the network to learn this symmetry without the need for the explicit
construction of the symmetric RBM.

From Figure 4.6 it is clear that the energy accuracy of the RBM and the symmetric
RBM is similar. However, the effect on the magic accuracy and infidelity in the 0 ≤ h ≤ 1
range is stark: the symmetric RBM outperforms the conventional RBM by up to five or-
ders of magnitude. There does not seem to be much change to the rest of the h-range
considered. Importantly, though, is that this five orders of magnitude improvement, in-
dicating a significantly better ground state solution, is completely imperceptible when
considering the energy accuracy alone.

The effect of increasing the size of the RBM, through increasing α, is one of a mild
increase in quality of all metrics, with the exception of the small h region for the con-
ventional RBM. Interestingly, this is the area that is most plagued by the effect of the
degenerate ground states, and thus the extra parameters do not account for the sym-
metry. This means that just using a larger neural network was not enough to overcome
the fact that energy accuracy alone is insufficient for the ansatz to fully approximate the
non-stabilizerness of the ground state.

4.3.3. FLUCTUATIONS IN QUANTUM AND CLASSICAL SOLUTIONS
One theme that this work aims to shed some light onto is the representativeness of a
ground state found through energy minimization alone. Magic is used as a second axis
to ascertain how well the approximate state represents the true ground state. In this
section we will explore how similar in magic repeated energy minimizations are, probing
the landscape around, what one hopes to be, the energy minimum containing the true
ground state.

Figure 4.7 shows the statistical error from 10 repeated ground state searches, in en-
ergy (left) and magic (right), for 8 qubit (top) and 12 qubit (bottom) simulations. The
comparison is shown only for the VQE and RBM methods. From this figure it can be
seen that the fluctuations in energy are almost always smaller for the RBM compared to
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Figure 4.6: The energy accuracy (top), magic accuracy (middle), and infidelity (bottom) of the variational
ground states compared to the ED results. The ansatz used for the NQS is either a conventional RBM de-
fined in Equation (4.2) (left) or the symmetric RBM as described in Section 4.3.2 (right). These results are for
an 8 qubit system, shown at a range of transverse-field strengths, h, with each datum being the average of 10
repeats with the statistical errors omitted for clarity.

the VQE. The exception to this is the h = 0 point; the ground state of the Hamiltonian
here is, in fact, the initial state fed into the VQE and thus this is perhaps not surprising.
The fact that the VQE can, in very high and low field, reach almost the level of consis-
tency of the RBM yet it cannot minimize the energy as well suggests that perhaps this is
a limitation of the expressivity of the ansatz.

In Section 4.3.2 we already noted the difficulties with an RBM that is not aware of the
symmetries of the system. This is reflected here in the fluctuations of the magic; inter-
estingly this is less pronounced in the 12 qubit simulation. Those data notwithstanding,
the fact that the fluctuations of the magic are very small does suggest that each approxi-
mate ground state, when near to the minimum in energy, is also in a region with similar
magic.

4.4. DISCUSSION AND CONCLUSIONS
In this work we set up the framework to reconcile classical simulatability notions of
quantum resource theory with the formalism of classical variational techniques. We
used non-stabilizerness, a quantity that measure how far is a given state from being
classically simulatable in a sense of Gottesmann-Knill theorem, as a figure of merit for
quality of classical variational approximation of a quantum state. Specifically, we as-
sessed non-stablizerness expressivity for three qualitatively different types of variational
ansätze: tensor networks, neural networks and variational quantum circuits.

We found, that when comparing the best model (in terms of energy performance) for
each method with exact diagonalization, on average, there is a general trend for better
energy to correspond to better approximation in non-stabilizerness. This is an encour-
aging observation that suggests that the state reconstructed as a result of classical varia-
tional procedure has a complexity structure that represents the exact quantum solution
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Figure 4.7: The statistical errors of the energy (left) and magic (right) against the transverse-field strength, h,
across the 10 repeats of the ground state optimization procedure using an RBM and VQE. Data are shown for 8
(top) and 12 (bottom) qubits, with the corresponding mean values reported in Figures 4.4 and 4.5 respectively.

reasonably well. At the same time, we immediately noted that this correspondence is
far from straightforward and universal. For example, an RBM constructed to share the
symmetry of the Hamiltonian led to ground states with up to four orders of magnitude
higher accuracy in non-stabilizerness than a conventional RBM, with no change in the
energy accuracy.

