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Preface

The field of autonomous navigation has seen significant developments in recent years, driven by the growing
demand for innovative technological solutions in the growing smallsat market in combination with the future
lunar economy. In this context, my research work aims to address some of the critical challenges faced in this
field. In this report, I provide insights into the theoretical and practical aspects of my research, including an
overview of the study design, methodology and analysis of a special subset or lunar orbiters that are familiar
to previous work performed by my supervisors. The report also presents a detailed discussion of the findings
to interpret the benefits and limitations of the work. I hope that this report is a useful resource for future stu-
dents or any other person who is working in this field.

This thesis report represents the culmination ofmy studies at Delft University of Technology. As a graduate
student, I have been fortunate to work with experts in the field and to have access to exceptional resources
at the university. First and foremost, I would like to thank my two very kind supervisors Stefano Speretta and
Erdem Turan. Their patience and understanding of my thesis-related struggles have been very helpful in my
success in this endeavor. Last but not least I would like to thank friends and family for their support during
the year that I spent working on this work.

Thomas Bosboom
Delft, October 2024
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Summary

With the projected expansion of the small satellite market and the rise of the lunar economy, the development
of cost efficient and reliable navigation in cislunar space—defined as the region of space between Earth and
Moon including the region around the surface of the Moon—has become increasingly important. However,
the increase in the number of satellites is a stressing factor on the existing communication networks in terms
of availability, which exerts pressure on orbit determination quality and the financial budget of a small satel-
lite mission. One way to release the pressure from the existing ground station communications is through
the concept of Autonomous Orbit Determination (AOD). Specifically, state estimation is done through the use
of inter-satellite radio links between at least two satellites of which one orbit has a unique size, shape, and
orientation for sufficient observability in the estimation process. This occurs strongly for certain regions in
the three-body problem, in particular Lagrange-point orbits, which makes cislunar space-the most common
region for small satellite deep space missions-an ideal environment to perform AOD in. With the aid of state
estimates from the AOD process, a spacecraft can also autonomously navigate itself towards its pre-defined
target orbit, defined by station keeping maneuvers. The topic of inter-satellite based OD and the topic of or-
bit navigation has previously been studied extensively in literature but has thus-far covered the two topics
separately. Previous literature also has not clearly linked AOD with mission and spacecraft design related pa-
rameters, and is primarily focused on the orbit estimation aspect rather than including navigation as well. This
thesis aims to combine these knowledge gaps, by researching the potential of improving cislunar missions
using autonomous navigation by exploring the strategic adjustment of the timing of inter-satellite tracking
sessions by optimizing for annual station keeping cost of a satellite, defined in∆V . Since the accuracy of the
maneuvers relies on the magnitude of estimation errors from the OD process, which in turn depends on the
state observability during a tracking arc, solving for lowest ∆V is a complex optimization problem.

Methodology

The analysis of this work is based on a case study in which an L2 Lagrange point orbiter (LPO), called
LUMIO, and an elliptical lunar orbiter (ELO), called LPF (based on the SSTL Lunar Pathfinder), perform AOD
based on two-way inter-satellite ranging with a Gaussian noise level of 2.98m 1σ, observed at a 300 s interval.
The choice for this particular constellation is based on the notion that an orbit with a small period bodes well
in terms of observational geometry when combined with a Lagrange point orbit, leading to good state observ-
ability. The orbit corrections are assumed to occur at the end of an estimation arc that uses the Batch-Least
Squares estimator with no observation bias or dynamic model errors. The goal of this study is to reduce ∆V
for the planned 1-year operational lifetime of LUMIO. An initial tracking window configuration is defined as a
set of tracking arcs with a length of 1 day combined with a 3-day interval between each arc, which equates to
a station keeping frequency of 4 days. The simulation starts at MJD60390 and runs for 28 days. The choice
for this timing configuration is based on a suggestion in literature which states that performing 3 to 4 correc-
tions per orbital period is the best for ∆V in LPOs. A simulation of 28 days instead of 365 days is chosen
due to memory and run time limitations. The 28-day duration covers two full LUMIO orbital periods which was
deemed sufficient to represent costs for the full mission duration. In order to remove effects coming from
orbit insertion and to have a stable nominal navigation scenario, only the corrections after 14 days since the
mission start epoch are counted towards the annual cost approximation. Costs are of a stochastic nature
due to varying measurement noise histories in the estimation process, so ∆V is always based on 10 Monte
Carlo runs of the orbit estimation and navigation process. This scenario forms the baseline for a comparative
analysis on observation windows and other model settings to evaluate the influence of those parameters.

Main findings

First, a choice was made on the on-board dynamic model that is used to simulate the trajectory of the
spacecraft. A point mass model of the Earth, Moon and Sun plus cannonball solar radiation pressure, named
PMSRP01, proved to be the best environment setup due to its best combination of short run time and relatively
close alignment with the reference orbit, or dispersion, that is provided by the LUMIO team at Politecnico di
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Milano. The total time to calculate a maneuver-using the Target Point Method with one target point of 3 days
downstreamwith LUMIO’s current on-board computer-equated to approximately 528s. This is small compared
to the orbital period of LUMIO, tracking arc or the cut-off duration of 12h that is currently considered for LUMIO.
The total run time value shows that this 12h time window is not required in the context of AOD, making correc-
tions potentially more accurate due to small correction delays. Pointmass (PM) and spherical harmonics (SH)
models showed a 14-day RMSE position dispersion around 1 · 105 m, and adding SRP reduced this to around
8 · 103 m. This shows that adding SRP is more relevant than using more complex gravity models. In terms of
design considerations, it shows that the on-board processor itself will not be a limitation for performing the
calculations associated with AOD and thus no design change has to be made in this regard.

The baseline configuration yields an annual ∆V of 0.613±0.0066 1σ m/s. Next, a comparative analysis
explored timing configurations of constant tracking arc intervals and arc durations, ranging between 0.1-4.0
days and 0.1-2.0 days, respectively. Of these configurations, the best option is a configuration with an arc
duration of 0.5 day and a 0.5 day interval between the arcs, yielding an annual ∆V of 0.375±0.0020 1σ m/s
or a reduction of 38.597±0.228 1σ % with respect to the baseline scenario. Orbit-specific tracking schemes
were also tested, based on the knowledge that faster (perilune) and slower (apolune) dynamics can influence
the observability of position or velocity states during the estimation process. Tracking specifically at one of
these two regions did show improvements over the baseline configuration but not over the best result of the
constant arc category. The best annual ∆V yields 0.498±0.0082 1σ m/s (18.760±1.337 1σ %) for apolune
and 0.505±0.0124 1σ m/s (17.618±2.023 1σ %) for perilune. Both have a tracking time of 0.15 days, but the
best for perilune is for a scheme that tracks every 6 passes and every 4 for the apolune case. The short total
tracking times is a beneficial aspect of the orbit-based solution.

Then, a sensitivity analysis was done on two categories of parameters: observation window settings and
auxiliary settings. The former refers to the parameters that define the structure of the tracking timing and
the latter refers to other parameters that are used in the simulation that might affect the ∆V outcome. In
each sensitivity case, only one parameter is varied, with the rest of the settings, as shown in Appendix A, held
constant. Firstly, there is a strong trend that shows that a shorter arc interval yields lower costs with means
ranging from 0.4518 to 0.9784 m/s in the range of 1.0-4.0 days. For different arc durations (0.1-2.0 days),
using a duration of 0.5 days proved to be best in combination with the default interval of 3 days at 0.5290 m/s.
Results show that annual ∆V can be sensitive to the mission start epoch (varied MJD60390 to MJD60405),
suggesting that the cost results vary slightly depending on when the simulation starts. However, the variation
in the sensitivity cases is three times smaller than the variation due to the choice of tracking arcs and inter-
vals (0.1117 m/s versus 0.339 m/s and 0.5274 m/s respectively). A similar analysis over a longer simulation
duration of 56 days showed that the dependency of start epoch is even smaller, which indicates that the ∆V
results from the analysis is likely similar in scenarios in which LUMIO is inserted in its operational orbit later.
Regarding the auxiliary parameters, the largest sensitivity comes from the choice of the minimal ∆V thresh-
old, indicating that the∆V specifications of a propulsion subsystem could have a drastic influence in the cost
budget. Next to this, the choice of target points is also important. These target points represent how many
days the correction algorithm aims in the future to target the reference trajectory. Aiming too short or too
far downstream might lead to exhaustive overcompensation if a next correction aims too far away from the
next correction point. While 3 days downstream offer a mean annual ∆V of 0.6131 m/s (the default setting),
this increases to 2.2105 m/s for 5 days. Initial orbit insertion and estimation errors do not alter the long-term
costs approximation as these effects stabilize after 14 days.

Regarding the optimization analysis, the heuristic PSO and Nelder-Mead optimization algorithms indicated
that further reductions in annual ∆V can be achieved by dynamically adjusting individual tracking arcs. The
best case, coming from thePSOalgorithm, reduces the annual cost to 0.280±0.01341σm/s, or a 54.323±2.186
1σ % reduction with respect to the baseline value. Multiple test runs of the optimization algorithms are done,
yielding different solutions for different optimization algorithms, model fidelities and model durations. For a
given optimization setting, a total of 5 different configuration solution are found, so there is not one common
optimal solution. Moreover, most tracking configuration solutions showed improvement in∆V over the base-
line. Pleas visit Appendix Cfor the exact outcomes.

Nonetheless, there are some caveats to the results. For example, it is questionable whether simulating for
28 days is sufficient to represent the operational lifetime of 1 year. Running optimization routines based on
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larger simulation durations, such as a two-fold of 56 days, shows that costs are generally larger than the 28
days where the best mean ∆V for the 28- and 56-day case is 0.32 m/s and 0.45 m/s, respectively. Addition-
ally, including aminimal∆V threshold, defined by LUMIO’s propulsion subsystem specifications, createsmore
spread in the ∆V optimization outcomes, indicating that subsystem imperfections add more uncertainty to
the expected costs. The standard deviation reduces when a larger simulation duration of 56 days was used.
Regardless, most optimization solutions have shown to be better than the baseline.

Configuration Annual ∆V [m/s] Reduction [%]
Constant arcs

Default Arc length: 1.0 day
Arc interval: 3.0 day 0.613 ± 0.0066 1σ -00.000 ± 1.077 1σ

Best Arc length: 0.5 day
Arc interval: 0.5 day 0.375 ± 0.0020 1σ -38.597 ± 0.228 1σ

Orbit based

Perilune Arc length: 0.15 day
Arc interval: Every 6 passes 0.505 ± 0.0124 1σ -17.618 ± 2.023 1σ

Apolune Arc length: 0.15 day
Arc interval: Every 4 passes 0.498 ± 0.0082 1σ -18.760 ± 1.337 1σ

Optimized
[1.62, 1.13, 1.17, 0.10, ...
...0.23, 0.10, 0.10] and other
See Appendix C for more

0.280 ± 0.0134 1σ -54.323 ± 2.186 1σ

Concluding remarks

All in all, from a mission design perspective, it means that it pays to adapt to a more complex tracking
scheme, but employing a constant-type tracking arc timing scheme can also already yield∆V improvements.
The benefit of constant timing configurations is that it is easier to implement due to its better predictability
over the more complex schemes derived from the optimization routines. Concerning the consequences of
lower station keeping costs as a result of the improved tracking schedule, advances can be made that are
related to the reduction in power and fuel budgets. First and foremost, the fuel budget is logically linked to
a reduction in fuel consumption, allowing the mission to be operated for a longer period of time. Another
contribution to mission operations and spacecraft design comes as a result of the reduction in total tracking
time that was observed in the orbit-based and optimized tracking timing configurations. This implies that less
power has to be allocated to transmitting ranging signals which means that more power can be budgeted for
the payload or assigned to other subsystems. This can increase amission’s scientific contribution by allowing
more scientific data to be generated as there ismore time to do observations. Lastly, this work has shown that
the currently used subsystems of LUMIO can be used in the optimized settings as well. While the lower limit
of the propulsion system has some effect on the total costs, improvements over a baseline can still be made.
In other words, no major design alterations have to be made to ensure the station keep cost improvements.

Lastly, this thesis provides recommendations for future research. Firstly, it is suggested to increase model
realism by incorporating mission planning aspects, such as each spacecraft’s science objectives that prevent
the spacecrafts from performing inter-satellite links. This can be an important aspect as this constraint can
lead to larger dispersion growth and can therefore significantly influence the ∆V requirement. Secondly, it
is recommended to use longer simulation durations for cost analyses to reduce cost estimation uncertainty
and to improve optimization results. It is also proposed to include spacecraft constraints. For example, more
constraints could be introduced based on mission design, such as those accounting for antenna pointing and
signal strength. Regarding estimation, a more advanced set of parameters could be added to the estimation
model, such as parameters like range bias and dynamic model parameters. Evaluating other orbit geometries
beyond the current case study is also advised, as these may present different challenges and opportunities in
terms of AOD and navigation. Finally, incorporating automatic on-board decision-making, in which tracking is
not pre-planned but decided based on real-time mission needs, is an interesting topic for future research as it
adapts to unexpected mission scenarios which pre-planned solutions do not consider.

xii



1
Introduction

This section aims to introduce the topic that will be discussed throughout this thesis work. The scientific
context is elaborated upon in Section 1.1. Based on this context, Section 1.2 explains the steps that this
work will provide in terms of scientific value. Then, Section 1.3 shows the research questions. Finally, a short
overview of the whole document is provided in Section 1.4.

1.1. Scientific context
Small satellites have become increasingly popular for a variety of space applications due to their low cost,
compact size, and versatility. Although the exact definition of what constitutes ”small” is ambiguous, it can be
referred to satellites that are most often categorized with masses of at most 500 kg [1, 2]. With developments
in the miniaturization of spacecraft systems and availability of lower cost launchers, such type of satellite
paves the way for increased academic and educational interest [1]. In particular, recent developments show
that there is a technical and economic interest for missions in cislunar space [3]. Examples of these missions
are the Lunar Meteoroid Impact Observer (LUMIO) [4], Cislunar Autonomous Positioning System Technology
Operations and Navigation Experiment (CAPSTONE) [5] and EQUilibriUm Lunar-Earth point Spacecraft (EQU-
ULEUS) [6]. For a mission to be successful, these satellites must perform estimation of their position and
velocity in space (orbit determination) and have to determine where the spacecraft has to go and perform the
required corrections (navigation). However, the increasing number of satellites poses a stressing factor on
existing ground communication networks in terms of tracking availability, such as the Deep Space Network
(DSN) [7, 8, 9]. To alleviate this issue, new developments exist that can eliminate the need for Direct-to-Earth
(DTE) orbit determination. While it will always be required for telemetry, the orbit determination process can
be adjusted. One way to accommodate this challenge is by exploring the concept of autonomous orbit deter-
mination (AOD) through inter-satellite links. This enables satellites to obtain their trajectory state information
without the direct need for a beacon, such as a ground station [8, 10]. It is desirable to know the state of one or
more spacecraft with respect to an inertial reference frame (such as the Earth center). Typically, the state esti-
mation process through ground stations provides this absolute information, because the exact location of the
ground station is known with respect to the inertial reference frame. Omitting the ground station removes this
knowledge and the process of obtaining state estimation between satellites then has to rely only on relative
inter-satellite links. A great benefit of this type of orbit determination is that it can be used with existing radio
technologies [11]. Another benefit is that AOD could be used for missions beyond the Earth-Moon system [12]
and as such omitting ground stations can also lead to potential benefits related to spacecraft communication
power requirements [8, 13], reduced operational costs [14], longer visibility durations [15] and improvements
on viewing geometry due to occultation durations [16]. Furthermore, future lunar missions could be located
at sites on the Moon where direct communication with Earth is not possible [8, 17, 18, 19].

In the context of AOD, only relative observations, such as range, range-rate or relative viewing angles,
should be sufficient to infer the absolute states. In literature, the technique that enables this is knownas Linked
Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) [20]. To enable satellites to autonomously nav-
igate through space, LiAISON utilizes at least one satellite-to-satellite (SST) observable type, such as range
or Doppler, to obtain the absolute states of at least two satellites. To allow for proper estimation using these
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inter-satellite links (ISLs), at least one of the satellite orbits has to have a unique size, shape, and orientation
due to an asymmetric gravity field [21]. What this means it that only one solution of the initial state could
come from the OD estimation process, given a series of SST observables. A benefit of this technique is that
it benefits from the fact that existing methods to perform tracking can be used [22, 10].

To demonstrate the capabilities of LiAISON, this work considers a case study in which range-only measure-
ments are performed between the LUMIO L2 Lagrange-point orbiter and the Lunar Pathfinder (LPF) elliptical
orbiter [23]. The LUMIO mission is chosen because of the close relation between LUMIO and TU Delft. LPF
was chosen because the specific relative geometries between both satellites are known to be favorable to per-
form inter-satellite navigation [21]. Both satellites are missions in cislunar space, and this case study aims to
provide insights into the usage of AOD for satellites in this realm of space and may benefit from incorporating
LiAISON in the future. While LiAISON can provide accurate state estimates, the complexity of the dynamic
model considered on-board the spacecraft and estimation settings influence this accuracy [21, 24, 11].

Thus far, Turan et al. have modeled the AOD operations of this mission for one LUMIO halo orbit period
of 14 days instead of the full 1-year mission timeline [25]. Additionally, this research considered a near con-
tinuous stream of observations over this period, which is not feasible due to the scientific objectives and the
requirements from the payload or other subsystems. Lastly, the dynamics of LUMIO and LPF based on the
simplified circular restricted three-body problem (CRTBP) [25]. One can use an approximated model as long
as that is sufficient enough for the position accuracy requirements of a mission. Varying fidelities of the dy-
namical environment have not been considered in previous studies related to AOD. In reality, there are various
force terms that affect the trajectory and in turn also the outcomes of the state estimation. The latest state
knowledge is used to perform station keeping maneuvers where the correction depends on the latest position
and velocity deviations from the target trajectory. As such, station keeping corrections rely on the latest esti-
mate of the true trajectory. Required corrective maneuvers are based on the accuracy of the state estimate
and the dispersion which builds up differently under varying fidelity of dynamic models [26]. This uncertainty
can affect the accuracy and timing of such maneuvers [27, 8]. The degree to which the satellite states can
be estimated is dependent on the concept of observability, which in turn depends on the relative dynamics
between the satellites. Knowledge of this allows us to more effectively time the estimation arcs to match the
regions of larger observational effectiveness [25, 21]. This thesis study will investigate the effects that the
model fidelity has on the AOD operations. Most importantly, it aims to explore the improvements in the timing
of tracking windows that serve the AOD operations for the LUMIO-LPF case study. This knowledge might be
generalized and applicable to other orbit scenarios.

1.2. Scientific contribution
This section aims to provide an overview of possible research topics to improve the current body of knowledge
of autonomous inter-satellite navigation, with the focus on the timing of satellite-to-satellite links by explor-
ing the envelope of tracking window configurations. Below, one can find the aspects that are considered of
relevance for the research based on the performed literature study.

• Optimized tracking timing
The optimization of tracking windows based on observational geometry was done in the past, but it
was either applied in context of ground operations [28] or based on a highly simplified dynamical model
[25]. Additionally, it appears that most literature considered a continuous tracking scenario which is
obviously unfeasible in real scenarios [21, 29]. From an operational and technical perspective, this con-
stant connection with the other satellite might not be feasible [30]. Operational considerations such
as time windows dedicated to performing science and the required ADCS of the satellites, or physical
limitations such as occultations, caused by the Moon, play a role [31]. Most importantly for this work, it
is stated that there exist blackout periods that influence the effectiveness of the OD [21]. Once such a
blackout occurs, the most beneficial observations are effectively lost and better moments in time could
have been utilized. Knowledge on when those periods occur can be used to concentrate measurements
within specific periods [21]. The improved timing of SST sessions could allow for increased state accu-
racy and thereby alter S/K strategies and ∆V [32].

• Autonomous navigation assessment for more than one orbital period
Turan et al. [11] simulated the orbit determination of LUMIO-LPF over one LUMIO period of 14 days. This
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work does not provide a full insight of the fully autonomous behavior of the LPF-LUMIO system over the
planned 1-year mission duration. The process of OD, uncertainty propagation and station keeping are all
connected but were not brought into one coherent picture. The effect of S/K maneuvers on LiAISON’s
performance was recommended in literature [8]. Strategies should be implemented to assess the effect
of adjusting tracking windows. Without ground station planning, tracking and S/K strategies could be
adjusted, while still taking into account constraints on availability between satellites due to ongoing sci-
ence operational priorities [33, 6], power and accuracy requirements [34, 11], body occultations [6], etc.

• Improved fidelity of the dynamical model
An aspect to consider is thatmost researchwas done based on the CRTBP. Hill [21] did an extensive anal-
ysis by comparing a large range of orbit combinations using CRTBP. A high-fidelity environment might
give a more accurate description of the dynamics which can allow for a smaller error between the pre-
determined orbit and actual orbit during OD sessions. This might lead to the option to start and/or end
the estimation process later and earlier respectively. Additionally, it can be analyzed how the increased
computational cost of running increasingly complex dynamicmodels weighs against the improved state
uncertainty and dispersion. This can show towhat extend simplifiedmodels can be used instead ofmore
complex models.

• Use of batch least squares estimation for orbit determination
Turan et al. [11] incorporated the Extended Kalman Filter (EKF) for the estimation process of the LUMIO-
LPF study case. The Batch Least Squares (BLS) estimator has been used in the context of AOD, but for
a DRO-HALO scenario [35]. Additionally, this is considered a case of long continuous tracking without
breaks. The type of utilized estimation filter affects the state estimation, which also results in an alter-
ation of the state uncertainty [36, 37]. The BLS is used instead of the EKF for its easy implementation
and availability within Tudatpy. Generally, the BLS technique is more robust against outliers and requires
less stringent selection of a priori covariance, process noise and measurement weighting and to deflect
the influence of bad points [38]. Furthermore, one does not need real time solutions as there will be time
for processing the full data.

• Combining orbit determination with navigation
While previous research was done on optimizing tracking windows but only includes the OD aspect [25].
Recommendations were made that suggested that a similar approach could be applied to the minimiza-
tion of the station-keeping maneuver costs, which relies on not just the principle associated with orbit
determination/estimation, but also the execution of corrective maneuvers. This work aims to combine
those two factors to provide improvements to such OD-only based tracking window optimization.

In short, this work will predominantly combine a set of three main research topics. The aim is to define an
exploratory study to see what happens when the mentioned field of knowledge is applied to the context of the
LPF-LUMIO orbit configuration.
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Figure 1.1: Overview of scientific contribution

Operational implications
This work helps in the decision making for future spacecraft. Consider a baseline scenario in which no con-
sideration is made with regards to optimization and a fixed frequency of arcs and duration is always used.
The potential research outcomes can be split into two scenarios with corresponding implication from the
operational perspective of a mission:

• Significant improvement over baseline
This scenario evidently improves the requirements and design implications associated with maneuver
costs. It will allow for an additional degree of freedom that can be considered in the design to improve
overall mission quality. In addition, if the total arc length is reduced as well, this could improve power
consumption due to fewer observations.

• No significant improvement over baseline
The advantage of this result is the ease of mission design. This is because no additional design con-
straints are added that could affect the scientific goals as a result of varying availability of the payload.
Additionally, the consistency and thus also predictability is preferred for scientists and other stakehold-
ers associated with a mission. The advantage is that there is potentially no weight reduction due to
lower correction needs.
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1.3. Research questions
Considering the current state-of-the-art, the thesis aims to conduct research concerning the following research
objective and questions:

Research objective
This work will consider a case study in which LUMIO and LPF orbits are used to perform numerical simulations
with the aim to find the optimal timing of tracking arcs to perform inter-satellite tracking. While this work
considers this case study only, the work aims to provide insights for inter-satellite tracking in general. As
such, the research objective reads:

”To improve inter-satellite measurement-based autonomous navigation for cislunar orbiters by finding
improved tracking timing strategies.”

Research question
With the research objective in mind, the main research question is formulated as:

”What is an optimal satellite-to-satellite tracking timing configuration for cislunar orbiters?”

Sub questions
In the research question formulation process, a number of second order questions were identified:

1. What are the working principles of inter-satellite based autonomous navigation?
2. How is the geometry of autonomous navigation observations related to improved system performance?
3. What techniques are there to improve the timing of tracking windows?
4. How does the fidelity of the on-board dynamic model influence the system performance?
5. What parameters have a noticeable influence on the improvement of inter-satellite based autonomous

navigation?
6. What are operational limitations and benefits associated with improved autonomous navigation perfor-

mance?