We hope this work will be a stepping stone towards starting a closer dialogue be-
tween quantum computing and classical variational perspectives on solving the quan-
tum many-body problem, and more specifically, on how the quality of the results is as-
sessed. We set up a system of benchmarks for small system sizes (N = 8,12) and noted a
number of similarities and differences between accuracies in non-stabilizerness and in
energy. The possible next steps include obtaining large scale benchmarks for each of the
methods we tested here. The current limitation of system size is the calculation of the
non-stabilizerness, however, the first impressive step towards this calculation at scale
has already been taken in Ref. [22] for matrix product state representation of a wave-
function. It would be interesting to see how the smaller system observations translate
into a large scale benchmark. Further ahead, one could think of how to embed non-
stabilizerness optimization iterations into energy-based quantum and classical varia-
tional models.

4.5. DATA AND CODE AVAILABILITY
A GitLab repository containing this project is available at [75]. All the data and code to
analyze them is available at [76].
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4.8. APPENDIX-1:NQS ARCHITECTURE
There are a vast number of hyperparameters and architectural configurations that one
can tweak to alter the training of the NQS. To arrive at the specific RBM presented in Fig-
ures 4.4 and 4.5 we explored: the size of the ansatz, using the entire Hilbert space for the
computation of expectation values, and the inclusion of the stochastic reconfiguration
(SR) preconditioner as part of the parameter optimization routine. Other avenues of ex-
ploration could include introducing a representation learning step to map the configura-
tions from projective measurements to continuous vectors [11] or other neural network
architectures [8–13], but these lie outside the scope of this work. This appendix will also
cover the stopping criterion used to estimate when the ground state is approximately
reached.

The effects of a larger RBM were shown in Figure 4.6, from this it can be seen that
there is a mild improvement in all metrics with increased model size. The drawback,
however, is in the time taken to train the larger model: more parameters leads to in-
creased training time. Given that the improvement is larger from α = 1 to α = 3 than it
is between α = 3 and α = 5, alongside the increased training time, we chose to stop at
α= 5.

In Section 4.2.2 we mentioned the approximations made as part of the VMC proce-
dure, notably, as part of the computation of the expectation value, the reduction of the
sum over the entire Hilbert space (Equation (4.4)) to the Monte Carlo estimate sampled
from Equation (4.6). We tested the energy and magic accuracy for an 8 qubit system us-
ing both the full expectation value and the Monte Carlo estimate to train the RBMs. We
found that, across the entire range of h, the fluctuations between repeated optimizations
of the exact expectation solutions were lower than the Monte Carlo sampled counter-
parts, and the energy accuracies were smoother as a function of h for the exact expecta-
tion method, too. Both effects were, however, mild, and as the exact expectation is much
more computationally expensive (it scales exponentially with the system size), we chose
to remain with the Monte Carlo sampling.

Finally, for the configuration of the RBM, we tested the inclusion of the SR precondi-
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tioner. Introduced to VMC in [77, 78], SR alters the gradient obtained from an optimizer
in a way that accounts for the curvature of the optimization landscape that is caused
only by the ansatz. This can be seen as an application of what is known as the natural
gradient in the wider machine learning community [79, 80]. Put simply, the inclusion of
SR lead to better energy and magic accuracies of the ground states found.

During the optimization of the RBM parameters one must establish a point at which
to stop. For this work we considered the training to be done when the relative change in
energy did not improve by more than 10−7 for 500 consecutive epochs. This can be easily
implemented using the callbacks.EarlyStopping function from NetKet.

We used the ADAM [81] optimizer and 1,000 (5,000) samples for the MC estimates of
expectation values for the 8 (12) qubit systems for all of the RBM results presented in this
work.

4.9. APPENDIX-2:VQE ARCHITECTURE
Whilst, in theory, VQE is a Hamiltonian-agnostic and flexible algorithm, there are op-
timizations that can be made in its implementation. In a similar fashion to Appendix
4.8, this section will explore the choices made when exploring the implementation of
the VQE: the number of layers in the ansatz, the method for computing the expectation
value of the Hamiltonian, and the optimizer. It will also elucidate the stopping criteria
used.

Figure 4.3 shows a single layer of the VQE ansatz used in this work. We explored using
up to four layers of this as the ansatz and found that the energy and magic accuracies
improved with more layers, however, interestingly the performance of one and two layers
were similar, as were three and four layers. The training time increases with each added
layer and therefore we chose not to go beyond four layers, using four layers as the final
ansatz.