1.4. Report structure
This report is split up into three main parts. Part I captures the state-of-the-art of autonomous cross-link
navigation and discusses in more detail the LPF and LUMIOmissions and how they are relevant in the context
of autonomous inter-satellite navigation. The layout of this literature study starts by addressing the current
trends and challenges in Chapter 2. From this follow the fundamentals related to orbit determination and
navigation in Chapter 3. Part II stats with an explanation of the global research setup and the simulation setup
in Chapter 4. The resulting findings are touched upon in Chapter 5. The subsequent concluding remarks and
recommendations are followed in Part III.
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2
Trends in cislunar missions

A new era of small satellites for space exploration comeswith a growing demand for AOD. This reduces depen-
dency on ground-based tracking and provides a significant reduction in operational costs due to overcrowded
communication networks [10]. First, a general overview of existing cislunar smallsat missions is given in
Section 2.1. Then, introductions of the LUMIO and LPF mission are given in Section 2.3 and Section 2.2, re-
spectively. This is followed by an explanation of the workings of LiAISON in Section 2.4.

2.1. Current cislunar missions
The availability of low-cost and low-volume commercially-of-the-shelf (COTS) spacecraft subsystems has en-
abled miniaturization in the space sector and commercial viability for missions using small-scale products
with applications that we considered impossible before [1]. With the current developments in the field of
spacecraft miniaturization, more players have entered the satellite industry [39]. This statement is also true
for small satellites. As such, Turan et al. [10] found a total of 64 deep-spacemissions using small satellites of
which the majority of the 64 missions aim to characterize the surface or atmosphere of a body. Furthermore,
34 out of the 64 missions incorporate inter-satellite links for telemetry, telecommand, or navigation purposes.
A reason for this large fraction is due to the fact that small satellites lack the power for deep-space communi-
cations as most of those satellites rely on a mother-spacecraft that handles the deep-space communication.
Of these 34, 22 operate in cislunar space, showing the most relevance for cislunar space (with the purpose of
surface mapping and characterization). Of the 22 missions, 5 are planned to be able to perform autonomous
radiometric navigation solely based on inter-satellite communication. An overview of the smallsat cislunar
missions is provided in Table 2.1 [10].

Inter-Satellite Link (ISL) Direct-to-Earth Link (DTE) Inter-Satellite Link (ISL) +
Direct-to-Earth Link (DTE)

Cislunar
Missions

LUMIO, VMMO, CLE*,
MoonCare*, NanoSWARM

Lunar Flight Light, Lunar Ice Cube,
LunaH-Map, LunIR, ArgoMoon,
OMOTENASHI, Cislunar Explorers*,
EQUULUES, HALO, WATER,
IMPEL, CubeX

MiLuV, BOLAS*, OLFAR**,
DSL**, CAPSTONE

Total 5 12 5

Table 2.1: Overview of communication link configurations for different cislunar smallsat missions. (*) = constellation of two satellites
and (**) = constellation of more than two satellites. Source: [10].

The majority of the issues related to the use of satellite navigation are:

• Limited on-board power for communications
Only a limited on-board power is budgeted to communication in general [10]. This naturally leads to
limited power availability for navigation. Since there is limited on-board power, operators might plan
telemetry, telecommand and tracking sessions separately as those can not be done at the simultane-
ously. Another advantage, yet small, is that Earth-based navigation is prone to atmospheric effects that
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2.2. Lunar Pathfinder

can play a role in the effectiveness of radiometric Earth-satellite communication [40, 41]. Additionally,
SST tracking happens over smaller distances than contactwith Earth, yielding an overall lower free-space
loss [8].

• Congestion of Earth-based navigation
Since there will be more spacecraft, conventional Earth-based navigation could lead to congestion of
the navigation network, which could yield a shorter contact time for tracking [42]. This is related to the
ground station ”visibility problem” which is about the communication conflicts that occur when multi-
ple satellites try to communicate with ground stations in the visible range. As the number of satellites
increases, the more challenging the visibility problem becomes. How long a spacecraft can have with
Earth depends on the altitude and antenna parameters [43]. The communication time could affect the
degree to which a spacecraft is at its intended location and thus the accuracy of station-keeping maneu-
vers (SKMs) [33].

Spacecraft autonomy can lead to decreased costs if ground control operations or hardware are reduced
or eliminated [21, 14]. This benefit can also be beneficial to larger spacecraft as the operations cost does not
scale with satellite size [10]. Since most navigation is based on a radiometric Earth-satellite link, there is a
possibility to use this existing technology to automate the navigation aspect by performing satellite-to-satellite
tracking (SST) [10].

2.2. Lunar Pathfinder
The Lunar Pathfinder (LPF), developed by Surrey Satellite Technology Ltd (SSTL), aims to provide solutions to
the current problems related to the future of science and exploration in cislunar space. It is part of the ESA
Moonlight project to develop a European lunar telecommunications and navigation infrastructure consisting
of a network of communications, navigation, and data relay satellites [44]. This is desired in case a data link
should be established between Earth and assets on the far side or polar regions of the Moon, such as rovers.
Currently, DTE communications require direct line of sign with lunar assets, which means that information to
and from those assets can only be sent at a limiting pace and quality [42]. In addition to proving the possibility
of utilizing current navigation satellites for lunar positioning, the satellite seeks tomonitor space weather in or-
der to gain insight into radiation levels near theMoon, which is critical for human exploration. Lunar Pathfinder
is supported by UK Space Agency funding via the European Space Agency [23].

Lunar Pathfinder will operate in an ELFO, for an operational lifetime of over 8 years [23]. The ELFO is both
stable and can provide good coverage of the Moon’s poles, which is traditionally challenging to cover by Earth
ground station networks [45]. Through its two simultaneous channels in S-band and UHF, a X-band DTE link,
and its favorable orbit configuration, Lunar Pathfinder allows faster data transfer over a long visibility period
between the satellite and Earth [42]. This is promising as it reduces the burden on deep space ground stations
currently used for cislunar applications through the autonomous navigation process it can offer. Furthermore,
its secondary objective is to test a payload, an ESA GNSS receiver, to perform a weak signal detection experi-
ment from lunar orbit [42].
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Figure 2.1: Lunar Pathfinder Communications Services diagram. Source: [23]

2.3. Lunar Meteoroid Impact Observer
Earth-based lunar observations are limited by weather, geometry, and lighting circumstances, but a lunar or-
biter can enhance the detection rate of lunar meteoroid impact flashes by allowing for extended monitoring
periods [46]. The Lunar Meteoroid Impact Observer (LUMIO) is a 12U CubeSat this aims to detect micro-
meteorite impacts on the far side of the moon. The reason for this is to fill the knowledge gap on the thus far
unobserved impact events in the 10−4 to 10−1 kT TNT equivalent kinetic energy range while also testing the
hypothesis of asteroid impact asymmetry between the lunar nearside and far side [4].

Figure 2.2: Scientific knowledge gap of meteorite impact events for a 10−4 to 10−1 kT TNT equivalent kinetic energy range. Source: [47]

Its payload, the LUMIO-cam, allows for the detection of flashes on the lunar surface. A consistent image of
the lunar far side is ensured by orbiting in a southern quasi-periodic orbit around the Earth-Moon L2 Lagrange
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point. The advantage compared to ground observations is that the observations are not prone to atmospheric
effects and the spacecraft can provide a complete view of the lunar full-disk at once [46]. While the naviga-
tion primarily is conducted through DTE networks, the mission aims to demonstrate the option for navigation
through of small satellites through inter-satellite links. [46]. LUMIO will also show the ability to provide useful
scientific data from interplanetary missions using COTS smallsat technologies [4]. Payload data is not trans-
mitted through the LUMIO-LPF link, but through the primary Earth connection. The ISLs between two satellites
serves as a redundant commanding link [11]. During the operational lifetime of 1 year, LUMIO’s operations are
split into two phases: the science cycle, and the navigation and engineering cycle. It involves the orbit de-
termination and subsequent station-keeping maneuvers required to maintain the right conditions during the
science cycle [4]. The scheduling between navigation and the science orbits is shown in Figure 2.3.

Figure 2.3: Timing strategy employed for station-keeping maneuvers. Source: [46]

LUMIO has been a thesis topic on the past, highlighting different aspects of the spacecraft. De Smaele [48]
and Gelmi [49] conducted research on fault detection. Nett [50] focused on the propulsion system. Cipriano
[46] and Sirani [46] focused on the design of LUMIO’s orbit. Tanis [29] focused on antenna requirements in
relation to performing AOD.

2.4. Inter-satellite based navigation
This section aims to provide clarity of the main topic of this work. In fact, multiple different processes are
required to accurately simulate a spacecraft that maneuvers through space. Section 2.4.1 explains the differ-
ences in the concepts of orbit determination and navigation. Section 2.4.2 elaborates on the differences in
the way that the trajectory can be defined.

Figure 2.4: Relationship between inter-satellite links and state uncertainty. Source: [25]
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2.4.1. Orbit determination versus navigation
Since both terms will be used extensively throughout this work, a distinction is made between the concept of
orbit determination and navigation.

• Orbit determination: The process of calculating an object’s orbit using observational data [40]. Its pri-
mary purpose is to determine the current position and velocity of the object and to predict its future
trajectory. In the context of SST, the OD process relies entirely on an initial guess of the state (with an
a-priori covariance), the inter-satellite observables, the estimator and the dynamic model on-board used
to predict the states.

• Navigation: The concept of navigation, on the other hand, involves controlling a spacecraft’s trajectory.
The main goal of navigation is to ensure that the spacecraft reaches its desired destination. This in-
cludes making course corrections, which are in turn dependent on the accuracy of the state estimates
found from the orbit determination process.

2.4.2. Absolute versus relative states
The trajectories can be defined in multiple ways. There are two ways in which the state of a spacecraft can
be represented [51]:

• Absolute: Information on the orbit states is known with respect to an inertial reference.
• Relative: Information on the orbit states is defined with respect to a moving reference point such as
another satellite. To obtain the absolute information one needs knowledge of the absolute position of
the moving reference point.

Relative measurements, in a two-body problem, do not provide the absolute orientation of the orbits, but
only the relative orientation because the orbits cannot provide a fully unique solution [13]. That is, the absolute
states of one spacecraft cannot be known, as there can bemore than one solution coming from the estimation
process. In such a case, at least one beacon must be added to produce a reference to the inertial frame to
add a condition to uniquely solve the rank deficiency problem [51, 52]. Examples of this are introducing GPS
[53, 54], measuring with respect to known stars [55], lunar landmarks [56, 57] or incorporating a third satellite
with an orbit that is optimized for observability [58]. These examples are based on a two-body problem, so for
example an Earth-satellite or a Moon-satellite system.

However, it is possible to obtain absolute state information, so solving the rank deficiency problem, without
the need for an additional beacon. Under certain circumstances, LiAISON provides that solution by simulta-
neously obtaining the absolute states of at least two objects [21]. Hence the name ”liaison”, which stands for
”mutual understanding”. The effectiveness of this method depends on the asymmetry of the gravity field in
the spacecraft’s environment. A region in three body systems where the force due to a perturbing third body is
relatively large would be a good candidate for LiAISON as this leads to uniqueness in the respective orbit [21,
59]. In that case, at least one of the satellite orbits has a unique size, shape, and orientation [21, 11]. The rela-
tive strength of an particular force term can be quantified bymeans of a scaling factor defined by Equation 2.1
[21].

αj(r) =
||aj(r)||∑n
i=1 ||ai(r)||

(2.1)

Here, j refers to a particular acceleration term, soaj denotes the acceleration owing to acceleration source
j. A bigger value of αj for asymmetric acceleration indicates that a spacecraft can employ SST for absolute
positioning more effectively. That means that the unique time history of SST observations and thus abso-
lute states are known when the initial conditions are given [8]. The impact of the asymmetric acceleration
field on the spacecraft’s trajectory must outweigh the noise from observations and the impacts of unmod-
eled accelerations [21]. Figure 2.5a shows the heat maps of α for acceleration due to the third body in the
Earth-Moon system. It indicates that LPOs are good candidates for LiAISON, because of the strong relative
strength of the third body in the regionwhere those orbits reside. Halo-Moon constellations are able to retrieve
orbit information more quickly than Halo-Halo constellations because a Moon orbit allows the system to ac-
quire observations from many vantage points quickly [21]. For that reason, libration points are a good choice,
especially unstable collinear Langrange points (L1, L2 and L3) [60, 8]. In general, radiometric autonomous
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navigation would be most beneficial for topologies that have short orbital periods and large inter-satellite dis-
tances [61, 21]. For that reason, the LUMIO-LPF system promises very beneficial orbit determination results.

(a) Full Earth-Moon system (b) Scaled to Moon vicinity

Figure 2.5: Heat map of α for acceleration due to the third body in the Earth-Moon system. Source: [21]

2.4.3. Applications of inter-satellite navigation
An advantage of cross-link radiometric navigation is that it can be used by existing systems [62, 63]. A large
benefit comes from the fact that it can circumvent the limits of conventional navigation with regards to the
visibility between the ground stations and satellites [21, 63]. Omitting this factor allows the spacecrafts to
choose tracking time in a less constrained way, due to the limited ground station visibility [64]. Another benefit
is that the inter-satellite navigation can not only be done with spacecraft that are in-orbit, but also with lunar
surface assets (LSA) that are not visible from earth [8] or manned missions, such as in the Artemis program
[65], where limited trackingwith Earth is especially undesired due to increased state uncertainty [35]. Research
has been done on two-satellite constellations, but it can be extended to navigation systems of more than two
satellites [22, 17, 18, 27, 66]. Other work was done on Lagrange point-geosynchronous constellations [67]
or inter-planetary spacecraft [15, 63]. Additionally, supplementing inter-satellite measurements with ground-
based measurements can improve tracking performance [8, 15, 63]. The application of inter-satellite based
navigation in crewed missions, have also previously been investigated [68].

2.5. Tracking window optimization strategies
There are a variety of options for forecasting the optimal timing for estimation arcs throughout a mission, and
this section provides an overview of the available options. Note that all methods are subjected to mission
constraints from the individual satellites, such as Station Keeping Maneuvers (SKMs), pointing the antenna
beams, the maximum possible range limited by power budgets and planned science phases.

• Windows at a fixed predefined frequency
This is the easiest to implement operationally but does not make use of efficient observational geome-
tries. The estimation arcs occur at fixed intervals, thereby ignoring the observability characteristics of
the dynamics at those epochs. This leads to sub-optimal results for the estimator and could yield larger
station-keeping costs.

• Minimizing for global uncertainty
An example of optimizing the tracking windows is based on an objective function that aims to mini-
mize the average length of the largest axis of the error ellipsoid for both satellites over a predefined
duration [61]. E. Turan [25] used a particle swarm optimization (PSO) technique, often used to tackle
complex/large-scale optimization problems [69]. This defines a global best fit in terms of uncertainty
but does not necessarily define themost optimal solutions for certainmission specific constraints, such
as total power or ∆V costs.
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• Closest angle of observation geometry with unstable uncertainty manifold
A scheduler is used to schedule cross-link measurements in a system such that the observation direc-
tion, or line-of-sight vector, aligns as closely as possible with the direction of the greatest axis of the
instantaneous uncertainty ellipsoid [31, 21]. This aligns with the concepts of observability and the black-
out periods explained in Section 3.4. The more the observation direction aligns with the direction of the
largest uncertainty, the more beneficial the information in that direction is.

• Optimizing for a particular mission budget
It is beneficial for any spacecraft mission to reduce its consumption of resources as much as possible
(within reason). For example, minimizing the total required ∆V could benefit a mission, as it could ex-
tend operations for a longer duration. Such cost depends on the state estimate uncertainty before a
maneuver [70], which in turn depends on the observation geometry of each spacecraft’s location during
a tracking arc, thereby suggesting that an optimal set of tracking windows exists that minimizes such
cost. Additionally, noise in such maneuvers affects the future states. The degree to which that affect
propagates also depends on the location of the maneuver and the time until the next estimate. Another
option might be an observation geometry that minimized the total observation time, such that the pay-
load can perform its scientific targets for longer.

• Combining scheduling of Earth and SST tracking
Inter-satellite tracking is accompanied by direct-to-Earth tracking windows. Both types of tracking are
taken fromdifferent vantage points to the satellite, with benefits and downsides at particular geometries.
As such, one can find optimal interval combinations at which the collective effort of Earth-based and
LiAISON-based occurs best. This was done byMcGranaghan et al. [15] for a GEO and L1 Lagrange point
orbiter configuration.
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3
Fundamentals of satellite navigation

Orbit determination is the process of estimating the orbit parameters of an object in space, based on obser-
vations. Keplerian or Cartesian states are the most common ways used to describe the position and velocity
of a spacecraft in space. In order to establish this process, it requires the modeling of orbit trajectories by
using dynamic models, generating the incoming measurements using measurement models, and estimating
the true trajectories given these inter-satellite measurements using estimation models. Once the states of the
spacecrafts are established, the navigation aspect is initiated. Navigation entails directing an object’s path to
the desired pre-planned trajectory [38]. For this, one requires a correction model to calculate the right magni-
tude and direction of a station keeping maneuver and to guide the spacecraft in the right direction.

Because this work relies heavily on orbit determination and navigation principles, this chapter aims to pro-
vide an overview of all the mathematical models used. One should note that the following content does not
only strictly apply to the concept of LiAISON-based navigation, although the measurement model concerns
inter-satellite observables rather than the ground-based observables. The intricacies of the dynamical mod-
els are explained in Section 3.1. The measurement and estimation models are shown in Section 3.2 and
Section 3.3, respectively. With the goal of improving autonomous orbit determination, it is important to de-
fine a metric to compare the effectiveness of measurements in the estimation process. This will be touched
upon in Section 3.4. The details associated with the correction model are touched upon in Section 3.5. The
mechanisms behind the propagation of state uncertainty are touched upon in Section 3.6.

3.1. Dynamic model
The dynamical model in the context of OD entails refers to the state propagation of a satellite in a predefined
dynamical environment, depicted by a variety of forces from celestial bodies that exert on a spacecraft. The
degree of the fidelity of the dynamical model depends on the number and type of forces that one takes into
consideration. Section 3.1.1 introduces the reader with the types of orbits that exists in cislunar space. Then,
Section 3.1.2 and Section 3.1.3 will elaborate on the equations of motions (EOMs) associated with varying
fidelities of the dynamic models.

3.1.1. Cislunar orbit types
The Earth-Moon system offers a variety of orbits for cross-link radiometric navigation. Next to Lunar and
Earth orbits such as LEO, GEO, polar and Elliptical Lunar Frozen Orbit (ELFO), there are also halo orbits [59, 71].
Libration Point Orbits (LPOs) are located around five libration points, of which three are collinear with respect
to the axis of the two primaries (L1, L2 and L3), or also known as halo orbits [71]. One of the advantages of
L2 halo orbits is that these can provide great coverage of the lunar far-side and polar regions without blocking
the visibility to Earth [72]. Additionally, orbits around the L2 libration points are appropriate for inter-satellite
navigation because they are locally unique and consistently stay in locations with a high degree of asymmetry
in the third-body perturbation of the Moon [21]. When a halo orbit is derived from the CRTBP, the orbit can be
called periodic for a reasonable length of time. For more details on the CRTBP, go to Section 3.1.2. However,
high-fidelity models (n-body dynamical systems) allow such an orbit to deviate from the periodic case in a
relatively short time frame motion due to perturbations of external bodies. For that reason, it is called ”quasi-
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3.1. Dynamic model

periodic” [21, 33]. The geometry of a halo orbit depends on the Jacobi energy of the spacecraft, Cj [71]. The
smaller Cj , the larger the orbit [46].
Equation 3.1 is related to Equation 3.2 and represents the total energy of the tertiary mass (the spacecraft)
relative to the non-dimensional rotating reference frame.

Cj = 2

(
1− µ

r1
+

µ

r2

)
+ x2 + y2 −

(
ẋ2 + ẏ2 + ż2

)
(3.1)

Near Rectilinear Halo Orbits (NRHOs) are a subset of the halo families that make close approaches to
the smaller body (the Moon) [33]. For example, the CAPSTONE mission makes use of such an orbit [6]. The
stability index is smaller for a NRHO compared to that of the nominal halos, so NRHOs are more stable and
thus require less fuel for station keeping [46]. There are also orbits that placed around the L1 and L2 La-
grangian points but lie entirely in the rotational plane of the Moon around Earth, such as the distant retrograde
and Lyapunov orbits [73]. Turan et al. performed analysis specific to the an L2 LPO-ELFO constellation and
showed that the best position observability occurs at moments when LPF is in the high-velocity region, so at
the perilune of its ELFO [11]. K. A. Hill simulated a large variety of constellation geometries and concluded
that Halo-Moon orbiter constellations provide the best observability effectiveness under the conditions shown
below [21]. With regards to inter-satellite navigation using two LPOs, the following statements can be made
[21]:

• Spacecraft should have relatively large separation distances.
• Not all the spacecraft can remain in the same plane for their entire trajectories.
• Libration orbits with shorter periods lead to faster convergence. This was found by Turan et al. too [61].

3.1.2. Circular-Restricted Three-Body Problem
In cislunar space, the Earth and the Moon are the two bodies that are the dominant gravitational forces. A
large number of dynamic models exist that aim to approximate the full-ephemeris model for varying levels of
complexity for the space environment. For example, the Bi-circular Four-body Problem (BFP) considers the
Earth andMoon as the two primaries and a third gravitational perturbation such as the Sun [74]. An evenmore
simplified option is to only include the Earth andMoon, but to approximate themutual elliptical behavior of the
orbits of the two primaries. The latter is known as the Elliptical Restricted Three-Body Problem (ERTBP) [74].
The easiest, and most commonly employed model is the Circular-Restricted Three-Body Problem (CRTBP),
which is used most often in literature in the context of inter-satellite based navigation [21, 27, 12, 59, 11, 71,
75]. The CRTBP is defined by the following equations of motion:

ẍ = x+ 2ẏ − (1− µ)(x+ µ)

r31
− µ(x+ µ− 1)

r32

ÿ = y − 2ẋ− (1− µ)y

r31
− µy

r32

z̈ = − (1− µ)z

r31
− µz

r32

(3.2)

r2 =
√
(x+ µ− 1)2 + y2 + z2

r1 =
√
(x+ µ)2 + y2 + z2

µ =
m2

m1 +m2

(3.3)

Here, x, y, and z represent the spacecraft states with respect to the Earth-Moon barycenter in a rotating
reference system or synodic frame. These three states define r in Figure 3.1. The system contains three
bodies, assigned the following properties: Earth (P1 andm1 = mE), Moon (P2 andm2 = mM ), and spacecraft
(P3, m3 = 0). Equation 3.2 makes use to dimensionless parameters: µ represents the dimensionless mass
distribution, r1 is the distance between P3 and P1, and r2 is the distance between the P3 and P2. This model
assumes no perturbations from bodies other than the primary and secondary bodies, zero spacecraft mass,
and a time-invariant Earth-Moon distance. The CRTBP can generate a family of LPOs, ranging in size. Under
the idealized environment of the CRTBP, these solutions can be perfectly periodic. This is not the case when
orbital perturbations exist in the environment as is explained in Section 3.1.3.
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Figure 3.1: The xy-plane of the CRTBP Earth-Moon synodic frame. Source: [76]

3.1.3. Full ephemeris models
In reality, the dynamical system is complex because it includes a large variety of perturbing forces on the
spacecraft. Because planets and moons aren’t orbiting in purely circular, co-planar orbits in the real solar
system have no longer any periodic solutions. The same primary locations do not reoccur in any acceptable
amount of time [77]. The best representation would be a ”full-ephemeris” model that includes accurate time-
dependent positions of all celestial bodies. The dynamics of spacecrafts is represented by a set of equations
of motion like in Equation 3.10, yielding a nonlinear first-order ordinary differential equation represented in the
form shown in Equation 3.4. Here, f is a summation of the force terms defined in terms of the state x.

ẋ = f(x, t) (3.4)

Acceleration modeling
Aswasmentioned in Section 2.1, the largest demand for small satellites is formissions that operate in cislunar
space. For this reason, this environment will be of our concern in this section. In this region of space, forces
acting on a spacecraft include gravitational influences from the Earth, Moon, and Sun, and solar radiation
pressure. Gravitational influences can be modeled as a coming from a point mass or based on an irregular
mass distribution of a celestial body, also known as spherical harmonics). Gravitational influences can come
from Earth and the moon, but also from other bodies in the solar system. Among these, the most relevant
terms are the gravity terms of the Earth and Moon and the solar radiation pressure [21]. Orbit trajectories of a
close distance near the celestial body, such as a very low Moon orbit, make the trajectory more susceptible to
the order and degree of spherical harmonics of the celestial body, while satellites further away from the body
have a larger sensitivity to solar radiation pressure coming from solar radiation. A visual representation of all
acceleration terms can be found in Figure 5.4 and Figure 5.5.

In the list below, more detail is provided regarding force terms.

• Point mass gravity
In the point mass model, one considers the gravitational attraction between a spacecraft and other ce-
lestial bodies treated as point masses. This model accounts for the gravitational influence from planets,
moons, and other significant bodies in the solar system [38].

fPM = − µt

∥r∥3
r −

∑
i

µi

(
ri

∥ri∥3
+

r − ri

∥r − ri∥3

)
(3.5)
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The first term is the force on a spacecraft defined with respect to the origin of an inertial reference sys-
tem in with a target body in defined, such as the Earth-centered J2000 frame. The first term of the sum
describes the forces exerted by the target body on other bodies. It is important to note that all bodies
are gravitationally attracted towards each other as well, which is defined in the second part of the sum.

• Solar radiation pressure
There are various ways in which solar radiation pressure (SRP) can be simulated, but this study assumes
the cannonball radiation method [38]. In this model, one assumes that the spacecraft’s effective area A
remains constant and unaffected by its orientation. This is a valid assumption because the largest area
of a spacecraft, most likely the extended solar arrays, is typically pointed towards the Sun.

fSRP =
CRLS

4πc

A

m

r − rs

∥r − rs∥3
(3.6)

It should be noted that there might be moments when the irradiation from the Sun does not occur and
thus no solar radiation pressure is exerted on a spacecraft. One such aspects is the effect of occul-
tations [78, 79]. In such case, the Moon can block the sunlight reaching a satellite and consequently
Equation 3.6 does not occur in the EOMs. Literature shows that for EM L2 Lagrange point orbits, Earth
and Moon induced shadows occur biannually and monthly respectively and increasing a Lagrange point
orbit’s amplitude decreases the total shadow times [78, 77].

• Spherical harmonics
The spherical harmonics relies on the gravitational potential, which is defined for a given body of arbitrary
geometry and mass distribution, at a point outside the planet itself by the following equation [38]:

U =
µ

r

[
1−

∞∑
n=2

Jn

(
R

r

)n

Pn(sinϕ) +
∞∑

n=2

n∑
m=1

Jn,m

(
R

r

)n

Pn,m(sinϕ) cosm (Λ− Λn,m)

]
(3.7)

This potential includes Legendre polynomials, depending on the order m and degree n.

Pn(x) =
1

(−2)nn!

dn

dxn

(
1− x2

)n
Pn,m(x) =

(
1− x2

)m/2 dmPn(x)

dxm
(3.8)

For the spherical harmonics acceleration terms, the relationship between potential and force is funda-
mental: forces in a conservative field can be derived as the negative gradient of a potential function [38].
In that case, the total force from spherical harmonics of any order and degree can be defined as

fSH = −∇U (3.9)

The net acceleration of the spacecraft is the vector sum of all these forces. Combining the contributions from
the spherical harmonics model, the SRP model, and the point mass model gives the total acceleration. To
cover all other forces that exists fothers is added.

fnet = fPM + fSRP + fSH + fothers (3.10)

3.1.4. Differential shooting technique
An important aspect tomention is that some trajectories, such as the L2 Lagrange point orbit, are not perfectly
periodic in a high-fidelity environment in contrast to the CRTBP as discussed in Section 3.1.2. In the case of
perturbations other than a point mass from Earth and Moon, LPOs are inherently unstable. Numerical sim-
ulations in higher-fidelity dynamical models yield a state history in which the Lagrange point orbiter departs
from the ideal periodic solution after one to two revolutions [80]. For LUMIO one revolution equates to approx-
imately 14 to 28 days [11]. For longer time periods, periodic-like solutions can be found, commonly referred to
as quasi-periodic orbits, which can be used as amulti-revolution reference solution that the spacecraft should
follow. These orbits are generated by means of the multiple differential shooting technique [80]. This method
aims to generate adjustments to the velocity element of the state vector at the start of so-called patch points,
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given constraints on position and velocity continuous between the patch points [77]. In this work, such refer-
ence trajectory is provided by an external party as will be touched upon in Section 4.1.

3.2. Measurement model
When observation data histories do not exist, one has to simulate observations based on the expected space-
craft state, which is done using the measurement model. The most common satellite observation types are
range and range-rate [40] but line-of-sight (LOS) angles are also used [22]. To enable inter-satellite based navi-
gation, radio-frequency LOS data is sometimes paired with range measurements [62]. For the LUMIO mission
it was shown that range-only measurements provide better accuracy than range-rate only measurements [11].
For that reason, range is chosen to be the only observable type under consideration, which is defined by the a
geometrical distance between the two spacecraft plus noise and bias terms that arise from imperfections in
the measurements as shown in Equation 3.11. ρbias depends on the delay in round-trip light time caused by
the satellite clock states, and the signal line and transponding delays [11].

ρ =

√
(x1 − x2)

2
+ (y1 − y2)

2
+ (z1 − z2)

2
+ρbias + ρnoise (3.11)

3.3. Estimation model
Equation 3.11 serves as the foundation for developing an estimation model for which the goal is to estimate
spacecraft states that best match the inter-satellite range observations [36]. This section is split up into three
subsections. Section 3.3.1 elaborates on the estimation techniques that can be used and explains the esti-
mator choice for this work. Section 3.3.2 touches upon how linearization techniques are used to estimate
states in non-linear dynamical systems. Lastly, the last steps to solve for estimate solutions are explained in
Section 3.3.3.

3.3.1. Types of estimators
There is a variety of algorithms that can be used to estimate spacecraft states based on incoming obser-
vations from the measurement model of Section 3.2. These are divided into two main groups: sequential
estimation and batch estimation [40, 38, 81]. Both methods are similar in that they aim to decrease the uncer-
tainty between the estimated state and true state and [82, 83]. The difference between these types is that the
sequential estimator updates the estimate with every incoming measurement. The batch estimator, however,
processes an entire observation set, also known as a batch, at once for a given tracking arc or fit span. As
such, it collects one or more observations before estimating the next state as shown in Figure 3.2. A com-
monly used batch estimator is the Batch Least Squares estimator (BLS) which finds the best state estimate
based on minimizing the sum of squared residuals between the estimated trajectory and the trajectory ob-
tained through measurements [40]. BLS estimators are mostly used for offline processing purposes, driven
by operational scenarios in which data can only be downloaded within certain time windows and processed
later (such as ground stations) [21]. Regardless, the BLS estimator generally offers the benefit of producing
state estimates with lower error-covariance than sequential estimation techniques [40]. Other benefits with
respect to sequential estimation algorithms are that BLS is less susceptible to initial estimation errors than
sequential estimators and that it is better a handling observation outliers [38]. Because of these benefits,
this work only considers a BLS estimator. While sequential estimators are more common in literature in the
context of AOD, BLS has been applied to this context before [21, 56, 36] and it is integrated neatly within the
architecture of the Tudatpy package [84].
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3.3. Estimation model

Figure 3.2: Batch Least Squares filter. Source: [40]

3.3.2. System linearization
Typically, as can be seen by the equations in Section 4.3 and Section 3.2, the dynamics andmeasurements are
described by non-linear equationswith respect to the state variables. TheBLSapproximates the state estimate
by linearizing the non-linear dynamics and measurement equations with respect to a reference point because
the least squares approach works best with linear relationships [40]. Linearization refers in essence to using
the first term of the Taylor series of an otherwise non-linear function. As a caveat, linearization discards higher-
order terms in the system dynamics, which may be significant in certain scenarios such as perilune in lunar
elliptical orbits [16, 70]. The Taylor series approximation of the dynamics and measurement equations could
be extended to higher order terms to capture some of the effects caused by non-linearities in more advanced
methods [85]. For the same of simplicity, this will not be considered in this work.

In the context of a system with two satellites, the state vector is defined as shown in Equation 3.12. Here,
the subscripts 1 and 2 refer to LPF and LUMIO respectively. This notation will be used extensively throughout
this document.

x = [r1,v1, r2,v2] (3.12)

In the linearized least squares algorithm, instead of estimating the absolute state, x, the deviations along a
reference point x∗,∆x, are used as indicated in Equation 3.16 and Equation 3.17 [40]. An asterisk (*) indicates
that the values of x and y are from the reference path from Equation 3.4 with the initial conditions x∗(t0) =

x(t0). Note that the same parameter is indicated as xref
0 in Figure 3.2. The measurement residuals ∆y are

defined as the difference between the true observations and the observations derived from the linearized
observation-state relationship with respect to the reference point x∗.

∆x = x− x∗ (3.13)

∆y = y − y∗ (3.14)

The propagation of ∆x is done by the State Transition Matrix (STM), indicated as Φ (t, t0). The STM de-
scribes how a state evolves from an initial time t0 to a later time t. An initial deviation ∆x(t0) is mapped onto
epoch another epoch, giving ∆x(t). Φ (t, tk) [40]. The STM will be used extensively throughout this work and
is calculated as shown in Equation 3.15 [38]. Besides deriving the STM from numerical integration, it should
be noted that the same STM can be approximated using a Taylor series as well [86, 87, 88, 89].

Φ̇ (t, t0) =
∂f

∂x

∣∣∣∣
x=x∗

Φ (t, t0) (3.15)

Once Φ̇ (t, t0) is defined, the future values of ∆x(t), based on the to be estimated ∆x(t0) can be defined
using Equation 3.16. The same method done is used for the propagation of the measurement residuals of
Equation 3.14 as shown in Equation 3.17.

∆x(t) = Φ (t, t0)∆x(t0) (3.16)
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∆y(ti) = H̃i∆x(ti) =
∂h

∂x

∣∣∣∣
x=x∗

i

∆x(ti) (3.17)

Note how the measurement residual is connected to the state residual. This is due to the fact that the
values of ρ of Equation 3.11 are converted into H̃i at each measurement epoch, as shown in Equation 3.18,
which defines the measurement Jacobian matrix that relates the observables to the state vector. Defining H̃i

can be done analytically or numerically. Erdem et al. [11] provides analytical expressions for the entries of
Equation 3.18. Most importantly, this matrix defines the observational geometry, which affects the ability to
obtain information about a certainty state during the estimation process. In other words, the values in this
array define the degree of observability as will be discussed in Section 3.4. H̃i is converted into Hi through
Equation 3.19, which relates the observations to the growth of state uncertainty with respect to t0.

H̃i =
[

∂ρ
∂x1

· · · ∂ρ
∂ż2

]
(3.18)

Hi = H̃iΦ (ti, tk) Φ (ti, tk) = diag [Φ1 (ti, tk) ,Φ2 (ti, tk)] ∈ R12×12 (3.19)

Regarding timestamps, measurements are divided into fit spans or tracking arcs defined by k = 1, . . .m.
For every arc k there are measurements i = 1, . . . ℓ. The dimension of H̃i depends on the amount of measure-
ment types that are included in the simulation and quantity of elements of the state vector. For each epoch
in a fit span the measurement residuals and STMs are calculated. The observation-state relationship at ti is
mapped back to the epoch at the start of the measurement batch tk [21].

3.3.3. Normal equation
Once the linearized equations are established, the final step can be done inwhich the elements of Section 3.3.2
are combined to solve for the state estimate. The best estimates in this scenario are computed by minimizing
a cost function of the observation residuals using the so-called normal equation as shown in Equation 3.22.
When measurements contain uncertainties like noise, a ”weighted” version of this equation is used to com-
pensate in estimation errors coming from these uncertainties, which is done by adding the measurement
weighing matrix W as defined by Equation 3.20 [40]. When one has only one type of observable, when the
matrix converts into a scalar quantity.

W =


1
σ2
1

0 0

0
. . . 0

0 0 1
σ2
n

 (3.20)

Errors are typically assumed to be independent frompreviousmeasurements of the same observation type
[40]. The normal equation in Equation 3.22 consists of the informationmatrixΛ and information vectorN . The
information matrix reflects howmuch information the observed data provides about the states. Larger values
of the entries in the matrix imply that the observations provide a lot of information about the state, leading to
more precise estimates. Smaller values indicate less information and therefore less precision in the estimates
[38].

Λ = P−1
0 +HTWH = P−1

0 +

ℓ∑
i=1

HT
i WHi

N = HTW∆y =

ℓ∑
i=1

HT
i W∆yi

(3.21)

An a-priori covariance matrix P 0 could be added to the information matrix in case there is already some
knowledge about the state to guide the estimator towards a solution. Note that the normal equation calculates
an estimate of the state deviation ∆x̂ instead of the state itself, x̂, as can be seen in Equation 3.22. The
calculation of x̂ is an iterative process, which goes as follows. A new updated trajectory is calculated, the
steps of Equation 3.21, Equation 3.22 and Equation 3.23 are performed. Until a desired convergence level is
reached, these steps are repeated. Convergence can be quantified in terms of estimation error or the number
of iterations [38].
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∆x̂ = Λ−1N∆y (3.22)

x̂ = x+∆x̂ (3.23)

3.4. Observability
An important aspect related to state estimation is the concept of observability, which refers to the capacity
to acquire a unique estimation solution for spacecraft states [40, 52]. An increase in observability is related
to an increase in state estimation accuracy and is used when one wants to relate orbit determination perfor-
mance to the relative spacecraft geometry, measurement type, accuracy or measurement frequency [21, 52,
51]. It is the level of observability that defines why some orbit constellations are better able to perform AOD
than others as a direct consequence of the geometric diversity of the orbit trajectories [79]. In other words,
there are constellations in which for each measurement or batch of measurements more useful information
is added to the estimation than for other constellations, as some orbit configurations are not able to obtain a
unique solution based on relative observations [90].

This section is split up into three subsections. Firstly, Section 3.4.1 touches upon how observability is
defined and how its performance is quantified. This is then followed by Section 3.4.2 that focuses on what
analysis have been done so far in relation to observability, particularly in terms of inter-satellite orbit determi-
nation. Lastly, Section 3.4.3 elaborates upon the notion that the spacecraft states are coupled and how it can
affect the navigation process.

3.4.1. Quantifying state observability
The degree to which radiometric measurements provide information on the states can be quantified from the
eigenvectors and eigenvalues resulting from the information matrix or observability Gramian Λ as shown in
Equation 3.24. It represents the sum of ”observation effectiveness” elements δΛ (ti) at observation i = 1, . . . ℓ
with δΛ (ti) ∈ R12×12 [21]. Note that Equation 3.24 is the same as Equation 3.21 but without the a-priori
covariance [79]. For this reason, for measuring total observability, one should ignore P 0 as it tends to give
a warped image of the true observability as the estimate is guided towards a specific solution with priori
knowledge instead of purely based on measurements only. [21].

Λ =

ℓ∑
i=1

δΛ (ti) =

ℓ∑
i=1

HT
i WHi =

ℓ∑
i=1

ΦT (ti, t0) H̃
T

i WH̃iΦ (ti, t0) (3.24)

A property ofΛ is that its inverse is the covariancematrixP . With a known a-priorimatrixP 0, observability
and covariance can be related. P 0 can artificiallymake the systemobservable and should therefore technically
not be used in observability analyses [22].

Λ = P−1
0 +

ℓ∑
i=1

HT
i WHi (3.25)

One aspect is that the information matrix has to be positive definite in order for the system states to be
considering observable [21]. While the degree of observability varies under each geometry, an information
matrix with condition number (defined as the ratio of the greatest eigenvalue to the lowest eigenvalue) lower
than 1016 is still considered positive definite and can then serve as a metric to assess whether the estimator
is able to provide a unique solution [21]. The uniqueness of such a solution can only be established when
the STMs of both spacecraft are different, which is only possible when at least one of the spacecrafts in the
system has a unique orbit. If this is not the case, then the entries of Equation 3.18 become linearly dependent.

The effectiveness of the measurement for a particular position state can be represented as the eigenvalue
belonging to the eigenvector of the respective state. The norms of the eigenvectors derived fromΛ are an indi-
cation of the amount of useful information gathered from an observation of a particular state. The maximum
of observability effectiveness of the position vectors can be described by Equation 3.26 [21]. The symbol i
refers to the columns of δΛ.
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√
max||eig(δΛi)|| i ∈ 1, 2, 3 (3.26)

How state uncertainty changes over time is defined by the Φ (ti, t0)Φ
T (ti, t0), also known as the mon-

odromy matrix [21]. This matrix gives special eigenvalue properties [21, 91]. The last two of its six eigenval-
ues indicate the stable and unstable manifolds or, in other words, the principle axis in the ellipsoid that have
||λ|| ≤ 1 and ||λ|| > 1 respectively [92]. If the STM is propagated over other time scales than one orbit period,
one obtains ”local” manifolds. An unstable manifold refers to the direction in the error ellipsoid in which state
uncertainty builds up over time. A more effective observation senses along the wide axis of the uncertainty
ellipsoid. The more perpendicular the observations are with respect to the unstable manifold, the worse the
observation effectiveness. This can be seen by the timing and extent of ”blackout periods” over time by K. A.
Hill [21]. Since the observation directionwith respect to the error ellipsoidmatters, it means thatmeasurement
effectiveness depends on the relative orbit geometries of the two satellites performing SST. Plotting observ-
ability provides insight into an optimal timing observation strategy while taking into account the limitations of
the sensors on-board. The moments at which the eigenvalues of the information matrix are the largest could
be the best moments to perform observations [93]. The observability can also be applied when estimating
model parameters [93].

From the eigenvectors derived from the monodromy matrix one can also find the ”sensitivity”, a slightly
different metric but seems to refer to the same idea as state above [46, 94].

S =
1

2

(
||λi||+

1

||λi||

)
(3.27)

In Equation 3.27, one uses the eigenvalues from the monodromy matrix associated with the (un)stable
subspace of the orbit. In case an orbit is stable or unstable, one has S ≤ 1 and S > 1 respectively [94].
Another way to quantify the degree of observability is by the condition number. This is defined as the ratio
of the largest to the smallest eigenvalue of the information matrix. A smaller condition number represents
better observability [79]. The system is considered not observable if the condition number is larger than 1016

[95, 21].

3.4.2. Previous observability research
Most observability analyses in terms of AOD have been performed based on orbits around the Earth in the
context of formation flying. These were based on angle-only [90, 96, 97, 51, 98], angle and angle-rate [93]
or range-only [64, 52, 99, 100] measurements. For such two body systems, only local observability can be
achieved without additional predefined knowledge on the system because these two body problems provide
more than one solution for a set of measurements [100]. More importantly, cislunar formations with LPOs
were conducted as well, although to a lesser extend compared to Earth or lunar orbiters [21, 11, 79]. The
amount of information acquired at a certain epoch can be seen in Figure 3.3 and Figure 3.4. The left subfigure
shows position observability for two satellites in different lunar orbits and the figure on the right indicates a
constellation of a lunar orbiter with a L2 Lagrange point orbiter. It is important to note the dips in δΛ which
indicates that at those locations, observability is lower.

22



3.4. Observability

Figure 3.3: Position observation effectiveness for two different orbit combinations. Source: [21]

Another example of the time change of position state observability can be seen in the research done on the
LUMIO/LPF mission by Turan et al [11]. The orange plot corresponds with the elliptical lunar orbiter LPF and
the blue plot is related with the L2 Lagrange point orbiter. Clearly, the observability of LPF varies more than
that of LUMIO. LUMIO’s observability does not vary as much and more measurements yield better knowledge
of the position states. Fluctuations can be seen after day 6 for LUMIO, which is a direct result of the inter-
connectedness as a result of the inter-satellite observations. The peaks and dips in the LPF plot correspond
with the knowledge that passes in regions of faster dynamics (perilune) yield larger observability for position
states and lower observability for velocity states [70, 101, 31]. The opposite is true for apolune [70]. What
this means is that it might be more beneficial to perform tracking sessions at perilune to estimate position
states and at perilune to estimate velocity states. As a caveat it should be noted that convergence issues
could arise when one estimates in the perilune region [31]. This is because of the validity of the assumption
of linearization, as discussed in Section 3.3.2, can breaking down, which prevents the estimation algorithm,
as discussed in Section 3.3.3, from converging to a solution.

Figure 3.4: Observation effectiveness of the LUMIO-LPF constellation. Source: [11]

3.4.3. Spacecraft state coupling
When the measurement JacobianH is decomposed into its elements, as shown in Equation 3.28, it becomes
clear that its constituents consists of terms related to both satellites as indicated by the subscripts 1 and 2.
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This is because the observational geometry, indicated by the partial derivatives, are taken for ρ, which is a
function of the states of both satellites as was explained in Section 3.2.

H = H̃Φ (tk, t0) =
[

∂ρ
∂r1

Φ1,rr
∂ρ
∂r1

Φ1,rv
∂ρ
∂r2

Φ2,rr
∂ρ
∂r2

Φ2,rv

]
(3.28)

How this translates into the information matrix is made clear by Equation 3.29, which is based on Equa-
tion 3.24.

Λ = P−1
0 +

1

σ2
ρ

ℓ∑
i=1


∂ρ
∂x1

Φ1,xx
∂ρ
∂x1

Φ1,xx . . . ∂ρ
∂x1

Φ1,xx
∂ρ
∂z2

Φ2,zż

...
. . .

...
∂ρ
∂z2

Φ2,zż
∂ρ
∂x1

Φ1,xx . . . ∂ρ
∂z2

Φ2,zż
∂ρ
∂z2

Φ2,zż


i

(3.29)

From Equation 3.29 is becomes clear that not only the observational geometry leads to state intercon-
nectedness. In fact, cross terms exists that combine the growth of state uncertainty, defined by Φ, of both
satellites into one mathematical product. Since Λ will be directly used in Equation 3.22 to calculate state es-
timates, the orbit determination process inherently depends on the states of both spacecraft simultaneously.
The estimation uncertainties of spacecraft 1 and 2 rely on parameters related to each other, which can indi-
rectly affect the correction costs of a satellite as shown in Equation 3.30. However, it should not be forgotten
that the dispersion with the target orbit also plays a role. This will be discussed in Section 3.5.

σ1

(
∂ρ

∂r1
,
∂ρ

∂r2
,Φ1,Φ2, σρ

)
↔ σ2

(
∂ρ

∂r1
,
∂ρ

∂r2
,Φ1,Φ2, σρ

)
→ ∆V (σ2) (3.30)

3.5. Correction model
Over longer durations of time, perturbative forces will divert a spacecraft from its desired orbit. Station keep-
ing maneuvers (SKMs) should be incorporated to allow for a mission to operate successfully for extended
periods of time [8, 68, 94]. The correction model will calculate such SKMs to enable a spacecraft to follow
its targeted reference trajectory. In the context of LUMIO, this path is given by a continuation model as was
explained in Section 3.1.4.

This section is split up into two subsections. Firstly, Section 3.5.1 will touch upon an algorithm that is used
to calculate the costs associated with the SKMs. Then, Section 3.5.2 mentions some points in terms of the
mission design that can affect the station keeping costs.

3.5.1. Target point method
The Target Point Method (TPM) calculates impulsive station keeping maneuvers by minimizing a weighted
cost function that is expressed in terms of ∆V and state deviations from the predefined reference orbit [32,
102]. Howell and Pernicka [103] initially proposed using this method for LPOs in the Earth-Moon system in
1993 and the LUMIO and EQUULEUS small satellite missions have adopted the TPM [46, 5]. A visual represen-
tation of the method is shown in Figure 3.5. The process consists of a few steps which will be explain in this
subsection.
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Figure 3.5: Illustration of the target point method for an L2 orbiter. Source: [46]

Firstly, consider a region in a LPO where a tracking arc is initiated, indicated by the yellow region in Fig-
ure 3.5. After the tracking session is finished, the latest state estimate is used to calculate the correction
required to guide the spacecraft to the target points of which the calculation is based on minimizing the ob-
jective value defined by Equation 3.31.

JSKM = ∆V T
SKMQ∆V SKM +

Npt∑
i=1

bTi Ribi

bi = Φrr(tc, ti)∆rc +Φrv(tc, ti)∆vc +Φrv(tv, ti)∆V SKM

(3.31)

From Equation 3.31 it is clear that the objective depends on SKM cost,∆V , and its expected dispersion at
a future target point number i. Figure 3.5 shows a cut-off duration, which is based on the fact that the updated
state estimate is typically sent back and forth between Earth and the spacecraft to calculate the correction
maneuver [46]. As a result, there is a period between the end of tracking and actual SKM. In the context of
this study, there is no need for communication with the Earth, which leads to the assumption that this cut-off
time is negligible and that, consequently, the maneuver occurs instantly after the latest tracking arc. Addition-
ally, note that Figure 3.5 shows two target points. This is not required, as long as at least one is used as the
indexing at the summation symbol in Equation 3.31 suggests.

Then, the most optimal SKM is calculated with Equation 3.32 which is the result when setting the partial
derivative of JSKM with respect to ∆V to zero and rewriting the equation to an equation for ∆V SKM . As
shown in Equation 3.32,∆V depends on the on-board dynamic model (Φ), the position and velocity deviation
between the estimated orbit and reference orbit (∆rc and ∆vc) and weighting matrices (Ri). The entries of
the weighting matrices are assumed constant throughout all calculations. Higher orbit methods versions of
Equation 3.32 exist [104], but this will be not be dealt with in this work.