Given that this VQE implementation was performed using a classical simulation of a
quantum circuit, we could compute the expectation value of the Hamiltonian two ways:
either using projective measurements of the final state or by exact computation (exploit-
ing the full wavefunction of the final state that is only easily accessible in classical sim-
ulations and not in real quantum experiments). We tested using both methods to com-
pute the expectation value of the Hamiltonian during training and found no significant
difference between the two sets of ground states found, neither in energy nor magic.
However, the time taken for the ground state search when using measured expectations
was up to three orders of magnitude longer than when using exact expectations (up from
102 to 105 seconds). This could be caused by several things, the two that seem most per-
tinent to mention are related to the gradient of the expectation of the Hamiltonian with
respect to the circuit parameters. Firstly, as the projective measurement step of a quan-
tum circuit is not differentiable, the gradient was estimated using the parameter-shift
rule [82, 83] which requires multiple evaluations of the circuit; this is in contrast to the
exact case which only required a single execution to compute the value and gradient of
the expectation value. Secondly, as an estimation of the expectation value can only be
as accurate, or less accurate, than the exact value, the estimations of the gradient of the
expectation value with respect to the circuit angles can only be equal to, or less accurate,
than the exact case. Given this, then, it is natural to assume that with likely many sub-
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optimal estimations of the gradient, the optimization procedure would take longer and
require more evaluations of the quantum circuit. Both of these factors will contribute
to the increased runtime of the VQE procedure. Given the lack of clear improvement by
either approach, and as this paper does not extend to system sizes beyond the range of
what is classically simulatable, we chose to use the exact expectation value for the VQE
procedure for significantly more efficient use of computational resources.

To assess the point at which we stop training the quantum circuit we implemented a
two-step stopping criteria. Firstly, to consider a single instance of a ground state to have
been found we require that three consecutive epochs give the same energy to within
10−6, but then we also require that if the whole VQE is reinitialised then the next in-
stance must not differ from the previous by more than a relative change of 10−4 in the
energy. The training of the quantum circuit was less stable and led to larger fluctuations
in energy than for the RBM, and thus the stopping criterion for the single instance is less
strict, but the problem of local minima in the search space was more common here and
thus the second part of the stopping criteria was added.

There is a large community interest in alleviating the problem of barren plateaus
in quantum machine learning applications. Specifically to VQEs, the authors in [84] ex-
plored the effect of using three different optimizers: Broyden-Fletcher-Goldfarb-Shanno
(BFGS) [85–88], ADAM [81], and the natural gradient [79, 80] to avoid the problem of lo-
cal minima in the variational landscape. Here we consider the energy accuracy of an 8
qubit energy minimization of a VQE for four different optimizers: ADAM, BFGS, SPSA
[89], and simulated annealing [90]. This is a mix of gradient- and non-gradient-based
optimizers: BFGS and ADAM were chosen to cover those of interest for avoiding local
minima, SPSA for its utility with applications on quantum hardware [44], and annealing
as a second non-gradient based approach as this avoids the use of the parameter-shift
rule. The ansatz chosen for these optimizations is the three-layer version of the ansatz
depicted in Figure 4.3. The number of layers was reduced to three because the anneal-
ing optimizer consistently failed to converge for a four-layer ansatz. Figure 4.8 shows the
energy accuracies achieved from 10 repeated energy minimizations of the TFI Hamilto-
nian for each of the chosen optimizers. From this we can see that both BGFS and ADAM

Figure 4.8: Energy accuracy against transverse-field strength for a three-layer VQE ansatz, shown for a range of
optimizers used in the energy minimization procedure. All data are for an 8 qubit simulation.
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Figure 4.9: The energy accuracy (top) and magic accuracy (bottom) against transverse-field strength for a 4
qubit simulation. Each datum is the average over 10 minimizations.

perform the best but there is a very quick degradation of performance with increased
transverse field strength, h. As concluded by the authors of Ref. [84], both ADAM and
BFGS struggle to scale to systems with a large number of parameters; for the ansatz used
here there are 72 free parameters, much larger than the upper limit of 42 that they pro-
pose. BFGS especially struggles to scale to larger systems. For this reason, all other VQE
data shown in this work uses ADAM as the optimizer. As previously mentioned, reducing
the number of layers in the ansatz led to worse energy accuracies, so we will now explore
the other way to reduce the number of parameters: a smaller system size.