∆V SKM = A

Npt∑
i=1

(αi∆rc + βi∆vc)

A = −

(QT +Q
)
+

Npt∑
i=1

ΦT
rv (tv, ti)

(
RT

i +Ri

)
Φrv (tv, ti)

−1

αi = ΦT
rv (tv, ti)

(
RT

i +Ri

)
Φrr (tc, ti)

βi = ΦT
rv (tv, ti)

(
RT

i +Ri

)
Φrv (tc, ti)

(3.32)
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In case there is only one target point and assuming unit weight matrices, then Equation 3.32 can simply be
rewritten as Equation 3.33. Note that in this case, the expression for ∆V seems to be simply linearly related
to the position and velocity deviation with respect to the reference trajectory.

∆V SKM = −Φ−1
rv (tc, ti)Φrr (tc, ti)∆rc −∆vc (3.33)

3.5.2. Operational considerations
Note that while Figure 3.5 only considers one tracking session and correction, it is up to the mission design
requirements howmany of such tracking plus correction sessions are performed. In order to avoid that SKMs
are conducted unnecessarily often and tomodel hardware limitations of real propulsion systems, an additional
constraint could be set on the minimum magnitude of ∆V per maneuver. In other words, when the required
correction, as calculated by Equation 3.33, is smaller than this threshold, the maneuver is canceled and the
correction is performed at the next opportunity. Literature has performed such station keeping scenario with
a L2 LPO based on threshold values of 0.02 m/s and 0.03 m/s and showed that total costs increases with
increases threshold value [105]. Depending on the expected values of ∆V throughout a mission, propulsion
subsystems requirements are set. Or, as the other way around, the correction strategy is adapted to the limi-
tations of the propulsion system. Another consideration related to the propulsion system is the accuracy of
the correction itself. It is known that errors in the execution of SKMmaneuvers leads to increased∆V [8, 106].

Additionally, the SKMs are influenced by the magnitude of estimation error [107, 32], which means that the
magnitude of∆V is influenced by the observability as discussed in Section 3.4 [108, 21]. A logical conclusion
from this is that it means that an important factor for station keeping is the choice of the satellite constellation
in which the inter-satellite tracking is performed. The LPF-LUMIO case study serves as a good candidate for
such constellation as touched upon in Section 3.4.

The cost also simply relies on the shape of an orbit itself and the perturbations that are imposed on the
satellite in the respective physical environment. This thesis works with LUMIO with an L2 LPO, but SKMs
can be performed on other orbits as well. It is known that co-linear halo orbits (L1, L2 and L3) are inherently
unstable [109, 60, 79] and that relatively low magnitude SKM corrections are required for those halo orbits
compared to for example Distant Retrograde Orbits (DROs) [59]. Another way to link an LPO orbit and ∆V is
through the Jacobi energy of the orbit, of which the definition of Jacobi energy is defined [46]. In the context
of LUMIO, a Jacobi constant of 3.09 was chosen such that the ∆V for year of SKMs is kept minimal [46]. For
more details on LPOs, please revisit Section 3.1.1.

Lastly, the choice on the SKM timing pattern can have a drastic influence on the accumulated ∆V . For
example, the worst-case 1-year operational SKM ∆V of the LUMIO orbit was found to be 28.1 m/s (µ + 3σ),
but it should be noted that this value is based on a tracking timing in the sequence of 7, 7 and 14 days [46].
While this maneuver frequency design enables excellent science orbit operations, it comes at a higher cost
compared to a more evenly distributed SKMs [46]. With regards to these distributed SKM timings, literature
recommends carrying out three to four SKMs every halo orbit to minimize cost [109]. Additionally, it was
proven that increasing the minimal interval between SKMs can significantly increase the accumulated∆V for
a LPO [105].

3.6. Uncertainly propagation
Ideally, measurements of the true spacecraft state are done as often as possible. However, this might not
always be possible or necessary. To obtain a notion of the growth of estimation uncertainty over time, one
needs to propagate the statistical moments of this distribution over time. The values of these moments
depend on the errors included in the measurement and dynamical models [40]. If there are no errors in the
dynamical model, noise and bias that occur throughout themeasurement process are the only cause of errors
between model and actual state values [106]. Not including models parameters in the estimation leads to an
overly-optimistic noise-only covariance matrix time evolution and does not represent a realistic uncertainty
envelope anymore [82, 83]. In the non-ideal case, dynamical model errors can be split up into the categories
of aleatory and epistemic errors [110, 106].

• Epistemic errors

26



3.6. Uncertainly propagation

Errors caused by a slight misrepresentation of the true accelerations in the acceleration model, i.e. to
save on computer memory and processing time. Numerical solution techniques, such as discretization
and approximation errors, and convergence precision, are also considered epistemic errors.

• Aleatory errors
Errors that arise from the inherent stochastic nature of reality. If there were no epistemic errors, there
would still be some random errors between expectation and reality.

In general, the uncertainties are believed Gaussian and independent, as this makes to possible to describe
the distribution of the state by just the first two statistical moments, so mean and covariance [106]. There
exist a variety of techniques to quantify the state uncertainty. Three commonly used techniques are explained
below.

• Monte Carlo
An intuitive solution which works on non-linear systems and with Gaussian uncertainties [106]. This
method randomly generates initial state errors, propagates the dynamics and creates an empirical dis-
tribution, and thus mean and variance of the states. The statistics may only be generated for one epoch
and lead to a large computational burden [85, 106].

• Linear covariance analysis
Another option which requires a linearization the system [33, 106]. This can be done under the assump-
tions that

1. A linearized model approximates the dynamics of nearby trajectories sufficiently with regard to a
certain trajectory (the STM from Section 3.1 is used for this)

2. A Gaussian probability distribution can properly capture the uncertainty. That is, no biases exist in
the state and measurement uncertainties

Estimating the time span over which Linear covariance (LinCov) can be used is then based on of knowl-
edge of when the Gaussianiaty assumption breaks [24]. Additionally, since non-linear uncertainty prop-
agation methods demand a greater amount of processing power than linear propagation methods, es-
timating the time when the Gaussianity of the uncertainty breaks is critical for obtaining optimal com-
putational effectiveness [24]. Multiple approaches exist to determine when this happens, such as the
Henze-Zirkler test for multivariate normality (MVN) or the Unscented transform based normalized off-
set (UNO) [111]. This method is computationally much more efficient and can be used in autonomous
on-board mission planning [112, 113]. However, with the linearized system it becomes challenging to
obtain the uncertainty from the orbit when the spacecraft is in an unstable environment or when evalu-
ated over a relatively long time frame [85].

• State Transition Tensors
A higher-order version of the STM where its terms can be added to the linearized version of LinCov as
an extension of the Taylor series. Non-linear factors that are overlooked during the linearization process
might have a significant impact on the solution’s correctness [114]. In order to effectively explain un-
certainty, the State Transition Tensors (STTs) account for non-linearities in the propagation of the mean
and covariance [114, 26, 85]. More accurate information regarding the real trajectory can contribute to a
faster state estimation convergence [85]. This can be done by means of an adapted version of the EKF:
Higher-Order Numerical Extended Kalman Filter (HNEKF) [106, 115].
Benefits include:

1. The STTs are costly to compute. However, once the STT history for a particular reference trajec-
tory is obtained, the result is algebraically evaluated on-board to forecast the influence of any state
deviation, eliminating the need for many on-board integrations to evaluate the final trajectory distri-
bution for every run.

2. Faster on-board computations for station-keeping maneuvers. It enables near-real-time trajectory
planning in response to navigation errors, or other unanticipated events.

3. Because nonlinear dynamics are more easily captured, the state departure from a reference orbit
is more precisely known. As a result, the region of convergence for these approaches should be
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bigger than when only the first term is used. This could lead to smaller maneuver cost and thus a
longer mission lifetime.

Overall, the STT approach outperforms others in terms of computational burden versus accuracy [116,
117]. Under impulsivemaneuvers, an adapted version of the STT is used in the covariance analysis [117].
This work uses the linearized version for simplicity reasons.

With a better knowledge of uncertainty development, one could establish tracking approaches that mini-
mize the number of observations necessary to tighten the uncertainty envelope [118]. An important aspect
to note is that some dynamical regimes other than two-body periodic dynamics, like libration point orbits and
near-rectilinear orbits, require adaptations to the standard STT method for accuracy and time improvements
[119].
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3.7. Overview coupling navigation system
The most important aspect to remember is that the total ∆V is the result of a complex coupled system,
described by, but not necessarily limited to, the following parameters:

∆V (M,d, σOD, TOD, tSKM , tc, NTP , TTP , σobs, Nobs, σSKM ...) (3.34)

Parameter Description

M
The force model used on-board for state predictions in the estimator. If the outputs of this model
are close to the reference orbit, the required corrections are smaller. However, the fidelity
affects the calculation on-board as well.

d The dispersion relates the estimated state to the reference state. If it is still far off, then the correction would be larger.

σOD
State uncertainty of the estimation process influences the accuracy of the SKM as the correction is based
on knowledge of the current position. Corrections downstream depend on the accuracy of previous maneuvers.

TOD
The amount of useful information captured in an estimation arc depends on the satellite dynamics
occurring in the given window. More observed geometry affects the accuracy of the state estimates.

tSKM
Time of the maneuver, depends on durations and start epochs of previous arcs,
doing it later leads to more state uncertainty again.

tc
Cut-off time between OD and a maneuver calculation, depends on the computational efficiency of
on-board electronics. Leads to a delay in maneuver.

NTP Number of target points chosen in a maneuver calculation.
tTP Epochs of target points chosen in a maneuver calculation.
ϵobs Noise level of measurements. More noise leads to more state uncertainty.
Nobs Amount of measurements. More measurements lead to accurate estimation results.

Table 3.1: Description of station keeping cost variables

The estimation error and dispersion both play a crucial role on the total∆V . Withmoremeasurements, the
estimation error should theoretically convergence to smaller and smaller values. In that case, the dispersion
could play a larger influence on the total maneuver costs instead. Figure 3.6 shows a schematic overview
showing how the trajectories of Figure 2.4 are related to the error termswhich then lead to a value ofmaneuver
cost. Note how the correction themselves can be an error source as well. That means that a correction itself
can alter the ideal downstream trajectory.

Figure 3.6: Overview of the contributors of maneuver costs
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4
Methodology

There are variousmethods to optimize a timewindowas described in Section 2.5. This chapter aims to provide
one with insights into the research structure that is used to explore solutions for improved tracking window
configurations. The foundation of this work relies on the use of external packages and data sets, which is
touched upon in Section 4.1. The main assumptions and details regarding the setup of the simulation is
described in Section 4.2 and Section 4.3, respectively. Lastly, the setup that is used to explore the simulation
results is explained in Section 4.4.

4.1. Software and data sets
The simulation framework makes use of a combination of publicly available packages and data sets in order
to perform the calculations. The information touched upon in Section 4.1.2 is not available online but was
made available on request.

4.1.1. TU Delft Astrodynamics Toolbox
Throughout this work, all calculations related to orbit propagation and estimation were conducted by means
of the TU Delft Astrodynamics Toolbox (TUDAT). TUDAT contains a robust collection of validated astrodynam-
ics functionalities [84]. TUDAT’s functionality is built in C++ but includes a Python wrapper called tudatpy.
Besides the propagation of translational and rotational states of bodies, tudatpy possesses an extensive esti-
mation capability that enables one to estimate initial states, biases and othermodel parameters through Batch
Least Squares, using various observables. It has been used before in a previous thesis work on LUMIO [29].
Tudatpy integrates the Spacecraft Planet Instrument C-matrix Events (SPICE) toolkit from NASA’s Navigation
and Ancillary Information Facility (NAIF), which includes the JPL DE405 ephemerides database. The usage
of this database is common practice in literature when it concerns those higher-fidelity models [21, 59, 8, 120,
15]. A downside of tudatpy is that it is still in production and documentation is a work in progress. Another rel-
evant TU Delft-built work is the CRTBP Autonomous Orbit Determination application, built in Matlab by Erdem
Turan. While this application is built based on the CRTBP only, it could be used to validate the TUDAT CRTBP
equivalent. This program is not publicly available.

4.1.2. Reference trajectory
The reference trajectory of LUMIO is a pre-planned orbit generated at Politecnico di Milano in Italy. This orbit
is generated based on an algorithm that generates a continuation model, resembling the targeted orbit over
the time frame of MJD 59091.50 until MJD 61325.00, which is from August 8th 2020 to April 4th 2026. It is
assumed that the discontinuities as a result of generating the continuationmodel are negligible in comparison
with the orbit estimation and orbit correction errors that LUMIO is subjected to in this work. This trajectory will
serve as the basis for all of LUMIO’s SKM calculations. This work assumes that the mission starts on March
21st 2024. This is based on a date that wasmentioned in previous study and earlier thesis work also used this
date. This date is considered valid under the notion that the orbital period LPF is small and therefore similar
observational geometries occur as well when the simulator starts at later dates.
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4.2. Simulation assumptions
The predominant assumptions and its corresponding thought process are discussed in this section.

• Simulation represents a longer mission scenario
The simulation results are representative enough for a longer mission duration than modeled. Due to
computational constraints, it is not feasible to run a simulation over a full period of 365 days, especially
when a Monte Carlo simulation is performed. For this reason, the cost associated from a simulation
with a duration of 28 days was chosen. This value is scaled appropriately to 365 days.

However, consider the first stage of the simulation which is the orbit insertion stabilization phase. Since
the simulation starts with some initial estimation error as remnants from the previous orbit phases to get
to the LPO, the ”nominal” conditions are assumed to occur after those effects have faded out. Only then
SKM costs are certain to be the direct result of the the AOD using inter-satellite links only. This stable
behavior is assumed to occur after one LUMIO orbit of approximately 14 days, as was also suggested
by Cipriano et al. [46]. With a default simulation duration of 28 days, this means that the cost derived
after 14 days, so 14 days, will be used for the annual SKMs cost calculation. A longer propagation time
should see how valid this assumption actually is.

• No cut-off time
SKMs occur instantly after a new state estimate is obtained. The run time required to propagate the
states known on-board from the updated initial state to the current epoch is considered negligible com-
pared to the total arc length, orbital periods or even the arc duration. In reality, the duration of simulating
this depends on a lot of factors such as the processor and fidelity of the used model. A comparison of
the run time of various dynamic models should validate the validity of this assumption.

• Instantaneous maneuvers
Similarly to the cut-off assumption, the orbit corrections are assumed to be impulsive and to occur in-
stantaneously after the last epoch of an estimation arc. This means that LUMIO is assumed to have
instantaneously moved its propulsion system in the right direction such that the maneuvers are con-
ducted in the right direction. The validity of this assumption should be made clear by defining the indi-
vidual SKMs after each arc and calculating the corresponding burn time associated with those SKMs
given the propulsion subsystems of LUMIO.

• No station keeping for LPF
This work only looks at the SKM cost associated with LUMIO because its halo orbit is known to be
inherently unstable compared to other orbits such as that of LPF as touched upon in Section 3.1.1. Ad-
ditionally, it allows for a degree of simplicity by considering the tracking window optimization and its
operational implications for one mission only. The last reason is that the reference trajectory of LPF is
simply not given, so it is challenging to know what a valid reference trajectory would be.

• Initial correction maneuver interval of 4 days
Literature suggest that 3 to 4 maneuvers is the optimal station-keeping frequency for a halo orbit [109].
For an orbit period of LUMIO of approximately 14 days, and assuming the mean of 3.5 maneuvers per
halo orbit, it would equate to an interval of 4 days between maneuvers. In order to compare to this sce-
nario with potentially better results, a baseline scenario tracking window configuration is made where
the duration of each arc is 1 day with a 3-day separation between the start of a new arc and the last
maneuver.

• Full line-of-sight availability of both spacecraft
In reality, not only the translational dynamics of the spacecrafts are important, but also the rotational
dynamics. In order to establish a proper link, both spacecraft should point towards each other with a
decent pointing accuracy for sufficient signal power transfer. Additionally, the spacecraft have their own
mission goals in which payload have to point towards their respective target locations at specific epochs
and are thus not available for links at any time.
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• No systematic model errors
The model does not assume systematic measurement and dynamic model errors. In other words, bias
was not considered in the calculations. This was done to eliminate additional error sources besides
measurement noise that could impact tracking window optimization.

4.3. Full simulation framework
This section serves to provide a clear notion of what is expected from the simulation that is used to simu-
late the inter-satellite tracking and correction maneuvers. The main goal of this simulation is to obtain an
approximation of the annual costs associated with orbit corrections for LUMIO, expressed in ∆V (m/s), over
a period of 28 days as discussed in Section 4.2. More details on this assumption can be found in Section 4.3.1.

Figure 4.1 illustrates the structure of the full simulation framework, which is split up into its main model
constituents, as highlighted by the blue column. Each blue model block relies on the information passed
from the previous blocks. This section aims to provide an extensive overview of the simulation framework by
systematically clarifying details related to each block. An overview of the numerical details can be found in
Table A.2.

The simulation framework is made with the mindset to adjust dynamic, measurement, estimation and cor-
rection models in a modular manner. Combined with an inputted observation window timing sequence, these
four constituents form the building blocks for the navigation model, which outputs an approximation of the
annual∆V . Through this system, it is possible to perform a comparison analysis of the station keeping costs
associated with certain observation window configurations. The mentioned constituents will be elaborated
upon in Section 4.3.2 until Section 4.3.5 and the their relation to the navigation model will be explained in
Section 4.3.6. Additionally, the simulation framework allows one to optimize station keeping costs using the
optimization model which contains a heuristic optimization algorithm that will use the∆V outputs of the nav-
igation model with the objective to minimize this parameter. This will be touched upon in Section 4.3.7.
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Figure 4.1: Schematic overview of the full simulation setup
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4.3.1. Annual cost approximation
Due to computational constraints, the optimization model cannot cover the entire 1-year operational period.
As such, an approximation has to bemade of the annual cost. This is done according to the following formula:

||∆V annual|| ≈ ||∆V >14days||
(

365

Tduration − T14days

)
(4.1)

Here, Tduration−T14days refers to the time difference between the threshold time of 14 days since the start
of the simulation and the total duration of the simulation. This means that for a total simulation duration of
28 days the relevant costs are those associated with the corrections that occur in a time span of 14 days. In
the case that the total duration is 56 days, then the relevant costs come from a time span of 42 days. The
||∆V || after the threshold of 14 days is multiplied by a factor that scales the simulation value of the SKM cost
to 1 year. The visualization in Figure 4.2 is used to explain how the results are shown in Chapter 5.

Figure 4.2: Visualization of the approximation of the annual station cost

4.3.2. Dynamic model
Initial states
The simulationwork assumes that the LUMIO spacecraft starts at its scheduled timeof 00:00:000 onMarch 21,
2024 or Modified Julian Date 60390. Previously, this date was the target date for when LUMIO was expected
to begin its operational phase. Although this date has been delayed to a yet to be defined time, the start
epoch is assumed to not be a limiting factor on the overall analysis. For ease, the spacecraft’s states are
shown in Table 4.2 with respect to the Earth-centered J2000 and non-dimensionalized Earth-Moon synodic
frame, respectively. The three orbit types shown in this figure are explained in Section 4.3.2.2. Note the offset
between the truth and the initial state of both LUMIO and LPF of 500m and 1mm/s. This represents the initial
estimation error and can be found in Appendix A. The LUMIO reference orbit history is derived from data
set explained in Section 4.1.2, defined at the earlier mentioned default mission start epoch of MJD 60390.
Because no precise expected state history of LPF spacecraft is available at the mission start time, the states
of LPF are derived from the lunar Keplerian states provided by Scotti et al. [121] as shown in Table 4.1.

State Value Unit
Semi major axis 5737 km
Eccentricity 0.61 -
Inclination 57.82 deg
Argument of periapsis 90 deg
Longitude of ascending node 61.55 deg
True anomaly 180 deg

Table 4.1: Initial Keplerian states of Lunar Pathfinder
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Inertial
LPF LUMIO

State Estimated Truth Estimated Truth Reference Unit
x -274751545.6 -274752045.6 -310468779.1 -310469279.1 -310469279.1 m
y 250414392.2 250413892.2 249476676 249476176 249476176 m
z 137232530.7 137232030.7 174974583 174974083 174974083 m
vx -503.2448066 -503.2458066 -993.4040049 -993.4050049 -993.4050049 m/s
vy -183.5823604 -183.5833604 -766.3354851 -766.3364851 -766.3364851 m/s
vz -297.1638318 -297.1648318 -524.9891151 -524.9901151 -524.9901151 m/s

Synodic
LPF LUMIO

State Estimated Truth Estimated Truth Reference Unit
x 0.970048539 0.970048179 1.062306657 1.062306297 1.062306297 -
y -0.001916455 -0.001918478 -0.03735667 -0.037358694 -0.037358694 -
z -0.013816446 -0.013816967 0.066320346 0.066319826 0.066319826 -
vx 0.12284516 0.122842901 -0.018254046 -0.018256305 -0.018256305 -
vy -1.506863742 -1.506865024 -2.371789404 -2.371790686 -2.371790686 -
vz -0.183400182 -0.183400603 -0.118124416 -0.118124836 -0.118124836 -

Table 4.2: Initial states of the simulation in the inertial and synodic reference frames

Model classification
Different types of orbits should be considered for the estimation and orbit correction process. There are three
different types of orbits that are relevant for the analysis. Each has its relevance in either the estimation or
station-keeping. For a visual representation please see Figure 2.4.

• True orbit
The trajectory that is used to simulate the true observations during the estimation process.

• Estimated orbit
The trajectory prediction of the spacecrafts that is calculated on-board. Ideally, this model captures all
possible orbital perturbations, but that is not possible due to constraints on computing power and sys-
tematic uncertainties of the physical world. The relevance of including certain perturbations is at the
core of this work.

• Reference orbit
The orbit that is used to define the planned trajectory throughout the mission. This trajectory is the state
history from a continuation model as discussed in Section 3.1.4. Because of this, corrections shall be
applied to the estimated orbit. How accurate this correction is depending on the accuracy of the orbit
determination process.

These models have to be simulated by the dynamic model. Such a model can have different levels of
accuracy, depending on the acceleration terms that are added in the equations of motion. For the sake of
clarity, it is important to establish a consistent naming convention for the different types of dynamic model
that are used. The dynamic models are divided into three groups: low fidelity, high fidelity and full fidelity. In
total there are 34 models. In the order of the groups, this equates to 1, 32 and 1 respectively. The division is
shown in Figure 4.3. The details of the exact accelerations can be found in Appendix A.

• Low Fidelity
The most simplified case of the dynamics of the satellites, constituting a 3-body system, which is the
CRTBP. Thismodel contains aMoonephemeris that is a circular orbit at an average distance of 384747.63
km to the center of the Earth.

• High Fidelity
Describes the dynamics of satelliteswith aMoonephemeris that is derived from the JPLDE405 ephemerides.
Themost basicmodel contains three pointmasses for Earth, Moon andSun. Depending on the subgroup,
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the complexity can be extended with more acceleration terms such as radiation pressure or various de-
grees of spherical harmonics. Additionally, other planetary bodies can be added. For computational
efficiency reasons, spherical harmonics are only considered for Earth and Moon in this work.

• Full Fidelity
The group with the largest complexity of dynamics and aims to capture the physical world as good as
possible within the realm of the translational dynamics functionalities of tudatpy. The base of themodel
contains all acceleration terms of themost complexHigh Fidelitymodel. Additionally, the Schwarzschild,
Lense-Thirring and de Sitter terms for relativistic terms are added. The solar radiation pressure accelera-
tion term is extended by including the albedo from Earth andMoon using the surface panel method [122].
The albedo of the Moon is variable and defined by a 15 order and degree harmonics of the emissivity
properties of surface of the Moon defined by Floberghagen et al [123].

Figure 4.3: Classification of the dynamic models

4.3.3. Measurement model
The measurement model incorporates the principles explained in Section 3.2 for two-way range observables.
Two-way ranging is chosen over one-way due to its better susceptibility to clock asynchronization compared
to one-way ranging [124]. Naturally, the navigation system is susceptible to noise. Therefore, Gaussian dis-
tributed noise elements are added to simulate the behavior as a response to this stochastic nature. Table A.2
shows the standard deviation values associated with various noise terms expected in the real-world scenario.
The noise uncertainty of 2.98 m 1σ is derived from the work of Turan et al. [11] and is assumed represen-
tative of existing pseudo-noise ranging systems [125]. Measurement errors are incorporated by means of
defining two separate dynamic model objects representing a truth orbit and an estimated orbit as discussed
in Section 4.3.2.

4.3.4. Estimation model
The estimationmodel utilizes a Batch-Least Squares (BLS) estimation algorithm and includes the concepts ex-
plained in Section 3.3. For this, specifically the estimation capabilities of tudatpy are used [84]. See Table A.2
for the overview of the values. The measurement frequency results from trial and error, between accuracy
and run time. For any arc, only the initial spacecraft states are estimated, to reduce the overall complexity and
to remove the need for an a-priori estimate of uncertainties and errors for other parameters that technically
could have been estimated alongside, like gravitational parameters or the SRP reflectivity coefficient. The ini-
tial estimation errors are derived from the values used in the work of Turan et al. [11]. It is assumed that the
initial estimation uncertainty values of Table A.2 are adequately realistic for initializing the navigation system
on-board. At the start of the navigation routine, the state uncertainties are assumed to be uncorrelated, so the
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state uncertainty matrix is a matrix with only squared values of the respective standard deviations along the
diagonal.

4.3.5. Correction model
The correction model uses the Target Point Method (TPM) to calculate the SKM as touched upon in section
Section 3.5.1. The default simulation settings incorporate only one target point, which is 3 days downstream
after the cut-off. The choice of this duration is based on trial and error between accuracy and run time. A
SKM is calculated after each arc, the corresponding ∆V is stored, and the orbit is adjusted accordingly. The
maneuver occurs instantaneously, as defined in Section 4.2.

4.3.6. Navigation model
The navigation model can be described as the accumulation of a set of estimation arcs, or also known as ob-
servation windows. The arcs come from the estimation model. The purpose of the navigation model is to get
the value of the total ∆V . The navigation model is in essence the objective function used in the optimization
model, so it is the input to the final blue block as defined by Figure 4.1. The navigation model starts with a
pre-defined initial estimation error, an a-priori covariance of the estimation error, and an insertion error at the
start epoch. The covariance and estimation error initializes the BLS estimator with an initial guess and a-priori
covariance. The insertion error refers to the initial difference between the estimated orbit and the true orbit.
In a for-loop over the observation windows, it iterates through each arc and propagates the states based on
the last information obtained from the latest arc. As explained in Section 4.2, a total duration of 28 days is
considered. The values of the individual corrections that occur after 14 days are summed up and leads to
the final objective value. See Table A.2 for more details on the values. A flowchart of the model is shown in
Appendix B.

Default observation window
Based on the assumptions stated in Section 4.2, an initially ideal starting point for the tracking window con-
figuration that satisfies the an ideal station keeping frequency based on literature [109], was chosen. These
settings are shown in Table 4.3. This will be the absolute starting point for the optimization routine as will be
discussed in Section 4.3.7.

Parameter Value Unit
Start epoch 60390 MJD
Arc length 1 day
Arc interval 3 day
Duration 28 day

Table 4.3: Default settings of the observation window

Figure 4.4: Observation window definitions

Error contributors
Orbit insertion errors are only considered for the states of LUMIO as LPF is assumed to be located at its refer-
ence trajectory at all times as mentioned in Section 4.2. For LUMIO, in practice, this value is assumed based
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on a dispersion value found at themoment the spacecraft leave the rocket [126]. It is assumed that deviations
from LPF’s reference orbit are comparatively small to those of LUMIO in real scenarios. Because of that the
effect of subsequent station keeping effects from the side of LPF are thus not considered. Like orbit insertion
errors, station keeping errors occur only for LUMIO. The errors are defined in both magnitude and direction
[126]. While the default case does in fact consider zero station keeping effects, a later sensitivity analysis
will should to what extent these effects play a role on the total maneuver costs. Likewise, a zero-valued ∆V
threshold is set, which defines the threshold of∆V at which the propulsion system actually performs the cor-
rection due to technical limitations on minimum specific impulse or thrust. This is to accommodate potential
lower limits associated with the performance characteristics of propulsion systems.

4.3.7. Optimization model
In the autonomous navigation framework, the total∆V is the result of a complex coupled system, described by,
but not limited to, the parameters explained in Section 3.7. The design space is spanned by the least amount
of parameters to capture the effect of the varying observational geometry and station keeping epochs, while
reducing the computational burden. The design vectorα contains only parameters describing the duration of
an estimation arc. It is assumed that no cut-off time is present, so the SKM starts right after the arc. By the
second constraint in Equation 4.2, the start of the next estimation arc should be at least 3 days after the latest
SKM. By adjusting just the durations of the tracking window before a correction, one has not just control over
the duration of the tracking windows, but also the consequent epochs at which the SKM occur. The optimizer
looks for an optimal set of tracking durations, considering the cost associated with observing in certain dy-
namical regimes and delaying a maneuver at certain epochs.

minimize ||∆V (α)||
subject to tOD,0 = MJD60390,

tSKM,i = tOD,i + Ti,

tSKM,i+1 = tSKM,i + 3 + Ti,

0.1 ≤ Ti ≤ 2.0, i = 1, 2, . . . , n

where α =
[
T1 T2 · · · Tn

]
α0 =

[
1 1 · · · 1

]
(4.2)

For that reason, Equation 4.2 was chosen as the scheme. The 3 represents the constant arc interval of the
default model settings. The upper and lower bounds are arbitrarily chosen. The navigation simulation runs
a large set of computations based on many variables hidden within the dynamic and estimation models and
thus not every optimization technique is feasible. Optimization methods must be used that can handle noisy
non-differentiable solution spaces. In this study, two optimization method are compared for their ability to
converge to a solution of the observation windows configuration defined by α.

Also, different durations and dynamic models are compared to see the effect on the optimization and
approximation of the research objective of the annual station keeping cost. Figure 4.5 shows the relationship
between the navigation model and the optimization model. Clearly, the optimization model feeds various
candidate solutions for observation windows into the navigation model. Based on the estimation error and
dispersion associated with the resulting evolution of spacecraft states and orbit corrections, a final objective
value is outputted. Based on this, new candidate solutions are inputted, and the iterative cycle continues until
a total of 40 iterations are done. This number proved to be a number at which most runs seemed to have
converged most to a solution.

• Nelder-Mead
The Nelder-Mead method, also known as the simplex algorithm, does not use gradient information from
the objective, making it suitable for optimization situations in which the gradient of the function is un-
known or cannot be fairly estimated [127]. An important aspect to note is that the Nelder-Mead method
with this heuristic technique, which implies that solutions that are not guaranteed to be globally opti-
mal but are sufficient for reaching a solution that improves the total maneuver cost. A disadvantage
of the Nelder-Mead method is that it is known to be highly susceptible to converging to local minima
and is sensitive to the size of the initial simplex. Literature suggest that increasing the size of the ini-
tial simplex and and the defining the shape of the simplex as a regular simplex is advantageous for
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a limited-evaluation-budget case [128]. Another disadvantage is that the Nelder-Mean method suffers
from poor performance in larger dimensions, also known as the curse of dimensionality. The algorithm’s
performance can degrade in high-dimensional spaces because the simplex can become distorted and
collapse, leading to inefficient exploration of the search space [129]. Because of this, the choice of the
initial simplex becomes more critical. A poorly chosen initial simplex can lead to slow convergence or
convergence to sub-optimal solutions. In high-dimensional spaces, defining a good starting simplex is
more complex and requires careful consideration.

• Particle Swarm Optimization
The Particle Swarm Optimization (PSO) algorithm might yield better results and is less susceptible to
the curse of dimensionality [69]. This method is inspired by the behavior of social organisms such as
flocks or birds. It generates a population of particles, each representing a candidate solution, which
move through the search space based on their individual velocity and the collective influence of the best
solutions found by the swarm. The algorithm updates the states of the particles based on the objective
value of the current solution of the particle itself and the global solution found so far. Through a balance
of ”exploration” (looking for new solutions) and ”exploitation” (diving deeper into a good solution), the
particles are encouraged to explore new regions of the search space while also following promising
solutions [69]. The technique is another method to solve noisy non-differentiable objective spaces [69,
25]. While it tends to be more computationally intensive, it is able to find a global optimum more easily
and is robust to a large set of applications [128]. It has been used before by Turan et al. in the context
of tracking window optimization [25].

Figure 4.5: Structure of the optimization logic
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4.4. Test setup
The goal of this section is to show the steps that will be taken to visualize the results from the constituents
of the earlier mentioned models, see what model parameters affect the station keeping costs and finally the
optimization results. In order words, the goal is to understand the mechanisms that occur in the process of
orbit estimation, correction and tracking window optimization. The method is set up such that the results
allow for a logical flow of the results. In Section 5.1, the aim is to define a final choice on the dynamic model
that is considered on-board. With this model, a navigation analysis is done for an initial orientation of the
results of the orbit geometry, observability and maneuver costs to visualize the navigation problem. This is
one in Section 5.2. After this, a sensitivity analysis is elaborated upon in Section 5.3. Finally, Section 5.4 will
state the goal of the final optimization.

Figure 4.6: Methodology used for the analysis of the results

4.4.1. Dynamic model analysis
This work relies on the choice of the on-board dynamic model as it relates to the extent of computational
efforts and accuracy of simulating the dispersion. These respectively affect the ability to find solutions and
lower the difference to the reference orbit as much as possible to reduce the SKM cost. This means that it is
beneficial if the same analysis can be conducted with more simplified models while being able to draw similar
conclusions related to the expectedmaneuver cost [105]. The effectiveness of themaneuvers depends on the
fidelity of the model. Additionally, if a dynamic model is better capable of simulating the reference orbit, then
that will affect the maneuver costs positively due to the lower magnitude of the dispersion. In other words,
the accuracy versus computation time relation allows for an assessment on the feasibility of the usage of the
model in real missions, while taking the total duration of the design exploration on this work into account. So,
the information on the total run time and the dispersion are considered to justify the usage of one particular
model for the rest of the analyses conducted throughout this work. Note that in reality, the truth can never
be known with absolute certainty. As explained in Section 4.2, this work assumes that the on-board dynamic
model essentially perfectly simulates the true trajectory and that the only element of uncertainty comes from
the noise of the measurements.

4.4.2. Navigation analysis
A lot of data comes with running the simulation. As part of an initial exploratory study, different tracking win-
dow cases are considered and their advantages and disadvantages are compared against each other. While
this is not an optimization, it aims to show how different tracking window combinations can have different
outcomes.

Default scenario
First, details of the default simulation scenario as shown as elaborated extensively in Section 4.3 are shown.
Simulation outputs are shown which aims to relate it to the theory on observational geometry, observability,
state uncertainty, dispersion and the resulting annual ∆V . The purpose of these results is to show the rela-
tions that exist between these parameters and to establish some broad conclusions on the overall workings
of the navigation model without necessarily going into the exact optimization of the tracking windows yet.

Candidate scenarios
As part of an initial exploratory study, different tracking window cases are considered. These can be classified
with increasing complexity. The objective is to compare the benefits and drawbacks associated with these
scenarios. A separate chapter, Section 5.4 is allocated to discussing the results of the last item due to its
complexity and nuances.

• Constant arc duration
This case performs tracking windows at a constant duration, but with a pause between different arcs.
Different combinations of arc interval and duration are considered and compared.
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• Arcs based on specific region of orbit
This case contains arcs that occur specifically in certain regions in an orbit that are shown to be themost
relevant for state observability. As was explained in Section 3.4.2, regions of faster dynamics (perilune)
yield larger observability for position states and lower observability for velocity states and the opposite
is true for apolune. Perhaps it is more beneficial to perform tracking sessions at perilune or apolune to
see if this alleviated level of observability in such a orbit region can yield a positive effect of the overall
orbit determination and, consequently, navigation results.

• Variable arc duration
Each arc length is adjusted individually such that the length is not constant. In this case, the solution
space is explored in which certain combinations of tracking sessions make use of a better combination
of state observability and thus provide better estimation errors and more accurate SKMs.

4.4.3. Sensitivity analysis
The simulation contains a lot of parameters that can be adjusted. These could be related to the observation
windows, such as arc lengths, or auxiliary parameters such as station keeping error or observation noise
level. Some might lead to more effect on the total ∆V than others. The sensitivity analysis aims to provide
an overview of the parameters that are most critical to the station keeping reduction. In order to separate
the parameters related to the observation windows from the auxiliary parameters, it is split into individual
sections. The exact parameters and their values will be touched upon in Section 5.3. Only one parameter will
be changed, so the rest remains the same with respect to the default case as described in Section 4.3.

4.4.4. Optimization analysis
In this final step, the optimization model, with the optimization problem definition discussed in Section 4.3.7,
is employed to define the optimal window. This will initially be based on the settings of the default simulation
setup, as shown in Table A.2. A short sensitivity analysis is done on the optimization model results as well to
see if the final window configuration depends significantly on the inputs of the optimization routine.
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5
Main results

Based on the simulation structure andworkflowdescribed in Chapter 4, this chapter aims to provide the results
belonging to the steps and methods mentioned in the previous chapter. This chapter is split up such that
different scenarios are compared in a systematic manner. Section 5.1 shows the influence of using a variety
of on-board dynamic models. The best model derived from this chapter forms a baseline for the calculations
of the navigation and optimizationmodels. Section 5.2 elaborates on the navigation analysis, in which various
aspects of the navigation model are shown for the default settings. Then, Section 5.3 provides an overview
of the effect of changing many model parameter on the total SKM costs. Section 5.4 shows the results from
the optimization model. Finally, the operational benefits associated with the improved tracking configuration
is touched upon in Section 5.5.

5.1. Dynamic model analysis
The force model details for each dynamic model can be found in Appendix A and more information in the
classification of the model was done in Section 4.3.2.

5.1.1. Initial uncorrected trajectory
Figure 5.1 shows the trajectory using an uncorrected PMSRP01 on-board dynamic model (for details, see
Appendix A). The figure shows how the uncorrected trajectory of an example scenario starts following a
typical LPO shape, but the unstable nature of the L2 orbit leads LUMIO to drift away from the orbit to eventually
gravitate towards theMoon. It clearly shows the need for a set of corrective maneuvers within a 28-day period
to be able to sustain it’s 1 year operational lifespan as significant diversion starts to occur over a bit more than
one halo orbit already. While the duration considered in Figure 5.1 is 35 days, the wrong trajectory is a direct
consequence of not performing corrections earlier, so within the 28 days considered in the simulation cases.
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Figure 5.1: Reference trajectories versus uncorrected trajectories over 35 days

5.1.2. Run times
Figure 5.2 shows the run times resulting from propagating the respective models for one day. It is the result
of a Monte Carlo analysis, in which 50 runs were performed with varying start epochs that occur between
60390 and 60404 to see the effect of the variation of orbits on the run time. The propagation time of exactly
1 day was chosen to allow for easy time scaling to other propagation times under the assumption of an equal
propagation time to run-time ratio. Observe the exponentially increasing run time with model complexity. The
CRTBP yields the smallest run time with a mean run time of 0.8 s. This small value is expected, because it
does not consider any other terms than the point masses of the Earth and the Moon. Considering an addi-
tional point mass gravity of the Sun, which is included in all models besides CRTBP, already triples the total run
time in the best case (PM01 and PMSRP01 models) to approximately 4 s. Including solar radiation pressure
does not seem to increase the run time noticeably. On the other hand, including spherical harmonics terms
drastically increases the total run time to a best scenario of 15 s for SH and SHSRP. Running a full-fidelity
model yields an additional order of magnitude increase to approximately 200 s. In terms of run time, it seems
beneficial to use a PM-type model with or without SRP. Section 5.1.3 should show whether to choose PM or
PMSRP based on the expected dispersion with respect to the reference trajectory.

As was explained in Section 4.2, it is assumed that there is no cut-off time. This also implies that the state
uncertainty growth is negligible between the ending the estimation arc and the correction. Assuming the PM-
SRP01 model, statements can be made related to the operations of the correction maneuvers. Given a TPM
with one target point 3 days ahead, as touched upon in Section 3.5.1, the total time to calculate a maneuver
using this method (and thus the cut-off time) is 4 · 3 = 12 s. Note from Figure 5.2 that a CPU with a clock fre-
quency of 2.2GHz is used. LUMIO uses the AAC Microtec Sirius as On-Board Computer (OBC) with a 50MHz
clock frequency [4, 130]. Even though this processor would theoretically increase the run time by a factor
of 2200/50 = 44 to 528 s, it is still small compared to the period of LUMIO or a tracking arc. It is also quite
small compared to the cut-off of 12 h that is currently considered for LUMIO [4]. The run time calculations
show that that this 12 h timewindow is not required in the scenario of AOD,making correctionsmore accurate.

Performing these correction calculations also would not take a lot of power. With a mere power require-
ment of 1.3 W, the total energy consumption of the OBC would equate to 1.3 · 528 = 686.3J. For reference,
LUMIO’s radio transponder has a power requirement of 94.4 W [131], which means that the correction calcu-
lations themselves have limited effect on the power budget.
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Figure 5.2: Run time values for various dynamic models

5.1.3. Dispersion
The degree of dispersion between the on-board and referencemodel affects the total station-keeping costs [8].
As such, the aim of this section is to obtain insights into what is the best dynamic model in terms of lowest
dispersion. Based on the values shown in Figure 5.3, a judgment can be made on what model is drifting
the least from the intended reference trajectory as was touched upon in Section 4.1.2. With the combined
information on run time and dispersion growth a trade-off can be made on the overall best on-board model.
Figure 5.3 shows the RMSE over a period of approximately one LUMIO orbit: 14 days. It can be seen that
models that include SRP terms generally perform better. Dispersion values tend to decrease with increasing
model complexity. CRTBP systematically performs the worst with an RMSE of 1 · 108 m. This is expected
as there is always a large offset as a result of the assumption of constant Earth-Moon distance. Then, the
PM- and SH-type models produce errors which are three orders of magnitude lower at 1 · 105 m. The same
models, but including SRP offers another order of magnitude improvement by having a value of approximately
8 · 103 m. It is clear that incorporating spherical harmonics terms does not seem to improve the dispersion.
Computationally, using spherical harmonics instead of point masses does not improve maneuver cost in a
significant way, while it does significantly increase total run time. The same could be mentioned about the
addition of other celestial bodies, albedo and relativistic effects added in the FFmodel, which clearly offers no
noticeable dispersion benefits. On the other hand, including SRP offersmuchmore improvement in dispersion
with negligible increase in run time. Again, the PM-typemodel with SRP performs best and due to the negligible
influence on dispersion caused by other planetary bodies, the simplest version is chosen to be used throughout
this work: PMSRP01. Again, for details on the dynamic models, please visit Appendix A.
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Figure 5.3: Position dispersion RMSE values for various dynamic models
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5.1.4. Acceleration terms
Figure 5.2 and Section 5.1.3 show the run time and dispersion result caused by different dynamic models,
but one can also look specially into the model constituents to deepen the understanding of the relevancy of
each included acceleration term. the the Looking into the accelerations will provide a clue into the relevance
of including certain force terms into the simulation. Figure 5.4 and Figure 5.5 provide additional information
over Section 5.1.2 and Section 5.1.3, because it allows to systematically assess the effect of individual acceler-
ations and thus allows one to quickly see which termwould actually be relevant to include in a dynamicmodel.

The peak values in the total accelerations in Figure 5.4 occur at perilune passes. As expected, the most
predominant terms, in order to larger to smaller, are: point mass Moon, point mass Earth, radiation pressure
directly from the Sun. While the J2 and J2,2 terms are relatively large in magnitude, the point mass terms of
all planets, albedo, relativistic effects and the spherical harmonics of Earth are negligible. This suggests that
the usage of a point mass model of Earth, Moon and Sun + SRP should also provide a sufficiently accurate
depiction of the realistic scenario. With Figure 5.2 in mind, excluding other planets and spherical harmonics
also saves a lot of computational cost with limited loss of realism. The acceleration terms related to LUMIO
are prone to a lower extent of variation. However, it is clear that the reduction in gravity terms from the Moon
intuitively are the main contributors to the reduction in magnitude of the overall acceleration.

Finally, the found results allows one to assess the correspondence of the calculations done earlier by T.
Tanis [29] which were based on the same dynamic model parameters. Indeed, the shape and magnitudes in
Figure 5.5 and Figure 5.4 are the same as shown in the thesis report of T. Tanis. Additionally, the dip in SRP
from the Sun seen in Figure 5.4 just after day 4 corresponds nicely with the results found by T. Tanis. This
seems to be the only region in which occultation occurs as a result of the Moon blocking the sunlight reaching
LPF.
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Figure 5.4: Norm of acceleration terms acting on LPF
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Figure 5.5: Norm of acceleration terms acting on LUMIO
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5.2. Navigation analysis
Chapter 4 introduced the baseline scenario for the simulation settings with the default observation window
settings as was shown in Table 4.3. Section 5.1 led to a final choice on the model that will be used for the
remainder of this work. This information is now combined to show information associated with the OD and
SKM process for the default observation window scenario.

5.2.1. Default scenario
Orbit geometry
Figure 5.6 provides a graphical representation of the observations that occur over a period of 28 days. The
arrows represent the magnitude and direction of the maneuvers. Note how the geometry explored by LPF
neatly distributes over time. Additionally, note how an arc duration of 1 day captures the geometric diversity
gained over a bit more than 2 LPF orbits. This suggests that an arc duration of 1 day likely provides more than
enough geometrical information to sufficiently converge the estimator to an improved solution for the state
estimate. As such, this could suggest the possibility of reducing the duration of each arc.

Figure 5.6: Overview of estimation arcs of the default scenario in 2D synodic frame

(a) Inertial frame (b) Synodic frame

Figure 5.7: Overview of estimation arcs of the default scenario in 3D
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Covariance analysis
Covariance is ameasure of the uncertainty associated with the estimation of the true value of the states of the
satellites. Throughout the estimation process, the evolution of the estimation errors varies based on the initial
estimation error that is given at the start of the simulation and the relative geometry of the spacecrafts. The
covariance is thus a statistical representation of the distribution of estimation error outcomes given random
draws from an initial distribution of estimation errors. While Monte Carlo simulations can be performed, the
same result could be obtained via covariance analysis. Here, the covariance is propagated using the a-priori
covariance given in Table A.2, which serves as the initially considered uncertainty associated with the esti-
mated states.

Figure 5.8 indicates that the uncertainty of any position of velocity states in the systemconverges to almost
noise levels. This is also the case for the individual components. Given the 3σ bounds, the probability is 99%
that the estimation error of a position or velocity state resides within these bounds. The periodicity of the LPF-
related errors matches with the period of its orbit of approximately 0.45 days. Note the logarithmic scaling,
indicating a rapid convergence of the values. After 14 days, the 3D 3σ RSS estimation uncertainties have
already reached a lower bound. Keep in mind that the model does not assume systematic errors, so the only
contributor to the uncertainty is the measurement noise. Figure 5.9 shows the same for each state separately,
indicating that all states are able to be estimated to similar levels.

Figure 5.8: Total 3D 3σ RSS estimation uncertainties history of the default scenario

Figure 5.9: Total 3D 3σ RSS estimation uncertainties history of the default scenario decomposed by individual state
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Estimation errors
As discussed in Section 4.3.6, the two orbit related errors are estimation error and dispersion. The rapid con-
vergence is also clear from the history of the estimation error itself. Figure 5.10 shows the 3D RSS solutions.
Clearly, the estimation error after a few tracking arcs is 2 to 3 orders of magnitude smaller than the initial error.
Figure 5.11 shows a similar convergence pattern for all state estimates separately, suggesting that the esti-
mator is able to find better solutions for the state estimates for each state and therefore shows that it does
not lack observability for one or more states. This confirms that the LPF-LUMIO constellation is an excellent
example to incorporate AOD with.

Figure 5.10: Absolute 3D RSS estimation errors

Figure 5.11: Estimation error history for default case
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Dispersion
The dispersion is shown in Figure 5.12 as the difference between the estimated trajectory and the reference
trajectory. Besides, Figure 5.13 shows it as the difference between the true trajectory and the reference tra-
jectory. Note that the former is the best-known dispersion on-board. The latter is the true dispersion. It is
important to note that the the station keeping cost depend on the dispersion that is known at a moment on-
board [70], whichmeans that the corrections are based on the dispersion of Figure 5.12 rather than Figure 5.13.
In Figure 5.12, at the start, a 500 m error comes from the initial estimation error. Similarly, a 1 mm/s velocity
discrepancy can be found in the velocity states. The model details can be found in Appendix A. Once the first
estimation arc is done, the newly updated trajectory is used to define the newly expected dispersion. This
information is the input to the correction model as its estimated states are the best knowledge that LUMIO
has and is thus the most accurate knowledge to perform correction calculations with. Note how the jumps
after each arc are smaller over time, caused by the decrease in estimation error. As such, Figure 5.12 ends up
nearly the same as Figure 5.13.

Figure 5.12: Dispersion of the estimated and reference LUMIO states

Figure 5.13: Dispersion of the truth and reference LUMIO states
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Since the estimation error and dispersion are both contributors to the total ∆V , it is of interest two see
how these two parameters change in magnitude, and thus relevance, throughout the navigation process (as
defined by the navigation model explained in Section 4.3.6). Figure 5.14 shows how the 3D RSS position and
velocity estimation and dispersion errors vary over time. Clearly, for position, the estimation error resides
around the 10 m, while the dispersion tends to hover around the 500 to 800 m range and is thus consistently
larger than the estimation error. A similar trend is clear for velocity. From this, one can state that the effect of
estimation error itself has less of an effect on the ∆V than the dispersion does.