To explore a regime where the VQE optimization maintains a flexible and expressive
ansatz, but with fewer variational parameters, we will consider a 4 qubit TFI system.
Exactly as done in Section 4.3.1, Figure 4.9 shows the accuracies in energy and magic
of the VQE, RBM, and DMRG algorithms. Unlike in Figures 4.4 and 4.5, however, the
energy accuracy of the VQE is better than that of the RBM. This shows that the VQE is
able to achieve accurate ground state energies, but Figures 4.4 and 4.5 show that this
does not easily scale to larger systems with our current implementation. It should also
be noted that in Figure 4.9 we can still see that the accuracy in energy does not always
correlate with accuracy in magic.
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5
CONCLUSION

In this thesis, we explored a fundamental relation between two concepts from quantum
science. The first one, non-stabilizerness, borrowed from the quantum computing com-
munity, and the second one from quantum information theory, information scrambling.
We established there is a fundamental relationship between these two concepts in dif-
ferent ways.

In chapter 2, we formulated a fundamental relation between Out-of-Time Ordered
Correlators (OTOC) and non-stabilizerness. We saw that in the qutrit case, the fluctua-
tions of OTOC, the standard deviation of the measured instances of OTOC, have a linear
relation to the magic monotone, mana, in the random t-doped circuits.

Further, we investigated the same relation of the fluctuations of OTOC and the Stabi-
lizer 2-Renyi Entropy, and we found a deep general relation. We found that there exists
a log dependency between the fluctuations of OTOC and the Stabilizer 2-Renyi entropy
of the corresponding Choi state. We proposed a general framework for measuring the
OTOC instances for a general unitary dynamic U (t ) where from the quantum compu-
tation resource perspective is favourable. Also, this general method proposed in this
research seems to be heuristically efficient since the number of OTOC seems to be con-
stant for any number of qubits in the system. For a larger scale, this effect has been
observed experimentally for +50 qubits [1]. However, the formal proof of efficiency re-
mains a direction for future research.

In chapter 3, we explored the same relation between non-stabilizerness and informa-
tion scrambling measures, this time via entropic-based measures. We showed, both nu-
merically and analytically, that the log of the fluctuations of mutual information also has
a linear dependency on the non-stabilizerness in t-doped random circuits. Given the fact
that mutual information is also a standard measure for detecting entanglement phase
transition in measurement-induced random circuits, we also explored the effect of non-
stabilizerness in this setup. With no surprise, we observed that fluctuations of mutual
information also show decremental behaviour with the injection of non-stabilizerness
in these systems.

In chapter 4, we benchmarked the energy accuracy and the non-stabilizerness ac-
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curacy in variational state approximation for the ground state search problem, thus re-
lating quantum computing and classical variational perspectives on the ground state
search. We checked this effect for both classical variational models, namely neural-
network quantum states and matrix product states, and quantum variational models,
known as variational quantum eigensolvers. We observed that between different mod-
els, the model that achieves better accuracy in the ground state energy can have better
accuracy in non-stabilizerness as well. However, having better accuracy in energy is es-
sential but not sufficient to obtain better accuracy in non-stabilizerness. We showed this
by considering a symmetric version of the neural-network quantum state model and
checking that it has more accurate energy while the accuracy in non-stabilizerness does
have a considerable change.

The results of this thesis established a fundamental and unique relationship between
information scrambling and non-stabilizerness and a potentially more scalable way for
quantifying non-stabilizerness. This thesis also includes a benchmark for the accuracy of
variational models in capturing non-stabilizerness and raises questions about whether
only considering one parameter, here ground state energy, to optimise a variational model
would be sufficient to study every aspect of the system or not.

The new connection between the fluctuations of OTOC and non-stabilizerness al-
lows us to explore the non-stabilizerness in quantum systems that are not feasible to
study using conventional classical methods. An example that I am excited about is the
role of non-stabilizerness in chemical systems. It is already shown that a chemical reac-
tion can be as good as a black hole in scrambling the information [2]. With an intimate
relation between information scrambling and non-stabilizerness we can study the non-
stabilizerness in such systems.

We can also employ the power of neural networks in approximating the non-stabilizerness
that is currently unexplored so we can possibly go beyond the MPS in the approximation
methods of Stabilizer Renyi entropies on classical computers.
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