Figure 5.14: Individual SKMs with corresponding contributors’ estimation error and dispersion
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State correlation
Asmentioned in Chapter 3, the estimation error covariance of the two spacecrafts should become coupled as
the duration of the estimator fit span progresses. Clear correlations are visible between the position states
of both satellites in Figure 5.15, which is a before-after depiction of the a-priori and estimated matrix at MJD
60390, respectively. It thus shows the result of the first arc of the default scenario with a duration of 1 day.
While initially uncorrelated, the additional observations lead to a strong correlation mostly between a few
specific states. For example, the state x1 shows a strong proportional relationshipwith the z1 and ẋ2. Similarly,
a strong positive relationship exists between x2 and z2. These relationships are challenging to intuitivelymake
sense of as it depends not only on the direction of the observations, but it also varies with the specific orbital
location of LPF through the STM. Nonetheless, it seems that there exists a strong positive correlation between
the x and y states of the same spacecraft. Inversely proportional relationships exist between them as well
and can be read off in the same fashion.

Figure 5.15: Correlations between spacecraft states in estimation in default case
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Observations
The observation history is plotted to see whether the observation residuals (the difference between the esti-
mated trajectory and the truth) are as expected and that there are not discontinuities in the ISL range obser-
vations. Figure 5.16 shows that observations are performed at a constant interval. The residuals are the final
residuals that are found for the best iteration of the iterative BLS estimator.

Figure 5.16: Observation history for default case

The residuals seem to follow a Gaussian distribution, indicating that the estimator has fitted the model
to the truth near perfectly. This is expected when there are no systematic bias effects included in either the
observation model or dynamic model. As such, for the settings of the default model this is what is expected.
To be sure of the normality, the Shapiro–Wilk test statistic was used to determine whether the Null-hypothesis,
which is that the residuals indeed follow a Gaussian distribution, is true or false [132]. Indeed, all cases are
indeed normally distributed as shown in Figure 5.17.

Figure 5.17: Histogram of observation residuals with Shapiro–Wilk test results
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Observability analysis
The observability metrics discussed in Section 3.4 allows to examine the regions of higher and lower param-
eter estimation effectiveness, which translates into OD errors, which translates into a larger ∆V . Figure 5.18
shows that LPF possesses a much larger variation of effectiveness than LUMIO and larger in magnitude. This
suggests that, although information on LPF states is obtained to varying degrees of success over time, the
state information of both satellites are observable and beneficial towards the estimation process. Velocity
components in the z-axis appear to have more difficulty being observed.

The figures below show only the result for the first arc for better visibility of the results. As can be shown
in the upper figure of Figure 5.18, effectiveness is rising as measurements give the estimator useful informa-
tion. The LPF plot, which is connected to the relative geometry between S/C, exhibits more variations and its
effectiveness varies heavily with its orbital location. As discussed in Section 3.4, the condition number of the
information matrix provides insights into the numerical stability of an estimate. A low condition number is
referred to as well-conditioned. This means that a little change in the inputs (the observations) results do not
result in a large change in the solution or dependent variable (the state estimates). A decreasing value of this
metric for both LPF and LUMIO suggests a good convergence towards an estimate.

Lastly, a factor known as the Dynamic And Geometric Dilution Of Precision (DAGDOP) is used to take into
account effects from inter-satellite dynamics and geometry simultaneously, which is recommended in uses
cases of dynamically varying uncertainties over time [35]. This is the same as the 3D RSS value of the three
estimation uncertainties values associated with the position of LUMIO over each epoch.

Figure 5.18 considers the effects of the total position of velocity states only. It is also possible to see if there
is any observability associated with specific states. According to Figure 5.19, this is not the case as the values
of the shown observability metrics appear to be similar in magnitude. This suggests that there is sufficient
geometric variety between the orbits which is beneficial for the estimation process and thus ultimately the
accuracy of the SKM maneuvers.
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Figure 5.18: Observability metrics for default case
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Figure 5.19: Observability metrics for default case decomposed by individual state
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5.2.2. Candidate scenarios
Section 5.2.1 yielded results associated with the default observation window case. However, the goal of this
thesis is to evaluate the effect of a change in window timings. This section aims to provide a visualization of
the effect of different window scenarios on the results of the total correction cost. The advantages and disad-
vantages from the operational perspective are discussed as well. The tracking window configurations serve
as an initial guide towards an optimization routine, which will be discussed in Section 5.4. All simulation set-
tings remain the same as defined in Table A.2, but only the respective observation window timing is adjusted.
The results are from a Monte Carlo evaluation of 10 runs. The only variation comes from the observations, as
a result of measurement noise.

In the analysis, there are two types of tracking window scenario’s that are considered. Table 5.1 shows the
scenarios. Values with an asterisk (*) resemble the default tracking window case. The arc durations are cho-
sen to highlight the upper and lower limits of realistic arc configurations. The first scenario simply considers
varying arc durations and intervals. It could be that specific combinations of duration and interval are superior
to others. In this case, within a tracking window configuration, the value of the interval and duration are kept
constant, so it is not yet optimized by adaptively tailoring the lengths of certain arcs to improve costs.

The other scenario looks towhat extend tracking around specific orbit locations affects the total SKMcosts.
Specific regions near an elliptical orbit can yield different degrees of estimation errors and can influence SKM
costs [101]. For the specific orbit regions cases, the perilune and apolune cases are chosen such that they
highlight the effect of the extreme regions of the LPF orbits. As such, orbit-based observation configurations
as studied as well. As can be derived from Figure 5.4, the orbital period of LPF is approximately 0.45 days. In
order to remain as close as possible to the default maneuver frequency of 4 days, a tracking arc is only done
every 8 passes for the perilune and apolune cases.

Cases (days)
Constant
Arc length 0.1 0.2 0.5 1.0* 2.0
Arc interval 0.1 0.2 0.5 1.0 2.0 3.0* 4.0
Orbit based
Perilune 0.1 0.15 0.2
Apolune 0.1 0.15 0.2

Table 5.1: Test cases for candidates of observation window timings
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Tracking with constant length and interval
The estimation uncertainty gives an indication of the range of estimation errors that can be expected, given the
a-priori comprised on the data of Table A.2. Figure 5.20 shows the evolution of the estimation uncertainties for
varying arc lengths. As such, the initial estimation uncertainty values are the same for both satellites. Note the
logarithmic scaling on the y-axis. Near the start, the estimation uncertainties grow much faster for LPF than
for LUMIO. This may be due to the fact that the faster dynamics of LPF generates much larger sensitivity to
the initial estimate and drives the uncertainty upwards. Also, as expected, an overall decrease occurs for both
satellites, which shows that the estimation uncertainties of LPF correlate with the estimation uncertainties for
LUMIO. The position and velocity elements of the estimation uncertainties for a given spacecraft follow the
same shape. After 14 days, the estimation uncertainties of all four cases have reduced by one to two orders
of magnitude with respect to the value at the start epoch, indicating that the length of the arc might not have
a large influence on the estimation error over the long term. Or in other words, tracking for 2.0 days instead
of 0.1 days might not yield a drastic difference over the long run when it comes to the estimation error.

Figure 5.20: Comparison of 3D RSS estimation uncertainties for varying arc lengths

Figure 5.21 shows the relationship between the ∆V of each correction and the corresponding estimation
error and estimated dispersion, both for RSS position states. It is crucial to note that the magnitude of the
SKMs depends on the previous SKM, which in turn depends on the magnitude of the estimation error and the
dispersion. Figure 5.21 shows that the magnitude for each correction for a given case. A couple things can
be observed:

• A too short arc length yields larger estimation error
Due to the limited variation in observational geometry and quantity of measurements, the shortest arc
shown (blue) tends to maintain a larger estimation error. The poor estimation error also translates into
a worse dispersion estimated on-board. Especially at the second SKM is large, which comes from the
minimal reduction in estimation error that occurred in the first arc.

• Shorter arc lengths yield larger cost uncertainty
Observe the error bars associated with the shorter arc lengths, especially the second blue arc. With
less measurements, random noise effects can result in more variation in the final state estimate as the
true observable is less well known with less measurements. Generally, the uncertainty decreases as the
more tracking sessions have occurred.

• After a threshold, measuring more does not improve estimation error
At some point, the estimation error is not so sensitive to arc length anymore. From that point, the disper-
sion might have a bigger influence on the costs.
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Figure 5.21: Station keeping cost comparison for default case with various constant arc lengths

Looking at Figure 5.22 and the annual approximation Figure 5.23, the minimum in this specific scenario
seems to be located at an arc duration of 0.5 days. This suggests that it might be better to have tracking
arcs of 0.5 days instead of the default scenario of 1.0 day. One should keep in mind that the results shown
in Figure 5.22 are all with respect to the default simulation settings and thus only the arc length is changed.
It could be the case that better costs exist when other (non-window) simulation parameters are changed as
well. For example, the best arc length/arc interval combination might be related to the measurement interval
or location of the target points. Additionally, a better optimum might exist for cases in which the arc lengths
are variable instead. This optimal shall be found by the optimization routine later. Regardless, it was chosen
to continue with the default arc length of 1.0 day as a start of the optimization in Section 5.4.
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Figure 5.22: Total station keeping cost comparison for various constant arc lengths and fixed arc interval

Figure 5.23: Approximation of annual total station keeping cost for various constant arc lengths and fixed arc interval

Another interesting aspect to consider is the linked relationship between the arc interval and the arc length.
Figure 5.24 shows the costs for various combinations of these two parameters. Themajor x-labels signify the
arc interval, while the minor ones represent the arc duration. From this figure, it can be observed that:

• Arc length is the limiting factor
The largest deviations are caused by choosing the tracking duration. According to this logic, the same
cost can be achieved with having tracking sessions spread further apart from each other. However, a
very crucial point must be mentioned here. All costs are based on a simulation of 28 days. In scenario’s
where the tracking arcs are further apart, the relatively short simulation duration might underestimate
the true cost as a large individual correction could come just after the 28 days due to dispersion or esti-
mation error build-up.

• A too short arc length generally yields larger costs
As mentioned earlier, observing too shortly will yield larger costs.

• 0.5 days of tracking often yields lowest cost
The trend shown in Figure 5.22 generally holds with varying arc intervals. Note how small the error bars
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are, which indicates that the cost annual approximation does not vary much given different sets of ran-
dom measurement errors.

• Larger arc intervals yield more cost uncertainty
Observing the error bars, one can see that it increases with larger arc interval. This is probably caused by
the longer duration until the next arc, such that initial estimation differences have time to deviate more.

Figure 5.24: Maneuver costs for various arc length and arc interval combinations

Figure 5.25: Annual maneuver costs for various arc length and arc interval combinations
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Tracking at specific orbit locations
One can also look at tracking at specific location in-orbit. This section aims to provide similar details as the
previous by looking at the effect of tracking at the perilune and apolune of the orbit of LPF. The choice of
the arc durations and locations is explained at the start of Section 5.2.2. Figure 5.26 and Figure 5.27 show
the uncertainty and individual corrections for a perilune and apolune case for a scenario in which a 0.1-day
tracking session is done every 8 LPF orbit revolutions to approximately match the maneuver frequency of 4
days. This might not be the best for ∆V so a deeper analysis is done into the perilune and apolune cases
by considering varying amounts of the number of passes between two tracking arcs. For example, when the
value is 5, then an arc is conducted every 5 LPF orbits.

Figure 5.26: Comparison of 3D RSS estimation uncertainties for varying orbit regions

Figure 5.26 shows that the perilune performs better when it comes to the estimation uncertainties. The
same nature as Figure 5.20 is clear, where magnitudes of the uncertainties of one satellite tend to correspond
with the magnitude of the other. As such, improvements in estimation aid the state knowledge of both satel-
lites simultaneously.

Figure 5.27: Station keeping cost comparison for varying orbit regions with default arc interval
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Figure 5.28 to Figure 5.30 show the costs for increasing arc lengths around the orbit points. The following
observations can be made:

• Perilune only worse for short tracking arcs
Only Figure 5.28 shows that there is only a clear distinction in costs between tracking in perilune and
apolune. Only for perilune tracking, skipping more passes yields worse results.

• Cost uncertainty grows with arc interval
Error bars grow when there are more passes before a new tracking session is performed. The uncertain-
ties are slightly larger for perilune tracking, which could be explained by a large variation in estimates
caused by the faster dynamics in the perilune.

• Skipping passes more or less random for larger arcs
In Figure 5.29 and Figure 5.30 it is clear that tracking at more passes doesn’t improve cost. If anything,
some are especially worse. This could be due to the fact that the target point is fixed at 3 days, which
makes it possible that corrections have to be performed while the while the spacecraft is relatively far
apart from the reference orbit.
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Figure 5.28: Annual approximation of total station keeping cost comparison for perilune and apolune, 0.1 day of tracking

Figure 5.29: Annual approximation of total station keeping cost comparison for perilune and apolune, 0.15 day of tracking

Figure 5.30: Annual approximation of total station keeping cost comparison for perilune and apolune, 0.2 day of tracking
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5.2.3. Summary
All in all, the best annual costs of the discussed cases in Section 5.2.1 and Section 5.2.2 are shown in Table 5.2.
Observe that the lower limit seems to be around 0.44 m/s. Additionally, note that thus-far only cases are
considered where the arc lengths are constant and thus do not vary within a tracking window configuration.
Results of further optimization are shown in Section 5.4.

Configuration Annual ∆V [m/s] Reduction [%]
Constant arcs

Default Arc length: 1.0 day
Arc interval: 3.0 day 0.613 ± 0.0066 1σ -00.000 ± 1.077 1σ

Best Arc length: 0.5 day
Arc interval: 0.5 day 0.375 ± 0.0020 1σ -38.597 ± 0.228 1σ

Orbit based

Perilune Arc length: 0.15 day
Arc interval: Every 6 passes 0.505 ± 0.0124 1σ -17.618 ± 2.023 1σ

Apolune Arc length: 0.15 day
Arc interval: Every 4 passes 0.498 ± 0.0082 1σ -18.760 ± 1.337 1σ

Table 5.2: Best annual total station keeping cost per tracking window configuration case
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5.3. Sensitivity analysis
The navigationmodel contains a variety of parameters that could be adjusted. Thismeans that any adaptation
to those variables comes with a degree of variability of the ∆V objective outcomes. This section evaluates
the sensitivity of those outcomes to these variable changes. As mentioned in Chapter 4, the default settings
of Table A.2 are used. Any variable besides the changing variable in question varies.

This section is split up into two subsections. Section 5.3.1 aims to provide an insight into the result of
variability in parameters related the choice of observationwindows. Similarly, Section 5.3.2 compares auxiliary
parameters that might affect the model outcomes but are outside the scope of adjustments related to the
choice of observation windows. In general, this section aims to compare outcomes to the default cases
extensively elaborated upon in Chapter 4 and aims to showcase additional information into the dominant
influences for the objective of maneuver cost. All mean and standard deviation values are the result of 10
Monte Carlo runs with the PMSRP01 dynamic model that was selected in Section 5.1. The same data is
shown in figure and table form. The table includes a worst case, which is defined as the mean plus three
standard deviations. Note that this result technically does not cover all results as results could fall outside of
the 3σ bound.

5.3.1. Observation window parameters
Table 5.3 provides an overview of the Monte Carlo statistics derived from the test cases. The plots of the
annual ∆V can be found in Appendix D. The following statements can be made about the findings:

• The analysis for the arc duration is actually the same as discussed in Section 5.2.2. An arc duration of
0.1 days seems to provide the least ideal∆V . A possible explanation for this could be that consistently
for 0.1 days might not be enough to capture sufficient useful observational geometry which causes the
estimation error to remain relatively large over time. On the other hand, at some point, tracking for too
long allows for dispersion to grow in themeanwhile and the trade-off between improved estimation error
does not outweigh the benefits of a SKM at a lower dispersion. Also, note the larger standard deviation
values for the shortest arc. This could be explained by a larger difference in estimation outcomes due
to a lower number of measurements for those shorter arcs. This gives more variation in the estimation
errors. As a result, the final BLS outcome of the initial states might vary more.

• Regarding the arc interval, a similar statement can be made about the aspect of dispersion. Increasing
the time between arcs increases dispersion and, as a consequence, the total SKM cost appears to grow
linearly with the interval. The same can be stated about the uncertainty. Estimation outcome differences
are exaggerated with time.

• The mission start epoch of the simulation has some influence on the total costs approximate. This is
probably caused by the difference in the observational geometry during the tracking arcs, so the choice
of when tracking occurs is a driving factor to SKM costs. It is very important to note that the deviation
in cost approximation for different mission start epochs is even smaller when using a larger time frame
as the simulation duration. The effect on the results for a simulation of 56 instead can be found in
Appendix D. This means that a simulation of 28 days, as done in this chapter and shown in Figure 5.31
and Figure 5.32, does not always lead to representable values for the annual costs.

When one looks at the annual ∆V in Table 5.3, the difference between the minimal and maximum costs
for Mission Start Epoch is 0.1117 m/s, while it is 0.339 m/s and 0.5274 m/s for Arc Duration and Arc Interval,
respectively. This means that the last two variations in annual∆V is about 3 to 5 times as large compared to
those of the mission start epoch.
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Figure 5.31: Sensitivity analysis results for observation window parameters (28 days)
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Total After 14 Annual
Case Value µ∆V σ∆V µ∆V σ∆V µ∆V σ∆V Worst
Arc Duration 0.1 0.0679 0.0056 0.0260 0.0011 0.6791 0.0280 0.7630

0.5 0.0353 0.0014 0.0203 0.0001 0.5290 0.0015 0.5336
1.0 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
2.0 0.0549 0.0011 0.0333 0.0007 0.8686 0.0183 0.9235

Arc Interval 1.0 0.0327 0.0002 0.0173 0.0000 0.4518 0.0010 0.4549
2.0 0.0405 0.0008 0.0224 0.0001 0.5852 0.0031 0.5944
3.0 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
4.0 0.0589 0.0037 0.0375 0.0015 0.9784 0.0388 1.0947

Mission Start Epoch 60390 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
60395 0.0448 0.0008 0.0198 0.0001 0.5165 0.0018 0.5220
60400 0.0397 0.0010 0.0192 0.0003 0.5013 0.0073 0.5232
60405 0.0422 0.0008 0.0216 0.0001 0.5629 0.0025 0.5705

Table 5.3: Sensitivity analysis results for observation window parameters (28 days)

5.3.2. Auxiliary parameters
The results of the auxiliary parameters are shown in a similar fashion. Table 5.4 provides a graphical interpre-
tation of theMonte Carlo results derived from the test cases. For the Initial Estimation Error andOrbit Insertion
Error case, the notation for the values is defined as position/velocity. The plots of the annual∆V can be found
in Appendix D. The following statements can be made about the findings:

• Most notably, the total cost is not much affected by the initial values of estimation error unless both the
position and velocity components are increased by tenfold. However, the stable period after 14 days
remains the same. Likewise, this is the case for varying insertion errors. This validates the notion that
after 14 days, one has reached the stable region for nominal operation and the SKMs cost is just affected
by the choice of observation windows.

• Interestingly, the number of measurements does not seem to influence the costs. This might have to do
with the initial covariance that is already quite accurate. Lower covariance leads to a lower significance
put on the new measurements and thus the final result is not as much affected by the number of mea-
surements.

• Regarding target points, the analysis shows that choosing further points in the future doesn’t guarantee
better costs. The optimal, with the remainder of the parameters at the default settings, seems to be
around the 3 to 4 days downstream. This aligns roughly with the epochs of the SKMs. In the single tar-
get point scenario, the method aims for minimal dispersion at the given TP. As such, larger deviations
of TPs with respect to the planned SKM epoch leads to larger dispersion at the SKM epoch due to un-
dershooting or overshooting.

• When it comes to the minimal ∆V threshold, the total increases by a lot when a lower minimal ∆V is
chosen. The reason for this is that only highly minimal magnitudes of ∆V are required to maintain the
orbit in the default case. Neglecting the SKMs will not cancel the tracking sessions but will maintain the
dispersion to keep growing. As a consequence, the dispersion at the first correction that requires value
over the threshold value will be relatively large. The 0.02 and 0.03 [m/s] cases are indifferent because
the required costs were above 0.03 and not between the two threshold values.

• Lastly, the uncertainty of the costs variesmorewith increased SKMerror than themean value. The errors
are drawn from a normal distribution and any error the current correction affects the next one. Surpris-
ingly, the noise does not lead to large errors, presumable because correction errors have a maximum of
4 days to expand before a new one occurs.
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Figure 5.32: Sensitivity analysis results for auxiliary parameters (28 days)

72



5.3. Sensitivity analysis

Total After 14 Annual
Case Value µ∆V σ∆V µ∆V σ∆V µ∆V σ∆V Worst
Initial Estimation Error 5.0/ 1e-05 0.0444 0.0006 0.0235 0.0002 0.6121 0.0043 0.6251

50.0/ 0.0001 0.0445 0.0003 0.0235 0.0004 0.6134 0.0098 0.6427
500.0/ 0.001 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
5000.0/ 0.01 0.0873 0.0050 0.0227 0.0002 0.5921 0.0043 0.6050

Orbit Insertion Error 0.0/ 0.0 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
500.0/ 0.005 0.0613 0.0024 0.0236 0.0004 0.6151 0.0094 0.6434
1000.0/ 0.01 0.0820 0.0036 0.0237 0.0003 0.6167 0.0071 0.6381
2000.0/ 0.02 0.1314 0.0042 0.0239 0.0004 0.6223 0.0101 0.6526

Observation Interval 100 0.0448 0.0012 0.0235 0.0003 0.6131 0.0076 0.6360
500 0.0459 0.0033 0.0236 0.0003 0.6156 0.0085 0.6412
1000 0.0447 0.0019 0.0237 0.0002 0.6173 0.0064 0.6367
5000 0.0457 0.0047 0.0238 0.0003 0.6215 0.0077 0.6447

Noise 0.1 0.0466 0.0022 0.0242 0.0010 0.6301 0.0271 0.7114
1 0.0438 0.0009 0.0234 0.0002 0.6091 0.0048 0.6236
10 0.0453 0.0009 0.0236 0.0003 0.6161 0.0083 0.6410
100 0.0503 0.0053 0.0229 0.0022 0.5964 0.0566 0.7663

Target Point Epochs [2] 0.0829 0.0122 0.0529 0.0111 1.3782 0.2885 2.2439
[3] 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
[4] 0.0489 0.0023 0.0267 0.0002 0.6952 0.0054 0.7114
[5] 0.1195 0.0044 0.0848 0.0012 2.2105 0.0313 2.3043

Delta V Min 0.00 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
0.01 0.0582 0.0212 0.0399 0.0224 1.0410 0.5850 2.7960
0.02 0.3727 0.0010 0.2896 0.0010 7.5510 0.0258 7.6284
0.03 0.3499 0.0009 0.2669 0.0009 6.9580 0.0242 7.0306

Station Keeping Error 0.00 0.0453 0.0006 0.0235 0.0003 0.6131 0.0066 0.6329
0.01 0.0449 0.0006 0.0228 0.0004 0.5956 0.0116 0.6305
0.05 0.0451 0.0005 0.0216 0.0007 0.5620 0.0191 0.6194
0.10 0.0481 0.0013 0.0221 0.0007 0.5765 0.0177 0.6296

Table 5.4: Statistical results of Monte Carlo sensitivity analysis (28 days)

5.3.3. Summary
Considering the results of Table 5.3 and Figure 5.32, none of the annual ∆V yield a value that is smaller than
those presented in Table 5.2. The sensitivity analyses have shown that the SKM costs is the most sensitive
to the parameters of minimum ∆V threshold and target points.
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5.4. Optimization analysis
Finally, this section seeks to find an optimized result of the optimization windows by considering the optimiza-
tion scheme that was explained in Section 4.3.7. Remember, that the objective is to minimize for the annual
∆V of the corrections that occur after day 14 of the simulation. Similar to the sensitivity analysis, all analy-
ses are done using the default settings defined in Table A.2. The test cases that are considered in Table 5.5
are therefore the only changing parameter. The first comparison concerns the variation in the optimization
method. The way that an algorithm search from the optimum might affect the finally found design vector val-
ues. Secondly, the duration is varied to see if the annual cost approximationmethod explained in Section 4.3.1
varies in final value significantly if one has a longer time period to represent the annual correction cost. Vary-
ing the model fidelity serves as a way to validate the assumption that a point-mass model is indeed sufficient
enough to use instead of a more computationally expensive spherical-harmonics based model as discussed
in Section 5.1 and whether is actually has an effect on the optimization algorithm.

For a given test case, the only variety is caused by noise in the observations. To see what happens to
the optimization solution under variation in observations, 5 optimization runs are done with different noise
histories (different seeds for the observation noise). The final solutions for the test cases are shown in tables
and compared in terms of annual∆V . The structure of this section is such that it follows the order of the rows
in Table 5.5. Finally, Section 5.4.4 will make final remarks on the comparison between the default scenario
and the overall found best optimization result.

Test cases
Optimization method Nelder-Mead PSO
Model durations 28 days 56 days
Model fidelity PMSRP01 SHSRP01

Table 5.5: Optimization model test cases
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5.4.1. Varying optimization method
This section describes the differences in optimization outcomes between the Nelder-Mead and PSO algo-
rithms. In total, 5 MC runs were conducted. The choice for this number was chosen arbitrarily, to simply show
that there is variation in the optimization outcomes. For both methods, each run yielded a different design
vector solution, while the reduction in the objective value is similar for all. Only the result of the first run is
shown in the main body. The statistics of all runs can be found in Appendix C. Given this specific solution
of the observation windows, this configuration was run multiple times with different noise seeds to confirm
that the solution is robust in the sense that it can lead to ∆V reduction for more than one specific set of
observation noises.

Observation windows
Figure 5.33 and Figure 5.34 show the evolution of the individual corrections (the colored bars) for the Nelder-
Mead and PSO algorithm respectively. First note the decrease in standard deviations of the corrections over
time, which is caused by the reduced effect of estimation error on the magnitude of a correction. For the
optimized version, the arc lengths tend to be made shorter for the arcs that occur after 14 days. This is more
extreme for the PSO algorithm. In fact, the PSO algorithm reduces the last two arcs to the lower bound of 0.1
days, indicating that such a low arc duration might be sufficient for orbit determination. On the other hand,
the fifth arc is made longer, so shortest arcs might not always be best.

Figure 5.33: Default and optimized tracking configuration resulting from the Nelder-Mead optimization method for 28 days (run 1 of 5)

Figure 5.34: Default and optimized tracking configuration resulting from the PSO optimization method for 28 days (run 1 of 5)
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By looking at the magnitude of the estimation error and dispersion values shown in Appendix C it can be
observed that the main contributor for the total ∆V is the dispersion. This can be seen by how the peaks in
the dispersion correlate with the peaks in the individual correction values.

Regarding the set of 0.1 days arcs tracking window configuration for the PSO case, it could be that it is not
sustainable in the long run or that the optimization problem is not well defined and needs adjustments. For
example, it could be that with the reduction of the arc lengths, a new arc and thus a new correction maneuver
might fit within the 28-day span. However, the number is arcs is fixed in the beginning based on the default
with the 1.0 days arc length, 3.0 days arc interval configuration. Because this arc is not included, the optimiza-
tion routine can give an unrealistic approximation of the full annual costs as the simulation underestimates
the cost in the 14-day time frame.

For that reason, the simulation is also run for a longer duration. This is done in Section 5.4.2. It was
decided to continue with the PSO algorithm as the optimization method for the following analyses because
of the better susceptibility for higher dimensional search spaces.

Total maneuver costs
Similarly to the previous section, the station keeping costs are shown in the same fashion. The magnitude of
the bars corresponding to the full duration are bigger due to the larger influence of estimation errors. However,
after 14 days, the variation in costs is negligible. Both optimization methods yield an improved cost over the
default scenario and show robustness to variation inmeasurement noise in the ”stable” phase 14days after the
start of the simulation. Comparing Figure 5.35 with Figure 5.36 respectively, one can state that the reductions
are approximately 30 and 47%.

Figure 5.35: Default and optimized station keeping costs resulting from the Nelder-Mead optimization method for 28 days (run 1 of 5)
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Figure 5.36: Default and optimized station keeping costs resulting from the PSO optimization method for 28 days (run 1 of 5)

The overview of the costs associated with all 5 solutions found per optimization method is show in Fig-
ure 5.37. It clearly shows that reductions can be made for each run. However, the PSO algorithm is able to
find solutions that have an overall larger reduction. Because of these larger reductions, only this algorithm
will be used for the rest of the analysis.

Figure 5.37: Overview of annual station keeping costs for the PSO and Nelder-Mead optimization methods
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5.4.2. Varying model duration
As was suggested based on Figure 5.34, the reduction of the final arcs might give a skewed result for the final
arcs near the end of the 28 days. This section aims to look into how the approximation of the ∆V is different
when considering double the simulation time, so 56 days. The objective function in consideration is still the
sum of the individual corrections after day 14 with respect to the start of the simulation.

Observation windows
Figure 5.38 does not show the same pattern in the first 28 days as shown in Figure 5.34. However, the final
arc is still 0.1 days. Most arcs look almost similar in this time frame in terms of their timing. Nonetheless,
note how much individual corrections can be reduced in ∆V with little variations in the arc. This indicates
that minor changes to the mission planning regarding tracking can lead to a significant improvement. This
might have to do with the larger design space (more design variables) and a need for more iterations before
a better convergence is reached.

Figure 5.38: Default and optimized tracking configuration resulting from the PSO optimization method for 56 days (run 1 of 5)

Total maneuver costs
Because of the increase in total duration, the total costs naturally increase aswell. Regardless, it is proven that
reductions in costs can bemade not just in the simulation for 28 days, but also for the longer time frame of 56
days. The error bars shown in Figure 5.39 are even smaller than in Figure 5.36, which implies that estimation
errors have less and less of an effect on the maneuver cost as the mission duration increases.

Figure 5.39: Default and optimized station keeping costs resulting from the PSO optimization method for 56 days (run 1 of 5)
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5.4.3. Varying model fidelity
Comparing Figure 5.40 to Figure 5.34, one can observe that the results are largely the same, indicating that
the choice of the model does not much affect the total cost estimate.

Observation windows

Figure 5.40: Default and optimized tracking configuration resulting from the PSO optimization method using SHSRP dynamics (run 1 of
5)

Total maneuver costs

Figure 5.41: Default and optimized station keeping costs resulting from the PSO optimization method for 28 days with SHSRP instead
of PMSRP dynamic model (run 1 of 5)
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5.4.4. Summary
The main goal is to approximate the cost for the full 1-year operations. This section aims to provide the final
values for the annual cost approximation for the different optimization cases shown above. As mentioned in
the introduction of this section, there are a total of 5MC runs per case that lead to different optimization results
and those details are found in Appendix C. Figure 5.42 shows the approximated annual costs associated with
the three cases for each of the 5 runs. Clearly, all results show that there is an improvement compared to
the default scenario. An important aspect to notice is that simulating for 56 days instead of 28 days always
yields a larger cost. Also, simulating with a PMSRP model instead of a SHSRP model does not yield drastic
differences in the cost approximation. As such, it could be sufficient to use the PMSRPmodel for the analysis.

Figure 5.42: Overview of annual station keeping costs for various optimization cases using the PSO method

All in all, the optimization analysis shows that there are improvements with respect to not only the default
scenario, but also all other solutions shown in Table 5.2. For example, the first optimized solution in Figure 5.42
for the 28 days case shows that an annual cost below 0.3 m/s can be reached or a reduction more than 50%
with respect to the default scenario. However, it should be mentioned that the 28 days case might not provide
the most trustworthy result, as modeling for 56 days seems to increase the annual ∆V to the 0.4 m/s to 0.5
m/s range.

Configuration Annual ∆V [m/s] Reduction [%]
Constant arcs

Default Arc length: 1.0 day
Arc interval: 3.0 day 0.613 ± 0.0066 1σ -00.000 ± 1.077 1σ

Best Arc length: 0.5 day
Arc interval: 0.5 day 0.375 ± 0.0020 1σ -38.597 ± 0.228 1σ

Orbit based

Perilune Arc length: 0.15 day
Arc interval: Every 6 passes 0.505 ± 0.0124 1σ -17.618 ± 2.023 1σ

Apolune Arc length: 0.15 day
Arc interval: Every 4 passes 0.498 ± 0.0082 1σ -18.760 ± 1.337 1σ

Optimized
[1.62, 1.13, 1.17, 0.10, ...
...0.23, 0.10, 0.10] and other
See Appendix C for more

0.280 ± 0.0134 1σ -54.323 ± 2.186 1σ

Table 5.6: Final overview of the best annual total station keeping cost per tracking window configuration case
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5.5. Operational implications
This chapter has shown that adjusting tracking arcs allows for a significant reduction of the total annual ma-
neuver cost. This section explains the positive implications that this has on the operational considerations of
the LUMIO mission. Section 5.5.1 elaborates on the constraints related to the propulsion subsystems, in par-
ticular about the feasibility of using the currently proposed propulsion subsystems in the optimized tracking
scenarios found in this thesis work. Section 5.5.2 looks further than ∆V by looking at another design bud-
get: power. Section 5.5.3 explains the key operational notes that can be derived from the optimized tracking
scenario.

5.5.1. Subsystem feasibility
The capabilities of a spacecraft propulsion subsystem are crucial for determining the performance of the
correction maneuvers. Typically, this involves understanding the design requirements related to both the min-
imum and maximum thrust levels as well as the burn time associated with the corrections. The LUMIO phase
A study suggested two COTS candidates for the main propulsion system [4]:

• The EPSS system produced by NanoAvionics [133]
• Propulsion system produced by Bradford-ECAPS, specifically the flight-proven HPGP 1N thruster [134].

Based on the publicly available product specifications, the range of possible ∆V can be approximated
to validate the feasibility of performing the corrections resulting from the simulations in a real setting. Total
impulse I is defined as the product of thrust T and burn time t.

I = Tt (5.1)

The value of ∆V is derived by dividing the total impulse by the spacecraft’s mass m.

∆V =
I

m
(5.2)

Both subsystems have the same thrust capabilities. The burn time will typically be a requirement depend-
ing on the details of all trajectories occurring throughout the entire mission. The data sheets did not provide
sufficient information to derive the burn time limits, so assumed values are derived from the thrust and impulse
information found in data sheets. For the given subsystems, either only the minimum or maximum impulse
are provided in the data sheets. The same thing is true for the burn time. Although it is a rough assumption,
the maximum of the one is considered for the other and vice versa for the minimum impulse. The assumed
values are indicated by means of an asterisk. Table 5.7 shows the resulting ∆V envelope.

Subsystem
Parameter NanoAvionics Bradford-ECAPS
Thrust

Min 0.25 N 0.25 N
Max 1 N 1 N

Inpulse
Min 0.070 Ns* 0.070 Ns
Max 1700 Ns 1700 Ns*

Burn time
Min 0.07 s* 0.07 s
Max 6800 s 6800 s*

Correction
Min 0.003 m/s* 0.003 m/s
Max 74.56 m/s 74.56 m/s*

Table 5.7: LUMIO propulsion subsystem characteristics envelope
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Themost important take-away from this work is that the respective propulsion products can performmost
of the corrections that will be required in the optimized tracking window scenarios. This is because the ma-
jority of the magnitudes of the required individual corrections reside within the upper and lower bounds of
possible ∆V as shown in Table 5.7. Due to the lower ∆V limit, the mission design is constrained by this. A
sensitivity analysis based on this minimal ∆V threshold was done in Section 5.3, but with arbitrary values.
With the lower bound value of 0.003 m/s of Table 5.7, a similar analysis can be done.

While some corrections might be skipped due to the lower technical limit of the propulsion systems, Fig-
ure 5.44 shows that there is still an improvement in ∆V over the default configuration of Figure 5.43. Red
resembles the minimal threshold associated with the currently used propulsion system of LUMIO. Note how
the red annual∆V remains smaller in Figure 5.44 than in Figure 5.43. Regardless, it shows that the optimized
solution cost goes from 0.291 m/s to 0.5474 m/s. This means that it is still yielding improved costs over the
default case, but the optimization effect has reduced substantially.

Regarding burn times, considering the fact that this work assumes instantaneous corrections, since the
individual corrections correspond with small burn times in Table 5.7 it can be concluded that this assumption
is valid.

Regarding the upper limit of ∆V , note that while theoretically possible, such long burn durations are im-
practical due to propellant limitations. The need for ∆V values in this order of magnitude also did not occur
in this work. Therefore, the maximum total impulse is largely theoretical and not considered relevant.

Figure 5.43: Comparison of annual SKM costs for different ∆V thresholds for the default tracking arc configuration
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Figure 5.44: Comparison of annual SKM costs for different ∆V thresholds for an optimized tracking arc configuration (PSO, 28 days,
PMSRP run 1 of 5)

An important aspect to note is that Figure 5.44 shows what happens when a threshold is applied to a
tracking window configuration that is the result of an optimization routine that was performedwith a threshold
of 0 m/s. Running the same optimization algorithm (PSO) while including the newly defined threshold of
0.003 m/s can introduce other solutions for the window configurations. Figure 5.45 compares the annual
cost associated with optimized solutions for excluding and including these thresholds. Additionally, another
case is included that aims to show what happens when a longer simulation duration is chosen to investigate
to what extend this might affect the annual ∆V results.

Figure 5.45: Comparison of annual SKM costs of PSO optimization results for different ∆V thresholds and simulation duration

Clearly, the threshold results in overall larger costs. Additionally, a threshold includes more uncertainty in
the costs approximations. This is expected since a 28-day simulation only includes a representable period of
14 days for the calculations, which means that differences between Monte Carlo runs are larger as skipping
tracking sessions has a relatively larger effect on the total cost. Considering a longer duration of 56 days
reduces variation in the means cost value but also the spread in costs for a given case. This confirms that
simulating over a longer time frame provides more stable solutions in a more realistic mission scenario.
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5.5.2. Effects on power budget
There are also effects on the required power as a result of the changes in the configurations of tracking timing.
Three main subsystems are highlighted with regards to power that are considered relevant in the context of
orbit determination and navigation: transponder, thruster and on-board computer.

Subsystem Model Power requirements Comments

Transponder IMT X-BAND Transponder
STBY: 7.4 W
RX: 12.8W
RX & TX: 94.4W @ 15W Pout

STBY when not tracking
RX&TX when tracking
19W @ 3dbW (2W) Pout

Thruster 1N HPGP Thruster 10W During 2 hours of tank heating
OBC SIRIUS-OBC-LEON3FT 1.3W Runs during entire mission

Table 5.8: Power specifications of subsystems relevant for orbit determination and navigation

From Table 5.8 is it clear that the transponder usesmultiple powermodes that depend on whether tracking
is performed or not. While using two-way ranging, it should be noted that the output power will not be 15W.
According to T. Tanis [29], a transmission output power of 3dBW, or approximately 2W, is deemed sufficient for
autonomous navigation operations. Because of this, the total power can be reduced by scaling to this power
output. First one finds the transponder efficiency by:

η =
Pout

Pin
=

15

94.4− 7.4
= 0.172 (5.3)

With a power of 2W, this equates to a required input power of

Pin =
2

0.172
= 11.6W (5.4)

Combine this with the standby power and one gets 19W during the tracking phase. Note that this value re-
mains below the average power of 22 to 27W that is expected to be generated by the Electrical Power System
(EPS) of LUMIO [4] which means that it is a legit value. In order to have an indication of the expected power
over the mission due to the OD and navigation related tasks, an ”average power” value is used. The required
power of the three components are weighted by the time fraction in which they are on or off compared to the
total duration. Since different tracking configurations have different total tracking times and different amounts
of tracking arcs, their average power is different. As a consequence for the mission design, this difference
in power demand can affect how one allocates power on-board. This can lead to design changes and might
lead to better scientific yield. From Figure 5.46 and Figure 5.47 it becomes clear that there is a trade-off to be
made between ∆V and power consumption. Figure 5.46 shows the best costs as a visual representation of
what is shown in Table 5.6 and explained extensively throughout Section 5.2.2 and Section 5.4.

Figure 5.46: Annual station keeping costs for the best solution of each timing configuration type
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Figure 5.47: Averaged power consumption for subsystems for the best solution of each timing configuration type

Note how better options for ∆V do not necessarily lead to better power consumption. Tracking with a
constant configuration shows to be better than the orbit-based tracking in terms of∆V , but is worse in terms
of power, also compared to the baseline. The worse result for the constant-type configuration is the result of
the relatively large tracking time for this configuration. This shows that the use of less complex configurations
comes at the cost of high tracking time and higher power requirements. A result with variable arcs, originating
from the PSO optimization routine, shows that improvements aremade in both∆V and power, which are both
smaller than the baseline and constant-type configuration. The orbit-based configurations score better on the
power, but the variable configuration is still better in terms of∆V . The details on the SKM and power budgets
for all optimized results of this chapter can be found in Section C.1.

5.5.3. Consequential benefits of the optimization
The reduction of annual ∆V yields various operational benefits as a consequence. The main benefits are
listed below:

• More availability for scientific goals
It was shown for the optimized tracking window configurations that the tracking duration can be sig-
nificantly reduced, such as shown in the last two arcs in Figure 5.34 and some other cases from Ap-
pendix C. One of the benefits of this is that the spacecraft can save on-board power as less signals have
to be sent, which means that power savings can be reallocated to enhance the performance of scientific
instruments, allowing for more accurate measurements, higher data transmission rates, or improved
maneuverability.

• Extended mission duration
Additionally, the spacecraft can operate for a longer period, extending the mission’s duration and allow-
ing for more data collection and exploration. This is more sustainable from both a financial and environ-
mental perspective if new spacecraft have to be launched that serve as a continuation of the mission.
Since one deals with two spacecraft tracking at the same time, these benefits exist for both spacecraft.

• Applicability with existing propulsion systems
As was mentioned in Section 5.5.1, it is still possible to use the propulsion subsystems that are current
used for LUMIO, albeit with a reduction in∆V with respect to an ideal threshold of 0 m/s. All in all, from
this analysis it can be concluded that the simulation results fall within the region where COTS products
can be used.
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Figure 5.48: Benefits as a result of tracking timing optimization
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6
Conclusions and Recommendations

6.1. Conclusions
This study focused on orbit determination and navigation analysis with the goal to explore the options to re-
duce the station keeping costs, defined by annual ∆V , through adjusting the timing of inter-satellite tracking
windows. The analysis in this work was based on a case study in which a L2 LPO (LUMIO) - ELO (LPF) satellite
pair performs orbit determination and navigation based on inter-satellite two-way ranging in a simplified sce-
nario with no dynamic model errors or noise bias. The orbit corrections are assumed to occur at the end of
an estimation arc that uses the Batch-Least Squares estimator. Initial observation windows were defined as
a set of tracking arcs of 1.0 day with a 3.0-day interval between each arc, based a 4-day correction maneuver
interval that is suggested in literature as being the best for station keeping in LPOs. This scenario formed
the baseline for a comparative analysis on tracking window configurations and auxiliary model parameters
to evaluate the influence of those parameters on the optimization objective of reduced ∆V for one year of
operations of LUMIO. Additionally, other mission and design aspects were identified that can aid in the design
and operations of future missions. The research question was defined as the following:

”What is an optimal satellite-to-satellite tracking timing configuration for cislunar orbiters?”

A methodology was set up that aimed to compare three different timing strategy categories for which
tracking can be performed with varying levels of complexity: tracking based on constant tracking duration
and interval, tracking around the perilune or apolune of the LPF satellite, and tracking based on the solution
of a heuristic optimization routine that adjusts each tracking arc individually. The best of each case was com-
pared with the baseline scenario. For this baseline, the predicted annual navigation cost equated to a ∆V of
0.613±0.0066 1σ m/s. The overarching conclusion of this work is that improvements can bemade compared
to this value in each of the three strategy categories, but with varying levels of ∆V . From this analysis, the
main conclusions are as follows:

• Firstly, for the constant-based tracking configuration the best ∆V comes from a scenario with an arc
length-interval combination of 0.5-0.5 days, yielding an annual ∆V of 0.375±0.0020 1σ m/s or a reduc-
tion of 38.597±0.228 1σ % with respect to the baseline scenario. The benefit of this configuration is
that it is simple to implement for its predictability. However, the fraction of tracking time to the total
mission duration is quite large at 50%. As a result, the averaged power consumption, mostly driven by
the transponder, is the largest of all categories due to the longer total tracking fraction with a average
power consumption of 13.19W (baseline of 11.80W).

• Secondly, the orbit-based category showed that ∆V depends strongly on the amount of apolune or per-
ilune passes between arcs. The best result was found when tracking every 6 and 4 passes, for perilune
and apolune respectively, using a 0.15-day arc. Both of these configurations yield a mean annual ∆V
near 0.5 m/s. While this reduction is smaller than for the constant-type category, a benefit is that, given
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the short arcs, the power is reduced much more to both around 9.47W for the perilune case and and
9.82W for the apolune case.

• Lastly, multiple timing configurations with individually adjusted arcs were generated. Of these, it was
shown that a ∆V down to 0.280±0.0134 1σ m/s can be realized, using the PSO algorithm. With a
54.323±2.186 1σ % reduction with respect to the baseline, this is a substantial improvement not just
over the baseline, but also compared to the other two timing categories. Additionally, and conveniently,
this configuration showed to contain short arcs down to the lower limit of 0.1 days, which, as a result,
also reduced the average required power to 10.74W and thus yielded an improvement over the baseline
in terms of the power budget as well.

For the exact numbers on costs, see Table 5.2. For an overview of the relevant subsystem power values,
see Table 5.8. Besides the main research question, the answers to the sub questions below aim to further
solidify the choices and conclusions of this work.

What are the working principles of inter-satellite based autonomous navigation?

In the context of the case study, the purpose of navigation is to follow an externally provided reference tra-
jectory of the LUMIO spacecraft. Due to the unstable nature of LUMIO’s orbit, station keeping is required. The
accuracy of the station keeping maneuvers depends on two main principles: estimation error and dispersion.

Firstly, the estimation error depends on how well observations lead to a unique solution for the state vec-
tor that defines the two-satellite system. Two types of estimators exist: sequential and batch. Their main
difference lies in the frequency at which the state estimates are updated. For sequential estimators, it is up-
dated with each observation while the batch estimator first samples a set of observations and then performs
Least-Squares operations to find the best estimate. A benefit of batch estimation with respect to sequential
estimation is that the former is less susceptible to initial estimation errors than the latter and that the former is
better at handling observation outliers. For those reasons, this batch estimation typewas chosen for thiswork.

The second principle, dispersion, defines the difference between the true trajectory and the reference tra-
jectory that a spacecraft should follow. This means that the corrections required for sustained navigation
relies on proper orbit determination-which relies on the observational geometry-to obtain the best dispersion
knowledge as possible to maintain on-course because insufficient state estimates wrongly define the true
dispersion. This can lead to corrections that steer LUMIO in the wrong direction that diverts it from the refer-
ence trajectory. Another important factor is simply the shape of the orbit and the strength of the perturbation
forces. In the context of LUMIO, as the annual ∆V increases with decreasing size of an LPO. Finally, for a
given LPO, increasing the frequency of correction maneuvers can have a positive effect on the total ∆V , but
this prevention of dispersion growth comes at the cost of more tracking and less time spent of the scientific
targets of a mission.

How is the geometry of autonomous navigation observations related to improved system performance?

Howwell the estimator is able to solve the system states is determined by the degree of state observability
that exists during tracking. For a system to be observable, at least one of the satellite orbits has to have a
unique size, shape, and orientation due to an asymmetric gravity field. The degree of asymmetry strength can
be quantified by comparing the acceleration magnitude caused by a perturbing force with the magnitude of
the total of all accelerations acting on a satellite. This metric indicated that LPOs are good candidates for
inter-satellite based orbit determination, because of the strong relative strength of the third body (Earth) in the
region where those orbits reside.

However, it should be noted that constellations with similar orbits, such as twoL2 LPOs, are not always suf-
ficient. This is due to the fact that, besides relatively large perturbation forces, there should also be sufficient
variation in observational geometry, or vantage points, between the two satellites. Halo-Moon constellations
are able to retrieve orbit information more quickly than Halo-Halo constellations because the dynamics of a
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Moon orbit allows the system to acquire observations from many vantage points quickly. A constellation that
consists of an elliptical lunar orbiter and a L2 Lagrange point orbiter has proven to provide extended variation
in observational geometry which made the scenario of LUMIO and LPF a good example to use in the context
of inter-satellite autonomous navigation.

How does the fidelity of the on-board dynamic model influence the system performance?

The fidelity of the on-board model affects the estimation error and dispersion and consequentially the an-
nual ∆V . Since this work does not consider dynamic model errors, the only observation error comes from
observation noise and therefore the estimation error is not affected by the model fidelity. Simulations showed
that after 14 days, the 3D RSS position error remains in the region around 10m (bound by a noise level of
2.98m 1σ) while the 3D RSS position dispersion resides around 800m. This means that the dispersion plays
a much more significant role in the correction calculations than the estimation error because the dispersion
proved to be orders of magnitude larger.

This work considered various fidelities, withmodels representing combinations of point masses of various
planets, solar radiation pressure and various degrees and orders of spherical harmonics. The study identified
that using a point mass model for the Earth, Moon, and Sun, combined with cannonball solar radiation pres-
sure, called PMSRP01, offers the best balance between run time and the dispersion RMSE value of 14 days
with respect to the LUMIO reference trajectory. The dispersion of a PM-type and SH-typemodel have the same
RMSE values around 1 · 105, while including SRP decreases the RMSE value an order of magnitude to 8 · 103.

The fidelity also influences the run time required to propagate orbits used in estimation and correction
calculations. The total time to calculate a maneuver with one target point of 3 days downstream with the
PMSRP01 model, using LUMIO’s current on-board computer equated to approximately 528s. It is still small
compared to the period of LUMIO, tracking arc or the cut-off duration of 12h that is currently considered for
LUMIO. The total run time value shows that this 12h time window is not required in the scenario of AOD, mak-
ing corrections more accurate due to limited delays. Additionally, it shows that the on-board processor itself
will not be a limitation for performing the calculations associated with AOD due to its relatively low power
consumption of and processor capabilities that can calculate a correction sufficiently fast. Thus, no design
change has to be made in this regard. More details were discussed in Section 5.1.

What parameters have a noticeable influence on the improvement of inter-satellite based autonomous naviga-
tion?

A sensitivity analysis was done which looked at the effects that various simulation parameters have on the
annual ∆V . Results show that this parameter can be sensitive to the mission start epoch, suggesting that
the cost results vary slightly depending on when the simulation starts. However, the variation in the sensitivity
cases is three times smaller than the variation due to the choice of tracking arcs and intervals (0.1117 m/s
versus 0.339 m/s and 0.5274 m/s respectively). A similar analysis over a longer simulation duration of 56
days showed that the dependency of start epoch is even smaller, which means that cost analyses are not
strictly tied to simulations that start at a specific start condition only. There is a strong trend that shows that
a shorter arc interval yields lower costs with means of annual ∆V ranging from 0.4518 to 0.9784 m/s in the
range of 1.0-4.0 days. For different arc durations (0.1-2.0 days), using a duration of 0.5 days proved to be best
in combination with the default interval of 3 days at 0.5290 m/s.

Regarding auxiliary parameters, the sensitivity analysis also showed that the annual∆V is quite sensitive
to the choice of a minimal ∆V threshold used to define whether an individual correction is done or not. This
is an important factor related to the design of a mission because it connects the simulation results to the
technical specifications of an actual propulsion subsystem that may be used on-board. The thrust and burn
time characteristics of such subsystem should be such that the maneuvers that were calculated in the simu-
lation can actually be performed. Given the capabilities of the current propulsion system chosen for LUMIO
with a lower limit of 0.003 m/s, it was found that optimization solutions for the tracking configuration shows
contain more variation in the annual ∆V . However, this variation is smaller when a longer simulation time
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is chosen and improvements can still be made over the baseline configuration. The sensitivity analysis also
showed that the selection of target points is a crucial part of the mission design because aiming too short or
too far downstream leads to excessive over correction. While 3 days downstream offer a mean annual∆V of
0.6131 m/s (the default setting), this increases to 2.2105 m/s for 5 days. Initial orbit insertion and estimation
errors do not alter the long-term costs approximation as these effects stabilize after 14 days, further confirm-
ing that considering corrections only after 14 days provides a representative navigation scenario with stable
conditions.

What are operational limitations and benefits associated with improved autonomous navigation performance?

Regarding the consequential benefits of the reduced station keeping costs as a result of the adjustment
to the tracking scheduling, benefits were identified that positively impact the power and fuel budget consid-
erations in spacecraft design. First of all, the ∆V budget is logically connected to a reduction on fuel, which
means that one is able to operate the mission for a longer mission lifetime. Additionally, when one compares
power consumption, improvements were also found in terms of a reduction in the total tracking time, as the
optimized tracking configurations showed that one can track for an overall shorter amount of time compared
to the baseline. This reduction in tracking time suggests that less energy could be spent on sending tracking
signals by the transponder and, as a consequence, more power can be budgeted to the payload or allocated to
other subsystems. Due to the longer mission lifetime, this can improve the scientific contribution of a mission
as more scientific data can be generated. Lastly, this work has shown that the currently used subsystems
of LUMIO can be used in the optimized settings as well. While the lower limit of the propulsion system has
some effect on the total∆V , improvements over a baseline can still bemade. In other words, nomajor design
alterations have to be made to ensure the station keep cost improvements.

The outcomes of this work did come with some caveats. The optimization algorithms used to obtain the
solutions were sensitive to state estimate variations caused by measurement noise. This stochastic nature
made it challenging to identify one single optimal tracking solution in the optimization process, resulting in
rather a set of solutions than one globally best solution. The study also showed that short simulation periods
might not adequately represent the full operational lifetime, suggesting that simulating the navigation process
for a longer period of time is beneficial for accurate annual cost approximations. Rather than the technical
feasibility, operationally there is also an aspect to be taken into account. While an improved tracking window
solution is theoretically possible, it should be applicable with realistic operational considerations. For exam-
ple, while a more complex tracking scheme could theoretically reduce costs, close cooperation is required
between two spacecraft, which individually might be bound by constraints related to antenna pointing and
science objectives. This study found that cost contributions stem more from dispersion growth than estima-
tion errors, indicating that the focus of ∆V reduction is mostly a control problem than an orbit determination
problem in the long term. Additionally, note that all findings are limited to the use case given in this study and
can lead to different results for other orbit constellation configurations as this can affect state observability.
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6.2. Recommendations for future research
This thesis work has made plenty of assumptions. Below, a set of suggestions are given for future analysis.

1. Increase model realism

Include mission planning aspects
This work assumed that LPF is essentially always at standby, ready to perform SST at any time. Future
work should evaluate what the optimal tracking windows would be when one considers the effects of
LPF’s correction maneuvers. Additionally, both spacecraft have their own science objectives such as ob-
ject observation or providing positioning or relay services for surface assets, which means that it might
not always be possible to perform tracking as needs availability of both at the same time.

Simulate over longer durations
This work has shown that in some cases, the uncertainty in cost approximation growths as the repre-
sentable period to base the annual cost on becomes smaller. This also has an effect on the solutions
found using optimization algorithm, which leads to more variation in timing solutions as the objective
space is more susceptible to larger variations with smaller simulation duration. It is therefore advised to
perform the estimation with larger simulation durations, preferable for the full 1 year operations if com-
putational resources allow for this. A similar statement can be made regarding the sensitivity analyses.

Include spacecraft budget limitations
Minimizing on-board power required for navigation improves the scientific goals of LUMIO as more
power could be allocated towards the payload. An element related to this is considering a constraint on
themaximum allowable inter satellite distance, which is related to the power limitations on the on-board
antenna systems and subsequent signal quality, affecting the estimation and station-keeping process.
Such distance upper limit restricts the orbit regions in which the tracking can be performed. Additionally,
multi-objective optimization can be done in which more multiple budgets are looked at simultaneously.
An example of such optimization would be to consider the station keeping costs combined with an ob-
jective of total tracking time. Another interesting aspect could be to optimize the sum of the station
keeping costs or track duration of all satellites simultaneously, which minimizes those objectives over
the constellation instead of just one satellite. This can be beneficial as it can reduce operational con-
flicts when one satellites cost objective is prioritized over the other.

Include more constraints defined by mission design aspects
This work assumed that LPF is essentially always at standby, ready to perform SST at any time. Fu-
ture work should evaluate what the optimal tracking windows would be when one considers the effects
of LPF’s correction maneuvers. Additionally, both spacecraft have their own science objectives such
as object observation or providing positioning or relay services for surface assets, which means that it
might not always be possible to perform tracking as needs availability of both at the same time. Rather
than the operational considerations, realism can be added from the perspective of the specifications of
a spacecraft as well. For example, this study that the spacecraft are assumed to always be perfectly
pointed towards each other. This simplifies the problem, but it is not realistic as correct antenna point-
ing is not always there. Ideally, the optimization problem should be extended by considering variables
related to the ACDS and TT&C subsystems, yielding results on the effect of the delayed or in other way
sub-optimal establishment of inter satellite connection. Coupled rotational-translational dynamics are
possible within Tudatpy. For the CAPSTONEmission, constraints on the maximum antenna offset angle
are set [31]. This is also the case for other missions performing SST. This is a logical design requirement
to consider and would provide additional realism to the simulation.

Include more advanced estimation model
Regarding estimation, this work considered the BLS filter where the only estimated parameters are the
initial states and it uses two-way range without measurement bias. In reality, there are inherent differ-
ences in the on-board model and reality. Additionally, effects related to clock synchronization, transmis-
sion and line delays add to bias [11]. Clock drift and aging can also accumulate over longer periods of
time [11]. The estimator should incorporate these terms to estimate alongside the initial states. The
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noise and bias could even be made adaptive, based on location in orbit as it could be a function of the
pointing accuracy and object distance [59]. Another option could be to include consider parameters.
Dynamic model parameters such as the SRP coefficient is currently considered without any uncertainty.

2. Evaluate other orbit geometries
Thiswork only considered the LPF and LUMIO study case. The orbit constellation geometries in thiswork
was already known to work with range-only SST (albeit not with the BLS estimator). Other geometries
might not work as efficiently, not at all and/or would have to be aided by means of additional (absolute)
observables such as GNSS or lunar equivalent [45]. The objective of station-keeping cost in this context
is not commonly researched, therefore allowing for the discovery of potential improvements.

3. Include automatic on-board decision making
The methods described above entail an ”offline” method, the timing is planned before the navigation
routine starts. Instead, timing could be done in real-time, adapting to unforeseen events. In this case,
the latest state information known on-board is used to plan the next set of windows and SKMs. For
example, events such as wrong satellite alignment or sudden malfunctions of any spacecraft’s systems,
could lead to a missed or shorted estimation arc. This might lead to larger deviation to the reference
orbit as the SKM is conducted with a large error or canceled, shifting the characteristics of the future
timing.
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A
Simulation details

E M S Me V Ma J S U N
Low Fidelity (LF)

CRTBP * *
High Fidelity (HF)

Point Mass
(PM)
1 * * *
2 * * * *
3 * * * * *
4 * * * * * *
5 * * * * * * *
6 * * * * * * * *
7 * * * * * * * * *
8 * * * * * * * * * *

Point Mass SRP
(PMSRP)

1 * * *^
2 * * *^ *
3 * * *^ * *
4 * * *^ * * *
5 * * *^ * * * *
6 * * *^ * * * * *
7 * * *^ * * * * * *
8 * * *^ * * * * * * *

Spherical Harmonics
(SH)
1 (2,2) (2,2) *
2 (2,2) (5,5) * *
3 (2,2) (10,10) * * *
4 (2,2) (20,20) * * * *
5 (5,5) (2,2) * * * * *
6 (5,5) (5,5) * * * * * *
7 (5,5) (10,10) * * * * * * *
8 (5,5) (20,20) * * * * * * * *

Spherical Harmonics
SRP (SHSRP)

1 (2,2) (2,2) *^
2 (2,2) (5,5) *^ *
3 (2,2) (10,10) *^ * *
4 (2,2) (20,20) *^ * * *
5 (5,5) (2,2) *^ * * * *
6 (5,5) (5,5) *^ * * * * *
7 (5,5) (10,10) *^ * * * * * *
8 (5,5) (20,20) *^ * * * * * * *

Full Fidelity (FF)
Full Fidelity (FF) (20,20)^+ (20,20)^+ *^+ *+ *+ *+ *+ *+ *+ *+

Clarifications
1. bodies = ”Earth”, ”Moon”, ”Sun”, ”Mercury”, ”Venus”, ”Mars”, ”Jupiter”, ”Saturn”, ”Uranus”, ”Neptune”
2. ”(n, m)” = order, m= degrees, ”*” = point mass, ”^” = radiation pressure, ”+” = relativistic correction

Table A.1: Acceleration terms used in each dynamic model
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Parameter Details Unit
Dynamic model

Initial states
Initial epoch 60390 MJD
States See Table 4.1 and Table 4.2

Satellite properties
LPF LUMIO

Mass 280 22.8 kg
Effective area 3.0 0.41 m2

Reflectivity 1.8 1.08 −

Environment properties
Gravitational parameter 6.6726 · 10−11 m3/s2

Mass Primaries 5.9737 · 1024 7.3477 · 1022 kg
Solar radiation Occultation shadow: Conical

Body approximation: Connonball
Integration Type: Runge-Kutta-Fehlberg 45

Relative tolerance 1 · 10−10 −
Absolute tolerance 1 · 10−10 −
Initial step 10 s

Reference frames
Inertial frame ECI J2000
Ephemerides JPL DE405
Time scales IAU 2006

Measurement model
Observable Type: Two-way range

Noise: 2.98 1σ m
Bias: 0 m
Observation interval 300 s

Estimation model
Type Batch Least Squares
Initial estimation error LPF LUMIO

Position 500 500 m
Velocity 1 1 mm/s

Initial estimation uncertainty
Position 500 1σ 500 1σ m
Velocity 1 1σ 1 1σ mm/s

Convergence threshold 10 iterations per arc -

Correction model
Type Target Point Method
Target points 1: 3 days after cut-off epoch days

Navigation model
Correction threshold 0.00 m/s
Correction error Magnitude: 0.00 %

Direction: 0.00 %
Insertion error LPF LUMIO

Position 0 0 m
Velocity 0 0 m/s

Duration 28 days
Observation window See Table 4.3

Optimization model
Problem scheme See Equation 4.2

Table A.2: Overview of the default simulation settings
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B
Navigation model flowchart

Figure B.1: Schematic overview of the navigation model
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C
Optimization Analysis

C.1. Tables of optimization cases
This section shows the values of the design vectors for the results of the optimization cases discussed in
Section 5.4 and relates it to the annual ∆V and the average power that is expected for different subsystems
related to the orbit determination and correction process. Note how the power levels for the OBC and thrusters
are the same. The OBC always runs regardless whether tracking is done and the thrusters are heated equally
as long for each solution because each solution has the same amount of tracking arcs.

C.1.1. Nelder-Mead, 28 days, PMSRP dynamic model

Vectors
Entry Initial Run 1 Run 2 Run 3 Run 4 Run 5
T1 1.0000 0.9511 1.1345 1.0946 0.8733 1.1723
T2 1.0000 1.0720 1.0132 0.9875 1.0593 1.0220
T3 1.0000 0.9158 0.8966 0.9829 0.8653 0.8877
T4 1.0000 0.9177 0.8085 0.7866 1.0651 1.1066
T5 1.0000 0.9962 0.9344 0.9975 0.9283 0.8476
T6 1.0000 0.9676 0.8889 0.9436 0.9750 0.8476
T7 1.0000 0.7406 0.8332 0.7297 0.6613 0.7150
Annual ∆V (m/s) 0.6116 0.4276 0.4224 0.4221 0.4236 0.4339
% Change 00.00% -30.08% -30.93% -30.99% -30.74% -29.05%
Tracking time (days) 7.0000 6.5609 6.5093 6.5223 6.4277 6.5989
% Change 00.00% -6.27% -7.01% -6.82% -8.18% -5.73%
Average Power (W) 11.8015 11.6200 11.5987 11.6040 11.5649 11.6357
Transponder 10.2931 10.1116 10.0903 10.0957 10.0566 10.1273
Thruster 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083
OBC 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000
% Change 00.00% -1.54% -1.72% -1.67% -2.00% -1.40%

Table C.1: Design vector entries
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C.1. Tables of optimization cases

C.1.2. PSO, 28 days, PMSRP dynamic model

Vectors
Entry Initial Run 1 Run 2 Run 3 Run 4 Run 5
T1 1.0000 0.7622 1.6186 0.5423 0.5804 0.9492
T2 1.0000 1.1677 1.1374 0.9218 1.9610 1.7369
T3 1.0000 0.8522 1.1665 1.4092 0.1151 0.2163
T4 1.0000 1.0477 0.1000 0.9373 1.1529 0.9822
T5 1.0000 1.8572 0.2270 0.8899 0.9638 0.1000
T6 1.0000 0.1000 0.1000 0.1000 0.1000 0.1000
T7 1.0000 0.1000 0.1000 0.4454 0.1000 0.1000
Annual ∆V (m/s) 0.6116 0.3213 0.2802 0.3214 0.2959 0.2999
% Change 00.00% -47.46% -54.18% -47.45% -51.62% -50.97%
Tracking time (days) 7.0000 5.8870 4.4495 5.2459 4.9732 4.1847
% Change 00.00% -15.90% -36.44% -25.06% -28.95% -40.22%
Average Power (W) 11.8015 11.3415 10.7473 11.0765 10.9638 10.6379
Transponder 10.2931 9.8331 9.2390 9.5682 9.4554 9.1296
Thruster 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083
OBC 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000
% Change 00.00% -3.90% -8.93% -6.14% -7.10% -9.86%

Table C.2: Design vector entries

C.1.3. PSO, 28 days, SHSRP dynamic model

Vectors
Entry Initial Run 1 Run 2 Run 3 Run 4 Run 5
T1 1.0000 0.6891 1.4729 1.0528 0.1000 1.4739
T2 1.0000 1.0073 0.8399 0.8927 2.0000 2.0000
T3 1.0000 0.9859 1.0549 1.1197 0.6739 0.3100
T4 1.0000 1.1129 0.4307 0.7432 1.0211 0.2390
T5 1.0000 1.6191 0.2040 0.9713 0.2205 1.0334
T6 1.0000 0.5653 0.1000 0.2371 0.1000 0.1000
T7 1.0000 0.1000 0.1000 0.4378 0.1000 0.2643
Annual ∆V (m/s) 0.6188 0.3485 0.2805 0.3165 0.2880 0.3024
% Change 00.00% -43.69% -54.67% -48.86% -53.46% -51.13%
Tracking time (days) 7.0000 6.0794 4.2024 5.4546 4.2155 5.4205
% Change 00.00% -13.15% -39.97% -22.08% -39.78% -22.56%
Average Power (W) 11.8015 11.4210 10.6452 11.1627 10.6506 11.1487
Transponder 10.2931 9.9127 9.1369 9.6544 9.1423 9.6403
Thruster 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083
OBC 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000
% Change 00.00% -3.22% -9.80% -5.41% -9.75% -5.53%

Table C.3: Design vector entries
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C.1. Tables of optimization cases

C.1.4. PSO, 56 days, PMSRP dynamic model

Vectors
Entry Initial Run 1 Run 2 Run 3 Run 4 Run 5
T1 1.0000 1.0407 1.4203 0.8645 0.3859 0.7746
T2 1.0000 1.1549 0.3999 1.4020 0.2920 0.7179
T3 1.0000 1.4806 1.5037 1.1470 0.4261 0.8281
T4 1.0000 0.5078 0.8653 0.4119 0.2024 1.5631
T5 1.0000 1.1531 0.8420 1.2009 2.0000 0.3545
T6 1.0000 0.7169 0.7000 0.6339 0.9404 0.9205
T7 1.0000 1.1428 1.4782 0.8037 1.2448 1.1469
T8 1.0000 0.7111 1.4704 0.9455 1.5680 0.5908
T9 1.0000 1.1313 0.9193 0.9280 0.7594 0.4945
T10 1.0000 0.9630 0.5479 0.1000 0.1728 0.7633
T11 1.0000 0.8079 0.6880 0.1000 0.8315 1.5876
T12 1.0000 0.8721 0.8708 1.2233 1.9213 1.3096
T13 1.0000 0.9203 0.1922 0.1000 0.1964 0.3839
T14 1.0000 0.1090 0.6562 1.4338 1.0203 0.3595
Annual ∆V (m/s) 0.6240 0.4513 0.4352 0.4168 0.5050 0.4383
% Change 00.00% -27.67% -30.26% -33.20% -19.08% -29.76%
Tracking time (days) 14.0000 12.7115 12.5545 11.2946 11.9611 11.7950
% Change 00.00% -9.20% -10.33% -19.32% -14.56% -15.75%
Average Power (W) 11.8015 11.5352 11.5027 11.2424 11.3801 11.3458
Transponder 10.2931 10.0269 9.9944 9.7341 9.8718 9.8375
Thruster 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083
OBC 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000
% Change 00.00% -2.26% -2.53% -4.74% -3.57% -3.86%

Table C.4: Design vector entries

C.1.5. PSO, 28 days, PMSRP dynamic model, with 0.003 m/s threshold

Vectors
Entry Initial Run 1 Run 2 Run 3 Run 4 Run 5
T1 1.0000 1.1318 2.0000 0.7237 0.1861 1.2050
T2 1.0000 1.1813 0.8856 0.5581 0.8009 1.5947
T3 1.0000 0.6829 2.0000 0.2861 0.5644 0.7294
T4 1.0000 0.8296 0.3362 0.2731 0.1000 0.7364
T5 1.0000 1.2968 0.6273 0.1913 0.5694 0.5851
T6 1.0000 0.3224 0.1000 0.1380 0.4906 0.8648
T7 1.0000 0.4605 0.1719 0.1789 0.9860 0.2442
Annual ∆V (m/s) 0.6121 0.3263 0.1820 0.0000 0.1202 0.2802
% Change 00.00% -46.68% -70.26% -100.00% -80.37% -54.23%
Tracking time (days) 7.0000 5.9053 6.1210 2.3492 3.6975 5.9596
% Change 00.00% -15.64% -12.56% -66.44% -47.18% -14.86%
Average Power (W) 11.8015 11.3490 11.4382 9.8793 10.4365 11.3715
Transponder 10.2931 9.8407 9.9298 8.3709 8.9282 9.8631
Thruster 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083
OBC 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000
% Change 00.00% -3.83% -3.08% -16.29% -11.57% -3.64%

Table C.5: Design vector entries
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C.1. Tables of optimization cases

C.1.6. PSO, 56 days, PMSRP dynamic model, with 0.003 m/s threshold

Vectors
Entry Initial Run 1 Run 2 Run 3 Run 4 Run 5
T1 1.0000 0.8567 1.3308 1.8853 0.5168 1.0644
T2 1.0000 0.7090 0.4349 0.1961 0.6077 0.5539
T3 1.0000 2.0000 1.5158 1.3062 0.7254 0.1614
T4 1.0000 0.3168 0.9154 0.6350 0.3407 0.7213
T5 1.0000 0.7282 0.9440 0.1000 1.7640 1.1188
T6 1.0000 0.1000 0.6867 0.1000 0.8346 0.4984
T7 1.0000 1.2493 1.3668 0.4053 1.0320 1.3044
T8 1.0000 0.9531 1.3191 2.0000 1.5341 1.1961
T9 1.0000 1.0619 0.8873 0.7183 0.7193 1.3817
T10 1.0000 0.2268 0.7297 0.4561 0.3082 0.6049
T11 1.0000 0.6391 0.6956 1.0094 0.8170 0.8980
T12 1.0000 2.0000 0.7861 1.3808 1.0272 0.7105
T13 1.0000 2.0000 0.1000 0.4413 0.6028 0.8803
T14 1.0000 1.1456 0.5829 1.0456 0.8761 0.6273
Annual ∆V (m/s) 0.7621 0.4009 0.3832 0.4026 0.3817 0.3634
% Change 00.00% -47.39% -49.71% -47.17% -49.92% -52.32%
Tracking time (days) 14.0000 13.9867 12.2950 11.6795 11.7058 11.7213
% Change 00.00% -0.10% -12.18% -16.57% -16.39% -16.28%
Average Power (W) 11.8015 11.7987 11.4491 11.3219 11.3274 11.3306
Transponder 10.2931 10.2904 9.9408 9.8136 9.8190 9.8222
Thruster 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083
OBC 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000
% Change 00.00% -0.02% -2.99% -4.06% -4.02% -3.99%

Table C.6: Design vector entries
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C.2. Relationship between SKM cost, estimation error and dispersion

C.2. Relationship between SKM cost, estimation error and dispersion
This section compares the relationship between SKM cost, estimation error and dispersion for two example
cases. Figure 5.33 and Figure C.2 show it for one run of the Nelder-Mead and PSO scenario. However, the
exactly values for all 5 runs, as explained in Section 5.4, are show in detail in ??.

Figure C.1: Default and optimized tracking configuration resulting from the Nelder-Mead optimization method with corresponding
contributors to correction costs (28 days, PMSRP, run 1 of 5)
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C.2. Relationship between SKM cost, estimation error and dispersion

Figure C.2: Default and optimized tracking configuration resulting from the PSO optimization method with corresponding contributors
to correction costs (28 days, PMSRP, run 1 of 5)
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D
Sensitivity analysis

D.1. Analysis with 28 days simulation
The annual approximation of ∆V associated with a simulation of 28 days, as explained in Section 5.3, are
shown in Figure D.1 and Figure D.2.
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D.1. Analysis with 28 days simulation

Figure D.1: Annual ∆V for sensitivity analysis results for observation window parameters (28 days)
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D.1. Analysis with 28 days simulation

Figure D.2: Annual ∆V for sensitivity analysis results for auxiliary parameters (28 days)
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D.2. Analysis with 56 days simulation

D.2. Analysis with 56 days simulation
Figure D.3 and Figure D.4 show the raw∆V associatedwith a simulation of 56 days. The annual approximation
using those results are shown in Figure D.5 and Figure D.6.

Figure D.3: Sensitivity analysis results for observation window parameters (56 days)
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D.2. Analysis with 56 days simulation

Figure D.4: Sensitivity analysis results for auxiliary parameters (56 days)
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D.2. Analysis with 56 days simulation

Figure D.5: Annual ∆V for sensitivity analysis results for observation window parameters (56 days)
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D.2. Analysis with 56 days simulation

Figure D.6: Annual ∆V for sensitivity analysis results for auxiliary parameters (56 days)
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